Kérelem Kuti István – habilitációs pályázat

57
Kérelem Kuti István – habilitációs pályázat Dr. Fülöp Zsolt Tudományos Tanács Elnöke Atommagkutató Intézet 4026 Debrecen, Bem tér 18/c. 2020. november 30. Tisztelt Elnök Úr, ezúton szeretném kérvényezni habilitációs eljárásom megindítását. Az Atomki Habilitációs Szabályzatának megfelelően, jelen kérelmemhez elektronikus formában csatolom a következő mellékleteket: - Szakmai önéletrajz - Publikációk és független hivatkozások listája - Tudományos munkásság tézisszerű összefoglalása - A habilitáció elindításához szükséges kérdőív - Közeljövőben tervezett kutatási tematika összefoglalása - A magyar és angol nyelvű előadás címe - A kérdőívben szereplő három publikáció másolata Segítő döntését előre is köszönöm, tisztelettel: _______________________________ Dr. Kuti István tudományos munkatárs

Transcript of Kérelem Kuti István – habilitációs pályázat

Kérelem

Kuti István – habilitációs pályázat

Dr. Fülöp Zsolt Tudományos Tanács Elnöke Atommagkutató Intézet 4026 Debrecen, Bem tér 18/c.

2020. november 30.

Tisztelt Elnök Úr,

ezúton szeretném kérvényezni habilitációs eljárásom megindítását. Az Atomki Habilitációs Szabályzatának megfelelően, jelen kérelmemhez elektronikus formában csatolom a következő mellékleteket:

- Szakmai önéletrajz- Publikációk és független hivatkozások listája- Tudományos munkásság tézisszerű összefoglalása- A habilitáció elindításához szükséges kérdőív- Közeljövőben tervezett kutatási tematika összefoglalása- A magyar és angol nyelvű előadás címe- A kérdőívben szereplő három publikáció másolata

Segítő döntését előre is köszönöm,

tisztelettel:

_______________________________

Dr. Kuti István tudományos munkatárs

Szakmai önéletrajz

Kuti István – habilitációs pályázat

SZEMÉLYES ADATOK

NÉV Kuti István LAKCÍM 4032 Debrecen Komlóssy út 96. I/5.

TELEFON +36 (52) 509-271

MOBIL +36 (70) 324-3214

E-MAIL [email protected]

ÁLLAMPOLGÁRSÁG Magyar

SZÜLETÉSI HELY ÉS IDŐ Debrecen, 1983.05.18.

SZAKMAI TAPASZTALAT

VÉGZETTSÉG

2020.09.01. → Tudományos munkatárs

Atommagkutató Intézet Bem tér 18/c, H-4026 Debrecen

2017.09.01. – 2020.08.31 Tudományos munkatárs (NKFIH posztdoktor)

MTA Atommagkutató Intézet Bem tér 18/c, H-4026 Debrecen

2015.07.01. – 2017.08.31 Tudományos munkatárs (fiatal kutató)

MTA Atommagkutató Intézet Bem tér 18/c, H-4026 Debrecen

2012.09.01. – 2015.06.30 Tudományos segédmunkatárs (fiatal kutató)

MTA Atommagkutató Intézete Bem tér 18/c, H-4026 Debrecen

2009.09.01. – 2012.08.31. PhD hallgató MTA Atommagkutató Intézete

Bem tér 18/c, H-4026 Debrecen Debreceni Egyetem Egyetem tér 1., H-4032 Debrecen

2001 Középiskolai érettségi

Tóth Árpád Gimnázium, Debrecen

2009 Fizikus

Debreceni Egyetem, Debrecen

2015 Fizika PhD

Debreceni Egyetem, Debrecen

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

A publikációk és hivatkozások az MTMT adatbázisának 2020. november 27., 14:02 pillanatbeli állapota szerint: 1. Timár, J ; Sohler, D ; Kuti, I ; Berek, G ; Nyakó, B M ; Zolnai, L ; Dombrádi, Zs ; Paul, E S ; Boston, A J ; Fox, C et al. Rotational band structure in 132La ATOMKI ANNUAL REPORT 2008 pp. 30-30. , 1 p. (2008) Teljes dokumentum Folyóiratcikk/Rövid közlemény (Folyóiratcikk)/Tudományos 2. Kuti, I A 132La atommag forgási sávjainak in-beam gamma-spektroszkópiai vizsgálata pp. 1-60. (2009) Témavezetô: Kunné Sohler D., Timár J., Egyéb/Diplomamunka, szakdolgozat, TDK dolgozat (Egyéb)/Tudományos 3. Timár, J ; Kuti, I ; Sohler, D ; Starosta, K ; Fossan, D B ; Koike, T ; Chiara, C J ; Boston, A J ; Chantler, H C ; Paul, E S et al. Medium- and high-spin band structure of 134Pr ATOMKI ANNUAL REPORT 2009 pp. 34-34. , 1 p. (2010) Egyéb URL Folyóiratcikk/Rövid közlemény (Folyóiratcikk)/Tudományos 4. Sohler, D ; Timár, J ; Kuti, I ; Molnár, J ; Algora, A ; Dombrádi, Zs ; Gál, J ; Krasznahorkay, A ; Zolnai, L ; Joshi, P et al. Structure of high-spin bands in 104Pd ATOMKI ANNUAL REPORT 2009 pp. 32-32. , 1 p. (2010) Egyéb URL Folyóiratcikk/Rövid közlemény (Folyóiratcikk)/Tudományos 5. Kuti, I ; Timár, J ; Sohler, D ; Nyakó, B M ; Zolnai, L ; Dombrádi, Zs ; Paul, E S ; Boston, A J ; Chantler, H C ; Fox, C et al. Gamma-ray multipolarity assignments in 132La. ATOMKI ANNUAL REPORT 2009 pp. 33-33. , 1 p. (2010) Teljes dokumentum Folyóiratcikk/Rövid közlemény (Folyóiratcikk)/Tudományos 6. Kuti, I ; Timár, J ; Sohler, D ; Nyakó, B M ; Zolnai, L ; Dombrádi, Zs ; Paul, E S ; Boston, A J ; Chantler, H C ; Fox, C et al. Spin determination in 132La and 134Pr nuclei using DCO method. ACTA PHYSICA DEBRECINA 44 : 1 pp. 59-68. , 10 p. (2010) Teljes dokumentum Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos 7. Kempley, RS ; Podolyak, Z ; Bazzacco, D ; Gadea, A ; Farnea, E ; Valiente-Dobon, JJ ; Mengoni, D ; Recchia, F ; Sahin, E ; Gottardo, A et al. CROSS-COINCIDENCES IN THE Xe-136+Pb-208 DEEP-INELASTIC REACTION ACTA PHYSICA POLONICA B 42 : 3-4 pp. 717-720. , 4 p. (2011) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Mccutchan E. A. et al. Nuclear Data Sheets for A=136. (2018) NUCLEAR DATA SHEETS 0090-3752 1095-9904 152 331-667

8. Timár, J ; Kuti, I ; Sohler, D ; Starosta, K ; Fossan, D B ; Koike, T ; Cromaz, M ; Fallon, P ; Lee, I Y ; Macchiavelli, A O et al. Rotational band structure of the chiral candidate 134Pr ATOMKI ANNUAL REPORT 2010 pp. 41-41. , 1 p. (2011) Egyéb URL Folyóiratcikk/Rövid közlemény (Folyóiratcikk)/Tudományos

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

9. Sohler, D ; Timár, J ; Kuti, I ; Molnár, J ; Algora, A ; Dombrádi, Zs ; Gál, J ; Krasznahorkay, A ; Zolnai, L ; Joshi, P et al. Observation of gamma-band structure in 104 Pd ATOMKI ANNUAL REPORT 2010 pp. 40-40. , 1 p. (2011) Egyéb URL Folyóiratcikk/Rövid közlemény (Folyóiratcikk)/Tudományos 10. Kuti, I ; Timár, J ; Sohler, D ; Starosta, K ; Fossan, D B ; Koike, T ; Cromaz, M ; Fallon, P; Lee, I Y ; Macchiavelli, A O et al. Determination of conversion coeffi cients in low-energy gamma rays of 132La ATOMKI ANNUAL REPORT 2010 pp. 44-44. , 1 p. (2011) Egyéb URL Folyóiratcikk/Rövid közlemény (Folyóiratcikk)/Tudományos 11. Kuti, I ; Timár, J ; Sohler, D ; Nyakó, B M ; Zolnai, L ; Dombrádi, Zs ; Paul, E S ; Boston, A J ; Chantler, H J ; Descovich, M et al. Parity determination of excited states of the 132La nucleus. ACTA PHYSICA DEBRECINA 45 : 1 pp. 76-83. , 8 p. (2011) Teljes dokumentum Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 12. Timár, J ; Starosta, K ; Kuti, I ; Sohler, D ; Fossan, D B ; Koike, T ; Paul, E S ; Boston, A J; Chantler, H J ; Descovich, M et al. Medium- and hi-spin band structure of the chiral-candidate nucleus 134Pr. PHYSICAL REVIEW C 84 : 4 Paper: 044302 , 16 p. (2011) DOI WoS Scopus Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 13

1. Wang M et al. The AME2012 atomic mass evaluation (II). Tables, graphs and references. (2012) CHINESE PHYSICS C 1674-1137 36 12 1603-2014

2. Ionescu-Bujor M et al. Structure of la 130 at low and medium spins. (2014) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 90 1

3. Zhang Hao et al. Chiral geometry in multiple chiral doublet bands. (2016) CHINESE PHYSICS C 1674-1137 40 2

4. Chen Q. Collective model of chiral and wobbling modes in nuclei. (2016) SCIENCE IN CHINA: PHYSICS MECHANICS AND ASTRONOMY 1674-7275 2095- 9478 46 1

5. Ma K Y et al. Structure of a positive-parity band in Pr-130. (2017) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 53 1

6. Wang Meng et al. The AME2016 atomic mass evaluation (II). Tables, graphs and references. (2017) CHINESE PHYSICS C 1674-1137 41 3

7. Ma K Y et al. Candidate chiral doublet bands in Pm-138. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 97 1

8. Ionescu-Bujor M. et al. Lifetime measurements in the chiral-candidate doublet bands of La-130. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 5

9. Kumar Vinod et al. IDENTIFICATION OF 38 keV gamma TRANSITION IN La-132 AMIDST X RAYS. (2019) ACTA PHYSICA POLONICA B 0587-4254 1509-5770 50 2 173-178

10. Zhao P. W. et al. Microscopic resolution of the nuclear chiral conundrum with crossing twin bands in Ag-106. (2019) PHYSICAL REVIEW C 0556-2813 1089- 490X 2469-9985 99 5

11. Xiong B.W. et al. Nuclear chiral doublet bands data tables. (2019) ATOMIC DATA AND NUCLEAR DATA TABLES 0092-640X 1090-2090 125 193-225

12. Otsuka T.. Recent developments in shell model studies of atomic nuclei. (2019) Megjelent: Nuclear physics with stable and radioactive ion beams : proceedings of the International School of Physics, Varenna on Lake Com... pp. 1-30

13. Ionescu-Bujor M. et al. Band structures, lifetimes, and shape coexistence in La-130. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

13.

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

Sohler, D ; Grevy, S ; Dombradi, Z ; Sorlin, O ; Gaudefroy, L ; Bastin, B ; Achouri, NL ; Angelique, JC ; Azaiez, F ; Baiborodin, D et al. Spectroscopy of 39,41Si and the border of the N=28 island of inversion PHYSICS LETTERS B 703 : 4 pp. 417-421. , 5 p. (2011) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 5

1. Stroberg SR et al. Single-particle structure of silicon isotopes approaching Si- 42. (2014) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 90 3

2. Steiger K et al. Nuclear structure of Si-37,Si-38 investigated by decay spectroscopy of Al-37,Al-38. (2015) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 51 9

3. Nesaraja C D et al. Nuclear Data Sheets for A=41. (2016) NUCLEAR DATA SHEETS 0090-3752 1095-9904 133 1-219

4. Chen Jun. Nuclear Data Sheets for A=39*. (2018) NUCLEAR DATA SHEETS 0090-3752 1095-9904 149 1-251 5. Momiyama S et al. Shell structure of S-43 and collapse of the N=28 shell closure. (2020) PHYSICAL REVIEW C

0556-2813 1089-490X 2469-9985 102 3 14. Krasznahorkay, A ; Fényes, T ; Dombrádi, Zs ; Nyakó, B M ; Timár, J ; Algora, A ; Csatlós, M ; Csige, L ; Gácsi, Z ; Gulyás, J et al. Research at the Section of Experimental Nuclear Physics of ATOMKI ATOMKI ANNUAL REPORT 2011 pp. 1-28. , 28 p. (2012) Folyóiratcikk/Ismertetés (Folyóiratcikk)/Tudományos 15. Kuti, I ; Sohler, D ; Timar, J ; Joshi, P ; Molnar, J ; Paul, E S ; Starosta, K ; Wadsworth, R ; Algora, A ; Bednarczyk, P et al. Observation of gamma-band structure in 104Pd ACTA PHYSICA DEBRECINA 46 pp. 75-81. , 7 p. (2012) Egyéb URL Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos 16. Sohler, D ; Kuti, I ; Timár, J ; Joshi, P ; Molnár, J ; Paul, E S ; Starosta, K ; Wadsworth, R ; Algora, A ; Bednarczyk, P et al. High-spin structure of ^{104}Pd PHYSICAL REVIEW C 85 : 4 p. 044303 , 13 p. (2012) DOI WoS Scopus Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 8

1. He CY et al. Band structures in Pd-106. (2012) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 86 4 2. Sukhoruchkin S et al. Excited Nuclear States for Pd-107 (Palladium). (2012) Megjelent: Nuclei with Z = 30 -

47 pp. 4094-4105 3. Rather N et al. Antimagnetic rotation in 104 Pd. (2014) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-

9985 89 6 4. Singh P et al. Yrast structure of the shell model nucleus Nb 89. (2014) PHYSICAL REVIEW C 0556-2813

1089-490X 2469-9985 90 1 5. Giannatiempo A.. Vibrational-gamma bands in even Pd104-118 isotopes. (2018) PHYSICAL REVIEW C 0556-

2813 1089-490X 2469-9985 98 3 6. Majumder C. et al. Possible Antimagnetic Rotational Band in Ru-102. (2019) BRAZILIAN JOURNAL OF

PHYSICS 0103-9733 49 4 539-542 7. Chakraborty S. et al. -vibration in Hg-198. (2019) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI

1434-6001 1434-601X 55 4 8. Majumder C. et al. Lifetime measurements in Pd-104. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND

PARTICLE PHYSICS 0954-3899 1361-6471 47 12 17. Calinescu, S ; Cáceres, L ; Grévy, S ; Sohler, D ; Stanoiu, M ; Negoita, F ; Borcea, C ; Borcea, R ; Bowry, M et al. Study of the neutron rich sulfure isotope 43S through intermediate energy Coulomb excitation JOURNAL OF PHYSICS-CONFERENCE SERIES 413 : 1 Paper: 012030 , 5 p. (2013) DOI WoS Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos Független idéző: 1

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

1. Mijatovic T et al. Lifetime Measurements and Triple Coexisting Band Structure in S-43. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 121 1

18. Kuti, I ; Timar, J ; Sohler, D ; Paul, ES ; Starosta, K ; Astier, A ; Bazzacco, D ; Bednarczyk, P ; Boston, AJ ; Buforn, N et al. Medium- and high-spin band structure of the chiral candidate La-132 PHYSICAL REVIEW C 87 : 4 Paper: 044323 , 10 p. (2013) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 13

1. Higashiyama K et al. Pair-truncated shell-model analysis for doubly-odd nuclei around mass 130. (2013) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 88 3

2. Ionescu-Bujor M et al. Structure of la 130 at low and medium spins. (2014) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 90 1

3. Nishibata H et al. High-spin states in La-136 and possible structure change in the N=79 region. (2015) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 91 5

4. Teruya E et al. Shell-model calculations of nuclei around mass 130. (2015) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 92 3

5. Zhang Hao et al. Chiral geometry in multiple chiral doublet bands. (2016) CHINESE PHYSICS C 1674-1137 40 2

6. Chen Q. Collective model of chiral and wobbling modes in nuclei. (2016) SCIENCE IN CHINA: PHYSICS MECHANICS AND ASTRONOMY 1674-7275 2095- 9478 46 1

7. Teruya E et al. Large-scale shell model study of the newly found isomer in La- 136. (2016) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 94 1

8. Ionescu-Bujor M. et al. Lifetime measurements in the chiral-candidate doublet bands of La-130. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 5

9. Kumar Vinod et al. IDENTIFICATION OF 38 keV gamma TRANSITION IN La-132 AMIDST X RAYS. (2019) ACTA PHYSICA POLONICA B 0587-4254 1509-5770 50 2 173-178

10. Xiong B.W. et al. Nuclear chiral doublet bands data tables. (2019) ATOMIC DATA AND NUCLEAR DATA TABLES 0092-640X 1090-2090 125 193-225

11. Ionescu-Bujor M. et al. Band structures, lifetimes, and shape coexistence in La-130. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

12. Chakraborty S. et al. Indication of gamma-vibration in I-123,I-125,I-127. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361- 6471 47 9

13. Higashiyama K. et al. Nuclear matrix elements of neutrinoless double beta decay for masses 130 and 136 in the shell model. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 47 3

19. Calinescu, S ; Cáceres, L ; Grévy, S ; Sorlin, O ; Sohler, D ; Stanoiu, M ; Negoita, F ; Clément, E ; Astabatyan, R ; Borcea, C et al. Study of the neutron-rich isotope 46ar through intermediate energy coulomb excitation ACTA PHYSICA POLONICA B 45 : 2 pp. 199-204. , 6 p. (2014) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 7

1. Gade Alexandra. Excitation energies in neutron-rich rare isotopes as indicators of changing shell structure. (2015) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 51 9

2. Steppenbeck D et al. Low-Lying Structure of Ar-50 and the N=32 Subshell Closure. (2015) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 114 25

3. Meisel Z et al. Mass Measurements Demonstrate a Strong N=28 Shell Gap in Argon. (2015) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 114 2

4. Nowak K et al. Spectroscopy of Ar-46 by the (t, p) two-neutron transfer reaction. (2016) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 93 4

5. Pritychenko B et al. Tables of E2 transition probabilities from the first 2(+) states in even-even nuclei. (2016) ATOMIC DATA AND NUCLEAR DATA TABLES 0092-640X 1090-2090 107 1-139

6. Voss P et al. Doppler-shift attenuation lifetime measurement of the Ar-36 2(1) (+) level. (2017) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 96 2

7. Mougeot M. et al. Examining the N=28 shell closure through high-precision mass measurements of Ar46-48. (2020) PHYSICAL REVIEW C 0556-2813 1089- 490X 2469-9985 102 1

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

20. Timar, J ; Kuti, I ; Sohler, D ; Starosta, K ; Koike, T ; Paul, E S Some recent experimental results related to nuclear chirality JOURNAL OF PHYSICS-CONFERENCE SERIES 533 Paper: 012042 , 4 p. (2014)

DOI WoS Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 21. Patel, Z ; Söderström, P-A ; Podolyák, Z ; Regan, PH ; Walker, PM ; Watanabe, H ; Ideguchi, E ; Simpson, GS ; Liu, HL ; Nishimura, S et al. Isomer decay spectroscopy of Sm 164 and Gd 166: Midshell collectivity around N=100 PHYSICAL REVIEW LETTERS 113 : 26 Paper: 262502 (2014) DOI WoS Scopus Repozitóriumban Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 18

1. Milne S A et al. Isospin Symmetry at High Spin Studied via Nucleon Knockout from Isomeric States. (2016) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114117 8

2. Kumar B et al. Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model. (2017) PHYSICAL REVIEW C 0556-2813 1089- 490X 2469-9985 96 3

3. Gaudefroy L et al. Impact of Coriolis mixing on a two-quasi-neutron isomer in Gd-164(100) and other N=100 isotones. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 97 6

4. He Xiao-Tao et al. Insight into nuclear midshell structures by studying K isomers in rare-earth neutron-rich nuclei. (2018) PHYSICAL REVIEW C 0556- 2813 1089-490X 2469-9985 98 6

5. Hartley D J et al. Masses and beta-Decay Spectroscopy of Neutron-Rich Odd- Odd Eu-160,Eu- 162 Nuclei: Evidence for a Subshell Gap with Large Deformation at N=98. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 120 18

6. Singh Balraj et al. Nuclear Data Sheets for A=164. (2018) NUCLEAR DATA SHEETS 0090-3752 1095-9904 147 1-381

7. Vilen M et al. Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 120 26

8. Zhang Zhen-Hua. Systematic investigation of the high-K isomers and the high-spin rotational bands in the neutron-rich Nd and Sm isotopes by a particle-number conserving method. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 3

9. Ghorui S. K. et al. Systematic study of high-K isomers in the midshell Gd and Dy nuclei. (2018) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 54 10

10. Kajino T et al. Current status of r-process nucleosynthesis. (2019) PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 0146-6410 107 109-166

11. Naik K. C. et al. Density dependence of symmetry energy in deformed Sm- 162 nucleus. (2019) INTERNATIONAL JOURNAL OF MODERN PHYSICS E- NUCLEAR PHYS. 0218-3013 1793-6608 28 11

12. He Xiao-Tao et al. High-K isomer and the rotational properties in the odd-Z neutron-rich nucleus Eu-163. (2019) CHINESE PHYSICS C 1674-1137 43 6

13. Liu Y. X. et al. Changes of deformed shell gaps at N similar to 100 in light rare-earth, neutron-rich nuclei. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 47 5

14. Kaur Manpreet et al. Effect of temperature on the volume and surface contributions in the symmetry energy of rare earth nuclei. (2020) NUCLEAR PHYSICS A 0375-9474 1000

15. Vilen M et al. Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 101 3

16. Zachary C. J. et al. Identification of new transitions and levels in Gd-163 from beta-decay studies. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469- 9985 101 5

17. Kaur Manpreet et al. On the symmetry energy and deformed magic number at N=100 in rare earth nuclei. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 47 10

18. Eldridge J. M. et al. Structure of Nd-155 and Gd-163 from Cf-252 spontaneous fission. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

22. Kuti, I ; Chen, QB ; Timár, J ; Sohler, D ; Zhang, SQ ; Zhang, ZH ; Zhao, PW ; Meng, J ; Starosta, K ; Koike, T et al. Multiple chiral doublet bands of identical configuration in Rh 103 PHYSICAL REVIEW LETTERS 113 : 3 Paper: 032501 , 4 p. (2014)

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

DOI WoS Scopus PubMed arXiv Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 32

1. Shirinda O et al. MULTIPLE CHIRAL BANDS ASSOCIATED WITH THE SAME STRONGLY ASYMMETRIC MANY-PARTICLE NUCLEON CONFIGURATION. (2015) ACTA PHYSICA POLONICA B 0587-4254 1509-5770 46 3 683-687

2. Qi B et al. Chiral rotational models with multi-quasiparticle configuration. (2016) SCIENCE IN CHINA: PHYSICS MECHANICS AND ASTRONOMY 1674-7275 2095-9478 46 1

3. Masiteng PL et al. DSAM lifetime measurements for the chiral bands in 194Tl. (2016) JOURNAL OF PHYSICS-CONFERENCE SERIES 1742-6588 1742-6596 724 1

4. Masiteng P L et al. DSAM lifetime measurements for the chiral pair in Tl-194. (2016) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 52 2

5. Jia H et al. Electromagnetic transitions in multiple chiral doublet bands. (2016) CHINESE PHYSICS C 1674-1137 40 12

6. Liu C et al. Evidence for Octupole Correlations in Multiple Chiral Doublet Bands. (2016) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 116 11

7. Xia Xue-Wei. Evolution of N=28 shell closure in relativistic continuum Hartree- Bogoliubov theory. (2016) CHINESE PHYSICS C 1674-1137 40 7

8. Navin A et al. Evolution of triaxial shapes at large isospin: Rh isotopes. (2016) PHYSICS LETTERS B 0370-2693 1873-2445 767 480-484

9. Zhou Shan-Gui. Multidimensionally constrained covariant density functional theories-nuclear shapes and potential energy surfaces. (2016) PHYSICA SCRIPTA 0031-8949 1402-4896 91 6

10. Ndayishimya J. Multiple Chiral bands in 193TL. (2016) 11. Shirinda O et al. Multiple many-particle chiral systems described within the particle-rotor model. (2016)

EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 52 11 12. Lim Yeunhwan et al. Proton radioactivity in relativistic continuum Hartree- Bogoliubov theory. (2016)

PHYSICAL REVIEW C 0556-2813 1089-490X 2469- 9985 93 1 13. Singh V et al. Structure of dipole bands in doubly odd Ag-102. (2016) PHYSICAL REVIEW C 0556-2813 1089-

490X 2469-9985 94 4 14. Raduta A A et al. Alternative description of chiral properties in Nd-138. (2017) JOURNAL OF PHYSICS G-

NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 44 4 15. Lawrie E A. Decay patterns of multi-quasiparticle bands -a model independent test of chiral symmetry. (2017)

PHYSICA SCRIPTA 0031-8949 1402-4896 92 9 16. Palit R et al. Structure and symmetries of odd-odd triaxial nuclei. (2017) EUROPEAN PHYSICAL JOURNAL A:

HADRONS AND NUCLEI 1434-6001 1434- 601X 53 5 17. Zhao Jie et al. Tetrahedral shapes of neutron-rich Zr isotopes from a multidimensionally constrained

relativistic Hartree-Bogoliubov model. (2017) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 95 1 18. Roy T et al. Observation of multiple doubly degenerate bands in Tl-195. (2018) PHYSICS LETTERS B 0370-2693

1873-2445 782 768-772 19. Liu Chen et al. Possible candidate nuclei for chirality-parity quartet bands. (2018) CHINESE PHYSICS C 1674-

1137 42 7 20. Li Jian. Possible candidates for multiple chiral doublet bands in cesium isotopes. (2018) PHYSICAL REVIEW C

0556-2813 1089-490X 2469-9985 97 3 21. Qi B et al. Search for candidate chiral nuclei in rubidium isotopes. (2018) PHYSICAL REVIEW C 0556-2813 1089-

490X 2469-9985 98 1 22. Qi B et al. Candidate chiral nuclei in bromine isotopes based on triaxial relativistic mean field theory. (2019)

SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY 1674-7348 1869-1927 62 1 23. Jia Hui et al. Coexistence of chiral symmetry and pseudospin symmetry in one nucleus: triplet bands in Ag-105.

