Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions

45
Explicit Sensor Network Localization using Semidefinite Representations and Clique Reductions Nathan Krislock , Henry Wolkowicz Department of Combinatorics & Optimization University of Waterloo ISMP, Chicago August 25, 2009 Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 1 / 26

Transcript of Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions

Explicit Sensor Network Localization usingSemidefinite Representations and Clique

Reductions

Nathan Krislock, Henry Wolkowicz

Department of Combinatorics & OptimizationUniversity of Waterloo

ISMP, ChicagoAugust 25, 2009

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 1 / 26

Introduction

The Sensor Network Localization (SNL) ProblemGiven:

Distances between sensors within a fixed radio rangePositions of some fixed sensors (called anchors)

Goal:

Determine locations of sensors

MotivationMany applications use wireless sensor networks:

natural habitat monitoring, weather monitoring, tracking of goods,random deployment in inaccessible terrains, surveillance, . . .

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 2 / 26

Introduction

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

n = 100, m = 9, R = 2

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 3 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 4 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 4 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 4 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 5 / 26

Introduction

Notationp1, . . . ,pn−m ∈ Rr - unknown points (sensors)a1, . . . ,am ∈ Rr - known points (anchors)

anchors also labeled pn−m+1, . . . ,pn

P =

pT1...

pTn

=

[XA

]∈ Rn×r

r - embedding dimension (usually 2 or 3)R > 0 - radio range

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 6 / 26

Introduction

Graph RealizationG = (N,E ,w) - underlying weighted graph

N = {1, . . . ,n}(i , j) ∈ E if wij = ‖pi − pj‖ < R

SNL problem ≡ find realization of graph in Rr

Euclidean Distance Matrix (EDM) CompletionDp ∈ Sn - partial EDM:

(Dp)ij =

{‖pi − pj‖2 if (i , j) ∈ E

? otherwise

SNL problem ≡ find EDM completion with embed. dim. = r

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 7 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 8 / 26

EDMs and Semidefinite Matrices

Linear Transformation KIf D is an EDM with embed. dim. r given by P ∈ Rn×r , then:

Dij = ‖pi − pj‖2 = pTi pi + pT

j pj − 2pTi pj

=(

diag(PPT )eT + ediag(PPT )T − 2PPT)

ij

= K(PPT )ij

Thus D = K(Y ), where:

K(Y ) := diag(Y )eT + ediag(Y )T − 2Y and Y := PPT

Y = PPT is positive semidefinite, rank(Y ) = rK maps the semidefinite cone, Sn

+, onto the EDM cone, En

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 9 / 26

EDMs and Semidefinite Matrices

Linear Transformation KIf D is an EDM with embed. dim. r given by P ∈ Rn×r , then:

Dij = ‖pi − pj‖2 = pTi pi + pT

j pj − 2pTi pj

=(

diag(PPT )eT + ediag(PPT )T − 2PPT)

ij

= K(PPT )ij

Thus D = K(Y ), where:

K(Y ) := diag(Y )eT + ediag(Y )T − 2Y and Y := PPT

Y = PPT is positive semidefinite, rank(Y ) = rK maps the semidefinite cone, Sn

+, onto the EDM cone, En

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 9 / 26

EDMs and Semidefinite Matrices

Linear Transformation KIf D is an EDM with embed. dim. r given by P ∈ Rn×r , then:

Dij = ‖pi − pj‖2 = pTi pi + pT

j pj − 2pTi pj

=(

diag(PPT )eT + ediag(PPT )T − 2PPT)

ij

= K(PPT )ij

Thus D = K(Y ), where:

K(Y ) := diag(Y )eT + ediag(Y )T − 2Y and Y := PPT

Y = PPT is positive semidefinite, rank(Y ) = rK maps the semidefinite cone, Sn

+, onto the EDM cone, En

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 9 / 26

EDMs and Semidefinite Matrices

Vector Formulation

Find p1, . . . ,pn ∈ Rr such that{‖pi − pj‖2 = (Dp)ij , ∀(i , j) ∈ E‖pi − pj‖2 ≥ R2, ∀(i , j) /∈ E

