Genotyping of CYP2D6 Polymorphisms by MALDI-TOF Mass Spectrometry in Sardinian People

10
Hindawi Publishing Corporation ISRN Genetics Volume 2013, Article ID 609797, 10 pages http://dx.doi.org/10.5402/2013/609797 Research Article Genotyping of CYP2D6 Polymorphisms by MALDI-TOF Mass Spectrometry in Sardinian People Matteo Falzoi, 1,2,3 Luigi Pira, 1 Paolo Lazzari, 1 and Luca Pani 2 1 PharmaNess S.c.a r.l., Parco Scientifico e Tecnologico della Sardegna, Edificio 5, Localit` a Piscina Manna, 09010 Pula, Italy 2 Unit` a Operativa di Cagliari, Parco Scientifico e Tecnologico della Sardegna, Istituto di Farmacologia Traslazionale del Consiglio Nazionale delle Ricerche CNR–IFT, Edificio 5, Localit` a Piscina Manna, 09010 Pula, Italy 3 Dipartimento di Scienze della Vita e dell’Ambiente, Laboratori di Genetica, Universit` a degli Studi di Cagliari, Via T. Fiorelli 1, 09126 Cagliari, Italy Correspondence should be addressed to Luigi Pira; [email protected] Received 7 March 2013; Accepted 4 April 2013 Academic Editors: B. Chen, M. A. Chiurillo, G. Giovambattista, and A. Yamamoto Copyright © 2013 Matteo Falzoi et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e CYP2D6 enzyme is involved in the metabolism of many commonly prescribed drugs. e presence of CYP2D6 gene SNPs can alter CYP2D6 enzymatic activity with effects ranging considerably within a population. Objectives. In this study, we have developed a genotyping platform able to determine the alleles related to interindividual variability in the CYP2D6 gene. Design and Methods. We used a long PCR strategy coupled to MALDI-TOF mass spectrometry (Sequenom) to develop a SNPs genotyping method. Furthermore, an amplification allele specific was carried out to infer the correct allelic phase. Results. We tested the multiplex platform in 250 DNA Sardinian samples and found it to be 100% concordant with the sequencing results of our previous work. Conclusions. e MALDI-TOF-based multiplexing system allowed simultaneous and efficient genotyping of a set of CYP2D6 SNPs, evidencing its potential use in diagnostic test development to predict drug responses and clinical outcomes. 1. Introduction e presence of polymorphisms in the cytochrome P450 2D6 (CYP2D6) gene may modulate enzyme levels affecting individual responses to pharmacological treatment in drug level, response, and adverse reactions and includes individu- als with ultrarapid (UM), extensive (EM), intermediate (IM), and poor (PM) metabolizer status. Furthermore, the presence of multiple functional gene copies or the deletion of the entire gene results in increased or absent drug metabolism, respectively [1, 2]. Genotypic analysis to identify individual polymorphisms has become increasingly important during drug development and for selection of individualized ther- apies. For this reason, high-throughput technology for rapid, accurate, and efficient genotyping is needed. Several strate- gies and methods for SNPs genotyping have been developed. Techniques commonly used, such as PCR-RFLP, real-time PCR, and the TaqMan allele-specific assays from Applied Biosystems (CA, USA), are oſten laborious, and a restricted number of alleles can be simultaneously detected by these techniques. Conversely, the high-throughput oligonucleotide microarray technology, such as the Affymetrix/Roche (CA, USA) AmpliChip CYP450 GeneChip test, has the disad- vantage over other assays in that it cannot be customized by the user, and the benefits of this technology are oſten not compensable due to unfavourable costs [3]. In our previous work [4], we tried to create a complete genotyping platform for the simultaneous analysis of CYP3A4, CYP3A5, CYP2C9, CYP2C19, and CYP2D6 SNPs. e genotyping of the CYP2D6 gene was difficult due to its polymorphic nature, the presence of two flanking pseudogenes and copy number variants. To avoid false genotyping, resulting from nonspe- cific coamplification of the highly homologous pseudogenes, we developed the analysis of this gene in another way by using long PCR protocol coupled with single allele analysis and followed by sequencing [5]. In this work, we aimed to create a CYP2D6 medium-throughput SNPs screening platform using the Sequenom (CA, USA) matrix-assisted

Transcript of Genotyping of CYP2D6 Polymorphisms by MALDI-TOF Mass Spectrometry in Sardinian People

Hindawi Publishing CorporationISRN GeneticsVolume 2013 Article ID 609797 10 pageshttpdxdoiorg1054022013609797

Research ArticleGenotyping of CYP2D6 Polymorphisms byMALDI-TOF Mass Spectrometry in Sardinian People

Matteo Falzoi123 Luigi Pira1 Paolo Lazzari1 and Luca Pani2

1 PharmaNess Sca rl Parco Scientifico e Tecnologico della Sardegna Edificio 5 Localita Piscina Manna 09010 Pula Italy2 Unita Operativa di Cagliari Parco Scientifico e Tecnologico della Sardegna Istituto di Farmacologia Traslazionale del ConsiglioNazionale delle Ricerche CNRndashIFT Edificio 5 Localita Piscina Manna 09010 Pula Italy

3 Dipartimento di Scienze della Vita e dellrsquoAmbiente Laboratori di Genetica Universita degli Studi di Cagliari Via T Fiorelli 109126 Cagliari Italy

Correspondence should be addressed to Luigi Pira luigipirapharmanesscom

Received 7 March 2013 Accepted 4 April 2013

Academic Editors B Chen M A Chiurillo G Giovambattista and A Yamamoto

Copyright copy 2013 Matteo Falzoi et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The CYP2D6 enzyme is involved in the metabolism of many commonly prescribed drugs The presence of CYP2D6 gene SNPs canalter CYP2D6 enzymatic activity with effects ranging considerably within a populationObjectives In this study we have developeda genotyping platform able to determine the alleles related to interindividual variability in the CYP2D6 gene Design and MethodsWe used a long PCR strategy coupled to MALDI-TOF mass spectrometry (Sequenom) to develop a SNPs genotyping methodFurthermore an amplification allele specific was carried out to infer the correct allelic phase Results We tested the multiplexplatform in 250 DNA Sardinian samples and found it to be 100 concordant with the sequencing results of our previous workConclusionsTheMALDI-TOF-basedmultiplexing system allowed simultaneous and efficient genotyping of a set of CYP2D6 SNPsevidencing its potential use in diagnostic test development to predict drug responses and clinical outcomes

1 Introduction

The presence of polymorphisms in the cytochrome P4502D6 (CYP2D6) gene may modulate enzyme levels affectingindividual responses to pharmacological treatment in druglevel response and adverse reactions and includes individu-als with ultrarapid (UM) extensive (EM) intermediate (IM)and poor (PM)metabolizer status Furthermore the presenceof multiple functional gene copies or the deletion of theentire gene results in increased or absent drug metabolismrespectively [1 2] Genotypic analysis to identify individualpolymorphisms has become increasingly important duringdrug development and for selection of individualized ther-apies For this reason high-throughput technology for rapidaccurate and efficient genotyping is needed Several strate-gies and methods for SNPs genotyping have been developedTechniques commonly used such as PCR-RFLP real-timePCR and the TaqMan allele-specific assays from AppliedBiosystems (CA USA) are often laborious and a restricted

number of alleles can be simultaneously detected by thesetechniques Conversely the high-throughput oligonucleotidemicroarray technology such as the AffymetrixRoche (CAUSA) AmpliChip CYP450 GeneChip test has the disad-vantage over other assays in that it cannot be customizedby the user and the benefits of this technology are oftennot compensable due to unfavourable costs [3] In ourprevious work [4] we tried to create a complete genotypingplatform for the simultaneous analysis of CYP3A4 CYP3A5CYP2C9 CYP2C19 and CYP2D6 SNPs The genotyping ofthe CYP2D6 gene was difficult due to its polymorphic naturethe presence of two flanking pseudogenes and copy numbervariants To avoid false genotyping resulting from nonspe-cific coamplification of the highly homologous pseudogeneswe developed the analysis of this gene in another way byusing long PCR protocol coupled with single allele analysisand followed by sequencing [5] In this work we aimedto create a CYP2D6 medium-throughput SNPs screeningplatform using the Sequenom (CA USA) matrix-assisted

2 ISRN Genetics

Table 1 List of 69 analyzed SNPs and correlation to aminoacidchanges or transcriptional modificafications

CYP2D6 SNPs Variations-1584CgtG mdash-1426CgtT mdash-1235AgtG mdash-1000GgtA mdash-948CgtA mdash-750 -749delGA mdash-740CgtT mdash-678GgtA mdash19GgtA V7M31GgtA V11M77GgtA R26H82CgtT mdash100CgtT P34S124GgtA G42R137 138insT Frameshift214GgtC (lowast) mdash310GgtT mdash746CgtG mdash843TgtG mdash883GgtC Splicing defect957CgtT A85V974CgtA L91M984AgtG H94R997CgtG mdash1039CgtT mdash1513CgtT mdash1659GgtA V136I1661GgtC mdash1704CgtG Q151E1707delT Frameshift1724CgtT mdash1749AgtG N166D1757CgtT mdash1758GgtA G169R1758GgtT G169X1846GgtA Splicing defect1863 1864insTTTCGCCCC 174 175insFRP1869TgtC mdash1943GgtA R201H1979TgtC mdash2291GgtA mdash2483GgtT A237S2539 2542delAACT Frameshift2549delA Frameshift2575CgtA mdash2587 2590delGACT Frameshift2615 2617delAAG K281del2850CgtT R296C

Table 1 Continued

CYP2D6 SNPs Variations2853AgtC I297L2935AgtC H324P2939GgtA mdash2988GgtA Splicing defect3176CgtT mdash3183GgtA V338M3198CgtG R343G3277TgtC I369T3288GgtA mdash3384AgtC mdash3582AgtG mdash3584GgtA mdash3790CgtT mdash3828GgtA mdash3853GgtA E410K3877GgtA E418K3948TgtG mdash4115CgtT mdash4155CgtT (∘) H478Y4180GgtC S486T4401CgtT mdash4481GgtA mdashIn MALDI-TOF MS analysis (lowast) 214GgtC SNP was used to discriminategene conversion to CYP2D7P in Intron 1 and (∘) 4155CgtT SNP was usedto discriminate gene conversion to CYP2D7P in Exon 9 A = alanine R =arginine N = asparagine D = aspartic acid C = cysteine E = glutamic acideQ = glutamine G = glycine H = histidine I = isoleucine L = leucine K= lysine M = methionine F = phenylalanine P = proline S = serine T =threonineW= tryptophan Y= tyrosineV= valine In bold characters newlydiscovered SNPs in [5 17 18 21]

laser desorptionionization (MALDI) time-of-flight (TOF)mass spectrometry (MS) [6] a widely used technology thatis proving to be a competitive analysis method in SNPsgenotyping Advantages of MALDI-TOF MS over previouslydescribed methods include the option for medium-high-throughput automated analysis of SNPs the relative ease ofsetup formultiplex assays and the reduced costs per genotype[3]

2 Methods and Materials

SNPs and Sequences Selection The 69 polymorphisms ana-lyzed in this study were selected using principal SNP webdatabases such as the Human CYP Allele NomenclatureCommittee [7] and the NCBI Single Nucleotide Polymor-phism dbSNP [8] websites Selection criteria dependedmainly on the pharmacogenetic effects described for everyallele in the Caucasian population [5 7 9ndash16] Not all selectedSNPs are involved in aminoacidic or transcriptional variation(Table 1) Some of these are silent or promoter leader trailerand intronic changes and inserted in our study because theyare essential for the reconstruction of haplotype phases TheSNPsrsquo recombination allowed the reconstruction of 66 among

ISRN Genetics 3

Table 2 List of primers used inCYP2D6 long PCRprotocolsThe 51015840 10-mer tagwas added to PCRprimers in order to improve PCR efficiency

Nucleotides position Name 51015840 10ndashmer tag 51015840-Sequence-31015840 DirectionFrom -1780 to -1758 P-1780 [5] ACGTTGGATG GTCCTCCTGTCCTCAGTGGAT ForwardFrom -1584 to -1559 P-1584 WT [5] ACGTTGGATG CAGCCTGGACAACTTGGAAGAAGCC ForwardFrom -1584 to -1559 P-1584 MUT [5] ACGTTGGATG CAGCCTGGACAACTTGGAAGAAGCG ForwardFrom 4706 to 4728 2D6ndashR [19] ACGTTGGATG ACTGAGCCCTGGGAGGTAGGTA Reverse

allelic variants and subvariants List of alleles is summarizedin Table 5

DNASamples In this study we reanalyzed the genomicDNAsstudied in [5] Sardinian DNA samples were gently furnishedby Professor Francesco Cucca INN-CNR Cagliari DirectorAll participating individuals provided informed consent togenetic test To genotype these samples we implemented aCYP2D6 Genotyping Platform based on MALDI-TOF MSThis way we would be able to compare our genotyping resultswith a previous sequencing analysis in [5]

21 CYP2D6 Genotyping Platform

211 Long Primary PCR Selective amplification of theCYP2D6 genewas carried outmodifying a long PCR protocolimplemented in our previous work [5] Forward primer (P-1780 Table 2) was designed in a highly nonhomologousCYP2D6CYP2D7PCYP2D8P 51015840 untranslated region [5]The reverse primer used was 2D6-R (Table 2) as previouslydescribed [19] A 51015840 10-mer tag (51015840-ACGTTGGATG-31015840) wasadded to both PCR primers in order to improve PCRefficiency PCR reactions were performed in a final volume of5 120583L using the QIAGEN (Hilden Germany) LongRange PCRKit protocol [20] with the following minor modifications20 ng genomicDNA 400 120583Mof each PCR primer (MetabionMartinsried Germany) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 500 120583M Invitrogen (CA USA) 21015840-

deoxynucleoside-51015840-triphosphate (dNTP) Set PCR GradeThe PCR conditions were as follows initial denaturation at93∘C for 3min 35 cycles at 93∘C for 30 s 61∘C for 30 s and68∘C for 6min

212 SAP Dephosphorylation To neutralize unincorporateddNTPs after amplification reactions 03U of ShrimpAlkalinePhosphatase (SAP) (Sequenom) [26 27] was used SAPcleaved a phosphate from the unincorporated dNTPs con-verting them to 21015840-deoxynucleoside-51015840-diphosphate (dNDP)and rendering them unavailable for following reactionsDephosphorylation conditions were as follows 37∘C for20min and 85∘C for 5min

213 Assay Design SNP-specific unextended minisequenc-ing primers (UEPs) and multiplexed UEPs assays weredesigned using both the SequenomMassARRAYassay designversion 31 and the RealSNP assay database [28] A sequenceof 400 base pairs (bp) flanking each selected SNP was down-loaded from the corresponding genomic sequence stored in

the public NCBI Single Nucleotide Polymorphism dbSNPdatabase [8] or the Ensembl Genome Browser [29] and wasanalyzed by Vector NTI Suite Software version 55 (InforMaxOxford UK) Combination of the UEPs into multiplex assayswas supported by these software applications to allow theoptimization of several different parameters for example toavoid the risk of primer-primer interactions and hairpin-loop formations GC content molecular mass range andannealing temperatures To achieve the highest possiblemultiplexing levels we tested many primer combinationsleading us to the final assay design consisting in a total of69 SNPs successfully assembled in five medium-plex assays(13- 14- 13- 14- and 15-plex) (Table 3) For some SNPsSequenom MassARRAY assay design and RealSNP assaydatabase could not design SNP-specific UEPs because of thepresence of proximal SNPsOther SNPswere excludedduringplatform validation because of UEPs cross-hybridization inhighly homologous PCR template regions or for the presenceof primer dimers which created false allele But the highnumber of SNPs inserted in our analysis has allowed us toinfer the correct alleles for each DNA analysis List of SNPsnot included is summarized in Table 4

214 iPLEX Reactions iPLEX reactions were carried outfollowing the Sequenom standard lowmedium-plex protocol[6 26 27] with minor modifications Because of the lengthof the primary PCR fragment and the high GC contentwe increased the denaturation time at 94∘C from 5 to30 sec and the annealing temperature from 52 to 56∘CAn iPLEX reaction cocktail was added to the amplificationproducts and thermocycled to process the iPLEX reac-tion which involved the enzymatic addition of one of thefour mass-modified nucleotides 2101584031015840-dideoxynucleoside-51015840-triphosphate (ddNTP) into the polymorphic site During theiPLEX reaction each primer was extended by one of theddNTPswhich terminated the extension of primers thus pro-ducing allele-specific extension products of different massesThe iPLEX reaction cocktail included 0222X iPLEX bufferplus 05X iPLEX termination mix 05X iPLEX enzyme andUEPs which were divided into four mass groups accordingto the position of their respectivemass peaks to use the wholespectrum (final concentrations of 08ndash20 120583M) In the iPLEXtermination mix all four ddNTPs are present at the sameconcentration The reactions were performed using a twocycling loop program initial denaturation at 94∘C for 30 sfollowed by 40 cycles of 94∘C for 30 s 56∘C for 5 s and 80∘Cfor 5 s This annealing and extension procedure was repeatedfour times (to give a total of 200 short cycles) followedby a final extension step of 3min at 72∘C After desalting

4 ISRN Genetics

Table3Sequ

encesa

ndmolecular

weightsof

unextend

ed(U

EP)a

ndextend

ed(EP)

