Multidisciplinary Research Cruise on the Continental Margin of the Offshore Area of South-Eastern...

179
, ) CRUISE. REPORT HUDSON' 91-020 Atlantic Geoscience Centre For Citation: "SALEM, Hilmi S. and STAFF OF SCIENTISTS AND ENGINEERS, 1991. Multidisciplinary research cruise on the continental margin of the offshore area of south-eastern Canada - the Grand Banks (down to depths of 6 km 20,000 ft), including geophysical, petrophysical, geological, geochemical, geotechnical, and pathymetric studies (sonar scanning, dredging, coring, laboratory measurements, etc.). Atlantic Geoscience Centre [Environmental Marine Subdivision (environmental, engineering, geology, geotechnology, climatology, and palaeoclimate studies’), Basin Analysis Subdivision (hydrocarbons, petrophysics, sedimentology, stratigraphy, and geochemistry), Regional Reconnaissance Studies Subdivision (geophysics and geodynamics), and Program Support Subdivision (cruise equipments and facilities)], Dalhousie University, Geological Survey of Canada, Ocean Drilling Program (ODP); Cruise Report: Hudson (CR) 91-020, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada, 173 pp. (Technical Expedition Report)." URL: http://wmsmir.cits.rncan.gc.ca/ index.html/pub/geott/MarineGeoscienceData/Seismic_Reflection_Scanned/Stations/Expedition% 20Reports/91020_expedition_report.pdf

Transcript of Multidisciplinary Research Cruise on the Continental Margin of the Offshore Area of South-Eastern...

, )

CRUISE. REPORTHUDSON' 91-020

Atlantic GeoscienceCentre

For Citation:

"SALEM, Hilmi S. and STAFF OF SCIENTISTS AND ENGINEERS, 1991. Multidisciplinary research cruise on the

continental margin of the offshore area of south-eastern Canada - the Grand Banks (down to depths of 6 km

≈ 20,000 ft), including geophysical, petrophysical, geological, geochemical, geotechnical, and pathymetric

studies (sonar scanning, dredging, coring, laboratory measurements, etc.). Atlantic Geoscience Centre

[Environmental Marine Subdivision (environmental, engineering, geology, geotechnology, climatology, and

palaeoclimate studies’), Basin Analysis Subdivision (hydrocarbons, petrophysics, sedimentology, stratigraphy,

and geochemistry), Regional Reconnaissance Studies Subdivision (geophysics and geodynamics), and Program

Support Subdivision (cruise equipments and facilities)], Dalhousie University, Geological Survey of Canada,

Ocean Drilling Program (ODP); Cruise Report: Hudson (CR) 91-020, Bedford Institute of Oceanography,

Dartmouth, Nova Scotia, Canada, 173 pp. (Technical Expedition Report)." URL: http://wmsmir.cits.rncan.gc.ca/

index.html/pub/geott/MarineGeoscienceData/Seismic_Reflection_Scanned/Stations/Expedition%

20Reports/91020_expedition_report.pdf

Dates:

Master:

CRUISE REPORT HUDSON 91-02011 June 1991 - 4 July 1991, BIO to St Johns

Captain L.A. Strum

I )

Senior Scientist: D.J.W. Piper, A.G.C.

SecondScientist: P.J. Mudie, A.G.C.

Responsibleagency: Atlantic GeoscienceCentre

CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . .Cruise summaryScientific highlightsScientific staffSummaryof technical problems and recommendations

Log of operations . . . . .Daily summaryDetailed narrative

Details of operationsand preliminary results . . . . . . . .Navigation

Routine navigationComputer networking and navigationShips clock

CoringAGC Long coring facilityGravity coring and box coringCHATS/PALCore processingSummaryof results of coringEstimatesof core top lossesfrom physical propertiesMicropaleontologyGeochemistry

Seismic reflection profilingMethodsSE881 Digital Seismic Data LoggerSummaryof results

Lance10tpiezometric studiesMethod

. Summaryof resultsDredgingDebris flows of the Albatross corridorThermal characterof St Pierre Slope sediments

Data tables and plots . . . . . . . . . .Summaryresults of thermal probe stationsSummaryLancelot resultsSummarycore logsShipboardgeochemistrydataSummaryof shipboarddata

Table 7. Composite sample listTable 8. Core samples

33567991020202020212222242427303436394747474950505455606476

I )

Table 9. Grab samplesTable 10. Water samplesTable II. Dredge samplesTable 12. Box core samplesTable 13. Start/endof paper recordsTable 14. Start/endof tapes

Summary track plots

Tables in text1. SUmmaryof CHATS and PAL on each core 252. Estimatesof core-top loss from physical propertiesdata 353. Estimatesof core-top loss from geochemicaldata 464. Summary of Lancelot deployments 525. Summary of thermal probe deployments 726. Summary of other data from thermal probe stations 77

2

I )

INTRODUCTION

CRUISE SUMMARY

This was a multidisciplinary earth sciencecruise on the continental

margin off southeasternCanada, supportingcomponentsof the GSC Mapping,

Energy and Environment programs. Detailed studieswere carried out on a debris

flow south of the Albatross well site (following up reconnaissancework in

1988) and around the epicentreof the 1929 Grand Banks earthquake(following

up the 1990 detailedsidescansurvey). More reconnaisancelevel studieswere

carried out on the Grand Banks margin. This was the first AGC Hudson cruise to

experiencethe new overtime restrictions.

Scientific objectives of the cruise were:

1. To carry out regional mapping of the deep water margin off the Grand Banks.

2. To assessthe importanceof gas hydrateson the continentalslope and in

Flemish Pass, and the potential loss of gas through the upper slope.

3. To obtain core-top samples for dinoflagellatedistributions and transfer

functions.

4. To understandthe sedimentologicalbehaviourof the Albatross debris flow.

5. To make measurementsof in-situ pore pressurein various deep water

sediments.

6. To dredge volcanic rock samplesfrom the Fogo Seamounts.

7. To obtain stratigraphiccores on outer Flemish Cap and on the Grand Banks

margin.

8. To carry out seismic surveys to support potential ODP sites on the Fogo

Seamounts.

9. To test modifications to the AGC long coring system.

10. To calibrate and test the fluid backedboomer.

Cruise results keyed to the above objectives

(numbers keyed to objectives above)

1. Substantialnew bathymetric and 3.5 kHz coverageon deep water margin off

the Grand Banks; some seismic lines, particularly in Titanic area, on St

Pierre slope and near the Narwhal well. Considerablenew groundtruth for

3

previous acousticdata on St Pierre Slope and near the Titanic wreck. Work

hamperedby bad weather.

2. Significant amounts of methanedo not appear to be leaking from the upper

slope. Gas sampledon St Pierre Slope; thermal probe measurementswill be used

to assesshydrate stability. Proposedshallow hydrates in Flemish Pass shown

to be sand.

3. Six box cores, 5 van Veen grabs and more than 20 poorer quality gravity

cores obtainedfor dinoflagellatedistribution data base.

4. 7 piston cores (number reducedby overtime restrictions) and substantial

seismic coveragesshows that Albatross debris flow consistsof several flows

which pass downslope into erodedterrain, probably from the related turbidity

current.

5. Lancelot probe highly successful.Demonstratedupward flow of fluid near

pockmark site on St Pierre Slope. Hard bottom preventedLancelot penetration

at Titanic site; but core samplesobtainedto study consolidationhistory.

6. Volcaniclasticbrecciawith relatively fresh clasts of trachyte, rhyolite

and basalt dredgedfrom northwesternFogo Seamount.

7. Stratigraphiccores obtainedon slide north of the Titanic and east of

Flemish Cap. Weather preventedtaking core·on SWGrandBanks margin. This part

of program cut back due to overtime restrictions.

8. Seismic on potential ODP sites not obtainedbecauseof bad weather. Dredged

?Cretaceoussandstonefrom ridge south of Flemish Cap. Dredgedvolcaniclastic

breccia from one Fogo Seamount.

9. CHATS and PAL logging systems for corer motion highly successful.Some

tweaking of orifices and other testing carried out on piston corer.

10. Fluid backedboomer calibratedand testedwith loose spring.

Data collected included:

1200 kmof 40 cu inch sleeve gun seismics

·500 kID Huntec DTS seismics

3.5 kHz and 12 kHz profiles throughoutentire cruise.

12 piston cores, most with CHATS and PAL logging

7 box cores (one failed)

5 dredgehauls (3 successful)

4

3 camerastations

9 heat flow/conductivity stations (MUN heat flow probe)

6 Lancelot deploymentsfor pore pressureand consolidation

23 gravity cores and 9 van Veen grabs (of which 60% successful)

SCIENTIFIC HIGHLIGHTS

Multiple debris flows were distinguishedin the Albatross debris flow

corridor; downslope thesepassedinto zones of erodedseabed.

The Lancelot piezometricdevice detecteda zone of excesspore pressure

and probably upward flow of fluid associatedwith pockmarks on the St Pierre

Slope

Sedimentswithin one metre of the seabednear the Titanic wreck are

highly overconsolidated,probably as a result of non-depositionand

diagenesis.

Nearsurfaceoverconsolidationwas measuredat severalbox core sites on

the continentalslope and could be visually related to biologic activity

The detailedbehaviourof the wire, core head and piston during coring

was monitored at 1/100 secondsampling rate.

No evidencewas found for significant releaseof gas from hydrateson the

upper slope.

Acoustic bright spots in Flemish Passpreviously interpretedas due to

gas hydratesappear to result from coarsenear-surfacesands.

A recent turbidite from Titanic valley contains resedimentedorganic

fragments including beetlesthat may provide information on late Pleistocene

refugia on the outer Grand Banks.

Volcaniclasticbrecciacontaining trachyte, basaltand rhyolite was

recoveredfrom the Fogo Seamounts.

Si02 distribution, magnetic susceptibilityand shearstrengthwere used

to estimatecore top loss in piston cores as ranging from 0.5 to 2 m.

Surficial red mud on the central ScotianRise may representdepositsof

the 1929 Grand Banks turbidity current transportedas a nepheloidlayer.

Eight successfulheat flow and conductivity measurementswere made near

the epicentreof the 1929 Grand Banks earthquake.

5

SCIENTIFIC STAFF

David Piper

PetaMudie

Ray Cranston

Harold Christian

Lubomir Jansa

Martin Morrison

JacqueBerry

Dave Heffler

Bill MacKinnon

Iris Hardy

Bob Murphy

Roy Sparkes

JesseNielsen

Don Locke

Marty Uyesugi

Bob Fitzgerald

Richard Morykot

Hilmi Salem

Dave Pass

Andy McThenia

Michelle Lund

AGC

AGC

AGC

AGC

AGC

MUN

Dal

AGC

AGC

AGC

AGC

AGC

AGC

AGC

Seastar

AGC

AGC

AGC

AGC

U. Virginia

McGill U.

6

SUMMARY OF TECHNICAL PROBLEMS AND RECOMMENDED IMPROVEMENTS

The cruise program was modified before sailing by removing some piston

coring that could be done only with substantialovertime for the deck crew.

Otherwise, with the cooperationof the Captain, we were able to work around

the new overtime restrictions. This was possibleonly becauseour program was

multidisciplinary and thereforerelatively flexible.

This cruise was successfulbecauseof the customarywilling support and

cooperationof Capt. Strum and the ship's officers and crew. In particular,

precisestationkeeping and the hard work of the deck crew contributedgreatly

to the scientific program. As usual, the EngineeringDept. were willing to

help with equipment repair-andmodification. Staff were impressedby the food

and the cheerful stewardservice.

Ships or BIG problems

- The air conditioner in the Computer room leaks when there is a port list.

The air conditioning did not work efficiently at the beginning of the cruise.

This may have contributedto the collapseof the colour video displays.*

- Crutch for Grove crane should be movedaft so that Pengo wire is well clear

of core head.

- Navigation display in the GP lab is small and hard to read. There are

insufficient monitors on board.**

- Senior scientist'scabin. Note comments madein 1990: lack of filing

cabinet, dangerousbookcase,size of bookcases,obstructingfixed table.*

- It would give more flexibility in assigningcabins if ALL staff cabins on

the upper deck could be used either as male or as female cabins (particularly

since one of the two currently designatedas female is terrible).

- The steps from the GP lab to the geochemlab are worn and slippery, and

dangerouswhen carrying cores down to the cold room.

- When the A-frame is turned on, the water pump for compressorsturns off.

- Drawers in the GP lab are in terrible shapeand need refurbishing.

- Deckheadin port forward area of GP lab leaks a fine white dust, apparently

insulation, which is deleteriousto computersand other lab equipmentand may

causegeochemicalcontamination.

7

AGC problems

- Log books should contain sweep chart for 3.5 kHz profiler on half second

sweep and instructions on reprogrammingannotator. The headingmarked "speed"

should read "log".*

Dredging block needs a load pin.

Various problems,withSE880 and piston coring describedin separatereports

by Heffler and MacKinnon.

- The number and reliability of shipboardPC's is inadequate:particularly, a

laser printer is essential, ideally linked to the network.

- The computerprovided for FINS would not run the .software (although it would

run on other computers). In the new overtime regime, FINS must be working

before corning to sea.

- AGC should considercarefully whether to continue to be involved at all in

ISAH, or whether to go the GPS - PC route that Heffler startedto develop,

which appearsmuch more rapid and robust.

* - suggestionmade in 1990; ** - suggestionmade in 1988 and 1990.

8

DAILY SUMMARYDays162 Tu11

163 W12

164 Th13

165 F14166 Sa15

167 Su16

168 M 17

169 Tu18170 W 19

171 Th 20

172 F21

173 Sa 22

174 Su 23175 M 24

176 Tu 25177 W 26178 Th 27

179 Fr 28

180 Sa 29

181 Su 30

182 Mo 1

183 Tu 2

184 W 3

185 Th4

LOG OF OPERATIONS

ProgramDepart BIO. Huntec calibration in Bedford Basin. Huntec deepwater boomer test in Emerald Basin.Steam to shelf break. Gravity core 001 (wash out), Van Veen 002on upper slope on Albatross transect. Piston core 003 west ofAlbatross area, camerastations004, 005 (pinger failure).Night seismic acrossAlbatross debris flow systemat 3000 m.Box core 006, piston core 007 on levee E of debris flow. Nightseismic down the easternvalley of the Albatross system.Piston core 008 in easternvalley. Medical evacuation.Night seismic down end of easternvalley. Piston core 009 inerosionalzone beyond downslope limit of recent debris flows.Van Veen 010. Night seismic zig-zag acrosseasternvalley.Gravity core 011 on levee, piston core 012 on "snout". Nightseismic zig-zag up easternvalley.Piston core 013 on levee, 014 on debris flow at 3500 m ineasternvalley. Camera station 015 on debris flow.Steam to St Pierre Slope.Night seismic in SAR zone 1. 3 heat flow probe stations.Transectfor gas on upper slope (020-026). Night seismic.Lance10t (027), box core (028) and piston core (029) onundisturbedhigh .at 1400 m in SAR zone 1. Then seismic.Heat flow probe (030-032). Lance10t in pockmarkedzone (033).Transectfor gas on upper slope (034-038). Night seismic.Heat flow probe (039) at site 028. Lance10t (041) and pistoncore (040) in debris flow, gravity core (042) in adjacent .channel. Lance10t on upper slope (043). Night seismic.Box core (044). Heat flow probe (045-047). Lance10t (048).Narwhal transect. Box core 049 at Narwhal site. Upper slopegravity cores and Van Veen grabs (050-055). Seismic on upperslope and around Narwhal site.Central Grand Banks margin. No work due to bad weatherand SAR.Survey Fogo Seamount29. Dredge 056, no recovery.Bathy survey SE of Fogo Seamount29. Dredges 057, 058 at FogoSeamount29.Piston core 059 on slide north of Titanic site. Gravity cores060, 061 near Titanic. Visit from Keldysh. Night seismic.Piston core 062, Lance10t 063 near Titanic site, gravity cores064, 065 in vicinity. Night seismic.Grab 067, 068, box core 069 off SW Grand Banks. Steam toFlemish Cap.Dredges (070, 071) and Van Veen (072- wash out) at Srivastavasite. Van Veen wash out at 400 m (073). Then steamedto outerFlemish Pass, ran seismics.Outer Flemish Cap. Piston core 074, box cores 075, 076; vanVeens 077, 078. Steamedto Flemish Pass.Seismic, then piston core 079 at gas hydrate site. Steam toDowning Basin.Fluid backedboomer test (failed). Steam to St Johns.

9

, I

test seismic line at about 2300 Z. Ran

output, probably becauseof loose

at Wend ofknots from62 55 W62 48 W62 45 W

Rather low power

DETAILED NARRATIVETUESDAY 11 JUNE JD 162Fire and boat drill immediately on leaving BIOSteamedto deepestpart of Bedford Basin. Drift and deploy Huntec DTS system.Carry out calibration tests on fluid backedboomer. Unusual power loss ondeepesttest (later judged to be becausebolt holding spring in place hadworked loose). Then waited for launch with replacementseamanand put Simpkinashore. DepartedBedford Basin at 1800 Z.Steamedat full speedto Emerald Basin. (Deck crew occupiedsecuringstoresand gear).Slow and deployedHuntecHuntec seismic line at 4A: 43 53.1Nto B: 43 53.1 Nto C: 43 ,52.5 NWind abeam, some sea.spring.

WEDNESDAY 12 JUNE JD 163RecoveredHuntec at 0100Z.Steamedat full speedtoD: 42 52 N 62 48.5 WThen ran south on echosounderto 430 mto take gravity core 001. Some delaybecausemeter not connectedto block.Core washedout 5 emplug of sediment. Only silt recoveredon outside ofbarrel. AttemptedVan Veen grab 002 near same site. Good recovery, but no gas.During these stations, BIONAV failed and had to be restarted.Sample positionsbasedon Trimble GPS.At 0720Z, steamedwith 3.5 kHz and 12 kHz towards 42 07 N 63 05Wand then ontowards core site at 42 50 N 63 21W. In order to reduce problems with spraywhile rigging, ran somewhatnorth of original site and chose new site on basisof 3.5 kHz at:41 55.5 63 22.57Core 003, 50 ft. Heffler logging calibration poor, so no detailed record.Excellent !WC with new heavier trigger weight corer. 33 ft penetration,about10 m イ・」ッセ・イケL with stiff mud and cobble in lower part. Considerableproblemswith getting out of barrel.Then attemptedcamerastation 004 at core site. Cameraworking on deck, but onbottom the pinger did not switch off when on the bottom. Put on bottom 4times, then recovered.Tried again at 1715 ADT, after Locke checkedcamerafor problems. Wind got upand had problems holding station. Experiencedsame problems with pinger: puton bottom only twice. On recovery, compasstrip lost (swinging violently andline parted).Then steamedto 3mi W of core site and at about 2130 ADT deployed40 cu insleeveairgun, SE and NSRF eels. (Huntec not usedbecause(1) not ready and(2) weathernot very good).

to62 27.0 W

in time to arrive on core station 006 at 0745.

THURSDAY 13 JUNE JD 164Ran seismic line at 5 knotspoint E 42 07.0 NRecoveredgear at E

10

Core 006 42 10.21 N 62 35.55 Wbox core: about 30 cm recovery. Overconso1idatedolive-grey mud. Successfulgeochem, geotechsampling.Then run to the west towards:42 09.74 62 37.8Core 007. 50 ft piston core. Heffler split piston did not split, and logs didnot trip correctly. 28 ft penetrationbut only 5m recovery, with somedisturbancein top section.Ran 3.5 line through core site to east to cross major valley while core wasbeing dismantled. This line with the wind, which is increasingto 35 knots.Then returnedto easternvalley of debris flow and deployedairgun and eels at1730 ADT to run the following lines:F 42 11'N 62 39 Wto 42 5.2'N 62 36.1'W

FRIDAY JUNE 14th JD 165continue seismic linesG 42 OO'N 62 32 WH 41 50'N 62 21'WI 41 40'N 62 13'WJ 41 27'N 62 OO'Wthen turned and ran back to core site at41 28.3 N 62 00.95 WCore 008, 50 ft piston core on debris flow. TWC recoveredmostly sand, PCrecoveredsand over stiff mud. Mud in core catcherhad shearstrengthof 16kPa. Corer snappedoff at top of bottom barrel, Heffler lower half of splitpiston lost.Weather throughout the late night and day poor: winds of 35 kn.At 1400, steamedtowards Halifax for medical evacuation.Returnedto core siteby 2200 ADT.

SATURDAY JUNE 15th JD 166Three miles north of core site, deployedseismic gear (airgun, SE and NSRFeels)Towed seismic gear at 5 knots through the' following points:41 13.5 N 61 51 W41 00 N 61 41.3 W40 45 N 61 34.5 Wthen turned towards40 45 N 62 00 WNSRF eel digitally recordedRecoveredgear and ran to core site.40 ft piston core 00941 00.93 N 61 42.95 Wwhen core completed, steamedat 10 knots to point LL 41 01.0 N 61 37.0 WM 41 05.0 N 61 38.0 Wto Van Veen grab site at 41 04.2 N 61 44.3 Wtook Van Veen grab 010.

SUNDAY JUNE 16th JD167Steamedto 2 mi before start of seismic line, deployedairgun, SE and NSRF

11

eels and ran the following seismic lines at 5 knots.Excellent weather. NSRF and SE 100 ft digitally recorded.A: 41 14.2 61 45.3B: 41 11.2 61 55.0C: 41 12.5 61 55.8D: 41 14.5 61 50.2more seismic lines were then designatedbroke off seismic to return to core site near point D at 0745 ADT.Took gravity core 011 using half inch wire at:41 16.76 N 61 51.40 WThen took 40 ft piston core 012 at:41 l6.42N 61 48.63 WWhen completed, steamedto point 2 miles from L and deployed seismic gearincluding Huntec DTS. Ran the following lines at 5 knots. Excellent weather.NSRF, SE 100 ft and SE 25 ft digitally recorded.L 41 29.1 61 58.0M 41 28.3 62 00.945

MONDAY JUNE 17th, JD 168continuedseismic under excellentweatherconditionsN 41 27.0 62 06.3o 41 36.0 62 05.3P 41 32.2 62 11.0Q 41 32.65 62 15.04R 41 36.6 62 15.5S 41 41.1 62 10.0T 41 47.6 62 16.1U 41 43.4 62 23.5V 41 53.2 62 18.0W 41 48.5 62 30.0continuedon a short distancebeyond W, then recoveredgear at 0700 ADT.Core 13, 50 ft piston core at:41 49.63 62 19.91 approx.then core 14, 40 ft piston core at:41 47.29 62 21.01 approx.then camerastation 015 at the same site as core 14. In fact, stationwasabout 1 mi Wof core 14. Took 8 shots, then pinger failed. Shackleweight was17 cm long, 12 cmwide.

TUESDAY JUNE 18th, JD 169Steameddirectly to St Pierre Slope, running 12 kHz and 3.5 kHz. Engine testsat 1030 ADT. Beautiful weather.

WEDNESDAY JUNE 19th, JD 170Deployed seismic gear (Huntec, airgun, SE and NSRF eels) atA: 44 55.0 55 49.6and ran the following lines at 5 knots. Airgun recordedon ORE system.B: 44 50.57 55 45.0C: 44 49.40 55 42.4D: 44 45.32 55 37.34E: 44 43.72 55 35.82F: 44 42.0 55 34.75

12

G: 44 43.0 55 32..0make a slow turn to stbd and resume line atH: 44 42.45 55 32.45I: 44 45.17 55 35.30J: 44 42.0 55 33.65K: 44 39.5 55 33.07L: 44 38.0 55 33.48M: 44 42.0 55 40.0broke off seismic and ran to first thermal probe station:Before the first station only, the probe was held 30 m off the seafloor for 10minutes. It was then lowered into the bottom and remainedthere for 20minutes. It was then brought up and lowered again immediately into the bottom,so that there was a total of three lowerings at each station. It was towedbetweenstationsat an appropriatespeed (3 knots).TPl-2 44 50.30 55 44.72 approx 525 mTPl-3 44 49.52 55 42.20 approx 600 mWhen TPl-3 was completed, recovered.Redeployedafter lunch at the following two stationsTPl-4 44 47.40 55 39.65 approx 690 mTPl-5 44 46.75 55 38.96 approx 800 mran out of battery at beginning of TPl-5, which was not completed.Recoveredthermal probe. Data quality good.Take a gravity core (hydrographicwire) at point N:N: 44 45.05 55 38.12Took a seriesof gravity cores 021 to 026 along line B to A at sites startingat about 500m, with each site approximately50 m shallower.B: 44 50.57 55 45.0A: 44 55.05549.6

THURSDAY JUNE 20th, JD 171Weather continuing good.After end of coring profile, ran to W to streamseismic gear. Then ran thefollowing seismic lines with Huntec, 40 cu in airgun, SE and NSRF eels:W 44 52.0 55 51.0V 44 51.695 55 46.125U 44 50.0 55 39.5T 44 47.5 55 44.0S 44 47.0 55 42.0R 44 46.65 55 36.0made a slow turn to stbd and come onto lineQ 44 46.4 55 35.5P 44 45.85 55 37.23o 44 45.6 55 37.84N 44 45.05 55 38.12M 44 42.0 55 40.0AA 44 39.0 55 45.0BB 44 35.5 55 41.5recoveredgear at 0700 in order to be at Lancelot site by 0800at 44 41.0 55 31.3 1325 mStn 027: Lancelot. Lance10twas left in the bottom for an hour. Excellentdata.then at the same site, took a box'core (core 028)

13

then at the same site, took a 50 ft piston core (core 029)When piston core completed, ran to one mile north of point A and deployedHuntec, airgun, SE and NSRF eels for the following seismic lines at 5 knots.For line A-B and beginning of B-C, Huntec digitally recorded: thereaftertheairguns were digitally recorded.A 44 44.0 55 31.3B 44 41.0 55 31.3C 44 31.0 55 31.3D 44 33.0 55 48.0E 44 35.0 5548.0F 44 35.0 55 30.0

FRIDAY JUNE 21st, JD 172continuedseismic profilingturn to stbd to come back through F and continue to GG 44 40.0 55 40.0H 44 48.25 55 50.01I 44 48.70 55 44.45J 44 48.90 55 35.90made a slow turn to port to come to point KK 44 49.0 55 36.68KK 44 46.695 55 37.103L 44 45.0 55 37.44made a turn at L to come to point MM 44 46.51 55 36.0N 44 46.62 55 38.0Broke off seismic in order to arrive at site TP2-5 by 0800. The thermal probewas used at this site and at sites TP2-6 and TP2-7, with slow towing inbetweensites.TP2-5 44 46.75 55 38.96TP2-6 44 46.68 55 37.84TP2-7 44 45.60 55 37.84On site TP2-7, too much wire was put out and the probe got twisted, breakingthe main electical connector. Probe recoveredbefore TP2-7 was completed.Steamedto station LAN-3 for Lancelot deployment, via points U and VU 44 46.0 55 37.42V 44 47.0 55 37.28LAN-3 44 47.45 55 41.73 (exact site confirmed by sounder)Lancelot stayed in the bottom for one hour; two drags at time of watch change.Only partially useabledata.When Lancelot completed, steamedto start of gravity core line atX 44 50.19 55 58.69ran line from X through Y and on upslopeY 44 51.9 55 58.7

) Five gravity cores taken, at approximately500m, 450 m,at point Y (420 m), at370 mand at 320 m (samples34-38). Water bottle also taken at point Y (sample36).

SATURDAY JUNE 22nd, JD 173When coring completed, steamedto a point 2 mi Wof A, deployed seismic gear(Huntec, airgun, SE and NSRF eels) and ran the following lines at 5 knots:A 44 50.68 55 54.20

14

B 44 50.7 55 50.0C 44 51.0 55 43.0D 44 51.0 55 42.0E 44 49.3 55 40.4F 44 47.32 55 43.3G 44 44.90 55 45.91make a slow turn to port and come on to HH 44 44.2 55 45.09S 44 46.93 55 38.0T 44 46.835 55 36.0make a slow turn to come to point QQ 44 46.40 55 36.0R 44 46.52 55 38.0make a slow turn to come to point 0o 44 46.82 55 38.0P 44 46.715 55 36.0then turn to come to point II 44 46.0 55 37.6J 44 47.0 55 37.47make a slow turn to come to point KK 44 47.0 55 36.9L 44 46.0 55 37.08M 44 45.0 55 35.0N 44 42.0 55 29.0broke off line shortly after M to come to thermal probe stationby 0800thermal probe station TP4-1 (039)TP4-1 44 41.00 55 31.51 (approx 1300 m)50 ft piston core (040), followed by Lance10t deployment (041), both at thesame site.

44 45.05 55 38.12 (approx 1000 m)In order to trigger the loggers on the piston corer, the corer was lowered tonear the bottom, then brought up 100 m, then finally put in the bottom.Logging successful.Then moved 5 cablesNW to take gravity core 042 in channel.Then steamedat full speedto secondLance10t deploymentatY 44 51.9 55 58.7 . (approx 420 m)When Lance10t recovered, came 1.5 mi W of Lance10t site and streamedHuntec,airgun, SE and NSRF eels, and ran at 5 knots back through the Lance10t siteand then to .A 44 52.0 55 50.0B 44 46.0 55 50.0C 44 42.5 55 51.5D 44 44.0 55 44.5then make slow turn onto EE 44 43.6 55 44.5F 44 40.0 55 47.5G 44 36.0 55 47.0H 44 30.0 55 47.0I 44 30.0 55 30.0Huntec turned off betweenH and I becausevery difficult to track overhyperbolic bottom.Brought in gear at I and ran to box core site 044 at 0800

15

(approx 1635 m)(approx 1645 m)

speedtoand continue throughto

044 44 31.86 55 38.83When box core secured, run at fullA 44 35.4 55 45.0TP5-2 44 36.845 55 43.125B 44 37.5 55 42.0turn and return to Thermal Probe station TP5-l045 TP5-l 44 37.325 55 42.725 (approx 1635 m., exact positionto be confirmed by sounder)continue with thermal probe stationsat046 TP5-2 44 36.845 55 43.125047 TP5-3 44 36.225 55 43.925(both finally picked by sounder).Recoveredthermal probe at 1630. Only 045 had good data.Then steamedat full speedto Lance10t stationLAN-5048 LAN-5 44 29.060 55 52.795 (approx. 2440 m)Lance10t somewhatdamagedin debris flow. Sample of sedimentadhering to probewas taken.

MONDAY 24th JUNE, JD 175When Lance10t secured, steamedat full speedtowards point A. 2 miles before Aslowed to deploy Huntec, airgun, SE and NSRF eels. Then ran seismic line A toB to C at 5 knots.A 44 38.2 54 39.0B 44 21.5 53 50.0C 44 17.22 53 41.4then retrieved gear and came to a box core station 049 at or near049 44 18.36 53 44.29When box core completed, steamedat full speedtowards

44 30.0 53 42.5when the 500 mcontour was reached, stoppedas advisedby GP lab and took agravity core (050). Continuedalong the line taking gravity cores atapproximately50 m depth intervals as advisedby GP lab. Last two samples(054, 055) were Van Veen grabs.When gravity coring completed, steamedto a point A, deployed seismic gear(Huntec, airgun, SE and NSRF eels) and run the following lines at 5 knotsA 44 26.58 53 37.50B 44 27.43 53 42.44C 44 28.64 53 49.10D 44 21.02 53 41.22E 44 15.0 53 46.82F 44 16.73 53 50.35Brought in seismic gear betweeenE and F at 1045 ADT.

TUESDAY 25th JUNE, JD 176When gear retrieved, steamedat full speedto X.GP lab maintained3.5 kHz and 12 kHz watch.X 43 16.7 52 06.8During the night the wind got up to 45-50 knots, and remainedat 35-40 knotsall day Tuesdayand until Wednesdaynoon.No work possiblenear X, so decided to steam towards northwesternFogoSeamount.At 1400 ADT, broke off to SAR (yacht Chapter II, on westernvalley of

16

LaurentianFan). SAR later called off, returnedto working zone about 0200 ADTWednesday.