(2019) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 46 3 24. Ndayishimye J. et al. Competition of rotation around the intermediate and long axes in Tl-193. (2019) PHYSICAL

REVIEW C 0556-2813 1089-490X 2469- 9985 100 1 25. Sun Wu-Ji et al. Energy staggering parameters in nuclear magnetic rotational bands. (2019) CHINESE PHYSICS

C 1674-1137 43 9 26. Xiong B.W. et al. Nuclear chiral doublet bands data tables. (2019) ATOMIC DATA AND NUCLEAR DATA TABLES

0092-640X 1090-2090 125 193-225 27. Budaca R.. Role of triaxiality in the structure of chiral partner bands. (2019) PHYSICS LETTERS B 0370-2693

1873-2445 797 28. Guo Rui et al. Systematic investigations of positive-parity doublet bands with three-quasiparticle configurations

in Cs-125,Cs-127,Cs-129,Cs-131. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 100 3 29. Guo Rui et al. Doublet bands at borders of A approximate to 130 island of chiral candidates: Case study of I-

12(0). (2020) CHINESE PHYSICS C 1674-1137 44 7

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

30. Wang Y.Y.. Multiple chiral doublet bands in reflection-asymmetric triaxial particle rotor model. (2020) ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT 1899-2358 2082-7865 13 3 559-565

31. Wang Shou-Yu. Recent progress in multiple chiral doublet bands. (2020) CHINESE PHYSICS C 1674-1137 44 11 32. Petrache C.M.. Robustness of chiral symmetry in atomic nuclei with

reflection-asymmetric shapes (2020) SCIENCE BULLETIN 2095-9273 2095-9281 23. Ghazi, Moradi F ; Cederwall, B ; Qi, C ; Bäck, T ; Ataç, A ; Liotta, R ; Doncel, M ; Johnson, A ; de France, G ; Clément, E et al. Spectroscopy of the neutron-deficient N=50 nucleus Rh95 PHYSICAL REVIEW C 89 : 4 Paper: 044310 , 8 p. (2014) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Guo Rui-Ju et al. Shell-model calculations for the semi-magic nucleus Br-85 and systematic features of the N=50 odd-A isotones. (2017) CHINESE PHYSICS C 1674-1137 41 8

24. Ghazi, Moradi F ; Qi, C ; Cederwall, B ; Ataç, A ; Bäck, T ; Liotta, R ; Doncel, M ; Johnson, A ; De France, G ; Clément, E et al. Character of particle-hole excitations in 94 Ru deduced from γ -ray angular correlation and linear polarization measurements PHYSICAL REVIEW C 89 : 1 Paper: 014301 , 9 p. (2014) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 5

1. Zhang Da-Li et al. Description of the Structural Properties of Low-Lying States in Ru-102 with IBM2. (2014) CHINESE PHYSICS LETTERS 0256-307X 1741-3540 31 7

2. Luo PW et al. High-spin level structure of the semi-magic nucleus Nb 91. (2014) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 89 3

3. Jiang H et al. Low-lying states of ruthenium isotopes within the nucleon pair approximation. (2016) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 93 5

4. Guo Rui-Ju et al. Shell-model calculations for the semi-magic nucleus Br-85 and systematic features of the N=50 odd-A isotones. (2017) CHINESE PHYSICS C 1674-1137 41 8

5. Zheng Y. et al. Reinvestigation of the high-spin level structure of Nb-92: Excitations across the Z=38 and N=50 closed shells. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 100 1

25. Krasznahorkay, A J ; Csatlós, M ; Csige, L ; Gácsi, Z ; Gulyás, J ; Hunyadi, M ; Ketel, T J ; Krasznahorkay, A ; Kuti, I ; Nyakó, B M et al. OBSERVATION OF ANOMALOUS INTERNAL PAIR CREATION IN 8Be ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT 8 p. 597 (2015) DOI Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 26. Rin, Yokoyama ; Eiji, Ideguchi ; Gary, Simpson ; Mana, Tanaka ; Shunji, Nishimura ; Pieter, Doornnbal ; Pär-Anders, Söderström ; Giuseppe, Lorusso ; Zhengyu, Xu ; Jin, Wu et al. Isomers of Pm Isotopes on the Neutron-Rich Frontier of the Deformed Z ~ 60 Region JPS CONFERENCE PROCEEDINGS 6 : 3 Paper: 21 , 1 p. (2015) DOI Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 27. Benzoni, G ; Watanabe, H ; Morales, A I ; Nishimura, S ; Avigo, R ; Baba, H ; Bello Garrote, F L ; Blasi, N ; Bracco, A ; Browne, F et al. β-Decay Measurements in the Vicinity of 78Ni with the EURICA Setup JPS CONFERENCE PROCEEDINGS 6 Paper: 020021 , 5 p. (2015) DOI Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 28. Lica, R ; Rotaru, F ; Negoita, F ; Grevy, S ; Marginean, N ; Desagne, Ph ; Stora, T ; Borcea, C ; Borcea, R ; Calinescu, S et

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

al. Properties of low-lying intruder states in Al-34 and Si-34 populated in the beta- decay of Mg-34 AIP CONFERENCE PROCEEDINGS 1645 pp. 363-366. , 4 p. (2015) DOI WoS Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos Független idéző: 2

1. Han Rui et al. beta-decay study of neutron-rich nucleus Al-34. (2017) SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY 1674-7348 1869-1927 60 4

2. Han R et al. Northern boundary of the "island of inversion" and triaxiality in Si-34. (2017) PHYSICS LETTERS B 0370-2693 1873-2445 772 529-533

29. Kuti, István Atommagok királis forgásának vizsgálata az A≈130 és az A≈100 magtartományokban Megjelenés/Fokozatszerzés éve: 2015 ODT védés Teljes dokumentum Handle Disszertáció/PhD (Disszertáció)/Tudományos 30. Czerwiński, M ; Rząca-Urban, T ; Urban, W ; Bączyk, P ; Sieja, K ; Nyakó, BM ; Timár, J ; Kuti, I ; Tornyi, TG ; Atanasova, L et al. Neutron-proton multiplets in the nucleus Br 88 PHYSICAL REVIEW C 92 : 1 Paper: 014328 , 5 p. (2015) DOI WoS Scopus Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 3

1. Litzinger J et al. Transition probabilities in neutron-rich Se-84,Se-86. (2015) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 92 6

2. Wang Meng et al. The AME2016 atomic mass evaluation (II). Tables, graphs and references. (2017) CHINESE PHYSICS C 1674-1137 41 3

3. Kumar S. et al. SHELL-MODEL DESCRIPTION IN Rh-99 AND SYSTEMATICS OF ODD-A Rh ISOTOPES. (2019) ACTA PHYSICA POLONICA B 0587-4254 1509-5770 50 2 159-171

31. Benzoni, G ; Morales, AI ; Watanabe, H ; Nishimura, S ; Coraggio, L ; Itaco, N ; Gargano, A ; Browne, F ; Daido, R ; Doornenbal, P et al. Decay properties of 68,69,70Mn: Probing collectivity up to N=44 in Fe isotopic chain PHYSICS LETTERS B 751 pp. 107-112. , 6 p. (2015) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 4

1. Gurdal G et al. Nuclear Data Sheets for A=70. (2016) NUCLEAR DATA SHEETS 0090-3752 1095-9904 136 1-162

2. Wang Meng et al. The AME2016 atomic mass evaluation (II). Tables, graphs and references. (2017) CHINESE PHYSICS C 1674-1137 41 3

3. Hamamoto Ikuko. Shape and shell structure of lighter (N less than or similar to 90) neutron-rich nuclei based on a phenomenological Woods-Saxon potential. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 99 2

4. Gade A. et al. Structure of Fe-70: Single-particle and collective degrees of freedom. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 99 1

32. Söderström, P-A ; Walker, PM ; Wu, J ; Liu, HL ; Regan, PH ; Watanabe, H ; Doornenbal, P ; Korkulu, Z ; Lee, P ; Liu, JJ et al. Collective and single-particle structures in the neutron-rich doubly mid-shell nucleus dy POS - PROCEEDINGS OF SCIENCE INPC2016 Paper: 072 (2016) Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 33. Calinescu, S ; Caceres, L ; Grevy, S ; Sorlin, O ; Dombradi, Z ; Stanoiu, M ; Astabatyan, R ; Borcea, C ; Borcea, R ; Bowry, M et al.

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

Coulomb excitation of Ca-44 and Ar-46 PHYSICAL REVIEW C 93 : 4 Paper: 044333 , 8 p. (2016) DOI REAL WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 3

1. Gurdal G et al. Nuclear Data Sheets for A=70. (2016) NUCLEAR DATA SHEETS 0090-3752 1095-9904 136 1-162

2. Gade A et al. Single-particle structure at N=29: The structure of Ar-47 and first spectroscopy of S-45. (2016) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 93 5

3. Bazin D et al. The Active Target Time Projection Chamber at NSCL. (2017) EPJ WEB OF CONFERENCES 2100-014X 163

34. Ideguchi, E ; Simpson, GS ; Yokoyama, R ; Tanaka, M ; Nishimura, S ; Doornenbal, P ; Lorusso, G ; Söderström, P-A ; Sumikama, T ; Wu, J et al. μ s isomers of Nd 158,160 PHYSICAL REVIEW C 94 : 6 Paper: 064322 (2016) DOI REAL WoS Scopus Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 12

1. Nica N. Nuclear Data Sheets for A=158. (2017) NUCLEAR DATA SHEETS 0090- 3752 1095-9904 141 1-326 2. Wu X-Y et al. Systematic study of multi-quasiparticle K -isomeric bands in tungsten isotopes by the extended

projected shell model. (2017) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 95 6 3. Gaudefroy L et al. Impact of Coriolis mixing on a two-quasi-neutron isomer in Gd-164(100) and other N=100

isotones. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 97 6 4. He Xiao-Tao et al. Insight into nuclear midshell structures by studying K isomers in rare-earth neutron-rich

nuclei. (2018) PHYSICAL REVIEW C 0556- 2813 1089-490X 2469-9985 98 6 5. Hartley D J et al. Masses and beta-Decay Spectroscopy of Neutron-Rich Odd- Odd Eu-160,Eu- 162 Nuclei:

Evidence for a Subshell Gap with Large Deformation at N=98. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 120 18

6. Zhang Zhen-Hua. Systematic investigation of the high-K isomers and the high-spin rotational bands in the neutron-rich Nd and Sm isotopes by a particle-number conserving method. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 3

7. Ghorui S. K. et al. Systematic study of high-K isomers in the midshell Gd and Dy nuclei. (2018) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 54 10

8. Dai Acan et al. Configuration-constrained calculations of high-K rotational bands in even-even isotones around N=100. (2019) Kexue Tongbao / Chinese Science Bulletin 0023-074X 64 21 2191-2198

9. Kajino T et al. Current status of r-process nucleosynthesis. (2019) PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 0146-6410 107 109-166

10. He Xiao-Tao et al. High-K isomer and the rotational properties in the odd-Z neutron-rich nucleus Eu-163. (2019) CHINESE PHYSICS C 1674-1137 43 6

11. Walker P. et al. 100 years of nuclear isomers - Then and now. (2020) PHYSICA SCRIPTA 0031-8949 1402-4896 95 4

12. Liu Y. X. et al. Changes of deformed shell gaps at N similar to 100 in light rare-earth, neutron-rich nuclei. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 47 5

35. Patel, Z ; Podolyak, Z ; Walker, PM ; Regan, PH ; Soderstrom, PA ; Watanabe, H ; Ideguchi, E ; Simpson, GS ; Nishimura, S ; Browne, F et al. beta-decay spectroscopy of neutron-rich Sm-160,Sm-161,Sm-162 isotopes EPJ WEB OF CONFERENCES 123 Paper: UNSP 02002 (2016) DOI WoS Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos Független idéző: 2

1. He Xiao-Tao et al. Insight into nuclear midshell structures by studying K isomers in rare-earth neutron-rich nuclei. (2018) PHYSICAL REVIEW C 0556- 2813 1089-490X 2469-9985 98 6

2. He Xiao-Tao et al. High-K isomer and the rotational properties in the odd-Z neutron-rich nucleus Eu-163. (2019) CHINESE PHYSICS C 1674-1137 43 6

36.

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

Czerwinski, M ; Rzaca-Urban, T ; Urban, W ; Baczyk, P ; Sieja, K ; Timar, J ; Nyako, BM ; Kuti, I ; Tornyi, TG et al. Neutron-proton multiplets in the odd-odd nucleus Rb-90(37)53 PHYSICAL REVIEW C 93 : 3 Paper: 034318 (2016) DOI REAL WoS Scopus Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 2

1. Gupta Surbhi et al. Systematic study of two-quasiparticle structure of the neutron-rich odd-odd rubidium nuclei. (2019) CHINESE JOURNAL OF PHYSICS 0577-9073 57 338-347

2. Basu S. K. et al. Nuclear Data Sheets for A=90*/>. (2020) NUCLEAR DATA SHEETS 0090-3752 1095-9904 165 1-329

37. Morales, AI ; Benzoni, G ; Watanabe, H ; Nishimura, S ; Browne, F ; Daido, R ; Doornenbal, P ; Fang, Y ; Lorusso, G ; Patel, Z et al. Low-lying excitations in Ni 72 PHYSICAL REVIEW C 93 : 3 Paper: 034328 , 14 p. (2016) DOI REAL WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 9

1. Gurdal G et al. Nuclear Data Sheets for A=70. (2016) NUCLEAR DATA SHEETS 0090-3752 1095-9904 136 1-162

2. Qi Chong. Partial conservation of seniority and its unexpected influence on E2 transitions in g(9/2) nuclei. (2017) PHYSICS LETTERS B 0370-2693 1873-2445 773 616-619

3. Wang Meng et al. The AME2016 atomic mass evaluation (II). Tables, graphs and references. (2017) CHINESE PHYSICS C 1674-1137 41 3

4. Qian Yibin et al. Partial seniority conservation and solvability of single- j systems. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 6

5. Singh Balraj et al. Nuclear Data Sheets for A=73. (2019) NUCLEAR DATA SHEETS 0090-3752 1095-9904 158 1-257

6. Leoni Silvia et al. Revealing microscopic origins of shape coexistence in the Ni isotopic chain. (2019) Megjelent: IV International Conference on Nuclear Structure and Dynamics, NSD2019

7. Leoni S. et al. SHAPE COEXISTENCE AND SHAPE ISOMERISM IN THE Ni ISOTOPIC CHAIN. (2019) ACTA PHYSICA POLONICA B 0587-4254 1509-5770 50 3 605-614

8. Go S. et al. Mapping of fragmented nu f(5/2) -> pi f(7/2) transitions in the Co- 73 -> Ni-73 decay. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

9. Leoni S. et al. SHAPE-COEXISTENCE STUDIES IN THE Ni ISOTOPIC CHAIN BY USING THE SELECTIVITY OF DIFFERENT REACTION MECHANISMS. (2020) ACTA PHYSICA POLONICA B 0587-4254 1509-5770 51 3 807-815

38. Nyakó, BM ; Timàr, J ; Csatlós, M ; Dombràdi, Z ; Krasznahorkay, A ; Kuti, I ; Sohler, D ; Tornyi, TG ; Czerwiński, M ; Rząca-Urban, T et al. Medium-spin states of the neutron-rich 87,89Br isotopes: Configurations and shapes JOURNAL OF PHYSICS-CONFERENCE SERIES 724 : 1 Paper: 012051 , 6 p. (2016) DOI WoS Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 39. Krasznahorkay, A ; Csatlós, M ; Csige, L ; Gácsi, Z ; Gulyás, J ; Hunyadi, M ; Kuti, I ; Nyakó, B M ; Stuhl, L ; Tímár, J et al. Observation of Anomalous Internal Pair Creation in 8Be : A Possible Indication of a Light, Neutral Boson PHYSICAL REVIEW LETTERS 116 Paper: 042501 , 5 p. (2016) DOI WoS Scopus PubMed arXiv Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 192

1. Timashev Serge F. Physical vacuum as a system manifesting itself on various scales - from nuclear physics to cosmology. (2011)

2. Pitkänen M. About Physical Representations of Genetic Code in Terms of Dark Nuclear Strings. (2016) 3. Kornowski Sylwester. A Light, Neutral Boson with a Mass of 18.4 MeV as the Binder of the Second Composite

Higgs Boson with a Mass of 742 GeV or/and 750 GeV and the Tetraneutron. (2016) 4. Neves MJ. A Unified Hidden-Sector-Electroweak Model, Paraphotons and the X-Boson. (2016) 5. Jim Alexander. Dark Sectors 2016 Workshop: Community Report. (2016) 6. de Meijer Robert. First observation of a reactor-status effect on the beta+ decay rate of 22Na. (2016)

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

7. Lajtner T. Four mysteries solved: double-slit, spooky action, tunneling, and accelerating Universe. (2016) International Research Journal of Pure and Applied Physics 2055-009X 2055-0103 4 3 13-40

8. Cartlidge Edwin. Has a Hungarian physics lab found a fifth force of nature?. (2016) NATURE 0028-0836 1476-4687 577

9. P. Pedroni et al. High Statistics Measurement of the π 0 Transition Form Factor. (2016) 10. Chen Chuan-Hung et al. Light gauge boson in rare K decay. (2016) PHYSICS LETTERS B 0370-2693 1873-

2445 763 304-307 11. Gninenko S N et al. Missing energy signature from invisible decays of dark photons at the CERN SPS. (2016)

PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 94 12. Mario Everaldo. Neutrino Oscillations Hint at a New Fundamental Interaction. (2016) 13. Kozhuharov Venelin et al. New Projects on Dark Photon Search. (2016) 14. Pitkänen M. On the Representations of Genetic Code by Dark Nuclear Strings in TGD Framework. (2016) DNA

Decipher Journal 2159-046X 6 2 p. 81 15. Ellwanger Ulrich et al. Possible explanation of the electron positron anomaly at 17 MeV in (8) Be transitions

through a light pseudoscalar. (2016) JOURNAL OF HIGH ENERGY PHYSICS 1126-6708 1029-8479 11 16. Feng Jonathan L et al. Protophobic Fifth-Force Interpretation of the Observed Anomaly in Be-8 Nuclear

Transitions. (2016) PHYSICAL REVIEW LETTERS 0031- 9007 1079-7114 117 7 17. Denig A. Review of dark photon searches. (2016) Megjelent: MESON 2016 - 14TH INTERNATIONAL WORKSHOP

ON MESON PRODUCTION, PROPERTIES AND INTERACTION 18. Feng Yougang. S Bosons and Dark Particles of Space Field. (2016) JOURNAL OF MODERN PHYSICS 2153-1196

2153-120X 7 1483-1491 19. Gninenko S et al. Search for light dark vector boson: NA64 experiment. (2016) Megjelent: Proceedings of

the Helmholtz International Summer School 2016 (HQ 2016) : Quantum Field Theory at the Limits : from Strong Fiel... pp. 167- 176

20. Policicchio A. Search for long-lived neutral particles decaying into lepton-jets with the ATLAS detector in proton-proton collision data at √s = 13 TeV. (2016) POS - PROCEEDINGS OF SCIENCE 1824-8039

21. Matteo Puel. Some theoretical and experimental aspects of Dark Matter. (2016) 22. Lupton Oliver. Studies of D0→K0Sh+h′−D0→KS0h+h′− decays at the LHCb experiment: Oxford U. (2016) 23. Chung Ding-Yu. The Accurate Mass Formulas of Leptons, Quarks, Gauge Bosons, the Higgs Boson, and Cosmic

Rays. (2016) JOURNAL OF MODERN PHYSICS 2153-1196 2153-120X 7 1591-1606 24. Jia Lian-Bao et al. The new interaction suggested by the anomalous Be transition sets a rigorous

constraint on the mass range of dark matter. (2016) EUROPEAN PHYSICAL JOURNAL C 1434-6044 1434-6052 76 12

25. M. Pitk¨anen. X boson as evidence for nuclear string model. (2016) 26. Nozzoli F. A balance for dark matter bound states. (2017) ASTROPARTICLE PHYSICS 0927-6505 91 22-33 27. Karan Anirban. A different approach to electroweak interactions without using any $SU(2)_L$ doublet. (2017) 28. Raj Nirmal. Anticipating nonresonant new physics in dilepton angular spectra at the LHC. (2017) PHYSICAL

REVIEW D 1550-7998 2470-0029 2470-0010 0556- 2821 95 1 29. Günter Sigl. Astroparticle Physics: Theory and Phenomenology. (2017) ISBN:9789462392427 30. Seto O et al. Atomki anomaly and dark matter in a radiative seesaw model with gauged B-L symmetry.

(2017) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 95 9 31. Kozhuharov V. Background in the search for dark photon in e + e - annihilation. (2017) Megjelent:

International Symposium Advances in Dark Matter and Particle Physics, ADMPP 2016 32. Zhang Xilin et al. Can nuclear physics explain the anomaly observed in the internal pair production in the

Beryllium-8 nucleus?. (2017) PHYSICS LETTERS B 0370-2693 1873-2445 773 159-165 33. Bauer Martin et al. Collider probes of axion-like particles. (2017) JOURNAL OF HIGH ENERGY PHYSICS 1126-

6708 1029-8479 12 34. Frugiuele Claudia et al. Constraining new physics models with isotope shift spectroscopy. (2017) PHYSICAL

REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 96 1 35. Dror Jeff A et al. Dark forces coupled to nonconserved currents. (2017) PHYSICAL REVIEW D 1550-7998 2470-

0029 2470-0010 0556-2821 96 7 36. Domingo F. Decays of a NMSSM CP-odd Higgs in the low-mass region. (2017) JOURNAL OF HIGH ENERGY

PHYSICS 1126-6708 1029-8479 2017 3 37. Araki T et al. Detecting the L-mu- L-tau gauge boson at Belle II. (2017)

PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 95 5 38. Yousef Mohamed. Duality of Time and Perpetual Re-creation of Space. (2017) 39. Leonardo Ospedal. Efeitos de Spin, Velocidade e Dimensionalidade em Potenciais Inter-part´ıculas

Associados a Modelos de Gauge. (2017) 40. Delle Rose Luigi et al. Explanation of the 17 MeV Atomki anomaly in a U(1)'- extended two Higgs doublet

model. (2017) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 96 11

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

41. Rose LD et al. Explanation of the beryllium anomaly in a u(1)⇲-extended 2- higgs doublet model. (2017) Megjelent: Proceedings of Science

42. Fornal Bartosz. Is there a sign of new physics in beryllium transitions?. (2017) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793-656X 32 25

43. Kozaczuk J et al. Light axial vector bosons, nuclear transitions, and the Be-8 anomaly. (2017) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556- 2821 95 11

44. Mann Adam. Lighting the way for dark matter. (2017) PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 0027- 8424 1091-6490 114 44 11557-11560

45. Kahn Yonatan et al. Light weakly coupled axial forces: models, constraints, and projections. (2017) JOURNAL OF HIGH ENERGY PHYSICS 1126-6708 1029- 8479 5

46. Berman MP. Merleau-Ponty and God: Hallowing the Hollow. (2017) ISBN:9781498513227 47. Serge Timashev. Metastable Non-Nucleonic States of Nuclear Matter: Phenomenology. (2017) Physical

Science International Journal 2348-0130 15 2 1-25 48. Benavides Richard H et al. Minimal nonuniversal electroweak extensions of the standard model: A chiral

multiparameter solution. (2017) PHYSICAL REV. D 1550-7998 2470-0029 2470-0010 0556-2821 95 11 49. Zhu Bin et al. Naturalness and a light Z '. (2017) PHYSICAL REVIEW D 1550- 7998 2470-0029 2470-0010

0556-2821 96 3 50. Dror Jeff A et al. New Constraints on Light Vectors Coupled to Anomalous Currents. (2017) PHYSICAL REVIEW

LETTERS 0031-9007 1079-7114 119 14 51. Belhout A et al. New determination of proton spectroscopic factors and reduced widths for Be-8 states in

the 16.5-18.0 MeV excitation energy region via the study of the Li-7(He-3, d)Be-8 transfer reaction at E-lab=20 MeV: Implication for the Li-7(p, alpha)He-4 hydrogen burning reaction. (2017) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 96 5

52. Hwang Jae-Kwang. New fermionic dark matters, extended Standard Model and cosmic rays. (2017) MODERN PHYSICS LETTERS A 0217-7323 1793-6632 32 26

53. Li Bao-An. Origins And Impacts Of High-Density Symmetry Energy. (2017) AIP CONFERENCE PROCEEDINGS 0094-243X 1551-7616 1852 Sinaia

54. Kozhuharov V et al. PADME: Searching for dark mediator at the Frascati BTF. (2017) NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS 2037-4909 1826-9885 40 5

55. Feng Jonathan L et al. Particle physics models for the 17 MeV anomaly in beryllium nuclear decays. (2017) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 95 3

56. Valante P. POSEYDON - Converting the DAFNE Collider into a double Positron Facility: a High Duty-Cycle pulse stretcher and a storage ring. (2017)

57. Malta PC. Potenciais dependentes de spin, axion-like particles e viola¸c˜ao da simetria de Lorentz: fenomenologia de cen´arios al´em do Modelo Padr˜ao na fronteira de baixas energias da f´ısica. (2017)

58. Chiang CW et al. Probing a dark photon using rare leptonic kaon and pion decays. (2017) PHYSICS LETTERS B 0370-2693 1873-2445 767 289-294

59. Mikami Kyoko et al. Probing new intra-atomic force with isotope shifts. (2017) EUROPEAN PHYSICAL JOURNAL C 1434-6044 1434-6052 77 12

60. Benito C.. Prospects for the search of K-s(0) -> pi(+)pi(-)e(+)e(-) at LHCb. (2017) 61. Kitahara Teppei et al. Protophobic light vector boson as a mediator to the dark sector. (2017) PHYSICAL

REVIEW D 1550-7998 2470-0029 2470-0010 0556- 2821 95 1 62. Gu P-H et al. Realistic model for a fifth force explaining anomaly in Be⁎8→Be8e+e− decay. (2017) NUCLEAR

PHYSICS B 0550-3213 919 209-217 63. Diamond M. Search for Dark Gauge Bosons Decaying into Displaced Lepton- Jets in Proton-proton Collisions

at 13 TeV with the ATLAS Detector. (2017) 64. Michela DG. Search for long-lived neutral particles decaying into lepton-jets with the atlas detector in

proton-proton collision data at s = 13 tev. (2017) POS- PROCEEDINGS OF SCIENCE 1824-8039 p. 690 65. Corliss R et al. Searching for a dark photon with DarkLight. (2017) NUCLEAR INSTRUMENTS & METHODS IN

PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 0168-9002 1872- 9576 865 125-127

66. Malta PC. Spin-dependent potentials, axion-like particles and Lorentz- symmetry violation: beyond the Standard Model phenomenology at the low- energy frontier of physics. (2017)

67. Valente P. Spin-dependent potentials, axion-like particles and Lorentz- symmetry violation: beyond the Standard Model phenomenology at the low- energy frontier of physics. (2017)

68. Rachek I et al. Status of the experiment for the search of a dark photon at VEPP-3. (2017) Megjelent: International Symposium Advances in Dark Matter and Particle Physics, ADMPP 2016

69. Chen Chian-Shu et al. The 17 MeV anomaly in beryllium decays and U(1) portal to dark matter. (2017) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793-656X 32 31

70. Ehrlich Robert. The $3+3$ neutrino mass state model revisited: Was there an 8 MeV supernova

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

(anti)neutrino line from SN 1987A?. (2017) 71. Gninenko Sergei. The 8Be excess and search for the X → e+e− decay of a new light boson with NA64

detector. (2017) 72. Vajda I et al. The Atomki Accelerator Center. (2017) AIP CONFERENCE PROCEEDINGS 0094-243X 1551-7616

1852 73. Fayet P. The light U boson as the mediator of a new force, coupled to a combination of Q, B, L and dark matter.

(2017) EUROPEAN PHYSICAL JOURNAL C 1434-6044 1434-6052 77 1 74. Krasnikov N. The muon (g - 2) anomaly and a new light vector boson. (2017) 75. Neves MJ. The protophobic XX-boson unified to the quantum electrodynamics. (2017) 76. Marco Battaglieri. US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report. (2017) 77. Liang Y et al. X(16.7) as the solution of the NuTeV anomaly. (2017) CHINESE PHYSICS C 1674-1137 41 6 78. Bordes J et al. A closer study of the framed standard model yielding testable new physics plus a hidden sector

with dark matter candidates. (2018) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793-656X 33 33

79. Yimin Wang et al. A helical-shape scintillating fiber trigger and tracker system for the DarkLight experiment and beyond. (2018)

80. Yong Gao-Chan. A possible probe of the new fifth force. (2018) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 54 9

81. Aydemir Ufuk. A Scale at 10 MeV, Gravitational Topological Vacuum, and Large Extra Dimensions. (2018) UNIVERSE 2218-1997 4 7

82. Jentschura UD et al. Atomic physics constraints on the X boson. (2018) PHYSICAL REVIEW A 1050-2947 1094-1622 2469-9926 2469-9934 97 4

83. Yamamoto Y. Atomki anomaly and the Secluded Dark Sector. (2018) EPJ WEB OF CONFERENCES 2100-014X 168

84. Alves Daniele S et al. A viable QCD axion in the MeV mass range. (2018) JOURNAL OF HIGH ENERGY PHYSICS 1126-6708 1029-8479 7

85. Feng J.L. et al. Axionlike particles at FASER: The LHC as a photon beam dump. (2018) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 98 5

86. Izzo L et al. Beryllium detection in the very fast nova ASASSN-16kt (V407 Lupi). (2018) MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 0035-8711 1365-2966

87. Neves Mario J. et al. Classical electrodynamics and gauge symmetry of the X- boson. (2018) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793-656X 33 25

88. Neves Mario J. et al. Classical electrodynamics and gauge symmetry of the X- boson. (2018) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793-656X 33 25

89. Rybak Ivan. Cosmic Paleontology: Searching for Superstrings. (2018) 90. Jia Lian-Bao et al. Could the 21-cm absorption be explained by the dark matter suggested by Be-8 transitions?.

