Geomecánica para Reservorios y Producción

48
Geomecánica para Reservorios y Producción - Aplicaciones para Incrementar la Producción y ubicación de nuevos pozos Anna Paula Lougon Business Owner Geomechanics and Drilling

Transcript of Geomecánica para Reservorios y Producción

Geomecánica para Reservorios y Producción - Aplicaciones para Incrementar la Producción y ubicaciónde nuevos pozos

Anna Paula Lougon

Business Owner Geomechanics and Drilling

Outline

1. Where does Geomechanics impact

2. Advanced Integrated Geomechanics Workflows: 1D till 4D

3. Geomechanics Applications

- Drilling Integrity

- Production

- Field Integrity

4. Summary

What is a Geomechanical Model?

Why a rock fails ?

Because of changes in :

1. Stresses

2. Pressure (fluid flow)

3. Temperature

4. Time (creep)

5. Chemistry (fluid interaction)

... and modes of failures also depend on rock structure

In reservoir and over- and under-burden, and not just in weak or compacting rocks.From appraisal to abandonment & from well to field applications.

Where does Geomechanics impact?Im

ag

e: S

chlu

mbe

rge

r

Just drilling geomechanics approach?

1D

2D

3D4D

3D – VISAGE / PETREL

• Hazards identification at the Area

• Can represent the structure

• Complex Geology

• Equilibrated Stress

4D.. De Genaro et al. (2010). VISAGE

t =0

t =10yr

Coupled 3D reservoir geomechanics technology which models life-of-field

dynamic reservoir behavior and performance

So

urce

: : ne

ed-m

ed

ia.sm

ug

mug.co

m

Source: Schlumberger

What we do?

7

Search

(Seismic/ Basin)

Drill & Evaluate

Well-Test & Produce

Drill more wells &

Produce

Maintain & Increase

Production

Elastic Properties (E, v)Rock Strength (UCS, FANG, TSTR)

Max Horizontal StressMin Horizontal Stress

Overburden Stress

Pp

Pore Pressure

N

Well Centric Geomechanics (1D)

Rock Mechanical Parameters

Strength

UCS F

20 400

0 70

UCS

Friction Angle

Earth Stress & Pore Pressure

Pp S h S H S V

MPa0 200Stress W N E

Stress Direction S h

fault ?

Regional Trend

PR E

1Poisson’sRatio

Young’s Modulus

100

IsotropicElastic

1.0

0

10

• Formation tops• Unconformities• Faults

Structure

Performed building a Mechanical Earth Model (MEM)

Continuous description of mechanical properties and stresses along the well calibrated against measurements and observations

PredictWellbore Failure

MechanicalStratigraphy

• Rock Fabric• Mechanical support• Deformation Mechanisms

Advance Integrated Geomechanics workflow

Seismic Processing

Grid

Elastic Properties

Stress/Strain Model

Mud WeightCube

Wavelet Estimation

Seismic Inversion

Prospect Quantification

Fracture System

Well Trajectory optimization &

Drilling Opt

Drilling – Hydraulic Fracturing & completion

planning

Petrophysics Rock Physics

Lithology ClassificationRP inversion

Pore PressurePrediction

Depth Conversion

Low Frequency

Model

1D MEM

ReservoirProperties

Velocity Analysis

Fault Interpretation

Horizon Interpretation

Geomechanics Applications

10

•Wellbore Stability – right mud weight and system•Casing design and location•ROP and drill bit optimization•PAD location and attack angle

Drilling Integrity

•Hydraulic frac design and optimization•Completion optimization•(Casing, Cement, Perforation, Screen)

•Injectivity optimization (rate, cap rock)•Sand/solid production

Production Integrity

•Pore volume collapse•Compaction/Subsidence•Fault and fracture shearing – sealing•Water breakthrough•Reservoir management/EOR/

Field Integrity

Drilling Integrity

11

Problemas Geo-mecánicos en Perforación

P10 %

6%

12 %

16 %

6%

4 %22 %

13 %

10 %

10 %

10 %

Hydraulic Fracture

ShearFailure

MinimumStress

MaximumStress

Pmud

Classical Wellbore Deformation

13

Mud Weight Window and Wellbore Damage

3D Safe Mud Weight Window

Safe mud weight window prediction before and during field development.