51 57.851 47.0

WEDNESDAY 26th JUNE, JD 177SurveyednorthwesternFogo Seamountfor dredging sites. By afternoon, weatherhad moderated.Attempted dredge site 056 at

42 10.042 52 53.444pulling dredge off to SEGot severalgood tugs on dredge and pinger record suggestedrock outcrop. Weaklink broke and no sample other than foram ooze from outside of dredge wasrecovered.Evening and overnight: weathermoderatedfurther. Ran the following lines at12 knots to look for further dredging sites. The GP lab maintainedthe 12 kHzand 3.5 kHz sounders.to A 41 56.7B 41 54.7

continuedto

51 55.752 00.052 57.2

knots and52 58.4653 01.4353 03.66

at52 58.67

THURSDAY 27th JUNE, JD 178continue toC 41 48.3D 42 09.0E 42 10.0then reducedspeedto 5F 42 12.94G 42 17.55H 42 09.925Dredge site 057 started

42 13.24Dredge up to NWSeveral good tugs, eventually dredge locked on bottom. When recovered,nosample, except for somewhite, brown and yellowish sediments(the latter?Cretaceous).?Was it dredgedthrough a boulder field at the base of a cliff.Dredge site 058 startednear

42 09.9 53 04.2Dredge up to ENE

After dredge 058 recovered, steamedthe following lines at full speed. GP labmaintaineda 3.5 kHz and 12 kHz watch.A 41 56.8 52 50.0B 41 40.2 52 20.0

FRIDAY 28th JUNE, JD 179continued toC 41 24.0 51 24.0D 41 25.9 51 11.6E 41 35.0 51 00.0F 41 45.7 50 06.0then reducedspeedto 8 knots and ran toG 41 50.0 50 05.0Selectedpiston core site 059. Good 5 mpiston core, bottoming in sand.Following the piston core, lost navigation display on bridge and then BIONAV.After some delays, steamedat 10 knots to

17

41 45.57

gravity core 060Small trace of very fineThen visit from Akademicuntil 2100 ADT061

41 44.7 49 57.73sand, green, almost sortedsilt. Washed out.Keldysh. Lost BIONAV. Delayed secondgravity core

49 57.02

SATURDAY JUNE 29th, JD 180When gravity core completed, steamed1 mi to ENE and streamedseismic gear torun the following lines at 5 knotsA 41 44.7 49 57.73B 4139.0 50 02.2C 41 41.8 50 08.8D 41 42.0 50 17.4E 41 47.0 50 18.0F 41 46.0 49 55.0Broke off a few miles after E to retrieve gear in time to arrive at core siteat A at 0820. Overnight weatherpoor and many BIONAV problems.piston core 062 41 44.7 49 57.73followed by Lance10t (063) at same site.When Lancelot completed, steamedat 8 knots to gravity core site 064,approximately: 41 43.0 N 50 04.5 W

SUNDAY JUNE 30th, JD 181When gravity core completed, steamedat full speedto

41 52.0 N 49 58.5 Wthen reducedto 8 knots and steamedtowards

41 50.0 N 49 52.0 WGravity core 065 near here.Heavy swell, strong winds. Corer washedout. Trace foram ooze.Deployed seismic after gravity core and run at 5 knots towards:

42 20.0 N 50 20.0 WRecover gear after about 2.5 hours in moderateseas, so as to arrive atgravity core site 066 by 0545 at 400 mwater depth near:

42 46'N .50 07 WNo recovery, so repeatedwith van Veen (067) and got fine gravel.Then steamedat full speedto grab site at 400-450 m water depth near:Grab 068 43 20.8 49 17.9 WExact site picked on basis of bathymetry.Then steamedat full speedtowards

43 17.2 49 02.5Box core site 069 chosenbefore this position on the basis of sounderrecord.Then steamedat full speedfor the rest of Sunday to

45 48'N 45 10'W

MONDAY JULY 1st, JD 182then turned to run to

45 56.4 45 15Then carried out further bathymetric surveying to locate dredge sites.Dredge 070 on northwest side of ridge; dredge 071 on southeastside. Bothrecoveredvast quantitiesof erratics and very small amounts of 1ithifiedcoarsesandstone.Pinger battery failed on seconddredge, probably due tobroken wire when bouncedon bottom.

18

After dredging, attemptedVan Veen grab 072 on crest of ridge and recoveredonly a few pebbles.When completed, steamedat full speedto

46 30.0 44 38.5then reducedspeedto 8 knots and ran towards

46 31.2 44 36.9took grab sample 073 between450 and 400 mwater depthThen continuedsteamingto:

46 55.0 44 12.0

TUESDAY JULY 2nd, JD 183Ran seismic gear (including Huntec) at 5 knots towards

47 04.0 43 15.0Brought in seismic gear at 0845, steamedon to core site 074 at:

47 01.65 43 30.3Hard looking bottom, so used a 40 ft barrel.When recovered, continued3.5 kHz line to:

46 53.5 4315.0then turned back to take box core 075 at:

46 58.27 43 23.91Recoveredone large boulder that damagedthe box. In coming away from thissite it becameapparentthat it. was locatedon the side of a valley.Steamedback to the site of core 074 and took a successfulbox core (076).Then deployedHuntec and ran back to the end of the morning seismic line,recording on the SE880.Then steamedto van Veen site 077

, ) 46 59.14 43 45.95(Note that this is near a 25 mdeep iceberg scour)Successfulrecovery of gravelly mud.Then steamedto Van Veen grab site at 385 m (078)

47 02.0 44 00.0Successfulrecovery of gravelly mud.Broke off this work at 1900 ADT

wセdnesday JULY 3rd, JD 184Steamedto point A at full speed. Deployed seismic gear including Huntec 1mile before A and ran the following lines at 5 knots:A 47 30.0 N 46 30.0 WB 47 34.0 46 35.0C 47 33.0 46 29.0D 47 30.0 46 34.0and then a further line towards B.Huntec recordedon SE880. Found shallow enhancedreflection apparentlycorrespondingto that on GLORIA. Took 50 ft piston core (059) near B at 0830.Hit hard bottom, polishedcutter, stripped teeth off catcher, which were found50 cm downcore. No trace of gas.Got underway at 1015 ADT, maintainedwatch to shelf edge.

THURSDAY JULY 4th, JD 185Steamedto 47 00 N 50 32 WDeployed only Huntec with fluid backedboomer, to run seismic line at 5 knotsto: 47 06.2N 51 00.0 W

19

Coil failed immediately on turning on. Test abandoned.Cable greasedandHuntec recovered.Steamedto St Johns.

DETAILS OF OPERATIONS AND PRELIMINARY RESULTS

NAVIGATION

Routine navigation

The BIONAV integratednavigation systemwas used during this cruise, with

the Trimble GPS and Loran-C receiver as the main source of input. The Magnavox

GPS T-Set was used independentlyto provide additional navigation. Signals for

Loran-C were acquiredon the 5930 chain. Good GPS fixes were available on a 24

hour basis. However, the criteria usedby BIONAV to acceptGPS positioning

continue to be very restrictive: as in 1990 this was at times a problem when

carrying out precisestationwork, when good GPS fixes would be rejectedand

the systemwould jump back and forth. As recommendedin 1990, there should be

an option in BIONAV to change the criteria for acceptanceof GPS.

All positions were output by BIONAV at one minute intervals and received

into the Vax computerby a logging program. Further data processing, ie.

editing and plotting was carrioedout using the SHIPAC geophysicalprocessing

and display software.

Final cruise data were backedup to a TK50 cartridge to be loaded on the

shore Vax at BIO where navigation and bathymetrycan be transferredto the

inhouse CYBER, and then into the multiparameterdatabasewhere it will be

available for plotting.

Computer Networking and Navigation [DEH]

This is the first cruise on which the shipboardVAX was set up as a file

server on the new ethernetwiring on the ship. It implementedNFS protocol

and I brought 2 PC computerswith ethernetboard and PC-NFS software. I was

able to send files to and from the VAX and PC's. It was very slow, requiring

about 15 secondsto merely do a directory listing of a small subdirectoryon

the VAX. File transfersrequiredmore that 5 minutes for a 1 Mbyte file.

20

Telnet software was not implementedon the VAX so a PC could not be used

to log on to the VAX, merely to mount a VAX subdirectoryas a drive on the PC.

DOS had accessto this drive but PCTOOLS (version 6.0) would crash if it tried

to read a file.

I had hoped to distribute navigationdata that the VAX was acquiring in

real time from the BIONAV computer. However, doing this preventedthe SHIPAC

system from logging BIONAV data on the VAX. Since this was the only BIONAV

log, I could not distribute navigation data on NFS. This may have been the

result of my complete ignoranceof VAX's.

Late in the cruise, when BIONAV was acting up, I patchedthe NMEA

output of the Trimble lOX GPS set through the twisted pair wiring to two

locations. This was the same feed (I think) which sent data from the GPS to

theBIONAV. Sending this data serially to other PC computersdid not

interfere with BIONAV.

This cruise representeda slow start to a rational computer network on

the Hudson. We have the wiring and many PC computershave Ethernet

interfaces. A suitable network protocol should be defined and a file server

installed so we can all transfer files and shareprinters (including a laser

printer please). Such a configurationmust be very robust as most cruises do

not carry the sort of network guru who keeps these systemsrunning ashore. A

shipboardsystem should also be well and simply documented. There is not time

on a short cruise for a long learning curve. The shipboardsystem should be

compatiblewith systemsashoreat BIO.

Ship's Clock [DEH]

The ship's masterclock designwhich I basedon an AT computerwas

installed in a new rugged, rack-mountableindustrial grade '386 made by ICS.

This operatedwithout problem, sending time to the displays in four labs. It

is also used to drive the airgun firing computer (not used on this cruise).

Jim Wilson, ship's tech, interfacedthis clock to his soundermarking

distribution system. This is one more step to returning all scientific data

logging to a single time standard.

21

CORING

AGC Long coring facility [WMcK]

The piston core used on 91-020 was the AGC large piston corer which

consistedof the following components:

1. Core cradle

2. Corehead(weight - 3000lbs or 1360kg, Big Red)

3. Core barrels

i) 1 barrel 6 1/4" OD, 4 1/4" ID, locatedat corehead

if) remaining barrels 5" 00, 4 1/4" ID

4. Couplings

5. Cutter

6. Catcher

7. CAB liner, 4.140" OD, 3.90" ID

8. Pilot core consistingof:

i) one way valve

ii) lead weights, 6 @50 lbs each

iii) 29" barrel and coupling to hold weights

iv) 60" (1.5 meter) long barrel, 5" OD, 4 1/4" ID

v) cutter

vi) catcher

9. 3/4" wire cable on Pengo winch ( approx 5500 meters)

10. 1/2" pilot core cable, length - length of piston core + 15 feet

11. Monorail and trolley transport system

12. Processcontainer

The coring systemused on 91-020 is basically the same system that has

been used at AGC since 1988. However someimprovementshave beenmade and

were testedon this cruise.

The pilot core was revisedwith a new one wayvalve and incorporatedinto

a special coupling that connectsdirectly onto the core barrel. This

arrangementis much more robust thus reducing the possibility of damage to the

valve. In addition, the throat area of the valve was increasedby about 150%

of previous designs. This allows for easierpassageof water through the

valve during the coring processthus resulting in more core retention.

The processcontainerwas improved with reroutedhydraulic piping and a

22

new hydraulic systemand was testedon this cruise. A double pump arrangement

operatingon a common shaft was connectedto the existing 10 hp motor which

allows for more flow to the hydraulic winches and increasesthe pull up speed

during recovery of the piston core barrelsby a factor of two. In previous

operationsexcessoil flow was dumpedback to the reservoir through a relief

valve which resultedin an excessivehigh pitch noise and a high temperature

buildup of the hydraulic oil. Due to the improvementsof the new system this

condition no longer exists and the end result is a much more tolerable work

environment. Finally the processcontainerwas also rewired and a new

electrical distribution centre was installedwhich includes a new 440/120 v

transformer, severalnew 120 v electrical outlets and lights.

The piston coring systemoperatedwell and retrieved reasonablesamples

in some rather difficult sediments. Relative small core recovery in some

casesindicates that problems still exist, however much of this can be

attributed to the nature of the sedimentsand excessivecable movementduring

the coring process.During testing on this cruise correlationbetweenliner

damageand orifice size in the split piston becameevident. Analysis of corer

performancereveals that the best size orifice on the split piston

(noninstrumentedversion) is 7/64th diameter. On the instrumentedsplit

piston (PAL), it appearsthat the orifice screw is best left out thus giving

an effective size of 1/4" diameter. However with respectto PAL, more testing

is requiredbefore coming to a definitive conclusion.

It becameevident that significant problems 。 イ セ occurring due to cable

reboundafter the releaseof the coreheadfrom the trip arm during the coring

process. The excessivemovement of the cable causesthe split piston to also

move and producesa low pressurearea inside the CAB liner which results in

liner damageand core disturbance. Further study is required to determine the

actual movementsof the various componentsand the timing of events of the

piston corer during the coring process. This study will be initiated using

data collected from CHATS and PAL which are describedin this report.

Gravity and box coring

Gravity coring was carried out from the foredeck using 1/2 inch wire and

the same corer as used as a pilot corer for piston coring.

Box coring used the standardAGC box corer with a tilt pinger.

23

CHATS!PAL - Core Head Accelerationand Tilt System! Piston AccelerationLogger

[DEH]

The Core Head Accelerationand Tilt System (CHATS) and the Piston

AccelerationLogger (PAL) were used on all of the piston cores. Significant

refinementsin their software were also accomplished. The ultimate purposeof

CHATS is to measurethe physical propertiesof the sedimentsby making the

piston corer double as a "free fall penetrometer". Initially the objective is

to understandthe motions of all parts of the corer system so we can refine

both the corer and the operatingprocedures. CHATS (and PAL) will enable us

to measurethe successof any modifications.

CHATS is an instrumentwhich is bolted in a cavity on the core head and

logs data internally as the corer is penetratingthe sediment. A spare CHATS

is clamped to the wire about 50 m above the trip arm to measurethe motions of

the wire causedby reboundwhen the 2500 kg corer is released. CHATS measures

water depth, vertical accelerationand tilt of the core head (or wire). PAL

is a companion instrumentwhich fits inside the piston of the corer. Due to

the limited space, it does not measuretilts (they are assumedto be the same

as those of the core head). We used a split piston to reduce the sediment

disturbanceduring pullout. Both halves of the split piston have a PAL.

This should enableus to accuratelydetermine the instant the piston splits.

Both CHATS and PAL log data at 100 scansper second. The data capacity

is 3 minutes in CHATS and 6 minutes in PAL. It is essentialto trigger the

data loggers just before the corer trips. Since no electrical cables are

possible to the corer system, all of the loggers must independentlysensethe

trip instant. This was the major technical hurdle to cross on this cruise.

Sensingthe violent accelerationswhen the corer trips was difficult due to

uncertaincalibrationsof the accelerometersand due to the high "noise" level

causedby wave induced and other motions of the wire.

In the later half of the cruise a "down-up-down" triggering method was

adopted. In this mode, CHATS uses its pressuregauge to

1) Wait for a presetdepth (about 500 m less than the water depth)

2) Track its maximum depth.

3) Wait for the depth to be 64 m less than this depth maximum (becausewe

winched back)

4) Wait for the maximum to reoccur

24

5) Warm up for 1 minute

and then begins logging. We would stop the winch when the core was 100 m

above the seafloor and rewind 100 mof wire. Then we payed out wire until the

corer tripped. This is a simple method of sendinga signal to all four data

loggers without an electromechanicalcable. The method worked well and only

added about 5 minutes to the coring operation.

Statisticsfor entire cruise

12 cores, 48 possible, 41 actual deployments

1 loss due to pipe breakage,spare available

1 leak and damage, repairedwith spares

2 mysterious failures, no damage

15 early or late triggers

1 worked but at slower data rate

21 good data

Cores 59 and 62 gave particularity good data. On core 62 the ship motion

induced 6 m vertical motions of the corer when it was near the seafloor in

almost 4000 m of water. Hard copies of the data are not practical at sea so

the final analysis of the data is difficult. The initial views of the data

suggestthat accuratemotions of all parts of the corer systemcan be

estimated. Among the many variableswill can be determinedare:

The instant the piston splits

The pressuresin the core barrel below the piston

The reboundof the wire as a function of time

The forces on the piston

The speedof the corer during free fall and the decelerationduring

penetration

The vertical motions of corer, before trip, inducedby surfacewaves.

The tilt of the corer after penetration

25

Table 1. Summaryof CHATS and PAL on each piston core.

dateJune

Station CHATS 1Head

CHATS 2Wire

Lower PAL Upper PAL

12 3 Still waiting on all 4 due to bad pressurecalibration.They logged data at 1 scanper second.

acc drift . noisy . acc followed goodat end accelerations depth

Automatic accelerometercalibration and noise measurementimplemented.

13 4 triggerearly

leaked anddamaged

triggeredearly

triggeredearly

Further refinementsto the trigger algorithm

14 8 trig earlyleaked alittle

not used lost good

15

16

17

17

20

9

12

13

14

29

not used

leak testonly (ok)

good

good

trig early

trig early not used not used

trig late not used not used

trig late not used not used

good not used not used

trig late no response trig earlyat end.

Down-up-down triggering

22

28

29

2

3

40

59

62

74

79

good

good

good

good

good

good

good

good

good

good

26

no tripl/snoisy depth

good

good

good

good

good

failed 11?no damage

good

good

accidentlyset to 10 / s

As a further contribution to understandingthe dynamics of a massive

object lowered on a deep seawire, CHATS was used to measurethe ship motions

simultaneouslywith the wire motions measuredby LANCELOT. Lance10t station

63 was carried out within hours of piston core station 62. On station 62,

CHATS measuredvertical motions of the core wire of at least 6 m peak to peak.

LANCELOT contains an accelerometerand data logger very similar to those in

CHATS. It logs data at 1 scanper secondso it can store data for over 6

hours continuously. Hence, unlike CHATS, it measureswire motion (at a

sufficiently high sample rate for wave periods) during the entire lowering and

return to the surface. CHATS was securedto the deck near the sheaveblock

for LANCELOT and logged data at the same rate and time as LANCELOT. This data

set should be a good measurementof the responseof wire motions as a function

of length. This should be a valuable check of plannedcomputermodels to

determine the effects of wire responseon piston corer performance.

Core processing[HC, IH]

All cores (Table 7) were processedon board. Processingincluded

photographyand sedimentologicaldescriptionof the split core, physical and

acousticproperty measurements,gas detection, and a variety of subsamp1ing

for various land-basedpost-cruisemeasurements. Processingfollowed standard

proceduresbriefly describedbelow, in addition to those procedures

establishedin the Atlantic GeoscienceCentre (AGC) sampling manual (GSC Open

File Report #1044 and as per Figure 1).

As soon as each core was on deck, a plastic bag was sealedover the

bottom of the core barrel for a minimum of five minutes with a temperature

averagingfrom 3 セッ 7 ·C. The bag was connectedto an Industrial Scientific

SP200 "gas sniffer" and the contentsof the bag sampledfor % Oxygen, ppm H2S,

and % LEL (Lower Explosive Limit). After this, the sediment temperaturewas

measuredand a sample taken for land-basedlaboratory gas analysis. Vane

shearstrength in core cutter sampleswas measuredwith a Pi1con Vane.

Push cores taken within box cores were processedin the same wayas

gravity cores and piston cores, but in more detail. Pi1con vane profiles were

conductedon each box core as it arrived on deck to give an accurate

measurementof undrainedshearstrengthbefore serious disturbancewas

incurred by subsamp1ingprocedures.

27

AGC Curation Gravity / Piston CoresCSS Hudson 91020Sampling Schedule

Shear Vaneevery 10 cm

Porewatersampleevery 10 cm

DensityScm and every10 cm

x

[XI. Velocity every10cm

(§) Palynology 15ml

O C/N Ratiosevery 10cm

セgイ。ゥョsゥコ・

....L

:IJCD-CD'""CD:::JoCD(J)CDgo:::J

Ocm _

tTOP

WorkingCoreHalf

@)

IMagneticSusceptibiltyevery S cm

Foraminifera andpollen

Figure 1: Sampling figure for section core processing

, )

Whole round cores were occasionallysubsampledfor future

consolidation/permeabilitytesting, wherein 20 cm was cut out of the core at

selectedintervals. These subsampleswere noted in the log, waxed in beeswax

and maintainedin refridgerationfor safekeeping.Magnetic susceptibility

using the AGC SapphireSystemwas carried out at 5 cm intervals on all whole

round sectionsbefore they were subsampledor split. AGC long cores and

gravity cores were cut into 1.5 m sectionsand storedvertically prior to

splitting. Cores were storedrefrigeratedfor up to 1 day before splitting,

description, measurement,and further subsampling.

Sectionsof cores were processedin the CSS Hudson General Purpose (GP)

laboratory one at a time (Figure 2). The core liner was split using the AGC

Duits core splitter into an archive and working half (the sample was parted

using a stainlesssteel wire saw or, in the case of very soft sediment, an

electro-osmoticspatula). The treatmentand sampling intervals of core halves

differed according to geoscientific requirements.

Where acousticvelocity measurementswere required, the velocity

measurementsand bulk density subsamplingwere done at the same location every

10 cm on the working half. The archive half was photographedat 20 cm

intervals downcore againsta Munsell Color Chart, Kodak grey scale and color

control patch, and was then testedfor vane shearstrengthat 10 cm intervals.

A visual core descriptionwas madefor the most part on the archive half.

Whenvelocity measurementswere not required, vane shear testswere carried

out on the working half. Shells were removedwhere found and some cores were

subsampledfor gravel, organic material, clay mineralogy, grain size,

Atterberg Limits, pore water analysis, carbon/nitrogenratios and

microfossils.

Bulk density samplesconsistedof 1 oz. bottles filled to the top.

Compressionalvelocity measurementswere made using the Dalhousie/AGC digital

velocimeter. Undrained shearstrengthwas measuredusing the AGC motorized

miniature vane device with a rotation of SOD/min. The test was carried out to

post-peakrotation; remouldedtestswere performedon selectedintervals by

reinsertingthe vane into the core after it had been completelyhomogenized

with a spatula. This procedurewas comparedto the previous techniquewhereby

the test was allowed to run on until significant softeninghad occurred. The

previous techniqueshould not be used in future due to the fact that the peak

29

test inevitably producessmall voids within the core, which do not contribute

resistanceduring subsequentremouldedruns.

Removedsectionsof core were replacedwith foam to prevent settlementof

remaining material. Working and archive halves were then wrapped in plastic

food wrap onboard, baggedin heavy 4 ml plastic sleeving, labelled, and stored

in "D" tubes in the refrigeratedcompartmentat 4° C. Over a 23 day period,

more than 10 long cores (Table 8), 34 gravity cores (Table 8) and 5 boxcores

(Table 12) recoveredmore than 90 metres of sediment.

All subsamplinginterval information was enteredinto the Field Inventory

SubsamplingSystem (FINSS). This packageprinted labels for subsamplesand

summary sheetsof core sectionsat sampled intervals.

Summaryof results of coring [DJWP]

Albatross slope and rise001. Gravity core, upper slope.Minor recovery that washedout. Traces coarsesilt on cutter.This lithology probably typical of upper slope at this depth.

002. Van Veen grab, upper slope.Good recovery.

003. Piston core. S. of Phil Hill area.Acoustically dark GLORIA areawest of Albatross debris flow. 10 mstratigraphiccore. Velocity run.Normal Holocene over brick-red horizons. Major sticky brick-red unit may befine-grained turbidite. Overlies stiff homogenousgrey mud with dropstonesandshells ?debris flow.

006. Box core. Levee immediately east of Albatross debris flow.Brown over olive grey mud. Well consolidated(?biologic effect).

007. Piston core. Levee immediately eastof Albatross debris flow, near 88-010-24.Problemswith split piston.Piston core has olive grey mud sequenceunconformablyoverlying moreconsolidatedmud with a beautiful set of stiff blocks, within a red mudmatrix. Some stiff blocks up to 45 kPa, and foram rich.

008. Piston core. Centre of debris flow in valley.TWC has sand at surface and three other sand or silt beds interbeddedwithforam ooze. Sands are sharp top and base (?A div.). Sand over 2 m of stiff mudin PC. Mud appearshighly disturbed, in part sucked in. No geotech.measurementsmade.

30

Whole Core

AGe Curation

CSS Hudson91020 SampleFlow

セ Work!D.9 _ )Archive .

+

Cruise Sheets*Correct Fix, WDLengths

*Gas test top/bottom core

Cut into 1.5 m lengthsMetre tape/line/recap/waxLabel both sides

+*Magnetic Susceptibility i セ

+

* Consolidation testcap/wax/store salt water

+

*SUBSAMPLINGDensity/water contentPalynologyOrganics/ IsotopesGas/PorewaterForaminifera

I*Shear Vane

Double wrap/ Plastic sleevingD-tubesHudson Cold locker

+*Velocity I

* PhotographedDescribed

Split W/A halves on splittingセ line Wire/hot wax; plastic wrap

.---------, .....------

* Data entered into FINSS

Figure 2

009. Piston core into probably erodedseabed (originally interpretedasdebris flow).Well stratified sequenceof muds and thin silts.!WC has surface red mud over foram ooze and lower down a red mud inter-bioturbatedwith foram ooze. Mud at baseof !WC.Microfault at 780 cm: extra shearvane data around it.

010. Van Veen grab. Surface 2-4 cm of red clay over foram ooze. Both sampled.

011. !WC only. Bottom interpretedas possibledebris flow, but probably erodedstratified seabed.Foram ooze over grey mud.

012. Piston core into interpreteddistal end of main debris flow. 22 ftpenetration.Mud turbidites interbeddedwith hemipelagicsediment. At leasttwo unconformities identified from abrupt increasesin shearstrength. Debrisflow with Meguma clastsbelow 4.3 m, highly compacted.

013. Piston core on low levee E of main debris flow. Shows the 14 ka brick redhorizon, and near base, thick medium sandbed over two red mud units.

014. Piston core in main debris flow. Holocene olive grey mud over two sandbeds.

015. Camerastation at same site as main debris flow. 8 shots before trip wiretangled.

St Pierre slone016-019. Heat flow probe stations.

020. Gravity core in debris flow at 1000 m.

021-026. Series of gravity cores on upper slope in SAR zone 1, from 500 to 300) m. Silty green structure1essmuds, abundantsiliceous organismsand fecal

pellets.

Stations027-029 were all at the same area, and equivalent to 90-015-002 andHMG1-1.027. Lance10tprobe. Showed some・セ」・ウウ pore pressure.028. Box core, 35 cm. Common Ma1danid burrows, very irregular and spatiallyinhomogenoussedimentstrength.029. Piston core. Somegas expansion. Cutter damagedby pebble.Note: digital Huntec run through the site.

030-032. Heat flow probe stations.

033.Lance1otprobe at site with abundantpockmarks at crest of valley side onSAR. Probe draggedtwice. Does not appear to have excesspore pressure.

034-038. Series of gravity cores on upper slope passingthrough 86-034-001, inwater depths of 505 to 320 m.

'039. Heat flow probe at same site as box core 028.

32

040. Piston core on low ridge in "debris flow" beside channel in SAR area 1.Olive grey mud overlying slabs of different muddy lithologies, with one clearblock at about 40 cm. Rests on mottled brown mud at about 2m. Gas expansioncracks in lower part of core.

041. Lance10tat same site as 040. Successful.Some excesspore pressure.

042. Gravity core in channell km NW of 040. Contains 50 cm olive grey mud?unconformablyover stiff grey mud. 4 grain size samplestaken of mud. No sandvisible at unconformity.

043. Lancelot at same site as 036 and 86-034-001on upper slope. Successful.

044. Box core on ?in situ high on southernSt Pierre Slope. Only 200 mwide,but pinger record suggestscore was on in situ butte. Core contains a 30 cmmud clast conglomerateover soft olive-grey mud.

045-047. Heat flow probes in SAR zone 3. Computer problem on 046; no data atall on 047.

048. Lancelot on debris flow (of Alvin dive and core 6) in lower St PierreValley.

SouthwestGrand Banks margin049. Box core at Narwhal site.

050-055. Upper slope transectNE of the Narwhal site. 050-052 gravity cores;053 water sample, 054-055 Van Veen grabs.

056, 057. Dredges on Fogo Seamount29. No rock sample recovered.

058. Successfuldredge on Fogo Seamount29.

Titanic area059. Piston core on slide north of Titanic area.

060-063. Series of stationsbetweenTitanic Valley and Titanic wreck.060. Gravity core. Washed out: trace of silty sand.061. Gravity core. Foram ooze over fine sand over grey mud over brown 38 KPamud over stiff grey mud.

062. Piston core just west of Titanic wreck.

063. Lancelot at site 062. Fell over. No success.

064. Gravity core in "debris flow" facies of SAR survey NW of Titanic valley.Washed out, trace of silty sand. Sounderrecord is diffusive.

065. Gravity core washedout. Trace foram ooze and gravel.

SoutheastGrand Banks margin066. Gravity core washedout.

33

)

067. Van Veen at same site, gravel < 2 cm.068. Van Veen. Gravel.069. Box core at about 1200 m. Successfulmud. Looked on sounder like a mudfilled valley ?over a debris flow.

Submarineridge south of Flemish Cap070. Dredge, with many erratics and rare lithified coarsesandstone.071. Dredge, with many erratics and rare lithified coarsesandstone.072. Van Veen from crest. Recoveredonly gravel.

Easternflank of Flemish Cap073. Van Veen at 400 m. Recoveredgravel.074. Piston core. Long stratigraphicrecord of silty gravelly mud. Shells.075. Box core. On side of valley. Recoveredone boulder.076. Box core at site of 074. Successful.Abundant spongesat surface.077. Van Veen at limit of iceberg scouring. Successfulrecovery of gravellymud.078. Van Veen at 385 m. Successfulrecovery of gravelly mud.

Flemish Pass079. Piston core into shallow reflective bottom on GLORIA and Huntec. Sounderrecord shows 20 ft penetration.Mud at surface. Hit sand the strippedcatcher,then 2 m mud, then more sand that eventually stoppedit and washedout about 3m. Note CHATS record. coring disturbancebelow 127 cm.

Estimatesof Coring Losses from physical propertiesdata [HC]

Several approacheswere used to identify zones where coring did not

recover sediment. The physical propertieswere used to compare the trigger

weight cores to the piston cores. In most cases, there was sufficient overlap

to match up profiles of magnetic susceptibility, undrainedshearstrengthand

velocity. Less reliance was placed on strengthand velocity due to- the

likelihood of some remoulding in the uppermostfew metres due to piston

effects. Table 2 summarizesthe findings of this exercise.

Note that peak-to-remouldedvane strengthdrop was minimal to nonexistent

in PC 008, clearly indicating that it was completely remoulded. Given the

damage to the liner and deformationstructuresin the core, it is likely that

the remoulding occurredduring sampling and is not an in situ signature. The

uppermostmetre in nearly all piston cores were affectedby sampling, as

comparedto the trigger weight cores. In severalcases, strengthsin the

piston core have clearly been lowered to the remouldedvalues (PC 009, top 40

34

cm; PC 014, top 2 m or more). The large pressurespikes developingbeneaththe

piston in responseto wire motions during the sampling processmeasuredwith

CHATS/PALS are easily capableof causing this degreeof disturbance.

Table 2. Estimatesof core-top loss from physical propertiesdata

Core Number Length Missedby Piston Core

(m)

Criterion Used ConfidenceLevel1 - Low, 10- High

PC-03

PC-07

PC-08

PC-09

PC-12

PC-13

PC-14

PC-29

PC-40

PC-59

PC-62

PC-74

PC-79

0.30 Su 2

0.93 Su, MS 8

>0.60 NO MATCH 8

0.05 Su, MS 10

0.12 Su, MS 7

>2.00 NO MATCH 7

0.20 Vp 5

>0.90 NO MATCH 8

>1. 70 NO MATCH 6

0 Su, MS 10

0.45 Su, MS, compressed 5

35

MICROPALEONTOLOGY [PJM]

The primary goal in micropaleontologyfor this cruise was to collect

samplesof recent sedimentswhich can be shown (through Pb210 , Cs137 or C-14

ages and pollen stratigraphy) to representdepositionduring the past 50 years

or less. These samplesare required for accuratecalibration of modern

dinoflagellate, coccolith and diatom floras, and modern foraminiferal formas IイセセヲGagainst recent (50-year) records of sea surface temperature,salinity, sea ice

and biological productivity. The dinoflagellatedate will form part of North

Atlantic proxy-climate data basebeing compiled by an international team セ/'J

/'headedby A. de Vesnal (GEOTOP, UQAM) , P.J. Mudie (AGC) , L.E. Edwards (USGS,t...."

Reston) and J. Guiot (U. m。イウ・ゥセセセセセfイHIdセ foram and coccolith ,data will

be studied inI- joint progran?with/. ォ _ e B L L B G Z セ ォ ォ Z ウ オ Z Z Z Z Z Z サ ュ Z j n M I N Diatom data will be

studied in a collaborativeprogram with John Andrews and K. Williams, INSTAAR./·

Visual descriptionswere made of all shipboardcores in order to identify ------

suitableb'iostratigraphicsectionsfor late Quaternarypaleoclimatestudies,k

and to obtain better understandingof depositionalenvironmentsdominatedby

gravity flow deposits: debris flows, turbidity currents.

High quality data were obtainedfrom 6 box cores and 5 Van Veen grabs

(Fig. 3) from mid-slope areaswith apparentlyconformablecover of hemipelagic

mud as seenon 3.5 kH4 records. One other box core and 3 Van Veen grabs failed

to recover mud on Flemish Cap, apparentlybecauseof the prevalenceof large

ice-raftedclasts (coarsegravel- to boulder-si4ematerial was retrieved).,

Each box core was subsampledwith 5 pushcores(35-40 cm long). Bulk samples

were taken of surfacesediment (0-2 cm) and of one or two deeper layers that

will be used. to extract forams and shell fragments for radiocarbonages.