(2018) EUROPEAN PHYSICAL JOURNAL C 1434-6044 1434-6052 78 11 91. Ruiz Carvajal C.D.. Dark-photon production in e+ beam-dump experiments via resonant e+e− annihilation.

(2018) Megjelent: Nincs cím pp. 35-40 92. Marsicano L et al. Dark photon production through positron annihilation in beam-dump experiments. (2018)

PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 98 1 93. Kozaczuk Jonathan. Dark photons from nuclear transitions. (2018) PHYSICAL REVIEW D 1550-7998 2470-0029

2470-0010 0556-2821 97 1 94. Torsten Akesson et al Dark Sector Physics with a Primary Electron Beam Facility at CERN. (2018) 95. RYAZANTSEV G.B. et al. DEVELOPMENT OF THE CONCEPT OF NUCLEAR EXCHANGE BETA-FORCES. ON THE

POSSIBILITY OF OBTAINING NEUTRON SUBSTANCE IN LABORATORY CONDITIONS. (2018) Megjelent: Proceedings of the XXVI International Seminar on Interaction of Neutrons with Nuclei. 2018 pp. 37-44

96. G.B. Ryazantsev et al. DEVELOPMENT OF THE CONCEPT OF NUCLEAR EXCHANGE BETA-FORCES. ON THE POSSIBILITY OF OBTAINING NEUTRON SUBSTANCE IN LABORATORY CONDITIONS. (2018)

97. Hwang JK. Elementary particles, rest mass calculations of the leptons and dark matters, missing neutrinos and electric permittivities. (2018)

98. Jia L-B. Explanation of the 511 keV line: cascade annihilating dark matter with the 8 Be anomaly. (2018) EUROPEAN PHYSICAL JOURNAL C 1434-6044 1434- 6052 78 2

99. Mitnick R. From Michigan State University: “Elements from the stars: The unexpected discovery that upended astrophysics 66 years ago”. (2018)

100. Yalcin GC et al. Generalized statistical mechanics of cosmic rays: Application to positron-electron spectral indices. (2018) SCIENTIFIC REPORTS 2045-2322 8 1

101. Bordes Jose et al. Generation patterns, modified gamma - Z mixing, and hidden sector with dark matter candidates as framed standard model results. (2018) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793- 656X 33 36

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

102. Akitaka Ariga et al. Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC. (2018) 103. Munch Michael et al. Measurement of the full excitation spectrum of the Li- 7(p, gamma)alpha alpha reaction

at 441 keV. (2018) PHYSICS LETTERS B 0370- 2693 1873-2445 782 779-784 104. Richard H. et al. Minimal $Z'$ models for flavor anomalies. (2018) 105. Gninenko S. NA64 Status Report 2018. (2018) 106. Sabodina E. et al. NATURAL SCIENCE AND PHILOSOPHICAL KNOWLEDGE IN THE UNIVERSITY MUSEUM:

RELEVANCE AND RELEVANCE. (2018) Österreichisches Multiscience Journal 1 10 p. 3 107. Luigi Delle et al. New Physics from Low Scales. (2018) 108. Blandon D.J. et al. Non-universal electroweak extensions of the standard model and the scotogenic models.

(2018) Megjelent: Nincs cím 109. Dario J. et al. Non-universal electroweak extensions of the standard model and the scotogenic models2018.

(2018) 110. Guglinski Wladimir. On how proton radius shrinkage can be connected with Lorentz factor violation. (2018)

International Journal of Fundamental Physical Sciences 2231-8186 8 2 54-73 111. Ghoshal A.. On search for dark photon and its resonant production in PADME experiment. (2018)

Megjelent: Nincs cím pp. 28-34 112. Gatignon L. Physics at the SPS. (2018) REVIEW OF SCIENTIFIC INSTRUMENTS 0034-6748 1089-7623 89 5 113. Yasuhiro Yamamoto. Probing New Intra-Atomic Force with Isotope Shifts: A Neat Thing to Do. (2018) 114. Yamamoto Y. Probing New Intra-Atomic Force with Isotope Shifts: A Neat Thing to Do. (2018) POS -

PROCEEDINGS OF SCIENCE 1824-8039 ICHEP2018 115. Raggi M. et al. Probing the dark sector with PADME. (2018) NUOVO CIMENTO C-COLLOQUIA AND

COMMUNICATIONS IN PHYSICS 2037-4909 1826-9885 41 4 116. Paganini CF. Proposal 42. (2018) 117. Nardi Enrico et al. Resonant production of dark photons in positron beam dump experiments. (2018)

PHYSICAL REVIEW D 1550-7998 2470-0029 2470- 0010 0556-2821 97 9 118. Banerjee D et al. Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment

at CERN. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 120 23 119. Michela Del. Search for long-lived neutral particles decaying into lepton-jets with ATLAS detector and

construction of MicroMegas SM1 modules. (2018) 120. Wojtsekhowski B et al. Searching for a dark photon: project of the experiment at VEPP-3. (2018) JOURNAL

OF INSTRUMENTATION 1748-0221 13 121. Taruggi C. et al. Searching for dark photons with the PADME experiment. (2018) Megjelent: Nincs cím pp.

17-21 122. Alikhanov I et al. Searching for new light gauge bosons at e(+) e(-) colliders. (2018) PHYSICAL REVIEW D 1550-

7998 2470-0029 2470-0010 0556-2821 97 11 123. Perrevoort AK. Sensitivity Studies on New Physics in the Mu3e Experiment and Development of Firmware

for the Front-End of the Mu3e Pixel Detector. (2018) 124. FASER Collaboration. Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC. (2018) 125. FASER Collaboration. Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC. (2018) 126. Neves Mario Junior et al. TeV- and MeV-Physics Out of an SUL(2)xUR(1)JxU(1)K Model. (2018) ANNALEN DER

PHYSIK 0003-3804 1521-3889 530 3 127. Neves Mario Junior et al. TeV- and MeV-Physics Out of an SUL(2)xUR(1)JxU(1)K Model. (2018) ANNALEN DER

PHYSIK 0003-3804 1521-3889 530 3 128. Marius Arghirescu et al. The antigravitation-fiction or reality?. (2018) Physics & Astronomy International

Journal 2576-4543 3 1 p. 19 129. Ehrlich Robert. The Mont Blanc neutrinos from SN 1987A: Could they have been monochromatic (8 MeV)

tachyons with m(2) =-0.38 keV(2)?. (2018) ASTROPARTICLE PHYSICS 0927-6505 99 21-29 130. Gavin P.. Theory vision. (2018) POS - PROCEEDINGS OF SCIENCE 1824-8039 LHCP2018 131. Gavin P.. Theory Vision talk at LHCP2018. (2018) 132. Buonomo B et al. The PADME calorimeters for missing mass dark photon searches. (2018) JOURNAL OF

INSTRUMENTATION 1748-0221 13 3 133. Raggi M.. The PADME experiment. (2018) 66 337-344 134. Lajtner T. Thought Force Communication, Space-Matter, Gravity. (2018) 135. Jiang Jun et al. X(16.7) production in electron-positron collision. (2018) EUROPEAN PHYSICAL JOURNAL C 1434-

6044 1434-6052 78 6 136. Bordes Jose et al. Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed

Standard Model. (2019) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793-656X 34 25 137. Neves M. et al. A Dark Hidden-Sector of Dirac fermions at the GeV scale. (2019) 138. Beyhan Puliçe. A Family-nonuniversal U(1)′ Model for Excited Beryllium Decays. (2019) 139. Liu Jia et al. A light complex scalar for the electron and muon anomalous magnetic moments. (2019) JOURNAL

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

OF HIGH ENERGY PHYSICS 1126-6708 1029-8479 2019 3 140. Delle Rose Luigi et al. Atomki Anomaly in Family-Dependent U(1)' Extension of the Standard Model. (2019)

PHYSICAL REVIEW D 1550-7998 2470-0029 2470- 0010 0556-2821 99 5 141. Indraganti PK et al. Consciousness: A Possible Gateway for Protection Against Radiation Induced Damage.

(2019) Austin Biochemistry 4 1 142. Engelfried J.. Dark sector searches in non-LHC experiments. (2019) Megjelent: Nincs cím 143. Lee S. et al. Design and operation of a windowless gas target internal to a solenoidal magnet for use with a

megawatt electron beam. (2019) NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQ. 0168-9002 1872- 9576 939 46-54

144. Renga F.. Experimental searches for muon decays beyond the Standard Model. (2019) REVIEWS IN PHYSICS 2405-4283 4

145. Jiang Jun et al. Exploring bosonic mediator of interaction at BESIII. (2019) EUROPEAN PHYSICAL JOURNAL C 1434-6044 1434-6052 79 5

146. Nguyen Ai. Extra dimension of space-time exposed by anomalies at low energy. (2019) 147. Feng J.L.. FASER and the Search for Light and Weakly Interacting Particles. (2019) Megjelent: Illuminating Dark

Matter : Proceedings of a Simons Symposium pp. 69-75 148. FASER Collaboration et al. FASER: ForwArd Search ExpeRiment at the LHC. (2019) 149. FASER Collaboration et al. FASER: ForwArd Search ExpeRiment at the LHC. (2019) 150. Ariga A et al. FASER's physics reach for long-lived particles. (2019) PHYSICAL REVIEW D 1550-7998 2470-0029

2470-0010 0556-2821 99 9 151. Delle Rose L et al. New Physics Suggested by Atomki Anomaly. (2019) FRONTIERS IN PHYSICS 2296-424X

2296-424X 7 152. Chen Chien-Yi et al. New physics via pion capture and simple nuclear reactions. (2019) PHYSICAL REVIEW D

1550-7998 2470-0029 2470-0010 0556- 2821 100 9 153. Afanasev A. et al. Physics with Positron Beams at Jefferson Lab 12 GeV. (2019) 154. Indelicato P.. QED tests with highly charged ions. (2019) JOURNAL OF PHYSICS B: ATOMIC MOLECULAR AND

OPTICAL PHYSICS 0953-4075 1361-6455 52 23 155. Kirsanov Mikhail. Recent results of the NA64 experiment at the CERN SPS. (2019) EPJ WEB OF CONFERENCES

2100-014X 212 p. 06005 156. Minoru Tanaka et al. Relativistic effects in search for new intra-atomic force with isotope shifts. (2019) 157. Ghoshal Anish. Scalar dark matter probes the scale of nonlocality. (2019) INTERNATIONAL JOURNAL OF

MODERN PHYSICS A 0217-751X 1793-656X 34 24 158. Dipanwita Banerjee. Search for Dark Sector Physics at the NA64 experiment in the context of the Physics

Beyond Colliders Project. (2019) 159. Kozhuharov Venelin. Searching for dark sector with missing mass technique in fixed target experiments. (2019)

EPJ WEB OF CONFERENCES 2100-014X 212 p. 06001 160. Raggi M.. Searching for Light–Dark Matter with Positron Beams. (2019) Megjelent: Nincs cím pp. 109-114 161. Spagnolo Stefania et al. Status of the PADME experiment. (2019) Megjelent: XIII INTERNATIONAL

CONFERENCE ON BEAUTY, CHARM AND HYPERON HADRONS (BEACH 2018) 162. Singh Koijam Manihar et al. The fifth force: An enigma in this Universe. (2019) MODERN PHYSICS LETTERS A

0217-7323 1793-6632 34 9 163. Ferrarotto F. The Investigation on the Dark Sector at the PADME Experiment. (2019) UNIVERSE 2218-1997 5 2 164. Piperno Gabriele. The PADME electromagnetic calorimeter. (2019) Megjelent: 18TH INTERNATIONAL

CONFERENCE ON CALORIMETRY IN PARTICLE PHYSICS (CALOR2018) 165. B G Sidharth et al. Zitterbewegung field and the fifth force. (2019) 166. Nam Cao H.. 17 MeV Atomki anomaly from short-distance structure of spacetime. (2020) EUROPEAN PHYSICAL

JOURNAL C 1434-6044 1434-6052 80 3 167. Hati C. et al. Anomalies in Be-8 nuclear transitions and (g-2)(e,mu): towards a minimal combined explanation.

(2020) JOURNAL OF HIGH ENERGY PHYSICS 1126-6708 1029-8479 7 168. Kalman Peter et al. Anomalous internal pair creation. (2020) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND

NUCLEI 1434-6001 1434-601X 56 8 169. Fuerst H. A. et al. Coherent Excitation of the Highly Forbidden Electric Octupole Transition in Yb-172(+). (2020)

PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 125 16 170. Ibe Masahiro et al. Cosmological constraint on dark photon from N-eff. (2020) JOURNAL OF HIGH ENERGY

PHYSICS 1126-6708 1029-8479 4 171. Feng Jonathan L. et al. Dynamical evidence for a fifth force explanation of the ATOMKI nuclear anomalies.

(2020) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 102 3 172. Counts I. et al. Evidence for nonlinear isotope shift in Yb+ search for new boson. (2020) PHYSICAL REVIEW

LETTERS 0031-9007 1079-7114 125 12 173. Al-Abyad M. et al. Experimental yield and evaluation of proton induced reactions for neutron production

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

and synthesis of beryllium-7 using lithium compounds as target material. (2020) APPLIED RADIATION AND ISOTOPES 0969-8043 155

174. Jodlowski Krzysztof et al. Extending the reach of FASER, MATHUSLA, and SHiP towards smaller lifetimes using secondary particle production. (2020) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 101 9

175. Jentschura UD. Fifth force and hyperfine splitting in bound systems. (2020) PHYSICAL REVIEW A 1050-2947 1094-1622 2469-9926 2469-9934 101 6

176. Piperno G. First results on the performance of the PADME electromagnetic calorimeter. (2020) JOURNAL OF INSTRUMENTATION 1748-0221 15 5

177. Krasnikov N. V. Implications of last NA64 results and the electron g(e)-2 anomaly for the X(16.7) boson survival. (2020) MODERN PHYSICS LETTERS A 0217-7323 1793-6632 35 15

178. Solaro Cyrille et al. Improved Isotope-Shift-Based Bounds on Bosons beyond the Standard Model through Measurements of the D-2(3/2)-D-2(5/2) Interval in Ca+. (2020) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 125 12

179. Banerjee D et al. Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e(+)e(-) pairs. (2020) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 101 7

180. Benavides RH et al. Minimal Z ' models for flavor anomalies. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 47 7

181. Fornal Bartosz et al. Neutron's dark secret. (2020) MODERN PHYSICS LETTERS A 0217-7323 1793-6632 35 31 182. Celentano A et al. New production channels for light dark matter in hadronic showers. (2020) PHYSICAL

REVIEW D 1550-7998 2470-0029 2470-0010 0556- 2821 102 7 183. Wong Cheuk-Yin. Open string QED meson description of the X17 particle and dark matter. (2020) JOURNAL OF

HIGH ENERGY PHYSICS 1126-6708 1029-8479 2020 p. 165 184. Kling F. Probing light gauge bosons in tau neutrino experiments. (2020) PHYSICAL REVIEW D 1550-7998 2470-

0029 2470-0010 0556-2821 102 1 185. Fetisov A. V.. Puzzling Behavior of Hydrated YBCO. (2020) JOURNAL OF SUPERCONDUCTIVITY AND NOVEL

MAGNETISM 1557-1939 1557-1947 186. Gninenko SN et al. Search for Dark Sector Physics with NA64. (2020) PHYSICS OF PARTICLES AND NUCLEI

1063-7796 1531-8559 51 5 829-858 187. Bernhard J.. Status and Plans for the NA64 Experiment. (2020) Megjelent: 16TH INTERNATIONAL CONFERENCE

ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019) 188. Neves M. J. et al. THE PROTOPHOBIC X-BOSON COUPLED TO QUANTUM ELECTRODYNAMICS. (2020) ACTA

PHYSICA POLONICA B 0587-4254 1509-5770 51 4 909-936 189. Jaeckel Joerg et al. The quest for new physics with the Physics Beyond Colliders programme. (2020)

NATURE PHYSICS 1745-2473 1745-2481 16 4 393- 401 190. Eroshenko Yu N.. Torsional Alfven waves. (2020) PHYSICS-USPEKHI 1063-7869 1468-4780 63 1 102-102 191. Hakimi Sahel et al. X-ray laser wakefield acceleration in a nanotube. (2020) INTERNATIONAL JOURNAL OF

MODERN PHYSICS A 0217-751X 1793-656X 34 34 p. 1943011 192. Karr Jean-Philippe et al. The proton size. Nature Reviews Physics 2522-5820

40. Patel, Z ; Podolyák, Z ; Walker, PM ; Regan, PH ; Söderström, P-A ; Watanabe, H ; Ideguchi, E ; Simpson, GS ; Nishimura, S ; Browne, F et al. Decay spectroscopy of 160Sm: The lightest four-quasiparticle K isomer PHYSICS LETTERS B 753 pp. 182-186. , 5 p. (2016) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 7

1. Wang Meng et al. The AME2016 atomic mass evaluation (II). Tables, graphs and references. (2017) CHINESE PHYSICS C 1674-1137 41 3

2. He Xiao-Tao et al. Insight into nuclear midshell structures by studying K isomers in rare-earth neutron-rich nuclei. (2018) PHYSICAL REVIEW C 0556- 2813 1089-490X 2469-9985 98 6

3. Hartley D J et al. Masses and beta-Decay Spectroscopy of Neutron-Rich Odd- Odd Eu-160,Eu- 162 Nuclei: Evidence for a Subshell Gap with Large Deformation at N=98. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 120 18

4. Zhang Zhen-Hua. Systematic investigation of the high-K isomers and the high-spin rotational bands in the neutron-rich Nd and Sm isotopes by a particle-number conserving method. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 3

5. Kajino T et al. Current status of r-process nucleosynthesis. (2019) PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 0146-6410 107 109-166

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

6. He Xiao-Tao et al. High-K isomer and the rotational properties in the odd-Z neutron-rich nucleus Eu-163. (2019) CHINESE PHYSICS C 1674-1137 43 6

7. Liu Y. X. et al. Changes of deformed shell gaps at N similar to 100 in light rare-earth, neutron-rich nuclei. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 47 5

41. Krasznahorkay, A.J. ; Csatlós, M. ; Csige, L. ; Gulyás, J. ; Hunyadi, M. ; Ketel, T.J. ; Krasznahorkay, A. ; Kuti, I. ; Nagy, Á. ; Nyakó, B.M. et al. New results on the Be-8 anomaly POS - PROCEEDINGS OF SCIENCE BORMIO2017 Paper: 036 (2017) Teljes dokumentum Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 42. Jentschel, M. ; Blanc, A. ; de, France G. ; Koster, U. ; Leoni, S. ; Mutti, P. ; Simpson, G. ; Soldner, T. ; Ur, C. ; Urban, W. et al. EXILL - a high-effi ciency, high-resolution setup for gamma-spectroscopy atan intense cold neutron beam facility JOURNAL OF INSTRUMENTATION 12 : 11 Paper: P11003 , 33 p. (2017) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Abolghasem M. et al. EVOLUTION OF NUCLEAR SHAPES AND STRUCTURE IN TELLURIUM, XENON, BARIUM AND CERIUM ISOTOPES. (2019) ACTA PHYSICA POLONICA B 0587-4254 1509-5770 50 3 555-560

43. Gurgi, LA ; Regan, PH ; Söderström, P-A ; Watanabe, H ; Walker, PM ; Podolyák, Z ; Nishimura, S ; Berry, TA ; Doornenbal, P ; Lorusso, G et al. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb EPJ WEB OF CONFERENCES 146 Paper: 10009 (2017) DOI WoS Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 44. Patel, Z ; Walker, PM ; Podolyak, Z ; Regan, PH ; Berry, TA ; Soderstrom, PA ; Watanabe, H ; Ideguchi, E ; Simpson, GS ; Nishimura, S et al. Isomer-delayed gamma-ray spectroscopy of A=159-164 midshell nuclei and the variation of K-forbidden E1 transition hindrance factors PHYSICAL REVIEW C 96 : 3 Paper: 034305 (2017) DOI WoS Scopus Repozitóriumban Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 8

1. Gaudefroy L et al. Impact of Coriolis mixing on a two-quasi-neutron isomer in Gd-164(100) and other N=100 isotones. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 97 6

2. He Xiao-Tao et al. Insight into nuclear midshell structures by studying K isomers in rare-earth neutron-rich nuclei. (2018) PHYSICAL REVIEW C 0556- 2813 1089-490X 2469-9985 98 6

3. Singh Balraj et al. Nuclear Data Sheets for A=164. (2018) NUCLEAR DATA SHEETS 0090-3752 1095-9904 147 1-381

4. Kajino T et al. Current status of r-process nucleosynthesis. (2019) PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 0146-6410 107 109-166

5. He Xiao-Tao et al. High-K isomer and the rotational properties in the odd-Z neutron-rich nucleus Eu-163. (2019) CHINESE PHYSICS C 1674-1137 43 6

6. Liu Y. X. et al. Changes of deformed shell gaps at N similar to 100 in light rare-earth, neutron-rich nuclei. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 47 5

7. Zachary C. J. et al. Identification of new transitions and levels in Gd-163 from beta-decay studies. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469- 9985 101 5

8. Eldridge J. M. et al. Structure of Nd-155 and Gd-163 from Cf-252 spontaneous fission. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

45. Boso, A ; Lenzi, SM ; Recchia, F ; Bonnard, J ; Aydin, S ; Bentley, MA ; Cederwall, B ; Clement, E ; De France, G ; Di Nitto, A et al.

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

Isospin symmetry breaking in mirror nuclei Mg-23-Na-23 ACTA PHYSICA POLONICA B 48 : 3 pp. 313-318. , 6 p. (2017) DOI WoS Scopus Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 3

1. Saygi Bahadir. Investigation of the B(E2) systematics in pseudo-mirror nuclei. (2018) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 45 9

2. Lam Yi Hua et al. Isospin Non-Conservation in Shell Model Approach and Applications. (2018) 3. Blank Bertram. A broken nuclear mirror. (2020) NATURE 0028-0836 1476- 4687 580 7801 37-38

46. Dudouet, J ; Lemasson, A ; Duchêne, G ; Rejmund, M ; Clément, E ; Michelagnoli, C ; Didierjean, F ; Korichi, A ; Maquart, G ; Stezowski, O et al. Kr 3696 60 -Low- Z Boundary of the Island of Deformation at N=60 PHYSICAL REVIEW LETTERS 118 : 16 Paper: 162501 , 6 p. (2017) DOI WoS Scopus PubMed Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 6

1. Elman B et al. Quadrupole collectivity beyond N=50 in neutron-rich Se and Kr isotopes. (2017) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 96 4

2. Flavigny F et al. Shape Evolution in Neutron-Rich Krypton Isotopes Beyond N=60: First Spectroscopy of Kr-98,Kr-100. (2017) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 118 24

3. Nomura K et al. Structure of krypton isotopes within the interacting boson model derived from the Gogny energy density functional. (2017) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 96 3

4. Nomura K et al. Description of neutron-rich odd-mass krypton isotopes within the interacting boson-fermion model based on the Gogny energy density functional. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469- 9985 97 6

5. Bucher B. et al. New insights into triaxiality and shape coexistence from odd- mass Rh-109. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 6

6. Lenzi Silvia M et al. The AGATA Campaign at GANIL. (2018) JOURNAL OF PHYSICS-CONFERENCE SERIES 1742-6588 1742-6596 966

47. Krasznahorkay, AJ ; Csatlós, M ; Csige, L ; Gulyás, J ; Ketel, TJ ; Krasznahorkay, A ; Kuti, I ; Nagy, Á ; Nyakó, BM ; Sas, N et al. On the creation of the 17 MeV X boson in the 17.6 MeV M1 transition of 8Be EPJ WEB OF CONFERENCES 142 Paper: 01019 (2017) DOI Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos Független idéző: 19

1. Zhang Xilin et al. Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?. (2017) PHYSICS LETTERS B 0370-2693 1873-2445 773 159-165

2. Delle Rose Luigi et al. Explanation of the 17 MeV Atomki anomaly in a U(1)'- extended two Higgs doublet model. (2017) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 96 11

3. Fornal Bartosz. Is there a sign of new physics in beryllium transitions?. (2017) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793-656X 32 25

4. Jentschura UD et al. Atomic physics constraints on the X boson. (2018) PHYSICAL REVIEW A 1050-2947 1094-1622 2469-9926 2469-9934 97 4

5. Yamamoto Y.. Atomki anomaly and the Secluded Dark Sector. (2018) Megjelent: Nincs cím 6. Yamamoto Y. Atomki anomaly and the Secluded Dark Sector. (2018) EPJ WEB OF CONFERENCES 2100-014X

168 7. Alves Daniele S et al. A viable QCD axion in the MeV mass range. (2018) JOURNAL OF HIGH ENERGY PHYSICS

1126-6708 1029-8479 7 8. Ruiz Carvajal C.D.. Dark-photon production in e+ beam-dump experiments via resonant e+e− annihilation.