iPLE

Xprim

ers

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(1)13-PL

EX3877GgtA

CCTT

CCGCT

TCCA

CCCC

F4978

CCTT

CCGCT

TCCA

CCCC

A5249

ACC

TTCC

GCT

TCCA

CCCC

G5265

G3183GgtA

CCGCA

CCTG

CCCT

ATCA

R5051

CCGCA

CCTG

CCCT

ATCA

C5299

GCC

GCA

CCTG

CCCT

ATCA

T5378

A2615

2617

delAAG

GGCA

GCC

ACTC

TCAC

CTR5091

GGCA

GCC

ACTC

TCAC

CTC

5339

del

GGCA

GCC

ACTC

TCAC

CTT

5418

AGA

2483GgtT

GCG

TAGGAC

CTTG

CCAG

R5211

GCG

TAGGAC

CTTG

CCAG

C5459

GGCG

TAGGAC

CTTG

CCAG

A5483

T3853GgtA

GAAG

CGGAAG

GGCT

TCT

R5275

GAAG

CGGAAG

GGCT

TCTC

5523

GGAAG

CGGAAG

GGCT

TCTT

5603

A3277Tgt

CTG

CAGCG

CTTT

GGGGAC

AF5556

TGCA

GCG

CTTT

GGGGAC

AC5803

CTG

CAGCG

CTTT

GGGGAC

AT5883

T4180GgtC

AGCT

CATA

GGGGGAT

GGG

R5645

AGCT

CATA

GGGGGAT

GGGC

5892

GAG

CTCA

TAGGGGGAT

GGGG

5932

C2939GgtA

TGGGCT

CACG

CTGCA

CATC

R5766

TGGGCT

CACG

CTGCA

CATC

C6013

GTG

GGCT

CACG

CTGCA

CATC

T6093

A3288GgtA

GAT

GTC

ATAT

GGGTC

ACAC

R5828

GAT

GTC

ATAT

GGGTC

ACAC

C6075

GGAT

GTC

ATAT

GGGTC

ACAC

T6155

A3176Cgt

TGGCC

GTG

TCCA

ACAG

GAG

ATF6167

GGCC

GTG

TCCA

ACAG

GAG

ATC

6414

CGGCC

GTG

TCCA

ACAG

GAG

ATT

6494

T2850Cgt

TAG

CTTC

AAT

GAT

GAG

AAC

CTG

F6454

AGCT

TCAAT

GAT

GAG

AAC

CTGC

6701

CAG

CTTC

AAT

GAT

GAG

AAC

CTGT

6781

T2935AgtC

AGTG

CTCA

CGCT

GCA

CATC

CGGA

R7010

AGTG

CTCA

CGCT

GCA

CATC

CGGAG

7297

CAG

TGCT

CACG

CTGCA

CATC

CGGAT

7337

A1757Cgt

TTT

GTG

CCGCC

TTCG

CCAAC

CACT

CF7201

TTGTG

CCGCC

TTCG

CCAAC

CACT

CC7448

CTT

GTG

CCGCC

TTCG

CCAAC

CACT

CT7528

T(2)14-PL

EX1661GgtC

CAGAG

GCG

CTTC

TCCG

TF5162

CAGAG

GCG

CTTC

TCCG

TC5410

CCA

GAG

GCG

CTTC

TCCG

TG5450

G1869Tgt

CAC

GGCT

TTGTC

CAAG

AGR5210

ACGGCT

TTGTC

CAAG

AGA

5482

TAC

GGCT

TTGTC

CAAG

AGG

5498

C1846

GgtA

GGGGCG

AAAG

GGGCG

TCR5342

GGGGCG

AAAG

GGGCG

TCC

5588

GGGGGCG

AAAG

GGGCG

TCT

5668

A214GgtC

TGGAG

GGCG

GCA

GAG

GT

F5357

TGGAG

GGCG

GCA

GAG

GTC

5604

CTG

GAG

GGCG

GCA

GAG

GTG

5644

G19GgtA

CTGGGGCT

AGAAG

CACT

GF5565

CTGGGGCT

AGAAG

CACT

GA

5836

ACT

GGGGCT

AGAAG

CACT

GG

5852

G1707delT

GCG

GCC

TCCT

CGGTC

ACCC

R5702

GCG

GCC

TCCT

CGGTC

ACCC

C5949

del

GCG

GCC

TCCT

CGGTC

ACCC

A5973

T746CgtG

GCG

ACCC

AGCC

TCCT

GAT

CR5710

GCG

ACCC

AGCC

TCCT

GAT

CC5957

GGCG

ACCC

AGCC

TCCT

GAT

CG5997

C997CgtG

GAAC

AGGCG

GGCG

GTC

GGC

R5920

GAAC

AGGCG

GGCG

GTC

GGCC

6167

GGAAC

AGGCG

GGCG

GTC

GGCG

6207

C100CgtT

AAT

GCT

GGGCT

GCA

CGCT

ACF6118

AAT

GCT

GGGCT

GCA

CGCT

ACC

6365

CAAT

GCT

GGGCT

GCA

CGCT

ACT

6445

T1979Tgt

CGGAC

AGCC

CGAC

TCCT

CCTT

CR6303

GGAC

AGCC

CGAC

TCCT

CCTT

CA6574

TGGAC

AGCC

CGAC

TCCT

CCTT

CG6590

C-948Cgt

ACA

GGCT

GGGGCA

AGGGCC

TTC

F6488

CAGGCT

GGGGCA

AGGGCC

TTCC

6735

CCA

GGCT

GGGGCA

AGGGCC

TTCA

6759

A1749AgtG

GCC

CATC

ACCC

ACCG

GAG

TGGT

R6681

GCC

CATC

ACCC

ACCG

GAG

TGGTC

6929

GGCC

CATC

ACCC

ACCG

GAG

TGGTT

7008

A77GgtA

GTA

GCG

TGCA

GCC

CAGCG

TTGG

R6792

GTA

GCG

TGCA

GCC

CAGCG

TTGGC7040

GGTA

GCG

TGCA

GCC

CAGCG

TTGGT

7120

A1513Cgt

TAG

CTGGAC

AGAG

CCAG

GGAC

TGF6835

AGCT

GGAC

AGAG

CCAG

GGAC

TGC7082

CAG

CTGGAC

AGAG

CCAG

GGAC

TGT7162

T(3)13-PL

EX984AgtG

GCG

AGTG

TCCT

CGCC

GR4874

GCG

AGTG

TCCT

CGCC

GC

5121

GGCG

AGTG

TCCT

CGCC

GT

5201

A1863

1864

ins

TTTC

GCC

CCGAC

GCC

CCTT

TCGCC

CCF5043

GAC

GCC

CCTT

TCGCC

CCA

5315

ndashGAC

GCC

CCTT

TCGCC

CCT

5370

TTTC

GCC

CC1039Cgt

TAC

CCAG

ATCC

TGGGTT

TF5161

ACCC

AGAT

CCTG

GGTT

TC5409

CAC

CCAG

ATCC

TGGGTT

TT5489

T1943GgtA

CCAG

CAGCC

TGAG

GAAG

R5229

CCAG

CAGCC

TGAG

GAAG

C5477

GCC

AGCA

GCC

TGAG

GAAG

T5557

A974CgtA

CGGCC

GTG

CGCG

AGGCG

F5253

CGGCC

GTG

CGCG

AGGCG

C5501

CCG

GCC

GTG

CGCG

AGGCG

A5525

A1704

CgtG

GGCA

AGAAG

TCGCT

GGAG

F5614

GGCA

AGAAG

TCGCT

GGAG

C5861

CGGCA

AGAAG

TCGCT

GGAG

G5901

G310GgtT

TAAAT

GCC

CTTC

TCCA

GGA

R5748

TAAAT

GCC

CTTC

TCCA

GGAC

5995

GTA

AAT

GCC

CTTC

TCCA

GGAA

6019

T957CgtT

GTC

GTG

CTCA

ATGGGCT

GG

F5876

GTC

GTG

CTCA

ATGGGCT

GGC

6123

CGTC

GTG

CTCA

ATGGGCT

GGT

6203

T883GgtC

TCCC

CGAAG

CGGCG

CCGCA

AR6073

TCCC

CGAAG

CGGCG

CCGCA

AC6320

GTC

CCCG

AAG

CGGCG

CCGCA

AG6360

C1659GgtA

CGCG

AGCA

GAG

GCG

CTTC

TCC

F6408

CGCG

AGCA

GAG

GCG

CTTC

TCCA

6679

ACG

CGAG

CAGAG

GCG

CTTC

TCCG

6695

G31GgtA

AGCA

GGAAG

ATGGCC

ACTA

TCA

R6777

AGCA

GGAAG

ATGGCC

ACTA

TCAC

7024

GAG

CAGGAAG

ATGGCC

ACTA

TCAT

7104

A1724Cgt

TGCG

AAG

GCG

GCA

CAAAG

GCA

GGC

R7158

GCG

AAG

GCG

GCA

CAAAG

GCA

GGCA7429

TGCG

AAG

GCG

GCA

CAAAG

GCA

GGCG7445

C124GgtA

TCAC

ATGCA

GCA

GGTT

GCC

CAGCC

R7299

TCAC

ATGCA

GCA

GGTT

GCC

CAGCC

C7546

GTC

ACAT

GCA

GCA

GGTT

GCC

CAGCC

T7626

A

ISRN Genetics 5

Table3Con

tinued

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(4)14-PL

EX3198Cgt

GAC

CCAT

CTCT

GGTC

GCC

R5082

ACCC

ATCT

CTGGTC

GCC

C5330

GAC

CCAT

CTCT

GGTC

GCC

G5370

C2549delA

TGGGTC

CCAG

GTC

ATCC

R5162

TGGGTC

CCAG

GTC

ATCC

G5450

del

TGGGTC

CCAG

GTC

ATCC

T5490

A3582AgtG

GAAT

GTT

GGAG

GAC

CCA

F5259

GAAT

GTT

GGAG

GAC

CCAA

5531

AGAAT

GTT

GGAG

GAC

CCAG

5547

G2539

2542

delAAC

TAC

AGCT

GGAT

GAG

CTGCT

F5540

ACAG

CTGGAT

GAG

CTGCT

A5811

AAC

TAC

AGCT

GGAT

GAG

CTGCT

G5827

del

3790Cgt

TCC

ACTC

TCAC

CCTG

CATC

TF5620

CCAC

TCTC

ACCC

TGCA

TCTC

5867

CCC

ACTC

TCAC

CCTG

CATC

TT5947

T4115Cgt

TAC

CTCC

CTGCT

GCA

GCA

CTT

F5989

ACCT

CCCT

GCT

GCA

GCA

CTTC

6236

CAC

CTCC

CTGCT

GCA

GCA

CTTT

6316

T44

81GgtA

GAAT

CTGAC

TGCC

CAGAT

TGF6117

GAAT

CTGAC

TGCC

CAGAT

TGA

6388

AGAAT

CTGAC

TGCC

CAGAT

TGG

6404

G3828GgtA

ACTC

ATCA

CCAAC

CTGTC

ATC

F6270

ACTC

ATCA

CCAAC

CTGTC

ATCA

6541

AAC

TCAT

CACC

AAC

CTGTC

ATCG

6557

G3384AgtC

CATG

CTGGGGCT

ATCA

CCAG

GR6447

CATG

CTGGGGCT

ATCA

CCAG

GG

6734

CCA

TGCT

GGGGCT

ATCA

CCAG

GT

6774

A2853AgtC

GAG

AAC

AGGTC

AGCC

ACCA

CTA

R6722

GAG

AAC

AGGTC

AGCC

ACCA

CTAG

7010

CGAG

AAC

AGGTC

AGCC

ACCA

CTAT

7050

A2988GgtA

CATG

TGCC

CCCG

CCTG

TACC

CTT

R6888

CATG

TGCC

CCCG

CCTG

TACC

CTTC

7135

GCA

TGTG

CCCC

CGCC

TGTA

CCCT

TT7215

A3584GgtA

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

F7098

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

A7369

AGTC

AGAAT

GTT

GGAG

GAC

CCAAC

G7385

G44

01Cgt

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

R7546

TAAC

TGAC

ATCT

GCT

CAGCC

TCAAC

A7817

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

G7833

C2587

2590

delGAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GA

F7846

ATCA

GCT

CAGCC

CCCC

CGAG

ACCT

GAC8093

GAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GAG8133

del

(5)15-PL

EX3948Tgt

GTC

TCAG

CAGGTG

CCTG

F4873

TCTC

AGCA

GGTG

CCTG

G5160

GTC

TCAG

CAGGTG

CCTT

5200

T-1235AgtG

GCA

CCAC

CCAG

CCTA

ATR5084

GCA

CCAC

CCAG

CCTA

ATC

5332

GGCA

CCAC

CCAG

CCTA

ATT

5411

A137138insT

GAAG

TCCA

CATG

CAGCA

R5188

GAAG

TCCA

CATG

CAGCA

A5460

TGAAG

TCCA

CATG

CAGCA

G5476

mdash4155Cgt

TCA

GCC

CCGGCC

CAGCC

ACF5376

CAGCC

CCGGCC

CAGCC

ACC

5623

CCA

GCC

CCGGCC

CAGCC

ACT

5703

T82Cgt

TGTG

TAGCG

TGCA

GCC

CAGC

R5830

GTG

TAGCG

TGCA

GCC

CAGCA

6101

TGTG

TAGCG

TGCA

GCC

CAGCG

6117

C-1584CgtG

CTGGAC

AAC

TTGGAAG

AAC

CF6135

CTGGAC

AAC

TTGGAAG

AAC

CC6382

CCT

GGAC

AAC

TTGGAAG

AAC

CG6422

G2575Cgt

AGAC

CTGGGAC

CCAG

CCCA

GCC

F6362

GAC

CTGGGAC

CCAG

CCCA

GCC

C6609

CGAC

CTGGGAC

CCAG

CCCA

GCC

A6633

A843TgtG

ACTA

GGAC

CTGTA

GTC

TGGGG

F6502

ACTA

GGAC

CTGTA

GTC

TGGGGG

6789

GAC

TAGGAC

CTGTA

GTC

TGGGGT

6829

T-740

CgtT

ACAG

ACTC

ACAC

TGAC

ACTT

AGR6672

ACAG

ACTC

ACAC

TGAC

ACTT

AGA

6944

TAC

AGAC

TCAC

ACTG

ACAC

TTAG

G6960

C-678GgtA

CTTT

GTG

TGGGTG

ATTT

TCTG

CF6769

CTTT

GTG

TGGGTG

ATTT

TCTG

CA7041

ACT

TTGTG

TGGGTG

ATTT

TCTG

CG7057

G-750

-749

delGA

TGTG

ACTG

GTG

TGTG

TGAG

AGA

F6902

TGTG

ACTG

GTG

TGTG

TGAG

AGAA

7173

del

TGTG

ACTG

GTG

TGTG

TGAG

AGAG

7189

GA

2291GgtA

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CR7204

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CC7451

GCA

CTCG

CCAAG

TGCC

AGCC

TCCA

CT7531

A-1426CgtT

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

R7286

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

A7533

TGTG

TGCC

ACCA

CGTC

TAGCT

TTTT

G7573

C

1758GgtTgt

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCF7490

TTGTG

CCGCC

TTCG

CCAAC

CACT

CCA7761

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCG7777

GTT

GTG

CCGCC

TTCG

CCAAC

CACT

CCT7817

T-100

0GgtA

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGT

R7635

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGTC7882

GAC

ATCC

TCCC

GGGCT

GCC

TGAG

GGTT

7962

AUDU

nextendedminindashsequ

encing

prim

erDire

ctionFFo

rwardUEP

directionR

ReverseU

EPdirectionUMU

nextendedminindashsequ

encing

prim

ersM

assEL

ME

xtendedprim

erLo

wer

MassEH

ME

xtended

prim

erHigherM

assEL

CEx

tend

edprim

erlower

Massn

ucleotideC

alledEH

CEx

tend

edprim

erhigh

erMassn

ucleotideC

alledAllmolecular

weightm

assesa

reexpressedin

Dalton(D

a)

6 ISRN Genetics

Table 4 List of SNPs excluded in assay design validation andcorrelation to transcriptional variations

SNPs excluded Variations Reason-1770GgtA mdash Cross-hybridization-1298GgtA mdash Primer dimers-1253AgtG mdash Primer dimers

-1237 -1236insAA mdash Proximal SNP -1235AgtGPrimer dimers

1973 1974insG Frameshift Proximal SNP 1979TgtC1976GgtA mdash Proximal SNP 1979TgtC1978CgtT mdash Proximal SNP 1979TgtC2097AgtG mdash Primer dimers2470TgtC mdash Cross hybridization4042GgtA mdash Primer dimers

by addition of 6mg clean resin (Sequenom) each 384-wellsample was diluted with 16 120583L of sterilized H

2Odd

Multiplex PCR reactions SAP dephosphorylation andiPLEX reactionswere performedusingThermo-Fast 384 PCRPlates (ABgene Epsom UK) and a DNA Engine Tetrad 2Peltier Thermal Cycler (Bio-Rad CA USA) All pipettingsteps were performed using the automatic station MatrixPlateMate 2 times 2 (Sequenom)

215 MALDI-TOF MS Measurement An aliquot rangingfrom 15 to 20 nL of each iPLEX reaction product was loadedin a 384-spot SpectroChip (Sequenom) using the MassAr-ray Nanodispenser (Samsung Seoul Repubic of Korea)SpectroChip analysis was performed by MassARRAY Com-pact System (Sequenom) After laser desorptionionizationautomated spectra acquisition analysis was performed andinterpreted using Sequenom MassARRAY RT version 33software Examples of multiplex mass spectrum and clusterplot distributions are shown in Figures 1 and 2

22 CYP2D6 Single Allele Genotyping Following directionof our previous work [5] we decided to apply the singleallele protocol creating a single allele genotyping methodMALDI-TOFMS based For each sample a double long PCRreaction was carried out using P-1584 WT or P-1584 MUT[5] (Table 2) as forward primers The reverse primer was2D6-R [19] for both PCR reactions In this way we wereable to directly determine a direct and correct chromosomephase in samples presenting with a heterozygous status forminus1584GgtC SNP PCR reactions were performed in a finalvolume of 5 120583L using 20 ng genomic DNA 400 120583M of eachPCR primer (Metabion) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 800 120583MInvitrogen dNTP set PCR grade

The PCR conditions were as follows initial denaturation at93∘C for 3min 10 cycles at 93∘C for 30 s 67∘C for 30 s and68∘C for 3min 25 cycles at 93∘C for 30 s 65∘C for 30 s and68∘C for 6min SAP dephosphorylation iPLEX ReactionsandMALDI-TOFMSmeasurement were performed without

Table 5CYP2D6 allele frequencies in 250 healthy Sardinian peopleTotal chromosomes number = 500 Human cytochrome P450 AlleleNomenclature Committee [7] served as reference for variant alleleand correlated enzymatic activity

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast1A 148 296 EMlowast1B 5 10 EMlowast1D 4 08 EMlowast1E mdash mdash EMlowast2A 75 150 EMlowast2B mdash mdash EMlowast2D mdash mdash EMlowast2E mdash mdash EMlowast2F mdash mdash EMlowast2G mdash mdash EMlowast2K mdash mdash EMlowast2L 11 22 EMlowast2M 8 16 EMSH3 7 14 Not knownSH4 1 02 Not knownlowast3A mdash mdash PMlowast3B 11 22 PMlowast4A 84 168 PMlowast4B mdash mdash PMlowast4D mdash mdash PMlowast4K mdash mdash PMlowast4L mdash mdash PMlowast4M mdash mdash PMlowast4N mdash mdash PMlowast5 5 10 PMlowast6A 1 02 PMlowast6C mdash mdash PMlowast6D mdash mdash PMlowast7 mdash mdash PMlowast8 mdash mdash PMlowast9 1 02 IMlowast10A mdash mdash IMlowast10B 27 54 IMlowast11 mdash mdash PMlowast12 mdash mdash PMlowast14A mdash mdash PMlowast14B mdash mdash IMlowast15 3 06 PMlowast17 mdash mdash IMlowast19 mdash mdash PMlowast20 1 02 PMlowast22 mdash mdash Not knownlowast23 mdash mdash Not known

ISRN Genetics 7

Table 5 Continued

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast24 mdash mdash Not knownlowast25 mdash mdash Not knownlowast26 mdash mdash Not knownlowast27 mdash mdash EMlowast28 4 08 Not knownlowast29 mdash mdash IMlowast30 mdash mdash Not knownlowast31 mdash mdash PMlowast32 mdash mdash Not knownlowast33 mdash mdash EMlowast35A 5 10 EMlowast36 mdash mdash IMlowast37 mdash mdash Not knownlowast38 mdash mdash PMlowast39 mdash mdash EMlowast41 46 92 IMSH1 41 82 Not knownSH2 2 04 Not knownlowast43 mdash mdash Not knownlowast58 mdash mdash Not knownlowast59 mdash mdash IMlowast64 mdash mdash Not knownlowast65 mdash mdash Not knownlowast1xN 4 08 UMlowast2xN 6 12 UMSH1234 = Sardinian haplotype 1234 [5 22ndash25] CYP2D6lowast5lowast1xN andlowast2xN alleles were evaluated byThe CYP2D6Applied Biosystems CNVAssayin [5]

modifications as indicated in paragraph 1 ldquoCYP2D6 Geno-typing Platformrdquo In multiplexed assay 5 minus1584GgtC UEP(Table 3) was excluded Examples of cluster distribution fornovel 3176CgtT and 3948TgtG SNPs [5 17 18] are shown inFigure 3

3 Results and Discussion

A CYP2D6 screening assay was developed using theSequenom MassARRAY platform to simultaneously identifythe most frequent and some rare CYP2D6 Caucasian allelesWe have modified the basic Sequenom iPLEX assay and useda new primary PCR strategy based on the amplification ofthe entire gene [5] coupled with multiplex primer extensionreactionsThis strategy avoids false genotyping which wouldresult in nonspecific coamplification of the homologouspseudogenes CYP2D7P and CYP2D8P and secondly itreduces the number of PCR primers used to select regionscontaining the targeted polymorphisms Multiplexing wasperformed for 69 SNPs which represents 66 of the mostfrequent and some rarer variants and subvariants reported

5000 5500 6000 6500 7000 7500 8000

0123456789

10

Mass

Inte

nsity

lowast lowast TCG A

Figure 1 An example of 15ndashplex mass spectrum is shown (Well 5)List of SNPs investigated in this plex is shown in Table 3 The figureshows two examples highlighted in different colours Unextendprimer (UEP) peak is marked by an asterisk and dotted arrow whilethe solid arrows indicate the presence of the two different allelesDotted vertical lines represent UEPs and extended primers (EPs)expected masses In blue an AG heterozygous genotype example isshown lowast minus1235AgtG UEP expected mass = 5084 Dalton (Da) Gminus1235AgtGEP expectedmass = 5332Da Aminus1235AgtGEP expectedmass = 5411 Da In red a CC wild type homozygous genotypeexample is shown lowast 82CgtT UEP expected mass = 5830Da T82CgtT not EP expected mass = 6101Da C 82CgtT EP expectedmass = 6117Da

to date in the Caucasian population [5 7 9ndash16] and knownto be responsible for absent reduced or extensive metabolicactivity (Tables 1 and 5) Due to the high possibility ofrecombination it was possible to insert African African-American (11986211988411987521198636lowast2119871 lowast2 119872 lowast4119873 lowast6 4 and lowast6 5) andAsian (11986211988411987521198636lowast3119860 lowast4119861 lowast4119871 lowast14 lowast36 and lowast39) variantsin the study A sample of 250 unrelated healthy Sardinianindividuals analyzed in [5] was submitted to MALDI-TOFMS genotyping for these 69 CYP2D6 SNPs An example ofmultiplex mass spectrum is shown in Figure 1 In Figure 2(a)an example of the cluster plot distribution for the 1661GgtCSNP is shown Spectrum peak intensities were not correctlybalanced in some heterozygous samples (Figures 2(c) and2(d)) which appeared as outliers in the cluster distribution(Figure 2(a) point 120575 and 120576) The CYP2D6 Applied BiosystemsCopy Number Variation (CNV) Assay used to analyze theseDNAs in our previous work [5] detected the presence ofduplications or multiplications in 100 of the analyzedsamples presenting this kind of distribution Furthermore insamples presenting a heterozygous status for minus1584GgtC SNPwe applied long PCR single allele analysis [5] to MALDI-TOF MS screening assays and inferred a direct haplotypephase To verify if our CYP2D6 platform works correctly wecompared genotyping results and haplotype phase elaboratedin the two screening platforms with our results found in [5]A consensus of 100 was found for all samples (Table 5)Moreover for all samples presenting the 214GgtC SNP inhomo- or heterozygous status in MALDI-TOF MS analysisit was possible to verify in our previous sequencing analysis

8 ISRN Genetics

120572

120573

120574

120577

120575

120576

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0010203040506070809

1

(a)

0

2

4

6

8

10

12

14

16

18

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(b)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(c)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(d)

Figure 2 In (a) a Cluster plot for 1661GgtC SNP is shown Homozygous wild type GG samples are displayed in (120572) homozygous mutate CCsamples in (120573) and heterozygous GC samples in (120574) in (120575) and (120576) are displayed outlier samples resulting in gene copy number variation [5](120577) negative control (H2Odd) In (b) aMass Spectra for the detection of 1661GgtC in a heterozygous GC sample displayed in (a) position (120574)In (c) a Mass Spectra for the detection of 1661GgtC in the outlier sample displayed in (a) position (120575) and resulting in 11986211988411987521198636lowast1 times 119873 allele[5] In (d) Mass Spectra for the detection of 1661G gt C in an outlier sample displayed in (a) position (120576) and resulting in 11986211988411987521198636lowast2 times 119873allele [5]

[5] the presence of all SNPs correlated to gene conversionto CYP2D7P in Intron 1 (Figure 4) which indicated thereliability of MALDI-TOF analysis for this variation

4 Conclusions

Differences in drug responses could be due to genetic fac-tors Knowledge of individual genetic profiling is clinicallyimportant and provides benefits for future medical care bypredicting the drug response or developing DNA-based testsSubstantial interindividual variability in response to specifictherapies might be caused by the presence of polymorphismsin genes encoding components of drugmetabolismpathwayssuch as theCYP450 family genes Polymorphisms inCYP2D6gene have been thoroughly investigated including their asso-ciations with the incidence of adverse reactions In this study

we have developed a reliablemedium-throughput genotypingplatformusing the SequenomMassARRAY system to providea simultaneous screening of the most relevant CYP2D6 genevariants in several hundreds of subjects MALDI-TOF MS-based analyses have the potential to become a useful approachin clinical diagnoses as they are very flexible and applicableto individualized genetic therapies The screening platformdeveloped in this study coupled with The CYP2D6 AppliedBiosystems CNVAssay provides a robust alternative tomanycurrently available CYP450-genotyping approaches and aimsto increase the number of responders and to limit theincidences of adverse events Moreover by modifying longPCR Forward primer we have implemented a rapid strategyto infer the phase by direct analysis using MALDI-TOS MSmultiplex assays Concordance between data found in thiswork and our direct genomic DNA sequencing analysis donein [5] reliably validated ourMALDI-TOFMS-based platform

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

2 ISRN Genetics

Table 1 List of 69 analyzed SNPs and correlation to aminoacidchanges or transcriptional modificafications

CYP2D6 SNPs Variations-1584CgtG mdash-1426CgtT mdash-1235AgtG mdash-1000GgtA mdash-948CgtA mdash-750 -749delGA mdash-740CgtT mdash-678GgtA mdash19GgtA V7M31GgtA V11M77GgtA R26H82CgtT mdash100CgtT P34S124GgtA G42R137 138insT Frameshift214GgtC (lowast) mdash310GgtT mdash746CgtG mdash843TgtG mdash883GgtC Splicing defect957CgtT A85V974CgtA L91M984AgtG H94R997CgtG mdash1039CgtT mdash1513CgtT mdash1659GgtA V136I1661GgtC mdash1704CgtG Q151E1707delT Frameshift1724CgtT mdash1749AgtG N166D1757CgtT mdash1758GgtA G169R1758GgtT G169X1846GgtA Splicing defect1863 1864insTTTCGCCCC 174 175insFRP1869TgtC mdash1943GgtA R201H1979TgtC mdash2291GgtA mdash2483GgtT A237S2539 2542delAACT Frameshift2549delA Frameshift2575CgtA mdash2587 2590delGACT Frameshift2615 2617delAAG K281del2850CgtT R296C

Table 1 Continued

CYP2D6 SNPs Variations2853AgtC I297L2935AgtC H324P2939GgtA mdash2988GgtA Splicing defect3176CgtT mdash3183GgtA V338M3198CgtG R343G3277TgtC I369T3288GgtA mdash3384AgtC mdash3582AgtG mdash3584GgtA mdash3790CgtT mdash3828GgtA mdash3853GgtA E410K3877GgtA E418K3948TgtG mdash4115CgtT mdash4155CgtT (∘) H478Y4180GgtC S486T4401CgtT mdash4481GgtA mdashIn MALDI-TOF MS analysis (lowast) 214GgtC SNP was used to discriminategene conversion to CYP2D7P in Intron 1 and (∘) 4155CgtT SNP was usedto discriminate gene conversion to CYP2D7P in Exon 9 A = alanine R =arginine N = asparagine D = aspartic acid C = cysteine E = glutamic acideQ = glutamine G = glycine H = histidine I = isoleucine L = leucine K= lysine M = methionine F = phenylalanine P = proline S = serine T =threonineW= tryptophan Y= tyrosineV= valine In bold characters newlydiscovered SNPs in [5 17 18 21]

laser desorptionionization (MALDI) time-of-flight (TOF)mass spectrometry (MS) [6] a widely used technology thatis proving to be a competitive analysis method in SNPsgenotyping Advantages of MALDI-TOF MS over previouslydescribed methods include the option for medium-high-throughput automated analysis of SNPs the relative ease ofsetup formultiplex assays and the reduced costs per genotype[3]