Palynological sampleswere taken at 5-10 cm intervals in these cores, at the

same levels as samples taken for C:N and stable isotopes in pore water

(Cranston& McThenia).

The box cores all recoveredin-situ living benthos on undisturbedseabed

surfaces,and they provided a standardfor assessingpresenceof loss of the

surface layer in gravity cores. Fourteengravity cores were recovered(Fig. 3)

in which the late Holocene surface layer was retained. These core tops will

also be used for the proxy-climate data base. Comparisonof losses in gravity,

!WC and LCF piston cores will be made using palynological, geotechnicaland

36

40°

44°

48°

46°

46°

50°

KC 4 0013/037/91/1/4

ェG セ M Z x G G G G Z G G G L G B G G M M [ L c ^ { セ Z Z Z M M M M ⦅ N ⦅ N ⦅ N ⦅ N M N N N N '\;-. HセZZGZZNLZ ]」ゥセGZセ _.: .' .- " ,', イ u セ ヲ ャ B N B N セ

54°

セBRNセ`

セ MU,@)()<;:

"'0 Ml1l.1@J

s セセセ ッ

£r.1',;.,

SAMPLE LOcATIoNS

54° -50°

58°62°66°

e 'Nel\ ウLLセ

A '10..\1\ \[ f.e:V\

Q Box• セ」

o l」Mセ

o41 セ

JJ:J." セG セセLセ

4?O

ャL⦅セ 1 ,-.:::;:;;:;""....::;:;:;,:;;..- '

geochemicaldata, and it is planned to publish a short paper with Christian &

Cranstonto document the need for careful seabedjcoretopsampling in proxy-

climatic data studies.

About 60 metres of core were described,using the Munsell colour codes

for freshly cut surfaces;visual characteristicsof sedimentaryand biological

structures;amount and size of gravel; and microscopeexaminationof

foraminifers, diatoms and other biosiliceous microfossils. Eight LCFjgravity

cores have been identified as warranting detailedstudy, as outlined below.

In the Albatross debris flow area, dinoflagellateand pollen-spore

assemblageswill be comparedin pairs of levee-channelcores from the slope

(91020-013, -014) and rise (91020-011, 012). This study will look at (A)

possible sorting of fine grained organics in levee vs channelmuds; (B) "down-

slope" sorting vs pelagic rain of palynomorphs; (C) the provenanceand ages of

red mud beds, e.g. Gulf of St. Lawrence 1929 earthquakevs older Scotian Slope

red muds vs Wisconsinanice-rafteddebris of multiple sources.

In the St. Pierre Bank and Narwhal study areas, gravity cores 91020-034&

053 recovered>1 m of olive greenmuds with abundantdiatoms, fish scalesand

pollen. These cores indicate high organic sediment influx from both

hemipelagicand fluvial sources.Abundant shells will be used to compare

distal, oceanic and estuaricpalynofacieson a transectfrom Cabot Strait to

the Laurentianfan.

In the Titanic wreck area, gravity core 91020-061 recovereda sequenceof

Holocene muddy foram ooze overlying sandy mud with abundantcold water forams,

well-roundedquartz sand and plant fragments (wood, marsh peat and rare moss

leaves). An attempt will be made to determine the age and origin of the mixed

pelagic-terrigenousdeposit, i.e. a late Wisconsinanf1uvio-glacial sediment

vs a younger debris flow incorporatingglacial stagesediment from valleys on

the edge of the Grand Banks.

LCF core 91020-074 from the northeastslope of Flemish Cap recovered

about 7 m of brown or grey carbonatemuds with foraminifers, ·interbeddedwith

clastic sandy-gravellymuds and shell fragments. This appearsto be a sequence

of hemipelagicHolocene interglacial and mid-Wisconsinanglacial sediments

with ice-rafteddebris. The core may provide an important paleoecologicallink

betweenthe pelagic sedimentcores from Orphan Knoll and the Newfoundland

Seamounts,and shallow water cores from the NewfoundlandShelf.

38

GEOCHEMISTRY PROGRAM [REC]

OBJECTIVES

Objective 1

Significant amounts of methanehydrate (frozen methane-watermixture) may

exist in the marine sedimentcolumn. If global warming becomessignificant,

and oceanwaters warm by a few tenths of a degreeCelsius, thesemetastable

methanedepositscould decompose,releasingup to 180 L of methane (at

standardtemperatureand pressure)per litre of hydrate. The major

geochemicalobjective was to evaluatewhether excessmethaneexists in the

upper metre of the sedimentcolumn in 300 to 500 mof water, where the bottom

temperatureis 4 to 5 degreesCelsius. At 4 deg C, methanehydrate is stable

at depths greater than 380 m, while at 5 deg C, methanehydrate is stableat

depths greater than 420 m.

Since oceanwarming by eddy diffusion could warm the upper 500 mof the

oceanover the next century, the stability zone down to 500 m was targeted.

It is feasible to predict that methanehydrate could occur in sedimentsin

water depths greater than 500 m, however the increasedpressurewould allow

hydrate formation deeper in the sedimentcolumn in zones which would be

affected less by warmer surface oceanwater over the next century. Diffusion

of heat into the sedimentcould warm the upper 10 m of the sedimentcolumn,

thus hydratesat greatersedimentdepths would not be affected. It was

calculatedthat if 'hydrate quantities' of methaneoccur in the upper 10 m of

the sediment, we would be able to detect this amount with 1 m gravity cores,

or even grab samples, since the excessgas would constantlybe diffusing

through the sedimentcolumn.

Methane occurs in marine sedimentsas a result of biogenic production in

anoxic sediments,and at greaterdepths, as a result of thermogenic

hydrocarbonformation. Hydrate formation requires a large amount of methane,

equivalent to about 10% organic carbon (dry weight) being convertedto methane

and 'frozen' as a hydrate. As a result, it is ·ratherunlikely that coastal

sedimentsin the study area could produce enoughbiogenic methane to form

hydratesover large areas. If biogenic hydratesare present, they would

probably occur where the methaneaccumulatedin a trap, e.g. migration along a

permeablepathway until the pathway was terminated. It is possible that

39

thermogenicgas seepscould supply sufficient methane to form hydrates in the

region, again migrating along pathwaysof less resistanceuntil trapped, or

until hydrate stability conditions are encountered.

A variety of gravity core/grabsample transectswere planned, over water

depths of 300 to 500m, along the edge of the Scotian Shelf and Grand Banks.

Sampling resolutionWas set at 50 m intervals, as it was calculatedthat the

large amounts of gas required for hydrateswould be detectedover a 25 mzone,

where bottom slopes are 50 to 100 mper kilometre.

Objective 2

To provide shipboardchemical data to estimategravity and piston core

top losses. This is done by comparing depth profiles from box, trigger and

piston cores for various chemical parametersaffectedby reactions that are

taking place in the sedimentcolumn. If the profiles overlap without having

to shift the depth axis on the piston core results, it can be concludedthat

less than 10 cm of sedimentwas lost off the piston core. If the piston core

profile has to be offset by 100 cm, for example, for more than one chemical

parameter, it is quite probable that at least 100 cm Waslost off the top of

the core.

Objective 3

To determinediageneticprocessesin Holocene/Pleistocenesedimentsalong

the slope off the ScotianShelf and the Grand Banks. In estimating the

mechanismfor global carbon cycling in ocean sedimentsand its relationship to

the greenhouseeffect, it is important to understandthe balancebetween

organic carbon flux to the sea floor and the flux of oxidants into the sea

floor. Since methane is often found in marine sediments,and it is a very

effective greenhousegas, it is important to understandthe distribution of

carbon, oxidants and methanein various environments,and to evaluate the

presentday diageneticreactions that are producing and consuming the methane.

40

METHODS

Hydrate Transects

Gravity core or grab sampleswere taken at 50 m intervals over the depth

range of 300 to 500 m. As soon as the samplerwas recovered, a digital

thermometerwas used to record the sediment temperature. At the 400 m

station, a Knudsenbottle, fitted with 3 reversing thermometerswas used to

collect the water temperatureand a water sample from 20 m off the seabottom.

These temperaturestendedto be about 0.2 deg C higher than the mud

temperature;this is due to the fact that the water temperaturesbetween50

and 250 mwere very cold (1.5 to 2.5 deg C along the S. Grand Banks), causing

the core to cool during recovery. A hand-heldmethanegas meter (Industrial

Scientific HMX 271) was used to check for excessamounts of methane in the

sedimentsample. The meter has a detectionlimit of 1000 ppmv methane in air

and was calibratedwith a 1% methanestandard. Approximately 200 ml sediment

sampleswere sealedin 'mason' jars fitted with septumsfor headspacegas

analysesat the Coal ReseachLab in Sydney.

Subsamplesof sedimentwere collected for pore water and solid phase

analyses(see below). A hand-heldrefractometerwas used to determinepore

water salinity, since melting hydratesreleasesalt-freewater, thus reducing

the salinity.

SedimentRedox Potential and pH Analyses

Split core sectionswere taken to the geochemistrylab where eH and pH

electrodeswere inserted1 cm into the sediment, at intervals of 5 to 50 cm.

The redox potential (uncorrectedeH) measuredwith calomel and platinum

electrodeswas displayedon a digital meter. The electrodeswere calibrated

with Zobel solution. The sedimentpH was measuredusing a Ross electrode,

standardizedwith pH 7 buffer.

SedimentSubsamplingand Pore Water Collection

Approximately 40 ml portions of wet sedimentwere removed from the split

core and placed in 50 ml centrifuge tubes. Pore water was extractedby

centrifuging the sampleswith either one of 2 table-top centrifuges (IEC-HN-S;

lEC-Clinical). Gimboles were not used as the' centrifugeshad solid shafts

which allowed centrifuging under most sea conditions. Pore water recovery was

41

often limited to less than 0.5 ml, however this was enough for sulfate, silica

and ammonia analyses. The pore water was decantedinto a syringe and filtered

through 0.45 um Gelman Acrodisc filters. After shipboardanalyses, the

residual pore water was acidified to pH 2 and stored in scintillation vials at

4 deg C. The centrifuge tubes containing sedimentwere storedat 4 deg C for

subsequentgeochemicalanalysesat BIO. If gas cracks (gaps in the sediment)

appearedin cappedcores before being split, sampleswere sealedin 'mason'

jars for alkane gas analyses.

Dissolved Sulfate Analyses

A 50 uL portion of pore water was placed in a 15 ml test tube, to which

50 uL of 300 roM barium chloride solution was added. The sulfate combineswith

the barium to form a fine cloud of barium sulfate precipitate. This was then

diluted with 4 ml of de-ionizedwater and the turbidity of the solution was

measuredusing a hand-heldSpectronicMini 20 analyzer fitted with a

nephelometerattachment(manufacturedby Milton Roy Inc.). The turbidity

meter was calibratedwith standardseawaterand bottom water collectedduring

the hydrate transects. The precisionand accuracyof the method is +/- 10%.

Sample storageis not a problem. Some sampleswere re-centrifugedand re-

analyzeddays later and very similar resultswere achieved. The Mini-20

detectorwas very reliable if warmed up for a few minutes before analyses,and

if it was turned off betweensamples, to avoid pegging the meter needle.

Dissolved Silica Analyses

Dissolvedsilica was determinedusing the OceanDrilling Program

colorimetric technique. One hundredmicrolitres of pore water was added to

ammoniummolybdate along with an acidic reducing agent to form a blue

silicomolybdatecomplex. The color density was determinedat 812 nm using the

same baseunit for sulfate analyses;a hand-heldSpectronicMini-20 detector

fitted with a colorimeter attachment. The method was standarizedwith sodium

silicate; the accuracyand precision is +/- 10%. Sampleswere re-analyzed

after storageand the results were very good. If the samplesare storedcold

and in the dark, minimal biodegradationwill occur. Dilute standardswere

stable for at least 2 weeks.

42

Dissolved Ammonia Analyses

Dissolved ammonia wasmeasuredby colorimetric absorbanceof the oxidized

nitrogen complex in a ferricyanide solution after the method use by ODP.

Absorbancewas measuredat 640 nm with the Mini 20 colorimeter, standardized

with ammonium chloride. 'The precisionand accuracyof the methods is +/- 10%.

Stored samplesand dilute standardsappearedto retain their concentrations

very well over periods of up to 2 weeks.

ChemetricsAnalyses

A new approachto pore water analyseswas implemented, using evacuated

ampoules (ChemetricsInc., Calverton, VA) containingpre-mixed reagentsthat

are required to react with a sample to produce a colorimetric endpoint, which

is visually comparedto standardsin sealedampoules. Semiquantitative

analysesfor silica, sulfide and ammonia were comparedto standardmethods.

RESULTS

Hydrate Transects

The gravity core lengths tended to decreasefrom 1.5 m at 500 mwater

depth to 0.3 m at 300 mwater depth. In some cases,grab sampleshad to be

taken in the shallower water, as the sandy sedimentcould not be recoveredby

the corer. No excessmethanewas detectedin any of the hydrate transect

samples. Pore water results indicate that all samplescontaineddissolved

sulfate, indicating that very little methanewas present, since sulfate and

methanedo not co-exist in pore waters. It is concludedthat excessamounts

of methaneand/or shallow gas hydratesare not a widespreadphenomenain this

region, although that does not rule out further studies, using piston cores in

water depths up to 1000 m, or looking for potential anomaliesbasedon

examinationof seismic records. In this region, the natural stratigraphy

could easily mask bottom simulating reflector (BSR) occurrences. In addition,

the sea floor at these depths is often very hard, again making it difficult to

see hydrate reflectors near the sediment/waterinterface.

43

Core Top Losses

Geochemicalprofiles were determinedin box, trigger and piston cores in

an effort to overlay the plots and estimatecore top losses. Since silica

tends to increasedramaticallywith depth in the upper 50 cm of the sediment

column, this can be a good indication of core top loss. Ammonia also tends to

increasewith depth, however the point where it begins to increaseis,

variable, thus the plots for trigger and piston cores have to overlap. Often,

it appearsthat the amount lost off the piston corer was greater than the

length of the gravity corer. Dissolved sulfate tends to decreasewith depth.

However the upper meter or so is often not depleted, and thus unless an

overlap can be seeri, this method can only give a minimum core loss estimate.

The solid sedimentresults for pH and pE are often noisy and of little use in

predicting core loss, however the pE tends to increasetowards the surface,

and some use was madeof this data.

Table 3 contains approximatecore top lossesusing geochemicalestimates.

Results suggestthat from 10 to 180 cm was lost off piston core tops, while 10

to 80 cm was lost off gravity cores. These estimatescan be taken as minimum

core top losses; and clearly have to be comparedto geotechnical,

stratigraphicand paleontologicalevidenceof core top loss.

Core Analyses

Sulfate Results

The concentrationof sulfate tends to decreasedowncore as reducing

conditions occur, since sulfate becomesthe dominant oxidant for organic

matter after oxygen and dissolvednitrate is consumedin the upper sediment

column. The depth where the sulfate concentrationreacheszero is indicative

of the organic carbon flux to the seafloor, since a higher flux tends to use

oxidants at a faster rate. For example, in Halifax Harbour, the organic flux

is relatively high (5 % organic carbon, 200 cm/ka sedimentationrate) and the

sulfate decreasesto 0 mM at 50 to 100 cm in the sedimentcolumn. In coastal

areaswith sedimentationrates on the order of 20 cm/ka, the organic flux is

less (1 % organic carbon) and the sulfate decreasesto 0 mM between1 and 5 m

downcore, dependingon the actual carbon content and sedimentationrate. In

pelagic environments, the organic flux is low (0.05 % organic carbon, 0.5

44

cm/ka sedimentationrate) and sulfate is observedto reach backgroundvalues

at depths of tens to hundredof meters in the sedimentcolumn.

Piston cores in the St. Pierre areahad sulfate gradients that suggest

sedimentationrates on the order of 100 cm/ka, basedon sulfate gradients,

while the ScotianSlope rates were at least an order of magnitude lower.

Ammonia Results

We had a limited amount of weighed reagents, thus not all sampleswere

analyzedfor ammonia. Milligram quantitiesof phenol and sodium nitroprusside

had to be weighed out on land. It is possible that the solid reagentscould

be taken to sea and the approximateamount selected (a few grains) to make

the daily solutions. Good ammoniaresults are imperative as they begin to

reflect the organic flux to the sedimentcolumn at shallower depths than does

the sulfate data. Estimatesof sedimentationrates using ammonia gradients

suggestthat the Scotian Slope areahas rates on the order of 10 cm/ka, St.

Pierre rates are on the order of 100 cm/ka; while the southernGrand Banks

slope has a sedimentationrate on the order of 10 cm/ka. Flemish Pass results

suggesta sedimentationrate on the order of 50 cm/ka.

Chernetries Analysis Method

The resultswere reasonable,with the advantagethat the method is very

inexpensive ($4 per determination),and fast (less than 0.5 minutes per sample

comparedto 2 minutes for the standardcolorimetric methods); there is no need

for a trained analyst; and the samplevolume for ammonia and sulfide was only

20 uL. The downside is that the detectionlimit for ammonia and sulfide is

poor; the volume required for silica is 0.5 to 1 ml of pore water; and the

results are semi-quantitative. The real value of the approachis to quickly

test samples for concentrationrangeswhen deciding which samplesmust be

analyzedmore accurately, and what concentrationrangeswould be expected. A

variety of other chemical speciescan be measuredusing this system, including

iron and manganese.

45

Table 3. Estimatesof core top loss from geochemicaldata

Core Water Trigger Core Piston Core

depth Esti Core Recovery Estim. Core Recovery

(m) Loss Recov. Efficiency Loss Recov. Efficiency

(cm) (m) (X) (cm) (m) (X)

003 2730 >40 1.9 100 >60 9.9 100

007 2650 >80 1.6 80 >180 4.3 50

009 4070 >20 1.8 90 >50 10.0 ?

011 4310 >20 1.3 90

012 4340 >10 0.6 70 >40 4,8 50

013 3450 >20 2.0 100 >100 7.4, 50

014 3530 >10 1.6 80 >50 2.7 70

029 1330 >10 0.5 ? >80 7.5 60

040 1060 >10 1.4 80 >130 6.8 60

059 3621 >10 1.4 100 >10 4.5 50

074 972 >50 1.6 100 >200 7,8 80

079 1143 >20 0.5 30 >100 2.0 30

46

SEISMIC REFLECTION PROFILING

Methods

Seismic lines were run at about 5 knots. The standardAGC seismic

equipmentused consistedof:

Seismic Engineeringhydrophone100 ft.

N.S.R.F. Mark Sa hydrophone18 ft.

Texas Instrumentssleeve gun 40 cu/in.

Rix compressorsBI 44 and J-196.

Hydrophone amplifiers.

Time varying gain amplifiers.

Kron-hite filters

LSR 1811 graphic recorders.

AGC clock and firing box.

Racal 4 channel tape recorder.

Huntec small fish with standardand fluid backedboomers

The sleeve gun data were displayedat 1 or 2 sec. sweep dependingon

water depth and penetration,with a firing rate of between2 and 6 seconds.

SE88l·Digital Seismic Data Logger [DEH]

Under the Digital Initiative program, AGC has recently acquired2

high speeddigital data loggers for seismicsand side scan. These units,

GeoAcousticsSE880, had initial hardware and software problems. One unit has

been recently upgradedby the company and this was the first opportunity to

test the SE881 on an AGC cruise. (It had been used in a near-shoresetting on

a PGC cruise to the FraserDelta.)

The unit performedwell with not a single one of the hardware or

software faults that plagued the early versions. We experimentedwith

different fixed gain amplifiers betweenour single channel seismic streamers

and the SE881 which required a +/- 2 volts peak to peak signal. In deep

water, with a 40 cu in sleevegun, we used 66 db gain. A small amount of the

data was dumpedto the VAX and analyzedon a PC. It appearedthat this gain

level was too high and was later dropped to 50 db. Appropriate playback

hardware and software were not available, nor was the interfacebetweenthe

SE881 and an EPC recorder.

The operator interface is not particularly friendly but the. unit was

47

set up for operationby the watchkeeprs. We have produceda list of necessary

and desirable improvementswhich should be pursuedwith the company. Among

these are:

1) One software error which prohibits certain settingsof delay and window

length.

2) Show saturationin red with low signals in blue.

3) Restorecolour map reversalafter a systemrestart. (All other

parametersare properly restored.)

4) The ability to write EOF's on tape, either under operator interventionor

every hour. Otherwise, the data files from a long line will be

inconveniently large (350 Mbytes per 8 hours). If the system is stopped

and restartedto do this the slow tape transportwill cause the" loss of

15 minutes or more data.

5) A '''scope''mode of screendisplay. This would show the signals on the

screenin an oscilloscopemode insteadof a line scan recorder format.

All of the display selectionssuch as gain, TVG, rectification, window

size, number of channelswould apply. Obviously colour mapping is not

required. On set up, one would set no enhancements,no gain and could

easily view if the input levels were appropriate. Then the systemwould

be switchedback to line scan mode. It may be necessaryto switch to

'scopemode periodically to check gains and this would erasethe data on

the screen. It should not however interfere with hardcopyoutput.

6) Copy a piece of the tape to the disk and then do playbacks for disk.

This should make it much faster to choosegains, filters, .. as rewinding

(and especiallyskipping files) takes so long on the Exabyte.

7) On playback, we should be able to pause the tape reading to give time to

adjust parameters.

8) We need a set of amplifiers with known gain, low frequency roll off and

adjustableantialias filters. These should be coupled to the SE881 in

such a way that gain settingscan be stored in the trace headers.

48

Summaryof results

Slope and rise south of Albatross: Detailed patternof strike and dip lines

that correlatewith previous seismic and show both down channel changesin

debris flows and the cross-channelcharacteristics.

St Pierre Slope: selectedlines including Huntec to provide seismic

correlationbetweenexisting SAR airgun lines and NSRF sparker surveys; and to

run down major drainagesystemson the upper slope.

Narwhal area: strike line to tie 85-001 profile off Whale Bank to the Narwhal

site survey. Zig-zag patternof lines on upper slope above Narwhal site

survey.

Titanic area: seismic lines to better define the westernmargin of the slide;

and the Titanic valley systemupstreamfrom the wreck. 3.5 kHz lines run also

to help groundtruth SAR imagery.

Flemish Cap: Huntec and airgun dip line run out on SE spur of the Cap. Huntec

shows buried horizons with iceberg scour.

Flemish Pass: Huntec and airgun run in vicinity of GLORIA bright spots in

order to locate coring site.

49

LANCELOT PIEZOMETRIC STUDIES

Method

Lancelot-II is a prototype piezometricpenetrometerjointly developedby

AGC and PGC that was designedto emplacea porous element in the seabedby a

distanceof up to 3.3 m. The instrumentmeasuresthe excesspore water

pressuregeneratedby rapid penetration(undrainedfailure) as a function of

time throughout the period that it is in situ; nominally I hour. Lancelot also

measurespitch and roll, as well as vertical acceleration.The first

deploymentat LAN-I had an additional channel recording the absoluteor

hydrostaticpressure,but this was dropped from later deploymentsas it

provided no critical information and the sensorwas required in CHATS. The

tool has an extendedmemory capacityover its predecessor,Lancelot-I, which

was successfullyused at two sites in 4.5 km of water at the BermudaRise

during Hudson 89034. It is now capableof logging data at I Hz for up to 6

hours per deployment. The electronicspackagefor this prototype was

constructedonboard from spareparts of the CHATS system.

The excesspore pressuregeneratedby forcing a probe 3.3 m into the

seabedis only a tiny fraction of the total hydrostaticpressurein the water

column, which requires that the sensorbe of the differential type, measuring

pressurerelative to the hydrostaticpressureacting above the seabed.A high

sensitivity Validyne DP9-34 differential pressuretransducerwas used for this

purpose.. Two shipboardcalibrations indicated a very high degree of zero

stability and an ability to resolve changesin pressureas small as 1 rom of

water head. In future, a lower sensivltivity but high capacity transducer

diaphragmwill be used to better define pore pressurespikes during

penetration. Initial excesspore pressuresranged from 20 to 50 kPa and can be

related to the sediment type and stresshistory. Undisturbedconsolidation

subsampleswere taken from adjacentpiston cores to support this calibration

effort.

Lancelot was basically designedto do two things: to record the entire

pore pressuredecay curve or consolidationresponsefollowing insertion of the

tip, as well as to sensethe in situ equilibrium pore pressureonce

consolidationwas complete. It was estimatedthat I hour would be sufficient

for equalizationto occur in most sediments,an assumptionthat was shown to

be valid for all but very fine-grainedsediments.The excesspore pressure

50

I )

decay curve yields valuable data on the in situ rate of consolidation

following undrainedfailure, which when related to compressibilitydeduced

from adjacentlab consolidationtest specimens,allows a direct calculationof

the coeffiecient of permeability, in turn thereby completely defining the

capacity for pore fluid migration as a function of stressand porosity for any

given sediment type. These parametersare of critical importance in modelling

the shearand consolidationbehaviourof debris flows as well as the formation

of unusual erosive seabedfeaturessuch as pock marks, wherein presumeably

fluids/gasesare emergent.

Lab permeability tests are plannedon the same consolidationspecimensas

used to identify the compressibilityand stresshistory for the Lancelot sites

in order to calibrate the prediction of permeability achievedfrom the

Lancelot decay curves.

51

Table 4. Summary of Lancelot deployments

station Water Depth Geology uo i t so ch Su.vane Su.lance

(m) kPa sec cm2/sec kPa kPa

27 1329 gassy, pock 2.5 0.075 210 9.82X10-3 10 NA

33 689 pockmarked 2.0 0.066 162 1.27Xl0-2 11 8-16" " " " 200 1.03X10-2 " 4-7" " " " 175 1.18X10-2 " 4-7

41 1020 gassydebris 3.0 0.090 60 3.44x10-2 16 18-36) flow

43 413 ? 0.5 0.015 28 7.37x10-2 10 6-12

48 2379 debris flow 6.7 0.237 NA NA NA NA

63 3696 olc undist. NA NA NA NA NA NA

uo = in situ equilibrium excesspore water pressuret so = time for 50 % excesspore water pressuredissipationch = horizontal coefficient of consolidationi = hydraulic gradient causing fluid movementSu vane = minivane undrainedshearstrengthSuo lance = predictedundrainedstrength from Lancelot installation

i = U o10.1 * Z

Su.lance = u,X

where Z = depth of porous elementbeneathseabed(pock marks would result if i = 1meaning that the sediment is insuspensiondue to upward seepageforces)

where r = radius of porous element on tip= 0.25 cm

where X = 3 or 6 (bounds range of Su fornormally consolidatedclay)

Table 4. Summaryof Lancelot deployments (continued)

Station 27

Station 33

Station 41

Station 43

Station 48

Station 63

Achieved maximum penetration(3.3 m), mud up to base of weightstand. Decay curve superb quality; equilibrium pore pressureinexceSsof hydrostatic indicating upward flow in situ. Expandedplot of pre-insertionaccelerationsand differential porepressureshow that the system is capableof recordingwaveeffects in real-time even at great depth.

Achieved maximum penetration,but probe partially pulled out 3times. Initial decay curve excellentquality; indicateshydrostaticpore pressuresprobably prevail. Other decay curvesillustrate the effect of partial remoulding of the sedimentwherein height of pore pressurespike is attenuated(correspondingto a reduction in undrainedshearstrengthfrompeak to remoulded); equilibrium pore pressureregime markedlychangeddue to collapseof sedimentfabric.

Achieved maximum penetration;very good station-keeping.Equilibrium pore pressureincreasing, probably due to settlingof Lancelot as a result of consolidationbeneaththe weightstand. The very rapid pore pressuredissipationfollowinginsertion suggeststhat this is possiblewithin the period thetool was in the bottom. Tentative assessmentof in situequilibrium pore pressureis slightly in excessof hydrostatic.

Achieved maximum penetration;extremely rapid pore pressuredecay to a hydrostaticvalue is indicative of silt; no excessequilibrium pore pressures,indicating that pore fluids are notmoving. Again, consolidationbeneathweight standaffects long-term pore pressureregime, even 3.3 m below.

Differential pressuretransducerrecalibratedshowedinsignificant zero drift, no span changeeven though previousdeploymentshad exceededtransducercapacity. Weight standstoppedpenetrating0.5 m from maximum; gravelly sandwith clayon strengthmember suggestshard bottom. Tip slightly bent;lifting shacklebent suggestingdifficult pullout. Porepressureis immediately on negative side after insertion,indicating dense sedimentattempting to increasevolume duringshear (sand or fine gravel). Equilibrium pore pressureinexcessof hydrostatic suggestingupward flow (relict of shearin densematerial?)

Lancelot refusal at minimum penetration, fell over on side;seconddrop had same result. Hard bottom.

53

Summaryof Lancelot results

The instrument is capableof measuring,the parametersit was designed

for, namely the pore pressureresponseduring consolidationaround the tip

following shear insertion, and if left for the appropriatelength of time, the

in situ equilibrium pore pressure.Previous work has demonstratedthat

predictionsof permeability from the Lancelot decay curves compare favorably

to laboratorypermeability tests. The tool can operate in any water depth,

given stable station-keepingand is limited only by the stiffness of the

sediment itself. The instrumenthas performedexceptionallywell in various

sediment types and further developmentis recommended.

Equilibrium pore pressuresin excessof hydrostatichave been shown to

exist at Stations 27, 41, and possibly 48 which suggestthat pore fluids are

moving upward, making the overlying sedimentsmore bouyant. No hydraulic

gradient gradientsapproaching1 were measured,which would indicate a highly

unstableor "quick" condition in situ wherein the gravitational forces exerted

by the surficial sedimentsis balancedby the upward seepageforces. Erosion

would occur rapidly in such a zone, resulting in an open vent or pock mark.

54

DREDGING [LFJ]

Introduction

The dredging operationfor Hudson 91020 cruise was plannedfor two

locations; a) the Fogo Seamounts,and b) a deeply submergedridge south of

Flemish Cap. In the original plan 3 days were reservedfor the dredging

operations,with an additional day for seismic work around the Fogo s・。ュッオョエセN

Purposeof the dredging

Fogo Seamounts

The Fogo Seamountsrepresentone of the most poorly known geologic

features locatedon the SouthwesternGrand Banks slope and rise. The

bathymetricchart of the Newfoundlandmargin, map 802-A, 1990 edition, shows

only two seamountspresent,with tops shallower than 4000 and 3000m

respectively. In contrastAGC bathymetricand seismic data show the presence

of severalgroups of seamounts.

The seamountsfrom regional geologic interpretationwere thought to be

formed by igneous rocks, which constructedsubmarinevolcanoes.Thevolcanoes

. are locatednear or over a zone interpretedto representa transcurrentfault

zone formed during separationof the North American and African continental

plates as continentalplates drifted apart, giving rise to the North Atlantic

oceanbasin. The age of the volcanoes is unknown, as is their composition.

Two theorieswere proposedfor the.origin of Fogo Seamounts.According to

the first one, all seamountsoccuring along this tectonic zone are of similar

age, which if verified ,would confirm that the seamountsare a product of

continentalplate readjustmentduring final separationof North American and

Europeancontinentalplates. Such readjustmentis known to occur during the

middle Cretaceous.Another hypothesesproposedis that the seamountsare a

trace of a leaky transform fault. In the latter case the age of the seamounts

should progressivelydecreaseeastward.

Only a few transformmargins are known, where tectonics is associated

with volcanic activity. Considerablegeophysical information has been

accumulatedon the southernGrand Banks margin about its geology and deeper

crustal structure. For this reasonthe Fogo Seamountswere suggestedto the

OceanDrilling Project as an area for more intensive study of a volcanic

55

transformmargin. A drilling proposalwas submittedto ODP in this respectby

Tucholke and Jansa.

Thus the dredging operationhad as an additional goal to provide a site

survey, comprising both seismic and bathymetricdata over the seamounts,and

initial information regarding seamountcomposition for better planning of the

proposeddrilling operation.

Submergedridge south of Flemish Cap

The ridge was discoveredduring a reflection seismic survey of Grand

Banks margin. The water depth to the ridge has been estimatedto be about 3812

m, with the ridge protruding about O.8sec (two -way travel time) above the

sea-bottom.It was speculatedby S.Srivastavafrom seismic data compilation

that the ridge trends approximatelyNE and might be of similar origin to the

serpentiniteridge sampledwest of Galicia Bank. Since the areaoff Flemish

Cap is an other area proposedby scientistsfrom Canada, France and England

for studiesof continentall oceancrust transition, with the proposal

submitted to ODP, it was timely to attempt to obtain samples from the ridge to

determine its composition. During planning of the cruise one day of dredging

at the ridge site was substitutedinto the cruise program in place of a third

day at the Fogo Seamounts.