(2018) Megjelent: Nincs cím pp. 35-40 9. Kozaczuk Jonathan. Dark photons from nuclear transitions. (2018) PHYSICAL REVIEW D 1550-7998 2470-0029

2470-0010 0556-2821 97 1 10. Nardi Enrico et al. Resonant production of dark photons in positron beam dump experiments. (2018) PHYSICAL

REVIEW D 1550-7998 2470-0029 2470- 0010 0556-2821 97 9 11. Alikhanov I et al. Searching for new light gauge bosons at e(+) e(-) colliders. (2018) PHYSICAL REVIEW D 1550-

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

7998 2470-0029 2470-0010 0556-2821 97 11 12. Jiang Jun et al. X(16.7) production in electron-positron collision. (2018) EUROPEAN PHYSICAL JOURNAL C 1434-

6044 1434-6052 78 6 13. Delle Rose Luigi et al. Atomki Anomaly in Family-Dependent U(1)' Extension of the Standard Model. (2019)

PHYSICAL REVIEW D 1550-7998 2470-0029 2470- 0010 0556-2821 99 5 14. Rajta I. et al. First resolution test results of the Atomki nuclear nanoprobe. (2019) NUCLEAR INSTRUMENTS &

METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS 0168-583X 1872-9584 449 94-98

15. Delle Rose L et al. New Physics Suggested by Atomki Anomaly. (2019) FRONTIERS IN PHYSICS 2296-424X 2296-424X 7

16. Nam Cao H.. 17 MeV Atomki anomaly from short-distance structure of spacetime. (2020) EUROPEAN PHYSICAL JOURNAL C 1434-6044 1434-6052 80 3

17. Rose L.D. et al. 8Be decay anomaly and light Z'. (2020) Megjelent: 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories, EW 2019 pp. 423-426

18. Hati C. et al. Anomalies in Be-8 nuclear transitions and (g-2)(e,mu): towards a minimal combined explanation. (2020) JOURNAL OF HIGH ENERGY PHYSICS 1126-6708 1029-8479 7

19. Jentschura UD. Fifth force and hyperfine splitting in bound systems. (2020) PHYSICAL REVIEW A 1050-2947 1094-1622 2469-9926 2469-9934 101 6

48. Siciliano, M ; Valiente-Dobon, JJ ; Goasduff, A ; Bazzacco, D ; Alahari, N ; Benzoni, G ; Braunroth, T ; Cieplicka, N ; Crespi, FCL ; Clement, E et al. STUDY OF QUADRUPOLE CORRELATIONS IN N = Z=5 0 REGION VIA LIFETIME MEASUREMENTS ACTA PHYSICA POLONICA B 48 : 3 pp. 331-336. , 6 p. (2017) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 49. Gurgi, LA ; Regan, PH ; Söderström, P-A ; Watanabe, H ; Walker, PM ; Podolyák, Zs ; Nishimura, S ; Berry, TA ; Doornenbal, P ; Lorusso, G et al. Isomer spectroscopy of neutron-rich 165,167Tb ACTA PHYSICA POLONICA B 48 : 3 pp. 601-608. , 8 p. (2017) DOI WoS Scopus Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos 50. Ertoprak, A ; Cederwall, B ; Jakobsson, U ; Nyakó, BM ; Nyberg, J ; Davies, P ; Doncel, M ; De France, G ; Kuti, I ; Napoli, DR et al. Lifetime measurements with the Doppler shift attenuation method using a thick homogeneous production target - Verification of the method ACTA PHYSICA POLONICA B 48 : 3 pp. 325-329. , 5 p. (2017) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 51. Krasznahorkay, AJ ; Csatlós, M ; Csige, L ; Gulyás, J ; Hunyadi, M ; Ketel, TJ ; Krasznahorkay, A ; Kuti, I ; Nagy, Á ; Nyakó, BM et al. New experimental results for the 17 MeV particle created in 8Be EPJ WEB OF CONFERENCES 137 : 13 Paper: 708010 (2017)

DOI WoS Scopus Egyéb URL Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos Független idéző: 10

1. Zhang Xilin et al. Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?. (2017) PHYSICS LETTERS B 0370-2693 1873-2445 773 159-165

2. Fornal Bartosz. Is there a sign of new physics in beryllium transitions?. (2017) INTERNATIONAL JOURNAL OF MODERN PHYSICS A 0217-751X 1793-656X 32 25

3. Alves Daniele S et al. A viable QCD axion in the MeV mass range. (2018) JOURNAL OF HIGH ENERGY PHYSICS 1126-6708 1029-8479 7

4. Kozaczuk Jonathan. Dark photons from nuclear transitions. (2018) PHYSICAL REVIEW D 1550-7998 2470-0029 2470-0010 0556-2821 97 1

5. Nardi Enrico et al. Resonant production of dark photons in positron beam dump experiments. (2018) PHYSICAL

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

REVIEW D 1550-7998 2470-0029 2470- 0010 0556-2821 97 9 6. Alikhanov I et al. Searching for new light gauge bosons at e(+) e(-) colliders. (2018) PHYSICAL REVIEW D 1550-

7998 2470-0029 2470-0010 0556-2821 97 11 7. Jiang Jun et al. X(16.7) production in electron-positron collision. (2018) EUROPEAN PHYSICAL JOURNAL C 1434-

6044 1434-6052 78 6 8. Delle Rose Luigi et al. Atomki Anomaly in Family-Dependent U(1)' Extension of the Standard Model. (2019)

PHYSICAL REVIEW D 1550-7998 2470-0029 2470- 0010 0556-2821 99 5 9. Delle Rose L et al. New Physics Suggested by Atomki Anomaly. (2019) FRONTIERS IN PHYSICS 2296-424X

2296-424X 7 10. Nam Cao H.. 17 MeV Atomki anomaly from short-distance structure of spacetime. (2020) EUROPEAN PHYSICAL

JOURNAL C 1434-6044 1434-6052 80 3 52. Clément, E ; Michelagnoli, C ; de France, G ; Li, HJ ; Lemasson, A ; Barthe, Dejean C ; Beuzard, M ; Bougault, P ; Cacitti, J ; Foucher, J-L et al. Conceptual design of the AGATA array at GANIL NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A- ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 855 pp. 1-12. , 12 p. (2017) DOI REAL WoS Scopus Egyéb URL Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Ziliani S.. Lifetime measurement in the femtoseconds range in neutron-rich light nuclei with the AGATA tracking array. (2020) NUOVO CIMENTO C- COLLOQUIA AND COMMUNICATIONS IN PHYSICS 2037-4909 1826-9885 43 4-5

53. Wu, J ; Nishimura, S ; Lorusso, G ; Möller, P ; Ideguchi, E ; Regan, P-H ; Simpson, G S ; Söderström, P-A ; Walker, P M ; Watanabe, H et al. 94 β -Decay Half-Lives of Neutron-Rich 55 Cs to 67 Ho : Experimental Feedback and Evaluation of the r -Process Rare-Earth Peak Formation PHYSICAL REVIEW LETTERS 118 : 7 p. 072701 (2017) DOI REAL WoS Scopus PubMed Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 25

1. Fijalkowska A et al. Impact of Modular Total Absorption Spectrometer measurements of beta decay of fission products on the decay heat and reactor (v)over-bar(e) flux calculation. (2017) PHYSICAL REVIEW LETTERS 0031- 9007 1079-7114 119 5

2. Nica N. Nuclear Data Sheets for A=158. (2017) NUCLEAR DATA SHEETS 0090- 3752 1095-9904 141 1-326 3. Thoennessen M. 2017 update of the discoveries of nuclides. (2018) INTERNATIONAL JOURNAL OF MODERN

PHYSICS E-NUCLEAR PHYSICS 0218- 3013 1793-6608 27 2 4. Niu Y F et al. Interplay of quasiparticle-vibration coupling and pairing correlations on beta-decay half-lives. (2018)

PHYSICS LETTERS B 0370-2693 1873-2445 780 325-331 5. Hartley D J et al. Masses and beta-Decay Spectroscopy of Neutron-Rich Odd- Odd Eu-160,Eu- 162 Nuclei:

Evidence for a Subshell Gap with Large Deformation at N=98. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 120 18

6. Surman R et al. Masses and lifetimes for r -process nucleosynthesis: FRIB outlook. (2018) EPJ WEB OF CONFERENCES 2100-014X

7. Singh Balraj et al. Nuclear Data Sheets for A=164. (2018) NUCLEAR DATA SHEETS 0090-3752 1095-9904 147 1-381

8. Baglin C. M. et al. Nuclear Data Sheets for A=170. (2018) NUCLEAR DATA SHEETS 0090-3752 1095-9904 153 1-494

9. Baglin Coral M et al. Nuclear Data Sheets for A=171. (2018) NUCLEAR DATA SHEETS 0090-3752 1095-9904 151 334-718

10. Orford R et al. Precision Mass Measurements of Neutron-Rich Neodymium and Samarium Isotopes and Their Role in Understanding Rare-Earth Peak Formation. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 120 26

11. Vilen M et al. Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations. (2018) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 120 26

12. Sarriguren P et al. β -decay properties of neutron-rich Ca, Ti, and Cr isotopes. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 2

13. Thoennessen M.. 2018 update of the discoveries of nuclides. (2019) INTERNATIONAL JOURNAL OF MODERN

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

PHYSICS E-NUCLEAR PHYSICS 0218- 3013 1793-6608 28 1-2 14. Stepaniuk Michal et al. Beta delayed neutron measurements by means of Modular Total Absorption

Spectrometer. (2019) Megjelent: 22nd International Scientific Conference of Young Scientists and Specialists, AYSS 2018

15. Kajino T et al. Current status of r-process nucleosynthesis. (2019) PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 0146-6410 107 109-166

16. Kelly J.M. et al. First off-line tests and performance of the Notre Dame multi- reflection time-of-flight mass spectrometer. (2019) NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS 0168-583X 1872-9584

17. Nica N.. Nuclear Data Sheets for A=155. (2019) NUCLEAR DATA SHEETS 0090- 3752 1095-9904 160 1-404 18. Niu Z. M. et al. Predictions of nuclear beta-decay half-lives with machine learning and their impact on r-process

nucleosynthesis. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 99 6 19. Horowitz C. J. et al. r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. (2019)

JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 46 8 20. Liang J. et al. Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Half-Lives for Z >

28 Precursors. (2020) NUCLEAR DATA SHEETS 0090-3752 1095-9904 168 1-116 21. Vilen M et al. Exploring the mass surface near the rare-earth abundance peak via precision mass measurements

at JYFLTRAP. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 101 3 22. Zachary C. J. et al. Identification of new transitions and levels in Gd-163 from beta-decay studies. (2020)

PHYSICAL REVIEW C 0556-2813 1089-490X 2469- 9985 101 5 23. Spyrou A.. Neutron-star mergers and new opportunities in rare isotope experimental research. (2020)

ANNALS OF PHYSICS 0003-4916 1096-035X 412 24. Zachary C. J. et al. New transitions and levels for Tb-163 obtained from beta- decay studies. (2020) PHYSICAL

REVIEW C 0556-2813 1089-490X 2469-9985 102 4 25. Wang Meng et al. Nuclear mass measurements. (2020) SCIENCE IN CHINA: PHYSICS MECHANICS AND

ASTRONOMY 1674-7275 2095-9478 50 5 54. Morales, AI ; Benzoni, G ; Watanabe, H ; Tsunoda, Y ; Otsuka, T ; Nishimura, S ; Browne, F ; Daido, R ; Doornenbal, P ; Fang, Y et al. Type II shell evolution in A = 70 isobars from the N ≥ 40 island of inversion PHYSICS LETTERS B 765 pp. 328-333. , 6 p. (2017) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 4

1. Larsen A C et al. Enhanced low-energy gamma-decay strength of Ni-70 and its robustness within the shell model. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 97 5

2. Xu X. et al. Masses of ground and isomeric states of In-101 and configuration- dependent shell evolution in odd-A indium isotopes. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 100 5

3. Go S. et al. Mapping of fragmented nu f(5/2) -> pi f(7/2) transitions in the Co- 73 -> Ni-73 decay. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

4. Canete L. et al. Precision mass measurements of Fe-67 and Co-69,Co-70: Nuclear structure toward N=40 and impact on r-process reaction rates. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 101 4

55. Lv, B.F. ; Petrache, C.M. ; Astier, A. ; Dupont, E. ; Lopez-Martens, A. ; Greenlees, P.T. ; Badran, H. ; Calverley, T. ; Cox, D.M. ; Grahn, T. et al. Evolution from γ -soft to stable triaxiality in Nd 136 as a prerequisite of chirality PHYSICAL REVIEW C 98 : 4 Paper: 044304 , 22 p. (2018) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 2

1. Ndayishimye J. et al. Competition of rotation around the intermediate and long axes in Tl-193. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469- 9985 100 1

2. Babra F. S. et al. Investigation of a large change in deformation for the gamma-soft nucleus Sm-136. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 100 5

56. Ertoprak, A ; Cederwall, B ; Qi, C ; Doncel, M ; Jakobsson, U ; Nyakó, BM ; Jaworski, G ; Davies, P ; de France, G ; Kuti, I et al.

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

M1 and E2 transition rates from core-excited states in semi-magic 94Ru EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 54 : 9 Paper: 145 , 9 p. (2018) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Garzon Alejandro et al. AhKin: A modular and eicient code for the Doppler shift attenuation method. (2020) COMPUTER PHYSICS COMMUNICATIONS 0010-4655 246

57. Boso, A ; Lenzi, SM ; Recchia, F ; Bonnard, J ; Zuker, AP ; Aydin, S ; Bentley, MA ; Cederwall, B ; Clement, E ; De France, G et al. Neutron Skin Effects in Mirror Energy Differences: The Case of Mg 23 - Na 23 PHYSICAL REVIEW LETTERS 121 Paper: 032502 , 5 p. (2018) DOI REAL WoS Scopus PubMed Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 2

1. Smirnova N. A.. Isospin-symmetry breaking in nuclear structure. (2019) NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS 2037- 4909 1826-9885 42 2-3

2. Antic Sofija et al. Quantifying the uncertainties on spinodal instability for stellar matter through meta-modeling. (2019) JOURNAL OF PHYSICS G- NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 46 6

58. Zhang, GX ; Watanabe, H ; Kondev, FG ; Lane, GJ ; Regan, PH ; Söderström, P-A ; Walker, PM ; Kanaoka, H ; Korkulu, Z ; Lee, PS et al. β - γ and isomeric decay spectroscopy of 168Dy EPJ WEB OF CONFERENCES 178 Paper: 02023 (2018) DOI Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 59. Petrache, CM ; Lv, BF ; Astier, A ; Dupont, E ; Wang, YK ; Zhang, SQ ; Zhao, PW ; Ren, ZX ; Meng, J ; Greenlees, PT et al. Evidence of chiral bands in even-even nuclei PHYSICAL REVIEW C 97 : 4 Paper: 041304 , 6 p. (2018) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 11

1. Peng J. et al. Exploring nuclear multiple chirality in the A approximate to 60 mass region within covariant density functional theory. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 2

2. Roy T et al. Observation of multiple doubly degenerate bands in Tl-195. (2018) PHYSICS LETTERS B 0370-2693 1873-2445 782 768-772

3. Jia Hui et al. Coexistence of chiral symmetry and pseudospin symmetry in one nucleus: triplet bands in Ag-105. (2019) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 46 3

4. Ndayishimye J. et al. Competition of rotation around the intermediate and long axes in Tl-193. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469- 9985 100 1

5. Peng J. et al. Possible chiral doublets in Ni-60. (2019) PHYSICS LETTERS B 0370-2693 1873-2445 793 303-307 6. Budaca R.. Role of triaxiality in the structure of chiral partner bands. (2019) PHYSICS LETTERS B 0370-

2693 1873-2445 797 7. Ionescu-Bujor M. et al. Band structures, lifetimes, and shape coexistence in La-130. (2020) PHYSICAL

REVIEW C 0556-2813 1089-490X 2469-9985 102 4 8. Peng J. et al. Coexistence of planar and aplanar rotations in Tl-195. (2020) PHYSICS LETTERS B 0370-2693

1873-2445 806 9. Peng J. et al. Covariant density functional theory for nuclear chirality in Nd- 135. (2020) PHYSICS LETTERS B 0370-

2693 1873-2445 810 10. Chakraborty S. et al. Indication of gamma-vibration in I-123,I-125,I-127. (2020) JOURNAL OF PHYSICS G-

NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361- 6471 47 9 11. Wang Shou-Yu. Recent progress in multiple chiral doublet bands. (2020) CHINESE PHYSICS C 1674-1137 44 11

60. Morales, AI ; Benzoni, G ; Watanabe, H ; de Angelis, G ; Nishimura, S ; Coraggio, L ; Gargano, A ; Itaco, N ; Otsuka, T ; Tsunoda, Y et al.

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

Is seniority a partial dynamic symmetry in the first νg9/2 shell? PHYSICS LETTERS B 781 pp. 706-712. , 7 p. (2018) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 3

1. Qian Yibin et al. Partial seniority conservation and solvability of single- j systems. (2018) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 98 6

2. Cheng Yi-Yuan et al. Nucleon-pair wave functions in a single-j shell. (2019) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 100 1

3. Go S. et al. Mapping of fragmented nu f(5/2) -> pi f(7/2) transitions in the Co- 73 -> Ni-73 decay. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

61. Wu, J ; Nishimura, S ; Lorusso, G ; Moller, P ; Ideguchi, E ; Regan, PH ; Simpson, GS ; Soderstrom, PA ; Walker, PM ; Watanabe, H et al. 94 beta-Decay Half-Lives of Neutron-Rich Cs-55 to Ho-67: Experimental Feedback and Evaluation of the r-Process Rare-Earth Peak Formation (vol 118, 072701, 2017) PHYSICAL REVIEW LETTERS 120 : 13 Paper: 139902 (2018) DOI WoS PubMed Folyóiratcikk/Hozzászólás, helyreigazítás (Folyóiratcikk)/Tudományos 62. Timár, J ; Kuti, I ; Kruzsicz, B ; Sohler, D ; Nyakó, BM ; Chen, QB ; Zhang, SQ ; Meng, J ; Starosta, K ; Koike, T et al. Multiple chiral doublet bands and possible transverse wobbling near 104Rh ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT 11 : 1 pp. 179-187. , 9 p. (2018) DOI WoS Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos 63. Berry, T. A. ✉ ; Podolyak, Zs ; Carroll, R. J. ; Lica, R. ; Grawe, H. ; Timofeyuk, N. K. ; Alexander, T. ; Andreyev, A. N. ; Ansari, S. ; Borge, M. J. G. et al. Investigation of the Delta n=0 selection rule in Gamow-Teller transitions: The beta- decay of Hg-207 PHYSICS LETTERS B 793 pp. 271-275. , 5 p. (2019) DOI WoS Scopus Egyéb URL Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 64. Petrache, C.M. ; Lv, B.F. ; Astier, A. ; Dupont, E. ; Zheng, K.K. ; Greenlees, P.T. ; Badran, H. ; Calverley, T. ; Cox, D.M. ; Grahn, T. et al. Highly deformed bands in Nd nuclei: New results and consistent interpretation within the cranked Nilsson-Strutinsky formalism PHYSICAL REVIEW C 100 : 5 Paper: 054319 (2019) DOI WoS REAL Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 65. Zhang, G.X. ; Watanabe, H. ✉ ; Dracoulis, G.D. ; Kondev, F.G. ; Lane, G.J. ; Regan, P.H. ; Söderström, P.-A. ; Walker, P.M. ; Yoshida, K. ; Kanaoka, H. et al. Interplay of quasiparticle and vibrational excitations: First observation of isomeric states in 168Dy and 169Dy PHYSICS LETTERS B 799 Paper: 135036 (2019) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 66. Lica, R. ; Rotaru, F. ; Borge, M.J.G. ; Grévy, S. ; Negoiţǎ, F. ; Poves, A. ; Sorlin, O. ; Andreyev, A.N. ; Borcea, R. ; Costache, C. et al. Normal and intruder configurations in Si 34 populated in the β- Decay of Mg 34 and Al 34 PHYSICAL REVIEW C 100 : 3 Paper: 034306 , 11 p. (2019) DOI WoS Scopus arXiv Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

67. Lv, B.F. ; Petrache, C.M. ; Chen, Q.B. ; Meng, J. ; Astier, A. ; Dupont, E. ; Greenlees, P. ; Badran, H. ; Calverley, T. ; Cox, D.M. et al. Chirality of Nd 135 reexamined: Evidence for multiple chiral doublet bands PHYSICAL REVIEW C 100 : 2 Paper: 024314 , 9 p. (2019) DOI WoS REAL Scopus arXiv Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 2

1. Ionescu-Bujor M. et al. Band structures, lifetimes, and shape coexistence in La-130. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

2. Wang Y.Y. et al. Interpretation of chiral symmetry breaking and octupole correlations in Cs 124 by the reflection-asymmetric triaxial particle rotor model. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 3

68. Dudouet, J. ✉ ; Lemasson, A. ; Maquart, G. ; Nowacki, F. ; Verney, D. ; Rejmund, M. ; Duchêne, G. ; Stezowski, O. ; Clément, E. ; Michelagnoli, C. et al. Excitations of the magic N=50 neutron-core revealed in Ga 81 PHYSICAL REVIEW C 100 : 1 Paper: 011301 , 6 p. (2019) DOI REAL WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Paziy V et al. Fast-timing study of Ga-81 from the beta decay of Zn-81. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 1

69. Petrache, C.M. ✉ ; Walker, P.M. ; Guo, S. ; Chen, Q.B. ; Frauendorf, S. ; Liu, Y.X. ; Wyss, R.A. ; Mengoni, D. ; Qiang, Y.H. ; Astier, A. et al. Diversity of shapes and rotations in the γ-soft 130Ba nucleus: First observation of a t-band in the A = 130 mass region PHYSICS LETTERS B 795 pp. 241-247. , 7 p. (2019) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Wang Y.K. et al. Two quasiparticle wobbling in the even-even nucleus 130Ba. (2020) PHYSICS LETTERS B 0370-2693 1873-2445 802

70. Petrache, C. M. ; Frauendorf, S. ; Lv, B. F. ; Astier, A. ; Dupont, E. ; Guo, S. ; Liu, M. L. ; Zhou, X. H. ; Wang, K. L. ; Greenlees, P. T. et al. Collective rotation of an oblate nucleus at very high spin PHYSICAL REVIEW C 99 : 4 Paper: 041301 (2019) DOI WoS REAL Scopus Egyéb URL Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Zhang Zhen-Hua et al. Rotational excitations in rare-earth nuclei: A comparative study within three cranking models with different mean fields and treatments of pairing correlations. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 101 5

71. Timar, J. ; Chen, Q. B. ; Kruzsicz, B. ; Sohler, D. ; Kuti, I. ; Zhang, S. Q. ; Meng, J. ; Joshi, P. ; Wadsworth, R. ; Starosta, K. et al. Experimental Evidence for Transverse Wobbling in Pd-105 PHYSICAL REVIEW LETTERS 122 : 6 Paper: 062501 , 6 p. (2019) DOI REAL WoS Scopus PubMed arXiv Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos Független idéző: 7

1. Biswas S. et al. Longitudinal wobbling in La-133. (2019) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 55 9

2. Chakraborty S. et al. gamma-vibration in Xe-126: A revisit. (2020) NUCLEAR PHYSICS A 0375-9474 996

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

3. Chakraborty S. et al. Indication of gamma-vibration in I-123,I-125,I-127. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361- 6471 47 9

4. Majumder C. et al. Lifetime measurements in Pd-104. (2020) JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS 0954-3899 1361-6471 47 12

5. Lawrie E. A. et al. Tilted precession and wobbling in triaxial nuclei. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 101 3

6. Wang Y.K. et al. Two quasiparticle wobbling in the even-even nucleus 130Ba. (2020) PHYSICS LETTERS B 0370-2693 1873-2445 802

7. Chakraborty S. et al. γ-vibration in 126Xe: A revisit. (2020) NUCLEAR PHYSICS A 0375-9474 996

72. Qiang, Y. H. ; Petrache, C. M. ; Guo, S. ; Walker, P. M. ; Mengoni, D. ; Chen, Q. B. ; Lv, B. F. ; Astier, A. ; Dupont, E. ; Liu, M. L. et al. Identification of high-K rotation in Ba-130: Testing the consistency of electromagnetic observables PHYSICAL REVIEW C 99 : 1 Paper: 014307 , 7 p. (2019) DOI WoS Repozitóriumban Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 73. Carroll, R. J. ; Podolyák, Zs. ; Berry, T. ; Grawe, H. ; Alexander, T. ; Andreyev, A. N. ; Ansari, S. ; Borge, M. J. G. ; Brunet, M. ; Creswell, J. R. et al. Competition between Allowed and First-Forbidden β Decay: The Case of Hg 208 → Tl 208 PHYSICAL REVIEW LETTERS 125 : 19 Paper: 192501 (2020) DOI Scopus Egyéb URL Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 74. Ertoprak, A. ; Qi, C. ; Cederwall, B. ; Doncel, M. ; Jakobsson, U. ; Nyakó, B. M. ; Jaworski, G. ; Davies, P. ; de France, G. ; Kuti, I. et al. Lifetimes of core-excited states in semi-magic ^{95}\mathrm {Rh} EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 56 : 11 Paper: 291 (2020) DOI Scopus Egyéb URL Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 75. Siciliano, M. ; Valiente-Dobón, J.J. ; Goasduff, A. ; Nowacki, F. ; Zuker, A.P. ; Bazzacco, D. ; Lopez-Martens, A. ; Clément, E. ; Benzoni, G. ; Braunroth, T. et al. Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in 106,108Sn PHYSICS LETTERS B 806 Paper: 135474 (2020) DOI WoS Egyéb URL Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 76. Guo, S. ; Petrache, C.M. ✉ ; Mengoni, D. ; Liu, Y.X. ; Chen, Q.B. ; Qiang, Y.H. ; Astier, A. ; Dupont, E. ; Zheng, K.K. ; Wang, J.G. et al. Pseudospin partner bands in Ba 130 PHYSICAL REVIEW C 102 : 4 Paper: 044320 (2020) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 77. Garrote, F. L. Bello ; Sahin, E. ; Tsunoda, Y. ; Otsuka, T. ; Gorgen, A. ; Niikura, M. ; Nishimura, S. ; de, Angelis G. ; Benzoni, G. ; Morales, A. I et al. beta decay of Ni-75 and the systematics of the low-lying level structure of neutron- rich odd-A Cu isotopes PHYSICAL REVIEW C 102 : 3 Paper: 034314 (2020) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 78.

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

Petrache, C. M. ; Lv, B. F. ; Chen, Q. B. ; Meng, J. ; Astier, A. ; Dupont, E. ; Zheng, K. K. ; Greenlees, P. T. ; Badran, H. ; Calverley, T. et al. Multiple chiral bands in ^{137}Nd EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 56 : 8 Paper: 208 (2020) DOI REAL WoS Scopus Egyéb URL Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 79. Liu, J. J. ; Lee, J. ✉ ; Watanabe, H. ✉ ; Nishimura, S. ; Zhang, G. X. ; Wu, J. ; Walker, P. M. ; Regan, P. H. ; Soderstrom, P-A ; Kanaoka, H. et al. Isomeric and beta-decay spectroscopy of Ho-173,Ho-174 PHYSICAL REVIEW C 102 : 2 Paper: 024301 , 8 p. (2020) DOI WoS Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 80. Gottardo, A. ; De, Angelis G. ; Doornenbal, P. ; Coraggio, L. ; Gargano, A. ; Itaco, N. ; Kaneko, K. ; Van, Isacker P. ; Furumoto, T. ; Benzoni, G. et al. Transition strengths in the neutron-rich Ni 73,74,75 isotopes PHYSICAL REVIEW C 102 : 1 Paper: 014323 (2020) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Go S. et al. Mapping of fragmented nu f(5/2) -> pi f(7/2) transitions in the Co- 73 -> Ni-73 decay. (2020) PHYSICAL REVIEW C 0556-2813 1089-490X 2469-9985 102 4

81. Petrache, C.M. ; Minkov, N. ; Nakatsukasa, T. ; Lv, B.F. ; Astier, A. ; Dupont, E. ; Zheng, K.K. ; Greenlees, P. ; Badran, H. ; Calverley, T. et al. Signatures of enhanced octupole correlations at high spin in Nd 136 PHYSICAL REVIEW C 102 : 1 Paper: 014311 (2020) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 82. Guo, S. ✉ ; Petrache, C.M. ; Mengoni, D. ; Qiang, Y.H. ; Wang, Y.P. ; Wang, Y.Y. ; Meng, J. ; Wang, Y.K. ; Zhang, S.Q. et al. Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations PHYSICS LETTERS B 807 Paper: 135572 (2020) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 83. Kruzsicz, Bernadett ; Kuti, István ; Kunné, Sohler Dorottya ; Timár, János Kísérleti bizonyíték a 105Pd atommag imbolygó forgására FIZIKAI SZEMLE 70 : 5 pp. 147-152. , 6 p. (2020) REAL-J Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos 84. Berry, T.A. ; Podolyák, Z. ; Carroll, R.J. ; Licǎ, R. ; Brown, B.A. ; Grawe, H. ; Sotty, C. ; Timofeyuk, N.K. ; Alexander, T. ; Andreyev, A.N. et al. Octupole states in Tl 207 studied through β decay PHYSICAL REVIEW C 101 : 5 Paper: 054311 (2020) DOI WoS Scopus Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos 85. Timár, J. ; Kruzsicz, B. ; Kuti, I. ; Sohler, D. ; Molnár, J. ; Nyakó, B.M. ; Chen, Q.B. ; Zhang, S.Q. ; Meng, J. ; Joshi, P. et al. Triaxiality-related nuclear phenomena in the A ≈ 100 mass region JOURNAL OF PHYSICS-CONFERENCE SERIES 1555 : 1 Paper: 012025 (2020) DOI Scopus Folyóiratcikk/Konferenciaközlemény (Folyóiratcikk)/Tudományos

Publikációk és független hivatkozások

Kuti István – habilitációs pályázat

86. Cederwall, B. ; Liu, X. ; Aktas, Ö. ; Ertoprak, A. ; Zhang, W. ; Qi, C. ; Clément, E. ; de France, G. ; Ralet, D. ; Gadea, A. et al. Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self- Conjugate Nucleus Ru 88 PHYSICAL REVIEW LETTERS 124 : 6 Paper: 062501 , 6 p. (2020)

DOI WoS Scopus PubMed Egyéb URL Folyóiratcikk/Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)/Tudományos Független idéző: 1

1. Mohr Peter. Yrast band in the heavy N = Z nucleus ^{88}Ru: \alpha -cluster approach. (2020) EUROPEAN PHYSICAL JOURNAL A: HADRONS AND NUCLEI 1434-6001 1434-601X 56 5

87. Yang, Z.H. ✉ ; Marqués, F.M. ; Achouri, N.L. ; Ahn, D.S. ; Aumann, T. ; Baba, H. ; Beaumel, D. ; Böhmer, M. ; Boretzky, K. ; Caamaño, M. et al. Study of Multi-neutron Systems with SAMURAI Spectrometer In: Carbonell, J.; Marqués, F. M.; Ploszajczak, M.; Orr, N. A. (szerk.) Recent Progress in Few-Body Physics Springer International Publishing, (2020) pp. 529-534. , 6 p. DOI Scopus arXiv Könyvrészlet/Konferenciaközlemény (Könyvrészlet)/Tudományos

Tudományos munkásság

Kuti István – habilitációs pályázat

A tudományos munkásság bemutatása A fokozatszerzésem után, a doktori kutatásaim folytatásaként továbbra is kísérleti

atommag-szerkezeti kutatásokat folytattam. Tudományos munkatársként végzett munkám két fő pillérre épült. Az egyik témámban összetett adatfeldolgozási folyamatokban vettem részt, melyek túlnyomórészt az A~100-as és az A~130-as tömegszám-tartomány atommagjaiban észlelt közepes és nagyspinű sávszerkezetek gamma-spektroszkópiai vizsgálattal történő megismerésére irányultak. Kutatásaim során a háromtengelyű magalakkal kapcsolatos két, korábban elméleti számítások alapján jósolt jelenséget vizsgáltam: a többszörös királis sávok megjelenését és a imbolygó forgó mozgást (1. és 2. tézispont). Mivel ezekhez a kutatásokhoz speciális gamma- illetve töltöttrészecske-detektorok szükségesek, a legfontosabb ilyen európai detektorrendszerek működtetéséhez történő hozzájárulás szintén része volt a kutatómunkámnak. Az ATOMKI által fejlesztett DIAMANT detektor felelőseként a berendezéssel részt vettünk több, kiemelkedő sikerrel zárult kampányban, melyben a rendszer az EXOGAM illetve az AGATA gamma-spektrométer segéd-detektoraként működött (3. tézispont).

