Existence of solutions for impulsive partial neutral functional differential equations

15
ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.11(2011) No.4,pp.412-426 Existence of Global Solutions for Impulsive Abstract Partial Neutral Functional Differential Equations S. Sivasankaran 1 , V. Vijayakumar 2 βˆ— , M. Mallika Arjunan 3 1 Department of Mathematics, University College, Sungkyunkwan University, Suwon 440-746, South Korea. 2 Department of Mathematics, Info Institute of Engineering, Kovilpalayam, Coimbatore - 641 107, Tamil Nadu, India. 3 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore- 641 114, Tamil Nadu, India. (Received 20 March 2011, accepted 26 May 2011) Abstract: In this paper we study the existence of global solutions for a class of impulsive abstract partial neutral functional differential equations. An application is provided to illustrate the theory. Keywords: impulsive system; neutral differential equations; analytic semigroup theory; mild solutions; global solutions. 1 Introduction Many evolution processes and phenomena experience abrupt changes of state through short-term perturbations. Since the durations of the perturbations are negligible in comparison with the duration of each process, it is quite natural to assume that these perturbations act in terms of impulses; see the monographs of Lakshmikantham et al. [17] and Samoilenko and Perestyuk [31]. It is to be noted that the recent progress in the development of the qualitative theory of impulsive differential equations has been stimulated primarily by a number of interesting applied problems [1–3, 7, 18, 19, 21]. A natural generalization of impulsive differential equations is abstract impulsive differential equations in Banach space. For general aspects of impulsive differential equations, monographs [29, 30] are recommended. Recently in [8], the authors studied the existence of global solutions for an impulsive abstract functional differential equation of the form ⎧ ⎨ ⎩ β€² ()= ()+ (, (),(())), ∈ = [0,] or [0, ∞), (0) = 0 , Ξ”( )= (( )), ∈ βŠ‚ β„•, by using Leray-Schauder’s alternative theorem and in [4], the existence of solutions for impulsive neutral functional differential equations of the form ⎧ ⎨ ⎩ (()+ (, )) = ()()+ (, ), ∈ , βˆ•= , Ξ”( )= ( ), 0 = βˆˆβ„¬, by using Leray-Schauder’s alternative theorem. In this paper, we establish the existence of mild solutions for a class of impulsive neutral functional differential equations described by (()+ (, )) = ()+ (, ), ∈ , βˆ•= , (1) 0 = βˆˆβ„¬, (2) Ξ”( )= ( ), (3) βˆ— Corresponding author Email address: [email protected] Copyright c ⃝World Academic Press, World Academic Union IJNS.2011.06.30/491

Transcript of Existence of solutions for impulsive partial neutral functional differential equations

ISSN 1749-3889 (print), 1749-3897 (online)International Journal of Nonlinear Science

Vol.11(2011) No.4,pp.412-426

Existence of Global Solutions for Impulsive Abstract Partial Neutral FunctionalDifferential Equations

S. Sivasankaran1, V. Vijayakumar2 βˆ—, M. Mallika Arjunan3

1 Department of Mathematics, University College, Sungkyunkwan University, Suwon 440-746, South Korea.2 Department of Mathematics, Info Institute of Engineering, Kovilpalayam, Coimbatore - 641 107, Tamil Nadu, India.

3 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore- 641 114, Tamil Nadu, India.(Received 20 March 2011, accepted 26 May 2011)

Abstract: In this paper we study the existence of global solutions for a class of impulsive abstract partialneutral functional differential equations. An application is provided to illustrate the theory.

Keywords: impulsive system; neutral differential equations; analytic semigroup theory; mild solutions;global solutions.

1 IntroductionMany evolution processes and phenomena experience abrupt changes of state through short-term perturbations. Since thedurations of the perturbations are negligible in comparison with the duration of each process, it is quite natural to assumethat these perturbations act in terms of impulses; see the monographs of Lakshmikantham et al. [17] and Samoilenkoand Perestyuk [31]. It is to be noted that the recent progress in the development of the qualitative theory of impulsivedifferential equations has been stimulated primarily by a number of interesting applied problems [1–3, 7, 18, 19, 21]. Anatural generalization of impulsive differential equations is abstract impulsive differential equations in Banach space. Forgeneral aspects of impulsive differential equations, monographs [29, 30] are recommended.

Recently in [8], the authors studied the existence of global solutions for an impulsive abstract functional differentialequation of the form ⎧⎨⎩

𝑒′(𝑑) = 𝐴𝑒(𝑑) + 𝑓(𝑑, 𝑒(𝑑), 𝑒(𝜌(𝑑))), 𝑑 ∈ 𝐼 = [0, π‘Ž] or [0,∞),

𝑒(0) = 𝑒0,

Δ𝑒(𝑑𝑖) = 𝐽𝑖(𝑒(𝑑𝑖)), 𝑖 ∈ 𝔽 βŠ‚ β„•,

by using Leray-Schauder’s alternative theorem and in [4], the existence of solutions for impulsive neutral functionaldifferential equations of the form⎧⎨⎩

𝑑𝑑𝑑 (𝑒(𝑑) + 𝐹 (𝑑, 𝑒𝑑)) = 𝐴(𝑑)𝑒(𝑑) +𝐺(𝑑, 𝑒𝑑), 𝑑 ∈ 𝐼, 𝑑 βˆ•= 𝑑𝑖,

Δ𝑒(𝑑𝑖) = 𝐼𝑖(𝑒𝑑𝑖),

𝑒0 = πœ‘ ∈ ℬ,by using Leray-Schauder’s alternative theorem.