Results

Fogo Seamounts

Site survey of the area including transectsacross the seamountsprovided

additional information about shape, height and distribution of seamountsin

the surveyedarea. From the 3 days plannedfor dredging and seismic operation,

one day was lost for SAR and a simultaneousstorm.

During the one and a half days available three dredgeswere accomplished.

Dredge 056:

The first dredge due to the time and weather limitation was selectedon a

smaller seamountat 42 10.314 N, 52 54.l4W. The dredge was located on the

northern side of the seamountat a water depth of 4575m and dredging was

terminatedat about 3660m. The dredge came to the surfaceoverturnedand empty

resulting from an early break of the weak-link.

56

Dredge 057:

The dredge was locatedat 42 10.15N and 52 51.23. A steepslope of a

seamountbetween2180-1960 fathoms was selected.The dredge came up empty,

with surfaceof the dredge smearedwith brownish and yellowish silty mud,

similar to that sampled in cores on the Grand Banks slope. The yellowish silty

mud has not beenpreviously observed, and as showedby the third dredge the

mud most probably representedhighly alteredvolcanic rock.

Dredge 058:

The dredge was located on the southernside of a seamountlocatedat 42

9.547N and 53 3.77lW. Water depth at the dredge site was approximately4538 m.

Fifty kg of rock fragments were recoveredwhich consistedof cemented

volcaniclasticgravel, possibly one fragment of basaltpillow lava and a

variety of erratics. The volcaniclasticsappear to form beds of 20 -30 cm in

thickness. The upper surfaceof the rock fragments is coatedby a severalmm

thick Fe/Mn crust, which in placeshad 。 セ エ 。 」 ィ ・ 、 calcitic worm tubes. The layer

immediately underlying the Fe/Mn crust, up to 10 cm thick, is weatheredwith

the rock more fragile and yellowish colored. The similarity in thicknessand

texture of volcaniclasticsblocks suggestthat they all representfragments of

a single broken bed.

The preliminary, on board analysesof the volcanic material suggeststhat

it is gravel-sizedvolaniclasticswhich form an apron around the volcano. The

volcanics are sand to gravel size, subrounded to angular in shape, light grey,

minor pinkish and/or medium dark grey, and cementedby zeolites and calcite.

Some are vesicular, with vesiculesfilled by zeolites. Freshvolcanic glass is

rare. A few larger clasts observed(up to 4 cm in size) resemblepumice of

basalticmaterial. The volcaniclasticmaterial seems to be dominatedby

fragments of trachyte, with minor amounts of rhyolite and basalt. A more

detaileddescriptionawaits laboratory studieswhich will include REE and

isotope studies to learn about the magma source. At this stage it is uncertain

if enough fresh glass is presentfor absoluteage determination.

The dredging operationat Fogo Seamountsis consideredto fulfil in part

the initial expectations.A short cruise fully devoted to the study of Fogo

Seamountsshould be consideredfor 1992-1993year.

57

.\

Ridge at the southernside of Flemish Cap:

The ridge was locatedquickly and effectively, after steamingfor 1/2

hour parallel with the seismic line provided by Srivastava.However, a quick

bathymetric survey showed that the ridge is differently oriented than

indicatedby Srivastava, thus requiring further bathymetric survey of the

ridge. This delayed the begining of dredgingby more than 1 hour.

Dredge 070:

Location 45 55.07N and 45 15.463 W, on WNW side of the ridge. Dredging

startedat 1646 fathoms. The dredge recoveredabout 100 kg of rocks.The

preliminary analysesshowed that except for two small fragments, all rocks

were erratics. The two fragments of yellowish weathering, poorly sorted,

poorly cementedsandstone,with one side thickly coatedby Fe/Mn crust are

consideredto representin situ rock. Since cementedsandstoneon the shelf

are no younger than early Tertiary-late Cretaceous,it is assumedthat the

sandstonecovering the slope of the ridge is of a similar age.

Dredge 071:

Location: 45 52.486N and 45 12.574 W. The dredge site is located on the

oppositeside of the ridge from dredge 070, to test the hypothesisthat the

ridge may representa tilted block of continentalbasement.

Dredging operationwas prematurelyaborteddue to the malfunction of a

pinger. The dredge came up overturned,but containedabout 250 kg of erratics.

One fragment, about 2 cm in size, of a sandstonesimilar to that dredgedby

dredge 070 was found betweenrock clasts

Most erraticshad the basal part of the cobblesburied not deeper than

severalcm below the sediment/waterinterface. The overturneddredge plowed

like a sled over the surfaceof the sedimentand picked up scatterederratics.

Since the dredging was prematurelyterminatedthe compositionof rocks on the

southeasternslope remains uncertain, although the single sandstoneclast

suggeststhat it may be similar to the northwest side.

Any conclusionsdrawn from the dredging of the deep ridge off Flemish Cap

is speculative,due to minimal evidenceobtained. Probably most valuable

58

. J

information obtained is from survey of the dredging sites. According to this

survey the ridge is NE orientedand representcontinuationof the ridge 46N-

45W protruding southwardfrom Flemish Cap. If the sedimentdredgedat site 070

proves to be in situ, that would strongly suggestthat the ridge represents

continentalbasementblock rotatedas result of a rift tectonics in this area.

However, more accurateinterpretationof the material has to await shore based

study.

Comment ondredging operation.

The ship's personnelunder the leadershipof captainL.A. Strum skilfully

masteredthe dredge operation. R.Murphy, AGC was instrumental in guiding the

dredge during dredging operationand in overseeingthe whole processof

getting the dredge ready for the operation.

Shortcomings

I was surprisedto find out after ship left for the cruise, that there is

no load-pin for dredge-blocktension-meter.This oversight decreasedour

ability to guide the dredge during dredging operation and contributedto the

lower successof the dredging operation. It is reccomendedthat the load-pin

be obtainedand a tension read-outdisplay be provided for the operator in the

forward laboratory.

59

DEBRIS FLOWS IN THE ALBATROSS CORRIDOR [JAB]

Objectives:

Debris flow depositson continentalslopeshave been found to be of increasing

importancewithin the slope/riseaccretionprocessbut few studieshas been conducted

on their sedimentologicalnature and down slope changes.No detailedstudieshave been

made of the sedimentologyof debris flows on the formerly glaciatedsoutheastCanadian

margin.

Previous SeaMARC data. show a near-surfacedebris flow complex on the Scotian

slope close to the Albatross well site, that feeds into a channel systemwhich was

delimited using GLORIA and 3.5kHz data. The primary objectives of the six days spent

on the Scotianmargin were to map a single channelwithin this systemusing 3.5kHz,

airgun seismic and Huntec to allow a quantitativestudy of the debris flow and to see

morphological changesboth down and across the channel. The coring program was to core

both levee and debris flow sites in order to link the morphology and sedimentary

processesdown its length. The secondobjective was to ground truth the GLORIA data;

to see its correlation to the surface and subsurfacesediment facies, and in

particular to find the origin of the acousticbright areaswhich have been previously

assumedto be a direct indicator of the most recent debris flow. This ground truthing

of the data has now been found to be essentialbefore firm interpretationsof GLORIA

can be made, due to the systemssubsurfacepenetrationand the realisationin recent

years of the complex interactionof low (1 - 12 kHz) frequency soundwithin the upper

20m of the sedimentcolumn. Thus two cores with correspondingcamerastationswere

plannedwithin the two prominent acoustic facies seenon GLORIA.

Results:

Sevenpiston cores, one box core, one gravity core and one van-veengrab.were

taken within the area, giving a total length of core of 53.7m. The locations of these

are shown on fig. 4 along with a limited interpretationof the GLORIA mosaic and the

seismic lines run. A total of 1500 km of seismic were run in the area. Weather

conditions permitted the use of the Huntec only on days 167 and 168. Three camera

stationswere performedyielding a total of fourteen shots. The velocimeterwas run on

all the cores as was the complete suite of physical propertiesavailable on board.

60

Discussion:

The seismic data of the 163/164 was primarily used to locate the channel and to

enable a down channel line to be run on subsequentnights. This down channel line

shows the existenceof at least two previous debris flows occupying the same channel

system thus showing a complex flow history within the channel. Towards the end of the

down channel section there was erosion seen in the seismic data which in the lower

reachesof the channel exposedan older debris flow. This led to some confusion in

interpreting the 3.5kHz data. Once this erosionwas confirmed by coring, the survey

moved on to a detailed survey of the channel, which will provide details of the

volume, morphology of the debris flow and also the form of the existing channel system

down which it flowed. This will also allow the extent of the erosion to be estimated.

This erosion increasesdown slope and at the lower limits of the flow has caused

substantialerosionmaking identification of the terminationpoint difficult.

The two cores which will be primarily used for ground truth GLORIA are shown on

(figure 5). Core 003 showed layers of interbeddedsilty mud with little sandpresent,

correspondingwell with initial interpretationof the dark facies as not having a

debris flow origin. The camerastation at this site failed and another stationwas

performedbut although this did not correspondexactly to the cored station it

remainedwithin the correct GLORIA facies. The secondcore 014 (see fig 5) was taken

within an acousticallybright area and was found to contain numeroussand laminae and

sand filled burrows within the trigger core which are the probablecauseof high

backscatterin the bright area. A camerastationwas successfullyperformedhere. The

initial assumptionof the bright acoustic facies on GLORIA representingdebris flows

was proved to be wrong from the evidenceof this core and the others taken within the

area. The more likely situation is that the bright areasrepresentonly near surface

sandwhich may have been depositedby the large erosionalevent seenon the lower

slope, which mayor may not be related to the debris flow.

61

'.

......

\\

",

"

".....::: -.....

-.

\

BN|ZGセBZMG -,", \ ' , :,

", \ ' .., .. \

'. \GLLセ

'",

\

\

\

\

"

"

"

"

"

, ' .... : ..

." ".

'.

"

'.

'.

.,

, ... .. ..

:. "., ,

"

"

: ,

..":

: .'.'

"

: '

Uセ

Bセ

"

"

:", ' :,• non confinedelumpdepoelt.: I

\

,\

'.

"

" \ :".:". ,

,\

'.

\

,

-. , .,"

"

... "

, ,........,-.

" '. '

key:

x COrM uk.n on 't1 セ

X plelon core

,: A grmty...".

:·@............g..b

セ「。ク」ッNNN /\

セ ュ N L N N etatlon

)401t-- - -+- - --=-=.V · 'undU'1ng1l1020- - - - t _1 .....::.."' -t MMNZNNZNZN⦅MMNZセ[ZMMMMMM

Figure 4: Data collected in the Albatross debris flow corridor

62

Figure 5: Core descriptionsemphasisinggrain size distribution from the Albatross

debris flow corridor

63

Core 003セQ| ...... 'NUt·

. Core 007

5'( "'/t

6

'" i=

s r 7ioyBGセ

B'

a

'. s

""5)'%

p.........

2.-5,.% )iotBGセ 6

sLNセ " -toy.. },

-.lOY""'" .... .....

ss Bioturbation

e Pyrite.

- Pebble

.. Gravel

Q Shell

p Forams

G;' Gray laminations

G s,c:

Textural Boundary

5

4= Sand laminations

- Sharp Boundary

1

8+ Black Laminations

- Mudclasts

It tRed Laminations

..

Co :soc. sc. % cs

q

to

,

'7

II

10'1ll-r, .1' > ,

J I

-

• It -I lOy.. ;,;

S f S

10y.. セエN

3 •

1-5y..{. l!l .s •

ioセセ 8 セN

""(10

s sセケセセ ..

¥-./

i o イ セ G R

?エッケセセ Cl 0 • ••

,

o

0

0 0

Q

• .. .'0

. ,

- .

. .

. .

.CI

0

« Glauconite

Co src sc t:s

s

Core 012

I: 'Oy.. セ

{:

/!

IOy..?( .. セ..It-

t?

lOY'" %.e

G

•• ,. G•• セ 0; .. セN

MセM

:.\.B: (.: .:" ..: I I

lOy..1

QNUケNMセ

Q

",y... セ

Z-h"%. r: "

q

Core 009

1= J .s

ioyBセ

OY,7'''1

QNセケ .. S-:,

I ..Sy"%

a

sケセ «.. 3

Sy'Y,

Sy.. :l.., B

..5't .. セ

s a

1-5y fy"l

ioyLNiGiGセ • •

, ,RNMウyGBBセ

10

00 o -0 ..

Co S:c sc Ps

.... .(:.

Core 013 Core 014

c t;,;c. sc. 's

S 50

lOY'" !!tl-

i- sS

:I

:- s

LッイBセ I' .I S

laY.. :",

0""''' セ[IOYr,¥ 0 - 0

II-

5

I

iッケNMセ

lOy,- '%.icャyBBセ IS

a, 10 .... '7.. ss

IO"...'t$

lOY,.

-:i o y B セ

10)'..,%GoyBセ G .---J'O)'\""% G'

lOy.. '>.' 1\

lOY"'%. セ

It I--

aG

,.1·5y.--)

iF'

e('1·5y,.%

)

EVALUATION OF THE THERMAL NATURE OF ST. PIERRE SLOPE SEDIMENTS [MLM]

Objectives

The primary objectiveof the St. Pierre slope (Fig. 6) thermal study is to establish

the nature of the local sedimentarytemperaturegradient. This data is required to

betterconstrainthe gas hydratestability zone along the St. Pierre slope. To this end

a marine thermal probe belonging to Memorial University was used to measure both

subseafloortemperaturesand thermal conductivity.

Methods

The "Marine Thermal Probe HFl60l" (Fig. 7) belonging to Memorial University is an

in situ violin- or Bullard-typeheat-flowprobe. It is capableof successivelymeasuring

the temperatureand thermal conductivity of marine sediments. For the St. Pierre slope

study the probe was configured for a 5 mpenetrationwith thermistors locatedat 0.35 m

intervals.

Thermistorsare temperaturesensitiveresistors. Accuracy is limited to about +/-

2 mK. As the ambient temperatureof a thermistordecreases,its internal resistance(R)

increases. Resistancesare calculated for each thermistor by passing a current (i)

through each thermistor and measuringthe voltage (V) required to maintain a constant

current. Basically, resistance(R), voltage (V), and current (i) are related by the

expression,

R-V/i.

The thermal probe is an autonomous, cable lowered device. The thermistors are

strungwithin a thin stainlesssteel sensortube supportedby a large diameterstrength

member. The instrumentpack, computerand computerbatteriesare housedin an aluminum

cannistermade pressuretight at 1 atm. A secondcannistercontainsa 28 V rechargable

batterywhich supplies the power for the sensorstring and for the thermal pulse. Both

cannistersare supportedwithin a stainlesssteel instrumenthousingmountedat the top

of the strengthmember.

The probe is capableof multiple lowerings and was "pogo-sticked" from station to

station. To achieve statisticalreliability, each stationwas penetratedthree times.

The systemwas preprogrammedfor a sequenceof ッ ー ・ イ 。 エ ゥ ッ ョ ウ セ Interogationof an internal

motion sensor informs the probe computer

64

00'ao:

..'

10'

,__セ L セ __....._l0.·

Si' 50' 40· 00'

· .'.<:J

00.1

00'r

セVG _Zo_' M]セN」NVᄋLo

イZセGnBB I CHANNEL

セセGヲ,II

1-,

nゥセ

44'[)0 I

00'ac

iI '.'.

II ....... / . .

ooᄋ|NMMUセ

)

Figure 6 Geomorphologyof St.Pierre slope. Location of 90015SARsidescansonar zonesZI and Z2 are shown.

..-11

----'" ....5

8.---"'"

...... , , ..

Figure 7

MARINE THERMAL PROBE HF1601

1 ELECTRONICSCYLINDER2 BATTERY CYLINDER3 HYDROPHONE4 MAIN MANIFOLD5 SECONDARY MANIFOLD6 sセnsor TUBE7 STRENGTH MEMBER8 STABILIZERFINS9 TAPEREDCYLINDER CAPS10 SHACKLE POINT11 INSTRUMENT HOUSING

bb

that the probehas penetratedthe sedimentsand is stationary. Once stationary,voltages

are recorded at 15 sec intervals by the computer. The initial nine (9) minutes of

recording is devoted to thermal gradient measurememt. At the end of the nine minute

interval a heat pulse is generated along the thermistor string and the thermal

conductivity, via decay of the heat built-up within the sensorstring, of the sediments

is measuredover a period of nine (9) minutes.

'Results

Data is recorded·in hexadecimal format and must be processedon shore using a

calibration curve for the thermistor string. Immediately following the cruise,

processingwill begin at Memorial University.

67

LINEATIONS

MACRO-FAILURESMICRO-FAILURE5l セ r ア e G

RIOC,E'5

HEAT FLOW STN

POCKMARKS

[[[[] ScouRED

e-I UNDISTUR&D

i セ セ セ i

i セ i

i セ セ

i セ セ i6

セ..

•••. .

44--24'

, ,

.I \ II

\'

......., '\{ ,I

セN4Z---""'-------J.---..a

44·-L._....-__---,. -r- r-__-t---::-7:--R セ G

FIGURE セ G Z Preliminaryintrepetationof 90015 SAR sidescan sonar data.Locationsof heat flow stations are shown with triangles.

OG

,,

GO'..

-,

NセN

, .

• 0

o 0

o C'

0" G

0,,"- 0-- ............... セ

セ Sub-surfac9lncHtNKIZOf16/'"»:Bat/Iym6/TIc contourセLN wittll116tV1gradient- セc;:::J UndisturbedsedllT19nt ---::;:... Thickrotationalslump

セ Pockmarks セ Thin rotationalslump

Zoneoferosion セcィ。ョョ・ャ

セ MajordeMs Rows

."ONセ 3.5kHz sub-bottompro61e

® PistonC0f9

• In-situgeotechnicalmeasurement

o Heat-HowstaUon

FIGURE q: Geomorphology of flute zone showing location of pistoncores, in-situ geotechnical measurements and heat-flow stations.

STATIONS EVALUATED:

A total of ten (10) stations on the St. Pierre slope (Figs. 8 and 9) were probedover a 3.5 day period. Water depths varied from 530 to 1600 m. Seismic profiles atthermal probe locations are shown in Figs. 10-17 following p. 78.

TP1 90020-016Objectives: SAR-Zl-6302-04:31 (Fig. 10). Undisturbedsedimentsat 540 mwater depth.Sporadic pockmarks occur in vicinity. Strong surface reflector underlain by 5 macoustically transparentsediment. Below 5 m sedimentpoorly stratified to chaotic.Results: Data recorded, processingin progress.Technical problems: NoneOther data at same location: Core 84003-13 appears to penetratesame surface unit.91020 seismics1702048-1702052. Multichannel seismics 3420945 is 0.75' N of TP1.

TP2 90020-017Objectives: SAR-Zl-600l-04:58 / SAR-Zl-5403-ll:43 (Fig. 11). Undisturbedsedimentsat580 m water depth. Some pockmarks in vicinity, some minor scouring. Strong surfacereflector underlainby moderately-stratifiedsediment.Results: Data recorded, processingin progress.Technical problems: NoneOther data at same location: Cores 84003-14 and 84003-16. 91020 seismics 1700258.Multichannel seismics3410235 and 3421010 are 0.75' Sand1.5' N of TP2.

TP3 90020-018Objectives: SAR-Zl-6002-6:20 / SAR-Zl-5503-l3:05 (Fig. 12). Undisturbed, pockmarkedslope shoulder at about 670 mwater depth. Sedimentshere are very well stratified.Upper unit, approx. 10 m thick, shows a relative acoustic transparency.Results: Data recorded, processingin progress.Technical problems: Autonomoussystemshutdownafter completionof TP3, possibly duringmove to next station. Probewas recoveredand restarted. Insufficient time was left inthe day to complete stationwhich was delayeduntil following day.Other data at same location: Same facies examinedby GeotechnicalModule 900l5-HMG2,90020-LAN3, Core 90015-09. 91020 seismics 1700333. Multichannel seismics 3430010 is1.0' S of TP3.

TP4 90020-030Objectives: SAR-Zl-6002-06:43/ SAR-Zl-5503-l3:35 (Fig. 13). Disturbed zone at about800 m. Bordered on three sides by thin rotational slumps, zone may serve as a runoutchannel. Approximately 100 m deeper than TP3. Surface unit penetratedat TP3,approximately10 m thick, is completely removed at TP4.Results: Data recorded, processingin progress.Technical problems: NoneOther dataat same location: 91020 seismics1700342and 1710547. Multichannel seismics343015 is 0.5' S of TP4.

TPS 90020-031Objectives: SAR-Zl-5202-20:30 (Fig. 14). Deep (in excessof 30 mof sedimentremoved)erosional (slide?) scar. Slope is very steep (>10°) so should be relatively free ofdisturbedsurficial sediment. Water depth is 800 m.Results: Data recorded, processingin progress.Technical problems: None

68

)

Other dataat same location: 91020 seismics1710557, 1721046and 1730319. Multichannelseismics 3430020 is 0.5' S of TP5.

TP6 90020-032Objectives: SAR-Z1-6003-07:27(Fig. 15). Disturbedzone at the baseof slopepenetratedby TP3 and TP4, water depth 940 m.Results: Data recorded, processingin progress.Technical problems: During extraction from first lowering, excesswire caught on theinstrumentbody are strongly twisted the manifold connecting the sensorstring to theinstrumentpack. During the secondlowering, water leaked into the sensorstring andshorted-out the thermistors. The twisting also damaged the wiring connectirig thethermistor string to the electronics. No damage was suffered by the electronicsthemselves. Probe was recoveredand repaired.Other dataat same location: 91020 seismics1700357and 1710644. Multichannel seismics3430020 is 0.5' N of TP6.

TP7 90020-039Objectives: Undisturbedsedimentsat 1360 m water depth (Fig. 16). Surfacecorrelatesto deepersedimentat about SAR-Zl-00:30. Upper unit is acoustically transparentwitha prominentsurfacereflector. Deeperreflectorsare good. Station is upslopeof a zoneaffectedby small-scaleslumping.Results: Data recorded, processingin progress.Technical problems: Hydrophonenot functioning. Instument operational.Other data at same location: Core 90015-2, 90020-LAN2, GeotechnicalModule 900l5-HMGl(runs through disturbedzone onto undisturbed, upslope sediments), SeaMARK 171-18:30.91020 seismics1711846.

TP8 90020-045Objectives: SAR-Z3-7302-02:57(Fig. 17). Disturbed sedimentsat 1600 m water depth.Results: Data recorded, processingin progress.Technical problems: Hydrophonenot functioning. Instument operational.Other dataat same location: GeotechnicalModule 900l5-HMG4 in same surficial material.91020 seismics1741316.

TP9 90020-046Objectives: SAR-Z3-7302-02:34Results: No data recorded.Technical problems: Instrumentapparentlyshutdownbeforepenetration,no datarecorded.Becausehydrophonewas not working, the systemshutdownwas not observeduntil the probewas recovered.

TPIO 90020-047Objectives: SAR-Z3-7302-02:13Results: No data recorded.Technical problems: This station followed TP9. Instrument remained shutdown, no datarecorded.

69

)

TABLE 5: Summaryof thermal probe stationson the St. Pierre slope.

HEAT FLOW CRUISE SITE WATER LATITUDE LONGITUDE SAR REFSSTATION REFERENCE DEPTH (m) CRUISE 90015

LOCATION (NORTH) (WEST)

TPl 91020-016 1 535 44 50.250 55 44.721 6302-04:30

2 543 44 50.297 55 44.900

3 537 44 50.337 55 45.071

TP2 91020-017 1 580 44 49.580 55 42.230 6001-04:57

2 580 44 49.583 55 42.186 5403-11:41

3 581 44 49.592 55 42.176

TP3 91020-018 1 670 44 47.406 55 39.668 6002-06:20

2 670 44 47.416 55 39.632 5503-13:05

3 670 44 47.396 55 39.672

TP4 91020-030 1 778 44 46.748 55 38.959 6002-06:43

2 778 44 46.755 55 38.955

3 778 44 46.737 55 38.956

TP5 91020-031 1 800 44 46.665 55 37.835 5202-20:30

2 805 44 46.680 55 37.836

3 798 44 46.713 55 37.803

TP6 91020-032 1 942 44 45.585 55 37.842 I 6003-07,27 I2 943 44 45.592 55 37.828

TP7 91020-039 1 1331 44 41.010 55 31.477 Adjacent

2 1360 44 40.982 55 31.500 to

3 1358 44 40.99 55 31.51 5202-00:30

TP8 91020-045 1 1600 44 37.46 55 42.28 7302-02:57

2 1604 44 37.46 55 42.26

3 1604 44 37.424 55 42.198

70

THERMAL PROBE DAY LOG:

JULIAN DAY: 170 (July 19)

CSS HUDSON 91020

RUN: NUM-1

11:15:0011:50:5412:04:0012:14:30

12:15:1912:35:30

12:38:3912:58:09

12:59:3713:18:29

13:25:20

14:20:0014:21:1514:28:0014:35:30

14:36:0014:56:54

_l14:58:2015:17:45

15:19:2515:39:53

15:49:2615:53:27

Probe systemsturned on.Probe in water.Begin equalizationat 505 mEnd equalization

TPl-l 91020-016-1at 535 m 44 50.250N 5544.721WPenetrationExtraction

TPl-2 91020-016-2at 543 m 44 50.297N 55 44.900WPenetrationExtraction

TPl-3 91020-016-3at 537 m 44 50.337N 55 45.071WPenetrationExtraction

Retrieve to 45 mdepth, tow to 91020-017.

Arrive on Station 91020-017Begin lowering probe from tow depth.Begin equalizationat 540 m.End equalization.

TP2-1 91020-017-1at 580 m 44 49.580N 55 42.230WPenetrationExtraction

TP2-2 91020-017-2at 580 m 44 49.583N 55 42.186WPenetration

-Extraction

TP2-3 91020-017-3at 581 m 44 49.592N 55 42.176WPenetrationExtraction

Recover thermal probe to surface.Probe systemsshutdown.

End of Run NOM-I: saved to HEATNOMl.DAT.

JULIAN DAY: 170 (July 19) RUN: NOM-2

16:26:0016:32:4116:46:4516:56:23

Probe systemsturned on.Probe in water.Begin equalizationat 640m.End equalization.

71

16:57:1117:17:54

17:19:0417:39:50

17 :.41: 5018:02:58

18:10:47

18:20:0018:22:0418:38:56

18:55:00due too

TP3-1 91020-018-1at 670 m 44 47.406N 55 39.668WPenetrationExtraction

TP3-2 91020-018-2at 670 m 44 47.416N 55 39.632WPenetrationExtraction

TP3-3 91020-018-3at 670 m 44 47.396N 55 39.672WPenetrationExtraction

Retrieve to 45 m depth, tow to 91020-019.

Arrive on Station 91020-019.Begin lowering probe from tow depth.Hydrophone ceasedtransmission.Recover probe.

Probe on deck. Systemswere shutdownwhile probe was autonomous,possiblyexcessivemotion during station move.

End of RUN NUH-2: saved to HEATNUH2.DAT.

JULIAN DAY: 172 (July 21) RUN: NUM-3

11:30:0511:35:0511:48:3512:01:00

12:02:0012:22:48

12:25:3712:46:43

12:51:??13:13:35

13:25:30

13:54:0013:55:0014:04:3014:15:12

Probe systemsturned on.Probe in water.Begin equalizationat 733 mEnd equalization

TP4-1 91020-030-1at 778 m 44 46,748N 55 38.959WPenetrationExtraction

TP4-2 91020-030-2at 778 m 44 46.755N 55 38.955WPenetrationExtraction

TP4-3 .91020-030-3at 778 m 44 46.737N 55 38.956WPenetrationExtraction

Retrieve to 70 m depth, tow to 91020-031.

Arrive on Station 91020-031Begin lowering probe from tow depth.Begin equalizationat 755 mEnd equalization

72

14:16:1714:37:08

14:38:0914:59:30

15:12:1015:32:50

15:44:07

16:09:0016:27:2916:22:1016:47:33

16:28:2716:47:33

16:50:2117:10:15

??:??:??17:30:00

TPS-1 91020-031-1at 800 m 44 46.66SN. 55 37.835WPenetrationExtraction

TP5-2 91020-031-2at 805 m 44 46.680N 55 37.836WPenetrationExtraction

TP5-3 ·91020-031-3at 798 m 44 46.713N 5537.803WPenetrationExtraction

Retrieve to 50 m depth, tow to 91020-032.

Arrive on Station 91020-032Begin lowering probe from tow depth.Begin equalizationat 895 mEnd equalization

TP6-1 91020-032-1at 942 m 44 45.585N 55 37.842WPenetrationExtraction

TP6-2 91020-032-2at 943 m 44 45.592N 55 37.828WPenetrationExtraction

Hydrophone transmissionstopped. Abort station.Probe systemsshutdown.Recover thermal probe to surface.

End of Run NUM- 3: savedto HEATNUM3. DAT .

JULIAN DAY: 173 (July 22) RUN: NUM.;.4

11:00:0011:24:0011:55:3912:06:10

12:07:2012:26:25

12:28:5812:49:17

12:50:21

Probe systemsturned on.Probe in water.Begin equalizationat 1285 mEnd equalization

TP7-1 91020-039-1at 1331 mPenetrationExtraction

TP7-2 91020-039-2at 1360 mPenetrationExtraction

TP7-3 91020-039-3at 1358 mPenetration

73

44 41.010N

44 40.982N

44 40.99N

55 31.477W

55 31.500W

55 31.51W

13:11:20

13:30:0613:40:11

Extraction

Recover thermal probe to surface.Probe systemsshutdown.

End of Run NUH-4: saved to HEATNUH4.DAT.

JULIAN DAY: 174 (July 23) RUN: NUH-5

13:16:0013:48:1414:21:2814:30:00

14:30:5514:50:22

14:51:3015:10:45

15:13:3015:33:34

Probe systemsturned on.Probe in water.Begin equalizationat 1555 mEnd equalization

TP8-1 91020-045-1at 1600 mPenetrationExtraction

TP8-2 91020-045-2at 1604 mPenetrationExtraction

TP8-3 91020-045-3at 1604 mPenetrationExtraction

44 37.46N

44 37.46N

44 37.424N

55 42.28W

55 42.26W

55 42.198W

15:36:0015:56:0016:07:29

Retrieve to 1500 m depth, tow to 91020-046.Arrive on Station 91020-046Begin lowering probe from tow depth.

16:09:4016:29:11

16:31:1016:50:20

16:52:5717:11:40

TP9-1 91020-046-1at 1586 mPenetrationExtraction

TP9-2 91020-046-2at 1591 mPenetrationExtraction

TP9-3 91020-046-3at 1586 mPenetrationExtraction

44 37.052N

44 37.049N

44 37.048N

5542.783W

5542.746W

5542.761W

17:14:00

17:50:1118:07:39

Retrieve to 1475 m depth, tow to 91020-047.

Arrive on Station 91020-047Begin lowering probe from tow depth.

18:10:2218:30:15

TP10-1 91020-047-1at 1596 mPenetrationExtraction

TP10-1 91020-047-2at 1602 m

74

44 36.351N

44 36.397N

55 43.640W

55 43.604W

18:31:4918:50:50

19:19:39

??:??:??

PenetrationExtraction

Recover thermal probe to surface.

Probe systemswere shutdownwhen recovered. After 15:33, before 16:09.

End of Run NUM-5: saved to HEATNUM5. DAT.

TABLE 6; Other data at same locations as heat flow stations.

91020 91020 91020 91020 90015 90015 90015 84003HEAT CORES LAN SEISMIC SAR CORES HMG CORESFLOW

STATION

TP1 1702048- 6302-04:31 0131702052

TP2 1700258 6001-04:58 0145403-11:43 016

TP3 LAN3 1700333 6002-06:20 009 HMG25503-13:05

TP4 1700342, 6002-06:431710547 5503-13:35

TP5 1710557, 5202-20:301721046,1730319

TP6 170357, 6003-07:271710644

TP7 LAN 2 1711846 002 HMGl

TP8 1741316 7302-02:57 HMG4

75

SEISMIC PROFILES THROUGH THERMAL PROBE STATIONS

76

(Figs. 10-17)

:.

:

.;..

TPi.

.."

'-

04:20 :40

.4(" J c.'

550"""

(000

..

FIGURE 10: SAR-ZI-6302 deep-towed3.5kHz profile showinglocation of thermal probe station TPl. Profile collected duringHUDSAR cruise 900 15,

, .......

.;..... セ ': ::.. ':::'-. ' ···Il··. セLMNLZG .. セセNZN.. .セN'f.' •• セ I r·oNセNBZ .t,." .' ....0 セ ..

..:..' セGL : ,

J" •• "•..

Nセ .:;)., ,,0-

;'J: I':'"1

. i: i- ,-,.: I

セャZoo

"'P205':00

111111111111111111'11111"1111111111111,,11111111111111111.....

TP2,

\l!