}

Matrix Formulation

Find P ∈ Rn×r such that{

W ◦ K(Y ) = DpH ◦ K(Y ) ≥ R2

}, where Y = PPT

Semidefinite Programming (SDP) Relaxation

Find Y ∈ Sn+ ∩ SC such that

{W ◦ K(Y ) = DpH ◦ K(Y ) ≥ R2

}

Vector/Matrix Formulation is non-convex and NP-HARDSDP Relaxation is convex, but degenerate (strict feasibility fails)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 10 / 26

EDMs and Semidefinite Matrices

Vector Formulation

Find p1, . . . ,pn ∈ Rr such that{‖pi − pj‖2 = (Dp)ij , ∀(i , j) ∈ E‖pi − pj‖2 ≥ R2, ∀(i , j) /∈ E

}

Matrix Formulation

Find P ∈ Rn×r such that{

W ◦ K(Y ) = DpH ◦ K(Y ) ≥ R2

}, where Y = PPT

Semidefinite Programming (SDP) Relaxation

Find Y ∈ Sn+ ∩ SC such that

{W ◦ K(Y ) = DpH ◦ K(Y ) ≥ R2

}

Vector/Matrix Formulation is non-convex and NP-HARDSDP Relaxation is convex, but degenerate (strict feasibility fails)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 10 / 26

EDMs and Semidefinite Matrices

Vector Formulation

Find p1, . . . ,pn ∈ Rr such that{‖pi − pj‖2 = (Dp)ij , ∀(i , j) ∈ E‖pi − pj‖2 ≥ R2, ∀(i , j) /∈ E

}

Matrix Formulation

Find P ∈ Rn×r such that{

W ◦ K(Y ) = DpH ◦ K(Y ) ≥ R2

}, where Y = PPT

Semidefinite Programming (SDP) Relaxation

Find Y ∈ Sn+ ∩ SC such that

{W ◦ K(Y ) = DpH ◦ K(Y ) ≥ R2

}

Vector/Matrix Formulation is non-convex and NP-HARDSDP Relaxation is convex, but degenerate (strict feasibility fails)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 10 / 26

EDMs and Semidefinite Matrices

Vector Formulation

Find p1, . . . ,pn ∈ Rr such that{‖pi − pj‖2 = (Dp)ij , ∀(i , j) ∈ E‖pi − pj‖2 ≥ R2, ∀(i , j) /∈ E

}

Matrix Formulation

Find P ∈ Rn×r such that{

W ◦ K(Y ) = DpH ◦ K(Y ) ≥ R2

}, where Y = PPT

Semidefinite Programming (SDP) Relaxation

Find Y ∈ Sn+ ∩ SC such that

{W ◦ K(Y ) = DpH ◦ K(Y ) ≥ R2

}

Vector/Matrix Formulation is non-convex and NP-HARDSDP Relaxation is convex, but degenerate (strict feasibility fails)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 10 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 11 / 26

Clique Reductions

Theorem: Single Clique ReductionLet:

Dp be a partial EDM such that

Dp =

[D ·· ·

], for some D ∈ Ek with embed. dim. t ≤ r

F :={

Y ∈ Sn+ ∩ SC : K(Y [1 :k ]) = D

}(contains SDP feas. set)

Then:

face(F ) =(

USn−k+t+1+ UT

)∩ SC

where U :=

[U 00 In−k

], U ∈ Rk×t eigenvectors of B := K†(D)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 12 / 26

Clique Reductions

Theorem: Single Clique ReductionLet:

Dp be a partial EDM such that

Dp =

[D ·· ·

], for some D ∈ Ek with embed. dim. t ≤ r

F :={

Y ∈ Sn+ ∩ SC : K(Y [1 :k ]) = D

}(contains SDP feas. set)

Then:

face(F ) =(

USn−k+t+1+ UT

)∩ SC

where U :=

[U 00 In−k

], U ∈ Rk×t eigenvectors of B := K†(D)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 12 / 26