2 Methods and Materials

SNPs and Sequences Selection The 69 polymorphisms ana-lyzed in this study were selected using principal SNP webdatabases such as the Human CYP Allele NomenclatureCommittee [7] and the NCBI Single Nucleotide Polymor-phism dbSNP [8] websites Selection criteria dependedmainly on the pharmacogenetic effects described for everyallele in the Caucasian population [5 7 9ndash16] Not all selectedSNPs are involved in aminoacidic or transcriptional variation(Table 1) Some of these are silent or promoter leader trailerand intronic changes and inserted in our study because theyare essential for the reconstruction of haplotype phases TheSNPsrsquo recombination allowed the reconstruction of 66 among

ISRN Genetics 3

Table 2 List of primers used inCYP2D6 long PCRprotocolsThe 51015840 10-mer tagwas added to PCRprimers in order to improve PCR efficiency

Nucleotides position Name 51015840 10ndashmer tag 51015840-Sequence-31015840 DirectionFrom -1780 to -1758 P-1780 [5] ACGTTGGATG GTCCTCCTGTCCTCAGTGGAT ForwardFrom -1584 to -1559 P-1584 WT [5] ACGTTGGATG CAGCCTGGACAACTTGGAAGAAGCC ForwardFrom -1584 to -1559 P-1584 MUT [5] ACGTTGGATG CAGCCTGGACAACTTGGAAGAAGCG ForwardFrom 4706 to 4728 2D6ndashR [19] ACGTTGGATG ACTGAGCCCTGGGAGGTAGGTA Reverse

allelic variants and subvariants List of alleles is summarizedin Table 5

DNASamples In this study we reanalyzed the genomicDNAsstudied in [5] Sardinian DNA samples were gently furnishedby Professor Francesco Cucca INN-CNR Cagliari DirectorAll participating individuals provided informed consent togenetic test To genotype these samples we implemented aCYP2D6 Genotyping Platform based on MALDI-TOF MSThis way we would be able to compare our genotyping resultswith a previous sequencing analysis in [5]

21 CYP2D6 Genotyping Platform

211 Long Primary PCR Selective amplification of theCYP2D6 genewas carried outmodifying a long PCR protocolimplemented in our previous work [5] Forward primer (P-1780 Table 2) was designed in a highly nonhomologousCYP2D6CYP2D7PCYP2D8P 51015840 untranslated region [5]The reverse primer used was 2D6-R (Table 2) as previouslydescribed [19] A 51015840 10-mer tag (51015840-ACGTTGGATG-31015840) wasadded to both PCR primers in order to improve PCRefficiency PCR reactions were performed in a final volume of5 120583L using the QIAGEN (Hilden Germany) LongRange PCRKit protocol [20] with the following minor modifications20 ng genomicDNA 400 120583Mof each PCR primer (MetabionMartinsried Germany) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 500 120583M Invitrogen (CA USA) 21015840-

deoxynucleoside-51015840-triphosphate (dNTP) Set PCR GradeThe PCR conditions were as follows initial denaturation at93∘C for 3min 35 cycles at 93∘C for 30 s 61∘C for 30 s and68∘C for 6min

212 SAP Dephosphorylation To neutralize unincorporateddNTPs after amplification reactions 03U of ShrimpAlkalinePhosphatase (SAP) (Sequenom) [26 27] was used SAPcleaved a phosphate from the unincorporated dNTPs con-verting them to 21015840-deoxynucleoside-51015840-diphosphate (dNDP)and rendering them unavailable for following reactionsDephosphorylation conditions were as follows 37∘C for20min and 85∘C for 5min

213 Assay Design SNP-specific unextended minisequenc-ing primers (UEPs) and multiplexed UEPs assays weredesigned using both the SequenomMassARRAYassay designversion 31 and the RealSNP assay database [28] A sequenceof 400 base pairs (bp) flanking each selected SNP was down-loaded from the corresponding genomic sequence stored in

the public NCBI Single Nucleotide Polymorphism dbSNPdatabase [8] or the Ensembl Genome Browser [29] and wasanalyzed by Vector NTI Suite Software version 55 (InforMaxOxford UK) Combination of the UEPs into multiplex assayswas supported by these software applications to allow theoptimization of several different parameters for example toavoid the risk of primer-primer interactions and hairpin-loop formations GC content molecular mass range andannealing temperatures To achieve the highest possiblemultiplexing levels we tested many primer combinationsleading us to the final assay design consisting in a total of69 SNPs successfully assembled in five medium-plex assays(13- 14- 13- 14- and 15-plex) (Table 3) For some SNPsSequenom MassARRAY assay design and RealSNP assaydatabase could not design SNP-specific UEPs because of thepresence of proximal SNPsOther SNPswere excludedduringplatform validation because of UEPs cross-hybridization inhighly homologous PCR template regions or for the presenceof primer dimers which created false allele But the highnumber of SNPs inserted in our analysis has allowed us toinfer the correct alleles for each DNA analysis List of SNPsnot included is summarized in Table 4

214 iPLEX Reactions iPLEX reactions were carried outfollowing the Sequenom standard lowmedium-plex protocol[6 26 27] with minor modifications Because of the lengthof the primary PCR fragment and the high GC contentwe increased the denaturation time at 94∘C from 5 to30 sec and the annealing temperature from 52 to 56∘CAn iPLEX reaction cocktail was added to the amplificationproducts and thermocycled to process the iPLEX reac-tion which involved the enzymatic addition of one of thefour mass-modified nucleotides 2101584031015840-dideoxynucleoside-51015840-triphosphate (ddNTP) into the polymorphic site During theiPLEX reaction each primer was extended by one of theddNTPswhich terminated the extension of primers thus pro-ducing allele-specific extension products of different massesThe iPLEX reaction cocktail included 0222X iPLEX bufferplus 05X iPLEX termination mix 05X iPLEX enzyme andUEPs which were divided into four mass groups accordingto the position of their respectivemass peaks to use the wholespectrum (final concentrations of 08ndash20 120583M) In the iPLEXtermination mix all four ddNTPs are present at the sameconcentration The reactions were performed using a twocycling loop program initial denaturation at 94∘C for 30 sfollowed by 40 cycles of 94∘C for 30 s 56∘C for 5 s and 80∘Cfor 5 s This annealing and extension procedure was repeatedfour times (to give a total of 200 short cycles) followedby a final extension step of 3min at 72∘C After desalting

4 ISRN Genetics

Table3Sequ

encesa

ndmolecular

weightsof

unextend

ed(U

EP)a

ndextend

ed(EP)

iPLE

Xprim

ers

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(1)13-PL

EX3877GgtA

CCTT

CCGCT

TCCA

CCCC

F4978

CCTT

CCGCT

TCCA

CCCC

A5249

ACC

TTCC

GCT

TCCA

CCCC

G5265

G3183GgtA

CCGCA

CCTG

CCCT

ATCA

R5051

CCGCA

CCTG

CCCT

ATCA

C5299

GCC

GCA

CCTG

CCCT

ATCA

T5378

A2615

2617

delAAG

GGCA

GCC

ACTC

TCAC

CTR5091

GGCA

GCC

ACTC

TCAC

CTC

5339

del

GGCA

GCC

ACTC

TCAC

CTT

5418

AGA

2483GgtT

GCG

TAGGAC

CTTG

CCAG

R5211

GCG

TAGGAC

CTTG

CCAG

C5459

GGCG

TAGGAC

CTTG

CCAG

A5483

T3853GgtA

GAAG

CGGAAG

GGCT

TCT

R5275

GAAG

CGGAAG

GGCT

TCTC

5523

GGAAG

CGGAAG

GGCT

TCTT

5603

A3277Tgt

CTG

CAGCG

CTTT

GGGGAC

AF5556

TGCA

GCG

CTTT

GGGGAC

AC5803

CTG

CAGCG

CTTT

GGGGAC

AT5883

T4180GgtC

AGCT

CATA

GGGGGAT

GGG

R5645

AGCT

CATA

GGGGGAT

GGGC

5892

GAG

CTCA

TAGGGGGAT

GGGG

5932

C2939GgtA

TGGGCT

CACG

CTGCA

CATC

R5766

TGGGCT

CACG

CTGCA

CATC

C6013

GTG

GGCT

CACG

CTGCA

CATC

T6093

A3288GgtA

GAT

GTC

ATAT

GGGTC

ACAC

R5828

GAT

GTC

ATAT

GGGTC

ACAC

C6075

GGAT

GTC

ATAT

GGGTC

ACAC

T6155

A3176Cgt

TGGCC

GTG

TCCA

ACAG

GAG

ATF6167

GGCC

GTG

TCCA

ACAG

GAG

ATC

6414

CGGCC

GTG

TCCA

ACAG

GAG

ATT

6494

T2850Cgt

TAG

CTTC

AAT

GAT

GAG

AAC

CTG

F6454

AGCT

TCAAT

GAT

GAG

AAC

CTGC

6701

CAG

CTTC

AAT

GAT

GAG

AAC

CTGT

6781

T2935AgtC

AGTG

CTCA

CGCT

GCA

CATC

CGGA

R7010

AGTG

CTCA

CGCT

GCA

CATC

CGGAG

7297

CAG

TGCT

CACG

CTGCA

CATC

CGGAT

7337

A1757Cgt

TTT

GTG

CCGCC

TTCG

CCAAC

CACT

CF7201

TTGTG

CCGCC

TTCG

CCAAC

CACT

CC7448

CTT

GTG

CCGCC

TTCG

CCAAC

CACT

CT7528

T(2)14-PL

EX1661GgtC

CAGAG

GCG

CTTC

TCCG

TF5162

CAGAG

GCG

CTTC

TCCG

TC5410

CCA

GAG

GCG

CTTC

TCCG

TG5450

G1869Tgt

CAC

GGCT

TTGTC

CAAG

AGR5210

ACGGCT

TTGTC

CAAG

AGA

5482

TAC

GGCT

TTGTC

CAAG

AGG

5498

C1846

GgtA

GGGGCG

AAAG

GGGCG

TCR5342

GGGGCG

AAAG

GGGCG

TCC

5588

GGGGGCG

AAAG

GGGCG

TCT

5668

A214GgtC

TGGAG

GGCG

GCA

GAG

GT

F5357

TGGAG

GGCG

GCA

GAG

GTC

5604

CTG

GAG

GGCG

GCA

GAG

GTG

5644

G19GgtA

CTGGGGCT

AGAAG

CACT

GF5565

CTGGGGCT

AGAAG

CACT

GA

5836

ACT

GGGGCT

AGAAG

CACT

GG

5852

G1707delT

GCG

GCC

TCCT

CGGTC

ACCC

R5702

GCG

GCC

TCCT

CGGTC

ACCC

C5949

del

GCG

GCC

TCCT

CGGTC

ACCC

A5973

T746CgtG

GCG

ACCC

AGCC

TCCT

GAT

CR5710

GCG

ACCC

AGCC

TCCT

GAT

CC5957

GGCG

ACCC

AGCC

TCCT

GAT

CG5997

C997CgtG

GAAC

AGGCG

GGCG

GTC

GGC

R5920

GAAC

AGGCG

GGCG

GTC

GGCC

6167

GGAAC

AGGCG

GGCG

GTC

GGCG

6207

C100CgtT

AAT

GCT

GGGCT

GCA

CGCT

ACF6118

AAT

GCT

GGGCT

GCA

CGCT

ACC

6365

CAAT

GCT

GGGCT

GCA

CGCT

ACT

6445

T1979Tgt

CGGAC

AGCC

CGAC

TCCT

CCTT

CR6303

GGAC

AGCC

CGAC

TCCT

CCTT

CA6574

TGGAC

AGCC

CGAC

TCCT

CCTT

CG6590

C-948Cgt

ACA

GGCT

GGGGCA

AGGGCC

TTC

F6488

CAGGCT

GGGGCA

AGGGCC

TTCC

6735

CCA

GGCT

GGGGCA

AGGGCC

TTCA

6759

A1749AgtG

GCC

CATC

ACCC

ACCG

GAG

TGGT

R6681

GCC

CATC

ACCC

ACCG

GAG

TGGTC

6929

GGCC

CATC

ACCC

ACCG

GAG

TGGTT

7008

A77GgtA

GTA

GCG

TGCA

GCC

CAGCG

TTGG

R6792

GTA

GCG

TGCA

GCC

CAGCG

TTGGC7040

GGTA

GCG

TGCA

GCC

CAGCG

TTGGT

7120

A1513Cgt

TAG

CTGGAC

AGAG

CCAG

GGAC

TGF6835

AGCT

GGAC

AGAG

CCAG

GGAC

TGC7082

CAG

CTGGAC

AGAG

CCAG

GGAC

TGT7162

T(3)13-PL

EX984AgtG

GCG

AGTG

TCCT

CGCC

GR4874

GCG

AGTG

TCCT

CGCC

GC

5121

GGCG

AGTG

TCCT

CGCC

GT

5201

A1863

1864

ins

TTTC

GCC

CCGAC

GCC

CCTT

TCGCC

CCF5043

GAC

GCC

CCTT

TCGCC

CCA

5315

ndashGAC

GCC

CCTT

TCGCC

CCT

5370

TTTC

GCC

CC1039Cgt

TAC

CCAG

ATCC

TGGGTT

TF5161

ACCC

AGAT

CCTG

GGTT

TC5409

CAC

CCAG

ATCC

TGGGTT

TT5489

T1943GgtA

CCAG

CAGCC

TGAG

GAAG

R5229

CCAG

CAGCC

TGAG

GAAG

C5477

GCC

AGCA

GCC

TGAG

GAAG

T5557

A974CgtA

CGGCC

GTG

CGCG

AGGCG

F5253

CGGCC

GTG

CGCG

AGGCG

C5501

CCG

GCC

GTG

CGCG

AGGCG

A5525

A1704

CgtG

GGCA

AGAAG

TCGCT

GGAG

F5614

GGCA

AGAAG

TCGCT

GGAG

C5861

CGGCA

AGAAG

TCGCT

GGAG

G5901

G310GgtT

TAAAT

GCC

CTTC

TCCA

GGA

R5748

TAAAT

GCC

CTTC

TCCA

GGAC

5995

GTA

AAT

GCC

CTTC

TCCA

GGAA

6019

T957CgtT

GTC

GTG

CTCA

ATGGGCT

GG

F5876

GTC

GTG

CTCA

ATGGGCT

GGC

6123

CGTC

GTG

CTCA

ATGGGCT

GGT

6203

T883GgtC

TCCC

CGAAG

CGGCG

CCGCA

AR6073

TCCC

CGAAG

CGGCG

CCGCA

AC6320

GTC

CCCG

AAG

CGGCG

CCGCA

AG6360

C1659GgtA

CGCG

AGCA

GAG

GCG

CTTC

TCC

F6408

CGCG

AGCA

GAG

GCG

CTTC

TCCA

6679

ACG

CGAG

CAGAG

GCG

CTTC

TCCG

6695

G31GgtA

AGCA

GGAAG

ATGGCC

ACTA

TCA

R6777

AGCA

GGAAG

ATGGCC

ACTA

TCAC

7024

GAG

CAGGAAG

ATGGCC

ACTA

TCAT

7104

A1724Cgt

TGCG

AAG

GCG

GCA

CAAAG

GCA

GGC

R7158

GCG

AAG

GCG

GCA

CAAAG

GCA

GGCA7429

TGCG

AAG

GCG

GCA

CAAAG

GCA

GGCG7445

C124GgtA

TCAC

ATGCA

GCA

GGTT

GCC

CAGCC

R7299

TCAC

ATGCA

GCA

GGTT

GCC

CAGCC

C7546

GTC

ACAT

GCA

GCA

GGTT

GCC

CAGCC

T7626

A

ISRN Genetics 5

Table3Con

tinued

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(4)14-PL

EX3198Cgt

GAC

CCAT

CTCT

GGTC

GCC

R5082

ACCC

ATCT

CTGGTC

GCC

C5330

GAC

CCAT

CTCT

GGTC

GCC

G5370

C2549delA

TGGGTC

CCAG

GTC

ATCC

R5162

TGGGTC

CCAG

GTC

ATCC

G5450

del

TGGGTC

CCAG

GTC

ATCC

T5490

A3582AgtG

GAAT

GTT

GGAG

GAC

CCA

F5259

GAAT

GTT

GGAG

GAC

CCAA

5531

AGAAT

GTT

GGAG

GAC

CCAG

5547

G2539

2542

delAAC

TAC

AGCT

GGAT

GAG

CTGCT

F5540

ACAG

CTGGAT

GAG

CTGCT

A5811

AAC

TAC

AGCT

GGAT

GAG

CTGCT

G5827

del

3790Cgt

TCC

ACTC

TCAC

CCTG

CATC

TF5620

CCAC

TCTC

ACCC

TGCA

TCTC

5867

CCC

ACTC

TCAC

CCTG

CATC

TT5947

T4115Cgt

TAC

CTCC

CTGCT

GCA

GCA

CTT

F5989

ACCT

CCCT

GCT

GCA

GCA

CTTC

6236

CAC

CTCC

CTGCT

GCA

GCA

CTTT

6316

T44

81GgtA

GAAT

CTGAC

TGCC

CAGAT

TGF6117

GAAT

CTGAC

TGCC

CAGAT

TGA

6388

AGAAT

CTGAC

TGCC

CAGAT

TGG

6404

G3828GgtA

ACTC

ATCA

CCAAC

CTGTC

ATC

F6270

ACTC

ATCA

CCAAC

CTGTC

ATCA

6541

AAC

TCAT

CACC

AAC

CTGTC

ATCG

6557

G3384AgtC

CATG

CTGGGGCT

ATCA

CCAG

GR6447

CATG

CTGGGGCT

ATCA

CCAG

GG

6734

CCA

TGCT

GGGGCT

ATCA

CCAG

GT

6774

A2853AgtC

GAG

AAC

AGGTC

AGCC

ACCA

CTA

R6722

GAG

AAC

AGGTC

AGCC

ACCA

CTAG

7010

CGAG

AAC

AGGTC

AGCC

ACCA

CTAT

7050

A2988GgtA

CATG

TGCC

CCCG

CCTG

TACC

CTT

R6888

CATG

TGCC

CCCG

CCTG

TACC

CTTC

7135

GCA

TGTG

CCCC

CGCC

TGTA

CCCT

TT7215

A3584GgtA

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

F7098

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

A7369

AGTC

AGAAT

GTT

GGAG

GAC

CCAAC

G7385

G44

01Cgt

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

R7546

TAAC

TGAC

ATCT

GCT

CAGCC

TCAAC

A7817

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

G7833

C2587

2590

delGAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GA

F7846

ATCA

GCT

CAGCC

CCCC

CGAG

ACCT

GAC8093

GAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GAG8133

del

(5)15-PL

EX3948Tgt

GTC

TCAG

CAGGTG

CCTG

F4873

TCTC

AGCA

GGTG

CCTG

G5160

GTC

TCAG

CAGGTG

CCTT

5200

T-1235AgtG

GCA

CCAC

CCAG

CCTA

ATR5084

GCA

CCAC

CCAG

CCTA

ATC

5332

GGCA

CCAC

CCAG

CCTA

ATT

5411

A137138insT

GAAG

TCCA

CATG

CAGCA

R5188

GAAG

TCCA

CATG

CAGCA

A5460

TGAAG

TCCA

CATG

CAGCA

G5476

mdash4155Cgt

TCA

GCC

CCGGCC

CAGCC

ACF5376

CAGCC

CCGGCC

CAGCC

ACC

5623

CCA

GCC

CCGGCC

CAGCC

ACT

5703

T82Cgt

TGTG

TAGCG

TGCA

GCC

CAGC

R5830

GTG

TAGCG

TGCA

GCC

CAGCA

6101

TGTG

TAGCG

TGCA

GCC

CAGCG

6117

C-1584CgtG

CTGGAC

AAC

TTGGAAG

AAC

CF6135

CTGGAC

AAC

TTGGAAG

AAC

CC6382

CCT

GGAC

AAC

TTGGAAG

AAC

CG6422

G2575Cgt

AGAC

CTGGGAC

CCAG

CCCA

GCC

F6362

GAC

CTGGGAC

CCAG

CCCA

GCC

C6609

CGAC

CTGGGAC

CCAG

CCCA

GCC

A6633

A843TgtG

ACTA

GGAC

CTGTA

GTC

TGGGG

F6502

ACTA

GGAC

CTGTA

GTC

TGGGGG

6789

GAC

TAGGAC

CTGTA

GTC

TGGGGT

6829

T-740

CgtT

ACAG

ACTC

ACAC

TGAC

ACTT

AGR6672

ACAG

ACTC

ACAC

TGAC

ACTT

AGA

6944

TAC

AGAC

TCAC

ACTG

ACAC

TTAG

G6960

C-678GgtA

CTTT

GTG

TGGGTG

ATTT

TCTG

CF6769

CTTT

GTG

TGGGTG

ATTT

TCTG

CA7041

ACT

TTGTG

TGGGTG

ATTT

TCTG

CG7057

G-750

-749

delGA

TGTG

ACTG

GTG

TGTG

TGAG

AGA

F6902

TGTG

ACTG

GTG

TGTG

TGAG

AGAA

7173

del

TGTG

ACTG

GTG

TGTG

TGAG

AGAG

7189

GA

2291GgtA

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CR7204

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CC7451

GCA

CTCG

CCAAG

TGCC

AGCC

TCCA

CT7531

A-1426CgtT

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

R7286

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

A7533

TGTG

TGCC

ACCA

CGTC

TAGCT

TTTT

G7573

C

1758GgtTgt

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCF7490

TTGTG

CCGCC

TTCG

CCAAC

CACT

CCA7761

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCG7777

GTT

GTG

CCGCC

TTCG

CCAAC

CACT

CCT7817

T-100

0GgtA

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGT

R7635

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGTC7882

GAC

ATCC

TCCC

GGGCT

GCC

TGAG

GGTT

7962

AUDU

nextendedminindashsequ

encing

prim

erDire

ctionFFo

rwardUEP

directionR

ReverseU

EPdirectionUMU

nextendedminindashsequ

encing

prim

ersM

assEL

ME

xtendedprim

erLo

wer

MassEH

ME

xtended

prim

erHigherM

assEL

CEx

tend

edprim

erlower

Massn

ucleotideC

alledEH

CEx

tend

edprim

erhigh

erMassn

ucleotideC

alledAllmolecular

weightm

assesa

reexpressedin

Dalton(D

a)

6 ISRN Genetics

Table 4 List of SNPs excluded in assay design validation andcorrelation to transcriptional variations

SNPs excluded Variations Reason-1770GgtA mdash Cross-hybridization-1298GgtA mdash Primer dimers-1253AgtG mdash Primer dimers

-1237 -1236insAA mdash Proximal SNP -1235AgtGPrimer dimers

1973 1974insG Frameshift Proximal SNP 1979TgtC1976GgtA mdash Proximal SNP 1979TgtC1978CgtT mdash Proximal SNP 1979TgtC2097AgtG mdash Primer dimers2470TgtC mdash Cross hybridization4042GgtA mdash Primer dimers

by addition of 6mg clean resin (Sequenom) each 384-wellsample was diluted with 16 120583L of sterilized H

2Odd

Multiplex PCR reactions SAP dephosphorylation andiPLEX reactionswere performedusingThermo-Fast 384 PCRPlates (ABgene Epsom UK) and a DNA Engine Tetrad 2Peltier Thermal Cycler (Bio-Rad CA USA) All pipettingsteps were performed using the automatic station MatrixPlateMate 2 times 2 (Sequenom)