FIGURE": SAR-Z1-6001 (upper) and SAR-Z1-5403 (lower) deep-towed 3.5 kHz profiles showing location of thermal probe stationTP2. Profiles collected during HUDSAR cruise 90015.

セRZUPII

lit III, IIII i III t ,1111.1' I I -"'" ",,01 -,,,,,1,,,,,1,, ' :I II 11111 i I .-,",,1111111111111 -:II III IJ

セSZ 00TP3

s o セ

TP3 セ Z セ ッ! .Ii

FIGUREIl: Stowed 3 5 AR-ZI-5503 (uTP3 . kHz profilessh セI andSAR-Zl-. Profilescollectedd oセidァ location of th 6002 (lower) deepunng HU ermal -DSAR c. probestatio

nnse90015. n

oq-..\9o

oUI..\9o

J

8

ooセ

,,--4- ..;.'-

R P Z セ o

セ Z i セ B G i セ G ᄋ ᄋ N

TP5

'-../

20:20

FIGURE ''r: SAR-Zl-5202 deep-towed 3.5kHz profile showinglocation of thermal probe station TP5. Profile collectedduringHUDSAR cruise 90015. .

)

セo 0

i!;

o<r

00

r+-o

oo..q""-

N

oセ

oo

oセ•• M M K M M ⦅ N N N S ャ o セ M i ⦅ M i M hoo

om..oo

- 0"

""";;J ••

TP803:00 P R Z セ o o セ Z T P

"4 '.:. '. J••.•

..-t:,

IT

... , _',!'llll • oj ' •• , ':lllf,I" .,.1

FIGURE 17 : SAR-Z1-7302 deep-towed3.5kHz profile showinglocation of thermal probe station TP8.Profile collected duringHUDSAR cruise 90015.

SUMMARY PLOTS OF LANCELOT DATA

HUDSON 91020

LANCELOT LAN-1 STA 27

2,........N

UQ)en

<, 0E<:»

0

-2

40

.--.....0

CL.x:

............. 20::l

o '--__---L..-_-----iL-__--J.-__----iL-...&..-_--'

I I I I

--:I- -

\ j

I I I I

.--..... 1200E

""-/

I.-0...w 1300o0:::W

セ3: 1400

o 1000 2000 3000 4000

TIME (seconds)

5000

2,..........N

U(1)en

<, 0E<:»

0

-2

HUDSON 91020

LANCELOT LAN-1 STA 27

40

,..........a

n....s:............ 20:::J

0

,,--... 1200E

I I I I

............

II-a....

1300w - -0

セwセ3: 1400 I I I I

400 600 800 1000 1200 1400

TIME (seconds)

2,..........."N

oQ)en

<, 0Eセ

0

-2

HUDSON 9 1020

LANCELOT LAN-1 STA 27

40

0o,.::::J:,

............ 20:::J

0

,........... 1200-E

I I I I

............

Il-o,

1300w I- -0

0:::W

セ3: 1400 I I I I

100 120 140 160 180 200

TIME (seconds)

HUDSON 91020

LANCELOT LAN-2 STA 33

500040002000 3000

TIME (seconds)

10000'------------..&...-----'-----1.-..---.-----'

o

10

40

r"".0 300....

-:Y."-"

:J20

4r"".('II

UQ)en

<, 0E

"-"

0

-4

50

HUDSON 91020

LANCELOT LAN-2 STA 33

Oa..-----"'---01-..---'---"""------'------'----'o 200 400 600 800' 1000 1200 1400

TIME (seconds)

セ 400

(L.x:

.............

:)

20

4".........N

UQ)(I)

, ) <, 0E

""-'"

0

-4

60

HUDSON 91020

LANCELOT LAN-3 STA 41

500040002000 3000

TIME (seconds)

1000Ol.-----L----....I-------'-----'----I.----'

o

10

4r-...N

UQ)CIJ

<, 0E

<::»

0

-4

40

30r-..

) 00...x:

20<::»

::J

HUDSON 91020

LANCELOT LAN-3 STA 41

1200600 800 1000

TIME (seconds)

OL....-----L-._---L.-- ......L- -.I

400

10

30r--..o

0....s:"-/ 20

::::i

4..--....N

UCI)(f)

<, 0Eセ

a

-4

40

HUDSON 91020

LANCELOT LAN-4 STA 43

500040002000 3000

TIME (seconds)

1000

o .L-__---'- -L-__---1. -.L.--_...I..-.---J

o

10

40

0 300.....x:'--"

::120

4,--....N

UQ)Cf)

<, 0E

<::»

0

-4

50

HUDSON 91020

LANCELOT LAN-4 STA 43

1000900700 800

TIME (seconds)

600

o L--__-I..- L--__-I..- L..--_---'

500

40

10

20

30

4,..-...C'Il

(J(J)(J)

"'-.. 0E

.............

0

-4

50

HUDSON 91020

LANCELOT LAN-5 STA 48

500040002000 3000

TIME (seconds)

1000

I I I I

- -

-- -

.t . .It.

- -

I I I I

40

o

-20o

4r-...N

UQ)(f)

<, 0E

<::»

a

-4

60

r-...o

0..

6 20::J

SUMMARY CORE LOGS

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I I

;:J\ :t: TYP EI

g::lo-

S. I セw セ セ-1-J .- I 13 S c<

I FEATURE';; (' ""I

('> II

iセI COLORI:: ;;-,------------'---1'---'-'

;j.."

C,,

oNo

: ;. c-0 ;.,. :"iセI Nセ )

c t'l"- " ':-: セN[

,....--...AU)

セ 」 I'-.../ C

oU)

oz,....--...

A

1.6 セ セ CDCIl

'---"2.0-80

10

- 20

CD()

I,....--... 0

._!!IM 400 セ セ OJ"--..-/

I fill 0..

I

I

, I

I

I,

'-----------' 40

1.2

,....--...oo 1.0 5:(f) (/)

<80'-.../

セM⦅L⦅⦅⦅M⦅⦅イ⦅M⦅⦅⦅イMMMMMML 0

'------------' 800

1

7

--------Jl so

)

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I

lセGゥ·1

W § セZC()

セェセ

t:rftl ill セ0 ",.

P セ r,

セu|

セBBB

TYPE

FEATURE

COLOR

o

••

oNo

moI

r--... N400 セ セ OJ

<::»

2.0-80

8007

"UI

80

"'Drn

10

IIIr--...o

LO セo (J) (J)

<80""""'"

..--.,.----,----,-----,a

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I I

If;' セjッ

Ltt<:J

-ljj f-%uJ lVti If'r

セ セ

セ i セ(\ ... \.\

('\ セ

セセI/O'セセII·

TYPE

FEATURE

COLOR

0セ

20A(J)

Iu c0 C'--""

40 0If)

I I I 1.2 0セ

A Z- 1.6 3 <

セMMッ CD(JJ

セ'---""

2.0 0I I I -80 N

セ 00

- 0 1O セ-- (j) (J)

< CO80<::« (')0 I

".....-.... -P-400 c(f)({)s: -.

<:>

8007

u:I

80

-0fTl

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I L セ 08 ..セI I

ヲLエセ,. "

I

, '" rrセ J; セ セ

cャ\^セ0

BセN セf CIlIA

セセNr

セ .., r...-

セBB4; ..(.

TYPE

FEATURE

COLOR

0,...........,

20AV)

IU c0 C<:»

40 0(f)

1.2 0,...--.....J 1.6

A Z:3 <セカ CD(JJ

セ'--../

2.0 0I I I -80 N

r-"'" 00

- 0 1O s:(f) V)

--==- < IT]80'----" ()

0 II c OJ

21 400sセ

CD

800

''t7

vI

'SI I I 0

- -0M セ fTl

I 10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I I

TYPE

LITHOLOGY FEATURE

セ ,"I :;;" Nセ_r,

Iv

,"\ ;|セN \!.,...;

10

8o

COLOR

JI •• セ •

0.... -.- r--.,

A (fJI- 20 '"D c

0 C<::»

40 0(J)

1.2 0,............ZA

1.6 :3 <セカ CD(J)

セ"---'"

2.0 0-80 N

I I I0セ

0

0 1O s:- (f) (fJ

< G)80"-....../ n

0 Iセ

.-0, 400 c (j) セ$:

"-....../ セ

v-l

800 06'

73

,n:,it.-,. C .... Al\A9..... ......c:J. .rッBGoッNvG\|セ £.,..1(

- セ 511-

ウセOセセ 1\ £,. 1o",f"W'

lo'tl(So.. "h " NHGッセ

sセ セOS· I\\wl 0\-

S'Ir-,1----..

、セセ\NセN ]\.'oct=BAセ

lo'Yr;'5... +"f tI/,- , セセセセセ[

BGヲセ。 r-.:..\"'j"セカ イBByoセ セセ、O lOYC

· rnvJ セGNNャセ oJ' TO'f sloz.

I--· s'\ cJLセLMj Q) セNG IO'lRIolo-u.... セTォ[I e, 1b

tJ.., i;(l cl.- l!OJr

Iqr'SllOo aro.de.d.. II!!'/!

11o.<.k. AゥNセMBNウ」NNセ 2Ur-rt . 10'(1

So. ''''' r-u" oJ..,.... 3/3BBセ

t2-q C-III-\ E'o<:...

·

o(.J

0Il".-..... セN

,-e,y..

C' 0.JliJ toCD

BZZQセ

LLJr.n 0Zセ[Z COC).--llLJ aLrJ r.:.."J)

:c ..--セNM

[L0lr.J

C) (".J.,.--

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I

fv1: v'\ 3 tI3..."-

.... t ...\/',セゥ -

V) r'"- f r0

セゥセG'

i ".;セェ f セl

セI

セ セ セセN 9

y,uti - セセNN」ャ セセ MNNエセ セ -<- BGセ セ

TYPE

FEATURE

COLOR

I I I 0•••••••a••

- 20A(f)

Iu c0 C'-../

40 0(f)

I I I 1.2 0セ

A Z- 1.6 :3 <

'-......""0 CDUJ

セ'--'"

2.0 0I T -80 N

I,.,-.... CJ0

セ - 0 1.0 セ

------ (f) (f)

< G)80"--' 0

0 Iセ N

400 C (f) 0$: -.'-../

8007

"U::I

80

""0rn

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I

, セ tAセ セN

セ.... ⦅セセセセZGNZN .....

9":'-セ g

.s: セI r セ

a-

ft'! t0(\

J s::BwGBセ

TYPE

FEATURE

COLOR

I I I 0•••••••••• ,............,

20 A(J)I- u c

0 C<:»:

40 0(J)

1.2 0r-.....A Z

) 1.6 :3 <Nセカ CD

UJセ<c:»:

2.0 0-80 NI I I

,............, 00

- 0 .o セ(J) (J)

< G)80'---/ (j0 II I I

,............, N400 C (J) ---l>.-

セ -.<:>

8007I

セI

.-0I

80

ct ••"UfTl

10

FEATURE

COLOR

TYPE

I I I

? """.j)セ セ r »

r:.=:,::.:.=:,::,---

イ セ-IIJtAl

fセ(.)

f\ セ I(),

セcエH-t.:"<

DEPTH (m)2.0 1.5 1.0 0.5 0.0

セ "i..

I I I 0• • ,.....--....

20AU)

I- Uc0 C<:»:

40 0(f)

1.2 0,.....--....A Z

1.6 :3 <セカ CD(fJ

セ"--"

2.0 0-80 NI I I

),.....--.... 00

- 0 1O セ(J) U)

< G)80 '-.../ ()

I I I 0 I,.....--.... N

- 400 セ セ N<:»

8007

-0I

80

""Drn

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I I

-""o

TYPE

セ セ COLOR(a) ""

1 I I. o. 0

oセI

o

1.6

"............o

O \.0 セ(J) (J)

<80 <::»

o

"............

- 20 セ セ I'-" C

o(J)

oz

.- 2.0-80

-

GJ(")

I"............ N

- 400 セ セ eN<:>

1

I

T

J

1

I

ャMMMセ ----J 40

1.2

800N M M M M N M M M セ セ セ M セ 7

'---------------1 8o

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I

セヲエャャIIi

セエセᄋ I, I-.

セエヲセ

¥'J11 イャセ0 . kQJ()

(\ セ

セセ w-<

TYPE

FEATURE

COLOR

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I セ v"f("J(-L

セ (/lQl9_.Err

...t: .. セ $G' ruiセ(t1

0,

r rセセ\oN"'"

TYPE 9.

FEATURE

COLOR

I I I 0,......--.,

20A(f)

I- lJ c0 C<::»

40 0(J)

I I I 1 .2 0,......--.,A Z

- 1.6 =:3 <セMッ CDUJ --.:>.

'----'"2.0 0

I I I -80 N,......--., 00

- 0 to セ(f) (J)

< GJ80 <:» ()

I I I a Ir---.. N

- 400 C (f) ()lセ -.

<::»

8007

v:c

80

-0rn

10

"

r'.

FEATURE

COLOR

TYPE

I I I.'

lセ-. ..

セf/IY'(\)

¥R

セ(1l Vi

0 r(\

,セqGiセ -..c

DEPTH (m)2.0 1.5 1.0 0.5 0.0

y. 'f., ..,."

I I I 0,............

20AU)

I- u c0 C<::«

40 0(.f)

I I I 1.2 0,............A Z

- 1.6 :3 <"<, -0 CD(j)

セ'---"2.0 0

I I I -80 N,............ 00

- 0 1.O セ(J) (J)

< G)80 '-....-/ ()

J J I 0 I.......-.... N

- 400 C (J) OJセ -.

'-....-/

800I I

'-'. 7

•• -0I

8I I I a

_ _ _.A' -0-- ..... rn

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I I

3-\-- ., tA} VI (".C:.J)\

.......n ............

B G セ F

セ セ セッ M セ

セ A ゥセ セ! ,,""i セ () ?i

セセ!

TYPE

FEATURE

COLOR

I I 0 I e 0セ

20A(J)

I- u c0 C<:»:

40 0(J)

I I I 1.2 0セ

A Z- 1.6 :3 <

セカ CD(fJ

---l:."--'"

2.0 0-80 NI I I

セ 00

- 0 1.0 セ(f) (J)

< C)80"""'" 0

0 II) I I I

,....--.... IN- 400 」 H j I セ

セ - ........"

8007

vI

80

-0rn

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I - I I l<"'l(

セ セMイ^

VヲGセ|セZM -- r(;l)

セ セ""f セZイセ II'(")

'"\ P;

セBB ..,f '"'"

TYPE

FEATURE

COLOR

I I• I ••

0• ,....-....

20AU)

I- \J c0 C'--""

40 0en

I I I 1.2 0-r>;

A Z- 1.6 3 <

セBu CD(J)

Nセ

'--'"2.0 0

I I I -80 f'J,.--...... 0()

- 0 .o セ(f) U)

< G)"80<:» ()

I I I 0 I,.--...... IN

- 400 セ セ ()l

<:»

8007

v:r:

80

UfTl

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I .'XY'I'j)(')I.

l セ ᄋCf'

ttl V) i

00 セlfca :r--

セ i(t.....

i .::{.V\

'" -..c

TYPE-

FEATURE

COLOR

I I I • 0• •• ,..--..,

- 20A(J)

I-0 c0 C'--'"

40 0(J)

1.2 0,..--..,A Z

1.6 :3 <セMッ (Qin

セ--...-2.0 0

I I I -80 N,..--.., 00

- 0 I.Q 5::(j) (J)

< G)80'-.,../ (), ) I I I 0 II

,..--.., IN- 400 c(J)OJ

セ -.<::»

8007I I _.l .--- - 'Il

-0I

80I I I

-- - ... -0-- - rn

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I I

エセᄋ.

-J -t セセ-セ ffffセ()

J ..:(.\n,.,- セ

TYPE

FEATURE

COLOR

I I .'et •• 0,..--......

20A(j)

:::r::- ""TJo cC<::»

40 0(J)

I I I 1.2 0,..--......A Z

- 1.6 :3 <--"""""-0 CD(J)

セ'--""2.0 0-80 NI I 1

,..--...... 00

- 0 \0 :5:(J) (j)

< G)80"-' 0

) I J I 0 I,..--...... CN

- 400 C (j) '-Jセ -.

<:>

8007.......

'-0I

80

•• .-e ufTl

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I I

jセoiセ

セ ijセi セセ &Ie セ

o :::セ ...セセ

TYPE

FEATURE

COLOR

I I I 0.----....

20A(J)

I- u c0 C'-..../

40 0(J)

1.2 0.----....A Z

1.6 セ セ CD(f)

セ'--'"2.0 0

I I I -80 N,,-.... 00

- 0 lO セ(f) (J)

< G)80 '-..../ 0I I I 0 I

,,-.... eN- 400 セ セ CO

<:»

8007

"DI

8a

-0rn

.10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I I

ヲイャlセr)+ Qセセセ f ft

セ '\ セ {'

..dO' セMZ ..:::-1-( Lセ セセ!'fI セB\

TYPE

FEATURE

COLOR

I I I • 0•••••••• r--..

20A(f)

I- u c0 C<:>

40 0(f)

1.2 0r--..A Z

1 6 :3 <. セカ CDCfJ

セ"--'"

-----. 2.0 0I I I -80 . N

r--.. 00

../ 0 to セCfJ (f)

< GJ80'-../ nI I I 0 I

r--.. セ

400 c (J) N- s: -.<::»

800I / J 7

"DI

8.I I I 0

-0rrl

10

DEPTH (m)2.0 1.5 1.0 0.5 0.0

I I iJ.> I 0\.)\N セ

! ' ell CII

,10\

(,("'9 ,, !J

Gャセ --fセ ゥセヲセ セ

::i

セセ エセ セセN t tI)

" .... , OS セ ("

セ lIP; ..c. tI\'"'::--'" r"'<

TYPE

FEATURE

COLOR

J I I 0•••••••• セ

- 20A(J)

IUc0 C'---'"

40 0(J)

I I I 1.2 0セ

A Z- 1.6 :3 <

セMッ CDU)

セ'-.-/

2.0 0I I I -80 N

r--... 00

/" 0 .o セ(j) (J)

< G)80'---'" ()

,) I I I 0 I

セ (Jl

セt 400 セ セ 0

<::»

8007

uI

80

--0

)fTl

10J

DEPTH (m)2.0 1.5 1.0 0.5 0.0

)

I I BBiッセ

iエセ セ

L,.. - イセBGゥiセ- f, エセセi

ャセLGセセ() ""I .,f\

; !till/> セセ セ......--<.セセto

TYPE

FEATURE

COLOR

I I I 0• • ,..-......- A U1- 20 u c I

0 C<::»

40 0(J)

I I I 1.2 0,..-......A Z

- 1.6 :3 <セカ CD

(J)セ<c:»:

2.0 aI I I -80 N

"'-.. 00

J a .o セ(J) U1< GJ80'--" 0

0 I,.,-.. (Jl

400 c U) セ-- セ -.<;:»

/ ..........,.,

800 セ(,"

7r

I I ItセM

イNNLセ(',

-----0 0I 0

IV

8 '-.., '

I I I 0

- - v- - - [T]

10

セeature

COLOR

I I r'l,セ '.tj cf) tI'• I F'セAイ p

&iエゥセ L'."';:-"1: '||GBセエセャ_イーエP F!It セjf セ I NNjAセ

'I イセ 1(&セ エセセGセセゥセ°1"',) G G | p セ Z H I

セ G セ セ U L セe III セ " 'r<>:::-::::--:::-!II, 'JJ1

DEPTH (m)2.0 1.5 1.0 o G セ ェ [ セ N o

TYPE

I I I 0

• r--..A (f)- 20 -0 I• c0 C.............,

• 40 0(f)

I I I 1.2 0r--..A Z

- 1.6 :3 <セv CD(J)

セ"-..-/

2.0 0-80 NI I I

,...-..., 0\ 0/

- 0 1.0 セ---- ()(f) (f)

< G)X P セ (j

I I I 0 I,...-..., OJ

- 400 c (f) セセ - .

<::»⦅ N セ M L

800 セ

7-!J)

I I -r ='-セ

r"D セM

I '"'i">r"'1f'

8x/

...-'

0I I I

"Drn

10

DEPTH (m)10 8 6 4 2 0

セTYPE

セ セ

)

FEATURE

j COLOR

0

セB セ

e 20/\(f)

IU c0 C'-.../

40 0UJ

1.2 0セ

/\ Z'1.6 :3 <

"-.."""0 CD(f)

セ<:>

2.0 0-80 NI I I I

Nセ 00

0.o セ- (fJ

(J)

< ---180<i:»セ

0 nセ I

400 c (J) 0,5-' GJ

800 >0-lI

7 f0..D3

"""0 --I 0<;!'l

"'8 j\

o

0"""'J

f

• """0

セ rn

10

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

COLOR

oNo

401.2

,,--....

20 q; セ Iセ C

o(J)

o,---..T Z

1.6 セ セ CO(j)

<::»

400

IIII

. )I I I

""0:r::

l- --'- ----'8

N M M M M M M M N M M M M L M M M M イ M M M M M M M イ M M M セ 0

10

10 8

r)

I

DEPTH (m)6 4 2 o

TYPE

FEATURE

COLOR

.-----.A(f)

20 ;;? c<::»

ICo40 (J)

o1.2? zB <'1 .6 "--.."D CD(j)............,.

セBr;;-...D

Q3

"D t/Iiセ ....

o2.0 N

セN -80'0 . 0. 1..0 セ.. . 0 (j) (f)

セ < -lI 80""""""" セ

oo I?(f)O400 s: -. '-.J.......-

8--- 0MMセ]MMMMMML

10

10 8DEPTH (m)6 4 2 o

1 I I I

TYPE

FEATURE

I

=J COLOR

I. I I I 0gャゥNTセ

C\It fIA セ

• A(J)• • セ ..e - 20 u I• ,ee- o CC..fIrA tre <c:»:

40 0(J)

1.2 0セ

A Z-1.6 :3 <セカ CD(j)

セ<:»:

2.0 0-80 N

.,...-....., 00

0 .o セ(JJ

(J)

< U80'-.-/0

0 Iセ 0

400 C (J) '-Jセ -.

'-.-/

800I I I t 7

vI

8I I I I 0

Vrn

10

160 140 120CEP1H H 」 N セ I

100 80 60 40 20 o

-I£()I

oo

<!AI

! '

, I I I . セGx

, ,lセ

I r 1/\ 1 f II iセ-&- セセ, Co' I セMG セ

AIセイ I - - IA イヲャQBセ .....

セj セ Giセ Lセャ セ セセ^GセiI fa QlI D ] セ セ B

<E I- VI 1/1 I cr r -'", L c B セ セ

セl セ Ij' f= flo o' J ...

セ Lセ ,

1.! セGャイセャセサ|I ,. セNL '';'.

セ M ゥ N セ ,I セ セ N イ ッ gセセ W--;.\ I!'"

mor

-ャセ

£

"'0C"',o

'Of...NZセヲGl.....

61214I . I , . . . )I' .

.. - I iセセca 1'" セpG nJI ..c 0セGゥ -...I -:-- -< t: Lセ )(,

セ• , p- ,.... IP- :-t

セゥ p .セQM」d r ゥセiセi{セ セャセ。N I'll.» e

.c セ , .e- !C f ?--.J,+, 3- r..,. 111

i c _ LLセ , .. CoD •セ '!\;' セ

セ • V' - «: !lr 1 I セ{ セ \' l C

セセ f\ .,.

セ0 ., ZGGiヲ|ャイセZ l ir; II'

C'.. V\

,ft 11'.C" (\ セ N L N N ,,

セセセセq.co n

Mセ」Nッ セZゥGB セ -"" 0-.,:. ""

16

160 1'4J\)&.,1)0\ セャゥ」エ^カッG sBaセセ e-(Ct1"l-t- ---

12C' 100 80 60 40 20 oI . I . I I f)r'lll セ ..,. )(

I, セ !'. I セ ,,, ! • iLセセセ セ ... I It.

I coPfr ;

ヲセrt;

,;"

AlセG セ Itセ

£ セセ ,. I'セ ,;;

セ l:..i of' ISセ -', f' ; I (\ セ

I Dセ I セ 。Mセ !!l セウI I:!"'

-lf:(\

I

ooo4J

• .>1;.16

,@ oX.. "セ g;Io: ...;) G....,.セN

(0p..

'7

14,

C£91ll ea()V.') sEASED (N7)

1'/ 1('"'0 Qj.... U \J '

,6 4 2 o

10 8DEPTH (m)6 4 2 o

I I I I

TYPE!-------------------------------j

FEATURE

COLOR

I I I I 0•• r---..•• AU)

- 20 "TIc I0 C'---'"

40 0(.f)

1.2 0r---..A Z

1.6 :3 <セMMッ CD(j)

-->.<::»

2.0 0I I I I -80 N

セ 00

0.o s:

セ (fJU)

< -:-I80 <::»セ

I I I I 0 nセ I

- 400 c U) 0セ -. CO'---'"

セ M

800 ;' .J:-7

....sI I I , (;'

3

""0 ..I ;r

•.>8

.)

fl*>' .......

I I I I 0 ().J"1--

--0\,'Hセ

rrl •..;..../

10

10 8DEPTH (m)6 4 2 o

I I I 1

TYPE

FEATURE

COLOR

I I I I 0• • ".--....

A(J)- 20 ""Dc I• Q

C--.....-40 0

(J)

1 1 I I 1.2 0".--....

A Z- '1.6 :3 <

セカ CD(j)

セ<:>

2.0 0I I I I -80 N

".--.... 00

0 .o セ

セ(j)

(J)

< U80 "-/ nI I I I 0 I

".--.... 0- 400· セ u j N OJ

--.....-

800.,--3

7 セ

I I I I bt:JIl1

V b

I '":bN;::J

8 Iiif-

a ......,/I 1 I I

Vrn

10

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

L ---' COLOR

j J I J

セセTPP

800.-----,-----r----r-------r---, 7

• __ • e•. セ ..

L-__ M セ M M セ M M M M M M M M M M M G 8

イMMMMMMMイMMMMMイMMMMMMLMMMMMMMMイMMMセo

10

-I£oooセ

40セ B L L I

60ッ エ p t セ b エ セ セ セ H a g ヲ o

120 100 80140J I . I . I I

"lセ

!!l. 1tt セ .. セエ セ セ t/\ +Lr ...セ

1"r... f l エMNセ

f . A0-

セ セ セ c. セーMイャイセヲャ it' )' セセ[LIt\) セ ., s セ f セエ

f J f d ヲAiANセ セ f -(/\rL·;,51/1 セ

セIT' .. l;:.f(,r セLN

I .. UI

(' セ..[BセAl + '

I/'r p t;.9;\ftCJ セ[ゥセ oセNセQUNセo セMTGセᄃ fiセセセ it' iii ::t'p.! GMャセ W セ to .... ,,!'"

160><I'0 セ...."-1c;,.セ

mC7

. . . ,セB,

3 :セAGᄋiセ セF. Q.;

tv eP'1"'" r$l. ;",., "I P " (I,.....0 .......X-- p_Zセ. I ·vI ... セ ... セ ,

j " ('" 3 'rセNLN !s.a.-セ :. '1' - ,.

ZGZGセiB 1\'1, 0 LLセHB (' I

Ia セKヲセ N[Kセ !1i セ

16

-a1),..Qo"o

14 1')I.:.. 4 o

o00

160 140 1'/0I':"

\)i.Pb\ b { Q N P セ stAlE'.) (CIW"I)

100 80 60 40 20 o

toI

ooJJ

. I.- --1--'" I I I I I... ! ? 'P

i l セセ セ Nセ , g,?. . , f.1

IセQZjBB⦅MGヲNNZ ... セ ... Biセ「I ,." ('J.! o , ....... I'

セ EセN ;1 i rcl セ セセ 'tJ' I j セセゥi

' - I "'3,) セ...,J (I:I;7 .! .eLLセNセ セ ifrIO, 4.-D'

I f セ :

セGヲB "::£"0 . cr, 0- KNNNAャャセ セi

BBセ セZZZ ... セ

-...Jセ

i

Lセ

16 14 12 4 ".<Goo o. I I I . I ')Co

セャセエャ ャセGBI

セGi lセᄋャァ セ:

9' r > :セZ. ""'" 1'11\:<:v-.

_:II Lf e.' .lcg.U\ .0« sセL ; " V'TJ' () ゥセvQG セ

ァセ .,J :. o..:+:I セj」。NNヲセS セ . ヲGMMMセ , F cfJt; e: セt\t III , -'セ J r Njエセ

t)- , : 5セセヲ ;. セ セ セ セ ャ ャ i | \ N N G

I. f セ • e:«: セ セ G B セ ... jセ 7t. セM r セ,.

i セセ it セ p セ Il' 11 f '"I セャ i:,,.. l セ ') セ "BNNエセ " セ i f (l! "Ttl' .-';'1 セ , ('(\j

0, ees J!l. 0 i" J. f'! I セKBZZBcゥ GセセKセヲセセ N_Mセヲャ1 ゥセ Mセ tf -e 7b 471 - BNセ ",73 W セGB "l'"

"0o•o

..D

on-

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

10 8DEPTH (m)6 4 2 o

1 I I I

TYPE

FEATURE

COLOR

I I II Y 0

e-.. セBGB"..--..,.

20AU)

ICD " • _ ""Dcセ セ N M 0 C_.,.' . '----". --. . 40 0,

(J)1.2 0"..--..,.

セA Z

1.6 :3 <セカ CO(f)

セ<:>

2.0 0-80 N

Nセ 0()

01O セ(j)

(J)

<,

80 <:»:U()

0 I"..--..,.

e400 C (J) N

セ セ -.'----"

8007

vI

8I I I I a

... ..... - _.. t1 v- - - -- > fT1

10

10 8DEPTH (m)·6 4 2 o

I I I I

TYPE

FEATURE

COLOR

I I I

40

1.2

1.6

r---.

¢:; (J) -rUc --L

セ Co(J)

oz

oNo

U\ _

:1 1-セ .1)

i> (f>

""0 セrn

2.0-80

r---.o

O LO セ(J) (f)

<80'--'"

or---.

.....-,..400 セ セ N セ'--'" eN

セェOXo.. -

I

I

I

I

I

I

I

I

I

I

I

I

10

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

COLOR

0.,.--....

20AU)U C0

'--"'"

40

1.2".........

A

1.6 :3 <セカ(j)

<::»

2.0-80

0

01.0 セ(J)

(J)

<80"-'"

0".........

400 C (J):5: -.

'--"'"

8007

v:::r:

80

Vrn

10

ICoU)

oz(0

oNo

uoI

Twc. - on.. PC" \'-. "tセNセZ 1 TWC.- 013 ?<:'-\3

X:: t:>\STI.,cteEj)

1-

TE)C.T. ' ...-c. C.OLLセANN^jlAi NNNZゥァセ _____..s.-_

セZヲil ,セL ",;) セ B G エ エ B G B B ᆱ ヲ B G G G N ウ '11'11:.

s'·/s'>.t .b'..ci セGZ[セNI セst.+

""--,} t'ed.Sst el.. セセ r ·/3s, $-;:'." ........."":; oi: 4-ill' IOYt.:

fVI ...,4 \,tt>.ck b...:..,;'''--'' c. '1/-. t,... d 'A ..... セBGDッセ 'i/3

$ ..... セGPQ ..BBセセセセエ|」NN :'O:f\l 'VY,z.!>/'

.;; "I d.oA.. " c... QセGQヲN

bled\:. $e-" c...'tlb

'/. 10'112.l:.}!.'v

'¥3""....'d .イNLNjMセNZBGセ l.-eh. e, t-

s"" c1a,..,)t,s or 'tl'------ - -_._-------- I---

, \:»\"ct :A c.. 2.S"... 1 b1&.ck- <.J,04!t',,WJ i fa.d. セ ャ [ H G I セ 11/...- \,.. ...:,."

b ........ ᄋLLセ ..,$セ セ G B II-e..1 "...

-- --.. " _.-セlヲcャ c._ C oc

.

tn

to

$17

1(,

r;')L,

...-

イNNセ

'C'"'-

o

"""r-

..q-!i1.

o

0"

r""

セ ヲ I I

E,Q

'Itt (_ Lac

ITEXT'. Fe-ATU/t£S COL,

. sッNOセi セa pfarC'V'uS G- i u y セ

.-.wJ セ|ッセォセ セ⦅B 11/3. .'.- _.. . _._---- .-

fc..セ .e....

BBGセZNQ,.

セ .........cエコOセN 'f'.S. ')..,;ィM|セ GQセ

UOセ

-

セM .- -iセセ HヲセI「MMイMセウ -.')u,c.-L ウセセ

-:.' c.

cJ.セW

12-

. HLケセ s.o....l:1) b'-Crnw.$'

""'....1.0....J I""",,:"'AA-

..セ

セw. I

§I

...-

o..q-

.I

1

Iセi

o("-"

ol.D

0"1-セ,.

ofr:

oN...-

,-.

rセHI

-xtXJtIIID

oo

..