Kutatómunkámat közepes méretű nemzetközi kollaborációk keretében, európai (GANIL - Franciaország, INFN LNL - Olaszország, JYFL - Finnország) és amerikai (Lawrence Berkeley National Laboratory - USA) magfizikai kutatóintézetekben végzett kísérletekhez kapcsolódva végeztem.

1. Többszörös kiralitás vizsgálata Az utóbbi évek egyik igen széles körben vizsgált magszerkezeti problémája az

atommag királis forgása, ezen belül is a többszörös kiralitás léte és jellege. Ha egy páratlan proton- és páratlan neutronszámú háromtengelyűen deformált

atommagokban az aktív valencia proton a legkisebb energiájú részecske-típusú pályát tölti be, míg az aktív valencia neutron a legnagyobb energiájúak lyuk-típusúak egyikét, akkor az aktív nukleonok és a magtörzs közötti vonzó kölcsönhatás akkor minimalizálja a rendszer energiáját, ha az aktív nukleonok hullámfüggvényei a lehető legjobban átfednek a magtörzzsel. A részecske-típusú pályák hullámfüggvénye akkor fed át leginkább a háromtengelyű magtörzzsel, ha a nukleon impulzusmomentum vektora a kistengely irányába mutat, a lyuk típusúaké pedig ha a nukleon hullámfüggvénye a nagytengely irányába mutat. A magtörzs impulzusmomentuma abba az irányba mutat, amerre a legnagyobb a tehetetlenségi nyomaték, vagyis a közepes tengely irányába. Így a három impulzusmomentum vektor kölcsönösen egymásra merőleges, ebből fakadóan két energetikailag egyenértékű belső állapot lehetséges a vektorok jobb- illetve balsodrású elrendezésének megfelelően,melyek egymás királis párjai. Mivel az atommag forog, mindegyik belső állapothoz egy-egy forgási sáv tartozik, amelyek egyformának várhatók mind az energiaszintekre, mind az egymásnak megfelelő állapotok bomlástulajdonságaira vonatkozóan a két belső állapot szimmetrikus volta miatt.

Tudományos munkásság

Kuti István – habilitációs pályázat

A legújabb elméleti előrejelzések szerint egy atommagban több különböző konfiguráció, vagy egy konfigurációnak több állapota is lehet királis, ami a magalak fontosságát hangsúlyozza a jelenségben. A többszörös királis sávok megjelenését az utóbbi években csoportunk jelentős hozzájárulásával sikerült kimutatni az A~100-as és az A~130-as tömegszám-tartományba tartozó atommmagokban a Gammapshere és a Galileo gamma-spektrométerek mellett végzett kísérletekben. Több, különböző konfigurációra épülő királis szerkezetet azonosítottunk a 135Nd és a 137Nd, valamint a 103Rh és a 104Rh atommagokban. A 103Rh atommagban csoportunk azonosította az egyetlen olyan esetet, ahol egy konfiguráció alap és gerjesztett állapota is királis.

A többszörös kiralitás mellett számos más, a kiralitáshoz kapcsolódó jelenséget is vizsgáltunk: királis szerkezeteket korábban még csak páratlan proton- és páratlan neutronsszámú, illetve páratlan tömegszámú atommagokban sikerült felleni. Az A~130-as tartományban királis szerkezethez kapcsolható forgási sávokat találtunk a 136Nd páros-páros atommagban. A különböző típusú deformációk közötti átmenetek is kialakulhatnak az alapvetően háromtengelyűen deformált atommagokban. Oktupól korrelációra utaló jeleket találtunk a 136Nd és a 131Ba atommagok királis szerkezethez rendelt forgási sávjainál. A 137Nd atommagban a megnyúlt alakhoz kapcsolódó királis forgás mellett a belapult deformációhoz társuló kollektív forgási sávokat észleltünk.

Az A~130 tömegszám-tartomány atommagjaival kapcsolatos eredményekben a szerepem a mérések kivitelezésében, valamint a publikációk elkészítésében való részvétel volt. Az 103,104Rh atommagok esetében eredményekhez való hozzájárulásomat a kísérleti adatok feldolgozása adta, melynek során a 3-dimenziós koincidencia gamma-mátrixok elemzésének eredményeképpen a korábban ismert nívósémát jelentősen sikerült kibővítenem, számos új sávot azonosítottam. A gamma-átmenetek energiáinak és intenzitásainak meghatározását végeztem, multipolaritásukat szögkorreláció és lineáris polarizáció analízis segítségével határoztam meg. A kapott multipolaritások segítségével a gerjesztett állapotok kvantummechanikai jellemzőit, spin és paritás értékeket rendeltem az állapotokhoz. A feldolgozás során a társtémavezetésemmel végzett részfeladatokat egy BSc hallgató is.

A tézisponthoz kapcsolódó publikációk: I. Kuti, et al. Multiple chiral doublet bands of identical configuration in 103Rh Physical Review Letters 113 032501 (2014) I. Kuti Atommagok királis forgásának vizsgálata az A≈130 és az A≈100 magtartományokban Disszertáció benyújtása, védés, megjelenés és fokozatszerzés éve: 2015 C. M. Petrache, et al. Evidence of chiral bands in even-even nuclei Physical Review C 97, 041304(R) (2018) C. M. Petrache, et al. Collective rotation of an oblate nucleus at very high spin Physical Review C 99, 041301(R) (2019)

Tudományos munkásság

Kuti István – habilitációs pályázat

B. F. Lv, et al. Chirality of 135Nd reexamined: Evidence for multiple chiral doublet bands Physical Review C 100, 024314 (2019) C. M. Petrache, et al. Highly deformed bands in Nd nuclei: New results and consistent interpretation within the cranked Nilsson-Strutinsky formalism Physical Review C 100, 054319 (2019) J. Timár, et al. Triaxiality-related nuclear phenomena in the A ≈ 100 mass region Journal of Physics: Conference Series 1555, 012025 (2020) S. Guo, et al. Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations Physics Letters B 807, 135572 (2020) C. M. Petrache, et al. Multiple chiral bands in 137Nd European Physical Journal 54: 208 (2020) C. M. Petrache, et al. Signatures of enhanced octupole correlations at high spin in 136Nd Physical Review C 102, 014311 (2020)

2. Az atommag imbolygó forgásának tanulmányozása A három irányban különböző mértékben megnyúlt alakú atommagok a normál

deformált atommagokban szokásos forgó mozgásoktól bonyolultabb forgást is végezhetnek: gyorsan forognak az egyik főtengely körül, és ez a forgástengelyük lassabban körbefordul a térben állandó perdületvektor körül. Ezt nevezzük imbolygó forgásnak. Az atommag imbolygó forgásáról már évtizedekkel ezelőtt születtek elméleti jóslatok. A jelenség kísérleti kimutatása azonban csak a legutóbbi években sikerült, kutatásainkat megelőzően néhány erősen deformált A~170 tömegszámú atommagban és egy normál deformált atommagban az A~130 magtartományban. Közös ezekben az atommagokban, hogy mindegyik páratlan protonszámú. Olyan atommagban korábban nem sikerült kimutatni az imbolygó forgást, amelyikben a neutronok száma a páratlan, tehát az aktív valencia nukleon egy neutron. Mivel az A~130-as magtartományhoz hasonlóan az A~100-as tartományban is találhatóak háromtengelyűen deformált atommagok, sőt ezekben többször kimutatták a kiralitás jelenlétét, ezért célszerű volt megvizsgálni, hogy ebben a magtartományban is kialakul-e az imbolygó forgás. A következő feladat annak megválaszolása volt, hogy ha igen, akkor ennek a speciális forgásnak a jellemzői függenek-e a magtartománytól.

A 105Pd atommagra vonatkozó kísérlet során az atommag közepes és nagy spinű gerjesztett állapotai a 96Zr(13C,4n) nehézion fúzió-párolgás reakcióban álltak elő. A reakció során kibocsátott, egymással koincidenciakapcsolatban lévő gamma-sugárzások

Tudományos munkásság

Kuti István – habilitációs pályázat

detektálása a EUROBALL IV gamma-spektrométerrel történt. A közbenső magból protonok vagy alfa-részecskék kibocsátásával létrejövő reakciókból származó zavaró gamma-sugárzások letiltására a DIAMANT töltöttrészecske-detektorrendszer szolgált. A mért adatok alapján több új forgási sávot azonosítottunk a vizsgált atommagban. E forgási sávokban meghatároztuk az átmenetek DCO- és lineáris polarizáció-értékeit. Azt találtuk, hogy az egyik újonnan azonosított sávból az yrast-sávba történő M1+E2 átmenetek domináns E2 karakterisztikát mutatnak, ami az imbolygó forgás jellemzője. Ez alapján ezt a sávot az imbolygó forgáshoz tartozó sávként azonosítottuk. A kapott kísérleti eredmények jól egyeznek az atommag-elméleti számítások előrejelzéseivel. Ez az eredmény az első kísérleti bizonyíték az imbolygó forgási sávra egy-neutron konfiguráció esetén, illetve az imbolygó forgó mozgás első kísérleti megfigyelése az A~100 tömegszám-tartományban. Az eredmények továbbá megerősítik azt az elméleti előrejelzést is, hogy az imbolygó forgás általános jelenség a háromtengelyű ellipszoid alakú atommagok esetén.

Az eredményekhez való hozzájárulásom többek között a mérésből származó adatok feldolgozásában volt, melyben egy MSc hallgató eredményeinek párhuzamos kontrollját végeztem. Ennek során a gamma-átmenetek koincidenciakapcsolatait elemeztem, majd a kinyert adatokból a hallgató által felépített nívósémát ellenőriztem. A már leközölt eredményekre vonatkozó publikációk elkészítésében aktívan részt vettem.

A tézisponthoz kapcsolódó publikációk: J. Timár, et al. Multiple chiral doublet bands and possible transverse wobbling near 104Rh Acta Physica Polonica B Proc. Suppl. 11:1 179-187 (2018) J. Timár, et al. Experimental Evidence for Transverse Wobbling in 105Pd Physical Review Letters 122, 062501(2019) B. Kruzsicz, et al. Kísérleti bizonyíték a 105Pd atommag imbolygó forgására FIZIKAI SZEMLE 70 : 5 pp. 147-152. , 6 p. (2020)

3. A DIAMANT könnyű-töltöttrészecske detektorrendszer fejlesztése és alkalmazása A legújabb magszerkezet-kutatásokat végzők számára érdekes atommag-fizikai

jelenségek általában igen kis valószínűséggel állnak elő. Így ezen jelenségek kísérleti vizsgálatához elengedhetetlen a hatékony reakciócsatorna-kiemelést végző részecskedetektorok használata.

A DIAMANT egy kiemelkedő hatásfokkal rendelkező cézium-jodid szcintillátorokból álló töltöttrészecske-detektorrendszer, amely extrém kis méretének köszönhetően a reakciókamrán belül képes nagy neutronhozamú kísérletek során is megbízható részecskeszeparációra.

A 90-es években francia-olasz-magyar együttműködésben megalkotott DIAMANT detektorrendszert az Atommagkutató Intézet Kísérleti Magfizika Osztályának és az

Tudományos munkásság

Elektronikai Osztályának munkatársai a 2000-es évek óta fejlesztik és működtetik. Ez a könnyű-töltöttrészecske detektorrendszer évek óta járul hozzá nemzetközi együttműködésekhez, kísérleti eszközhátteret biztosítva több jelentős eredményt hozó magszerkezeti kutatáshoz. A három fő detektor egyikeként kiemelkedő sikerrel vett részt az EXOGAM kampányokban és a nyomkövető AGATA gamma-detektorrendszer mellett a 2017-2018. évi AGATA@GANIL kampányban a GANIL-ban, Franciaországban.

Ahhoz, hogy a DIAMANT megfelelően tudjon működni a 2017-2018-as AGATA kampány során, számos módosítást, fejlesztést kellett elvégezni a detektorrendszer mechanikájában, elektronikájában és az elektronikát irányító ill. a kiolvasott adatok elsődleges feldolgozását végző programokban. A munka során először részt vettem, majd felelősként én koordináltam a fejlesztés lépéseit, szorosan együttműködve az ATOMKI más laboratóriumainak munkatársaival. A munka során többek között:

- a DIAMANT detektor geometriai szerkezetét képessé kellett tenni arra, hogy akampány során különböző mérési elrendezésű kísérletekben is a legjobb hatásfokkaltudjon működni (flexiboard),- a kísérletekben részt vevő detektorok mindegyikével mechanikailag kompatibilisreakciókamrát kellett tervezni,- a korábbi analóg rendszerhez kialakított előerősítő-rendszert át kellett alakítani, hogyaz új digitális jelfeldolgozó egységekkel kompatibilis legyen,- a DIAMANT új típusú digitális elektronikáját illeszteni kellett az AGATAdetektorrendszer digitális elektronikájához.A kampányok során számos érdekes magszerkezeti jelenséget vizsgáltunk, többek

között a nukleonok közötti párkorreláció jellemzőit és a tükörmagokban előforduló szerkezeti különbségeket. Ezen vizsgálatokhoz elengedhetetlenül szükséges volt a DIAMANT használata a detektor kiemelkedő hatásfoka miatt. A közelmúltban új típusú neutron-proton pár-korrelációt sikerült azonosítani a 92Pb atommagban, melyben a párokká álló nukleonok azonos irányba mutató spinnel csatolódnak. Annak érdekében, hogy kiderítsük, hogy ez a jelenség jellemző-e a többi, egyenlő neutron- és protonszámmal rendelkező atommagokra is, tanulmányoztuk más, az N=Z vonal környékén elhelyezkedő atommagot is (88Ru, 95Rh). Az azonos tömegszámú, de éppen ellentétes proton/neutronszámú tükörmagok szerkezetét nagyon hasonlónak találták a stabilitási sáv mentén, viszont a stabilitási sávtól távolodva a megfeelelő gerjesztett állapotok energiái egyre jobban kezdenek elcsúszni, ami az izospin szimmetria sértés jele lehet. Ehhez a jelenséghez kapcsolódva a 23Mg-23Na tükörmag párban fellépő energiakülönbségeket vizsgáltuk az AGATA és a DIAMANT rendszer segítségével.

Az elmúlt három évben a DIAMANT detektorrendszer felelőse lettem. Ennek megfelelően az eredményekhez való hozzájárulásom a DIAMANT detektorrendszernek a kísérletekre, valamint a legutóbbi kampányban való részvételre való felkészítése, a fentebb felsorolt szükséges fejlesztések megtervezése, a kivitelezés megszervezése és esetenként megvalósítása, a DIAMANT üzemeltetése, valamint a kampányok során a kísérletek előkészítése, a kísérleti elrendezés megvalósítása és a kísérletek kivitelezése volt. A kísérletek során folyamatosan részt vettem a részadatok feldolgozásában, később azok értelmezésében, valamint a publikációk elkészítésében.

Kuti István – habilitációs pályázat

Tudományos munkásság

Kuti István – habilitációs pályázat

A tézisponthoz kapcsolódó publikációk: F. Ghazi Moradi, et al. Spectroscopy of the neutron-deficient N=50 nucleus 95Rh Physical Review C 89, 044310 (2014) A. Ertoprak, et al. Lifetime measurements with the Doppler shift attenuation method using a thick homogeneous production target - Verification of the method Acta Physica Polonica B 48, 325 (2017) A. Boso, et al. Isospin symmetry breaking in mirror nuclei 23Mg-23Na Acta Physica Polonica B 48, 313 (2017) A. Boso, et al. Neutron Skin Effects in Mirror Energy Differences: The Case of 23Mg − 23Na Physical Review Letters 121, 032502 (2018) B. Cederwall, et al. Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus 88Ru Physical Review Letters 124, 062501 (2020) A. Ertoprak, et al. Lifetimes of core-excited states in semi-magic 95Rh The European Physical Journal A 56, 291 (2020)

Kérdőív a habilitáló tudományos tevékenységének értékeléséhez

Kuti István – habilitációs pályázat

Név: Dr. Kuti István Születési év: 1983 Szűkebb szakterület: magfizika Doktori (PhD) fokozat megszerzésének éve: 2015 Tudományos közleményei (MTMT, 2020.11.11. állapot szerint):

Összes közleményének száma: 87

nemzetközi folyóiratban: 55

magyar nyelvű folyóiratban: 1

konferenciakiadványban: 17

könyvekben: 0

Nemzetközi folyóiratban megjelent közleményeinek effektív száma (Σi ti-½, ahol ti az i-edik publikáció társszerzőinek száma, és az összegzés a pályázó összes publikációjára vonatkozik):

1.41

Közleményeinek idézettsége: 724

Összes dolgozatának SCI idézettsége: 717

Független idézettsége (önhivatkozás és társ-szerzőknek a közös cikkre való hivatkozása nélkül) / SCI idézettsége: 396 / 380

Effektív idézettsége (Σi hi ti-½, ahol ti az i-edik publikáció társszerzőinek száma, hi pedig az erre vonatkozó független hivatkozásoké, és az összegzés a pályázó összes publikációjára vonatkozik):

20.62

PhD fokozat megszerzése óta írt dolgozatainak független / SCI idézettsége: 253 / 235

Téziseiben felhasznált közleményeinek független idézettsége: 60

A pályázó 3 legjelentősebb dolgozatának bibliográfiai adatai:

I. Kuti, et al. Multiple chiral doublet bands of identical configuration in 103Rh Physical Review Letters 113 032501 (2014) Nyilvános idézők összesen: 71 Független: 32 Függő: 39 Idézett közlemények száma: 4 J. Timár, et al. Experimental Evidence for Transverse Wobbling in 105Pd Physical Review Letters 122, 062501(2019) Nyilvános idézők összesen: 14 Független: 7 Függő: 7 Idézett közlemények száma: 1 B. Cederwall, et al. Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus 88Ru Physical Review Letters 124, 062501 (2020) Nyilvános idézők összesen: 1 Független: 1 Függő: 0 Idézett közlemények száma: 5

Kérdőív a habilitáló tudományos tevékenységének értékeléséhez

Kuti István – habilitációs pályázat

Műszaki fejlesztési tevékenység:

– a pályázó legjelentősebb, megvalósított műszaki alkotásai, és ennek jellemzői: -

– szabadalmak: -

– egyéb fejlesztési tevékenység: -

- 2017.09. → A DIAMANT detektorrendszer fejlesztése

Milyen oktatási tevékenységet végzett:

- 2016.09.01. – 2017.08.31. BSc hallgató témavezetése

- 2018 → Fejezetek napjaink magfizikájából c. előadássorozat

Mely intézeti közfeladatok ellátásában vett részt: :

- 2014.11.07 – 2017.06.20 TUDOSZ elnökségi tag

A habilitációs kérelem elbírálását pozitívan befolyásoló egyéb körülmények:

– tudományos kitüntetések, elismerések:

- 2015 MTA Atommagkutató Intézet, Ifjúsági Díj

- 2012.09.01. – 2013.05.31. TÁMOP-4.2.2/B-10/1-2010-0024 predoktori ösztöndíj

- 2017.09.01. – 2020.08.31. NKFIH Posztdoktori Kiválósági Program (PD_17), vez. kutató

– ismeretterjesztő tevékenység:

- 2011.06.02. – 2011.06.15. CERN Utazó Kiállítás Debrecenben – tárlatvezetés

- 2012.03.05. – 2012.03.10. XXXIII. Fizikusnapok - hidegfizikai kísérleti bemutatók

– rendezvények szervezése:

- 2016.11.29. – 2016.11.30. NUMEXO2 Workshop, ATOMKI, Debrecen

– elnyert hazai és nemzetközi kutatási támogatások és együttműködések:

- 2012.01.01. – 2016.12.31. K100835 OTKA társkutató

- 2015.04.01. – 2019.03.31. NN114454 OTKA társkutató

- 2017.09.01. – 2021.08.31. K124810 OTKA társkutató

- 2018.09.01. – 2022.08.31. K128947 OTKA társkutató

– a hazai és nemzetközi tudományos szervezetekben betöltött tisztség:

- 2015.09 Eötvös Loránd Fizikai Társulat tag

- 2017.04. MTA Köztestületi tag

- 2018.10. AGATA Steering Comittee, helyettes delegált

– 2 hónapnál hosszabb vendégkutatói állás:

- 2017.09. – 2018.07. a DIAMANT detektor felügyelete és működtetése (~4.5 hónap) az AGATA kampányon

Kérdőív a habilitáló tudományos tevékenységének értékeléséhez

Kuti István – habilitációs pályázat

– meghívott előadások tudományos konferenciákon:

- 2015.04.21. Multiple chirality in 103Rh

Chiral Bands in Nuclei, NORDITA, Stockholm

- 2016.02.10. Status of DIAMANT

AGATA@GANIL Pre-PAC Workshop, GANIL, Caen

- 2016.05.23. Status of DIAMANT

N=Z collaboration meeting, ŚLCJ, Warszawa

- 2016.11.29. The DIAMANT array

NUMEX02 workshop, MTA Atomki, Debrecen

- 2018.06.19. Determination of quadrupole moments along Sb isotopic chain until the proton drip line - LoI

S3 Workshop, GANIL, Caen

- 2018.09.17. Performance of DIAMANT

NEDA Collaboration meeting, Zaim University, Istanbul

- 2019.03.19. Search for chiral structures based on 1-particle-2-hole configurations in the A~100 region - LoI

AGATA@LNL Workshop, LNL, Legnaro

- 2019.10.07. Performance of DIAMANT

N=Z Collaboration meeting, GGI, Firenze

– nemzetközi együttműködések:

- EURICA, SAMURAI, SUNFLOWER kollaboráció (RIKEN, Tokió, Japán)

- N=Z kollaboráció (GANIL, INFN-LNL, INFN-Padova, CSIC, KTH, HIL UW, …)

- AGATA kollaboráció

További kutatási tervek

Kuti István – habilitációs pályázat

A középtávú jövőben – a korábbi kutatásaimhoz hasonlóan – két fő témára szeretnék koncentrálni, melyek részleteit az alábbiakban foglalom össze:

1. A DIAMANT detektorrendszer fejlesztése és alkalmazása A Magfizika Laboratóriumon belül működő Magszerkezeti Kutatócsoportban továbbra is a DIAMANT detektorrendszer felelőse fogok maradni. Így a terveim nagy része a DIAMANT detektorrendszer fejlesztéséhez és alkalmazásához kapcsolódik. Ezeknek a terveknek a megvalósításáért én leszek a felelős, természetesen a kutatócsoport többi tagjával együttműködve.

1-2 éves távlat: - a DIAMANT detektorrendszer elmúlt 5 évben történt fejlesztéseinek publikálása (első szerzős cikk) - konverziós elektron detektálásra való használat vizsgálata az Atomki Ciklotronjánál lévő nyalábvégen

(kísérleti elrendezés kivitelezése, mérés) 5 éves távlat: - további használat az AGATA kollaboráción belül az olaszországi INFN LNL laboraróriumban, mivel a

jövőbeni kampányra érkezett előzetes méréstervek közül már most több számol a DIAMANT-tal (detektorrendszer felkészítése, telepítése, kísérleti részvétel, adatfeldolgozás)

- a rendszer mobilitásának fejlesztése (teljes saját adatgyűjtő rendszer és slow control beszerzése illetve kifejlesztése)

5-10 éves távlat: - modularitás fejlesztése (a különböző mérési elrendezésekhez egyedi geometriák könnyű kivitelezése

új flexibilis alapok tervezésével) - az AGATA mellett az EXOGAM2 detektorrendszerrel egy állandó elrendezés kialakítása

(detektorrendszer felkészítése, telepítése, kísérleti részvétel, adatfeldolgozás) 2. Háromtengelyűen deformált atommagokban fellépő jelenségek vizsgálata

A Magszerkezeti Kutatócsoport egyik további fő témájaként szeretnénk folytatni a háromtengelyűen deformált atommagokban kialakuló különleges mozgásformák vizsgálatait. Mivel a tervezett vizsgálatok megvalósítása összetett folyamat, több fajta szaktudást igényel (előzetes egyeztetés, tervezés, nyalábidő megpályázása, a nyalábidő lekérése, a mérés kivitelezése, a komplex kísérleti berendezések működtetése, a kapott adatok feldolgozása, a kapott eredmények értelmezése elméleti számításokat végző együttműködőkkel), ezeket a kutatásokat csak a kutatócsoport tagjai közötti szoros együttműködésben lehet végrehajtani. A csoport tagjaként a lentebbi tervek megvalósításában aktív szerepet kívánok vállalni.