215 MALDI-TOF MS Measurement An aliquot rangingfrom 15 to 20 nL of each iPLEX reaction product was loadedin a 384-spot SpectroChip (Sequenom) using the MassAr-ray Nanodispenser (Samsung Seoul Repubic of Korea)SpectroChip analysis was performed by MassARRAY Com-pact System (Sequenom) After laser desorptionionizationautomated spectra acquisition analysis was performed andinterpreted using Sequenom MassARRAY RT version 33software Examples of multiplex mass spectrum and clusterplot distributions are shown in Figures 1 and 2

22 CYP2D6 Single Allele Genotyping Following directionof our previous work [5] we decided to apply the singleallele protocol creating a single allele genotyping methodMALDI-TOFMS based For each sample a double long PCRreaction was carried out using P-1584 WT or P-1584 MUT[5] (Table 2) as forward primers The reverse primer was2D6-R [19] for both PCR reactions In this way we wereable to directly determine a direct and correct chromosomephase in samples presenting with a heterozygous status forminus1584GgtC SNP PCR reactions were performed in a finalvolume of 5 120583L using 20 ng genomic DNA 400 120583M of eachPCR primer (Metabion) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 800 120583MInvitrogen dNTP set PCR grade

The PCR conditions were as follows initial denaturation at93∘C for 3min 10 cycles at 93∘C for 30 s 67∘C for 30 s and68∘C for 3min 25 cycles at 93∘C for 30 s 65∘C for 30 s and68∘C for 6min SAP dephosphorylation iPLEX ReactionsandMALDI-TOFMSmeasurement were performed without

Table 5CYP2D6 allele frequencies in 250 healthy Sardinian peopleTotal chromosomes number = 500 Human cytochrome P450 AlleleNomenclature Committee [7] served as reference for variant alleleand correlated enzymatic activity

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast1A 148 296 EMlowast1B 5 10 EMlowast1D 4 08 EMlowast1E mdash mdash EMlowast2A 75 150 EMlowast2B mdash mdash EMlowast2D mdash mdash EMlowast2E mdash mdash EMlowast2F mdash mdash EMlowast2G mdash mdash EMlowast2K mdash mdash EMlowast2L 11 22 EMlowast2M 8 16 EMSH3 7 14 Not knownSH4 1 02 Not knownlowast3A mdash mdash PMlowast3B 11 22 PMlowast4A 84 168 PMlowast4B mdash mdash PMlowast4D mdash mdash PMlowast4K mdash mdash PMlowast4L mdash mdash PMlowast4M mdash mdash PMlowast4N mdash mdash PMlowast5 5 10 PMlowast6A 1 02 PMlowast6C mdash mdash PMlowast6D mdash mdash PMlowast7 mdash mdash PMlowast8 mdash mdash PMlowast9 1 02 IMlowast10A mdash mdash IMlowast10B 27 54 IMlowast11 mdash mdash PMlowast12 mdash mdash PMlowast14A mdash mdash PMlowast14B mdash mdash IMlowast15 3 06 PMlowast17 mdash mdash IMlowast19 mdash mdash PMlowast20 1 02 PMlowast22 mdash mdash Not knownlowast23 mdash mdash Not known

ISRN Genetics 7

Table 5 Continued

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast24 mdash mdash Not knownlowast25 mdash mdash Not knownlowast26 mdash mdash Not knownlowast27 mdash mdash EMlowast28 4 08 Not knownlowast29 mdash mdash IMlowast30 mdash mdash Not knownlowast31 mdash mdash PMlowast32 mdash mdash Not knownlowast33 mdash mdash EMlowast35A 5 10 EMlowast36 mdash mdash IMlowast37 mdash mdash Not knownlowast38 mdash mdash PMlowast39 mdash mdash EMlowast41 46 92 IMSH1 41 82 Not knownSH2 2 04 Not knownlowast43 mdash mdash Not knownlowast58 mdash mdash Not knownlowast59 mdash mdash IMlowast64 mdash mdash Not knownlowast65 mdash mdash Not knownlowast1xN 4 08 UMlowast2xN 6 12 UMSH1234 = Sardinian haplotype 1234 [5 22ndash25] CYP2D6lowast5lowast1xN andlowast2xN alleles were evaluated byThe CYP2D6Applied Biosystems CNVAssayin [5]

modifications as indicated in paragraph 1 ldquoCYP2D6 Geno-typing Platformrdquo In multiplexed assay 5 minus1584GgtC UEP(Table 3) was excluded Examples of cluster distribution fornovel 3176CgtT and 3948TgtG SNPs [5 17 18] are shown inFigure 3

3 Results and Discussion

A CYP2D6 screening assay was developed using theSequenom MassARRAY platform to simultaneously identifythe most frequent and some rare CYP2D6 Caucasian allelesWe have modified the basic Sequenom iPLEX assay and useda new primary PCR strategy based on the amplification ofthe entire gene [5] coupled with multiplex primer extensionreactionsThis strategy avoids false genotyping which wouldresult in nonspecific coamplification of the homologouspseudogenes CYP2D7P and CYP2D8P and secondly itreduces the number of PCR primers used to select regionscontaining the targeted polymorphisms Multiplexing wasperformed for 69 SNPs which represents 66 of the mostfrequent and some rarer variants and subvariants reported

5000 5500 6000 6500 7000 7500 8000

0123456789

10

Mass

Inte

nsity

lowast lowast TCG A

Figure 1 An example of 15ndashplex mass spectrum is shown (Well 5)List of SNPs investigated in this plex is shown in Table 3 The figureshows two examples highlighted in different colours Unextendprimer (UEP) peak is marked by an asterisk and dotted arrow whilethe solid arrows indicate the presence of the two different allelesDotted vertical lines represent UEPs and extended primers (EPs)expected masses In blue an AG heterozygous genotype example isshown lowast minus1235AgtG UEP expected mass = 5084 Dalton (Da) Gminus1235AgtGEP expectedmass = 5332Da Aminus1235AgtGEP expectedmass = 5411 Da In red a CC wild type homozygous genotypeexample is shown lowast 82CgtT UEP expected mass = 5830Da T82CgtT not EP expected mass = 6101Da C 82CgtT EP expectedmass = 6117Da

to date in the Caucasian population [5 7 9ndash16] and knownto be responsible for absent reduced or extensive metabolicactivity (Tables 1 and 5) Due to the high possibility ofrecombination it was possible to insert African African-American (11986211988411987521198636lowast2119871 lowast2 119872 lowast4119873 lowast6 4 and lowast6 5) andAsian (11986211988411987521198636lowast3119860 lowast4119861 lowast4119871 lowast14 lowast36 and lowast39) variantsin the study A sample of 250 unrelated healthy Sardinianindividuals analyzed in [5] was submitted to MALDI-TOFMS genotyping for these 69 CYP2D6 SNPs An example ofmultiplex mass spectrum is shown in Figure 1 In Figure 2(a)an example of the cluster plot distribution for the 1661GgtCSNP is shown Spectrum peak intensities were not correctlybalanced in some heterozygous samples (Figures 2(c) and2(d)) which appeared as outliers in the cluster distribution(Figure 2(a) point 120575 and 120576) The CYP2D6 Applied BiosystemsCopy Number Variation (CNV) Assay used to analyze theseDNAs in our previous work [5] detected the presence ofduplications or multiplications in 100 of the analyzedsamples presenting this kind of distribution Furthermore insamples presenting a heterozygous status for minus1584GgtC SNPwe applied long PCR single allele analysis [5] to MALDI-TOF MS screening assays and inferred a direct haplotypephase To verify if our CYP2D6 platform works correctly wecompared genotyping results and haplotype phase elaboratedin the two screening platforms with our results found in [5]A consensus of 100 was found for all samples (Table 5)Moreover for all samples presenting the 214GgtC SNP inhomo- or heterozygous status in MALDI-TOF MS analysisit was possible to verify in our previous sequencing analysis

8 ISRN Genetics

120572

120573

120574

120577

120575

120576

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0010203040506070809

1

(a)

0

2

4

6

8

10

12

14

16

18

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(b)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(c)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(d)

Figure 2 In (a) a Cluster plot for 1661GgtC SNP is shown Homozygous wild type GG samples are displayed in (120572) homozygous mutate CCsamples in (120573) and heterozygous GC samples in (120574) in (120575) and (120576) are displayed outlier samples resulting in gene copy number variation [5](120577) negative control (H2Odd) In (b) aMass Spectra for the detection of 1661GgtC in a heterozygous GC sample displayed in (a) position (120574)In (c) a Mass Spectra for the detection of 1661GgtC in the outlier sample displayed in (a) position (120575) and resulting in 11986211988411987521198636lowast1 times 119873 allele[5] In (d) Mass Spectra for the detection of 1661G gt C in an outlier sample displayed in (a) position (120576) and resulting in 11986211988411987521198636lowast2 times 119873allele [5]

[5] the presence of all SNPs correlated to gene conversionto CYP2D7P in Intron 1 (Figure 4) which indicated thereliability of MALDI-TOF analysis for this variation

4 Conclusions

Differences in drug responses could be due to genetic fac-tors Knowledge of individual genetic profiling is clinicallyimportant and provides benefits for future medical care bypredicting the drug response or developing DNA-based testsSubstantial interindividual variability in response to specifictherapies might be caused by the presence of polymorphismsin genes encoding components of drugmetabolismpathwayssuch as theCYP450 family genes Polymorphisms inCYP2D6gene have been thoroughly investigated including their asso-ciations with the incidence of adverse reactions In this study

we have developed a reliablemedium-throughput genotypingplatformusing the SequenomMassARRAY system to providea simultaneous screening of the most relevant CYP2D6 genevariants in several hundreds of subjects MALDI-TOF MS-based analyses have the potential to become a useful approachin clinical diagnoses as they are very flexible and applicableto individualized genetic therapies The screening platformdeveloped in this study coupled with The CYP2D6 AppliedBiosystems CNVAssay provides a robust alternative tomanycurrently available CYP450-genotyping approaches and aimsto increase the number of responders and to limit theincidences of adverse events Moreover by modifying longPCR Forward primer we have implemented a rapid strategyto infer the phase by direct analysis using MALDI-TOS MSmultiplex assays Concordance between data found in thiswork and our direct genomic DNA sequencing analysis donein [5] reliably validated ourMALDI-TOFMS-based platform

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

ISRN Genetics 3

Table 2 List of primers used inCYP2D6 long PCRprotocolsThe 51015840 10-mer tagwas added to PCRprimers in order to improve PCR efficiency

Nucleotides position Name 51015840 10ndashmer tag 51015840-Sequence-31015840 DirectionFrom -1780 to -1758 P-1780 [5] ACGTTGGATG GTCCTCCTGTCCTCAGTGGAT ForwardFrom -1584 to -1559 P-1584 WT [5] ACGTTGGATG CAGCCTGGACAACTTGGAAGAAGCC ForwardFrom -1584 to -1559 P-1584 MUT [5] ACGTTGGATG CAGCCTGGACAACTTGGAAGAAGCG ForwardFrom 4706 to 4728 2D6ndashR [19] ACGTTGGATG ACTGAGCCCTGGGAGGTAGGTA Reverse

allelic variants and subvariants List of alleles is summarizedin Table 5

DNASamples In this study we reanalyzed the genomicDNAsstudied in [5] Sardinian DNA samples were gently furnishedby Professor Francesco Cucca INN-CNR Cagliari DirectorAll participating individuals provided informed consent togenetic test To genotype these samples we implemented aCYP2D6 Genotyping Platform based on MALDI-TOF MSThis way we would be able to compare our genotyping resultswith a previous sequencing analysis in [5]

21 CYP2D6 Genotyping Platform

211 Long Primary PCR Selective amplification of theCYP2D6 genewas carried outmodifying a long PCR protocolimplemented in our previous work [5] Forward primer (P-1780 Table 2) was designed in a highly nonhomologousCYP2D6CYP2D7PCYP2D8P 51015840 untranslated region [5]The reverse primer used was 2D6-R (Table 2) as previouslydescribed [19] A 51015840 10-mer tag (51015840-ACGTTGGATG-31015840) wasadded to both PCR primers in order to improve PCRefficiency PCR reactions were performed in a final volume of5 120583L using the QIAGEN (Hilden Germany) LongRange PCRKit protocol [20] with the following minor modifications20 ng genomicDNA 400 120583Mof each PCR primer (MetabionMartinsried Germany) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 500 120583M Invitrogen (CA USA) 21015840-

deoxynucleoside-51015840-triphosphate (dNTP) Set PCR GradeThe PCR conditions were as follows initial denaturation at93∘C for 3min 35 cycles at 93∘C for 30 s 61∘C for 30 s and68∘C for 6min

212 SAP Dephosphorylation To neutralize unincorporateddNTPs after amplification reactions 03U of ShrimpAlkalinePhosphatase (SAP) (Sequenom) [26 27] was used SAPcleaved a phosphate from the unincorporated dNTPs con-verting them to 21015840-deoxynucleoside-51015840-diphosphate (dNDP)and rendering them unavailable for following reactionsDephosphorylation conditions were as follows 37∘C for20min and 85∘C for 5min

213 Assay Design SNP-specific unextended minisequenc-ing primers (UEPs) and multiplexed UEPs assays weredesigned using both the SequenomMassARRAYassay designversion 31 and the RealSNP assay database [28] A sequenceof 400 base pairs (bp) flanking each selected SNP was down-loaded from the corresponding genomic sequence stored in

the public NCBI Single Nucleotide Polymorphism dbSNPdatabase [8] or the Ensembl Genome Browser [29] and wasanalyzed by Vector NTI Suite Software version 55 (InforMaxOxford UK) Combination of the UEPs into multiplex assayswas supported by these software applications to allow theoptimization of several different parameters for example toavoid the risk of primer-primer interactions and hairpin-loop formations GC content molecular mass range andannealing temperatures To achieve the highest possiblemultiplexing levels we tested many primer combinationsleading us to the final assay design consisting in a total of69 SNPs successfully assembled in five medium-plex assays(13- 14- 13- 14- and 15-plex) (Table 3) For some SNPsSequenom MassARRAY assay design and RealSNP assaydatabase could not design SNP-specific UEPs because of thepresence of proximal SNPsOther SNPswere excludedduringplatform validation because of UEPs cross-hybridization inhighly homologous PCR template regions or for the presenceof primer dimers which created false allele But the highnumber of SNPs inserted in our analysis has allowed us toinfer the correct alleles for each DNA analysis List of SNPsnot included is summarized in Table 4

214 iPLEX Reactions iPLEX reactions were carried outfollowing the Sequenom standard lowmedium-plex protocol[6 26 27] with minor modifications Because of the lengthof the primary PCR fragment and the high GC contentwe increased the denaturation time at 94∘C from 5 to30 sec and the annealing temperature from 52 to 56∘CAn iPLEX reaction cocktail was added to the amplificationproducts and thermocycled to process the iPLEX reac-tion which involved the enzymatic addition of one of thefour mass-modified nucleotides 2101584031015840-dideoxynucleoside-51015840-triphosphate (ddNTP) into the polymorphic site During theiPLEX reaction each primer was extended by one of theddNTPswhich terminated the extension of primers thus pro-ducing allele-specific extension products of different massesThe iPLEX reaction cocktail included 0222X iPLEX bufferplus 05X iPLEX termination mix 05X iPLEX enzyme andUEPs which were divided into four mass groups accordingto the position of their respectivemass peaks to use the wholespectrum (final concentrations of 08ndash20 120583M) In the iPLEXtermination mix all four ddNTPs are present at the sameconcentration The reactions were performed using a twocycling loop program initial denaturation at 94∘C for 30 sfollowed by 40 cycles of 94∘C for 30 s 56∘C for 5 s and 80∘Cfor 5 s This annealing and extension procedure was repeatedfour times (to give a total of 200 short cycles) followedby a final extension step of 3min at 72∘C After desalting

4 ISRN Genetics

Table3Sequ

encesa

ndmolecular

weightsof

unextend

ed(U

EP)a

ndextend

ed(EP)