Clique Reductions

Ci

Cj

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 13 / 26

Clique Reductions

Theorem: Two Clique ReductionLet D ∈ En with embed. dim. r . Let α1, α2 ⊆ 1 :n and k := |α1 ∪ α2|.For i = 1,2 let:

ti := embed. dim. of D[αi ] ∈ Eki

Fi :={

Y ∈ Sn+ ∩ SC : K(Y [αi ]) = D[αi ]

}(contains SDP feas. set)

face(Fi) =:(

UiSn−ki+ti+1+ UT

i

)∩ SC

Then:

face(F1 ∩ F2) =(

USn−k+t+1+ UT

)∩ SC

where U ∈ Rn×t full column rank s.t. col(U) = col(U1) ∩ col(U2)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 14 / 26

Clique Reductions

Theorem: Two Clique ReductionLet D ∈ En with embed. dim. r . Let α1, α2 ⊆ 1 :n and k := |α1 ∪ α2|.For i = 1,2 let:

ti := embed. dim. of D[αi ] ∈ Eki

Fi :={

Y ∈ Sn+ ∩ SC : K(Y [αi ]) = D[αi ]

}(contains SDP feas. set)

face(Fi) =:(

UiSn−ki+ti+1+ UT

i

)∩ SC

Then:

face(F1 ∩ F2) =(

USn−k+t+1+ UT

)∩ SC

where U ∈ Rn×t full column rank s.t. col(U) = col(U1) ∩ col(U2)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 14 / 26

Clique Reductions

Subspace Intersection for Two Intersecting CliquesSuppose:

U1 =

U ′1 0U ′′1 00 I

and U2 =

I 00 U ′′20 U ′2

Then:

U :=

U ′1U ′′1

U ′2(U ′′2 )†U ′′1

or U :=

U ′1(U ′′1 )†U ′′2U ′′2U ′2

Satisfies:

col(U) = col(U1) ∩ col(U2)

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 15 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 16 / 26

Computing Sensor Positions

Corollary: Computing Sensor Positions

Let:D ∈ En with embed. dim. rDp := W ◦ D be a partial EDM (for some 0–1 matrix W )F :=

{Y ∈ Sn

+ ∩ SC : W ◦ K(Y ) = Dp}

and let Y ∈ F

face(F ) =:(

US r+1+ UT

)∩ SC = (UV )S r

+(UV )T

If Dp[β] is complete with embed. dim. r then:K(Y [β]) = Dp[β]

Y = (UV )Z (UV )T , for some Z ∈ S r+

(JU[β, :]V )Z (JU[β, :]V )T = K†(Dp[β]) has a unique solution Z

D = K(PPT ) where P := UVZ

12 ∈ Rn×r

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 17 / 26

Computing Sensor Positions

Corollary: Computing Sensor Positions

Let:D ∈ En with embed. dim. rDp := W ◦ D be a partial EDM (for some 0–1 matrix W )F :=

{Y ∈ Sn

+ ∩ SC : W ◦ K(Y ) = Dp}

and let Y ∈ F

face(F ) =:(

US r+1+ UT

)∩ SC = (UV )S r

+(UV )T

If Dp[β] is complete with embed. dim. r then:K(Y [β]) = Dp[β]

Y = (UV )Z (UV )T , for some Z ∈ S r+

(JU[β, :]V )Z (JU[β, :]V )T = K†(Dp[β]) has a unique solution Z

D = K(PPT ) where P := UVZ

12 ∈ Rn×r

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 17 / 26

Computing Sensor Positions

Corollary: Computing Sensor Positions

Let:D ∈ En with embed. dim. rDp := W ◦ D be a partial EDM (for some 0–1 matrix W )F :=

{Y ∈ Sn

+ ∩ SC : W ◦ K(Y ) = Dp}

and let Y ∈ F

face(F ) =:(

US r+1+ UT

)∩ SC = (UV )S r

+(UV )T

If Dp[β] is complete with embed. dim. r then:K(Y [β]) = Dp[β]