1-2 éves távlat: - a 103,104Rh atommagok szerkezetének minél teljesebb vizsgálata - a 103Rh atommaggal kapcsolatos eredmények részletes cikkben való publikálása - a többszörös kiralitás lehetséges megjelenésének keresése a 104Rh atommagban (koin-

cidenciakapcsolatok elemzése, szögkorreláció és lineáris polarizáció analízis, eredmények értelmezése)

5 éves távlat: - az új, imbolygó forgómozgás megjelenésenek feltérképezése az A~100 tömegszám-tartomány más

atommagjaiban is (kísérleti adatok feldolgozása az ismertetett módszerekkel) - az elméletileg jósolt, azonban ezidáig kísérletileg még egy magtartományban sem azonosított, több-

fononos imbolygó forgómozgás keresése pl. a 105Pd atommagban (kísérleti adatok feldolgozása az ismertetett módszerekkel)

- új típusú, 1-részecske-2-lyuk konfigurációkra épülő, normáldeformált atommagokban idáig nem észlelt királis szerkezetek keresése az A~100-as magtartományban (kísérleti adatok feldolgozása az ismertetett módszerekkel) - ezen kutatások kivitekezésének egyik főszereplője leszek; a kutatás végrehajtásába tervezzük egyetemi nappali tagozatos illetve doktorandusz hallgató bevonását

5-10 éves távlat: - királis szerkezetek keresése páros-páros atommagokban az A~100-as tartományban - további nagyspinű, akar radioaktiv nyalábokon történő magszerkezeti kutatásokban történő

részvétel

Előadások címei

Kuti István – habilitációs pályázat

Magyar nyelvű előadás: A háromtengelyűen deformált atommagokban kialakuló különleges mozgásformák

Angol nyelvű előadás:

Development of the DIAMANT light charged particle detector system and its use in the AGATA@GANIL campaign

Multiple Chiral Doublet Bands of Identical Configuration in 103Rh

I. Kuti,1 Q. B. Chen,2 J. Timár,1 D. Sohler,1 S. Q. Zhang,2 Z. H. Zhang,2 P. W. Zhao,2 J. Meng,2

K. Starosta,3 T. Koike,4 E. S. Paul,5 D. B. Fossan,6 and C. Vaman61Institute for Nuclear Research, Hungarian Academy of Sciences, Pf. 51, 4001 Debrecen, Hungary

2State Key Laboratory of Physics and Technology, School of Physics, Peking University, Beijing 100871, China3Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

4Graduate School of Science, Tohoku University, Sendai 980-8578, Japan5Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom

6Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA(Received 23 April 2014; published 14 July 2014)

Three sets of chiral doublet band structures have been identified in the 103Rh nucleus. The properties ofthe observed chiral doublet bands are in good agreement with theoretical results obtained using constrainedcovariant density functional theory and particle rotor model calculations. Two of them belong to anidentical configuration and provide the first experimental evidence for a novel type of multiple chiraldoublets, where an “excited” chiral doublet of a configuration is seen together with the “yrast” one. Thisobservation shows that the chiral geometry in nuclei can be robust against the increase of the intrinsicexcitation energy.

DOI: 10.1103/PhysRevLett.113.032501 PACS numbers: 21.10.Hw, 21.10.Re, 21.60.-n, 23.20.Lv

A novel form of spontaneous symmetry breaking, thechiral rotation of triaxial nuclei, was suggested in 1997 [1].It was shown that in special circumstances, referred to aschiral geometry, in the intrinsic frame of the rotating triaxialnucleus the total angular momentum vector lies outside thethree principal planes. Thus, its components along theprincipal axes can be oriented in left- and right-handedways. In the laboratory frame, the chiral symmetry isrestored, which manifests itself as a pair of ΔI ¼ 1 nearlydegenerate bands with the same parity. Such chiral doubletbands were first identified in four N ¼ 75 isotones in 2001[2]. So far, many chiral candidate nuclei have been reportedexperimentally in the A ∼ 80, 100, 130, and 190 massregions [3–21]. Besides the simplest chiral configurationscomposed of one unpaired proton and neutron, compositechiral configurations, containing more than one unpairedprotons and/or neutrons, have also been observed in theodd-mass or even-even neighbors of the odd-odd chiralnuclei [10,18]. These observations show that chirality is notrestricted to a certain configuration in a mass region; i.e.,the chiral geometry can be robust against the change ofconfiguration. It was even demonstrated recently by Menget al. [22–25], based on adiabatic and configuration-fixedconstrained triaxial covariant density functional theory(CDFT) calculations, that it is possible to have multiplepairs of chiral doublet bands in a single nucleus, and theacronym MχD was introduced for this phenomenon. Thefirst experimental evidence for the predicted MχD wasreported in 133Ce [26] and also possibly in 107Ag [27].It is also interesting to study the robustness of chiral

geometry against the increase of the intrinsic excitationenergy, i.e., if the chiral geometry is sustained in the

higher-lying bands of a certain chiral configuration. In allthe known cases, the chiral doublet corresponds to the twolowest-lying bands of a configuration. Even for MχD in133Ce [26] and 107Ag [27], each chiral doublet structurecorresponds to two lowest-lying bands with a distinctconfiguration. Therefore, study of the third and forth bandsof the same chiral configuration is needed to answer thequestion of the investigated robustness. Very recent modelcalculations predicted multiple chiral doublet bands thatbelong to the same configuration [28–30]. In this Letter, wereport on the first experimental evidence for such a type ofMχD in the 103Rh nucleus.Medium- and high-spin states of 103Rh were populated

using the 96Zrð11B; 4nÞ reaction at a beam energy of40 MeV. The beam, provided by the 88-inch cyclotron ofthe LBNL, impinged upon an enriched 500 μg=cm2 thickself-supporting Zr foil. The emitted γ-rays were detected bythe Gammasphere spectrometer. Approximately 9 × 108

four- and higher-fold events were accumulated and sortedoff-line into two-dimensional and three-dimensional histo-grams. The data analysis was carried out using the RADWARE

software package [31]. A more complete level scheme of103Rh was constructed using the observed coincidencerelations and relative intensities of the gamma transitionsand based on the formerly reported states [19,32]. Spinassignments for the new states were deduced from themeasurements of angular-intensity ratios, based on themethod of directional correlation from oriented states(DCO) [33]. The parities were deduced using the additionalassumption that if a level decays to a band by bothquadrupole and dipole transitions with comparable inten-sities, then the quadrupole transition is E2 and the dipole is

PRL 113, 032501 (2014) P HY S I CA L R EV I EW LE T T ER Sweek ending18 JULY 2014

0031-9007=14=113(3)=032501(5) 032501-1 © 2014 American Physical Society

M1. Several new rotational bands have been found, and thepreviously reported ones were extended to higher spins. Apartial level scheme showing the bands relevant to the focusof this Letter is plotted in Fig. 1. Bands A and B wereformerly reported in Ref. [32], while bands 1 and 2 wereidentified earlier and assigned as a chiral doublet withconfiguration πðg9=2Þ ⊗ νðh11=2Þ2 in Ref. [19]. Bands 3and 6 were first reported in Ref. [32] up to spins 29=2 and25=2, respectively, with a tentative configuration assignmentof πðg9=2Þ2ðp1=2Þ. In the present work, we extended thesebands to spins 39=2 and 35=2, respectively. Two of thenewly observed bands, labeled as bands 4 and 5, arepresented in Fig. 1. Figure 2 shows triple-coincidenceγ-ray spectra proving the placements of the levels in bands4 and 5, with the in-band transitions highlighted. For thesebands, the spin parities were deduced from DCO measure-ments. In the present geometry, setting the gate on a stretchedquadrupole transition, RDCO values of ∼1.0 and ∼0.5 wereexpected for stretched quadrupole and stretched dipoletransitions, respectively. An E2 electromagnetic characterto the 674- and 1007 keV transitions linking band 5 to bandB was assigned based on the DCO values of 0.93(11) and1.07(4), respectively, setting the gate on the 717 keV E2transition of band B. Similarly the 574 and 700 keVtransitions linking band 4 to band 6 are considered to haveE2 character, based on the DCO values of 0.89(18) and 0.88(19) obtained by gating on the 884 keV E2 transition linking

band 6 to band B. These quadrupole transitions fix thenegative parity and the spins for bands 4 and 5. Thisassignment is verified by the 0.55(2) and 0.54(13) DCOvalues of the 396 and 391 keV stretched M1 transitionslinking band 4 to band 3 and band 5 to band 6, respectively.The ΔI ¼ 1 bands 3–6 all have negative parity and are

linked to each other by many transitions. Furthermore, theenergy differences between the same-spin levels are rathersmall; for bands 3 and 4 these values are about 300 keVandfor bands 6 and 5 about 100 keV, and their BðM1Þ=BðE2Þvalues are very similar. These properties may indicate

FIG. 1. Partial level scheme of 103Rh. The energies are given in keV, and the widths of the arrows are proportional to the relativetransition intensities.

100 200 300 400 500 600 700 800 900Eγ (keV)

0

0.5

1

1.5

2

Nγγ

γ (1

03 )

0

2

4

6

8 Band 4, Gate: 339 & 479 keV

Band 5, Gate: 219+362 & 1156 keV

179

235

342*

357

465*

562 717

728

707

806*

326*

728

895

532*

432*

449*36

2*

219*

164

192 46

5

688*

154

283 29

5

396

88419

5

564

FIG. 2 (color online). Typical γγγ-coincidence spectra obtainedin the present work showing the placement of the γ rays in bands4 and 5. Transitions marked with stars and labeled in blue or redare in-band transitions.

PRL 113, 032501 (2014) P HY S I CA L R EV I EW LE T T ER Sweek ending18 JULY 2014

032501-2

chirality. Indeed, in neighboring 105Rh, similar structures ofthree ΔI ¼ 1 bands have been observed and identifiedtentatively as the three lowest-energy bands of the πg9=2 ⊗νh11=2ðg7=2; d5=2Þ configuration [17]. In 105Rh, the lowest-energy one of the three bands is thought to have planargeometry, while the two higher-energy bands are consid-ered as a chiral doublet. In 103Rh, we see four bands thatcould correspond to two chiral doublets. To assist in thecomparison of the properties of bands 3–6, we have derivedtheir quasiparticle alignments as defined in Ref. [34]. K ¼1=2 and the J 0 ¼ 7ℏ2=MeV and J 1 ¼ 15.7ℏ4=MeV3

parameters of the Harris formula J ¼ J 0 þ J 1ω2,

describing the dependence of moments of inertia on therotational frequency, have been adopted in the derivation.The obtained alignments are shown in Fig. 3. Although thealignment value is ∼9ℏ for all four bands in a wide intervalof rotational frequency, there is a pronounced similaritybetween bands 3 and 4 and also between bands 5 and 6.These similarities enable us to group the four bands intotwo possible chiral doublets. According to this grouping,the lowest-energy and the second-lowest-energy bands(bands 3 and 4, respectively) could form the “yrast” chiraldoublet, while the next two bands in energy (bands 6 and 5)could form the “excited” chiral doublet of the probableπg9=2 ⊗ νh11=2ðg7=2; d5=2Þ configuration. We need to men-tion, however, that bands 4 and 6 are so close to each otherin energy that their energy ordering varies with spin.In order to understand the nature of the observed band

structure in 103Rh, adiabatic and configuration-fixed con-strained CDFT calculations [22] were first performed tosearch for the possible configurations and deformations.Subsequently, the configurations and deformations werefurther confirmed and reexamined by tilted axis crankingCDFT (TAC-CDFT) calculations [35–38] determining theenergy spectra, Routhians, spin-frequency relations, defor-mations, and alignments. Finally, with the obtained con-figurations and deformations, quantum particle rotor model[26,39,40] calculations were performed to study the energyspectra and BðM1Þ=BðE2Þ ratios for both the positive- andthe negative-parity bands.The potential-energy surface in the β-γ plane obtained

from the CDFT calculations with effective interaction PC-PK1 [41] shows that the ground state of 103Rh has a triaxial

deformation with a quadrupole deformation of β ¼ 0.25 anda triaxiality parameter of γ ¼ 20° and is soft with respect tothe γ degree of freedom. The configuration-fixed calcula-tions provided the πð1g9=2Þ−1 (more precisely, seven protonsin g9=2 shell) and the πð2p1=2Þ1 unpaired-nucleon configu-rations for bands A and B, in good agreement with previousconfiguration assignments [32]. Among the five lowest-lyingconfigurations with three unpaired nucleons, one positive-parity and four negative-parity configurations have beenfound. The band head of the positive-parity πð1g9=2Þ−1 ⊗νð1h11=2Þ2 configuration is predicted to have a triaxial shapeof β ¼ 0.29, γ ¼ 11.0°. Two of the four negative-paritybands are predicted to have triaxial shape, namely, configu-ration πð1g9=2Þ−1 ⊗ νð1h11=2Þ1ð2d5=2Þ1 with β ¼ 0.27, γ ¼18.7° and configuration πð1g9=2Þ−1 ⊗ νð1h11=2Þ1ð1g7=2Þ−1with β ¼ 0.26, γ ¼ 14.5°. Here ðg7=2Þ−1 denotes the occu-pation of five neutrons in the g7=2 shell.In order to study the rotational behavior of the predicted

configurations, and to reexamine their configurations anddeformations with rotation, TAC-CDFT [35–38] with theeffective interaction PC-PK1 [41] was adopted. Due to thestrong mixing between low-j orbits, we kept the configura-tions of the high-j valence nucleons fixed and left theother nucleons automatically occupying the lowest levels.For positive-parity bands, we fixed the high-j orbitalsπð1g9=2Þ−1 ⊗ νð1h11=2Þ2, while for negative-parity bandswe fixed the πð1g9=2Þ−1 ⊗ νð1h11=2Þ1. The calculated ener-gies as a function of spin as well as the Routhians and spinsas a function of the rotational frequency for the above twoconfigurations are in a good agreement with the experimentalvalues for bands 1,2 and 3–6, respectively. With increasingrotational frequency, the β shape parameter was found todecrease somewhat, while the γ parameter increased toaround 30° with average values of 20° in the observedfrequency range. For the low-j components of the nega-tive-parity configuration, a g7=2 neutron is found to contributea large alignment along the short axis (about 3ℏ) in the TAC-CDFT calculations and the contribution from other g7=2neutrons can be regarded as a part of the core. Hence, thevalence g7=2 neutron contributions can be approximated by aneffective ð1g7=2Þ1 configuration. Therefore, in the followingdiscussions, the configuration for the negative parity bands iswritten asπg−19=2 ⊗ νh11=2g17=2. It has also been revealed by thecalculations that the angular momenta of the ð1h11=2Þ1 andð1g7=2Þ1 neutrons are aligned along the short axis, while theangular momentum of the ð1g9=2Þ−1 proton is mainly alignedalong the long axis, as it is expected in case of chirality. Thedetails will be presented in a forthcoming publication.In order to study the energy spectra and the

BðM1Þ=BðE2Þ ratios of the positive- and negative-paritybands, the quantum particle rotor model (PRM) [26,39,40]has been applied for both the πð1g9=2Þ−1 ⊗ νð1h11=2Þ2 andπð1g9=2Þ−1 ⊗ νð1h11=2Þ1ð1g7=2Þ1 configurations. In thePRM calculations, the input β deformation parameter atthe bandhead was β ¼ 0.29 for the positive parity bandsand β ¼ 0.26 for the negative parity bands. The γ parameter

FIG. 3 (color online). Quasiparticle alignments of bands 3–6.For details, see the text.

PRL 113, 032501 (2014) P HY S I CA L R EV I EW LE T T ER Sweek ending18 JULY 2014

032501-3

was adopted as 20°, which was obtained from the TAC-CDFT calculations. The single-j shell Hamiltonian param-eter was taken as [42]

C ¼�123

8

ffiffiffi5

π

r �2N þ 3

jðjþ 1ÞA−1=3β:

For the electromagnetic transitions, the empirical intrinsicquadrupole moment of Q0 ¼ ð3= ffiffiffiffiffiffi

5πp ÞR2

0Zβ with R0 ¼1.2A1=3 fm and the gyromagnetic ratios of gR ¼ Z=A,gπðg9=2Þ ¼ 1.26, gνðh11=2Þ ¼ −0.21, gνðg7=2Þ ¼ 0.70 wereadopted.For the two positive-parity bands with the configuration

πð1g9=2Þ−1 ⊗ νð1h11=2Þ2, a moment of inertia J 0 ¼23ℏ2=MeV was used. This was adjusted to reproduce thetrend of the energy spectra of bands 1 and 2. The obtainedenergy spectra are shown in Fig. 4. The PRM resultsexcellently agree with the data. These two bands areseparated by ∼500 keV at I ¼ 29=2ℏ. They approach eachother with increasing spin, and the separation finally goes to∼360 keV at I ¼ 39=2. The BðM1Þ=BðE2Þ values of bands1 and 2 are similar. The observation that the experimentalBðM1Þ=BðE2Þ values for bands 1 and 2 do not fall off asquickly with spin as the theoretical values comes from thefrozen rotor assumption adopted in PRM. In Ref. [40], adetailed analysis shows that in both 103Rh and 105Rh, thechiral bands with positive parity change from chiral vibrationto nearly static chirality at spin I ¼ 37=2 and back to anothertype of chiral vibration at higher spins. Such a conclusion isstill held here for the positive-parity doublet.

For the four negative-parity bands of configurationπð1g9=2Þ−1 ⊗ νð1h11=2Þ1ð1g7=2Þ1, a moment of inertia ofJ 0 ¼ 25ℏ2=MeV was adopted. A Coriolis attenuationfactor of ξ ¼ 0.85 has been employed to take into accountthe effect of the strong mixing between low-j neutrons. InFig. 4, the four lowest-energy calculated bands of the aboveconfiguration are compared with the experimental bands3–6. The four calculated bands form two chiral doublets, ofwhich the first one fits the experimental band pair 3 and 4,while the second doublet can also reasonably reproduce thetrend of bands 6 and 5. The calculated energies for bands 5and 6 are higher than the experimental values of about200 keV, which might be ascribed to the idea that thecomplex correlations are not fully taken into account inthe PRM calculations with single-j shell Hamiltonian. Thecorresponding calculated electromagnetic transition prob-abilities, shown in Fig. 4, are also able to reproduce the datareasonably. The weak odd-even BðM1Þ=BðE2Þ staggeringfor bands 3 and 4 is consistent with the case of chiralvibration as discussed in Ref. [43]. For bands 5 and 6, theBðM1Þ=BðE2Þ values show a staggering at I ¼ 15.5ℏ,which is also reproduced by the PRM.In contrast with the multiple chiral doublets predicted in

Ref. [22] and experimentally reported in 133Ce [26], theobserved MχD in the negative-parity bands of 103Rh is builtfrom the first and second doublets of the same configuration.Although the two doublets belong to the same configuration,the angular momenta couplings for the two pairs of chiralpartners are different. This fact is reflected by the differentalignment properties of the two doublets. The quasiparticle

FIG. 4 (color online). Experimental excitation energies and BðM1Þ=BðE2Þ ratios for the positive-parity chiral bands 1–2 (left panels)and negative-parity multiple chiral bands 3–6 (middle and right panels) in 103Rh together with the results of the triaxial particle rotormodel. The number following the configuration label of the theoretical curve corresponds to the energy ordering of the calculated bandwith the given configuration.

PRL 113, 032501 (2014) P HY S I CA L R EV I EW LE T T ER Sweek ending18 JULY 2014

032501-4

alignments are extracted from the calculated energy spectraby using the same experimental Harris parameters for bands3–6. It can be seen that the calculated alignments to someextent are in agreement with the experimental values. Thesharp increase of alignments around ℏω ¼ 0.45 MeV forbands 5, 6 are not reproduced, which might be attributed to afrozen core used in the framework of the particle rotor model.The theoretical alignment shows a smooth increasing ratherthan a sharp increasing. Observation of MχD with the sameconfiguration shows that the chiral geometry in nuclei can berobust against the increase of the intrinsic excitation energy.In summary, one positive-parity and two negative-parity

chiral doublet band structures have been identified in 103Rh.The observed doublet bands have been compared withresults of calculations involving adiabatic and configura-tion-fixed constrained CDFT, TAC-CDFT, and the quan-tum particle rotor model. The theoretical results reproducethe data rather well. According to these results, the positive-parity doublet has a chiral vibrational structure based on theπð1g9=2Þ−1 ⊗ νð1h11=2Þ2 configuration, while the two neg-ative-parity doublets are chiral doublets with the sameπð1g9=2Þ−1 ⊗ νð1h11=2Þ1ð1g7=2Þ1 configuration. It providesthe first experimental evidence for the MχD with the sameconfiguration and shows that chiral geometry can be robustagainst the increase of the intrinsic excitation energy.

We thank the crew and staff of the 88-inch cyclotron.Special thanks to A. O. Macchiavelli and I. Y. Lee for theirhelp in the experiment. Thisworkwas supported in part by theHungarian Scientific Research Fund, OTKA (ContractNo. K100835), the Major State 973 Program of China(Grant No. 2013CB834400), the National Natural ScienceFoundation of China (Grants No. 11175002, No. 11335002,and No. 11375015), the Research Fund for the DoctoralProgram of Higher Education (Grant No. 20110001110087),the China Postdoctoral Science Foundation (GrantsNo. 2012M520101 and No. 2013M540011), the NaturalSciences and Engineering Research Council of Canada underContract No. SAPIN/371656-2010, and the UK Engineeringand Physical Sciences Research Council.

[1] S. Frauendorf and J. Meng, Nucl. Phys. A617, 131 (1997).[2] K. Starosta et al., Phys. Rev. Lett. 86, 971 (2001).[3] A. A. Hecht et al., Phys. Rev. C 63, 051302(R) (2001).[4] D. J. Hartley et al., Phys. Rev. C 64, 031304(R) (2001).[5] T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, and D. R.

LaFosse, Phys. Rev. C 63, 061304(R) (2001).[6] R. A. Bark, A. M. Baxter, A. P. Byrne, G. D. Dracoulis,

T. Kibédi, T. R. McGoram, and S. M. Mullins, Nucl. Phys.A691, 577 (2001).

[7] K. Starosta, C. J. Chiara, D. B. Fossan, T. Koike, T. T. S.Kuo, D. R. LaFosse, S. G. Rohozinski, Ch. Droste, T.Morek, and J. Srebrny, Phys. Rev. C 65, 044328 (2002).

[8] T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, andD. R. LaFosse, Phys. Rev. C 67, 044319 (2003).

[9] G. Rainovski et al., Phys. Rev. C 68, 024318 (2003).[10] S. Zhu et al., Phys. Rev. Lett. 91, 132501 (2003).

[11] H. C. Jain, S. Lakshmi, and P. K. Joshi, AIP Conf. Proc.764, 99 (2005).

[12] J. Srebrny, E. Grodner, T. Morek, I. Zalewska, Ch. Droste,J. Mierzejewski, A. A. Pasternak, J. Kownacki, andJ. Perkowski, Acta Phys. Pol. 36, 1063 (2005).

[13] E. Grodner et al., Phys. Rev. Lett. 97, 172501 (2006).[14] C. Vaman, D. B. Fossan, T. Koike, K. Starosta, I. Y. Lee, and

A. O. Macchiavelli, Phys. Rev. Lett. 92, 032501 (2004).[15] P. Joshi et al., Phys. Lett. B 595, 135 (2004).[16] P. Joshi et al., Eur. Phys. J. A 24, 23 (2005).[17] J. A. Alcántara-Núñez et al., Phys. Rev. C 69, 024317 (2004).[18] J. Timár et al., Phys. Lett. B 598, 178 (2004).[19] J. Timár, C. Vaman, K. Starosta, D. B. Fossan, T. Koike,

D. Sohler, I. Y. Lee, and A. O. Macchiavelli, Phys. Rev. C73, 011301(R) (2006).

[20] D. L. Balabanski et al., Phys. Rev. C 70, 044305 (2004).[21] S. Y. Wang et al., Phys. Lett. B 703, 40 (2011).[22] J. Meng, J. Peng, S. Q. Zhang, and S.-G. Zhou, Phys. Rev. C

73, 037303 (2006).[23] J. Peng, H. Sagawa, S. Q. Zhang, J. M. Yao, Y. Zhang, and

J. Meng, Phys. Rev. C 77, 024309 (2008).[24] J. M. Yao, B. Qi, S. Q. Zhang, J. Peng, S. Y. Wang, and

J. Meng, Phys. Rev. C 79, 067302 (2009).[25] J. Li, S. Q. Zhang, and J. Meng, Phys. Rev. C 83, 037301

(2011).[26] A. D.Ayangeakaa et al., Phys. Rev. Lett. 110, 172504 (2013).[27] B. Qi, H. Jia, N. B. Zhang, C. Liu, and S. Y. Wang, Phys.

Rev. C 88, 027302 (2013).[28] C. Droste, S. G. Rohozinski, K. Starosta, L. Prochniak, and

E. Grodner, Eur. Phys. J. A 42, 79 (2009).[29] Q. B. Chen, J. M. Yao, S. Q. Zhang, and B. Qi, Phys. Rev. C

82, 067302 (2010).[30] I. Hamamoto, Phys. Rev. C 88, 024327 (2013).[31] D. C.Radford,Nucl. Instrum.MethodsPhys.Res., Sect.A361

297 (1995); , 361 306 (1995); http://radware.phy.ornl.gov.[32] H. Dejbakhsh, R. P. Schmitt, and G. Mouchaty, Phys. Rev. C

37, 621 (1988).[33] A. Krämer-Flecken, T. Morek, R. M. Lieder, W. Gast, G.

Hebbinghaus, H. M. Jäger, and W. Urban, Nucl. Instrum.Methods Phys. Res., Sect. A 275, 333 (1989); K. S. Krane,R. M. Steffen, and R. M. Wheeler, At. Data Nucl. DataTables 11, 351 (1973).

[34] R.BengtssonandS.Frauendorf,Nucl.Phys.A327,139(1979).[35] P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and

J. Meng, Phys. Lett. B 699, 181 (2011).[36] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys.

Rev. Lett. 107, 122501 (2011).[37] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys.

Rev. C 85, 054310 (2012).[38] J. Meng, J. Peng, S. Q. Zhang, and P.W. Zhao, Front. Phys.

8, 55 (2013).[39] B. Qi, S. Q. Zhang, J. Meng, S. Y. Wang, and S. Frauendorf,

Phys. Lett. B 675, 175 (2009).[40] B. Qi, S. Q. Zhang, S. Y. Wang, J. Meng, and T. Koike,

Phys. Rev. C 83, 034303 (2011).[41] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C

82, 054319 (2010).[42] S. Y. Wang, B. Qi, and S. Q. Zhang, Chin. Phys. Lett. 26,

052102 (2009).[43] B. Qi, S. Q. Zhang, S. Y. Wang, J. M. Yao, and J. Meng,

Phys. Rev. C 79, 041302(R) (2009).