iPLE

Xprim

ers

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(1)13-PL

EX3877GgtA

CCTT

CCGCT

TCCA

CCCC

F4978

CCTT

CCGCT

TCCA

CCCC

A5249

ACC

TTCC

GCT

TCCA

CCCC

G5265

G3183GgtA

CCGCA

CCTG

CCCT

ATCA

R5051

CCGCA

CCTG

CCCT

ATCA

C5299

GCC

GCA

CCTG

CCCT

ATCA

T5378

A2615

2617

delAAG

GGCA

GCC

ACTC

TCAC

CTR5091

GGCA

GCC

ACTC

TCAC

CTC

5339

del

GGCA

GCC

ACTC

TCAC

CTT

5418

AGA

2483GgtT

GCG

TAGGAC

CTTG

CCAG

R5211

GCG

TAGGAC

CTTG

CCAG

C5459

GGCG

TAGGAC

CTTG

CCAG

A5483

T3853GgtA

GAAG

CGGAAG

GGCT

TCT

R5275

GAAG

CGGAAG

GGCT

TCTC

5523

GGAAG

CGGAAG

GGCT

TCTT

5603

A3277Tgt

CTG

CAGCG

CTTT

GGGGAC

AF5556

TGCA

GCG

CTTT

GGGGAC

AC5803

CTG

CAGCG

CTTT

GGGGAC

AT5883

T4180GgtC

AGCT

CATA

GGGGGAT

GGG

R5645

AGCT

CATA

GGGGGAT

GGGC

5892

GAG

CTCA

TAGGGGGAT

GGGG

5932

C2939GgtA

TGGGCT

CACG

CTGCA

CATC

R5766

TGGGCT

CACG

CTGCA

CATC

C6013

GTG

GGCT

CACG

CTGCA

CATC

T6093

A3288GgtA

GAT

GTC

ATAT

GGGTC

ACAC

R5828

GAT

GTC

ATAT

GGGTC

ACAC

C6075

GGAT

GTC

ATAT

GGGTC

ACAC

T6155

A3176Cgt

TGGCC

GTG

TCCA

ACAG

GAG

ATF6167

GGCC

GTG

TCCA

ACAG

GAG

ATC

6414

CGGCC

GTG

TCCA

ACAG

GAG

ATT

6494

T2850Cgt

TAG

CTTC

AAT

GAT

GAG

AAC

CTG

F6454

AGCT

TCAAT

GAT

GAG

AAC

CTGC

6701

CAG

CTTC

AAT

GAT

GAG

AAC

CTGT

6781

T2935AgtC

AGTG

CTCA

CGCT

GCA

CATC

CGGA

R7010

AGTG

CTCA

CGCT

GCA

CATC

CGGAG

7297

CAG

TGCT

CACG

CTGCA

CATC

CGGAT

7337

A1757Cgt

TTT

GTG

CCGCC

TTCG

CCAAC

CACT

CF7201

TTGTG

CCGCC

TTCG

CCAAC

CACT

CC7448

CTT

GTG

CCGCC

TTCG

CCAAC

CACT

CT7528

T(2)14-PL

EX1661GgtC

CAGAG

GCG

CTTC

TCCG

TF5162

CAGAG

GCG

CTTC

TCCG

TC5410

CCA

GAG

GCG

CTTC

TCCG

TG5450

G1869Tgt

CAC

GGCT

TTGTC

CAAG

AGR5210

ACGGCT

TTGTC

CAAG

AGA

5482

TAC

GGCT

TTGTC

CAAG

AGG

5498

C1846

GgtA

GGGGCG

AAAG

GGGCG

TCR5342

GGGGCG

AAAG

GGGCG

TCC

5588

GGGGGCG

AAAG

GGGCG

TCT

5668

A214GgtC

TGGAG

GGCG

GCA

GAG

GT

F5357

TGGAG

GGCG

GCA

GAG

GTC

5604

CTG

GAG

GGCG

GCA

GAG

GTG

5644

G19GgtA

CTGGGGCT

AGAAG

CACT

GF5565

CTGGGGCT

AGAAG

CACT

GA

5836

ACT

GGGGCT

AGAAG

CACT

GG

5852

G1707delT

GCG

GCC

TCCT

CGGTC

ACCC

R5702

GCG

GCC

TCCT

CGGTC

ACCC

C5949

del

GCG

GCC

TCCT

CGGTC

ACCC

A5973

T746CgtG

GCG

ACCC

AGCC

TCCT

GAT

CR5710

GCG

ACCC

AGCC

TCCT

GAT

CC5957

GGCG

ACCC

AGCC

TCCT

GAT

CG5997

C997CgtG

GAAC

AGGCG

GGCG

GTC

GGC

R5920

GAAC

AGGCG

GGCG

GTC

GGCC

6167

GGAAC

AGGCG

GGCG

GTC

GGCG

6207

C100CgtT

AAT

GCT

GGGCT

GCA

CGCT

ACF6118

AAT

GCT

GGGCT

GCA

CGCT

ACC

6365

CAAT

GCT

GGGCT

GCA

CGCT

ACT

6445

T1979Tgt

CGGAC

AGCC

CGAC

TCCT

CCTT

CR6303

GGAC

AGCC

CGAC

TCCT

CCTT

CA6574

TGGAC

AGCC

CGAC

TCCT

CCTT

CG6590

C-948Cgt

ACA

GGCT

GGGGCA

AGGGCC

TTC

F6488

CAGGCT

GGGGCA

AGGGCC

TTCC

6735

CCA

GGCT

GGGGCA

AGGGCC

TTCA

6759

A1749AgtG

GCC

CATC

ACCC

ACCG

GAG

TGGT

R6681

GCC

CATC

ACCC

ACCG

GAG

TGGTC

6929

GGCC

CATC

ACCC

ACCG

GAG

TGGTT

7008

A77GgtA

GTA

GCG

TGCA

GCC

CAGCG

TTGG

R6792

GTA

GCG

TGCA

GCC

CAGCG

TTGGC7040

GGTA

GCG

TGCA

GCC

CAGCG

TTGGT

7120

A1513Cgt

TAG

CTGGAC

AGAG

CCAG

GGAC

TGF6835

AGCT

GGAC

AGAG

CCAG

GGAC

TGC7082

CAG

CTGGAC

AGAG

CCAG

GGAC

TGT7162

T(3)13-PL

EX984AgtG

GCG

AGTG

TCCT

CGCC

GR4874

GCG

AGTG

TCCT

CGCC

GC

5121

GGCG

AGTG

TCCT

CGCC

GT

5201

A1863

1864

ins

TTTC

GCC

CCGAC

GCC

CCTT

TCGCC

CCF5043

GAC

GCC

CCTT

TCGCC

CCA

5315

ndashGAC

GCC

CCTT

TCGCC

CCT

5370

TTTC

GCC

CC1039Cgt

TAC

CCAG

ATCC

TGGGTT

TF5161

ACCC

AGAT

CCTG

GGTT

TC5409

CAC

CCAG

ATCC

TGGGTT

TT5489

T1943GgtA

CCAG

CAGCC

TGAG

GAAG

R5229

CCAG

CAGCC

TGAG

GAAG

C5477

GCC

AGCA

GCC

TGAG

GAAG

T5557

A974CgtA

CGGCC

GTG

CGCG

AGGCG

F5253

CGGCC

GTG

CGCG

AGGCG

C5501

CCG

GCC

GTG

CGCG

AGGCG

A5525

A1704

CgtG

GGCA

AGAAG

TCGCT

GGAG

F5614

GGCA

AGAAG

TCGCT

GGAG

C5861

CGGCA

AGAAG

TCGCT

GGAG

G5901

G310GgtT

TAAAT

GCC

CTTC

TCCA

GGA

R5748

TAAAT

GCC

CTTC

TCCA

GGAC

5995

GTA

AAT

GCC

CTTC

TCCA

GGAA

6019

T957CgtT

GTC

GTG

CTCA

ATGGGCT

GG

F5876

GTC

GTG

CTCA

ATGGGCT

GGC

6123

CGTC

GTG

CTCA

ATGGGCT

GGT

6203

T883GgtC

TCCC

CGAAG

CGGCG

CCGCA

AR6073

TCCC

CGAAG

CGGCG

CCGCA

AC6320

GTC

CCCG

AAG

CGGCG

CCGCA

AG6360

C1659GgtA

CGCG

AGCA

GAG

GCG

CTTC

TCC

F6408

CGCG

AGCA

GAG

GCG

CTTC

TCCA

6679

ACG

CGAG

CAGAG

GCG

CTTC

TCCG

6695

G31GgtA

AGCA

GGAAG

ATGGCC

ACTA

TCA

R6777

AGCA

GGAAG

ATGGCC

ACTA

TCAC

7024

GAG

CAGGAAG

ATGGCC

ACTA

TCAT

7104

A1724Cgt

TGCG

AAG

GCG

GCA

CAAAG

GCA

GGC

R7158

GCG

AAG

GCG

GCA

CAAAG

GCA

GGCA7429

TGCG

AAG

GCG

GCA

CAAAG

GCA

GGCG7445

C124GgtA

TCAC

ATGCA

GCA

GGTT

GCC

CAGCC

R7299

TCAC

ATGCA

GCA

GGTT

GCC

CAGCC

C7546

GTC

ACAT

GCA

GCA

GGTT

GCC

CAGCC

T7626

A

ISRN Genetics 5

Table3Con

tinued

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(4)14-PL

EX3198Cgt

GAC

CCAT

CTCT

GGTC

GCC

R5082

ACCC

ATCT

CTGGTC

GCC

C5330

GAC

CCAT

CTCT

GGTC

GCC

G5370

C2549delA

TGGGTC

CCAG

GTC

ATCC

R5162

TGGGTC

CCAG

GTC

ATCC

G5450

del

TGGGTC

CCAG

GTC

ATCC

T5490

A3582AgtG

GAAT

GTT

GGAG

GAC

CCA

F5259

GAAT

GTT

GGAG

GAC

CCAA

5531

AGAAT

GTT

GGAG

GAC

CCAG

5547

G2539

2542

delAAC

TAC

AGCT

GGAT

GAG

CTGCT

F5540

ACAG

CTGGAT

GAG

CTGCT

A5811

AAC

TAC

AGCT

GGAT

GAG

CTGCT

G5827

del

3790Cgt

TCC

ACTC

TCAC

CCTG

CATC

TF5620

CCAC

TCTC

ACCC

TGCA

TCTC

5867

CCC

ACTC

TCAC

CCTG

CATC

TT5947

T4115Cgt

TAC

CTCC

CTGCT

GCA

GCA

CTT

F5989

ACCT

CCCT

GCT

GCA

GCA

CTTC

6236

CAC

CTCC

CTGCT

GCA

GCA

CTTT

6316

T44

81GgtA

GAAT

CTGAC

TGCC

CAGAT

TGF6117

GAAT

CTGAC

TGCC

CAGAT

TGA

6388

AGAAT

CTGAC

TGCC

CAGAT

TGG

6404

G3828GgtA

ACTC

ATCA

CCAAC

CTGTC

ATC

F6270

ACTC

ATCA

CCAAC

CTGTC

ATCA

6541

AAC

TCAT

CACC

AAC

CTGTC

ATCG

6557

G3384AgtC

CATG

CTGGGGCT

ATCA

CCAG

GR6447

CATG

CTGGGGCT

ATCA

CCAG

GG

6734

CCA

TGCT

GGGGCT

ATCA

CCAG

GT

6774

A2853AgtC

GAG

AAC

AGGTC

AGCC

ACCA

CTA

R6722

GAG

AAC

AGGTC

AGCC

ACCA

CTAG

7010

CGAG

AAC

AGGTC

AGCC

ACCA

CTAT

7050

A2988GgtA

CATG

TGCC

CCCG

CCTG

TACC

CTT

R6888

CATG

TGCC

CCCG

CCTG

TACC

CTTC

7135

GCA

TGTG

CCCC

CGCC

TGTA

CCCT

TT7215

A3584GgtA

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

F7098

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

A7369

AGTC

AGAAT

GTT

GGAG

GAC

CCAAC

G7385

G44

01Cgt

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

R7546

TAAC

TGAC

ATCT

GCT

CAGCC

TCAAC

A7817

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

G7833

C2587

2590

delGAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GA

F7846

ATCA

GCT

CAGCC

CCCC

CGAG

ACCT

GAC8093

GAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GAG8133

del

(5)15-PL

EX3948Tgt

GTC

TCAG

CAGGTG

CCTG

F4873

TCTC

AGCA

GGTG

CCTG

G5160

GTC

TCAG

CAGGTG

CCTT

5200

T-1235AgtG

GCA

CCAC

CCAG

CCTA

ATR5084

GCA

CCAC

CCAG

CCTA

ATC

5332

GGCA

CCAC

CCAG

CCTA

ATT

5411

A137138insT

GAAG

TCCA

CATG

CAGCA

R5188

GAAG

TCCA

CATG

CAGCA

A5460

TGAAG

TCCA

CATG

CAGCA

G5476

mdash4155Cgt

TCA

GCC

CCGGCC

CAGCC

ACF5376

CAGCC

CCGGCC

CAGCC

ACC

5623

CCA

GCC

CCGGCC

CAGCC

ACT

5703

T82Cgt

TGTG

TAGCG

TGCA

GCC

CAGC

R5830

GTG

TAGCG

TGCA

GCC

CAGCA

6101

TGTG

TAGCG

TGCA

GCC

CAGCG

6117

C-1584CgtG

CTGGAC

AAC

TTGGAAG

AAC

CF6135

CTGGAC

AAC

TTGGAAG

AAC

CC6382

CCT

GGAC

AAC

TTGGAAG

AAC

CG6422

G2575Cgt

AGAC

CTGGGAC

CCAG

CCCA

GCC

F6362

GAC

CTGGGAC

CCAG

CCCA

GCC

C6609

CGAC

CTGGGAC

CCAG

CCCA

GCC

A6633

A843TgtG

ACTA

GGAC

CTGTA

GTC

TGGGG

F6502

ACTA

GGAC

CTGTA

GTC

TGGGGG

6789

GAC

TAGGAC

CTGTA

GTC

TGGGGT

6829

T-740

CgtT

ACAG

ACTC

ACAC

TGAC

ACTT

AGR6672

ACAG

ACTC

ACAC

TGAC

ACTT

AGA

6944

TAC

AGAC

TCAC

ACTG

ACAC

TTAG

G6960

C-678GgtA

CTTT

GTG

TGGGTG

ATTT

TCTG

CF6769

CTTT

GTG

TGGGTG

ATTT

TCTG

CA7041

ACT

TTGTG

TGGGTG

ATTT

TCTG

CG7057

G-750

-749

delGA

TGTG

ACTG

GTG

TGTG

TGAG

AGA

F6902

TGTG

ACTG

GTG

TGTG

TGAG

AGAA

7173

del

TGTG

ACTG

GTG

TGTG

TGAG

AGAG

7189

GA

2291GgtA

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CR7204

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CC7451

GCA

CTCG

CCAAG

TGCC

AGCC

TCCA

CT7531

A-1426CgtT

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

R7286

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

A7533

TGTG

TGCC

ACCA

CGTC

TAGCT

TTTT

G7573

C

1758GgtTgt

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCF7490

TTGTG

CCGCC

TTCG

CCAAC

CACT

CCA7761

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCG7777

GTT

GTG

CCGCC

TTCG

CCAAC

CACT

CCT7817

T-100

0GgtA

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGT

R7635

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGTC7882

GAC

ATCC

TCCC

GGGCT

GCC

TGAG

GGTT

7962

AUDU

nextendedminindashsequ

encing

prim

erDire

ctionFFo

rwardUEP

directionR

ReverseU

EPdirectionUMU

nextendedminindashsequ

encing

prim

ersM

assEL

ME

xtendedprim

erLo

wer

MassEH

ME

xtended

prim

erHigherM

assEL

CEx

tend

edprim

erlower

Massn

ucleotideC

alledEH

CEx

tend

edprim

erhigh

erMassn

ucleotideC

alledAllmolecular

weightm

assesa

reexpressedin

Dalton(D

a)

6 ISRN Genetics

Table 4 List of SNPs excluded in assay design validation andcorrelation to transcriptional variations

SNPs excluded Variations Reason-1770GgtA mdash Cross-hybridization-1298GgtA mdash Primer dimers-1253AgtG mdash Primer dimers

-1237 -1236insAA mdash Proximal SNP -1235AgtGPrimer dimers

1973 1974insG Frameshift Proximal SNP 1979TgtC1976GgtA mdash Proximal SNP 1979TgtC1978CgtT mdash Proximal SNP 1979TgtC2097AgtG mdash Primer dimers2470TgtC mdash Cross hybridization4042GgtA mdash Primer dimers

by addition of 6mg clean resin (Sequenom) each 384-wellsample was diluted with 16 120583L of sterilized H

2Odd

Multiplex PCR reactions SAP dephosphorylation andiPLEX reactionswere performedusingThermo-Fast 384 PCRPlates (ABgene Epsom UK) and a DNA Engine Tetrad 2Peltier Thermal Cycler (Bio-Rad CA USA) All pipettingsteps were performed using the automatic station MatrixPlateMate 2 times 2 (Sequenom)

215 MALDI-TOF MS Measurement An aliquot rangingfrom 15 to 20 nL of each iPLEX reaction product was loadedin a 384-spot SpectroChip (Sequenom) using the MassAr-ray Nanodispenser (Samsung Seoul Repubic of Korea)SpectroChip analysis was performed by MassARRAY Com-pact System (Sequenom) After laser desorptionionizationautomated spectra acquisition analysis was performed andinterpreted using Sequenom MassARRAY RT version 33software Examples of multiplex mass spectrum and clusterplot distributions are shown in Figures 1 and 2

22 CYP2D6 Single Allele Genotyping Following directionof our previous work [5] we decided to apply the singleallele protocol creating a single allele genotyping methodMALDI-TOFMS based For each sample a double long PCRreaction was carried out using P-1584 WT or P-1584 MUT[5] (Table 2) as forward primers The reverse primer was2D6-R [19] for both PCR reactions In this way we wereable to directly determine a direct and correct chromosomephase in samples presenting with a heterozygous status forminus1584GgtC SNP PCR reactions were performed in a finalvolume of 5 120583L using 20 ng genomic DNA 400 120583M of eachPCR primer (Metabion) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 800 120583MInvitrogen dNTP set PCR grade

The PCR conditions were as follows initial denaturation at93∘C for 3min 10 cycles at 93∘C for 30 s 67∘C for 30 s and68∘C for 3min 25 cycles at 93∘C for 30 s 65∘C for 30 s and68∘C for 6min SAP dephosphorylation iPLEX ReactionsandMALDI-TOFMSmeasurement were performed without

Table 5CYP2D6 allele frequencies in 250 healthy Sardinian peopleTotal chromosomes number = 500 Human cytochrome P450 AlleleNomenclature Committee [7] served as reference for variant alleleand correlated enzymatic activity

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast1A 148 296 EMlowast1B 5 10 EMlowast1D 4 08 EMlowast1E mdash mdash EMlowast2A 75 150 EMlowast2B mdash mdash EMlowast2D mdash mdash EMlowast2E mdash mdash EMlowast2F mdash mdash EMlowast2G mdash mdash EMlowast2K mdash mdash EMlowast2L 11 22 EMlowast2M 8 16 EMSH3 7 14 Not knownSH4 1 02 Not knownlowast3A mdash mdash PMlowast3B 11 22 PMlowast4A 84 168 PMlowast4B mdash mdash PMlowast4D mdash mdash PMlowast4K mdash mdash PMlowast4L mdash mdash PMlowast4M mdash mdash PMlowast4N mdash mdash PMlowast5 5 10 PMlowast6A 1 02 PMlowast6C mdash mdash PMlowast6D mdash mdash PMlowast7 mdash mdash PMlowast8 mdash mdash PMlowast9 1 02 IMlowast10A mdash mdash IMlowast10B 27 54 IMlowast11 mdash mdash PMlowast12 mdash mdash PMlowast14A mdash mdash PMlowast14B mdash mdash IMlowast15 3 06 PMlowast17 mdash mdash IMlowast19 mdash mdash PMlowast20 1 02 PMlowast22 mdash mdash Not knownlowast23 mdash mdash Not known

ISRN Genetics 7

Table 5 Continued

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast24 mdash mdash Not knownlowast25 mdash mdash Not knownlowast26 mdash mdash Not knownlowast27 mdash mdash EMlowast28 4 08 Not knownlowast29 mdash mdash IMlowast30 mdash mdash Not knownlowast31 mdash mdash PMlowast32 mdash mdash Not knownlowast33 mdash mdash EMlowast35A 5 10 EMlowast36 mdash mdash IMlowast37 mdash mdash Not knownlowast38 mdash mdash PMlowast39 mdash mdash EMlowast41 46 92 IMSH1 41 82 Not knownSH2 2 04 Not knownlowast43 mdash mdash Not knownlowast58 mdash mdash Not knownlowast59 mdash mdash IMlowast64 mdash mdash Not knownlowast65 mdash mdash Not knownlowast1xN 4 08 UMlowast2xN 6 12 UMSH1234 = Sardinian haplotype 1234 [5 22ndash25] CYP2D6lowast5lowast1xN andlowast2xN alleles were evaluated byThe CYP2D6Applied Biosystems CNVAssayin [5]

modifications as indicated in paragraph 1 ldquoCYP2D6 Geno-typing Platformrdquo In multiplexed assay 5 minus1584GgtC UEP(Table 3) was excluded Examples of cluster distribution fornovel 3176CgtT and 3948TgtG SNPs [5 17 18] are shown inFigure 3

3 Results and Discussion

A CYP2D6 screening assay was developed using theSequenom MassARRAY platform to simultaneously identifythe most frequent and some rare CYP2D6 Caucasian allelesWe have modified the basic Sequenom iPLEX assay and useda new primary PCR strategy based on the amplification ofthe entire gene [5] coupled with multiplex primer extensionreactionsThis strategy avoids false genotyping which wouldresult in nonspecific coamplification of the homologouspseudogenes CYP2D7P and CYP2D8P and secondly itreduces the number of PCR primers used to select regionscontaining the targeted polymorphisms Multiplexing wasperformed for 69 SNPs which represents 66 of the mostfrequent and some rarer variants and subvariants reported

5000 5500 6000 6500 7000 7500 8000

0123456789

10

Mass

Inte

nsity

lowast lowast TCG A

Figure 1 An example of 15ndashplex mass spectrum is shown (Well 5)List of SNPs investigated in this plex is shown in Table 3 The figureshows two examples highlighted in different colours Unextendprimer (UEP) peak is marked by an asterisk and dotted arrow whilethe solid arrows indicate the presence of the two different allelesDotted vertical lines represent UEPs and extended primers (EPs)expected masses In blue an AG heterozygous genotype example isshown lowast minus1235AgtG UEP expected mass = 5084 Dalton (Da) Gminus1235AgtGEP expectedmass = 5332Da Aminus1235AgtGEP expectedmass = 5411 Da In red a CC wild type homozygous genotypeexample is shown lowast 82CgtT UEP expected mass = 5830Da T82CgtT not EP expected mass = 6101Da C 82CgtT EP expectedmass = 6117Da

to date in the Caucasian population [5 7 9ndash16] and knownto be responsible for absent reduced or extensive metabolicactivity (Tables 1 and 5) Due to the high possibility ofrecombination it was possible to insert African African-American (11986211988411987521198636lowast2119871 lowast2 119872 lowast4119873 lowast6 4 and lowast6 5) andAsian (11986211988411987521198636lowast3119860 lowast4119861 lowast4119871 lowast14 lowast36 and lowast39) variantsin the study A sample of 250 unrelated healthy Sardinianindividuals analyzed in [5] was submitted to MALDI-TOFMS genotyping for these 69 CYP2D6 SNPs An example ofmultiplex mass spectrum is shown in Figure 1 In Figure 2(a)an example of the cluster plot distribution for the 1661GgtCSNP is shown Spectrum peak intensities were not correctlybalanced in some heterozygous samples (Figures 2(c) and2(d)) which appeared as outliers in the cluster distribution(Figure 2(a) point 120575 and 120576) The CYP2D6 Applied BiosystemsCopy Number Variation (CNV) Assay used to analyze theseDNAs in our previous work [5] detected the presence ofduplications or multiplications in 100 of the analyzedsamples presenting this kind of distribution Furthermore insamples presenting a heterozygous status for minus1584GgtC SNPwe applied long PCR single allele analysis [5] to MALDI-TOF MS screening assays and inferred a direct haplotypephase To verify if our CYP2D6 platform works correctly wecompared genotyping results and haplotype phase elaboratedin the two screening platforms with our results found in [5]A consensus of 100 was found for all samples (Table 5)Moreover for all samples presenting the 214GgtC SNP inhomo- or heterozygous status in MALDI-TOF MS analysisit was possible to verify in our previous sequencing analysis

8 ISRN Genetics

120572

120573

120574

120577

120575

120576

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0010203040506070809

1

(a)

0

2

4

6

8

10

12

14

16

18

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(b)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(c)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(d)

Figure 2 In (a) a Cluster plot for 1661GgtC SNP is shown Homozygous wild type GG samples are displayed in (120572) homozygous mutate CCsamples in (120573) and heterozygous GC samples in (120574) in (120575) and (120576) are displayed outlier samples resulting in gene copy number variation [5](120577) negative control (H2Odd) In (b) aMass Spectra for the detection of 1661GgtC in a heterozygous GC sample displayed in (a) position (120574)In (c) a Mass Spectra for the detection of 1661GgtC in the outlier sample displayed in (a) position (120575) and resulting in 11986211988411987521198636lowast1 times 119873 allele[5] In (d) Mass Spectra for the detection of 1661G gt C in an outlier sample displayed in (a) position (120576) and resulting in 11986211988411987521198636lowast2 times 119873allele [5]

[5] the presence of all SNPs correlated to gene conversionto CYP2D7P in Intron 1 (Figure 4) which indicated thereliability of MALDI-TOF analysis for this variation

4 Conclusions

Differences in drug responses could be due to genetic fac-tors Knowledge of individual genetic profiling is clinicallyimportant and provides benefits for future medical care bypredicting the drug response or developing DNA-based testsSubstantial interindividual variability in response to specifictherapies might be caused by the presence of polymorphismsin genes encoding components of drugmetabolismpathwayssuch as theCYP450 family genes Polymorphisms inCYP2D6gene have been thoroughly investigated including their asso-ciations with the incidence of adverse reactions In this study

we have developed a reliablemedium-throughput genotypingplatformusing the SequenomMassARRAY system to providea simultaneous screening of the most relevant CYP2D6 genevariants in several hundreds of subjects MALDI-TOF MS-based analyses have the potential to become a useful approachin clinical diagnoses as they are very flexible and applicableto individualized genetic therapies The screening platformdeveloped in this study coupled with The CYP2D6 AppliedBiosystems CNVAssay provides a robust alternative tomanycurrently available CYP450-genotyping approaches and aimsto increase the number of responders and to limit theincidences of adverse events Moreover by modifying longPCR Forward primer we have implemented a rapid strategyto infer the phase by direct analysis using MALDI-TOS MSmultiplex assays Concordance between data found in thiswork and our direct genomic DNA sequencing analysis donein [5] reliably validated ourMALDI-TOFMS-based platform

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

4 ISRN Genetics

Table3Sequ

encesa

ndmolecular

weightsof

unextend

ed(U

EP)a

ndextend

ed(EP)