T£ltT. セ a N N オ セ ・ ッ [ [ N 01..

: si/cl ,l>-....L[NNッNエセ d 1ッNNLセ

'II-z.BBセ ZイqBLッLセセィ|ゥョ .+-d' so......d.,.., e- ,,/.セ ....d. ."' ..."It- smc.r.s'i'- -_.".-

__4 _____ --

ャヲセsG (,.ty\ Eac -

-

..._--

(0

53f.w

to

...-

Lsセ

0J

o

..q-

N

...-

o

-.J-r-

r'

セ c oセセ

1»a

leltT. セ B B n B G G G G G G G G CoL

i< Gセ セ ..セ、LLB ..ek.sS tf}fl,eM S,3

セ セ [ 、 N ヲ セ セ セ B G [ G M y Z エ ィ el.e ,OYR"/3v

. 'fAvv. ,'.-.o.e. セ L\. lO'111E

セエNNッNNイヲ セ '"!>/3

-.d or" r-;. "..t +. si et

ャセエ・nBセ 0'1 V/'-

. 1- 2> 」ZZセセ

--_0_.「 ゥ セ ゥ N セ ,-C;;...f i. セ 'j\-si rci.,4t

セセ _..• " セM -... -_.. - ---- 513-

セイdッセ セセ エッセc.IM\A.d :Sl'

FsMセ Eoc..,

-

-

A

o('J

C)

0...-t

0to

,...,fセM

0:r 0)セj).

1.010

00'C""-

0(-.J..--

0.q-r-

01O...-

10 8DEPTH (m)6 4i

2I

oセ

TYPE

FEATURE

-

ICo(J)

oz

oNo

40l M M M M M ] ] ] セ ] Z i Q N R ?

:3 <1.6 ""- -0 CD(j)"-/

'..--...800 'wtrlN7 f..N

3.---.-.. -0I C

J..;)"

8 セM(}0 :;;

1(1c

-0 セ セ M

I.'セL rn ;;)

!L'..e10 {if

<::»

• • •8007

-0I

80

-0rn

10

t======-__]]]Z]]セ[[[セセセN 0-........".....-:•."., ? VJ -.

e 20 U c -L

o C'-.-/

oMMMMMMMMMMM]]]]セ]][ ·40 (J)- 1.2? セ1.6 セ セ CO

(j) --l>.'--"----------===:====:==== 2.0 セM X P セ 0M]]]]セ]]]セ]MMMMLMMMMLNNMMMMセ PRセ

- {fJ VJ

セ S U80 0

o I]]]]セ]]]セ]MLMMMMMLMMMMLNNMMMセ] 400 I セ セ'--"

L----------========-_ COLOR

DEPTH (m)2 06 48I

10-l

TYPE

-l...

I

-,.-----

FEATURE

....

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

F,EATURE

COLOR

fIIFe -..sa0- セ 0

セMMiヲAGAャlセセ⦅ tfIIe セ

--- e8 •

AU)20 -oc I

• 0 C<;»:

40 0(J)

I I J J 1.2 0セ

A Z- 1.6 :3 <

セMッ CO(J)

セ<::«

2.0 0-80 N

セ 00

0\.0 s:{f}

(J)

< U80'--'" n0 I

セ N400 C (J) CD

セ -.<::»

8007

'DI

8I I I I 0

-0rn

10

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

'------------------------------

ICo(j)

ozCD

o""-)o

uoIセo

COLOR

0»-r--;

20/V(.f)U c0

"'---""

401.2

.r----./V

1.6 :3 <セMッ(j)

<::»

2.0-80

.r----.0

0LO $:(f)

U)

<80 '-"

0.r----.

400 c U)$: -.'-"

8007

-0I

80

-0rn

10

III

J I

NセMjBエiエ.. - . セ

J

J

10 8DEPTH (m)6 4 2 o

J I I I

TYPE

FEATURE

COLOR

I I I J

NセM・ᆬN0セ

AU)- 20 U c I0 C<::«

40 ·0(J)

1.2 0セ

A Z1.6 :3 <

セMッ CO(fJ

セ"--'"2.0 0

I I I I -80 N.-----.. 00

0 \..0 セ- (J)UJ

セ < -j80 <::»

セ0 0

セ I400 c U) ()ls: -. CO"--../

8007

"UI

8I I I I 0

.... .A._ -0- -- -. fTl

10

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

COLOR

0, I ".'.- . ..A- j N M N L セ \I)- . NNセN ".-....• • • 7'(f)• - 20 Uc I• 0 C"--'"

) 40 0(J)

, I I 1.2 0".-....

7' Z- '1.6 :3 <

セMッ CD(j)

M セ<::»

2.0 0-80 N

".-.... 00

01O セ(f)

(f)

< U80<::»0

I I I I 0 I".-.... (Jl

セ d 400C (f) CD$: -.セ

JJtfIIJ' ....

8007

セセB・N --0I

80

-0fTl

10

4 2 0 2 0)

セx

J' B セ [)( 1) jill

lセᄋ\/I l.A

r セセl,.

.. r: "11 セ セN セGAGゥ Ii' ;:.\ , ,,0.- 11 -lセ ;... ..

1/'0 セ 0 ,11 tセ

0 :ft 'II

セ "II { エ セ セ-IP"" r セ ,0 (\

セ セ-e

ヲセ U11

'0 C' , rn ,,11 b,. セ i セ I ! ケセ I '>' .... -l 011' it :a c

(1)

>' セQGQ "f セ #- c."is: l' -2J £ IT' ..I:-

S セ I ... : Fi('\

1. I u Mセ ttl' tI':r. '" ') r 1' エGセ °1 fj Q"!Sセ ... p, セ f'9 en ' I P :'''''' PI' it"セ

cI\ ..:f..O1 .. ...._ ro

:'+0' セ o セ e

セセ '--<, ....... セ セ, - 11 -

...:

....

2 0I

"1 lJ1+f0<

'F _. '"aJ lh

2\ °1 1'\

<7"

セi -セt! J セN

f Q)

- .,."c-r,Vol

セ セセエ 0'"()セ セ Q セ G.,' i Iセ f i- IoQ|セBBゥps .co...,.

IZセセ .

·0oI

ton..D

-.-..4

4I "I, , •• II' •• f. f • ,oJ, I ! ,

Jc, LXI. セ 1 1) セ

eJ セ 17セIGセN

#' Q M セ '" .., r\ i o 'S (II

セ?

セセiゥ"1 t·

ヲ セ f ""' tJ.. !f セ セイ

BGセ ...£ ' セ(l!

セ tz0 セ\'<'rセio セAM セHG

'" '" セ cs li , .4; 0 セ.... ; I

セセ_....

セZ - -cMセ - 10 セ-

8I '/f. • I • I 0 • '.., I .. \.

セ "\I

イセ ヲセ s.02 L() Tャセi LセN -, セ r-F ,Call" NNLセ

iセtJ

"J ..... セ ftP "r:fI G B セ , r or エヲセ エゥヲセセuf" '"i H セ..,セN セ \} セ till: r ヲイセ-

f QセAt\ f ,. !p エケセ i (-Pf セ fr ;'r\:j'r:rr :f: セセセ セセY f; VI セM[ 1\' LセセZ f

(\ ,; , ... f\ f f' セiHG l' 9: ,I',.

セ ;; .c: .. , セGB \Ill fI,セ セ K セ G B

)'- セ i セA .,.--t セセ r \oa セ

10 8DEPTH (m)6 4 2 o

)

I I I I

TYPE

FEATURE

COLOR

0I I I I

".--...

tl

20A(J)

- U c I0 C• "--""

40 0(f)

I I I I 1.2 0".--...

A Z- 1.6 :3 <

セカ CD(j)

セ"'-./

2.0 0-80 NI I I I

".--... 0o) .o セ- 0 (JJ

(J)

< -j80<::»

セI I I I 0 ()

".--... I- 400 C (J) OJ

セ -. N'-"

8007I I I I

VI

80I I I f

Vrn

10

10 8DEPTH (m)6 4 2 o

I I I I

TYPE

FEATURE

COLOR

, I I I 0

• ...--.....A(J), - 20 u Io c

• ..........,. C• 40 0(J)

I I I I 1.2 0...--.....A Z

- 1.6 セ セ CD(f)

--->.<;:»

2.0 0I I I I -80 N

"..--.... 0oO·

\.0 $:

セ(f)

(J)

< U80<::»0

I I I I 0 I...--..... OJ

- 400 C (J) Nセ - .

..........,.

800I I I I 7

"DI

8I I I I 0

-0rn

10

10 8·DEPTH (m)6 4 2 o

TYPE

FEATURE

.,,--.....AU)

20 セ C

'-.--"

2,0

40- .

------ _====i COLOR-- i 0

I 1illV. pm

ICo

I. --------=:=-__ I 1.2? セ-- --=:----,-----,. :3 <-- - 1.6 '''"' U CD------r- L セ

oNo .,,--..... 0]]セMMMMMLMMMMM I N 100 セ G

-----r 200 < ----1

I 300 セ :2.:I 0. 0 I

I GRHjIセ400 セ -. -P

'----'"

l__._

L __

800

N セ W\/r

S10I

MMLgHェセ

I 10

t .

1_- ]セ]MセII

IC--.- __セ

10 8DEPTH (m)6 4 2 o

I I I I I

TYPE

FEATURE

COLOR

I

oNo

",---....

7' (J) IUcセ C

oUlo

7' Z6 :3 <1. セカ CD

(j)<:»:

•II

:..

",---....

o

150 セ セ<

<c:>L- ----' 300

o

...J400セMMMMMMMMMMMMMMMMMMMi SOOセMMMMNMMMMM⦅イ⦅MMM⦅⦅L⦅MMM⦅⦅⦅⦅NLNMMMMMMMLW

l- ---,-- 40

1.2

--------------------' 2.0...-------r-----,-----r------'---r------,O

I I I I

\JI

80

-- v- Ioi rn

10

2 o e=I=f

"1'Ill

.., セf4'l (lセc

0セ 6"rJ

,.,セセ

I I

セエャGlZセ|, ]:1

tlt.. LL[LZLセ]ZLNZ ...セヲカc'

N .lilf,.J

セ tnセ

セ I," P....セ ヲセ

.0 j)1i l'ii :

セエセ

§$.46 OIiPiH (I't"l)

I I i t ,

It L!"セ

tJ l'

. - -Vi セセi fl r セG' "",,セ L.i-I セ Fヲャセ1:- ff: I セ .t It(\

.T (':"1 セ oセセ... ;

'fIi ;セ '" jセセ[-:t IA

""'(

:><,

. I I .!!!!." .i3 <9 VI....o: .-QセBp \ェセ

. 'ev r cp ,,9ゥセ

- eft ! cO ClP ..G' or- セ , p0

Fff :fiセ

J セ 1セ.,,, Lセ

1" If\ セ

セZ,.... セ⦅ I" _

Gセt ..... Q -!: C'" .. セ セ G B -e

I •• J:..

., 0I I

cPセI

Ls:;n

o

t I 'I ' , II

- w

I セセ 0 Iy 11

|HGセ ::J.r "l""

セ.., G).... (')

fセ Iセ 6'"

セen

セャセ

0r0l'

9'10j I

DEPTH (m)10 8 6 4

I I ,I

,

L

2I

o

TYPE

)

COLOR

fliJiPO

II-- N M N Z N N M ⦅ セ

oNo

uI

II

-------------_.

II ..,.--....o

- 50 セ s;:(f)

L- - |セェ 100 L セ セ セ

l :00 」セ Z" セ Mセ CD

'------------------1 800Q M M M L M M M M M セ M M ⦅ ⦅ イ ⦅ M M M M M M イ M M M M M L W

"..--....

A(J)20 --0 c Iセ c'-- ---l 40 0

(J)

1.2.---. 0A L...

1.6 セ セ(f) CD

<:»: セ

2.0i M M M L M M M M M セ M M ⦅ ⦅ ⦅ イ ⦅ M M M M L M M M M M M N o

'---------------,-------Us

セ I0

GMMMMMMMMMMMMセMMMMML 10

10 8DEPTH (m)6 4 2 o

I I I I · ·•• ··

エセャat ,.

INセ { !./!...\iIt ,.

l

TYPE

FEATURE

COLOR

Iセ

Cru.i •• l5'n/Typ. ID Cor. La' L.ans "'ater 8c>t. Sam pE pH 81 804 NH4 IDL._n. Z T.mp Z

1m) 1m) laCl lml I...HI (mM) ImHI

91020 T003 1001501 1.9 41.930 -63.380 27215 .00 ,,.1 7.015 370 215 1001501

91020 T003 1001502 1.9 41.930 -63.380 27215 .20 15.0 7.34 420 215 1001502

91020 T003 1001503 1.'9 41.930 -63.380 :27215 .40 15.2 7.157 4150 28 1001503

910:20 T003 1001504 1.9 41.930 -63.380 2728 .60 15.1 7.39 460 28 1001504

91020 T003 10015015 1.9 41.930 -63.3150 :27215 .150 15.0 7.315 410 215 10015015

91020 T003 1001506 1.9 41.930 -63.3150 27215 1.00 15.1 7.615 410 2S 100S06

91020 T003 1001507 1.9 41.930 -63.3150 27215 1.20 15.3 7.42 470 215 1001507

91020 T003 10015015 1.9 41.930 -63.3150 27215 1.40 .15.0 7.315 SSO 28 100S0e

91020 T003 1001509 1.9 41.930 -63.380 2728 1.60 IS. 0 7.32 15150 215 100509

91020 T003 1001510 1.9 41.930 -63.3150 27215 1.150 4.0 7.34 1520 2S 1001510

91020 1'003 1001S11 9.9 41.930 -63.380 2729 .30 15.9 7.20 440 215 1001S11

91020 1'003 1001512 9.9 41.930 -43.380 2728 • ISO 15.7 7.32 440 21;1 1001512

91020 1'003 1001513 9.9 41.930 -63.380 2729 .70 IS.S 7.159 1500 215 1001513

91020 1'003 1001S14 9.9 41.930 -63.3SO 2729 .90 :5.4 7.40 ISSO 28 1001514

91020 1'003 1001522 9.9 41.930 -63.380 2728 1.00 15.15 7.153 15150 215 100:522

91020 1'003 1001523 9.9 41.930 -.3.'ISO 2728 1.150 15.3 7.40 SSO 2S ·1001523

91020 1'003 1001524 9.9 41.930 -.3.3150 27215 1.90 1S.3 7.33 1520 215 100524

91020 1'003 10015215 9.9 41.930 -63.380 27215 2.40 15.3 7.:51 470 28 100152:5

アエoセo 1'003 100152. 9.9 41.930 -.3.380 2729 2.90 :5.0 7.37 430 215 100:526

91020 1'003 100:527 9.9 41.930 -.3.380 272E1 3.20 4.61 7.29 370 2S 1001527

91020 e006 100:511S .4 42.170 -62.1590 2680 .0:5 2E10 215 1001S1:5

91020 8006 100:516 .4 42.170 -62.:590 2680 .10 400 2E1 10015140

91020 BOO. 100:517 .4 42.170 -62.:590 2680 .1:5 420 215 100:517

91020 8006 10015115 .4 42.170 -62.1590 2680 .21 440 215 1001518

91020 BOO. 1001519 .4 42.170 -62.1590 26E10 .21S 440 215 1001519

91020 8006 1001520 .4 42.170 -62.1590 2680 .30 440 261 1001520

91020 BOO. 100:521 .4 42.170 -62.1590 26E10 .315 4150 215 1001521

91020 T007 1001529 1•• 42.160 -.2.4030 264060 .00 400 29 1001528

91020 T007 1001529 1.6 42.160 -0602.630 264060 .0:5 420 28 100:529

91020 T007 1001530 1.6 42.160 -62.4030 2646 .10 400 28 1001530

91020 T007 1001531 1•• 42.10600 -62.630 2646 .1:5 430 215 100531

91020 T007 1001532 1.6 42.160 -62.630 2646 .20 470 29 1001532

91020 T007 1001533 1.6 42.160 -62.4030 2646 .40 4:50 215 1001S33

91020 T007 1001S34 1.6 42.160 -62.630 2646 .60 470 215 1001534

91020 T007 10015315 1.060 42.160 -62.630 2646 .150 1S20 215 10015315

91020 T007 1001S36 1.6 42.160 -62.630 2646 1.00 :520 2E1 100153.

91020 T007 1001537 1.6 42.160 -62.630 2646 1.20 1S40 215 100:537

91020 T007 1001S3S 1.6 42.160 -62.630 2646 1.40 15150 2S 1001538

91020 T007 1001539 1.6 42.160 -62.630 2646 1.1515 1510 215 1001539

91020 1'007 1001S40 4.3 42.160 -62.630 2646 .00 370 2E1 100:540

91020 1'007 1001541 4.3 42.160 -62.630 2646 .05 430 28 100:541

91020 1'007 1001542 4.3 42.160 -62.630 2646 .10 330 215 100:542

91020 10007 1001543 4.3 42.160 -.2.630 2646 .20 430 215 1001S43

91020 10007 1001S44 4.3 42.140 -42••30 2646 .40 430 261 1001544

91020 10007 10015415 4.3 42.160 -402.4030 .2646 .60 620 2E1 1001S4S

91020 1'007 100!546 4.3 42.160 -62.630 2646 .SO 640 215 100!5440

91020 10007 100!547 4.3 42.160 -62.4030 4136 1.00 6150 215 100!547

91020 T009 100!5:52 1.8 41.330 -61.710 4136 .00 280 29 10015:52

91020 T009 10015!53 1.EI 41.330 -61.710 4136 .015 300 215 100!5153

91020 T009 100!554 1.15 41.330 -61.710 4136 .10 310 2E1 100SIS4

91020 T009 100S15!5 1.EI 41.330 -61.710 4136 • lIS 3150 215 1001S!5!5

91020 T009 100!5:56 1.15 41.330 -61.710 4136 .20 3!50 261 100:5:56

91020 T009 100!51S7 1.15 41.330 -61.710 4136 .40 3!50 215 1005!57

91020 T009 100!55E1 1.15 41.330 -61.710 4136 .60 260 2E1 10015:59

91020 T009 100!51S9 1.15 41.330 -61.710 4136 .150 270 215 100:5:59

91020 T009 100:560 1.15 41.330 -61.710 4136 1.00 270 28 100:560

91020 T009 100:561 1.EI 41.330 -61.710 4136 1.150 370 215 100:561

91020 T009 1001562 1.8 41.330 -61.710 4136 1.76 300 2S 1001562

91020 10009 1001563 10.0 41.330 -61.710 4136 .0:5 9.0 7.37 310 215 1001563

91020 1'009 100:564 10.0 41.330 -61.710 4136 .10 6.61 7.409 310 261 ゥooセNT

91020 10009 10015615 10.0 41.330 -61.710 4136 .1:5 :5.9 7.1S9 300 215 100156!5

91020 1'009 1001566 10.0 41.330 -61.710 4136 .20 :5.4 7.415 270 2E1 1001566

91020 10009 1001567 10.0 41.330 -61.710 4136 .40 !5.6 7.1S15 240 215 1001567

91020 1'009 100:56E1 1.0.0 41.330 -401.710 4136 ••0 15.4 W d セ ゥ Q !240 !2Q 10"S4Q

91020 1'009 100:569 10.0 41.330 -61.710 4136 .80 3.1 7.37 400 215 1001569

91020 1'009 1001570 10.0 41.330 -61.710 4136 1.00 3.7 7.::U 290 29 100:570

Crul.. Stn/Typ. In Core L.at L.ang z pE pH St SC4 NH4 In

'1'1020 POO'l' 1001571 10.0 41.330 -61.710 4136 1.150 15.1 7.29 270 28 100571

91020 P009 1001572 10.0 41.330 -61.710 4136 2.00 15.4 7.32 260 28 1001572

'Pl020 POO'l' 1001573 10.0 41.330 -61.710 4136 2.eo e.3 7.el 370 28 100573

91020 P009 looe74 10.0 41.330 -61.710 4136 3.00 4.0 7.27 340 2B 100e74

'1'1020 GO11 100157e 1.3 41.280 -61.seo 4306 .00 5.9 7.39 380 :ze 100S7S

91020 BOll 100e76 1.3 41.280 -61.8eo 4306 .oe e.7 7.ee 3BO 2S 100S76

'1'1020 GO11 1001577 1.3 41.280 -61.seo 4306 .10 6.e 7.31 410 2B 100S77

91020 BOll 100e78 1.3 41.2S0 -61.seo 4306 .115 6.B 7.2e 460 2S 100e7B

'1'1020 GOll 100e.,.., 1.3 41.280 -61.BSO 4306 .20 6.B 7.31 4BO :ze 100S79

91020 GO11 100580 1.3 41.2S0 -61.Beo 4306 .40 6.1 7.33 410 2S 1001580

'1'1020 GO11 100eBl 1.3 41.2S0 -.l.seo 4306 .60 e.4 7.4e 4SO 28 100SSl

91020 BOll 100eS2 1.3 41.2S0 -.1.S150 4306 .80 e.4 7.41 320 28 1001582

91020 GOll 100S83 1.3 41.2BO -.l.seo 430. .94 e.e 7.3e 3S0 29 100eS3

'1'1020 T012 1001584 •• 41.290 -61.810 4:S42 .00 e•• 7.:se 23e 2B 10015B4

'1'1020 T012 1001!lB15 .6 41.2'1'0 -61.810 4:S42 .00 6.:S 7.27 e40 2B 10055

91020 T012 100eB6 .6 41.2'1'0 -61.Bl0 4342 .10 6.4 7.1e 420 2B 100e86

'1'1020 T012 100eB7 .6 41.290 -61.Bl0 4:S42 .1e 6.6 7.20 4:S0 :ze 100eS7

91020 T012 100e89 .6 41.290 -61.810 4:S42 .20 6.2 7.21 410 2B 100SSB

'1'1020 T012 10015B'P .6 41.2'1'0 -61.Bl0 4:S42 .40 S.:S 7.34 3:S0 28 100SS'I'

'1'1020 T012 10015'1'0 •• 41.2'1'0 -.1.810 4:S42 .60 15.'1' 7.37 270 28 100\590

91020 P012 1001!l91 4.8 41.2'1'0 -61.Bl0 4342 .00 6.1!I 7.2B 430 28 .03 1001!l91

91020 P012 1001!l92 4.8 41.290 -.1.810 4:S42 .0\5 6.6 7.39 :S20 28 .06 1001!l92

91020 P012 1001!l93 4.8 41.290 -61.Bl0 4342 .10 5.7 7.42 :seo 28 .13 100593

91020 P012 1001!l94 4.9 41.290 -.1.910 4:S42 .15 1!I.B 7.47 340 2B 1001594

91020 P012 1001595 4.9 41.290 -61.Bl0 4342 .20 5.6 7.63 390 29 1001595

91020 P012 10059. 4.9 41.290 -61.810 4342 .40 5.7 7.36 300 29 100159.

'91020 P012 100597 4.8 41.290 -61.Bl0 4342 .60 5.6 7.36 460 28 1001597

91020 P012 100598 4.8 41.290 -61.910 4342 .90 15.3 7.21 460 28 .18 1001598) 91020 P012 1001599 4.8 41.2'1'0 -61.Bl0 4342 1.00 15.:s 7.27 420 28 100S99

91020 P012 100600 4.9 41.290 -61.810 4:S42 1.eo 15.3 7.24 420 2B 100600

91020 P012 100601 4.9 41.290 -61.Bl0 4342 2.00 4.9 7.2B 1520 2B .:S1 100601

91020 P012 100602 4.8 41.290 -61.810 4342 2.150 4.3 7.115 430 28 .215 100602

91020 P012 100603 4.B 41.290 -.1.810 4342 :s.00 4.9 7.09 28 100603

91020 T013 100604 2.0 41.840 -62.330 :S4S0 .00 15.9 7.1!13 400 28 100604

91020 T013 10060e 2.0 41.840 -62.:S30 34eo .oe 6.2 7.eo 440 28 100605

91020 T013 100606 2.0 41.840 -62.:S30 34150 .10 6.0 7.80 400 28 100606

91020 T013 100607 2.0 41.840 -62.330 :S4eo .1e 6 •.0 7.83 400 28 100607

91020 T01:S 100608 2.0 41.840 -62.3:S0 341!10 .20 6.1 7.64 :S80 28 10060B

91020 T01:S 100609 2.0 41.840 -62.330 34eo .40 e.9 7.99 3150 28 100609

91020 T013 100610 2.0 41.840 -62.330 34eo .60 e.7 7.86 380 28 100610

91020 T013 100611 2.0 41.840 -62.3:S0 34eo .77 e.7 7.41 440 :ze 100611

91020 T013 100612 2.0 41.840 -62.330 3450 1.00 e.l 7.77 390 28 100612

91020 T013 100613 2.0 41.840 -62.330 34eo 1.eo 4.4 7.65 490 28 100613

91020 ,.013 100614 7.4 41.840 -62.330 34eo .02 e.:S 7.37 eoo 28 .06 100614

91020 P013 10061e 7.4 41.840 -62.330 :S4eo .06 e.4 7.46 470 28 .07 100615

91020 ,.013 100616 7.4 41.840 -62.330 34150 .10 15.3 7.46 eeo 28 100616

91020 P013 100617 7.4 41.840 -62.330 :S450 .17 4.7 7.38 1570 28 .18 100617

91020 ,.013 100618 7.4 41.840 -62.330 3450 .20 e.2 7.e8 eeo 28 10061B

91020 P013 100619 7.4 41.840 -62.:S30 34eo .40 e.2 7.36 670 28 .2e 100619

91020 ,.01:S 100620 7.4 41.840 -62.330 :S4eo .60 2.7 7.17 720 28 100620

91020 ,.013 100621 7.4 41.840 -62.330 34150 .80 2.:S 7.12 670 28 .32 100621

91020 ,.013 100622 7.4 41.840 -62.330 34150 1.00 4.7 7.13 700 28 100622

91020 P013 100623 7.4 41.840 -62.330 34eo 1.eo e.4 7.27 700 2B .40 100623

91020 P013 100624 7.4 41.B40 -62.:S30 :S4eo 2.00 2.e 7.07 600 28 .28 100624

91020 P013 1006:ze 7.4 41.840 -62.:S:S0 34eo 2.eo 4.6 7.08 4eo 28 .32 100625

91020 ,.013 100626 7.4 41.840 -62.330 34eo :s.00 4.e 7.28 28 .:se 100626

91020 T014 100627 1.6 41.789 -62.3\50 3e32 .00 6.4 7.37 :S40 28 100627

91020 T014 100628 1.6 41.789 -62.3150 3e32 .015 6.0 7.e2 :S90 2B 10062B

91020 T014 100629 1.6 41.7B9 -62.:seo 3e32 .10 6.0 7.49 390 28 100629

91020 T014 100630 1.6 41.789 -62.3150 :se32 .1e e.7 7.63 420 2B 100630

91020 T014 100631 1.6 41.789 -62.3eo 3e32 .20 e.9 7.60 4eo 28 100631

91020 T014 100632 1.6 41.789 -62.3eo 31532 .40 1!I.6 7.46 460 28 100632

'1'1020 T014 100633 1.6 41.78'1' -62.350 3e32 .60 e.7 7.44 2B 100633

'1'1020 T014 100634 1.6 41.7B'I' -62.3150 :se:S2 .78 e.4 7.34 2B 100634

'1'1020 T014 10063e 1.6 41.78'1' -62.3eo :S1532 1.00 4.e 7.e2 el0 2B 1006:S15

91020 T014 10063" 1.6 41.789 -62.350 31532 1.150 15.3 7.47 1540 2B 100636

'1'1020 P014 100637 2.7 41.78'1' -62.3eo 31532 .00 •• 0 7.215 4eo 28 .01 100637

ID L"t Lans z pE pH S1 904 NH4 ID 3

.,1020 P014 1006;S& 2.7 41.78" -62.:.l:50 :.ll5:.l2 .0:5 :5.8 7.6:.l 440 28 .01 10063891020 P014 1006:.l., 2.7 41.789 -62.:.l:50 :.l:5:.l2 .10 :5.4 7.:51 4:50 28 1006:.l991020 P014 100640 2.7 41.789 -62.:.l:50 :.l:5:.l2 .1l!! l!!.:5 7.:54 4BO 28 .06 100640

91020 P014 100641 2.7 41.78" -62.:.l:50 :.lS32 .20 l!!.:.l 7.60 4BO 28 100641.,1020 P014 100642 2.7 41.78" -62.350 :.ll532 .40 l!!.3 7.54 460 28 .13 100642

91020 P014 100643 2.7 41.789 -62.:.lS0 3l!!32 .60 5.1 7.38 500 28 100643.,1020 P014 100644 2.7 41.78" -62.3l!!0 3532 .80 l!!.3 7.51 570 28 .17 100644

91020 P014 100io4l!! 2.7 41.789 -62.3l!!0 3532 1.00 5.4 7.7i:S 570 28 10064:5

91020 P014 100646 2.7 41.789 -6:Z.:.l5O 3532 1.50 4.6 7.49 600 28 .24 100646

91020 P014 100647 2.7 41.789 -io2.:.lS0 31532 2.00 S.:.l 7.37 610 28 .31 100647

91020 P014 100649 2.7 41.789 -62.3l!!0 3l!!32 2.l!!0 l!!.2 7.215 610 28 .3l!! 10064B

91020 B028 100678 .3 44.684 -15l!!.S24 1:.l31 .00 6.8 7.16 :.lSO 28 100678

91020 802B 10067" .3 44.684 -:5:5.:524 1331 .Ol!! :5.3 7.32 440 28 100679

91020 B028 100680 .3 44.684 -1515.524 1331 .10 5.1 7.24 630 28 100680

91020 8028 1006S1 .3 44.684 -5:5.1524 1331 .1:5 6.0 7.27 710 28 100681

91020 B028 100682 .3 44.684 -515.1524 1331 .20 l!!.7 7.27 790 28 1006S291020 8028 100683 .3 44.684 -:55.1524 1331 .2l!I 5.7 7.33 840 28 100683

91020 11028 1001084 .3 44.684 -Sl!!.:524 13:.l1 .30 5.6 7.18 900 28 100684.,1020 T029 100722 .15 44.683 -:5:5.:526 1:.l34 .05 l!!.6 7.38 :570 28 .00 10072291020 T029 100723 .l!! 44.68:.l -Sl!!.:526 1334 .10 15.6 7.38 740 28 .00 100723.,1020 T029 100724 .:5 44.683 -1!lS.S26 1334 .1l!! l!!.6 7.49 820 28 .00 100724

91020 T029 10072l!! .l!! 44.6S3 -Sl!!.:526 1:.l34 .20 l!!.7 7.:50 840 28 .00 10072:5.,1020 T02., 100726 .5 44.68:.l -15:5.1526 1334 .30 l!!.7 7.33 849 2S .00 100726

91020 T029 100727 .l!! 44.683 -Sl!!.S26 1334 .40 5.4 7.:.l6 840 28 .00 100727.,1020 T02., 100728 .l!! 44.683 -:5:5.:526 1:.l34 .l!!0 l!!.6 7.:.lS 870 28 .00 .100728

91020 P029 100693 7.l!! 44.6B3 -:5l!!.l!!26 13:.l4 .05 5.9 7.6:.l 650 28 .44 100693

'1'1020 P029 100694 7.15 44.6B3 -:5:5.:526 1:.l34 .10 l!!." 7.:5B 630 28 .:54 100694

91020 P029 10069:5 7.:5 44.683 -:5:5.:526 1:.l:.l4 .20 :5.2 7.:54 :570 2:5 1.00 10069:591020 P029 1006.,6 7.:5 44.683 -:5:5.:526 1:.l:.l4 .:.l0 4.9 7.47 710 2:.l 1.20 100696

91020 P029 100697 7.!5 44.683 -S!5.!526 1334 .40 !5.1 7.!53 740 20 1.:.l0 100697.,1020 P02., 100698 7.:5 44.68:.l -:5:5.1526 13:.l4 .150 4.8 7.37 710 19 1.so 10069B

91020 P029 100699 7.!5 44.683 -:5:5.:526 1:.l:.l4 .60 :5.1 7.2:5 6:.l0 115 100699

91020 P02., 100700 7.!5 44.68:.l -:5:5.:526 1334 .70 4.9 7.!57 !5S0 14 100700

91020 P029 100701 7.:5 44.683 -!5!5.S26 1334 .80 4.8 7.2S S70 13 100701.,1020 P029 100702 7.15 44.683 -SS.:526 1334 .90 4.7 7.31 S70 11 10070291020 P029 10070:.l 7.S 44.683 -S15.!526 1334 1.00 4.8 7.29 S30 10 100703