PRL 113, 032501 (2014) P HY S I CA L R EV I EW LE T T ER Sweek ending18 JULY 2014

032501-5

Experimental Evidence for Transverse Wobbling in 105Pd

J. Timár,1,* Q. B. Chen,2 B. Kruzsicz,1 D. Sohler,1 I. Kuti,1 S. Q. Zhang,3 J. Meng,3 P. Joshi,4 R. Wadsworth,4

K. Starosta,5 A. Algora,1,6 P. Bednarczyk,7 D. Curien,8 Zs. Dombrádi,1 G. Duchêne,8 A. Gizon,9 J. Gizon,9

D. G. Jenkins,4 T. Koike,10 A. Krasznahorkay,1 J. Molnár,1 B. M. Nyakó,1 E. S. Paul,11 G. Rainovski,12

J. N. Scheurer,13 A. J. Simons,4 C. Vaman,14 and L. Zolnai11Institute for Nuclear Research, Hungarian Academy of Sciences, Pf. 51, 4001 Debrecen, Hungary

2Physik-Department, Technische Universität München, D-85747 Garching, Germany3State Key Laboratory of Physics and Technology, School of Physics, Peking University, Beijing 100871, China

4Department of Physics, University of York, York YO10 5DD, United Kingdom5Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

6Instituto de Fisica Corpuscular, CSIC-University of Valencia, E-46071 Valencia, Spain7Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

8Universite de Strasbourg, CNRS, IPHC UMR7178, 67037 Strasbourg, France9LPSC, IN2P3-CNRS/UJF, F-38026 Grenoble-Cedex, France

10Graduate School of Science, Tohoku University, Sendai 980-8578, Japan11Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom

12Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria13Universite Bordeaux 1, IN2P3-CENBG—Le Haut-Vigneau BP120 33175, Gradignan Cedex, France

14Department of Physics and Astronomy, SUNY, Stony Brook, New York 11794-3800, USA

(Received 4 October 2018; revised manuscript received 12 December 2018; published 12 February 2019)

New rotational bands built on the νðh11=2Þ configuration have been identified in 105Pd. Two bands builton this configuration show the characteristics of transverse wobbling: the ΔI ¼ 1 transitions between themhave a predominant E2 component and the wobbling energy decreases with increasing spin. The propertiesof the observed wobbling bands are in good agreement with theoretical results obtained using constrainedtriaxial covariant density functional theory and quantum particle rotor model calculations. This provides thefirst experimental evidence for transverse wobbling bands based on a one-neutron configuration, and alsorepresents the first observation of wobbling motion in the A ∼ 100 mass region.

DOI: 10.1103/PhysRevLett.122.062501

Nuclear wobbling motion was initially discussed byBohr andMottelson [1]. This type of rotation is predicted tooccur in triaxially deformed nuclei. The nucleus rotatesaround the principal axis having the largest moment ofinertia and this axis executes harmonic oscillations aboutthe space-fixed angular momentum vector. The expectedenergy spectra related to this motion are characterized by aseries of rotational E2 bands corresponding to the differentoscillation quanta (n). The signature quantum numberof two consecutive bands is different, thus the yrast andyrare bands (corresponding to n ¼ 0 and n ¼ 1, respec-tively), look like signature partner bands with largesignature splitting. The yrare band decays byΔI ¼ 1M1þE2 transitions to the yrast band. However, contrary to thecase of signature partners, the multipole mixing ratios arevery large, and the transitions have predominantly E2character. Furthermore, the energy separation betweenthe yrare and yrast bands, the wobbling energy, is expectedto increase with increasing spin. Although Bohr andMottelson predicted this motion for even-even nucleiwhere no intrinsic angular momentum is involved, the

phenomenon in this simple form has not been experimen-tally documented to date.The first experimental evidence for nuclear wobbling

motion was reported in the odd-proton 163Lu (Z ¼ 71)nucleus [2,3] and later in the 161Lu, 165Lu, 167Lu nuclei[4–6], as well as in 167Ta (Z ¼ 73) [7]. In these nuclei thewobbling mode is observed in the triaxial stronglydeformed bands corresponding to the πði13=2Þ intruderconfiguration. Recently, wobbling motion was reportedin 135Pr (Z ¼ 59), where the wobbling bands have normaldeformation and they are built on the πðh11=2Þ configura-tion [8]. The expected different signature values and thepredominant E2 character of the ΔI ¼ 1 transitionsbetween the bands have been observed for all the abovecases. However, the wobbling energy has been found todecrease with increasing spin contrary to theoretical expect-ations. Frauendorf and Dönau [9] interpreted this behavioras the consequence of the perpendicular orientation of theodd particle’s angular momentum to the rotational axis, andthey suggested to name the phenomenon as “transversewobbling.” This interpretation differs from that previously

PHYSICAL REVIEW LETTERS 122, 062501 (2019)

0031-9007=19=122(6)=062501(6) 062501-1 © 2019 American Physical Society

published for the Lu and Ta isotopes, and generated greattheoretical interest to clarify the situation using differentmodels [10–19]. Very recently another type of the wobblingmotion has been claimed in 133La, the “longitudinalwobbling,” where the wobbling energy was found toincrease with increasing spin [20]. It is worth noting thatall the wobbling bands observed so far correspond to aconfiguration of one proton coupled to the core. In thisLetter, we report on experimental evidence for transversewobbling motion in 105Pd (Z ¼ 46, N ¼ 59). This is thefirst observation of transverse wobbling motion based on aone-neutron configuration, and also the first observation ofwobbling motion in the A ∼ 100 mass region.High-spin states in 105Pd were populated using the

96Zrð13C; 4nÞ reaction. The 13C beam was provided bythe Vivitron accelerator at IReS, Strasbourg. The beamimpinged upon a stack of two self-supporting metallicfoil targets being enriched to 86% in 96Zr, and each havinga thickness of ∼0.6 mg=cm2. The emitted γ rays weredetected by the EUROBALL IV [21] spectrometerequipped with 15 Cluster detectors at backward anglesand 24 Clover detectors at 90° relative to the beamdirection. Contaminants from the charged-particle reactionchannels were eliminated using the highly efficientDIAMANT charged-particle detector array consistingof 88 CsI detectors [22,23] as an off-line veto. A totalof ∼2 × 109 triple- and higher-fold coincidence events wereobtained and stored onto magnetic tapes.The level scheme of 105Pd was constructed using the

Radware analysis package [24] on the basis of the triple-coincidence relations, as well as energy and intensitybalances of the observed γ rays. Several new rotationalbands have been observed in 105Pd. Among them there arenegative-parity quadrupole bands with probable neutronh11=2 configuration. Two of these bands have oppositesignature than the previously known, yrast neutron h11=2band. Figure 1 shows the yrast neutron h11=2 band (band A)up to spin 43=2ℏ and the two newly identified bands (bandsB and C).Linear polarizations and directional correlation from

oriented states (DCO) ratios [25–28] were derived forthe transitions of sufficient intensity. The observed valuesfor the transitions relevant to the focus of the present Letterare compared in Fig. 2 with the values of different multi-polarities and mixing ratios calculated for the experimentalgeometry. For the DCO ratio anlysis we used stretched E2gating transitions, the attenuation coefficients of incom-plete alignment were fitted to the known strong 1100 keVE2 and 1331 keV E1 transitions [29] in 105Pd assumingpure stretched E2 and E1 multipolarities for them, respec-tively. Our analysis resulted a mixing ratio of −0.37ð8Þ forthe 442 keV lowest inband M1þ E2 transition in 105Pdwhich reproduced well the −0.33ð13Þ value reported inRef. [29]. The 1331 and 442 keV transitions are not shown

in Fig. 1. Details of the experimental setup and dataanalysis, as well as the full level scheme, will be providedin a forthcoming publication [30].Band A has been reported in Refs. [29,31] with spin-

parity values firmly assigned to the states up to spin 31=2ℏ.Data from the present experiment confirm the previouslyreported values. The 17=2−, 21=2−, and 25=2− states ofband B and the 21=2− state of band C were reported inRef. [29] as nonband levels. However, the levels belongingto bands B and C have been identified as rotational bandsfirst in the present experiment. The DCO and linearpolarization values derived for the 814, 918, 1089, and1064 keV transitions agree well with stretched E2 multi-polarity, confirming the E2-band character of band B. As itis seen in Fig. 2, the measured DCO and linear polarizationvalues for the 991, 1034, and 994 keV transitions are ingood agreement with ΔI ¼ 1 M1þ E2 multipolarity atlarge, δ ¼ 1.8ð5Þ, 2.3(3), 2.7(6) multipole mixing ratios,respectively. Thus, these transitions have predominantly E2characters; however, they cannot be pure ΔI ¼ 2 E2transitions because for such transitions the linear polari-zation values are expected to be between 0.65 and 0.7, likein the case of the 1100 keV gamma transition, contrarily tothe measured negative values. Therefore, the observedDCO and polarization values allow only the 17=2−,21=2−, and 25=2− spin-parity values for the initial statesof the 991, 1034, and 994 keV transitions, respectively.Strictly speaking, spins less by one or two units would alsobe allowed by the DCO and polarization data. However, itis very rare that levels of rotational bands decay to the

FIG. 1. Partial level scheme of 105Pd observed in the presentwork and relevant to the focus of the present Letter. Widths of thelines are proportional with the transition intensities.

PHYSICAL REVIEW LETTERS 122, 062501 (2019)

062501-2

same-spin or higher-spin states of another band, and inthose cases they also decay to lower-spin levels of the otherband. Existence of such transitions to lower spin states wasexcluded by the observed data in the present case.The lowest-energy state of band C is fed by the 794 keV

transition from the 25=2− state of band B and decays by the939 keV transition to the 17=2− state of band B. As theM2,M3, and E3 transitions are not competitive with E2 andM1transitions, the 794 and the 939 keV transitions can only bestretched E2 transitions. Thus the spin parity of the lowest-energy state of band C can only be 21=2−. Similarly, thesecond state of band C is linked to the 21=2− and to the29=2− states of band B. Thus, its spin parity can onlybe 25=2−. This also confirms the E2-band character ofband C. The adopted spin-parity assignments for the fourpreviously known levels of bands B and C are consistentwith those reported in Ref. [29].Band C decays to band A by the 1158 and 1159 keV

transitions. Linear polarization value of −0.6ð3Þ wasderived for the sum of the two transitions. Unfortunately,no linear polarization values could be deduced separatelyfor the two transitions because of their close energies. DCOvalue could not be derived even for the sum of the twotransitions because their energies are close to that of thestrong 1152 keV transition in band A. The fact that the1158, 1159, and 1152 keV transitions are all in coincidencewith the intense gamma rays which could be used ascoincidence gates, caused further difficulties in the analy-sis. The deduced linear polarization value agrees well with

the multipolarity expected for the 1158 and 1159 keVtransitions from the above spin-parity assignments forthe band C states: namely, that they are ΔI ¼ 1 M1þE2 transitions. However, it allows both small (0 ≤ δ ≤ 0.5)and large (1 ≤ δ ≤ 2.4) mixing ratios.The observed three bands show the features of a pair of

wobbling bands with oscillation quanta zero and one(bands A and B, respectively) and the signature partnerband of band A (band C). Indeed, the multipolarities of thelowest-lying linking transitions between bands B and A areM1þ E2 with large, δ ¼ 1.8ð5Þ, 2.3(3), 2.7(6) multipolemixing ratios for the 991, 1034, and 994 keV transitions,respectively. These mixing ratios mean around 80% [cal-culated as δ2=ð1þ δ2Þ] E2 content, which is expected forthe wobbling band, but not expected for the signaturepartner. We note that the 991, 1034, and 994 keV tran-sitions were also reported in Ref. [29] and δ ¼ 0.46ð10Þ aswell as δ ¼ 0.62ð18Þ were derived for the 991 and1034 keV transitions, respectively, from angular distribu-tion measurement. While the present DCO results alsoallow δ ¼ 0.59ð20Þ and 0.40(6) values for the two tran-sitions, respectively, the linear polarization data disagreewith these smaller mixing ratios, but strongly support thelarger δ ¼ 1.8ð5Þ and 2.3(3) values.BandC is a candidate for the signature partner of band A.

The two bands have the same parity and similar alignments[30] but opposite signature. Furthermore, band C decays toband A by the 1158 and 1159 keV transitions. Although themixing ratios of these transitions could not be derivedunambiguously, the possible smaller mixing ratio valuededuced from the present experiment is in a good agree-ment with this scenario. In Ref. [29] a mixing ratio ofδ ¼ 1.3ð9Þ was reported for the 1158 keV transition.Because of the large uncertainty this value can allow arather small mixing ratio; thus it can be in agreement withthe signature partner interpretation, too.The difference between the mixing ratio values measured

for the linking M1þ E2 transitions between the wobblingbands in 135Pr and in 105Pd is their opposite signs. While thesign is positive in 105Pd, it is negative in 135Pr. The sign ofthe mixing ratio value is determined by the sign of the M1matrix element assuming that the quadrupole deformationis of same type. The sign of the M1 matrix element isproportional with the (gp − gR) factor [1], where gR is therotational gyromagnetic factor. Its value is approximatelyZ=A, which is ∼0.4 for both nuclei. However, gp, thegyromagnetic factor of the odd particle, is different for theprotons and the neutrons moving in high-j intruder(j ¼ lþ 1=2) orbitals. It has a large positive value (>1)for protons, while it has a negative sign for neutrons. Thus,the sign of the (gp − gR) factor is opposite for high-jprotons and neutrons [32].In order to explore the nature of the observed rotational

band structures in 105Pd, they have been studied by theconstrained triaxial covariant density functional theory

0.2 0.4 0.6 0.8 1.0 1.2

DCO ratio

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Line

ar p

olar

izat

ion

E1 21/2 → 19/2

E2 27/2 → 23/2

M1+E2 7/2 → 5/2

M1+E2 17/2 → 15/2

M1+E2 21/2 → 19/2

M1+E2 25/2 → 23/2

442 keV M1+E2

994 keV

991 keV

1331 keV E1 1100 keV E2

1034 keV

FIG. 2. Experimental (symbols with X and Y error bars) andcalculated (solid square, circle, as well as solid, dashed, dot-dashed, and dotted lines) DCO and linear polarization values forthe linking transitions between bands A and B, and for threeknown-multipolarity transitions. In the solid, dashed, and dot-dashed lines the δ multipole mixing ratio value varies from 0.24(lower end) to 3.2 (upper end). In the dotted line δ varies from−0.12 (lower end) to −7.1 (upper end).

PHYSICAL REVIEW LETTERS 122, 062501 (2019)

062501-3

(CDFT) [33,34] as well as the quantum particle rotor model(PRM) [9,19,35–38]. The configuration-fixed CDFT cal-culations [33,34] with the effective interaction PC-PK1[39] reveal that the νð1h11=2Þ1 configuration has a triaxialshape of β ¼ 0.27 and γ ¼ 25°, which fulfills the con-ditions required for the presence of wobbling bands.With the configuration and deformation parameters

obtained, it is straightforward to perform PRM [9,19,37,38] calculations in order to study the energy spectraand electromagnetic transition probabilities for theobserved rotational sequences in 105Pd. In the PRMcalculations, the neutron particle is described by a sin-gle-j shell Hamiltonian [40] and the pairing effect isincluded using the standard BCS quasiparticle approxima-tion with the empirical pairing gap Δ ¼ 12=

ffiffiffiffiA

p ¼1.17 MeV and the Fermi surface located at the beginningof the h11=2 subshell. The triaxial rotor is parametrizedby three angular-momentum-dependent moments of iner-tia J i ¼ ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1þ bIðI þ 1Þp

[41,42] (known as the abformula) to take into account the soft character of thepotential energy surface revealed by CDFT calculations[43]. Here, i ¼ m, s, l denotes the medium, short,and long axes, respectively, and the correspondingparameters am;s;l ¼ 5.89; 3.74; 1.27ℏ2=MeV and b ¼0.023ℏ−2 are determined by fitting to the energy spectraof bands A and B.The calculated rotational frequency fℏωðIÞ ¼ ½EðIÞ −

EðI − 2Þ�=2g and energy spectra as functions of spin Ifor bands A (solid line), B (short dashed line), and C (shortdashed-dotted line), in comparison with those of theexperimental data, are shown in Fig. 3. It is seen thatthe PRM calculations can reproduce bands A and B well.For band C, the energies are overestimated by about500 keV. A similar problem is also seen in Ref. [8] for 135Pr.For band A, the rotational frequency is almost constant

from spin I ¼ 27=2 to 39=2, which presents an upbendphenomenon and is understood by the gradual alignmentof a h11=2 neutron pair. Such an alignment process can bereproduced by the PRM calculations due to the use ofangular-momentum-dependent moments of inertia. Afterthe upbending, the configuration becomes a three-quasiparticle configuration νð1h11=2Þ3, whose quadrupoledeformation parameters are β ¼ 0.29 and γ ¼ 10° fromthe CDFT calculations, and the data can be reproducedby the PRM (dashed line) with the moments of inertiataken as irrotational flow type J k ¼ J 0sin2ðγ − 2kπ=3Þwith J 0 ¼ 20ℏ2=MeV.For band B, the experimental rotational frequency has

a discontinuity between I ¼ 29=2 and 33=2, which isunderstood by the alignment of a proton g9=2 pair giventhat its alignment is 2ℏ smaller than that of band A in theregion I ≥ 39=2. Hence, the unpaired valence nucleonconfiguration for band B at I ≥ 33=2 is assigned asπð1g9=2Þ−2 ⊗ νð1h11=2Þ1, whose deformation parameters

are β ¼ 0.25 and γ ¼ 28° according to the CDFT calcu-lations. With this configuration and J 0 ¼ 21ℏ2=MeV, thecorresponding experimental rotational frequencies andenergies can be well reproduced as shown in Fig. 3(short dotted line), and thus supports the configurationassignment.With the successful reproduction of the energy spectra of

bands A and B, the wobbling energy Ewob (as defined inRef. [8]) can also be reproduced by the PRM calculations,as shown in Fig. 3(c). In agreement with the experimentalobservation, the calculated wobbling energy decreases withspin until I ¼ 29=2, which presents the characteristic of atransverse wobbler. Note that the increasing energy differ-ence between bands A and B in the region I ≥ 33=2 cannotbe interpreted as evidence of a longitudinal wobbler [9],since their configurations are different as discussed above.In Table I, the experimental and theoretical mixing ratios

δ as well as the transition probability ratios BðM1Þout=BðE2Þin and BðE2Þout=BðE2Þin for the transitions fromband B to A in 105Pd are listed. It is known that BðE2Þout=BðE2Þin is proportional to tan2 γ [1,13]. It is found that thePRM results are in good agreement with the data. Thus, themicroscopic input of the triaxial deformation parameterfrom the CDFT calculation is appropriate.The mixing ratios δ and BðM1Þout=BðE2Þin are propor-

tional to Q0=geff and ðgeff=Q0Þ2, respectively, with Q0

the intrinsic quadrupole moment and geff ¼ gνh11=2 − gR theeffective gyromagnetic factor. It was found that in the PRM

FIG. 3. Experimental and PRM rotational frequency (a) as wellas energies minus a rotor contribution (b) as functions of spin Ifor the bands A, B, and C in 105Pd. Inset (c): Wobbling energiesassociated with the wobbler-band pair A and B.

PHYSICAL REVIEW LETTERS 122, 062501 (2019)

062501-4

calculations, the BðM1Þout values would be overestimatedby about a factor of 3–10 [8,9]. This is due to the scissorsmode which is mixed with the wobbling motion and cannotbe considered in the PRM calculations [44]. Bearing this inmind, a quenching factor of 0.36 for geff is introduced in thecalculation in order to reproduce the value of δ for thetransition 21=2− → 19=2−. With this treatment, the otherexperimental δ values as well as the BðM1Þout=BðE2Þinvalues can also be reproduced. The large BðE2Þout=BðE2Þinand small BðM1Þout=BðE2Þin values further support thewobbling interpretation for the bands A and B in theregion I ≤ 29=2.With the successful reproduction of the energy spectra

and electromagnetic transitions in 105Pd, the angularmomentum geometries of bands A and B have beenexamined in the PRM [19] and the transverse wobblinginterpretation for bands A and B of 105Pd in the regionI ≤ 29=2 could be further confirmed [30].In summary, we have studied nuclear transverse wob-

bling in 105Pd, where the wobbling bands are based on theνðh11=2Þ one-neutron configuration. The predominant E2character of the ΔI ¼ 1 M1þ E2 transitions between thewobbling bands is confirmed by the precise measurementof DCO values and linear polarization data. The transversewobbling nature of these bands conforms well to resultsfrom calculations using constrained triaxial covariantdensity functional theory and the quantum particle rotormodel. This observation provides the first experimentalevidence for transverse wobbling bands based on a one-neutron configuration, and is also the first observation ofwobbling motion in the A ∼ 100 mass region.

The authors thank Professor C. M. Petrache for stimu-lating and useful discussions. This work was supported bythe National Research, Development and Innovation Fundof Hungary, financed under the K18 funding scheme withProjects No. K128947 and No. K124810. This work wasalso supported by the European Regional DevelopmentFund (Contract No. GINOP-2.3.3-15-2016-00034), as wellas by Deutsche Forschungsgemeinschaft (DFG) andNational Natural Science Foundation of China (NSFC)through funds provided to the Sino-German CRC 110“Symmetries and the Emergence of Structure in QCD,”the National Key R&D Program of China (Contract

No. 2018YFA0404400), the NSFC under GrantsNo. 11335002 and No. 11621131001, the UK STFC underGrant No. ST/P003885/1, and the Spanish Ministerio deEconomia y Competitividad under Grant No. FPA2014-52823-C2-1-P and the program Severo Ochoa (SEV-2014-0398). I. K. was supported by National Research,Development and Innovation Office NKFIH, ContractNo. PD 124717.

*Corresponding [email protected]

[1] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,New York, 1975), Vol. II.

[2] S. W. Ødegard, G. B. Hagemann, D. R. Jensen, M.Bergström, B. Herskind, G. Sletten, S. Törmänen, J. N.Wilson, P. O. Tjøm, I. Hamamoto et al., Phys. Rev. Lett. 86,5866 (2001).

[3] D. R. Jensen, G. B. Hagemann, I. Hamamoto, S. W.Ødegard, B. Herskind, G. Sletten, J. N. Wilson, K. Spohr,H. Hübel, P. Bringel et al., Phys. Rev. Lett. 89, 142503(2002).

[4] P. Bringel, G. Hagemann, H. Hübel, A. Al-khatib, P.Bednarczyk, A. Bürger, D. Curien, G. Gangopadhyay, B.Herskind, D. Jensen et al., Eur. Phys. J. A 24, 167 (2005).

[5] G. Schönwaßer, H. Hübel, G. B. Hagemann, P. Bednarczyk,G. Benzoni, A. Bracco, P. Bringel, R. Chapman, D. Curien,J. Domscheit et al., Phys. Lett. B 552, 9 (2003).

[6] H. Amro, W. C. Ma, G. B. Hagemann, R. M. Diamond,J. Domscheit, P. Fallon, A. Görgen, B. Herskind, H. Hübel,D. R. Jensen et al., Phys. Lett. B 553, 197 (2003).

[7] D. J. Hartley, R. V. F. Janssens, L. L. Riedinger, M. A. Riley,A. Aguilar, M. P. Carpenter, C. J. Chiara, P. Chowdhury,I. G. Darby, U. Garg et al., Phys. Rev. C 80, 041304(R)(2009).

[8] J. T. Matta, U. Garg,W. Li, S. Frauendorf, A. D. Ayangeakaa,D. Patel, K.W. Schlax, R. Palit, S. Saha, J. Sethi et al., Phys.Rev. Lett. 114, 082501 (2015).

[9] S. Frauendorf and F. Dönau, Phys. Rev. C 89, 014322(2014).

[10] Q. B. Chen, S. Q. Zhang, P. W. Zhao, and J. Meng, Phys.Rev. C 90, 044306 (2014).

[11] Q. B. Chen, S. Q. Zhang, and J. Meng, Phys. Rev. C 94,054308 (2016).

[12] Q. B. Chen, S. Q. Zhang, P. W. Zhao, R. V. Jolos, and J.Meng, Phys. Rev. C 94, 044301 (2016).

TABLE I. The experimental and theoretical multipole mixing ratios δ as well as the transition probability ratios BðM1Þout=BðE2Þin andBðE2Þout=BðE2Þin for the transitions from band B to A in 105Pd.

δ ½BðM1Þout=BðE2Þin�ðμ2N=e2b2Þ ½BðE2Þout=BðE2Þin�Iπi → Iπf Eγ (keV) Expt PRM Expt PRM Expt PRM

17=2− → 15=2− 991 1.8� 0.5 2.38 0.162� 0.097 0.105 0.66� 0.18 0.73621=2− → 19=2− 1034 2.3� 0.3 2.30 a

0.089� 0.026 0.069 0.60� 0.09 0.46525=2− → 23=2− 994 2.7� 0.6 1.99 0.029� 0.016 0.057 0.34� 0.07 0.329aNormalization point, see text.

PHYSICAL REVIEW LETTERS 122, 062501 (2019)

062501-5

[13] K. Tanabe and K. Sugawara-Tanabe, Phys. Rev. C 95,064315 (2017).

[14] A. A. Raduta, R. Poenaru, and L. Gr. Ixaru, Phys. Rev. C 96,054320 (2017).

[15] S. Frauendorf, Phys. Rev. C 97, 069801 (2018).[16] K. Tanabe and K. Sugawara-Tanabe, Phys. Rev. C 97,

069802 (2018).[17] M. Shimada, Y. Fujioka, S. Tagami, and Y. R. Shimizu,

Phys. Rev. C 97, 024318 (2018).[18] R. Budaca, Phys. Rev. C 97, 024302 (2018).[19] E. Streck, Q. B. Chen, N. Kaiser, and Ulf-G. Meißner, Phys.

Rev. C 98, 044314 (2018).[20] S. Biswas, R. Palit, S. Frauendorf, U. Garg, W. Li, G. H.

Bhat, J. A. Sheikh, J. Sethi, S. Saha, P. Singh et al., arXiv:1608.07840.

[21] J. Simpson, Z. Phys. A 358, 139 (1997).[22] J. N. Scheurer, M. Aiche, M. M. Aleonard, G. Barreau, F.

Bourgine, D. Boivin, D. Cabaussel, J. F. Chemin, T. P.Doan, J. P. Goudour et al., Nucl. Instrum. Methods Phys.Res., Sect. A 385, 501 (1997).

[23] J. Gál, G. Hegyesi, J. Molnár, B. M. Nyakó, G. Kalinka,J. N. Scheurer, M.M. Aleonard, J. F. Chemin, J. L. Pedroza,K. Juhász et al., Nucl. Instrum. Methods Phys. Res., Sect. A516, 502 (2004).

[24] D. C. Radford, Nucl. Instrum. Methods Phys. Res., Sect. A361, 297 (1995).

[25] P. M. Jones, L. Wei, F. A. Beck, P. A. Butler, T. Byrski, G.Duchêne, G. de France, F. Hannachi, G. D. Jones, and B.Kharraja, Nucl. Instrum. Methods Phys. Res., Sect. A 362,556 (1995).

[26] G. Duchêne, F. A. Beck, P. J. Twin, G. de France, D. Curien,L. Han, C. W. Beausang, M. A. Bentley, P. J. Nolan, and J.Simpson, Nucl. Instrum. Methods Phys. Res., Sect. A 432,90 (1999).

[27] K. Starosta, T. Morek, Ch. Droste, S. G. Rohoziński, J.Srebrny, A. Wierzchucka, M. Bergström, B. Herskind, E.Melby, T. Czosnyka et al., Nucl. Instrum. Methods Phys.Res., Sect. A 423, 16 (1999).

[28] K. S. Krane, R. M. Steffen, and R. M. Wheeler, Nucl. DataTables A 11, 351 (1973).

[29] F. A. Rickey, J. A. Grau, L. E. Samuelson, and P. C. Simms,Phys. Rev. C 15, 1530 (1977).

[30] B. Kruzsicz et al. (to be published).[31] A. O. Macchiavelli, J. Burde, R. M. Diamond, C. W.

Beausang, M. A. Deleplanque, R. J. McDonald, F. S.Stephens, and J. E. Draper, Phys. Rev. C 38, 1088 (1988).

[32] K. Nakai, Phys. Lett. 34B, 269 (1971).[33] J. Meng, J. Peng, S. Q. Zhang, and S.-G. Zhou, Phys. Rev. C

73, 037303 (2006).[34] Relativistic Density Functional for Nuclear Structure,

edited by J. Meng International Review of Nuclear PhysicsVol. 10 (World Scientific, Singapore, 2016).