Y = (UV )Z (UV )T , for some Z ∈ S r+

(JU[β, :]V )Z (JU[β, :]V )T = K†(Dp[β]) has a unique solution Z

D = K(PPT ) where P := UVZ

12 ∈ Rn×r

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 17 / 26

Computing Sensor Positions

Corollary: Computing Sensor Positions

Let:D ∈ En with embed. dim. rDp := W ◦ D be a partial EDM (for some 0–1 matrix W )F :=

{Y ∈ Sn

+ ∩ SC : W ◦ K(Y ) = Dp}

and let Y ∈ F

face(F ) =:(

US r+1+ UT

)∩ SC = (UV )S r

+(UV )T

If Dp[β] is complete with embed. dim. r then:K(Y [β]) = Dp[β]

Y = (UV )Z (UV )T , for some Z ∈ S r+

(JU[β, :]V )Z (JU[β, :]V )T = K†(Dp[β]) has a unique solution Z

D = K(PPT ) where P := UVZ

12 ∈ Rn×r

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 17 / 26

Computing Sensor Positions

Corollary: Computing Sensor Positions

Let:D ∈ En with embed. dim. rDp := W ◦ D be a partial EDM (for some 0–1 matrix W )F :=

{Y ∈ Sn

+ ∩ SC : W ◦ K(Y ) = Dp}

and let Y ∈ F

face(F ) =:(

US r+1+ UT

)∩ SC = (UV )S r

+(UV )T

If Dp[β] is complete with embed. dim. r then:K(Y [β]) = Dp[β]

Y = (UV )Z (UV )T , for some Z ∈ S r+

(JU[β, :]V )Z (JU[β, :]V )T = K†(Dp[β]) has a unique solution Z

D = K(PPT ) where P := UVZ

12 ∈ Rn×r

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 17 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 18 / 26

Algorithm

Clique Union Node Absorption

Rigid

Ci

Cj

Ci

j

Non-rigid

Cj

CiCi

j

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 19 / 26

Algorithm

Initialize

Ci :={

j : (Dp)ij < (R/2)2}, for i = 1, . . . ,n

IterateFor |Ci ∩ Cj | ≥ r + 1, do Rigid Clique UnionFor |Ci ∩N (j)| ≥ r + 1, do Rigid Node AbsorptionFor |Ci ∩ Cj | = r , do Non-Rigid Clique Union (lower bounds)For |Ci ∩N (j)| = r , do Non-Rigid Node Absorption (lower bounds)

FinalizeWhen ∃ a clique containing all the anchors, use the computed facialrepresentation and the positions of the anchors to locate the sensors

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 20 / 26

Algorithm

Initialize

Ci :={

j : (Dp)ij < (R/2)2}, for i = 1, . . . ,n

IterateFor |Ci ∩ Cj | ≥ r + 1, do Rigid Clique UnionFor |Ci ∩N (j)| ≥ r + 1, do Rigid Node AbsorptionFor |Ci ∩ Cj | = r , do Non-Rigid Clique Union (lower bounds)For |Ci ∩N (j)| = r , do Non-Rigid Node Absorption (lower bounds)

FinalizeWhen ∃ a clique containing all the anchors, use the computed facialrepresentation and the positions of the anchors to locate the sensors

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 20 / 26

Algorithm

Initialize

Ci :={

j : (Dp)ij < (R/2)2}, for i = 1, . . . ,n

IterateFor |Ci ∩ Cj | ≥ r + 1, do Rigid Clique UnionFor |Ci ∩N (j)| ≥ r + 1, do Rigid Node AbsorptionFor |Ci ∩ Cj | = r , do Non-Rigid Clique Union (lower bounds)For |Ci ∩N (j)| = r , do Non-Rigid Node Absorption (lower bounds)

FinalizeWhen ∃ a clique containing all the anchors, use the computed facialrepresentation and the positions of the anchors to locate the sensors

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 20 / 26

Outline

1 Sensor Network Localization (SNL)IntroductionEuclidean Distance Matrices and Semidefinite Matrices

2 Clique Reductions of SNLClique ReductionsComputing Sensor Positions

3 AlgorithmClique Unions and Node AbsorptionsResults

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 21 / 26

Results

Random noiseless problemsDimension r = 2Square region: [0,1]× [0,1]

m = 9 anchorsUsing only Rigid Clique Union and Rigid Node AbsorptionError measure: Root Mean Square Deviation