iPLE

Xprim

ers

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(1)13-PL

EX3877GgtA

CCTT

CCGCT

TCCA

CCCC

F4978

CCTT

CCGCT

TCCA

CCCC

A5249

ACC

TTCC

GCT

TCCA

CCCC

G5265

G3183GgtA

CCGCA

CCTG

CCCT

ATCA

R5051

CCGCA

CCTG

CCCT

ATCA

C5299

GCC

GCA

CCTG

CCCT

ATCA

T5378

A2615

2617

delAAG

GGCA

GCC

ACTC

TCAC

CTR5091

GGCA

GCC

ACTC

TCAC

CTC

5339

del

GGCA

GCC

ACTC

TCAC

CTT

5418

AGA

2483GgtT

GCG

TAGGAC

CTTG

CCAG

R5211

GCG

TAGGAC

CTTG

CCAG

C5459

GGCG

TAGGAC

CTTG

CCAG

A5483

T3853GgtA

GAAG

CGGAAG

GGCT

TCT

R5275

GAAG

CGGAAG

GGCT

TCTC

5523

GGAAG

CGGAAG

GGCT

TCTT

5603

A3277Tgt

CTG

CAGCG

CTTT

GGGGAC

AF5556

TGCA

GCG

CTTT

GGGGAC

AC5803

CTG

CAGCG

CTTT

GGGGAC

AT5883

T4180GgtC

AGCT

CATA

GGGGGAT

GGG

R5645

AGCT

CATA

GGGGGAT

GGGC

5892

GAG

CTCA

TAGGGGGAT

GGGG

5932

C2939GgtA

TGGGCT

CACG

CTGCA

CATC

R5766

TGGGCT

CACG

CTGCA

CATC

C6013

GTG

GGCT

CACG

CTGCA

CATC

T6093

A3288GgtA

GAT

GTC

ATAT

GGGTC

ACAC

R5828

GAT

GTC

ATAT

GGGTC

ACAC

C6075

GGAT

GTC

ATAT

GGGTC

ACAC

T6155

A3176Cgt

TGGCC

GTG

TCCA

ACAG

GAG

ATF6167

GGCC

GTG

TCCA

ACAG

GAG

ATC

6414

CGGCC

GTG

TCCA

ACAG

GAG

ATT

6494

T2850Cgt

TAG

CTTC

AAT

GAT

GAG

AAC

CTG

F6454

AGCT

TCAAT

GAT

GAG

AAC

CTGC

6701

CAG

CTTC

AAT

GAT

GAG

AAC

CTGT

6781

T2935AgtC

AGTG

CTCA

CGCT

GCA

CATC

CGGA

R7010

AGTG

CTCA

CGCT

GCA

CATC

CGGAG

7297

CAG

TGCT

CACG

CTGCA

CATC

CGGAT

7337

A1757Cgt

TTT

GTG

CCGCC

TTCG

CCAAC

CACT

CF7201

TTGTG

CCGCC

TTCG

CCAAC

CACT

CC7448

CTT

GTG

CCGCC

TTCG

CCAAC

CACT

CT7528

T(2)14-PL

EX1661GgtC

CAGAG

GCG

CTTC

TCCG

TF5162

CAGAG

GCG

CTTC

TCCG

TC5410

CCA

GAG

GCG

CTTC

TCCG

TG5450

G1869Tgt

CAC

GGCT

TTGTC

CAAG

AGR5210

ACGGCT

TTGTC

CAAG

AGA

5482

TAC

GGCT

TTGTC

CAAG

AGG

5498

C1846

GgtA

GGGGCG

AAAG

GGGCG

TCR5342

GGGGCG

AAAG

GGGCG

TCC

5588

GGGGGCG

AAAG

GGGCG

TCT

5668

A214GgtC

TGGAG

GGCG

GCA

GAG

GT

F5357

TGGAG

GGCG

GCA

GAG

GTC

5604

CTG

GAG

GGCG

GCA

GAG

GTG

5644

G19GgtA

CTGGGGCT

AGAAG

CACT

GF5565

CTGGGGCT

AGAAG

CACT

GA

5836

ACT

GGGGCT

AGAAG

CACT

GG

5852

G1707delT

GCG

GCC

TCCT

CGGTC

ACCC

R5702

GCG

GCC

TCCT

CGGTC

ACCC

C5949

del

GCG

GCC

TCCT

CGGTC

ACCC

A5973

T746CgtG

GCG

ACCC

AGCC

TCCT

GAT

CR5710

GCG

ACCC

AGCC

TCCT

GAT

CC5957

GGCG

ACCC

AGCC

TCCT

GAT

CG5997

C997CgtG

GAAC

AGGCG

GGCG

GTC

GGC

R5920

GAAC

AGGCG

GGCG

GTC

GGCC

6167

GGAAC

AGGCG

GGCG

GTC

GGCG

6207

C100CgtT

AAT

GCT

GGGCT

GCA

CGCT

ACF6118

AAT

GCT

GGGCT

GCA

CGCT

ACC

6365

CAAT

GCT

GGGCT

GCA

CGCT

ACT

6445

T1979Tgt

CGGAC

AGCC

CGAC

TCCT

CCTT

CR6303

GGAC

AGCC

CGAC

TCCT

CCTT

CA6574

TGGAC

AGCC

CGAC

TCCT

CCTT

CG6590

C-948Cgt

ACA

GGCT

GGGGCA

AGGGCC

TTC

F6488

CAGGCT

GGGGCA

AGGGCC

TTCC

6735

CCA

GGCT

GGGGCA

AGGGCC

TTCA

6759

A1749AgtG

GCC

CATC

ACCC

ACCG

GAG

TGGT

R6681

GCC

CATC

ACCC

ACCG

GAG

TGGTC

6929

GGCC

CATC

ACCC

ACCG

GAG

TGGTT

7008

A77GgtA

GTA

GCG

TGCA

GCC

CAGCG

TTGG

R6792

GTA

GCG

TGCA

GCC

CAGCG

TTGGC7040

GGTA

GCG

TGCA

GCC

CAGCG

TTGGT

7120

A1513Cgt

TAG

CTGGAC

AGAG

CCAG

GGAC

TGF6835

AGCT

GGAC

AGAG

CCAG

GGAC

TGC7082

CAG

CTGGAC

AGAG

CCAG

GGAC

TGT7162

T(3)13-PL

EX984AgtG

GCG

AGTG

TCCT

CGCC

GR4874

GCG

AGTG

TCCT

CGCC

GC

5121

GGCG

AGTG

TCCT

CGCC

GT

5201

A1863

1864

ins

TTTC

GCC

CCGAC

GCC

CCTT

TCGCC

CCF5043

GAC

GCC

CCTT

TCGCC

CCA

5315

ndashGAC

GCC

CCTT

TCGCC

CCT

5370

TTTC

GCC

CC1039Cgt

TAC

CCAG

ATCC

TGGGTT

TF5161

ACCC

AGAT

CCTG

GGTT

TC5409

CAC

CCAG

ATCC

TGGGTT

TT5489

T1943GgtA

CCAG

CAGCC

TGAG

GAAG

R5229

CCAG

CAGCC

TGAG

GAAG

C5477

GCC

AGCA

GCC

TGAG

GAAG

T5557

A974CgtA

CGGCC

GTG

CGCG

AGGCG

F5253

CGGCC

GTG

CGCG

AGGCG

C5501

CCG

GCC

GTG

CGCG

AGGCG

A5525

A1704

CgtG

GGCA

AGAAG

TCGCT

GGAG

F5614

GGCA

AGAAG

TCGCT

GGAG

C5861

CGGCA

AGAAG

TCGCT

GGAG

G5901

G310GgtT

TAAAT

GCC

CTTC

TCCA

GGA

R5748

TAAAT

GCC

CTTC

TCCA

GGAC

5995

GTA

AAT

GCC

CTTC

TCCA

GGAA

6019

T957CgtT

GTC

GTG

CTCA

ATGGGCT

GG

F5876

GTC

GTG

CTCA

ATGGGCT

GGC

6123

CGTC

GTG

CTCA

ATGGGCT

GGT

6203

T883GgtC

TCCC

CGAAG

CGGCG

CCGCA

AR6073

TCCC

CGAAG

CGGCG

CCGCA

AC6320

GTC

CCCG

AAG

CGGCG

CCGCA

AG6360

C1659GgtA

CGCG

AGCA

GAG

GCG

CTTC

TCC

F6408

CGCG

AGCA

GAG

GCG

CTTC

TCCA

6679

ACG

CGAG

CAGAG

GCG

CTTC

TCCG

6695

G31GgtA

AGCA

GGAAG

ATGGCC

ACTA

TCA

R6777

AGCA

GGAAG

ATGGCC

ACTA

TCAC

7024

GAG

CAGGAAG

ATGGCC

ACTA

TCAT

7104

A1724Cgt

TGCG

AAG

GCG

GCA

CAAAG

GCA

GGC

R7158

GCG

AAG

GCG

GCA

CAAAG

GCA

GGCA7429

TGCG

AAG

GCG

GCA

CAAAG

GCA

GGCG7445

C124GgtA

TCAC

ATGCA

GCA

GGTT

GCC

CAGCC

R7299

TCAC

ATGCA

GCA

GGTT

GCC

CAGCC

C7546

GTC

ACAT

GCA

GCA

GGTT

GCC

CAGCC

T7626

A

ISRN Genetics 5

Table3Con

tinued

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(4)14-PL

EX3198Cgt

GAC

CCAT

CTCT

GGTC

GCC

R5082

ACCC

ATCT

CTGGTC

GCC

C5330

GAC

CCAT

CTCT

GGTC

GCC

G5370

C2549delA

TGGGTC

CCAG

GTC

ATCC

R5162

TGGGTC

CCAG

GTC

ATCC

G5450

del

TGGGTC

CCAG

GTC

ATCC

T5490

A3582AgtG

GAAT

GTT

GGAG

GAC

CCA

F5259

GAAT

GTT

GGAG

GAC

CCAA

5531

AGAAT

GTT

GGAG

GAC

CCAG

5547

G2539

2542

delAAC

TAC

AGCT

GGAT

GAG

CTGCT

F5540

ACAG

CTGGAT

GAG

CTGCT

A5811

AAC

TAC

AGCT

GGAT

GAG

CTGCT

G5827

del

3790Cgt

TCC

ACTC

TCAC

CCTG

CATC

TF5620

CCAC

TCTC

ACCC

TGCA

TCTC

5867

CCC

ACTC

TCAC

CCTG

CATC

TT5947

T4115Cgt

TAC

CTCC

CTGCT

GCA

GCA

CTT

F5989

ACCT

CCCT

GCT

GCA

GCA

CTTC

6236

CAC

CTCC

CTGCT

GCA

GCA

CTTT

6316

T44

81GgtA

GAAT

CTGAC

TGCC

CAGAT

TGF6117

GAAT

CTGAC

TGCC

CAGAT

TGA

6388

AGAAT

CTGAC

TGCC

CAGAT

TGG

6404

G3828GgtA

ACTC

ATCA

CCAAC

CTGTC

ATC

F6270

ACTC

ATCA

CCAAC

CTGTC

ATCA

6541

AAC

TCAT

CACC

AAC

CTGTC

ATCG

6557

G3384AgtC

CATG

CTGGGGCT

ATCA

CCAG

GR6447

CATG

CTGGGGCT

ATCA

CCAG

GG

6734

CCA

TGCT

GGGGCT

ATCA

CCAG

GT

6774

A2853AgtC

GAG

AAC

AGGTC

AGCC

ACCA

CTA

R6722

GAG

AAC

AGGTC

AGCC

ACCA

CTAG

7010

CGAG

AAC

AGGTC

AGCC

ACCA

CTAT

7050

A2988GgtA

CATG

TGCC

CCCG

CCTG

TACC

CTT

R6888

CATG

TGCC

CCCG

CCTG

TACC

CTTC

7135

GCA

TGTG

CCCC

CGCC

TGTA

CCCT

TT7215

A3584GgtA

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

F7098

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

A7369

AGTC

AGAAT

GTT

GGAG

GAC

CCAAC

G7385

G44

01Cgt

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

R7546

TAAC

TGAC

ATCT

GCT

CAGCC

TCAAC

A7817

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

G7833

C2587

2590

delGAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GA

F7846

ATCA

GCT

CAGCC

CCCC

CGAG

ACCT

GAC8093

GAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GAG8133

del

(5)15-PL

EX3948Tgt

GTC

TCAG

CAGGTG

CCTG

F4873

TCTC

AGCA

GGTG

CCTG

G5160

GTC

TCAG

CAGGTG

CCTT

5200

T-1235AgtG

GCA

CCAC

CCAG

CCTA

ATR5084

GCA

CCAC

CCAG

CCTA

ATC

5332

GGCA

CCAC

CCAG

CCTA

ATT

5411

A137138insT

GAAG

TCCA

CATG

CAGCA

R5188

GAAG

TCCA

CATG

CAGCA

A5460

TGAAG

TCCA

CATG

CAGCA

G5476

mdash4155Cgt

TCA

GCC

CCGGCC

CAGCC

ACF5376

CAGCC

CCGGCC

CAGCC

ACC

5623

CCA

GCC

CCGGCC

CAGCC

ACT

5703

T82Cgt

TGTG

TAGCG

TGCA

GCC

CAGC

R5830

GTG

TAGCG

TGCA

GCC

CAGCA

6101

TGTG

TAGCG

TGCA

GCC

CAGCG

6117

C-1584CgtG

CTGGAC

AAC

TTGGAAG

AAC

CF6135

CTGGAC

AAC

TTGGAAG

AAC

CC6382

CCT

GGAC

AAC

TTGGAAG

AAC

CG6422

G2575Cgt

AGAC

CTGGGAC

CCAG

CCCA

GCC

F6362

GAC

CTGGGAC

CCAG

CCCA

GCC

C6609

CGAC

CTGGGAC

CCAG

CCCA

GCC

A6633

A843TgtG

ACTA

GGAC

CTGTA

GTC

TGGGG

F6502

ACTA

GGAC

CTGTA

GTC

TGGGGG

6789

GAC

TAGGAC

CTGTA

GTC

TGGGGT

6829

T-740

CgtT

ACAG

ACTC

ACAC

TGAC

ACTT

AGR6672

ACAG

ACTC

ACAC

TGAC

ACTT

AGA

6944

TAC

AGAC

TCAC

ACTG

ACAC

TTAG

G6960

C-678GgtA

CTTT

GTG

TGGGTG

ATTT

TCTG

CF6769

CTTT

GTG

TGGGTG

ATTT

TCTG

CA7041

ACT

TTGTG

TGGGTG

ATTT

TCTG

CG7057

G-750

-749

delGA

TGTG

ACTG

GTG

TGTG

TGAG

AGA

F6902

TGTG

ACTG

GTG

TGTG

TGAG

AGAA

7173

del

TGTG

ACTG

GTG

TGTG

TGAG

AGAG

7189

GA

2291GgtA

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CR7204

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CC7451

GCA

CTCG

CCAAG

TGCC

AGCC

TCCA

CT7531

A-1426CgtT

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

R7286

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

A7533

TGTG

TGCC

ACCA

CGTC

TAGCT

TTTT

G7573

C

1758GgtTgt

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCF7490

TTGTG

CCGCC

TTCG

CCAAC

CACT

CCA7761

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCG7777

GTT

GTG

CCGCC

TTCG

CCAAC

CACT

CCT7817

T-100

0GgtA

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGT

R7635

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGTC7882

GAC

ATCC

TCCC

GGGCT

GCC

TGAG

GGTT

7962

AUDU

nextendedminindashsequ

encing

prim

erDire

ctionFFo

rwardUEP

directionR

ReverseU

EPdirectionUMU

nextendedminindashsequ

encing

prim

ersM

assEL

ME

xtendedprim

erLo

wer

MassEH

ME

xtended

prim

erHigherM

assEL

CEx

tend

edprim

erlower

Massn

ucleotideC

alledEH

CEx

tend

edprim

erhigh

erMassn

ucleotideC

alledAllmolecular

weightm

assesa

reexpressedin

Dalton(D

a)

6 ISRN Genetics

Table 4 List of SNPs excluded in assay design validation andcorrelation to transcriptional variations

SNPs excluded Variations Reason-1770GgtA mdash Cross-hybridization-1298GgtA mdash Primer dimers-1253AgtG mdash Primer dimers

-1237 -1236insAA mdash Proximal SNP -1235AgtGPrimer dimers

1973 1974insG Frameshift Proximal SNP 1979TgtC1976GgtA mdash Proximal SNP 1979TgtC1978CgtT mdash Proximal SNP 1979TgtC2097AgtG mdash Primer dimers2470TgtC mdash Cross hybridization4042GgtA mdash Primer dimers

by addition of 6mg clean resin (Sequenom) each 384-wellsample was diluted with 16 120583L of sterilized H

2Odd

Multiplex PCR reactions SAP dephosphorylation andiPLEX reactionswere performedusingThermo-Fast 384 PCRPlates (ABgene Epsom UK) and a DNA Engine Tetrad 2Peltier Thermal Cycler (Bio-Rad CA USA) All pipettingsteps were performed using the automatic station MatrixPlateMate 2 times 2 (Sequenom)

215 MALDI-TOF MS Measurement An aliquot rangingfrom 15 to 20 nL of each iPLEX reaction product was loadedin a 384-spot SpectroChip (Sequenom) using the MassAr-ray Nanodispenser (Samsung Seoul Repubic of Korea)SpectroChip analysis was performed by MassARRAY Com-pact System (Sequenom) After laser desorptionionizationautomated spectra acquisition analysis was performed andinterpreted using Sequenom MassARRAY RT version 33software Examples of multiplex mass spectrum and clusterplot distributions are shown in Figures 1 and 2

22 CYP2D6 Single Allele Genotyping Following directionof our previous work [5] we decided to apply the singleallele protocol creating a single allele genotyping methodMALDI-TOFMS based For each sample a double long PCRreaction was carried out using P-1584 WT or P-1584 MUT[5] (Table 2) as forward primers The reverse primer was2D6-R [19] for both PCR reactions In this way we wereable to directly determine a direct and correct chromosomephase in samples presenting with a heterozygous status forminus1584GgtC SNP PCR reactions were performed in a finalvolume of 5 120583L using 20 ng genomic DNA 400 120583M of eachPCR primer (Metabion) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 800 120583MInvitrogen dNTP set PCR grade

The PCR conditions were as follows initial denaturation at93∘C for 3min 10 cycles at 93∘C for 30 s 67∘C for 30 s and68∘C for 3min 25 cycles at 93∘C for 30 s 65∘C for 30 s and68∘C for 6min SAP dephosphorylation iPLEX ReactionsandMALDI-TOFMSmeasurement were performed without

Table 5CYP2D6 allele frequencies in 250 healthy Sardinian peopleTotal chromosomes number = 500 Human cytochrome P450 AlleleNomenclature Committee [7] served as reference for variant alleleand correlated enzymatic activity

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast1A 148 296 EMlowast1B 5 10 EMlowast1D 4 08 EMlowast1E mdash mdash EMlowast2A 75 150 EMlowast2B mdash mdash EMlowast2D mdash mdash EMlowast2E mdash mdash EMlowast2F mdash mdash EMlowast2G mdash mdash EMlowast2K mdash mdash EMlowast2L 11 22 EMlowast2M 8 16 EMSH3 7 14 Not knownSH4 1 02 Not knownlowast3A mdash mdash PMlowast3B 11 22 PMlowast4A 84 168 PMlowast4B mdash mdash PMlowast4D mdash mdash PMlowast4K mdash mdash PMlowast4L mdash mdash PMlowast4M mdash mdash PMlowast4N mdash mdash PMlowast5 5 10 PMlowast6A 1 02 PMlowast6C mdash mdash PMlowast6D mdash mdash PMlowast7 mdash mdash PMlowast8 mdash mdash PMlowast9 1 02 IMlowast10A mdash mdash IMlowast10B 27 54 IMlowast11 mdash mdash PMlowast12 mdash mdash PMlowast14A mdash mdash PMlowast14B mdash mdash IMlowast15 3 06 PMlowast17 mdash mdash IMlowast19 mdash mdash PMlowast20 1 02 PMlowast22 mdash mdash Not knownlowast23 mdash mdash Not known

ISRN Genetics 7

Table 5 Continued

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast24 mdash mdash Not knownlowast25 mdash mdash Not knownlowast26 mdash mdash Not knownlowast27 mdash mdash EMlowast28 4 08 Not knownlowast29 mdash mdash IMlowast30 mdash mdash Not knownlowast31 mdash mdash PMlowast32 mdash mdash Not knownlowast33 mdash mdash EMlowast35A 5 10 EMlowast36 mdash mdash IMlowast37 mdash mdash Not knownlowast38 mdash mdash PMlowast39 mdash mdash EMlowast41 46 92 IMSH1 41 82 Not knownSH2 2 04 Not knownlowast43 mdash mdash Not knownlowast58 mdash mdash Not knownlowast59 mdash mdash IMlowast64 mdash mdash Not knownlowast65 mdash mdash Not knownlowast1xN 4 08 UMlowast2xN 6 12 UMSH1234 = Sardinian haplotype 1234 [5 22ndash25] CYP2D6lowast5lowast1xN andlowast2xN alleles were evaluated byThe CYP2D6Applied Biosystems CNVAssayin [5]

modifications as indicated in paragraph 1 ldquoCYP2D6 Geno-typing Platformrdquo In multiplexed assay 5 minus1584GgtC UEP(Table 3) was excluded Examples of cluster distribution fornovel 3176CgtT and 3948TgtG SNPs [5 17 18] are shown inFigure 3

3 Results and Discussion

A CYP2D6 screening assay was developed using theSequenom MassARRAY platform to simultaneously identifythe most frequent and some rare CYP2D6 Caucasian allelesWe have modified the basic Sequenom iPLEX assay and useda new primary PCR strategy based on the amplification ofthe entire gene [5] coupled with multiplex primer extensionreactionsThis strategy avoids false genotyping which wouldresult in nonspecific coamplification of the homologouspseudogenes CYP2D7P and CYP2D8P and secondly itreduces the number of PCR primers used to select regionscontaining the targeted polymorphisms Multiplexing wasperformed for 69 SNPs which represents 66 of the mostfrequent and some rarer variants and subvariants reported

5000 5500 6000 6500 7000 7500 8000

0123456789

10

Mass

Inte

nsity

lowast lowast TCG A

Figure 1 An example of 15ndashplex mass spectrum is shown (Well 5)List of SNPs investigated in this plex is shown in Table 3 The figureshows two examples highlighted in different colours Unextendprimer (UEP) peak is marked by an asterisk and dotted arrow whilethe solid arrows indicate the presence of the two different allelesDotted vertical lines represent UEPs and extended primers (EPs)expected masses In blue an AG heterozygous genotype example isshown lowast minus1235AgtG UEP expected mass = 5084 Dalton (Da) Gminus1235AgtGEP expectedmass = 5332Da Aminus1235AgtGEP expectedmass = 5411 Da In red a CC wild type homozygous genotypeexample is shown lowast 82CgtT UEP expected mass = 5830Da T82CgtT not EP expected mass = 6101Da C 82CgtT EP expectedmass = 6117Da

to date in the Caucasian population [5 7 9ndash16] and knownto be responsible for absent reduced or extensive metabolicactivity (Tables 1 and 5) Due to the high possibility ofrecombination it was possible to insert African African-American (11986211988411987521198636lowast2119871 lowast2 119872 lowast4119873 lowast6 4 and lowast6 5) andAsian (11986211988411987521198636lowast3119860 lowast4119861 lowast4119871 lowast14 lowast36 and lowast39) variantsin the study A sample of 250 unrelated healthy Sardinianindividuals analyzed in [5] was submitted to MALDI-TOFMS genotyping for these 69 CYP2D6 SNPs An example ofmultiplex mass spectrum is shown in Figure 1 In Figure 2(a)an example of the cluster plot distribution for the 1661GgtCSNP is shown Spectrum peak intensities were not correctlybalanced in some heterozygous samples (Figures 2(c) and2(d)) which appeared as outliers in the cluster distribution(Figure 2(a) point 120575 and 120576) The CYP2D6 Applied BiosystemsCopy Number Variation (CNV) Assay used to analyze theseDNAs in our previous work [5] detected the presence ofduplications or multiplications in 100 of the analyzedsamples presenting this kind of distribution Furthermore insamples presenting a heterozygous status for minus1584GgtC SNPwe applied long PCR single allele analysis [5] to MALDI-TOF MS screening assays and inferred a direct haplotypephase To verify if our CYP2D6 platform works correctly wecompared genotyping results and haplotype phase elaboratedin the two screening platforms with our results found in [5]A consensus of 100 was found for all samples (Table 5)Moreover for all samples presenting the 214GgtC SNP inhomo- or heterozygous status in MALDI-TOF MS analysisit was possible to verify in our previous sequencing analysis

8 ISRN Genetics

120572

120573

120574

120577

120575

120576

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0010203040506070809

1

(a)

0

2

4

6

8

10

12

14

16

18

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(b)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(c)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(d)

Figure 2 In (a) a Cluster plot for 1661GgtC SNP is shown Homozygous wild type GG samples are displayed in (120572) homozygous mutate CCsamples in (120573) and heterozygous GC samples in (120574) in (120575) and (120576) are displayed outlier samples resulting in gene copy number variation [5](120577) negative control (H2Odd) In (b) aMass Spectra for the detection of 1661GgtC in a heterozygous GC sample displayed in (a) position (120574)In (c) a Mass Spectra for the detection of 1661GgtC in the outlier sample displayed in (a) position (120575) and resulting in 11986211988411987521198636lowast1 times 119873 allele[5] In (d) Mass Spectra for the detection of 1661G gt C in an outlier sample displayed in (a) position (120576) and resulting in 11986211988411987521198636lowast2 times 119873allele [5]

[5] the presence of all SNPs correlated to gene conversionto CYP2D7P in Intron 1 (Figure 4) which indicated thereliability of MALDI-TOF analysis for this variation

4 Conclusions

Differences in drug responses could be due to genetic fac-tors Knowledge of individual genetic profiling is clinicallyimportant and provides benefits for future medical care bypredicting the drug response or developing DNA-based testsSubstantial interindividual variability in response to specifictherapies might be caused by the presence of polymorphismsin genes encoding components of drugmetabolismpathwayssuch as theCYP450 family genes Polymorphisms inCYP2D6gene have been thoroughly investigated including their asso-ciations with the incidence of adverse reactions In this study

we have developed a reliablemedium-throughput genotypingplatformusing the SequenomMassARRAY system to providea simultaneous screening of the most relevant CYP2D6 genevariants in several hundreds of subjects MALDI-TOF MS-based analyses have the potential to become a useful approachin clinical diagnoses as they are very flexible and applicableto individualized genetic therapies The screening platformdeveloped in this study coupled with The CYP2D6 AppliedBiosystems CNVAssay provides a robust alternative tomanycurrently available CYP450-genotyping approaches and aimsto increase the number of responders and to limit theincidences of adverse events Moreover by modifying longPCR Forward primer we have implemented a rapid strategyto infer the phase by direct analysis using MALDI-TOS MSmultiplex assays Concordance between data found in thiswork and our direct genomic DNA sequencing analysis donein [5] reliably validated ourMALDI-TOFMS-based platform