[35] S. Frauendorf and J. Meng, Z. Phys. A 356, 263 (1996).[36] S. Frauendorf and J. Meng, Nucl. Phys. A617, 131 (1997).[37] I. Hamamoto, Phys. Rev. C 65, 044305 (2002).[38] W. X. Shi and Q. B. Chen, Chin. Phys. C 39, 054105 (2015).[39] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C

82, 054319 (2010).[40] P. Ring and P. Schuck, The Nuclear Many Body Problem

(Springer Verlag, Berlin, 1980).[41] C. S. Wu and J. Y. Zeng, High Energy Phys. Nucl. Phys. 9,

214 (1985), (in Chinese).[42] C. S. Wu and J. Y. Zeng, Commun. Theor. Phys. 8, 51

(1987).[43] Y. Y. Wang, Z. Shi, Q. B. Chen, S. Q. Zhang, and C. Y.

Song, Phys. Rev. C 93, 044309 (2016).[44] S. Frauendorf and F. Dönau, Phys. Rev. C 92, 064306

(2015).

PHYSICAL REVIEW LETTERS 122, 062501 (2019)

062501-6

Isospin Properties of Nuclear Pair Correlations from the Level Structure of theSelf-Conjugate Nucleus 88Ru

B. Cederwall ,1,* X. Liu,1 Ö. Aktas,1 A. Ertoprak,1,2 W. Zhang,1 C. Qi,1 E. Clement,3 G. de France,3 D. Ralet,4 A. Gadea,5

A. Goasduff,6 G. Jaworski,6,7 I. Kuti,8 B. M. Nyakó,8 J. Nyberg,9 M. Palacz,7 R. Wadsworth,10 J. J. Valiente-Dobón,6

H. Al-Azri,11 A. Ataç Nyberg,1 T. Bäck,1 G. de Angelis,6 M. Doncel,1,12 J. Dudouet,13 A. Gottardo,4 M. Jurado,5

J. Ljungvall,4 D. Mengoni,6 D. R. Napoli,6 C. M. Petrache,4 D. Sohler,8 J. Timár,8 D. Barrientos,14 P. Bednarczyk,15

G. Benzoni,16 B. Birkenbach,17 A. J. Boston,18 H. C. Boston,18 I. Burrows,19 L. Charles,20 M. Ciemala,15 F. C. L. Crespi,21,22

D. M. Cullen,23 P. Desesquelles,24,25 C. Domingo-Pardo,26 J. Eberth,17 N. Erduran,27 S. Ertürk,28 V. González,29 J. Goupil,3

H. Hess,17 T. Huyuk,5 A. Jungclaus,30 W. Korten,31 A. Lemasson,3 S. Leoni,21,22 A. Maj,15 R. Menegazzo,32 B. Million,22

R. M. Perez-Vidal,26 Zs. Podolyak,33 A. Pullia,21,22 F. Recchia,34 P. Reiter,17 F. Saillant,3 M. D. Salsac,31 E. Sanchis,29

J. Simpson,19 O. Stezowski,35 Ch. Theisen,31 and M. Zielińska311KTH Royal Institute of Technology, 10691 Stockholm, Sweden

2Department of Physics, Faculty of Science, Istanbul University, Vezneciler/Fatih, 34134 Istanbul, Turkey3Grand Accelerateur National d’Ions Lourds (GANIL), CEA/DSM—CNRS/IN2P3,

Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France4Centre de Sciences Nucleaires et Sciences de la Matiere, CNRS/IN2P3, Universite Paris-Saclay, 91405 Orsay, France

5Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46980 Valencia, Spain6Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy

7Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A,02-093 Warszawa, Poland8MTA Atomki, H-4001 Debrecen, Hungary

9Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden10Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom11Rustaq College of Education, Department of Science, 329 Al-Rustaq, Sultanate of Oman

12Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom13Universite Lyon, CNRS/IN2P3, IPN-Lyon, F-69622, Villeurbanne, France

14CERN, CH-1211 Geneva 23, Switzerland15The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,

ul. Radzikowskiego 152, 31-342 Kraków, Poland16INFN Sezione di Milano, I-20133 Milano, Italy

17Institut für Kernphysik, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany18Oliver Lodge Laboratory, The University of Liverpool, Liverpool, L69 7ZE, United Kingdom

19STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, United Kingdom20IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France21University of Milano, Department of Physics, I-20133 Milano, Italy

22INFN Milano, I-20133 Milano, Italy23Nuclear Physics Group, Schuster Laboratory, University of Manchester, Manchester, M13 9PL, United Kingdom

24Centre de Sciences Nucleaires et Sciences de la Matiere, CNRS/IN2P3, Universite Paris-Saclay, 91405 Orsay, France25CNRS-IN2P3, Universitee Paris-Saclay, Bat 104, F-91405 Orsay Campus, France

26Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain27Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Istanbul, Turkey

28Department of Physics, University of Nigde, 51240 Nigde, Turkey29Departamento de Ingeniería Electrónica, Universitat de Valencia, 46100 Burjassot, Valencia, Spain

30Instituto de Estructura de la Materia, CSIC, Madrid, E-28006 Madrid, Spain31Irfu, CEA, Universite Paris-Saclay, F-91191 Gif-sur-Yvette, France

32INFN Padova, I-35131 Padova, Italy33Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom

34Dipartimento di Fisica e Astronomia dell’Universita di Padova and INFN Padova, I-35131 Padova, Italy35Universite Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622, Villeurbanne, France

(Received 11 July 2019; revised manuscript received 27 August 2019; accepted 18 December 2019; published 12 February 2020)

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Furtherdistribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW LETTERS 124, 062501 (2020)

0031-9007=20=124(6)=062501(6) 062501-1 Published by the American Physical Society

The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N ¼ Z) nuclide8844Ru44 has been measured using the combination of the Advanced Gamma Tracking Array (AGATA)spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particledetector array. Excited states in 88Ru were populated via the 54Feð36Ar; 2nγÞ88Ru� fusion-evaporationreaction at the Grand Accelerateur National d’Ions Lourds (GANIL) accelerator complex. The observed γ-ray cascade is assigned to 88Ru using clean prompt γ-γ-2-neutron coincidences in anticoincidence with thedetection of charged particles, confirming and extending the previously assigned sequence of low-lyingexcited states. It is consistent with a moderately deformed rotating system exhibiting a band crossing at arotational frequency that is significantly higher than standard theoretical predictions with isovector pairing,as well as observations in neighboring N > Z nuclides. The direct observation of such a “delayed”rotational alignment in a deformedN ¼ Z nucleus is in agreement with theoretical predictions related to thepresence of strong isoscalar neutron-proton pair correlations.

DOI: 10.1103/PhysRevLett.124.062501

Introduction.—Nucleonic pair correlations play animportant role for the structure of atomic nuclei as wellas for their masses. Some of the most well-known man-ifestations of the pairing effect in nuclei, which has strongsimilarities with superconductivity and superfluidity incondensed matter physics [Bardeen-Cooper-Schrieffer(BCS) theory [1,2] ], are the odd-even staggering of nuclearmasses [3], seniority symmetry [4–6] in the low-lyingspectra of spherical even-even nuclei, and the reducedmoments of inertia and backbending effect [7,8] in rotatingdeformed nuclei. Atomic nuclei, which are formed by theunique coexistence of two distinct fermionic systems(neutrons and protons), may also exhibit additional pairingphenomena not found elsewhere in nature. In nuclei withequal neutron and proton numbers (N ¼ Z) enhancedcorrelations arise between neutrons and protons thatoccupy orbitals with the same quantum numbers. Suchcorrelations have been predicted to favor a new type ofnuclear superfluidity, termed isoscalar neutron-proton (np)pairing [9–12]. In addition to the normal isovector (T ¼ 1)pairing mode based on like-particle neutron-neutron (nn)and proton-proton (pp) Cooper pairs that have their spinvectors antialigned and occupy time-reversed orbits, neu-trons and protons may here also form np T ¼ 1, I ¼ 0pairs. Of special interest is the long-standing question of thepossible presence of a np pairing condensate [9–15]predicted to be built primarily from isoscalar T ¼ 0,I > 0 np pair correlations that still eludes experimentalverification. The occurrence of a significant component ofT ¼ 0 correlated np pairs in the nuclear wave function isalso likely to have other interesting implications, e.g., theproposed “isoscalar spin-aligned np coupling scheme” inthe heaviest, spherical, N ¼ Z nuclei [16].Despite vigorous activity over the last decade or so, the

fundamental questions concerning the basic buildingblocks and fingerprints of np pairing are still a matter ofconsiderable debate. Even though until now there has beenno substantial evidence for the need to include isoscalar,T ¼ 0, np pairing to explain the known properties of

low- or high-spin states in even-even N ¼ Z nuclei theavailable data for the heavier N ¼ Z nuclei are very limiteddue to experimental difficulties: No accurate informationon masses for N ¼ Z nuclei above A ≈ 80 is currentlyknown, shape coexistence effects have muddled the analy-sis of rotational patterns of deformed N ¼ Z nuclei in themass A ∼ 70 region, and np transfer reaction studies on thelighter N ¼ Z nuclei are suffering from the complexity inthe interpretation of the experimental results. Furthermore,correlations of this type are enhanced in heavier nucleiwhere more particles in high-j shells can participate. Manytheoretical calculations suggest that the best place to lookfor evidence of an isoscalar pairing condensate is in nucleiwith A > 80; for a recent review, see Ref. [17]. Calculationsusing isospin-generalized BCS equations and the Hartree-Fock-Boguliubov (HFB) equation including pp, nn, np(T ¼ 1), and np (T ¼ 0) Cooper pairs indicated that theremay exist a second-order quantum phase transition in theground states of N ¼ Z nuclei from T ¼ 1 pairing belowmass 80 to a predominantly T ¼ 0 pairing phase abovemass 90, with the intermediate mass 80–90 region showinga coexistence of T ¼ 0 and T ¼ 1 pairing modes [18].There are even predictions for a dominantly T ¼ 0 ground-state pairing condensate in N ∼ Z nuclei around mass 130[19] (although such exotic nuclei are currently not exper-imentally accessible).The interplay between rotation and the like-particle

pairing interaction has been studied in great detail indeformed nuclei where, normally, the neutron and protonFermi levels are situated in different (sub-) shells; andhence the neutrons and protons can be considered to formseparate Fermi liquids dominated by T ¼ 1 pair correla-tions. However, the isoscalar, T ¼ 0, np coupling has theinteresting property of being less affected by the Coriolisinteraction in a rotating system, which tends to break thetime-reversed pairs with T ¼ 1. Therefore, the presence ofa np pairing condensate may reveal itself in the rotationalstates of deformed N ¼ Z nuclei where one might expectthat the T ¼ 0 pairing correlations are active while

PHYSICAL REVIEW LETTERS 124, 062501 (2020)

062501-2

the normal isovector pairing mode is suppressed by theCoriolis antipairing effect [20]. Calculations within theisospin-generalized HFB framework indeed also suggestedsuch a mixed T ¼ 1=T ¼ 0 pairing phase with a transitionfrom T ¼ 1 to T ¼ 0 dominance as a function of increasingangular momentum [21]. Hence, medium- to high-spinstates of rotating N ¼ Z nuclei appear to be among the bestplaces to search for the presence of T ¼ 0 np pairing, and itis important to reach the heaviest possible N ¼ Z nucleiwhere, however, the experimental conditions are mostchallenging. One of the key signatures proposed forisoscalar pairing is a significant “delay” in band crossingfrequency in deformedN ¼ Z isotopes compared with theirN > Z neighbors, which necessitates the study of suchnuclei up to angular momentum around I ¼ 10ℏ or higher[17]. Such delays have previously been observed in thedeformed N ¼ Z nuclei 7236Kr36,

7638Sr38, and

8040Zr40 but were

not considered as conclusive evidence for isoscalar np-pairing effects due to the possible influence of shapecoexistence on the alignment frequencies [22–24]. Thenuclei 8442Mo42 and

8844Ru44 also have indications of delays in

the rotational alignments; however in these cases theexperimental data did not reach the required rotationalfrequency in order to draw firm conclusions [25,26]. Thenucleus 88Ru is here of particular interest, as it is predictedto be the last deformed self-conjugate nuclear systembefore the N ¼ Z ¼ 50 closed shells [27]. The structureof its intermediate-to-high-spin states constitutes one of themost promising cases for discovering effects of a BCS-typeof isoscalar pairing condensate. However, due to the largeexperimental difficulties in producing and selecting suchexotic nuclei in sufficient quantities excited states in 88Ruwere previously known only up to the Iπ ¼ 8þ state [25],just where normal (isovector) paired band crossings areexpected to appear in the absence of strong isoscalarpairing. In the present work the level scheme of 88Ruhas been extended to higher angular momentum states inthe ground-state band, leading to a conclusive measurementof the rotational alignment frequency. The experimentaldifficulties have been overcome through the use of a highlyefficient, state-of-the-art detector system and a prolongedexperimental running period.Experimental details.—Excited states in 88Ru were popu-

lated in fusion-evaporation reactions induced by a 36Ar beamproduced by the CIME cyclotron at the Grand AccelerateurNational d’Ions Lourds (GANIL), Caen, France. The 36Arions were accelerated to an energy of 115 MeV and used tobombard target foils consisting of 99.9% isotopicallyenriched 54Fe with areal density of 6 mg=cm2, which wassufficient to stop the fusion products of interest. The beamintensity varied between 5 and 10 pnA with an average of7 pnA during 13 days of irradiation time. Prompt γ raysemitted in the reactions were detected by the AdvancedGamma Tracking Array (AGATA) spectrometer [28] in itsearly phase 1 implementation [29], consisting of 11 triple

clusters of segmented HPGe detectors. Emission of lightcharged particles and neutrons was detected in promptcoincidence with the γ rays by the nearly 4π solid anglecharged particle detector array DIAMANT [30,31], consist-ing of 64 CsI(Tl) scintillators, and the neutron wall [32] andNEDA [33,34] neutron detector arrays consisting of 42 and54 organic liquid-scintillator detectors, respectively. Thetrigger condition for recording events for subsequent off-line analysis was that at least two of the high-puritygermanium crystal core signals from the AGATA triple-cluster detectors were registered in fast coincidence with atleast one neutronlike event recorded in the liquid scintillatordetectors. The condition for the neutronlike events wasdetermined by pulse-shape discrimination (PSD) via afirmware threshold set for the so-called charge comparison(CC) ratio between the charge integrated over the tail part ofeach liquid scintillator pulse and its total integrated charge.Similar PSD criteria made it possible to discriminatebetween different types of charged particles detected in theCsI(Tl) scintillators. The final discrimination between neu-trons and γ rays was performed off line by setting two-dimensional gates on the neutron time of flight vs the CCratio. The rare two-neutron evaporation events were sepa-rated from events where a neutron scattered betweendetectors by applying simultaneous cuts on the depositedenergy and time of flight as a function of the distancebetween detectors that fired. For the off-line charged particleselection, individual two-dimensional gates on the particleidentification and energy parameters of the DIAMANTdetectors enabled the identification of γ rays as belongingto specific charged particle evaporation channels. A 50 nswide time gate was applied to the time-aligned Ge detectortiming signals in order to select prompt γ-ray emission. Theγ-ray energy measurements with AGATA rely on trackingalgorithms [35–39] that reconstruct trajectories of incident γ-ray photons in order to determine their energy and direction.This is achieved by disentangling the interaction points andcorresponding interaction energies in the germanium crystalsthat are identified using pulse shape analysis of the detectorsignals and thereafter establishing the proper sequences ofinteraction points using the characteristic features of theinteraction mechanisms (primarily the photoelectric effect,Compton scattering, and pair production). The energycalibration of the germanium detectors was performed usingstandard radioactive sources (60Co and 152Eu). Figure 1shows projected spectra from the 2n-selected Eγ − Eγ

coincidence matrix obtained requiring anticoincidence withdetection of any charged particle in the DIAMANT CsI(Tl)detector array. The spectrum in Fig. 1(a) was produced forevents where γ rays coincident with the 616, 800, 964, and1100 keV transitions assigned to 88Ru were selected. Thebackground spectrum was produced by using identicalenergy cuts on a selection of the data requiring coincidencewith two neutrons and a charged particle summed with thebackground spectrum obtained by shifting the energy cuts a

PHYSICAL REVIEW LETTERS 124, 062501 (2020)

062501-3

constant offset of þ20 keV in the two-neutron gated datarequiring anticoincidence with the detection of chargedparticles. These transitions were previously identified asbelonging to 88Ru in a study involving a different reaction:58Nið32S; 2nγÞ88Ru� [25]. All γ rays observed in promptcoincidence and assigned to the ground-state band of 88Ru inthis work are indicated with their energies in keV.Discussion.—Figure 2 shows values of the kinematical

moment of inertia (Jð1Þ) for the low-lying yrast level energybands in the N ¼ 44 isotones 88

44Ru44 (this work), 8642Mo44

[40,41], and 8440Zr44 [42]. The ground-state bands in the

even-Z, N > Z isotones 8642Mo44 and 84

40Zr44 exhibit avariation of Jð1Þ (defined as the angular momentum, I,divided by the rotational frequency, ω ¼ dE=dI) as afunction of rotational frequency that is characteristic of anormal paired band crossing in a rotating deformed nucleusof the isovector (T ¼ 1) type. The band crossing frequencyis ℏωc ≈ 0.47 MeV in both cases (indicated by the blackvertical dashed line in Fig. 2). For the N ¼ Z nucleus8844Ru44 the increase in Jð1Þ also resembles a paired bandcrossing, albeit at a significantly higher rotational fre-quency, ℏωc ≈ 0.54 MeV, indicated by the red verticaldotted line in Fig. 2.

Theoretical predictions of the rotational response ofexcited states and the associated spin alignment can beprovided by cranked shell model calculations [45], whichpredict the first proton two-quasiparticle ðπg9=2Þ2 align-ment to occur at ℏωc ≈ 0.45 MeV followed closely by aneutron νðg9=2Þ2 alignment [43,44]. Mountford et al. havedemonstrated that the first alignment in 84Zr is due to g9=2protons by means of a transient-field g-factor measurement[46]. The slopes of the Jð1Þ curves around the crossing pointalso exhibit an expected variation, reflecting the change ininteraction strength between the ground-state band and thebroken-pair S band as the proton Fermi level changeswithin the g9=2 subshell. The large delay in band crossingfrequency for 88

44Ru44 compared with its closest N ¼ 44

isotones can not readily be explained using standard meanfield models.Developments of computational methods in recent years

enable shell model calculations to be performed with largemodel spaces, providing nuclear structure predictions formedium-mass nuclei away from closed shells. Large-scaleshell-model (LSSM) calculations with an isospin-conserving Hamiltonian are also the method of choice

FIG. 1. (a) Gamma-ray energy spectrum detected in coinci-dence with the 616, 800, 964, and 1100 keV γ rays, with theadditional requirement that two neutrons and no charged particleswere detected in coincidence. (b) Expanded part of the unsub-tracted gated spectrum around the new γ-ray transitions at1063 keV (10þ → 8þ), 1153 keV (12þ → 10þ), and1253 keV [ð14þÞ → 12þ] is drawn in red together with thebackground spectrum (black) used to produce the spectrumshown in (a). Gamma-ray peaks due to contaminant reactionson oxygen leading to the population of excited states in 49;50Crand 49Mn are indicated. (c) Level scheme of 88Ru deduced fromthe present work. Relative intensities are proportional to thewidths of the arrows.

FIG. 2. Experimental values for the kinematical moment ofinertia (J1) for the low-lying yrast bands of the N ¼ 44

isotones 8844Ru44 (this work), 86

42Mo44 [40,41], and 8440Zr44 [42].

The black dashed vertical line indicates the approximaterotational frequency of the first isovector-paired band crossingdue to g9=2 protons as predicted by standard cranked shellmodel calculations [43,44]. The red dotted vertical line in-dicates the band crossing frequency for the ground-state bandin 88

44Ru44 observed in this work.

PHYSICAL REVIEW LETTERS 124, 062501 (2020)

062501-4

for theoretical investigations of the isospin dependence ofnucleonic pair correlations [17]. In Ref. [26], projectedshell model calculations following the approach ofRef. [47] predicted a delay in the band crossing frequencyin the N ¼ Z nuclei 84

42Mo42 and 8844Ru44 as an effect of

enhanced neutron-proton interactions. Kaneko et al. [48]employed LSSM calculations using a “pairing-plus-multi-pole” Hamiltonian [49] in the ð1p1=2; p3=2; f5=2; g9=2; d5=2Þ(often denoted as fpgd) model space for studying8844Ru44,

9044Ru46, and

9244Ru48 and concluded that T ¼ 0 np

pairing is responsible for the distinct difference in rotationalbehavior between the N ¼ Z and N > Z nuclei. Thesecalculations also predicted a significant delay in the bandcrossing frequency for N ¼ Z and their prediction for theJð1Þ moment of inertia of 88

44Ru44 revealed a sharp irregu-larity at a rotational frequency ℏωc ≈ 0.65 MeV [48].We therefore conclude that the delayed alignment of g9=2protons observed in the ground-state band of 88Ru in thepresent work is likely not to be in agreement with theresponse of a deformed rotating nucleus in the presenceof a normal isovector pairing field and that isoscalarpairing components may be active in this self-conjugatenucleus.Summary.—In summary, new γ-ray transitions in the self-

conjugate nuclide 8844Ru44 have been identified, extending the

previously reported level structure. The observed ground-state band exhibits a band crossing that is significantlydelayed compared with the expected behavior of a rotatingdeformed nucleus in the presence of a normal isovector(T ¼ 1) pairing field. The observation is in agreement withtheoretical predictions for the presence of isoscalar neutron-proton pairing in the low-lying structure of 88Ru.

This work was supported by the Swedish ResearchCouncil under Grant No. 621-2014-5558 and the EU 7thFramework Programme, Integrating ActivitiesTransnational Access, Grant No. 262010 ENSAR; theUnited Kingdom STFC under Grants No. ST/L005727/1and No. ST/P003885/1; the Polish National Science Centre,Grants No. 2017/25/B/ST2/01569, No. 2016/22/M/ST2/00269, No. 2014/14/M/ST2/00738 (COPIN-INFN collabo-ration; COPIN-IN2P3 and COPIGAL projects; theNational Research Development and Innovation Fund ofHungary (Grant No. K128947); the European RegionalDevelopment Fund (Contract No. GINOP-2.3.3-15-2016-00034), by the Hungarian National Research, Developmentand Innovation Office, Grant No. PD124717; the Ministryof Science, Spain, under Grants No. SEV-2014-0398 andFPA2017-84756-C4; and by the EU FEDER funds. X. L.gratefully acknowledges support from the ChinaScholarship Council, Grant No. 201700260183 for hisstay in Sweden. We thank the GANIL staff for excellenttechnical support and operation.

*Corresponding [email protected]

[1] L. N. C. J. Bardeen and J. R. Schrieffer, Phys. Rev. 106, 162(1957).

[2] L. N. C. J. Bardeen and J. R. Schrieffer, Phys. Rev. 108,1175 (1957).

[3] W. Heisenberg, Z. Phys. 78, 156 (1932).[4] A. de Shalit and I. Talmi, Nuclear Shell Theory (Academic

Press, New York, 1963).[5] I. Talmi, Simple Models of Complex Nuclei (Harwood

Academic Press, Switzerland, 1993).[6] D. J. Rowe and G. Rosensteel, Phys. Rev. Lett. 87, 172501

(2001).[7] H. R. A. Johnson and J. Sztarkier, Phys. Lett. 34B, 605

(1971).[8] F. Stephens and R. Simon, Nucl. Phys. A183, 257 (1972).[9] K. L. J. Engel and P. Vogel, Phys. Lett. B 389, 211

(1996).[10] J. Engel, S. Pittel, M. Stoitsov, P. Vogel, and J. Dukelsky,

Phys. Rev. C 55, 1781 (1997).[11] O. Civitarese, M. Reboiro, and P. Vogel, Phys. Rev. C 56,

1840 (1997).[12] A. Goodman, Adv. Nucl. Phys. 11, 263 (1979).[13] W. Satula and R. Wyss, Phys. Rev. Lett. 87, 052504

(2001).[14] G. Martinez-Pinedo, K. Langanke, and P. Vogel, Nucl. Phys.

A651, 379 (1999).[15] D. Warner, M. A. Bentley, and P. Van Isacker, Nat. Phys. 2,

311 (2006).[16] B. Cederwall et al., Nature (London) 469, 68 (2011).[17] S. Frauendorf and A. Macchiavelli, Prog. Part. Nucl. Phys.

78, 24 (2014).[18] A. L. Goodman, Phys. Rev. C 60, 014311 (1999).[19] A. Gezerlis, G. F. Bertsch, and Y. L. Luo, Phys. Rev. Lett.

106, 252502 (2011).[20] W. Satula and R. Wyss, Phys. Lett. B 393, 1 (1997).[21] A. L. Goodman, Phys. Rev. C 63, 044325 (2001).[22] G. de Angelis et al., Phys. Lett. B 415, 217 (1997).[23] S. Fischer et al., Phys. Rev. Lett. 87, 132501 (2001).[24] P. Davies et al., Phys. Rev. C 75, 011302(R) (2007).[25] N. Marginean et al., Phys. Rev. C 63, 031303(R) (2001).[26] N. Marginean et al., Phys. Rev. C 65, 051303(R) (2002).[27] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki,

At. Data Nucl. Data Tables 59, 185 (1995).[28] S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res., Sect.

A 668, 26 (2012).[29] E. Clement et al., Nucl. Instrum. Methods Phys. Res.,

Sect. A 855, 1 (2017).[30] J. Scheurer et al., Nucl. Instrum. Methods Phys. Res., Sect.

A 385, 501 (1997).[31] J. Gál et al., Nucl. Instrum. Methods Phys. Res., Sect. A

516, 502 (2004).[32] O. Skeppstedt et al., Nucl. Instrum. Methods Phys. Res.,

Sect. A 421, 531 (1999).[33] T. Huyuk et al., Eur. Phys. J. A 52, 55 (2016).[34] J. J. Valiente-Dobón et al., Nucl. Instrum. Methods Phys.

Res., Sect. A 927, 81 (2019).

PHYSICAL REVIEW LETTERS 124, 062501 (2020)

062501-5

[35] M. A. Deleplanque, I. Y. Lee, K. Vetter, G. J. Schmid, F. S.Stephens, R. M. Clark, R. M. Diamond, P. Fallon, and A. O.Macchiavelli, Nucl. Instrum. Methods Phys. Res., Sect. A430, 292 (1999).

[36] J. van der Marel and B. Cederwall, Nucl. Instrum. MethodsPhys. Res., Sect. A 437, 538 (1999).

[37] M. A. D. I. Y. Lee and K. Vetter, Rep. Prog. Phys. 66, 1095(2003).

[38] A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz, andJ.-P. Thibaud, Nucl. Instrum. Methods Phys. Res., Sect. A533, 454 (2004).

[39] D. Bazzacco, Nucl. Phys. A746, 248 (2004).[40] D. Rudolph et al., Phys. Rev. C 54, 117 (1996).

[41] K. Andgren et al., Phys. Rev. C 76, 014307 (2007).[42] H. Price, C. J. Lister, B. J. Varley, W. Gelletly, and J. W.

Olness, Phys. Rev. Lett. 51, 1842 (1983).[43] K. Jonsson et al., Nucl. Phys. A645, 47 (1999).[44] W. N. J. Dudek and N. Rowley, Phys. Rev. C 35, 1489 (1987).[45] R.BengtssonandS.Frauendorf,Phys.Lett.B255, 174 (1991).[46] A. Mountford, J. Billowes, W. Gelletly, H. G. Price, and

D. D. Warner, Phys. Lett. B 279, 228 (1992).[47] Y. Sun and J. Sheikh, Phys. Rev. C 64, 031302 (2001).[48] Y. S. K. Kaneko and G. de Angelis, Nucl. Phys. A957, 144

(2017).[49] K. Kaneko, T. Mizusaki, and S. Tazaki, Phys. Rev. C 89,

011302(R) (2014).

PHYSICAL REVIEW LETTERS 124, 062501 (2020)

062501-6