RMSD =

(1n

n∑i=1

‖pi − ptruei ‖

2

)1/2

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 22 / 26

Results

# of Sensors Located# sensors \ R 0.07 0.06 0.05 0.04

2000 2000 2000 1956 13756000 6000 6000 6000 600010000 10000 10000 10000 10000

CPU Seconds# sensors \ R 0.07 0.06 0.05 0.04

2000 1 1 1 36000 6 5 5 510000 16 13 12 12

RMSD (over located sensors)

# sensors \ R 0.07 0.06 0.05 0.042000 4e−16 9e−16 4e−16 4e−166000 6e−16 4e−16 3e−16 6e−16

10000 4e−16 4e−16 6e−16 6e−16

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 23 / 26

Results

# of Sensors Located# sensors \ R 0.07 0.06 0.05 0.04

2000 2000 2000 1956 13756000 6000 6000 6000 600010000 10000 10000 10000 10000

CPU Seconds# sensors \ R 0.07 0.06 0.05 0.04

2000 1 1 1 36000 6 5 5 510000 16 13 12 12

RMSD (over located sensors)

# sensors \ R 0.07 0.06 0.05 0.042000 4e−16 9e−16 4e−16 4e−166000 6e−16 4e−16 3e−16 6e−16

10000 4e−16 4e−16 6e−16 6e−16

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 23 / 26

Results

# of Sensors Located# sensors \ R 0.07 0.06 0.05 0.04

2000 2000 2000 1956 13756000 6000 6000 6000 600010000 10000 10000 10000 10000

CPU Seconds# sensors \ R 0.07 0.06 0.05 0.04

2000 1 1 1 36000 6 5 5 510000 16 13 12 12

RMSD (over located sensors)

# sensors \ R 0.07 0.06 0.05 0.042000 4e−16 9e−16 4e−16 4e−166000 6e−16 4e−16 3e−16 6e−16

10000 4e−16 4e−16 6e−16 6e−16

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 23 / 26

Results

Large-Scale Problems# sensors # anchors radio range RMSD Time

20000 9 .02 5e−16 35s40000 9 .015 7e−16 2m 15s60000 9 .01 1e−15 5m 21s

100000 9 .01 8e−16 14m 14s

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 24 / 26

Summary

SDP relaxation of SNL is highly degenerate: The feasible set ofthis SDP is restricted to a low dimensional face of the SDP cone,causing the Slater constraint qualification (strict feasibility) to failWe take advantage of this degeneracy by finding explicitrepresentations of the faces of the SDP cone corresponding tounions of intersecting cliquesWithout using an SDP-solver (eg. SeDuMi, SDPA, SDPT3), wequickly compute the exact solution to the large SDP relaxations

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 25 / 26

Summary

SDP relaxation of SNL is highly degenerate: The feasible set ofthis SDP is restricted to a low dimensional face of the SDP cone,causing the Slater constraint qualification (strict feasibility) to failWe take advantage of this degeneracy by finding explicitrepresentations of the faces of the SDP cone corresponding tounions of intersecting cliquesWithout using an SDP-solver (eg. SeDuMi, SDPA, SDPT3), wequickly compute the exact solution to the large SDP relaxations

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 25 / 26

Summary

SDP relaxation of SNL is highly degenerate: The feasible set ofthis SDP is restricted to a low dimensional face of the SDP cone,causing the Slater constraint qualification (strict feasibility) to failWe take advantage of this degeneracy by finding explicitrepresentations of the faces of the SDP cone corresponding tounions of intersecting cliquesWithout using an SDP-solver (eg. SeDuMi, SDPA, SDPT3), wequickly compute the exact solution to the large SDP relaxations

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 25 / 26

Thank you!

Nathan Krislock (University of Waterloo) SNL using Clique Reductions ISMP, 2009 26 / 26