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

ISRN Genetics 5

Table3Con

tinued

UEP

srsquosequ

ences

UD

UM

EPlower

masssequences

ELM

ELC

EPhigh

ermasssequences

EHM

EHC

(4)14-PL

EX3198Cgt

GAC

CCAT

CTCT

GGTC

GCC

R5082

ACCC

ATCT

CTGGTC

GCC

C5330

GAC

CCAT

CTCT

GGTC

GCC

G5370

C2549delA

TGGGTC

CCAG

GTC

ATCC

R5162

TGGGTC

CCAG

GTC

ATCC

G5450

del

TGGGTC

CCAG

GTC

ATCC

T5490

A3582AgtG

GAAT

GTT

GGAG

GAC

CCA

F5259

GAAT

GTT

GGAG

GAC

CCAA

5531

AGAAT

GTT

GGAG

GAC

CCAG

5547

G2539

2542

delAAC

TAC

AGCT

GGAT

GAG

CTGCT

F5540

ACAG

CTGGAT

GAG

CTGCT

A5811

AAC

TAC

AGCT

GGAT

GAG

CTGCT

G5827

del

3790Cgt

TCC

ACTC

TCAC

CCTG

CATC

TF5620

CCAC

TCTC

ACCC

TGCA

TCTC

5867

CCC

ACTC

TCAC

CCTG

CATC

TT5947

T4115Cgt

TAC

CTCC

CTGCT

GCA

GCA

CTT

F5989

ACCT

CCCT

GCT

GCA

GCA

CTTC

6236

CAC

CTCC

CTGCT

GCA

GCA

CTTT

6316

T44

81GgtA

GAAT

CTGAC

TGCC

CAGAT

TGF6117

GAAT

CTGAC

TGCC

CAGAT

TGA

6388

AGAAT

CTGAC

TGCC

CAGAT

TGG

6404

G3828GgtA

ACTC

ATCA

CCAAC

CTGTC

ATC

F6270

ACTC

ATCA

CCAAC

CTGTC

ATCA

6541

AAC

TCAT

CACC

AAC

CTGTC

ATCG

6557

G3384AgtC

CATG

CTGGGGCT

ATCA

CCAG

GR6447

CATG

CTGGGGCT

ATCA

CCAG

GG

6734

CCA

TGCT

GGGGCT

ATCA

CCAG

GT

6774

A2853AgtC

GAG

AAC

AGGTC

AGCC

ACCA

CTA

R6722

GAG

AAC

AGGTC

AGCC

ACCA

CTAG

7010

CGAG

AAC

AGGTC

AGCC

ACCA

CTAT

7050

A2988GgtA

CATG

TGCC

CCCG

CCTG

TACC

CTT

R6888

CATG

TGCC

CCCG

CCTG

TACC

CTTC

7135

GCA

TGTG

CCCC

CGCC

TGTA

CCCT

TT7215

A3584GgtA

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

F7098

GTC

AGAAT

GTT

GGAG

GAC

CCAAC

A7369

AGTC

AGAAT

GTT

GGAG

GAC

CCAAC

G7385

G44

01Cgt

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

R7546

TAAC

TGAC

ATCT

GCT

CAGCC

TCAAC

A7817

TTA

ACTG

ACAT

CTGCT

CAGCC

TCAAC

G7833

C2587

2590

delGAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GA

F7846

ATCA

GCT

CAGCC

CCCC

CGAG

ACCT

GAC8093

GAC

TAT

CAGCT

CAGCC

CCCC

CGAG

ACCT

GAG8133

del

(5)15-PL

EX3948Tgt

GTC

TCAG

CAGGTG

CCTG

F4873

TCTC

AGCA

GGTG

CCTG

G5160

GTC

TCAG

CAGGTG

CCTT

5200

T-1235AgtG

GCA

CCAC

CCAG

CCTA

ATR5084

GCA

CCAC

CCAG

CCTA

ATC

5332

GGCA

CCAC

CCAG

CCTA

ATT

5411

A137138insT

GAAG

TCCA

CATG

CAGCA

R5188

GAAG

TCCA

CATG

CAGCA

A5460

TGAAG

TCCA

CATG

CAGCA

G5476

mdash4155Cgt

TCA

GCC

CCGGCC

CAGCC

ACF5376

CAGCC

CCGGCC

CAGCC

ACC

5623

CCA

GCC

CCGGCC

CAGCC

ACT

5703

T82Cgt

TGTG

TAGCG

TGCA

GCC

CAGC

R5830

GTG

TAGCG

TGCA

GCC

CAGCA

6101

TGTG

TAGCG

TGCA

GCC

CAGCG

6117

C-1584CgtG

CTGGAC

AAC

TTGGAAG

AAC

CF6135

CTGGAC

AAC

TTGGAAG

AAC

CC6382

CCT

GGAC

AAC

TTGGAAG

AAC

CG6422

G2575Cgt

AGAC

CTGGGAC

CCAG

CCCA

GCC

F6362

GAC

CTGGGAC

CCAG

CCCA

GCC

C6609

CGAC

CTGGGAC

CCAG

CCCA

GCC

A6633

A843TgtG

ACTA

GGAC

CTGTA

GTC

TGGGG

F6502

ACTA

GGAC

CTGTA

GTC

TGGGGG

6789

GAC

TAGGAC

CTGTA

GTC

TGGGGT

6829

T-740

CgtT

ACAG

ACTC

ACAC

TGAC

ACTT

AGR6672

ACAG

ACTC

ACAC

TGAC

ACTT

AGA

6944

TAC

AGAC

TCAC

ACTG

ACAC

TTAG

G6960

C-678GgtA

CTTT

GTG

TGGGTG

ATTT

TCTG

CF6769

CTTT

GTG

TGGGTG

ATTT

TCTG

CA7041

ACT

TTGTG

TGGGTG

ATTT

TCTG

CG7057

G-750

-749

delGA

TGTG

ACTG

GTG

TGTG

TGAG

AGA

F6902

TGTG

ACTG

GTG

TGTG

TGAG

AGAA

7173

del

TGTG

ACTG

GTG

TGTG

TGAG

AGAG

7189

GA

2291GgtA

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CR7204

CACT

CGCC

AAG

TGCC

AGCC

TCCA

CC7451

GCA

CTCG

CCAAG

TGCC

AGCC

TCCA

CT7531

A-1426CgtT

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

R7286

GTG

TGCC

ACCA

CGTC

TAGCT

TTTT

A7533

TGTG

TGCC

ACCA

CGTC

TAGCT

TTTT

G7573

C

1758GgtTgt

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCF7490

TTGTG

CCGCC

TTCG

CCAAC

CACT

CCA7761

ATT

GTG

CCGCC

TTCG

CCAAC

CACT

CCG7777

GTT

GTG

CCGCC

TTCG

CCAAC

CACT

CCT7817

T-100

0GgtA

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGT

R7635

ACAT

CCTC

CCGGGCT

GCC

TGAG

GGTC7882

GAC

ATCC

TCCC

GGGCT

GCC

TGAG

GGTT

7962

AUDU

nextendedminindashsequ

encing

prim

erDire

ctionFFo

rwardUEP

directionR

ReverseU

EPdirectionUMU

nextendedminindashsequ

encing

prim

ersM

assEL

ME

xtendedprim

erLo

wer

MassEH

ME

xtended

prim

erHigherM

assEL

CEx

tend

edprim

erlower

Massn

ucleotideC

alledEH

CEx

tend

edprim

erhigh

erMassn

ucleotideC

alledAllmolecular

weightm

assesa

reexpressedin

Dalton(D

a)

6 ISRN Genetics

Table 4 List of SNPs excluded in assay design validation andcorrelation to transcriptional variations

SNPs excluded Variations Reason-1770GgtA mdash Cross-hybridization-1298GgtA mdash Primer dimers-1253AgtG mdash Primer dimers

-1237 -1236insAA mdash Proximal SNP -1235AgtGPrimer dimers

1973 1974insG Frameshift Proximal SNP 1979TgtC1976GgtA mdash Proximal SNP 1979TgtC1978CgtT mdash Proximal SNP 1979TgtC2097AgtG mdash Primer dimers2470TgtC mdash Cross hybridization4042GgtA mdash Primer dimers

by addition of 6mg clean resin (Sequenom) each 384-wellsample was diluted with 16 120583L of sterilized H

2Odd

Multiplex PCR reactions SAP dephosphorylation andiPLEX reactionswere performedusingThermo-Fast 384 PCRPlates (ABgene Epsom UK) and a DNA Engine Tetrad 2Peltier Thermal Cycler (Bio-Rad CA USA) All pipettingsteps were performed using the automatic station MatrixPlateMate 2 times 2 (Sequenom)

215 MALDI-TOF MS Measurement An aliquot rangingfrom 15 to 20 nL of each iPLEX reaction product was loadedin a 384-spot SpectroChip (Sequenom) using the MassAr-ray Nanodispenser (Samsung Seoul Repubic of Korea)SpectroChip analysis was performed by MassARRAY Com-pact System (Sequenom) After laser desorptionionizationautomated spectra acquisition analysis was performed andinterpreted using Sequenom MassARRAY RT version 33software Examples of multiplex mass spectrum and clusterplot distributions are shown in Figures 1 and 2

22 CYP2D6 Single Allele Genotyping Following directionof our previous work [5] we decided to apply the singleallele protocol creating a single allele genotyping methodMALDI-TOFMS based For each sample a double long PCRreaction was carried out using P-1584 WT or P-1584 MUT[5] (Table 2) as forward primers The reverse primer was2D6-R [19] for both PCR reactions In this way we wereable to directly determine a direct and correct chromosomephase in samples presenting with a heterozygous status forminus1584GgtC SNP PCR reactions were performed in a finalvolume of 5 120583L using 20 ng genomic DNA 400 120583M of eachPCR primer (Metabion) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 800 120583MInvitrogen dNTP set PCR grade

The PCR conditions were as follows initial denaturation at93∘C for 3min 10 cycles at 93∘C for 30 s 67∘C for 30 s and68∘C for 3min 25 cycles at 93∘C for 30 s 65∘C for 30 s and68∘C for 6min SAP dephosphorylation iPLEX ReactionsandMALDI-TOFMSmeasurement were performed without

Table 5CYP2D6 allele frequencies in 250 healthy Sardinian peopleTotal chromosomes number = 500 Human cytochrome P450 AlleleNomenclature Committee [7] served as reference for variant alleleand correlated enzymatic activity

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast1A 148 296 EMlowast1B 5 10 EMlowast1D 4 08 EMlowast1E mdash mdash EMlowast2A 75 150 EMlowast2B mdash mdash EMlowast2D mdash mdash EMlowast2E mdash mdash EMlowast2F mdash mdash EMlowast2G mdash mdash EMlowast2K mdash mdash EMlowast2L 11 22 EMlowast2M 8 16 EMSH3 7 14 Not knownSH4 1 02 Not knownlowast3A mdash mdash PMlowast3B 11 22 PMlowast4A 84 168 PMlowast4B mdash mdash PMlowast4D mdash mdash PMlowast4K mdash mdash PMlowast4L mdash mdash PMlowast4M mdash mdash PMlowast4N mdash mdash PMlowast5 5 10 PMlowast6A 1 02 PMlowast6C mdash mdash PMlowast6D mdash mdash PMlowast7 mdash mdash PMlowast8 mdash mdash PMlowast9 1 02 IMlowast10A mdash mdash IMlowast10B 27 54 IMlowast11 mdash mdash PMlowast12 mdash mdash PMlowast14A mdash mdash PMlowast14B mdash mdash IMlowast15 3 06 PMlowast17 mdash mdash IMlowast19 mdash mdash PMlowast20 1 02 PMlowast22 mdash mdash Not knownlowast23 mdash mdash Not known

ISRN Genetics 7

Table 5 Continued

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast24 mdash mdash Not knownlowast25 mdash mdash Not knownlowast26 mdash mdash Not knownlowast27 mdash mdash EMlowast28 4 08 Not knownlowast29 mdash mdash IMlowast30 mdash mdash Not knownlowast31 mdash mdash PMlowast32 mdash mdash Not knownlowast33 mdash mdash EMlowast35A 5 10 EMlowast36 mdash mdash IMlowast37 mdash mdash Not knownlowast38 mdash mdash PMlowast39 mdash mdash EMlowast41 46 92 IMSH1 41 82 Not knownSH2 2 04 Not knownlowast43 mdash mdash Not knownlowast58 mdash mdash Not knownlowast59 mdash mdash IMlowast64 mdash mdash Not knownlowast65 mdash mdash Not knownlowast1xN 4 08 UMlowast2xN 6 12 UMSH1234 = Sardinian haplotype 1234 [5 22ndash25] CYP2D6lowast5lowast1xN andlowast2xN alleles were evaluated byThe CYP2D6Applied Biosystems CNVAssayin [5]

modifications as indicated in paragraph 1 ldquoCYP2D6 Geno-typing Platformrdquo In multiplexed assay 5 minus1584GgtC UEP(Table 3) was excluded Examples of cluster distribution fornovel 3176CgtT and 3948TgtG SNPs [5 17 18] are shown inFigure 3

3 Results and Discussion

A CYP2D6 screening assay was developed using theSequenom MassARRAY platform to simultaneously identifythe most frequent and some rare CYP2D6 Caucasian allelesWe have modified the basic Sequenom iPLEX assay and useda new primary PCR strategy based on the amplification ofthe entire gene [5] coupled with multiplex primer extensionreactionsThis strategy avoids false genotyping which wouldresult in nonspecific coamplification of the homologouspseudogenes CYP2D7P and CYP2D8P and secondly itreduces the number of PCR primers used to select regionscontaining the targeted polymorphisms Multiplexing wasperformed for 69 SNPs which represents 66 of the mostfrequent and some rarer variants and subvariants reported

5000 5500 6000 6500 7000 7500 8000

0123456789

10

Mass

Inte

nsity

lowast lowast TCG A

Figure 1 An example of 15ndashplex mass spectrum is shown (Well 5)List of SNPs investigated in this plex is shown in Table 3 The figureshows two examples highlighted in different colours Unextendprimer (UEP) peak is marked by an asterisk and dotted arrow whilethe solid arrows indicate the presence of the two different allelesDotted vertical lines represent UEPs and extended primers (EPs)expected masses In blue an AG heterozygous genotype example isshown lowast minus1235AgtG UEP expected mass = 5084 Dalton (Da) Gminus1235AgtGEP expectedmass = 5332Da Aminus1235AgtGEP expectedmass = 5411 Da In red a CC wild type homozygous genotypeexample is shown lowast 82CgtT UEP expected mass = 5830Da T82CgtT not EP expected mass = 6101Da C 82CgtT EP expectedmass = 6117Da

to date in the Caucasian population [5 7 9ndash16] and knownto be responsible for absent reduced or extensive metabolicactivity (Tables 1 and 5) Due to the high possibility ofrecombination it was possible to insert African African-American (11986211988411987521198636lowast2119871 lowast2 119872 lowast4119873 lowast6 4 and lowast6 5) andAsian (11986211988411987521198636lowast3119860 lowast4119861 lowast4119871 lowast14 lowast36 and lowast39) variantsin the study A sample of 250 unrelated healthy Sardinianindividuals analyzed in [5] was submitted to MALDI-TOFMS genotyping for these 69 CYP2D6 SNPs An example ofmultiplex mass spectrum is shown in Figure 1 In Figure 2(a)an example of the cluster plot distribution for the 1661GgtCSNP is shown Spectrum peak intensities were not correctlybalanced in some heterozygous samples (Figures 2(c) and2(d)) which appeared as outliers in the cluster distribution(Figure 2(a) point 120575 and 120576) The CYP2D6 Applied BiosystemsCopy Number Variation (CNV) Assay used to analyze theseDNAs in our previous work [5] detected the presence ofduplications or multiplications in 100 of the analyzedsamples presenting this kind of distribution Furthermore insamples presenting a heterozygous status for minus1584GgtC SNPwe applied long PCR single allele analysis [5] to MALDI-TOF MS screening assays and inferred a direct haplotypephase To verify if our CYP2D6 platform works correctly wecompared genotyping results and haplotype phase elaboratedin the two screening platforms with our results found in [5]A consensus of 100 was found for all samples (Table 5)Moreover for all samples presenting the 214GgtC SNP inhomo- or heterozygous status in MALDI-TOF MS analysisit was possible to verify in our previous sequencing analysis

8 ISRN Genetics

120572

120573

120574

120577

120575

120576

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0010203040506070809

1

(a)

0

2

4

6

8

10

12

14

16

18

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(b)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(c)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(d)

Figure 2 In (a) a Cluster plot for 1661GgtC SNP is shown Homozygous wild type GG samples are displayed in (120572) homozygous mutate CCsamples in (120573) and heterozygous GC samples in (120574) in (120575) and (120576) are displayed outlier samples resulting in gene copy number variation [5](120577) negative control (H2Odd) In (b) aMass Spectra for the detection of 1661GgtC in a heterozygous GC sample displayed in (a) position (120574)In (c) a Mass Spectra for the detection of 1661GgtC in the outlier sample displayed in (a) position (120575) and resulting in 11986211988411987521198636lowast1 times 119873 allele[5] In (d) Mass Spectra for the detection of 1661G gt C in an outlier sample displayed in (a) position (120576) and resulting in 11986211988411987521198636lowast2 times 119873allele [5]

[5] the presence of all SNPs correlated to gene conversionto CYP2D7P in Intron 1 (Figure 4) which indicated thereliability of MALDI-TOF analysis for this variation

4 Conclusions

Differences in drug responses could be due to genetic fac-tors Knowledge of individual genetic profiling is clinicallyimportant and provides benefits for future medical care bypredicting the drug response or developing DNA-based testsSubstantial interindividual variability in response to specifictherapies might be caused by the presence of polymorphismsin genes encoding components of drugmetabolismpathwayssuch as theCYP450 family genes Polymorphisms inCYP2D6gene have been thoroughly investigated including their asso-ciations with the incidence of adverse reactions In this study

we have developed a reliablemedium-throughput genotypingplatformusing the SequenomMassARRAY system to providea simultaneous screening of the most relevant CYP2D6 genevariants in several hundreds of subjects MALDI-TOF MS-based analyses have the potential to become a useful approachin clinical diagnoses as they are very flexible and applicableto individualized genetic therapies The screening platformdeveloped in this study coupled with The CYP2D6 AppliedBiosystems CNVAssay provides a robust alternative tomanycurrently available CYP450-genotyping approaches and aimsto increase the number of responders and to limit theincidences of adverse events Moreover by modifying longPCR Forward primer we have implemented a rapid strategyto infer the phase by direct analysis using MALDI-TOS MSmultiplex assays Concordance between data found in thiswork and our direct genomic DNA sequencing analysis donein [5] reliably validated ourMALDI-TOFMS-based platform

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

6 ISRN Genetics

Table 4 List of SNPs excluded in assay design validation andcorrelation to transcriptional variations

SNPs excluded Variations Reason-1770GgtA mdash Cross-hybridization-1298GgtA mdash Primer dimers-1253AgtG mdash Primer dimers

-1237 -1236insAA mdash Proximal SNP -1235AgtGPrimer dimers

1973 1974insG Frameshift Proximal SNP 1979TgtC1976GgtA mdash Proximal SNP 1979TgtC1978CgtT mdash Proximal SNP 1979TgtC2097AgtG mdash Primer dimers2470TgtC mdash Cross hybridization4042GgtA mdash Primer dimers

by addition of 6mg clean resin (Sequenom) each 384-wellsample was diluted with 16 120583L of sterilized H

2Odd

Multiplex PCR reactions SAP dephosphorylation andiPLEX reactionswere performedusingThermo-Fast 384 PCRPlates (ABgene Epsom UK) and a DNA Engine Tetrad 2Peltier Thermal Cycler (Bio-Rad CA USA) All pipettingsteps were performed using the automatic station MatrixPlateMate 2 times 2 (Sequenom)

215 MALDI-TOF MS Measurement An aliquot rangingfrom 15 to 20 nL of each iPLEX reaction product was loadedin a 384-spot SpectroChip (Sequenom) using the MassAr-ray Nanodispenser (Samsung Seoul Repubic of Korea)SpectroChip analysis was performed by MassARRAY Com-pact System (Sequenom) After laser desorptionionizationautomated spectra acquisition analysis was performed andinterpreted using Sequenom MassARRAY RT version 33software Examples of multiplex mass spectrum and clusterplot distributions are shown in Figures 1 and 2

22 CYP2D6 Single Allele Genotyping Following directionof our previous work [5] we decided to apply the singleallele protocol creating a single allele genotyping methodMALDI-TOFMS based For each sample a double long PCRreaction was carried out using P-1584 WT or P-1584 MUT[5] (Table 2) as forward primers The reverse primer was2D6-R [19] for both PCR reactions In this way we wereable to directly determine a direct and correct chromosomephase in samples presenting with a heterozygous status forminus1584GgtC SNP PCR reactions were performed in a finalvolume of 5 120583L using 20 ng genomic DNA 400 120583M of eachPCR primer (Metabion) 02U QIAGEN LongRange PCRenzyme 1X QIAGEN LongRange PCR buffer (containingMgCl

225mM) and 800 120583MInvitrogen dNTP set PCR grade

The PCR conditions were as follows initial denaturation at93∘C for 3min 10 cycles at 93∘C for 30 s 67∘C for 30 s and68∘C for 3min 25 cycles at 93∘C for 30 s 65∘C for 30 s and68∘C for 6min SAP dephosphorylation iPLEX ReactionsandMALDI-TOFMSmeasurement were performed without

Table 5CYP2D6 allele frequencies in 250 healthy Sardinian peopleTotal chromosomes number = 500 Human cytochrome P450 AlleleNomenclature Committee [7] served as reference for variant alleleand correlated enzymatic activity

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast1A 148 296 EMlowast1B 5 10 EMlowast1D 4 08 EMlowast1E mdash mdash EMlowast2A 75 150 EMlowast2B mdash mdash EMlowast2D mdash mdash EMlowast2E mdash mdash EMlowast2F mdash mdash EMlowast2G mdash mdash EMlowast2K mdash mdash EMlowast2L 11 22 EMlowast2M 8 16 EMSH3 7 14 Not knownSH4 1 02 Not knownlowast3A mdash mdash PMlowast3B 11 22 PMlowast4A 84 168 PMlowast4B mdash mdash PMlowast4D mdash mdash PMlowast4K mdash mdash PMlowast4L mdash mdash PMlowast4M mdash mdash PMlowast4N mdash mdash PMlowast5 5 10 PMlowast6A 1 02 PMlowast6C mdash mdash PMlowast6D mdash mdash PMlowast7 mdash mdash PMlowast8 mdash mdash PMlowast9 1 02 IMlowast10A mdash mdash IMlowast10B 27 54 IMlowast11 mdash mdash PMlowast12 mdash mdash PMlowast14A mdash mdash PMlowast14B mdash mdash IMlowast15 3 06 PMlowast17 mdash mdash IMlowast19 mdash mdash PMlowast20 1 02 PMlowast22 mdash mdash Not knownlowast23 mdash mdash Not known

ISRN Genetics 7

Table 5 Continued

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast24 mdash mdash Not knownlowast25 mdash mdash Not knownlowast26 mdash mdash Not knownlowast27 mdash mdash EMlowast28 4 08 Not knownlowast29 mdash mdash IMlowast30 mdash mdash Not knownlowast31 mdash mdash PMlowast32 mdash mdash Not knownlowast33 mdash mdash EMlowast35A 5 10 EMlowast36 mdash mdash IMlowast37 mdash mdash Not knownlowast38 mdash mdash PMlowast39 mdash mdash EMlowast41 46 92 IMSH1 41 82 Not knownSH2 2 04 Not knownlowast43 mdash mdash Not knownlowast58 mdash mdash Not knownlowast59 mdash mdash IMlowast64 mdash mdash Not knownlowast65 mdash mdash Not knownlowast1xN 4 08 UMlowast2xN 6 12 UMSH1234 = Sardinian haplotype 1234 [5 22ndash25] CYP2D6lowast5lowast1xN andlowast2xN alleles were evaluated byThe CYP2D6Applied Biosystems CNVAssayin [5]

modifications as indicated in paragraph 1 ldquoCYP2D6 Geno-typing Platformrdquo In multiplexed assay 5 minus1584GgtC UEP(Table 3) was excluded Examples of cluster distribution fornovel 3176CgtT and 3948TgtG SNPs [5 17 18] are shown inFigure 3