– Pore Pressure gradient– Breakout gradient– Fracture gradient– Breakdown gradient

Analysis honours all complexity included in the 3D MEM.

Pre-production

After Production

Narrow

Wide

Wellbore Trajectory Optimization

Fault Shear Failure

Values closer to 0 (red) indicate areas of potential fault reactivation due to drilling.

Pore Pressure Cube (g/cc)

First drilled well on the field*Structural Map for the field*Anisotropy profiles– DSI- not

conclusive*Finite element modeling- VISAGE

VISAGE modeling had as main objective reducing uncertainty associated to stresses in the field, for this a geometrical analysis of the anticline and fault was performed for the determination of direction and stress gradients in the border of the study area.

Well-1DLTarget 1 3034-3360m

Azimuth Max Stress Orientation +/-200

N

Case 1 SPE-WVS-040: Field water depth 800-1050m:

Field Horizontal Stress Orientation

Well-2DL *Structural Map for the field*Finite element modeling- VISAGE *Anisotropy profiles– Scanner dispersion plots*4 arm caliper (not conclusive)*Dual-OBMI

Azimuth ~1100

Well-2DL

Well-1

Well 1: *Structural Map: Azimuth +/- 300

*VISAGE Modeling: Azimuth +/-200

Well 2DL*VISAGE Modeling: Azimuth +/- 105-1150

*Sonic Scanner Azimuth +/- 1100

*CALIBAN Analysis Not conclusive

0.95-2.15G/CC 0.95-2.15G/CC

Operational Window– Next deviated well in the South region of the field, feasibility of horizontal drilling?

0.95-2.15G/CC

-With the new information was concluded that drilling highly deviated wells at the reservoir levels is feasible

-Beginning at 60 degrees the safe drilling window becomes narrow, 0.7 g/cc (mud loss risk).

-It is recommended to use tools that confirm stress orientation in the South region of the field

Ejemplos de Aplicaciones 1D: Campo Oso

OBJECTIVOS:

• Reducir NPT

• Perforar pozos retadores sin incidentes geo-mecánicos

Ejemplos de Aplicaciones 1D: Campo Oso

Ejemplos de Aplicaciones 1D: Campo Oso

Ejemplos de Aplicaciones 1D: Campo Oso

Desviación Azimuth

Pozo Oso A-47H

Sección de Aterrizaje: NAPO

MW 11 13ppg ECD 14.3ppg

Ejemplos de Aplicaciones 1D: Campo Oso

Ejemplos de Aplicaciones 1D: Campo Oso

2011 OsoA-47H / OsoB-48H.

2012 OsoA-49H, OsoB-52H, OsoB-54, OsoG-63H, OsoA-55H, OsoA-57H y OsoA-59H.

2013 OsoA-73, OsoA-75H, OsoA-77, OsoA-79, OsoA-91, OsoA-92H y OsoA-93H Ajustes MEM.

2013/14 OsoH-113 hasta el OsoH-122.

2014 Re-entry: OsoA-39R1, OsoA-35R1, OsoA-37R1 y OsoA-43R1. OsoA-150. y OsoI-04i

2015 OsoI-05i, OsoH-123, OsoH-124, OsoG-100, OsoI-141, OsoH-125, OsoI-142, OsoI-143, OsoH-126, OsoG-101, OsoI-144 y OsoH-127.

350

260

408356

129

460

54

443

317

225

328 331

466

397

532 553

467

565

474498

459.7

0

1

2

3

4

5

6

7

0

100

200

300

400

500

600

OSO PAD H

34

27.822.1

19.6 1924.3323.69

16.17 14.69

18.92

0

5

10

15

20

25

30

35

40

OSO I 004 OSO I 005 OSO I 141 OSO I 142 OSO I 143 OSO I 144

OSO I Tiempo Planeado x real

Tiempo Planeado Tiempo Real

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

-

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

OSO I 004 OSO I 005 OSO I 141 OSO I 142 OSO I 143

PAD I - OSO

AFE Real Cost

Production Integrity

Stress rotation

Breakout prediction, Stress Rotation

Hydraulic Fracturing Modeling

30

q h

H

P

?