) 91020 P029 100704 7.5 44.683 -155.526 1:.l34 1.10 4.8 7.21 !520 9 100704

91020 P029 100705 7.!5 44.68:.l -SS.S26 13:.l4 1.20 4.4 7.:.l0 500 a 1.80 10070:5

"1020 P02., 100706 7.5 44.683 -1515.1526 13:.l4 1.:.l0 4.6 7.42 570 7 10070/0

91020 P029 100707 7.5 44.68:.l -:55.:526 1:.l34 1.40 4.4 7.47 S150 6 100707

91020 P02'l' 10070S 7.15 44.6S:.l -S15.S26 1:.l:.l4 1.50 4.4 7.43 S:.lO 6 100708

91020 P029 100709 7.5 44.683 -SS.S26 1334 1.60 4.4 7.42 SSO 6 10070991020 P029 100710 7.5 44.68:.l -SS.S26 1:.l:.l4 1.70 4.4 7.36 S!50 6 10071091020 P029 100711 7.5 44.683 -SI5.S26 1334 1.S0 4.5 7.36 550 2 10071191020 P029 100712 7.S 44.68:.l -SS.S26 13:.l4 1.90 4.!5 7.41 SSO 2 10071291020 P029 10071:.l 7.5 44.683 -SS.S26 1:.l34 2.00 4.5 7.4S sao 1 100713

"1020 P029 セ P P W Q T 7.5 44.683 -SS.:526 1334 2.10 4.5 7.44 600 1 100714

91020 P029 100715 7.5 44.683 -SS.S26 1:.l34 2.20 4.5 7.41 S80 0 10071S"1020 P02" 100716 7.5 44.6S:.l -SI5.S26 1334 2.:.l0 4.6 7.42 570 0 10071691020 P029 100717 7.!5 44.68:.l -SS.S26 1334 2.40 4.2 7.40 500 0 10071791020 P029 100718 7.5 44.6S3 -SS.S26 1:.l34 2.150 4.2 7.S2 :530 0 2.20 10071891020 P029 100719 7.S 44.683 -SS.S26 1:.l34 2.80 4.6 7.66 420 0 10071991020 P029 100720 7.S 44.683 -SS.S26 1:.l:.l4 2.90 4.4 7.48 :.l90 0 10072091020 P029 100721 7.5 44.68:.l -:55.526 13:.l4 :.l.00 4.4 7.:.lS :.l60 0 10072191020 T040 1007154 1.4 44.727 -I5S.616 1062 .00 l!!.S 7.23 420 28 .00 100715491020 T040 1007S!5 1.4 44.727 -SI5.616. 1062 .05 4.9 7.21 480 28 .00 1007SS91020 T040 100756 1.4 44.727 -SS.616 1062 .10 5.1 7.23 570 28 .00 100715691020 T040 100657 1.4 44.727 -S15.616 1062 .20 5.1 7.23 600 28 .07 1006\5791020 T040 100658 1.4 44.727 -\55.616 1062 .40 5.4 7.41 620 2B .1!5 1006\5891020 T040 1007\59 1.4 44.727 -S15.616 1062 .60 5.4 7.12 620 2S .16 1007:5991020 T040 100760 1.4 44.727 -!5!5.6U. 1062 .SO 4.9 7.14 620 2S .28 10076091020 T040 100761 1.4 44.727 -:5!5.616 1062 1.00 4.6 7.1B 620 2S .32 100761

91020 T040 100762 1.4 44.727 -\5S.616 1062 1.40 4.9 6.93 600 28 .40 100762

91020 P040 100763 6.S 44.727 -:5\5.616 1062 .00 4.9 7.\5S 6\50 2S .2S 10076391020 P040 100764 6.S 44.727 -:5:5.616 1062 .0:5 4.9 7.30 670 28 .44 100764

91020 P040 10076!5 6.S 44.727 -:5:5.616 1062 .10 4.:.l 7.41 670 2:5 .B!5 10076S"1020 P040 100766 6.S 44.727 -:5:5.616 1062 .20 4.6 7.27 12 1.30 100766

ID Car. Lone WAter Temp z pE pH el 804 NH4 ID 4

.,1020 1"040 100767 6.B 44.727 -1919.616 1062 .40 4.4 7.33 620 12 loBO 100767

91020 P040 10076B 6.B 44.727 -1919.616 1062 .60 4.4 7.SS 1980 11 1 • .,0 10076B.,1020 P040 10076., 6.B 44.727 -SS.616 1062 .BO 4.4 7.49 6 2.00 10076991020 P040 lq0770 6.B 44.727 -SS.616 1062 1.00 4.4 7.SB 1920 2 2.30 100770'91020 P040 100771 6.B 44;727 -eS.616 1062 1.eo 4.1 7.4B 0 2.40 100771

91020 P040 100772 6.B 44.727 -ee.616 1062 2.00 4.1 7.43 400 0 2.70 10077291020 P040 100773 6.B 44.727 -ee.616 1062 2.:50 4.3 7.e6 390 0 2.90 100773

91020 P040 100774 6.B 44.727 -ee.616 1062 3.00 4.2 7.43 400 0 3.00 10077491020 P040 10077e 6.B 44.727 -ee.616 1062 3.60 4.e 7.48 400 0 3.20 10077S

91020 P040 100776 6.8 44.727 -se.616 1062 4.00 3.9 7.1S 3BO 0 3.20 10077691020 P040 100777 6.B 44.727 -ee.616 1062 4.eo 4.0 7.12 390 0 3.40 10077791020 P040 100778 6.8 44.727 -SS.616 1062 S.OO 1.9 7.26 470 0 3.60 10077B91020 P040 100779 ".8 44.727 -SS...I .. 10..2 S.SO 4." 7.37 390 0 3."0 100779

91020 P040 1007BO 6.B 44.727 -se.616 1062 6.00 3.4 7.32 440 0 3.70 1007BO.,1020 P040 1007Bl 6.B 44.727 -ee.616 1062 6.eo 4.1 7.119 4eo 0 3.BO 10078191020 P040 100782 6.B 44.727 -ee.616 1062 6.BO 4.4 7.20 400 0 4.00 1007B2'91020 B044 1007B3 .4 44.e31 -ee.624 190B .00 6.3 7.3e 360 2B .19 10078391020 8044 100784 .4 44.e31 -ell. 624 190B .Oll ll.4 7.ll2 3BO 28 .oe 10078491020 B044 10078e .4 44.e31 -ee.624 190B .10 e.l 7.36 400 2B .11 10078S91020 8044 100786 .4 44.e31 -ell. 624 190B • III 4.3 7.32 420 28 .16 1007B691020 B044 100787 .4 44.e31 -llll.624 190B .20 4.4 7.61 390 28 .1B 10078791020 B044 1007B8 .4 44.e31 -ee.624 190B .2!l 3.4 7.26 4110 28 .20 1007SB91020 8044 1007B9 .4 44.e31 -SI5.624 190B .30 e.l 7.4e seo 2B .27 100789

91020 B044 100790 .4 44.e31 -ell. 624 190B .3ll 4.4 7.23 2B 10079091020 B044 100791 .4 44.e31 -ell. 624 190B .40 4.6 7.31 720 2B .30 10079191020 B049 100798 .3 44.306 -e3.73B 13SS .00 ll.7 7.26 370 2B 10079B91020 B049 100799 .3 44.306 -S3.73B 13ee .oe 4.6 7.2e 430 2. 1007<;19

91020 B049 100BOO .3 44.306 -193.73. 13ee .10 e.e 7.1B 460 2B 100800

91020 B049 100BOl .3 44.306 -e3.738 13!le .1ll ll.ll 7.11 ll40 28 100B01

91020 8049 100802 .3 44.306 -S3.738 13lle .20 e.4 7.27 e60 28 100B02

91020 804'9 100803 .3 44.306 -e3.73B 13se .2ll e.7 7.3B e80 28 100B03

''1020 8049 100B04 .3 44.306 -e3.738 13ee .30 ll.4 7.0e 610 28 100B04

91020 13021 1006193 1.3 44.B43 -ee.7eo e16 4.15 .BO e.9 7.21 2B 1006113

91020 13021 1006114 1.3 44.B43 -ee.7150 ll16 4.15 1.00 e.7 7.1B 28 1006e4

91020 13021 l006ee 1.3 44.B43 -15ll.7150 e16 4.ll 1.20 ll.6 7.12 28 10061115

91020 13022 1006116 1.3 44.Beo -ee.7e7 4eo 4.e .00 4.0 7.26 2B 100615691020 13022 1006157 1.3 44.BllO -ee.7157 4150 4.15 .2!l 4.e 7.26 2B 1006117

91020 G1022 1006158 1.3 44.BSO -ell.7e7 4eo 4.e .SO e.7 7.24 2B 1006eB.,1020 G1022 l006e9 1.3 44.S!l0 -lle.7157 4eo 4.15 .7ll ll.7 7.11 28 1006119

91020 0022 100660 1.3 44.B!l0 -!lll.7!l7 4eo 4.ll 1.!l0 e.3 7.12 28 100660

91020 G1022 100661 1.3 44.B!l0 -ee.7e7 4!l0 4.!l 1.2ll !l.3 7.14 28 100661

91020 G1023 100662 1.0 44.BB!l -!lll.776 417 4.7 .00 e.2 7.24 28 100662

91020 13023 100663 1.0 44.BB!l -l5ll.776 417 4.7 .2!l 6.0 7.24 2. 100663

91020 0023 100664 1.0 44.8Bll -!le.776 417 4.7 .!l0· セ N b 7.26 2B 100664

91020 13023 10066!l 1.0 44.BBll -!lll.776 417 4.7 .7!l e.B 7.14 2B 1006615

91020 G1023 100666 1.0 44.8Be -!lll.776 417 4.7 .90 6.0 7.0B 28 10066691020 13024 100667 .19 44.B77 -15!l.7B2 366 4.7 .O!l ll.6 7.21 2. 100667

91020 G1024 10066B .ll 44.B77 -!le.7B2 366 4.7 .2ll 6.i 7.24 28 10066B

91020 13024 100669 .e 44.877 -S!l.7B2 366 4.7 .4B 6.3 7.23 28 100669

91020 GI02e 100670 .4 44.BB2 -!lll.7B8 324 4.7 .Oll ll.6 7.26 28 10067091020 GI02S 100671 .4 44.BB2 -!l!l.7BB 324 4.7 .20 ll.9 7.31 28 100671

91020 lJ02e 100672 .4 44.B82 -l5e.7B8 324 4.7 .30 15.4 7.26 2B 100672

91020 1302!l 100673 .4 44.BB2 -ll!l.7BB 324 4.7 .44 ll.8 7.12 28 100673

91020 G102.. 100674 .ll 44.BBll -se.791 304 4.8 .00 e.3 7.415 2B 100674

91020 13026 10067ll .ll 44.B8ll -1919.791 304 4.8 .1e !l.7 7.2B 2B 1006715

91020 G1026 100676 .ll 44.BBe -Sll.791 304 4.B .30 e.6 7.10 28 100676

91020 13026 100677 .e 44.BBe -es.791 304 4.B .4e !l.B 7.23 2B 100677

91020 S034 100729 .ll 44.B!l4 -se.9BO !l03 4.7 .00 !l.4 7.16 28 100729

91020 13034 100730 .ll 44.Bll4 -!l!l.980 !l03 4.7 • III !l.6 7.1B 2B 100730

91020 S034 100731 .ll 44.B!l4 -se.9BO ll03 4.7 .30 6.1 7.10 2B 100731

91020 13034 100732 .e 44.S!l4 -eS.9BO !l03 4.7 .40 4.9 7.07 28 100732

91020 G103ll 100733 1.3 44.B61 -Sll.979 4112 4.8 .00 .S.3 7.27 2B 100733

.,1020 1303ll 100734 1.3 44.B61 -!lS.979 4!l2 4.B .2S 19.7 7.28 2B 100734

91020 G103ll 10073!l 1.3 44.B61 -se.979 4112 4.B .!l0 ll.6 7. III 2B 10073!l

91020 1303!l 100736 1.3 44.B61 -!lll.979 4112 4.B .7!l e.6 7.10 2B 100736

91020 G103!l 100737 1.3 44.B61 -Sll.979 4112 4.B 1.00 !l.4 7.07 28 100737';>1020 1303!l 10073B 1.3 44.B61 -!l!l.979 ·4e2 4.B 1010 !l.3 7.02 2B 10073B

cセオャNN 9tn/Typ. ID Lat Lons Wat.r T.",p z pE pH 91 904 NH4 ID 5

91020 Cl0315 10073'1' 1.3 44.1!161 -1515.979 4152 4.1!1 1.20 15.15 7.0B 28 100739

91020 13036 100740 .7 44.9615 -1515.979 409 4.9 .00 15.1 7.215 28 100740

91020 Cl036 100741 .7 44.961!1 -1515.978 409 4.9 .215 1!I.3 7.20 29 100741

91020 G036 100742 .7 44.9615 -1515.979 409 4.9 .150 1!I.3 7.19 28 100742

91020 Cl036 100743 .7 44.B615 -1515.978 409 4.9 .67 15.2 7.20 28 100743

91020 G037 100744 .9 44.972 -151!1.979 373 I!I.O .08 4.9 7.16 29 100744

91020 Cl037 100748 .9 44.972 -1515.979 373 15.0 .2:5 :5.4 7.23 29 10074S

91020 G037 100746 .9 44.972 -1515.979 373 1!I.0 .150 :5.3 7.23 28 100746

91020 Cl037 100747 .9 44.872 -8:5.979 373 15.0 .70 :5.1 7.215 29 100747

91020 G039 100749 .3 44.979 -15:5.979 326 1!I.t .00 1!I.6 7.29 29 100749

91020 Cl039 100749 .3 44.979 -1515.979 326 15.1 .0:5 :5.6 7.26 29 100749

91020 1303&1 1007150 .3 44.979 -15:5.979 326 :5.1 .10 :5.3 7.19 29 10071!10

91020 G039 1007l!l1 .3 44.979 -15:5.979 326 :5.1 .1:5 :5.9 7.17 29 10071!11

91020 13039 1007:52 .3 44.979 -15:5.979 326 15.1 .20 15.9 7.13 28 1007152

91020 13038 1007153 .3 44.979 -1515.979 326 15.1 .30 15.2 7.06 29 10071!13

91020 130150 100907 1.2 44.4150 -153.717 1536 4.3 .00 4.9 7.32 430 28 100907

91020 130150 100809 1.2 44.4150 -:53.717 1536 4.3 .20 4.9 7.29 S60 29 10090S

91020 GOI5O 100909 1.2 44.4:50 -:53.717 :536 4.3 .40 :5.2 7.21 630 29 100909

'U020 ClO:50 100Bl0 1.2 44.4150 -:53.717 :536 4.3 .60 :5.1 7.33 620 2B 100910

91020 BO:50 100911 1.2 44.4150 -:53.717 :536 4.3 .80 4.7 7.0:5 610 29 100911

91020 130:50 100912 1.2 44.4150 -153.717 :536 4.3 1.00 4.9 7.12 :590 29 100912

91020 130:51 100913 .6 44.4157 -153.707 476 4.2 .00 15.4 7.37 360 28 100913

91020 ClO151 1001!114 .6 44.4157 -153;707 476 4.2 .10 15.15 7.27 400 29 100914

91020 130151 10091:5 .6 44.4157 -153.707 476 4.2 .•20 15.3 7.40 480 29 1009115

91020 130151 100816 .6 44.4157 -153.707 476 4.2 .30 15.15 7.21 470 29 100916

91020 G0151 100917 .6 44.4157 -153.707 476 4.2 .40 15.4 7.19 1520 28 100917

91020 ClO151 100918 .6 44.4157 -153.707 476 4.2 .150 15.15 7.41 1510 29 100919

91020 GRAB0154 1009015 .1 44.4715 -153.7015 446 4.2 .10 340 28 1008015

91020 ClRAB01515 100906 .1 44.4815 -153.697 3151 4.2 .10 310 29 100906

91020 G0159 100919 1.4 41.929 -150.079 3621 .00 15.6 7.61 440 29 .00 100919

91020 ClO159 100820 1.4 41.929 -150.079 3621 .015 15.7 7.67 1540 29 .00 100920

91020 GOS9 100921 1.4 41.929 -150.079 3621 .10 15.7 7.156 1520 28 .02 100921

.,1020 13015'1' 100922 1.4 41.929 -150.079 3621 .20 15.1 7.39 1570 2B .015 100922

91020 GOS9 100923 1.4 41.929 -so.079 3621 .40 S.2 7.92 620 29 .0:5 100923

91020 130:59 100924 1.4 41.929 -150.079 3621 .60 4.9 7.36 640 29 .10 100924

91020 GOS9 1008215 1.4 41.929 -150.079 3621 .90 15.3 7.49 640 29 .09 1009215

91020 130159 100826 1.4 41.828 -150.079 3621 1.00 15.3 7.34 690 28 .09 100926

91020 B0159 100927 1.4 41.928 -150.079 3621 1.36 15.4 7.154 1590 29 .09 100827

91020 P0159 100828 4.15 41.828 -150.079 3621 .00 1!I.7 7.30 1520 29 .00 100929

91020 P0159 100929 4.15 41.929 -150.079 3621 .0:5 15.9 7.32 1590 29 .00 100929

91020 poe" l00B30 4.8 41.928 -150.079 3621 .10 :5.2 7.151 1570 29 .00 100930

91020 P0159 100931 4.:5 41.929 -150.079 3621 .20 4.6 7.42 620 29 .06 100831

91020 PO:5" 100832 4.1!1 41.929 -150.079 3621 .40 :5.3 7.67 630 29 .06 100932

91020 PO:59 100933 4.:5 41.929 -:50.079 3621 .60 :5.3 7.48 620 29 .08 100833

91020 POe9 100934 4.:5 41.929 -:50.079 3621 .90 15.1 7.61 690 29 .12 100934

91020 PO:59 10093:5 4.15 41.929 -150.079 3621 1.00 15.0 7.49 720 29 .13 1009315

91020 PO:59 100936 4.:5 41.929 -150.079 3621 1.40 15.1 7.29 790 29 .13 100936

91020 POe9 100937 4.:5 41.929 -:50.079 3621 1.:50 :5.2 7.47 940 28 .14 100937

91020 POS9 100B38 4.15 41.929 -:50.079 3621 2.00 :5.2 7.43 9:50 29 .20 100939

91020 PO:59 100939 4.:5 41.929 -:50.079 3621 2.150 15.4 7.63 9150 29 .2:5 100939

91020 POlS., 100B40 4.15 41.929 -150.079 3621 2.'PI!I 15.0 7.27 930 29 .29 100940

91020 P0159 100941 4.15 41.929 -:50.079 3621 3.150 15.6 7.159 790 29 .:se 10094191020 POe9 100942 4.15 41.929 -150.079 3621 4.00 4.7 7.43 990 29 .41 100942

91020 PO:59 100943 4.15 41.929 -150.07" 3621 4.415 15.2 7.42 29 .44 100943.,1020 B069 1009415 .4 43.310 -49.141 99B .00 15.15 7.43 420 29 .03 100941591020 906., 100946 .4 43.310 -4".141 999 .015 15.0 7.39 1560 29 10094691020 B069 100947 .4 43.310 -4".141 999 .10 15.1 7.15" 600 29 .07 100947

91020 B069 100949 .4 43.310 -49.141 999 .1:5 15.1 7.34 620 29 10094991020 9069 10094., .4 43.310 -49.141 999 .20 15.6 7.39 660 29 .13 100949

91020 B069 1009:50 .4 43.310 -4".141 999 .215 15.2 7.20 690 29 100915091020 B069 1009151 .4 43.310 -49.141 999 .30 15.2 7.26 760 29 .21 10091!11

91020 B069 1009152 .4 43.310 -49.141 999 .315 15.4 7.19 760 29 .215 1009152

.,1020 T074 1009153 1.6 47.029 -43.:504 .,72 .10 :5.9 7.159 4150 2B .01 1009153

.,1020 T074 1009154 1.6 47.029 -43.1504 972 .20 6.2 7.39 300 29 1009154

91020 T074 10091515 1.6 47.029 -43.S04 972 .40 6.6 7.315 290 29 .01 10091!1S

91020 T074 1009:56 1.6 47.029 -43.:504 972 .60 4.9 7.30 270 29 1009156.,1020 T074 1009:57 1.6 47.029 -43.:504 .,72 .eo 4.2 7.40 290 29 .00 100957

cセオQN・ Stn/Type ID Car. LAt Lans z pE pH S1 804 NH4 ID 6

91020 T074 lOOSes 1.6 47.028 -43.S04 972 1.00 セ N S 7.S7 310 2S lOOSeS91020 T074 100SS9 1.6 47.02S -43.S04 972 1.40 4.4 7.28 360 2S .00 100SS.,91020 P074 100860 8.0 47.028 -43.S04 972 .00 S.7 7.39 330 28 .02 10086091020 P074 100861 S.O 47.028 -43.S04 972 .10 S.l 7.44 340 28 10086191020 P074 100S62 8.0 47.028 -43.S04 972 .20 S.O 7.48 270 28 .OS 100S6291020 P074 100S63 8.0 47.02B -43.S04 972 .40 S.S 7.31 330 2B 100B6391020 P074 100S64 B.O 47.028 -43.S04 972 .60 e.s 7.44 2S0 28 .OB 10086491020 P074 10086S 8.0 47.028 -43.S04 972 .80 S.S 7.66 410 28 10086lS91020 P074 100S66 S.O 47.028 -43.S04 972 1.00 S.S 7.48 28 .08 lOOB6691020 P074 100867 8.0 47.028 -43.S04 972 1.S0 S.7 7.S2 190 28 10086791020 P074 100869 B.O 47.028 -43.S04 972 1.87 S.7 7.S2 240 2S .10 100B6891020 P074 100869 8.0 47.028 -43.S04 972 2.S0 4.7 7.40 330 28 10086991020 P074 100B70 '1.0 47.02S -4:J.S04 972 3.00 S.6 7.47 340 2'1 .12 100S7091020 P074 100871 8.0 47.028 -43.S04 972 3.40 S.6 7.64 280 28 100S7191020 P074 1001!l72 8.0 47.028 -43.S04 972 4.00 S.6 7.S1 340 28 .14 10087291020 P074 100873 8.0 47.02B -43.S04 972 4.S0 S.8 7.S2 310 28 10087391020 P074 100874 8.0 47.028 -43.S04 972 4.93 15.6 7.74 270 28 .13 100S7491020 P074 10087S 8.0 47.028 -43.1504 972 S.SO 15.3 7.80 270 28 10087S91020 P074 100876 8.0 47.028 -43.S04 972 6.00 15.4 7.68 410 2S .1S 10087691020 P074 100877 8.0 47.028 -43.S04 972 6.S0 S.4 7.S3 340 28 10087791020 P074 100878 8.0 47.028 -43.S04 972 7.00 15.2 7.48 290 28 .16 10087891020 P074 100879 B.O 47.028 -43.S04 972 7.S0 S.l 7.47 310 28 10087991020 P074 100880 8.0 47.02& -43.S04 972 8.00 S.l 7.44 300 28 .1S 10088091020 S076 100882 .S 47.029 -43.S0S 967 .00 6.0 7.S9 160 28 .03 10088291020 8076 100883 .15 47.029 -43.S0S 967 .OS 6.15 7.3S 220 28 .03 100se391020 8076 100884 .S 47.029 -43.S0S 967 .10 6.4 7.42 230 28 .03 10088491020 B076 1008815 .15 47.029 -43.150S 967 .1S 7.0 7.39 240 28 .03 1008elS91020 B076 100886 .S 47.029 -43.S015 967 .20 6.6 7.2S 260 28 .03 100S8691020 B076 100S87 .15 47.029 -43.S0S 967 .2S 6;1 7.29 270 28 .03 10088791020 8076 1008B8 .S 47.029 -43.S0S 967 .30 7.1 7.2S 2S0 28 .03 1008SS91020 e076 100889 .15 47.029 -43.1S0S 967 .315 6.8 7.27 2S0 28 .03 100889

91020 S076 100S90 .S 47.029 -43.S015 967 .40 7.3 7.17 280 28 .03 100890

91020 e076 100S91 .15 47.029 -43.S0S 967 .4S 7.4 7.23 300 28 .03 100891

91020 T079 100892 .15 47.S62 -46.628 1143 .10 15.2 B.OS 3S0 28 .OS 10089291020 T079 100893 .S 47.S62 -46.628 1143 .20 6.0 7.3S 380 28 .06 10089391020 T079 100894 .15 47.1562 -46.628 1143 .30 S.B 7.SS 410 2B .07 100894

91020 T079 10089S .S 47.S62 -46.628 1143 .40 4.3 7.38 440 28 .08 1008915

91020 P079 100896 2.1 47.S62 -46.628 1143 .00 3.S 7.80 430 28 .14 100S9691020 P079 100897 2.1 47.S62 -46.628 1143 .OS S.7 7.72 430 28 .14 100897

91020 1"079 100898 2.1 47.1562 -46.628 1143 .10 15.6 8.00 430 28 .14 10089891020 ,..079 100899 2.1 47.1562 -46.628 1143 .20 4.8 7.44 440 28 .18 100B9991020 P079 100900 2.1 47.S62 -46.628 1143 .40 S.3 7.86 470 28 .2S 10090091020 P079 100901 2.1 47.S62 -46.628 1143 .S4 3.7 7.6S 4S0 28 .30 10090191020 P079 100902 2.1 47.S62 -46.628 1143 .80 4.7 7.S8 430 27 .46 10090291020 P079 100903 2.1 47.S62 -46.628 1143 1.00 4.1 7.41 2S .S2 10090391020 1"079 100904 2.1 47.S62 -46.628 1143 1.S0 4.7 7.415 460 23 .SS 10090491020 P079 1009015 2.1 47.S62 -46.628 1143 1.98 S.4 7.34 410 21 .S9 10090S

OTUlHTIC GEOSCIEHCE CEHTRE TABlE 7 CRUISE HUrl8ER = 91020DATA SECTIOH CHIEf SCIEHTIST = O.U. PIPER··SHIP- REPORTIHG PACKAGE TOtAL snnPLE IHUEHTORV PROJECT 1IOO8ER = 810M7

SIIflPLE SlII1PLE SHl1PLE SEISNIC DEPTH GEOGRAPHICHUIl8[R TYPE DHYITII1E OAMINE LATITUDE LOHGIlUDE J.!!.L LOCATIOH

001 CORE 1630650 1630650 13 25.87H 62 16.11U 120 SCOTIM SHELf8REIIK

)

002 GRIIB 1630720 1630717 1219.25H 62 17.93U 118 SCOTIAH SHELfBREAK

003TUC CORE 1631518 1631500 11 55.51H 63 22.57U 2729n SCOTIAH SLOPE

003 CORE 1631518 1631500 11 55.51H 63 22.57Y 2729n SCOTIAH SLOPE

001 CAIlERA 1631719 1631500 '11 55.20H 63 22.900 2738n SeOTIRH SLOPE

005 emR 1632015 1631930 '11 51.25N 63 23.19U 2738n SCOTIAH SLOPE

006 BOJl[ORE 1611257 1611258 12 10.21N 62 35.55U 2580n SCOTInN SLOPE

oome CORE 16'11530 1611130 12 09.71N 62 37.00U 2690" SCOTIM SLOPE

007 CORE 1611538 1611'130 12 09.71H 62 37.00Y 2690" SeOTInN SLOPE

OOBTOC CORE 1651512 1660950 '11 28.3OH 62 00.93U 1136" SCOTIAN RISE

008 CORE 1651512 1650650 11 20.30H 62 00.93fJ 1mn SCOTIAH RISE

009TOC CORE 1651151 1660950 11 01.32H 61 12.78U 110m SeOTIM RISE

009 CORE 1661'150 1660950 11 01.32H 6112.78U '1136n SCOTIM RISE

010 GRAB 1662010 11 05.30H 61 13.800 '1710" SCOTInH SLOPE

OllTue CORE 1671236 1116.77H 61 51.11U 1306n SCOTInN SLOPE

012Tue CORE 1671535 1670900 1116.12K 611D.12U '13'12n SCOTIRH RISE

012 CORE 1671535 1670900 1116.12H 6118.72U 1312n SCOTIM RISE

013 CORE 1681219 1680700 '11 19.76H 62 19.81U 3150" SCOTIRH RISE

013TUC CORE 1681219 1600700 1119.76H 62 19.81U 3150" SeOTInH RISE

011 CORE 1681752 1680610 11 17.31H 62 20.97U 3532" SCOTIM RISE

01mc CORE 1681752 1680610 '11 17.31H 62 20.97U 3532n SCOTIAH SLOPE

015 CAnERn 1682050 '11 '16 .93H 62 22.83U 3509n SCOTIAH SLOPE

020 CORE 1701918 1115.01H 55 38.07U 997" SI.PIERRESLOPE

021 CORE 1702111 11 50.53H 55 1'.99U 516n SI. PIERRESLOPE

UTLIIHTIC GEOSCIEH(E CEHTRE TUBlE 7 CRUISE HtmDER = 91020onTU SECTION CHIEf SCIEHTIST = o.J.U. PIPER-SHIP- REPORTING PUCKUGE TOTHl snWPLE IlfUEIlfORV PROJECT HUUDER = 810017

SlIIIPtE SIII1PLE SHnPlE SEISmC OEPfH GEOGRHPHIC

H!!r!!a J.Y.!L oUVmUE OHVITI"E LUIIIIIOE LONGITUDE J.!IL LOCHTIOH

02Z CORE 1702210 11 51.82H 5515.12U 018311 Sf. PIERRESLOPE

823 CORE 1702321 11 59.09N 55 16.50U 01176 Sf. PIERRESLOPE

021 CORE QWッッQ 11 52.628 55 16.92U 03666 Sf. PIERRESLOPE

025 CORE 1700052 11 52.91H 55 17.m 0321W ST. PIERRESLOPE

026 1710121 11 53.lZH 55 17.16U 0301W Sf. PIERRESLOPE

820 BOKCORE 1711136 1111.0ZH 55 31.15U 1331W ST. PIERRESlOPE

029 CORE 1711630 11il.DOH 55 31.53U 1331" ST. PIERRESLOPE

829TUC CORE 1711630 1111.0OH 55 31.53U 1331W SJ. PIERRESLOPE

031 CORE 1722H2 11 51.218 55 50.01U 050311 SJ. PIERRESLOPE

035 CORE 1722223 11 51.67H 55 5B.71U 0152" SJ. PIERRESLOPE

036 CORE 1722233 11 51.91H 55 58 .69U 0100n SI. PIERRESLOPE

037 CORE 1722100 11 52.31H 55 5O.69Y . om" ST. PIERRESlOPE

030 CORE 1730051 11 52.76K 5550.71U 0326W ST. PIERRESLOPE

010JUC CORE 1731513 111USH 55 36.91Y 1062" ST. PIERRESlOPE

010 CORE 1731513 1113.75H 55 36.91U 106m ST. PIERRESlOPE

012 CORE 1731937 1113.75N 55 37 .76U .1097" SJ. PIERRESLOPE

011 DOKCORE 1711153 11 31.05H 55 30.75U 1900" HHRUHIH. SITE,GRUHo DUNKS

HTLHHlIC GEOSCIENCE CENTRE TIlIIlE 7 CRUISE HUrlIIER = 91020OHm SECTIOH CHIEf SCIEHTI5T = O.U. PIPER-5HIP- REPORTING PllCKHGE TOTfIl SIII1PI.E IHUEHTORV PROJECT HlJI'lIIER .. 8100'17

SHIIPLE 5HtlPLE SRtlPLE SEISI1IC DEPTH GEOGRHPHICHUOO!!.. TVPE ORVITIlIE ORVITII1E LRTITUOE LONGITUDE J.t!l LOCHTIOH

019 oOHCORE 1751"36 "" 10.368 5H0t.26O 1m IlfIRUHfIl SITE,1iRflH0 ollHKS

050 CORE 1751613 "" 27.65H 53 12.97U 53611 HnRUHIIL SITE,GRHHo BRHKS

051 CORE 1751655 1il7.1ON 53 12."lU 17611 IlfIRUHHl SITE,GRRHo BRHKS

052 URTER 1751730 "" 27.61H 53 "2.26U 12111 HflRlIlIIII. SITE,GRRHo oRNKS

053 CORE 1751800 "" 2B.2ON 53 12.05U 12811 HRRUHRl SITE,GRIIIlo BllHKS

051 GRRB 1751832 ot1 28.52H 53 12.3lY 11711 HRRUHRl SITE,GRHND 8RHKS

055 GRRo 1751906 "" 29.1ON 53 11.88U 35111 HfIRUHHl SITE,GRRHO BRNKS

056 DREDGE 1771830 "210.81H 52 53.260 168011 UESTERH fOGOSERI10UHTS(LIHE 1)

057 DREDGE 1781230 "213.0978 52 5B.39U 213511 MESTERH fOG8SERI10UHTS<LIHE G/H)

05B DREDGE 1781750 "2 09 .51HH 53 03.77U 153811 MESTERH fOGOSERI'IOUHTS<LIHE G/H)