3 Results and Discussion

A CYP2D6 screening assay was developed using theSequenom MassARRAY platform to simultaneously identifythe most frequent and some rare CYP2D6 Caucasian allelesWe have modified the basic Sequenom iPLEX assay and useda new primary PCR strategy based on the amplification ofthe entire gene [5] coupled with multiplex primer extensionreactionsThis strategy avoids false genotyping which wouldresult in nonspecific coamplification of the homologouspseudogenes CYP2D7P and CYP2D8P and secondly itreduces the number of PCR primers used to select regionscontaining the targeted polymorphisms Multiplexing wasperformed for 69 SNPs which represents 66 of the mostfrequent and some rarer variants and subvariants reported

5000 5500 6000 6500 7000 7500 8000

0123456789

10

Mass

Inte

nsity

lowast lowast TCG A

Figure 1 An example of 15ndashplex mass spectrum is shown (Well 5)List of SNPs investigated in this plex is shown in Table 3 The figureshows two examples highlighted in different colours Unextendprimer (UEP) peak is marked by an asterisk and dotted arrow whilethe solid arrows indicate the presence of the two different allelesDotted vertical lines represent UEPs and extended primers (EPs)expected masses In blue an AG heterozygous genotype example isshown lowast minus1235AgtG UEP expected mass = 5084 Dalton (Da) Gminus1235AgtGEP expectedmass = 5332Da Aminus1235AgtGEP expectedmass = 5411 Da In red a CC wild type homozygous genotypeexample is shown lowast 82CgtT UEP expected mass = 5830Da T82CgtT not EP expected mass = 6101Da C 82CgtT EP expectedmass = 6117Da

to date in the Caucasian population [5 7 9ndash16] and knownto be responsible for absent reduced or extensive metabolicactivity (Tables 1 and 5) Due to the high possibility ofrecombination it was possible to insert African African-American (11986211988411987521198636lowast2119871 lowast2 119872 lowast4119873 lowast6 4 and lowast6 5) andAsian (11986211988411987521198636lowast3119860 lowast4119861 lowast4119871 lowast14 lowast36 and lowast39) variantsin the study A sample of 250 unrelated healthy Sardinianindividuals analyzed in [5] was submitted to MALDI-TOFMS genotyping for these 69 CYP2D6 SNPs An example ofmultiplex mass spectrum is shown in Figure 1 In Figure 2(a)an example of the cluster plot distribution for the 1661GgtCSNP is shown Spectrum peak intensities were not correctlybalanced in some heterozygous samples (Figures 2(c) and2(d)) which appeared as outliers in the cluster distribution(Figure 2(a) point 120575 and 120576) The CYP2D6 Applied BiosystemsCopy Number Variation (CNV) Assay used to analyze theseDNAs in our previous work [5] detected the presence ofduplications or multiplications in 100 of the analyzedsamples presenting this kind of distribution Furthermore insamples presenting a heterozygous status for minus1584GgtC SNPwe applied long PCR single allele analysis [5] to MALDI-TOF MS screening assays and inferred a direct haplotypephase To verify if our CYP2D6 platform works correctly wecompared genotyping results and haplotype phase elaboratedin the two screening platforms with our results found in [5]A consensus of 100 was found for all samples (Table 5)Moreover for all samples presenting the 214GgtC SNP inhomo- or heterozygous status in MALDI-TOF MS analysisit was possible to verify in our previous sequencing analysis

8 ISRN Genetics

120572

120573

120574

120577

120575

120576

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0010203040506070809

1

(a)

0

2

4

6

8

10

12

14

16

18

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(b)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(c)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(d)

Figure 2 In (a) a Cluster plot for 1661GgtC SNP is shown Homozygous wild type GG samples are displayed in (120572) homozygous mutate CCsamples in (120573) and heterozygous GC samples in (120574) in (120575) and (120576) are displayed outlier samples resulting in gene copy number variation [5](120577) negative control (H2Odd) In (b) aMass Spectra for the detection of 1661GgtC in a heterozygous GC sample displayed in (a) position (120574)In (c) a Mass Spectra for the detection of 1661GgtC in the outlier sample displayed in (a) position (120575) and resulting in 11986211988411987521198636lowast1 times 119873 allele[5] In (d) Mass Spectra for the detection of 1661G gt C in an outlier sample displayed in (a) position (120576) and resulting in 11986211988411987521198636lowast2 times 119873allele [5]

[5] the presence of all SNPs correlated to gene conversionto CYP2D7P in Intron 1 (Figure 4) which indicated thereliability of MALDI-TOF analysis for this variation

4 Conclusions

Differences in drug responses could be due to genetic fac-tors Knowledge of individual genetic profiling is clinicallyimportant and provides benefits for future medical care bypredicting the drug response or developing DNA-based testsSubstantial interindividual variability in response to specifictherapies might be caused by the presence of polymorphismsin genes encoding components of drugmetabolismpathwayssuch as theCYP450 family genes Polymorphisms inCYP2D6gene have been thoroughly investigated including their asso-ciations with the incidence of adverse reactions In this study

we have developed a reliablemedium-throughput genotypingplatformusing the SequenomMassARRAY system to providea simultaneous screening of the most relevant CYP2D6 genevariants in several hundreds of subjects MALDI-TOF MS-based analyses have the potential to become a useful approachin clinical diagnoses as they are very flexible and applicableto individualized genetic therapies The screening platformdeveloped in this study coupled with The CYP2D6 AppliedBiosystems CNVAssay provides a robust alternative tomanycurrently available CYP450-genotyping approaches and aimsto increase the number of responders and to limit theincidences of adverse events Moreover by modifying longPCR Forward primer we have implemented a rapid strategyto infer the phase by direct analysis using MALDI-TOS MSmultiplex assays Concordance between data found in thiswork and our direct genomic DNA sequencing analysis donein [5] reliably validated ourMALDI-TOFMS-based platform

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

ISRN Genetics 7

Table 5 Continued

Variant allele Number ofchromosomes

Frequency()

Correlatedenzymatic activity

lowast24 mdash mdash Not knownlowast25 mdash mdash Not knownlowast26 mdash mdash Not knownlowast27 mdash mdash EMlowast28 4 08 Not knownlowast29 mdash mdash IMlowast30 mdash mdash Not knownlowast31 mdash mdash PMlowast32 mdash mdash Not knownlowast33 mdash mdash EMlowast35A 5 10 EMlowast36 mdash mdash IMlowast37 mdash mdash Not knownlowast38 mdash mdash PMlowast39 mdash mdash EMlowast41 46 92 IMSH1 41 82 Not knownSH2 2 04 Not knownlowast43 mdash mdash Not knownlowast58 mdash mdash Not knownlowast59 mdash mdash IMlowast64 mdash mdash Not knownlowast65 mdash mdash Not knownlowast1xN 4 08 UMlowast2xN 6 12 UMSH1234 = Sardinian haplotype 1234 [5 22ndash25] CYP2D6lowast5lowast1xN andlowast2xN alleles were evaluated byThe CYP2D6Applied Biosystems CNVAssayin [5]

modifications as indicated in paragraph 1 ldquoCYP2D6 Geno-typing Platformrdquo In multiplexed assay 5 minus1584GgtC UEP(Table 3) was excluded Examples of cluster distribution fornovel 3176CgtT and 3948TgtG SNPs [5 17 18] are shown inFigure 3

3 Results and Discussion

A CYP2D6 screening assay was developed using theSequenom MassARRAY platform to simultaneously identifythe most frequent and some rare CYP2D6 Caucasian allelesWe have modified the basic Sequenom iPLEX assay and useda new primary PCR strategy based on the amplification ofthe entire gene [5] coupled with multiplex primer extensionreactionsThis strategy avoids false genotyping which wouldresult in nonspecific coamplification of the homologouspseudogenes CYP2D7P and CYP2D8P and secondly itreduces the number of PCR primers used to select regionscontaining the targeted polymorphisms Multiplexing wasperformed for 69 SNPs which represents 66 of the mostfrequent and some rarer variants and subvariants reported

5000 5500 6000 6500 7000 7500 8000

0123456789

10

Mass

Inte

nsity

lowast lowast TCG A

Figure 1 An example of 15ndashplex mass spectrum is shown (Well 5)List of SNPs investigated in this plex is shown in Table 3 The figureshows two examples highlighted in different colours Unextendprimer (UEP) peak is marked by an asterisk and dotted arrow whilethe solid arrows indicate the presence of the two different allelesDotted vertical lines represent UEPs and extended primers (EPs)expected masses In blue an AG heterozygous genotype example isshown lowast minus1235AgtG UEP expected mass = 5084 Dalton (Da) Gminus1235AgtGEP expectedmass = 5332Da Aminus1235AgtGEP expectedmass = 5411 Da In red a CC wild type homozygous genotypeexample is shown lowast 82CgtT UEP expected mass = 5830Da T82CgtT not EP expected mass = 6101Da C 82CgtT EP expectedmass = 6117Da

to date in the Caucasian population [5 7 9ndash16] and knownto be responsible for absent reduced or extensive metabolicactivity (Tables 1 and 5) Due to the high possibility ofrecombination it was possible to insert African African-American (11986211988411987521198636lowast2119871 lowast2 119872 lowast4119873 lowast6 4 and lowast6 5) andAsian (11986211988411987521198636lowast3119860 lowast4119861 lowast4119871 lowast14 lowast36 and lowast39) variantsin the study A sample of 250 unrelated healthy Sardinianindividuals analyzed in [5] was submitted to MALDI-TOFMS genotyping for these 69 CYP2D6 SNPs An example ofmultiplex mass spectrum is shown in Figure 1 In Figure 2(a)an example of the cluster plot distribution for the 1661GgtCSNP is shown Spectrum peak intensities were not correctlybalanced in some heterozygous samples (Figures 2(c) and2(d)) which appeared as outliers in the cluster distribution(Figure 2(a) point 120575 and 120576) The CYP2D6 Applied BiosystemsCopy Number Variation (CNV) Assay used to analyze theseDNAs in our previous work [5] detected the presence ofduplications or multiplications in 100 of the analyzedsamples presenting this kind of distribution Furthermore insamples presenting a heterozygous status for minus1584GgtC SNPwe applied long PCR single allele analysis [5] to MALDI-TOF MS screening assays and inferred a direct haplotypephase To verify if our CYP2D6 platform works correctly wecompared genotyping results and haplotype phase elaboratedin the two screening platforms with our results found in [5]A consensus of 100 was found for all samples (Table 5)Moreover for all samples presenting the 214GgtC SNP inhomo- or heterozygous status in MALDI-TOF MS analysisit was possible to verify in our previous sequencing analysis

8 ISRN Genetics

120572

120573

120574

120577

120575

120576

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0010203040506070809

1

(a)

0

2

4

6

8

10

12

14

16

18

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(b)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(c)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(d)

Figure 2 In (a) a Cluster plot for 1661GgtC SNP is shown Homozygous wild type GG samples are displayed in (120572) homozygous mutate CCsamples in (120573) and heterozygous GC samples in (120574) in (120575) and (120576) are displayed outlier samples resulting in gene copy number variation [5](120577) negative control (H2Odd) In (b) aMass Spectra for the detection of 1661GgtC in a heterozygous GC sample displayed in (a) position (120574)In (c) a Mass Spectra for the detection of 1661GgtC in the outlier sample displayed in (a) position (120575) and resulting in 11986211988411987521198636lowast1 times 119873 allele[5] In (d) Mass Spectra for the detection of 1661G gt C in an outlier sample displayed in (a) position (120576) and resulting in 11986211988411987521198636lowast2 times 119873allele [5]

[5] the presence of all SNPs correlated to gene conversionto CYP2D7P in Intron 1 (Figure 4) which indicated thereliability of MALDI-TOF analysis for this variation

4 Conclusions

Differences in drug responses could be due to genetic fac-tors Knowledge of individual genetic profiling is clinicallyimportant and provides benefits for future medical care bypredicting the drug response or developing DNA-based testsSubstantial interindividual variability in response to specifictherapies might be caused by the presence of polymorphismsin genes encoding components of drugmetabolismpathwayssuch as theCYP450 family genes Polymorphisms inCYP2D6gene have been thoroughly investigated including their asso-ciations with the incidence of adverse reactions In this study

we have developed a reliablemedium-throughput genotypingplatformusing the SequenomMassARRAY system to providea simultaneous screening of the most relevant CYP2D6 genevariants in several hundreds of subjects MALDI-TOF MS-based analyses have the potential to become a useful approachin clinical diagnoses as they are very flexible and applicableto individualized genetic therapies The screening platformdeveloped in this study coupled with The CYP2D6 AppliedBiosystems CNVAssay provides a robust alternative tomanycurrently available CYP450-genotyping approaches and aimsto increase the number of responders and to limit theincidences of adverse events Moreover by modifying longPCR Forward primer we have implemented a rapid strategyto infer the phase by direct analysis using MALDI-TOS MSmultiplex assays Concordance between data found in thiswork and our direct genomic DNA sequencing analysis donein [5] reliably validated ourMALDI-TOFMS-based platform

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

8 ISRN Genetics

120572

120573

120574

120577

120575

120576

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0010203040506070809

1

(a)

0

2

4

6

8

10

12

14

16

18

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(b)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(c)

0

2

4

6

8

10

12

5100 5150 5200 5250 5300 5350 5400 5450 5500

Inte

nsity

Mass

UEP C G

(d)

Figure 2 In (a) a Cluster plot for 1661GgtC SNP is shown Homozygous wild type GG samples are displayed in (120572) homozygous mutate CCsamples in (120573) and heterozygous GC samples in (120574) in (120575) and (120576) are displayed outlier samples resulting in gene copy number variation [5](120577) negative control (H2Odd) In (b) aMass Spectra for the detection of 1661GgtC in a heterozygous GC sample displayed in (a) position (120574)In (c) a Mass Spectra for the detection of 1661GgtC in the outlier sample displayed in (a) position (120575) and resulting in 11986211988411987521198636lowast1 times 119873 allele[5] In (d) Mass Spectra for the detection of 1661G gt C in an outlier sample displayed in (a) position (120576) and resulting in 11986211988411987521198636lowast2 times 119873allele [5]

[5] the presence of all SNPs correlated to gene conversionto CYP2D7P in Intron 1 (Figure 4) which indicated thereliability of MALDI-TOF analysis for this variation

4 Conclusions

Differences in drug responses could be due to genetic fac-tors Knowledge of individual genetic profiling is clinicallyimportant and provides benefits for future medical care bypredicting the drug response or developing DNA-based testsSubstantial interindividual variability in response to specifictherapies might be caused by the presence of polymorphismsin genes encoding components of drugmetabolismpathwayssuch as theCYP450 family genes Polymorphisms inCYP2D6gene have been thoroughly investigated including their asso-ciations with the incidence of adverse reactions In this study

we have developed a reliablemedium-throughput genotypingplatformusing the SequenomMassARRAY system to providea simultaneous screening of the most relevant CYP2D6 genevariants in several hundreds of subjects MALDI-TOF MS-based analyses have the potential to become a useful approachin clinical diagnoses as they are very flexible and applicableto individualized genetic therapies The screening platformdeveloped in this study coupled with The CYP2D6 AppliedBiosystems CNVAssay provides a robust alternative tomanycurrently available CYP450-genotyping approaches and aimsto increase the number of responders and to limit theincidences of adverse events Moreover by modifying longPCR Forward primer we have implemented a rapid strategyto infer the phase by direct analysis using MALDI-TOS MSmultiplex assays Concordance between data found in thiswork and our direct genomic DNA sequencing analysis donein [5] reliably validated ourMALDI-TOFMS-based platform

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

ISRN Genetics 9

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1

120572

120573

120574

120577

(a)

0 01 02 03 04 05 06 07 08 09 1Low mass allele

Hig

h m

ass a

llele

0

01

02

03

04

05

06

07

08

09

1120572

120573

120574120577

(b)

Figure 3 MALDI-TOF MS cluster plot distribution for 3176CgtT [17] and 3948GgtT [18] newly discovered SNPs [5] In each cluster thereare visualized 32 samples presenting heterozygous status for minus1584GgtC SNP and submitted to both types of PCR analysis LongRange PCR(Section 2 paragraph 1) and the two single allele PCR (Section 2 paragraph 2) for a total of 96 PCR analyses (a) Cluster plot for 3176CgtTSNP (120572) homozygous wild type CC samples (120573) one out of the two heterozygous CT samples presenting heterozygous status for minus1584GgtCSNP also (120574) the same heterozygous sample analysed in single allele PCR (120577) negative control (H

2Odd) (b) Cluster plot for 3948TgtG SNP

(120572) homozygous wild type TT samples (120573) the only heterozygous TG sample (120574) the only heterozygous sample analysed in single allelePCR (120577) negative control (H

2Odd)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T G C T G A G G C T C C C C T T T T TA C C C CA A A A A A AAG G G G GGG G G G

170 180 190 200 210

(a)

214 221 223 227 232 233 245G A G G G C G G C A G A G G T CC T G A AG G GT C C C C T T T TA C C C C C CA A A A AA G G G G GGG G G G

170 180 190 200 210 220

(b)

Figure 4 (a) Electropherograms of a homozygous wild type and (b) a homozygous mutate sample for CYP2D6CYP2D7P gene conversionin Intron 1 analyzed in [5] SNPs are circled in purple reference positions are indicated under each SNP For all samples presenting 214GgtCSNP in homo- or heterozygous status in MALDI-TOF MS analysis it was confirmed the presence of all SNPs correlated to gene conversionin Intron 1 by sequencing analysis

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml

10 ISRN Genetics

Conflict of Interests

The authors declare not to have a financial relation with thecommercial identitiesmentioned in the paper thatmight leadto a conflict of interests

Acknowledgments

The authors gratefully acknowledge Professor FrancescoCucca INN-CNR Cagliari Director for gently furnishingSardinian DNAs Dr Luisella Saba and Dr Elena Congeddufor useful initial information in MALDI-TOF MS technol-ogy Dr Enrico Sorisio PharmaNess Sole Director for hishelpful suggestions Professor Annalisa Marchi Professor ofGenetics at the Faculty of Biology and Pharmacy Universityof Cagliari for her valuable feedback and support

References

[1] M Ingelman-Sundberg S C Sim A Gomez and C Rod-riguez-Antona ldquoInfluence of cytochrome P450 polymorphismson drug therapies pharmacogenetic pharmacoepigenetic andclinical aspectsrdquo Pharmacology amp Therapeutics vol 116 no 3pp 496ndash526 2007

[2] M Ingelman-Sundberg ldquoPharmacogenetics of cytochromeP450 and its applications in drug therapy the past present andfuturerdquo Trends in Pharmacological Sciences vol 25 no 4 pp193ndash200 2004

[3] J Ragoussis ldquoGenotyping technologies for allrdquo Drug DiscoveryToday Technologies vol 3 no 2 pp 115ndash122 2006

[4] M Falzoi A Mossa E Congeddu L Saba and L PanildquoMultiplex genotyping of CYP3A4 CYP3A5 CYP2C9 andCYP2C19 SNPs using MALDI-TOF mass spectrometryrdquo Phar-macogenomics vol 11 no 4 pp 559ndash571 2010

[5] M Falzoi L Pira P Lazzari and L Pani ldquoAnalysis of CYP2D6allele frequencies and identification of novel SNPs and sequencevariations in Sardiniansrdquo ISRN Genetics vol 2013 Article ID204560 10 pages 2013

[6] D van den Boom andM Ehrich ldquoDiscovery and identificationof sequence polymorphisms and mutations with MALDI-TOFMSrdquoMethods in Molecular Biology vol 366 pp 287ndash306 2007

[7] Human Cytochrome P450 Allele Nomenclature Committeehttpwwwcypalleleskise

[8] NCBI Single Nucleotide Polymorphism dbSNP httpwwwncbinlmnihgovprojectsSNP

[9] J Sistonen A Sajantila O Lao J Corander G Barbujaniand S Fuselli ldquoCYP2D6 worldwide genetic variation showshigh frequency of altered activity variants and no continentalstructurerdquo Pharmacogenetics and Genomics vol 17 no 2 pp93ndash101 2007

[10] S Fuselli I Dupanloup E Frigato et al ldquoMolecular diversityat the CYP2D6 locus in the Mediterranean regionrdquo EuropeanJournal of Human Genetics vol 12 no 11 pp 916ndash924 2004

[11] C Sachse J Brockmoller S Bauer and I Roots ldquoCytochromeP450 2D6 variants in a Caucasian population allele frequenciesand phenotypic consequencesrdquo American Journal of HumanGenetics vol 60 no 2 pp 284ndash295 1997

[12] S Raimundo C Toscano K Klein et al ldquoA novel intronicmuta-tion 2988GgtA with high predictivity for impaired function ofcytochrome P450 2D6 in white subjectsrdquoClinical PharmacologyandTherapeutics vol 76 no 2 pp 128ndash138 2004

[13] L D Bradford ldquoCYP2D6 allele frequency in European Cau-casians Asians Africans and their descendantsrdquo Pharmacoge-nomics vol 3 no 2 pp 229ndash243 2002

[14] D Marez M Legrand N Sabbagh et al ldquoPolymorphism ofthe cytochrome P450 CYP2D6 gene in a European populationcharacterization of 48 mutations and 53 alleles their frequen-cies and evolutionrdquo Pharmacogenetics vol 7 no 3 pp 193ndash2021997

[15] M Ingelman-Sundberg ldquoImplications of polymorphic cyto-chrome P450-dependent drug metabolism for drug develop-mentrdquo Drug Metabolism and Disposition vol 29 no 4 part 2pp 570ndash573 2001

[16] T Shimada F Tsumura H Yamazaki F P Guengerich andK Inoue ldquoCharacterization of (+minus)-bufuralol hydroxylationactivities in liver microsomes of Japanese and Caucasian sub-jects genotyped for CYP2D6rdquo Pharmacogenetics vol 11 no 2pp 143ndash156 2001

[17] ss469415642 CYP2D6 3176CgtT 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415642

[18] ss469415643 CYP2D6 3948TgtG 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=469415643

[19] I Johansson E Lundqvist M L Dahl and M Ingelman-Sundberg ldquoPCR-based genotyping for duplicated and deletedCYP2D6 genesrdquo Pharmacogenetics vol 6 no 4 pp 351ndash3551996

[20] QIAGEN LongRange PCR Handbook 2008 httpwwwqiagencomdefaultaspx

[21] ss470263991 CYP2D6 -948CgtA 2011 httpwwwncbinlmnihgovprojectsSNPsnp sscgiss=470263991

[22] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 1 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cds GenBank JN7163731 2011httpwwwncbinlmnihgovnuccoreJN7163731

[23] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 2 cytochrome P450 2D6 variant (CYP2D6) geneCYP2D6lowast2M allele complete cdsGenBank JN7163741 2011httpwwwncbinlmnihgovnuccoreJN7163741

[24] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 3 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163751 2011 httpwwwncbinlmnihgovnuccoreJN7163751

[25] M Falzoi L Pira P Lazzari and L Pani Homo sapienshaplotype 4 cytochrome P450 2D6 variant (CYP2D6)gene CYP2D6lowast2MCYP2D6lowast41 hybrid allele completecds GenBank JN7163761 2011 httpwwwncbinlmnihgovnuccoreJN7163761

[26] POethM Beaulieu C Park et al SequenomApplicationNoteApril 2005

[27] iPLEX Gold Application Guide 2009 httpwwwsequenomcomFilesGenetic-Analysis-FilesiP-LEX-Application-PDFsiPLEX-Gold-Application-Guide-v2r1

[28] Sequenom Assay Designer Suite httpsseqpws1sequenomcomAssayDesignerSuitehtml

[29] Ensembl Genome Browser httpwwwensemblorgindexhtml