Natural fracture

Near wellbore evaluation Integrated evaluation

stimulation design optimization

unconventional fracture model

Hydraulic Fracture

Natural Fracture

Cross?

Dilate?

Dilate & Reactivate?

Natural Fracture Activity

Hydraulic Fracture

Natural Fracture

Cross?

Dilate?

Dilate & Reactivate?

Natural Fracture Activity

Understanding Pad Scale Phenomena: Wolfcamp Shale, US

Problemas Geo-mecánicos en Producción

Rocas no Consolidadas Rocas muycompetentes

Reservorios poco consolidados: Oportunidad

Estado 1Falla de la Roca

Estado 1Falla de la Roca

Estado 2TransporteEstado 2

Transporte

Flujo de trabajo analítico para arenamiento

Datos de entrada: MEM

Workflow

• Definir completación

• Tasa de Depletación

• Parámetros de arenamiento

Análisis de intervaloDrawdown Crítico para tasas de depletación en intervalos definidos

Análisis a profundidad específicaCritical drawdown as a function of epletion for single depth

Def

inir

prof

undi

dad

Pro

fund

idad

In

terv

alo

Ejemplos de Aplicaciones Arenamiento: Campo Apaika

Ejemplos de Aplicaciones Arenamiento: Campo Apaika

Con este análisis, el drawdown crítico recomendado para el inicio de la producción del pozo fue de 1190 psi. (BHP=1100psi)

Ejemplos de Aplicaciones Arenamiento: Campo Apaika

Production and Well Placement : Application of Field-scale

Low Critical Drawdown

High Critical Drawdown37

Sand Production Critical Drawdown Cube

Field integrity

38

Stress transfer mechanismwellbore

depleted zone

h stress trajectories h concentration

Far

-fie

ld s

tress

es

reservoir

over-burden

under-burden

dept

h

h

initialh

depletedh

reservoir

overburden

underburden

Consequences:reduced h in the reservoirhigher h above and below the reservoir

39 NK5/29/2017

Coupled Reservoir Geomechanics Modeling

South Arne Field

Danish sector of the North Sea

Operated by Hess

Carbonate chalk reservoir

Result: Stress orientation before production

Initial State

N

Result: Stress orientation after production

N

Initial StateFinal State

Field Example: Reservoir Compaction with Production

Geomechanics Prediction

Compaction determined by two independent methods difference of ~5 cm

Prediction helped in development planning & seismic inversion confirmed prediction

4-D Seismic Inversion

Two fracture sets were

implemented

Different fracture strike,

spacing and conductivity

Field Example: Reservoir Compaction with Production

Injector Producer

Month 38

Injector Producer

Month 27

Month 0

Injector Producer

Month 21

Injector Producer

Example of Production Well FailureIntegrated Service – Deepwater GoM – Predictive ModelRel- Predated

What else the Shared Geomechanical Model can do to Minimize Operational Risk?

Well planning & optimization Stress modeling Well location and trajectory Wellbore stability and mud weights Casing design Completions

Dynamic behaviour and depletion Stress evolution Compaction and subsidence Permeability (including fractures) Sanding Fault activation, induced seismicity In-fill drilling Casing failure

IOR/EOR and treatments Frac treatments Thermal and pressure effects Water injector placement Flood directionality, sweep efficiency

Field development planning /Intervention planning

Storage and waste disposal (NORM, cuttings reinjection, fresh & waste water)

4-D seismic – Seismic Reservoir Monitoring

47

Summary

• Rock is always under-stress & stress changes with time - production/injection

• Geomechanics is critical to the optimal safety drilling side by the management of the

reservoir for maximum productivity and recovery

• Geomechanics can minimize operational risks

3D/4D Mechanical Earth models contribute to

• Plan safe well trajectories

• Ensure completion integrity under production-induced compaction