059 CORE 1791311 11 "9.6fiH 5OOU1U 362111 TITJlHIC DEBRISfLOU

059TUC CORE 1791311 "1 "9.66H 50 01.71U 362HI TITHHIC DEBRISfLOU

060 CORE 1791806 111UZH "9 57 .55U 370611 TITHHic DEBRISfLOU

061 CORE 1800151 1115.51H "9 57.m 370011 TITJlHIC UREerSITE

062TUC CORE 1801332 11 "".77H 19 57.36U 37m TITJlHIC UREerSITE

CORE 1801332 "11'1.77H 19 57.36U 371311 TITRHIC UREerSITE

)

RTlRHTIC GEOSCIENCE CENTRE TRBL£ 7 CRUISE HIltlDER = 91020ORTR SECTION CHIEf SCIENTIST = o.J.U. PIPER-SHIP- REPORTING PRI:XRGE . IDTRL SIItlPLE IHU£HTORV PROJECT HU"OER = 810017

SRrII'lE SIIIlPLE SImPLE SEIWC D£PTH GEOGRRPHICHUNDER Jill.. DRVlTIlIE ORVlTInE LRTITUDE LONGITUDE Jr!L LOCOTIOH

0&1 CORE 180215& 1113.DOH 50 OU1U 3719n TITRHIC RREn

0&5 CORE 1810120 11 5O.07H 19 52.57U 3G2OO TITRHIC ORER

0&6 CORE 1810923 12 1&.DOH 500&.%U 0395n TOIL Of THEOfIHKS

067 GRRD 1811000 12 16.03H 50 06.95U 0395n TRIL Of THEDRHKS

068 GRRB 1811131 13 20.29H 19 17.88U omn TRIL Of THEHRHKS

069 HOKCORE 1811610 13 18.m 19 08.17U 1171n TRIL Of THEHRHKS

070 DREDGE 1821311 15 68.918 15 29.75U 31700 fLEnISH CRP

071 DREDGE 1821719 15 52.398 15 12.65U 3031n fLEnISH COP

072 GRIIH 1822151 15 51.&68 15 l1.05U 2751n flEnISH CRP

071 CORE 1831322 17 01.6OH 13 30.2514 l1972n fLEmSH CRPSOUTHERST

071TUC CORE 1831322 17 01.6OH 13 30.2514 0972n fLEnISH CRPSOUTHERST

075 8OllCORE 1831631 16 58.278 53 23.86U 11800 fLEnISH COPSOUTHERST

076 OOHCORE 1831711 17 01.738 13 30.27U 09676 fLEnISH CRPSOUTHERST

077 GRR8 1832028 16 15•• 13 15.851U 0631n fLENISH CRPSOUTHERST

078 GRRH 1832155 17 01.95H 13 59.900 03706 fl[nISH COPSOUTHERST

079 CORE 1811216 1733.728 1& 37 .700 111311 fLEl1ISH PRSS

079TUC CORE 1811216 17 33.72H 1637.700 1113n fLE"ISH POSS

RTlRHTIC GEOSCIEIlC£ CEHTREonTO SECTIOH-SHIP- REPORTING POCKOGE

TII8I.E 8 CRUISE IftJIIBER = 91020CHIEf SCIEHTIST = 0.J.U. PIPERPROJECT HunOER = 810017

CORER APP. CORE HOSRnPLE SOnPLE OOV/TInE LOTHUDE DEPTH LENGTH PENH LENGTH Of GEOGRAPHIC!!!m!!ER l!!1. (Gnn LONGITUDE .(UTRS> (cn> (Cn> (cm SECT LOCOTIOH HOTES

001 GROOITV 1630650 13 25.87H 120 015062 16.11U

0000 01 SCOTIRH SHElf HO RECOUERV;BREAK TROC[ SILT OH ORRREL; SBnPLE

DUEO fROO THE IHSIDE Of THE OORREL:

003HJC TRIGGER lJ£IGHI 1631518 11 55.51H 2m" 0150 0190 0100 01 SCOTIRH SLOPE TOC SRnPLEO0-5Cn POLLEN; BULK63 ZZ .57U DEHSITV RHO POREIJOTEREUERY 20cn

TO IOIOL DEPTH;

003 OGC LOHG CORE 1631518 11 55.51H 2mn 1520 1000 0991 10 SCOTIRll SLOPE IUC C/B 0-91Ctl;B/0 91-188Ctl;63 22.57U CHRIS fILE sPPSセ fILE HonES C,H,2,

PO 1,2;LENGTHSI KIJ 70Ctl SECTIONItlPLOOED UITH LINER; J/I LINER SPLITEHTIRE LENGTH;HIJ U5Cn; RIG 72[11;Glf 86; fIE 152cn; EIO 6ocn; O/C OOC";B/O 57 cn: ROCK OOGGED HI; ns RUB;K/J 0-92; ,J/K 92-197; I/H 197-329:RIG 329-395; G/f 395479;fIE 17H30;[/0 630-698; O/C 690-781; C/8 781-936;DIR 936-991;

007TfJC TRIGGER UEIGHT 1611538 12 09.71H 2690n 0150 0190 0157 01 SCOTIRH SLOPE TOC B/C 0-56Ol; OlD 56-157cn:62 37.8OU HO OBn06E;

007 RGC LONG CORE 1611530 12 09.71H 26900 0159 0900 0130 05 SCOTIRH SLOPE IOC TUO SECTIOHS OIB o-59CtI; B/C 59-159CVRョセ t

[IffIIS RtJH urn 130007:O/C 0-lzocn; C/B 129-279CtI: 81R 279-130cn; 33 Ctl SHRTTER IN O/C;

009IUC IRIGGER UEI6HT 1651512 11 2B .3OH 1136n 0150 0190 0068 01 SCOTIRH RISE RID 0-68cn: SRHOV TOC;62 00.93'1

OOD RGC LOHG CORE 1651512 11 29.3OH 1136t1 1520 0301 0293 02 SCOTIRH RISE ORRRELS BROKE RI fIRST COIIPLIHG; SECONO62 00.93'1 BRRREL 8EHT; LOST OOTTon Of HEffLER

PISIOH; OIC 0-1'11cn; RIB 1'11-293C";

009TOC TRIGGER Il£IGHT 1651151 11 01.32M 1192" 11300 0190 0178 02 SCOTIRH RISE CIO 0-78; RIO 79-178:6112.700

009 RGC LOHG CORE 1661150 11 01.32M 1136" 12166112.700

1001 07 SCOTIRN RISE RIG 0-57;G/f 57-211;fIE 211-361;£/0 361-516; OIC 516-660;CID 668-020; 810 020-1001

OllTfJC TRIGGER UEI6HT 1671236 11 16.778 1306tl 0150 0150 0129 01 SCOTIRH SLOPE RIO 0-129CN; CUTTER 13Cn LOHG;61 51.11U TfJC OHLY HO LOHG CORE RECOUEREO;

HRHNm GEOSCIEHCE CENTREoRTR SECTIoH-SHIP- REPORTING mHGE

TOOLE 8 CRUISE HUIIIIER = 91020CHIEf SCIEHTIST = D.J ,M. PIPERPROJECT huセder .= 0100'7

CORER RPP, CORE HOSRMPLE SOOPLE ORY/TIME LRJITUDE DEPTH LENGTH PEHH LEHGTH Of GED6RHPHIChuセder TYPE _ (GMT> LoHGITUDE (MTRS) (eM) (CM) (CM) SECT LoCRTIoH HOTES

o12TOC TRIGGER UElGHT 1671535 U 16. '2M m2M 0150 0090 006' 01 seOTIRH RISE fIHGERS oH CRTCHER IHUERTED;LOST SOl'lE Of61 '0.72U TIlE SRWlE HT THE OOTER SURfHCE:

012 AGC LOHG CORE 1671535 U lUZH m2M 1216 0908 0105 SCOTIRH RISE TOC PMVGcセ[

61 'O.12U SECTIOHS: EID 0-09CM: OIC 8H89CM;CID 189-33701: D/R 337-185CM:

013 RGC LOHG CORE 16812'9 U '9.76H 3150" 1520 1350 07'0 05 SCOTIRH RISE HO dセrge[ HOTED 3 cセ DIHMETER UORn6219.81U DURROUS IN UPPER 50 CM CORE:TUC 0-79CM.

Elf 0-112; DIE 112-267: CID 26H20:DIC '28-571: OlD 571-122; CUTTER 722-7'0;

omuc TRIGGER UEIGHT 16812'9 11 '9.76H 31508 0150 0200 0178 01 SCOTIRH RISE HO ooセogeZ TUC D/C 8-79; OlD 79-179CM:62 19.DIU CUTTER 179-207C8;

011 OGC LOHG CORE 1681752 U '7.3'H 3532"62 20.97U

sconRH RISE

011TUC TRIGGER MElGHT 1681752 U '7.3'H 3532" 0150 0190 0165 01 SCOTIRH SLOPE ruc 2 SECTIONS: RID 0-82; DIC 82-165:62 2O.97U

020 GRHUm

021 GROUm

022 GROUm

07.3 GROUm

021 GROUm

025 GROUm

1701918 1115.0'H 997" 015055 38.07U

1702111 "50 .53H 5168 027055 ".99U

1702n0 "51.02H 01838 015055 '5.'2U

1702321 " 59.09M 0117M 015055 %.50U

1700001 " 52 .62H 0366" 015055 16.92U

1700052 "52 .9tH PSzQセ 015055 17.27U

0101 01 ST. PIERRE OH 3.5HZ: CHRISTIRH CORE fOR LOHCElOT;SLOPE CUTTER DR66ED;CUTTER OH01CM;

0131 01 ST. PIERRE GROUm CORE 1 fOR CRRHSTOH TRHHSECT:SLOPE CUTTER SHIlPLE UHSHEO OUT OH DECK:

om 01 ST • PIERRE CUTTER UHSHED OUERDOHRO;SLOPE 018 o-mCM:

0100 01 ST. PIERRE CUTTER HOT DAGGED: POLLEN SAMPLED HTSLOPE SUllfOCE:SOfT, SIlTY fIlIE SRHOY IWD;

RID 0-100CM;

0053 01 ST. PIERRE SOfT, SDIJPY SIlTY 000; TOP 8-20 CMSLOPE UOSHEO fOR SHEllS:DIOTURDHTED THROUGHOUT

0/8 0-53CM;

0012 01 ST. PIERRE CORE CUTTER fELL ON DECK; 8RIHLE STURSLOPE OH SURfRCE Of CORE; TOP 20 CM Of CORE

MISSING:0/8 0-12CM;

HTlIlHTIC GEOSCIEHCE CEHTRE THUlE 0 CRUISE HUnOER = 91020OIlTR SEClIOH CIUEf SCIEHTIST = O.U. PIPER-SHIP- REPORlIHG PRCKH6£ CORE SIIl1Pt.ES PROJECT HUnOER = 010011

CORER HPP. CORE HOSRnPLE SRnPLE DRVIlIl1E LRlIlUDE DEPTH LEHGTH PEHH LEHGTH Of GEOGRIlPHICHlJnBEK ..:r.m.. Jlit!IL LOHGITUDE (nTRS> @L illll (cn) SID LOClllIOH HOTES

026 GRRUITV 1110121 11 53.lZH 0301n 0150 0050 01 ST. PIERRE TOP 16 cn OISTUROEo; STIff OUU£ nuoov55 11.16U SLOPE SRHD tlIlH SHELL fRRGl1EHTS;POOR RECOUERV;

029 HGC LOHG CORE 1711630 11 11 ,DOH 1331i1 1520 1260 0151 01Sf. PIERRE InPLOSIOH HT PISToH; TtlC 8-52Cn;55 31.53t1 SlOPE. COHSOlIORlIoH SHnPLES THKEH HT 0-0'( 251

- 2?? CU); O-B' ( 560-500cn> fIHO tlHOLEROUHO HT 320-31ocn C/O; CUTTER 10m01lGGE0; f /E 0-122 cn; E/o 122-257cn;OIC R__セQRYcョ[ C/O 129-56O[n; O/H 500-mcn; CUTTER 733-151Cn; TO mcn

029ltlC TRIGGER tlEIGHT 1711630 1111,OOH 1331" 0150 0052 01 ST. PIERRE R/8+CUlTER 8-52Cn;55 31.53'" SlOPE

) 031 GRRUm 1122112 11 51.21H 0503n 0150 0011 01 SI • PIERRE CUTTER IH TUO PIECES- DRGGED;55 50.81'" SlOPE POLLEH SRNPLE 0-2cn;

CRRHSIOH GEOCHEn TRRHSECT SI,PIERRESLOPE;

035 GRHUm 1722223 11 51.67H 0152N 0150 0132 01 ST. PIERRE GROOITV CORE 0-115cn; CUTTER 115-mcn;55 50.11tl SlOPE POllEH TRKEH 8-2CU;

036 GROOITV 1122233 11 51.91H 0100n 0150 0068 01 SI. PIERRE HO CUTTER; POLLEH 0-2cn;55 50.69U SlOPE

031 GRRUITV 1722100 11 52 .31H 03136 0150 0092 01 SI. PIERRE POLlEH 8-2Cn; RIO 0-72CR; CUTlER 72-92cn55 50.69tl SlOPE CUlTER ORG6£o;

038 GRHUm 1130051 11 52.76H 0326n 0150 0033 01 ST, PIERRE HO CUTTER; POlLEH 8-2cn;55 58.71U SlOPE lIlRGE NOlLUSC HT SURfRCE;

0101"'C GRHUm 1131513 11 13,75K 1062N 0150 0190 113 01 SI. PIERRE TtiC 11/0 0-113cn;55 36.91'" SlOPE

010 HGC LOHG CORE 1131513 1113.75H 1062n 1220 0678 SI. PIERRE OOlTon 2 SECTIOHS GRSSV; CRTCHER 8HGGED;55 36.91'" SlOPE CUTTER 10 cn; f/E 0-52CU; DIE SHHrrER

BETtlEEH IIPPER 20 cn; OlE 52-Z08m; C/O208-320; 320-360cn COHSOUDRlIOH SHRPlE;O/C 360-51ocn; 11/0 510-660cn; TO 618;GRSTROPOo SHnPLE REnOU£o HT 13cn;

012 GRHUm 1131931 11 13.15M 1097R 0150 0200 01 ST. PIERRE CORER IH RIlCK 1956;55 31,16U SlOPE

ATlAHTIC GEOSCIEHCE CEHTREOATA SECTIOH-SHIP- REPORlIHG PACKAGE

TOOLE 8 CRUISE HUIl8ER = 91020CHIEf SCIEHTIST = 0.U. PIPERPROJECT HUIl8ER = .8100'7

CORER APP. CORE HOSAnPLE SMPLE OIIV1lIl1E LATITUDE DEPTH LEHGTH PEHII LEHGlH Of GE06R8PHICt!!lm TVPE J.§tlIL LOHGIlUDE <mRS> <C!1) <cn)..ill!L SECT LOCOIIOH HOlES

050 6RRUIlV

051 GROUm

1751613 "27 .65H 536" 0270 0130 0117 01 HRRMHfII. SITE, HIB 0- 86cn;53 '2.97U GRAHn BIIIlKS CUTTER 86-117CW;

GEOCHEl1 TRHHSECT;

1751655 "27.'OH '76W 0270 0060 0051 01 HIlRIlfIIIl SITE, O/B 0-22; CUTTER 22-51C" TO;53 '2.UM GRAHn 8111lKS

053 GROOm 1751800 "28 .20H '28" 027053 '2.05lJ

0000 01 HIIRUHRI. SITE, HO RECOUERV;GRAHD .S EHo Of CUTTER flHE GRAIHED CLAVEY

GLHUCOHIlIC SILT; RARE PLAHKIOHICfORHn5, RADS RHO HRHNOS;

059 AGC LOHG CORE 179131' U '9.66H 3621n 1216 0950 M50 03 TITHHIC DEBRIS HO CUTTER; flHGERS IHUERTEo OH CUTTER;50 mNWセ fLOY olC PMQセ[ CIB HH98; 818 298-'50cn;

TUC 0-136cn;

059TUC TRIGGER UEIGHJ 1791m '119.66N· 3621n OHO 0120 0136 01 TITRHIC DEBRIS AI8 0-136C";50 ouセ ROM

060 GRAUITV

061 GROUm

1791806 11 '1.'2H 3706n 0270 00'0 ッッ 01 TITRHIC DE8RIS HO RECOUERV; UEHEER Of UERV fIHE GREEH'9 57.55Y fLOO SAND OH OUTSIDE Of CORER;

30 cn PEHElROlIOH;

1800151 U '5.5'" 3700n 0270 0080 0060 01 TITHHIC URECK UERV STIff CLAY IH CUTTER; SAHD OBOUE;'9 57.13Y SITE 818 0-33Cn; CUTTER 33-60Cn;

COHSOlIDAlIOH SOWPLE TAKEN OJ 52-5,cn;

06ZTOC TRIGGER MEIGHT 180m2 U 1U7H 37m 0270 OMO 0027 01 TITAHIC URECK TUC HO RECOUERV; TUC CUTTER 0-27CW;'9 57.36U SITE um STIff nUD;

062 OGC LOHG CImE 180m2 11 ".77H 3713W 0912 0200 0165 01 TITlIHIC URECK A/8 0-136cn; CUTTER 136-165cn;'9 57.36U SITE COHSOLIDOlIOH 15H65cn;TRIRllIOL 1'5-165

C!1;

)

061 GRRUITV

065 GROUm

1802156 11 '3.00N 3mn 0270 OMO 0000 01 TITHHIC aREA HO RECOUERV; UASHEO OUT ; LIGHT GREEN50 OUIY UERV flHE SOHD, COaRSE SILT OH OUTSIDE;

1810120 11 50 .07H 36206 0270 0010 ッッ 01 TITRHIC AREA SAnPLES REOOUED fRon BOLT HOLES OH'9 52.57U BARREL;A= 8ROOH WUDDV OOZE; 8= GRAV

nuoov OOZE; C= rJlAUELLvfORAn OOZE,ROSALIHO SP., RARE PLAHT RHO BEETlEfRAGWEHTS os IN CORE 062; UElL-ROUHDEDSAHO AHO HH6UlAR GRAUEL Of UDRVIHGPETROLOGV; TAR? RIP-UP CLAST, MORn TUBE;SAI1PI.ES LABELLEO;

HTLRHTIC GEOSCIENCE CEHTREORTH SECTIOH-SHIP- REPORTIHG PHCKHGE

THOLE 8 CRUISE huセoer = 91020CHIEf SCIEHlIST = 0.J.M. PIPERPROJECT HUnDER = 810017

)

CORER HPP. CORE HOセpャNNe shセle ORVlJInE LRmUOE DEPTH LENGTH PEHH LEHGTH Of GEOGRHPHICHunDER TVPE (Gnn LOHGITUDE (nTRS) (Cn> iClt2 (cn) SECT LOCHTIOH HOTES

066 GROOIlV 1810923 12 'I6.0OH 0395n 0270 0000 0000 01 lHIL Of THE HO PEHETRHTIOH; GRHO THKEH STHTIOH 067;50 06.96M DllH«S

07'1 HGC LONG CORE 103m2 17 01.68H 0972" 1215 fLEnISH CUP13 30.25U SOUTHERST

071JOC TRIGGER MEIGHT 1031322 17 01.68H 0972" 0270 01 flE"ISH CHP H/O 0- cn; CUlTER 1iCn;13 30 .25M SOUTHERSJ

セlonHセ hZセ エsMセ 60f :J.oS-079 tRIGGER &ORE 1011216 17 33,72K 1113" ft' .n- 0Q4l}- 01 flEnISR PHSS H/O 0-19cn;

16 37,70M

079TOC TRIGGER MEIGHT 1011216 17 33.72K 1113" 0270 0150 01li9 01 flEnISH PHSS RIO 0-'I9r.n;16 37,70M

RTLRHTIC GEOSCIEHl:£ CEHTRE TRBlE9 CRUISE HUIlBER = 91020ORTR SECTIOH CHIEf SCIEHTI5T = o.J.M. PIPER-SHIP- REPORTIHfi PRCKRGE GRRB SRl1PLES PROJECT HlJnBER = 810M7

SRnPLE TYPE Of ORVlTInE LRTITIlD£ DEPTH NO. Of HO.Of GEOfiRAPHICHUMBER SRMPLER (GnT> LOHfiITUOE Jill... nml1PTS SUBSOMPLES LOCRTIOK GRRB SRnPLE HOTES

002 URK U£EH 1630720 '12 '19.25H '1'18 01 03 stOTIRN SHElf SRHOV UHIT UITH GOOD SURfRCE;SUOSRMPLES62 '17.93Y OREAK TRKEN- 80B (2) PETR (1)

TEMP 5.3OC; XOll 20.0

010 URN UEEH 1662010 '11 05.30H m8N 01 09 SCOTIRH SLOPE HEAUILV BIJRROYED, REO ClOVEY MUO, UITH61 '13.88U CO. YORN TUBES;CR. Hen Of THIS nuo

OUERlIES UGHT GRRV fORon OOZE;1 NIHICORE ( POlEONHfi PLUG> fOR POlYH.1 20CC UIOl fOR POLY R fORRRS (O-lCn>3 nIHISLRBS 0P!'ROH lOcn UHG, 0-12,0-9,O-DCM; 1 ORIEHTED SLOB fORRN OOZE 2-'1; 1SLRO OT HeM; 2 BULK SOOPLES CLRV ft OOZ

05'1 URH UEEH 1751032 '11 20.52H 117" 01 02 HRRR SITE, DUUE GRRV SRHOY nuo UITH SHELLY53 12.31U GRRHO OONKS fRRGnEHTS RHO fORRn5;

LRRGE SRI1PI.E OHfiGED 0-5CM; POLLEH 0-2eMGEOCHEM SRMPLE;

055 URH tlEEH 1751906 '11 29.1OH 351" 01 03 HRRYHRL SITE, HIGHLVDISTUROED; OULK SnnPLE THKEH;53 11.80Y GRRHO BRHKS

067 URH UEEH 1011000 12 '16.03H 0395" 01 01 TRIl Of THE 20 CC RSSORTED GROUEL BIIliGEO;50 06.95Y BRNKS

060 URN tlEEH IB1113'1 '13 20.29M M12" 01 01 TRIL Of THE 25CC Of SRHO; YHOLE SRMPLE TRKEH fOR'1917.000 DRllKS GEOCHEMISTRY ; HO SR"PLE ORCHIUED;

072 UOH UEEH 182215'1 15 5'1.66H 2751" 01 01 fLEMISH CAP snHLL RNOUHT Of GRAUEL RECOUERED;15 lU5Y RSSUnE REST YRSHED OllT UPON RETRIEUOl;

077 URN UEEH 1032020 16 '15.088H 863m 01 01 fLENISH CAP BIOLOGICIIL SPECIfiEHS REMOUED; OUUE't3 '15.85'1Y SOUTHERST GRRV 5V'I/l fIHE SRHOY nun UITH CO.

ooRN TRRILS; COONOH DIUOlUES RARETUHICRTES RHO GEOOnO SPOHGES,; StIIIl.LBRITTLE STIlR, RARE UERTICOl UORM TUBESRHO CONROH CORRSE 6ROUEL;

078 URH tlEEH 1832155 '17 01.95H 0370n 01 02 fLENISH CAP 383 NUIRE OUT;'t3 59.98Y SOUTHERST '10C TEnp. RECOUERED 1 L nuDlSOHD;

1IllUE GRRY fINE SOHOY,SllTV nuo,STRUCTURElESS UITH 2 snOlL BRITTlE STARSOT THE SURfOCE;POlVH 0-2cn; 1 OULK SRnPLE rJEOCHEn;

ATlAHTIC GEOSCIEHCE CEHTRE TABU 10 CRUISE HUIlBER e 91020ORTA SECTION CHIEf SCIENTIST = o.J.U. PIPER-SHIP- REPORTING PRCKRGE fJlITER SRnPlES PROJECT HUMBER = 810017

SIII'll'lEsn"PLE SRMPlE JUlIAN LOTITUDE DEPTH BOTTLE DEPTHS GEOGRfIPHICHUIlBER TVPE DIIVlTlnr lOHGlliLDE (nTRS) UOlunH ( 1-10 ) lOCRTIOH HOTES

052 !IIITER 1751730 11 27 .61H 421" 123 HIlRWIIIL SITE,53 12.26U GROND BRHKS

ATLAHTIC GEOSCIENCE CEHTRE TABlE 11 CRUISE NUIlBER = 910Z0OATH SECTION CHIEf SCIENTIST = o.J.U. PIPER-SHIP- REPORTING PACKHGE .!!H!llit SRIlPLES PROJECT HunBER = 0101K7

SAMPLE TM Of ORYlTInE LRJITUOf DEPTH HO.Of GE06lIAPIIICHUMB£R SAMPLER ....Jill!IL LOHGIlUOf J11L ATTEMPTS LOCATIOH DREDGE SfWLE HOTES

056 ROCK Im830 iZ 10.01H i68Dn 01 !JESTERH fOGO ON TERRACf Z200fn.5Z 53.Z6U SEIIOOIlHTS HO RECOU£RY;

(LIHE 1)

057 ROCK 1781Z30 12 13 .097N zmn 01 UESTERH fDGO HIGHLY HLTEREO RECRYSTHLLIZEO SIDERIJIC52 58.390 SERIlOIIHTS nun; HO nICROfOSSILS; nuo SAnPLEO fRon

(LIHf 6/11> TIlE OUTSIDE Of TIlE OR£06£; NO SAnPLESRECOU£R£O UIlHIN THE DREDGE;

05B ROCK 1781750 1Z 09 .51HH 1538n 01 !JESTERH fOGO HIGHLY UEATIf£REO ROCKS; PREOOI'iINANTLV53 03.77U SEAMOUNTS TIf£OLIJ£S UIlH COnnON RHYOLITES AHO RARE

(LINE 6/11> BASHlTS;ZOX ERRATICS RHO 80% UOLCAHICS;ERRATICS INCLUDED LInESTOHES. BRECCIHS.RHO MOHY MAHRGAHESE COHJ£O GRANITOIDS.

070 ROCK 1821311 15 68.91N 31700 01 fLEMISH CAP END DREDGE 15 51.936H;15 15.753U;15 29.750 START UHS 2 CABLES TO NU Of END (Z/10Hn>

S£UfRHL LARGE ERRAJICS RECOUER£D;

071 ROCK 1821719 15 52 .39H 3031M 01 fLEilISH CAP15 12.65U

RTLHHTIC 6EOSCIEHCE CEHTRE TH8I.E 12 CRUISE IfIIflDER == 91020ORTH SECTIOlI CIIIEf SCIEHTIST == o.J.!J.PIPER-SIIIP- REPORTING pnCKJl6E 8OlICORE· SHnPLES PROJECT IfIIflBER == 010017

TYPE HO HO HOSHI1PLE Of JUlInH LHTITUDE DEPTII Of or or PIIOTOS 6EOGRHPHICHunOER BOXCORE OHVITII'l£ LOHGITUDE (nTRS) HmTS SUBS CORES THKEH LOCRTIOH HOTES

006 BOXCOl!E 1611257 12 10.21H . 250M 01 05 05 V SCOTIRH SLOPE ROUHORHT POlVCHHETES; connoN Sf/HLL62 35.55U OURROUS HPPROIf. 1 fIfi OIHflETER; ORVOZORNS

UITII SCRTTERED GRHV flUD CLHSTS;10VR1/2;R=llRCllIUE;C==CHEflISTRV;G==6EOTECII;I==?; E==I1UDIE; CLHSS 8C!lRE CUORKEO UP fOR POREUHTER RHO BUlKDEHSITY Eum sen;

028 80XCORE 1711136 1111.02H 1331n oz 09 05 V ST. PIERRE OllUE BROUN SIlTV nuo UITH fORnflS,55 31.15U SLOPE confiON UORfi TRRILS HHO UERTICAl UORn

TUBES, 1-1 tll1 DIRfiETER; 2 CONSOUORTIONSRflPLES UERTICRL RHO HORIZOHTRL; SHERRURHE RUH IH SITU; 2 BUll SIIl'IPlESH== ARCHIUE; C==CHEnISTRV/6EOTECH; 6=GEOTECH fOR lJHOlE ROUHD RHAlVSES; E=flODIE; I=UHUSED;BIlI.X SURfACE SRflPLE TRKEN; 2 BULK SHI1PLERT 6-51 10-TO;

011 BOIfCORE 1711153 11 31.85N 1908f1 01 01 05 V HllRUIIAl SITE, OlIUE GRRV SIlTV 1'iIJII, TOTRLLVBURROUED;55 30.75U GROHII BRHKS unH OCCRSSI8NRl UERTICRL TUBES, COfifiON

f1UD ClRSTS, PEBBLE (HCm UITH RHREGRAUEL, SlIELL RHO REO f1UD CLRSTS; LHRGESRf/PlE-I1UN;PILCON URHE PROfIlE 00NE;0-15H=HRCHIUE;C=CHEn;E=f1UDIE;6=GEOTECH;I=UNUSED; TO 15cn;POlLEN, OUlK DENSITY;

019 BOIfCORE 1751136 1110 .36N 1355f1 01 03 05. V .HHl SITE, LT • OUUE GROV(5V5/2)fIHE SRHOV f1UD;53 11.2W 6RRHO BRNKS ORITTLE STAR HT SURfACE; UORn BURROUS

HOUHDRHT, COfiflOH UERTICRl BURROUS,BRVOZORNS COfll'llJN, RRRE GROUEl;5 PUSHCORES= R=RRCHIUE; c=CHEn SPLIT 0-35Cf/; ns I'l£RSURED ON "I"; CPHOT06RHPHEDPIlCOH UHHE DOHE;CSRI1PLEO fOR 6EOCHEflISHERR URIf£IBUlKDENSITY; ESHI1PLED fOR POLLEN, C/N RRTIO

069 BORCORE 1811610 13 10.57H 1171f1 01 06 05 V TRIl or TIlE 5 CORE TlIKEN; CSPlIT fOR GEOCHEflISTRV19 DO .17U BRNKS RHO GEOTECH; PILCON URHE RUH;

OTLOHTIC GEOSCIEHCE CEHTREDIITO SEmOH-SHIP- REPORTIHG PIlcrOGE

T/lIIl[ 12 CRUISE HIIl'IOER = 91020CHIEf SCIEHTIST = 0.J.M. PIPERPROJECT HUnDER = 810017

TVPE HO HO HOSonPLE Of JULIDH LOTITUDE DEPTH Of Of Of PHOTOS GEOGROPHICHIIl'IRER BOKCORE DIIV/TINE LOH6ITUIlE <"TRS) DInTS SUBS CORES TIIKEH LOCDTIOH

075 80KCORE 1831631 16 58 .27H 118011 01 01 00 H flEl1ISH COP53 23.8611 SOUTHERST

076 8OKCORE 183171117 01.m 0967n 01 08 05 V fLEnISH COP13 30.Z7U SOUTHERST

LORGE GHEISS ERRRTIC RECOU[REO: 80KCOREOOO86EO: I'lIJII SCROPEO fRDn THE SURfRCEOf THE ERROTIC fOR NICROfOSSILS/POLLEH:

PIlCOH UllHE nERSUREl1EHTS NODE: CORE CSPlIT: TO 8-1OCN; lH.IUE GROV SRNOV nun10VR 6/3 PIlI.E DROlJH: RDUHORHT UORN TROlLSRHO TUBES; nomo UIT" SPOHGE SPICUlESRDRE SHELLS: GlOSS SPOHGES CDnOOH;TOTHl LEHGTH 0-1OCN;

Nセ

Hudson 91-020

d 9 1 020

42N

40W42W

44W

44W

46W

46W

48W

48W

50W

50W

" "' 42W

52W

52W

54W

54W56W

56W

58W

5BW

60W

60W

62W

62W

64W

48N

50N

46N

44N

42N

40N 6:; I .l I I I I L \ Tセw 40N

. . s」セA・ 1QOOOOOO:1PrOjection Lombert Conformal 41N/45N

64W

43N

Hudsond 9 1 020

63W

91-020

62W 61W

43N

.IHELaU ••E G-J:8

MOHICAI 1-100

ltACAO.A llC-a2

elilLaArlOII· 1-1!

IlIoSHU8ENACAD I e "-100

42N

41N

42N

41N

64W 63W 62W 61W

Scene Q V P P P P P Z セProjection Lambert Conformal 41N/45N

57W 56W30

Hudsond91020

56W

9 1 020

55W30 55W

45N

44N30

44N

45N

44N30

44N

57W 56W30 56W

s c i ャ ャ ャ i セ i ャ h h i o o j i ャ Z セ

Projection Lambert Conformal 41N/45N

55W30 55W

Hudsond91020

Y Q セ P R P

54W 52W 50W 48W 46W 44W 42W

48N

48N

46N

44N

42N

セ46N

44N

42N

40N

40N

54W 52W .50W 48W 46W 44W42W

Scale 8000000: 1projection lambert Conformal 41N/45N