In this paper, we establish the existence of mild solutions for a class of impulsive neutral functional differentialequations described by

𝑑

𝑑𝑑(𝑒(𝑑) + 𝑔(𝑑, 𝑒𝑑)) = 𝐴𝑒(𝑑) + 𝑓(𝑑, 𝑒𝑑), 𝑑 ∈ 𝐼, 𝑑 βˆ•= 𝑑𝑖, (1)

𝑒0 = πœ‘ ∈ ℬ, (2)

Δ𝑒(𝑑𝑖) = 𝐼𝑖(𝑒𝑑𝑖), (3)βˆ—Corresponding author Email address: [email protected]

Copyright c⃝World Academic Press, World Academic UnionIJNS.2011.06.30/491

S. Sivasankaran, V. Vijayakumar, M. M. Arjunan: Existence of Global Solutions for Impulsive Abstract Partial Neutral β‹… β‹… β‹… 413

where 𝐴 is the infinitesimal generator of a 𝐢0-semigroup of bounded linear operators ((𝑇 (𝑑))𝑑β‰₯0 defined on a Banachspace (𝕏, βˆ₯ β‹… βˆ₯); 𝐼 is an interval of the form [0, 𝑇 ); 0 < 𝑑1 < 𝑑2 < β‹… β‹… β‹… < 𝑑𝑖 < β‹… β‹… β‹… < 𝑇 are prefixed numbers; the history𝑒𝑑 : (βˆ’βˆž, 0] β†’ 𝕏, 𝑒𝑑(πœƒ) = 𝑒(𝑑+ πœƒ), belongs to some abstract phase space ℬ defined axiomatically; 𝑔, 𝑓 : 𝐼 Γ— ℬ β†’ 𝕏,𝐼𝑖 : ℬ β†’ 𝕏 are appropriate functions and the symbol Ξ”πœ‰(𝑑) represents the jump of the function πœ‰ at 𝑑, which is definedby Ξ”πœ‰(𝑑) = πœ‰(𝑑+)βˆ’ πœ‰(π‘‘βˆ’).

The existence of global solutions for impulsive ordinary and partial differential system has been considered recentlyin the literature, see among others, [4, 8, 10–15, 23–26, 32–34]. To the best of our knowledge, the study of the existenceof global solutions for the impulsive neutral functional differential equations described in the general β€œabstract” form(1.1)-(1.3), is a untreated topic in the literature; this will be the main motivation of our paper.

We now turn to a summary of the work. The second section provides the definitions and preliminary results to be usedin the theorems stated and proved in this article; we review some of the standard facts on phase spaces, mild solutions andcertain useful fixed point theorems. In the third section, we focus our attention on the local existence of mild solutions forthe problem (1.1)-(1.3), when 𝐼 = [0, π‘Ž]. The fourth section is dedicated to the study of the existence of global solutionsfor the problem (1.1)-(1.3). Finally, in the fifth section, we give an application.

2 PreliminariesWe introduce certain notations which will be used throughout the paper without any further mention. Let (𝕏, βˆ₯ β‹… βˆ₯𝕏) and(𝕐, βˆ₯ β‹… βˆ₯𝕐) be Banach spaces, and β„’(𝕐,𝕏) be the Banach space of bounded linear operators from 𝕐 into 𝕏 equipped withits natural topology; in particular, we use the notation β„’(𝕏) when 𝕐 = 𝕏.

Throughout this work, 𝐴 is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators(𝑇 (𝑑))𝑑β‰₯0 defined on a Banach space (𝑋, βˆ₯ β‹… βˆ₯) and οΏ½οΏ½ is a positive constant such that βˆ₯𝑇 (𝑑)βˆ₯ ≀ οΏ½οΏ½ for every 𝑑 ∈ 𝐼 . Forthe theory of strongly continuous semigroup, refer the reader to Pazy [27].

In this paper, we employ an axiomatic definition of the phase space ℬ, which is similar to the one introduced in Hinoet al [16] and suitably modified to treat retarded impulsive differential equations. More precisely, ℬ is a linear space offunctions mapping (βˆ’βˆž, 0] into 𝕏 endowed with a seminorm βˆ₯ β‹… βˆ₯ℬ and we assume that ℬ satisfies the following axioms:

(A) If π‘₯ : (βˆ’βˆž, 𝜎 + π‘Ž] β†’ 𝕏, π‘Ž > 0, 𝜎 ∈ ℝ such that π‘₯𝜎 ∈ ℬ, and π‘₯∣[𝜎, 𝜎 + π‘Ž] ∈ π’«π’ž([𝜎, 𝜎 + π‘Ž],𝕏), then for every𝑑 ∈ [𝜎, 𝜎 + π‘Ž) the following conditions hold:

(i) π‘₯𝑑 is in ℬ;

(ii) βˆ₯π‘₯(𝑑)βˆ₯𝕏 ≀ 𝐻βˆ₯π‘₯𝑑βˆ₯ℬ;

(iii) βˆ₯π‘₯𝑑βˆ₯ℬ ≀ 𝐾(π‘‘βˆ’ 𝜎) sup{βˆ₯π‘₯(𝑠)βˆ₯𝕏 : 𝜎 ≀ 𝑠 ≀ 𝑑}+𝑀(π‘‘βˆ’ 𝜎)βˆ₯π‘₯𝜎βˆ₯ℬ,

where 𝐻 > 0 is a constant; 𝐾,𝑀 : [0,∞) β†’ [1,∞), 𝐾 is continuous, 𝑀 is locally bounded and 𝐻,𝐾,𝑀 areindependent of π‘₯(β‹…).

(B) The space ℬ is complete.

Remark 1 In impulsive functional differential systems, the map [𝜎, 𝜎 + π‘Ž] β†’ ℬ, 𝑑→ π‘₯𝑑 is in general discontinuous. Forthis reason, this property has been omitted from the description of phase space ℬ.

Example 1 The Phase Space π’«π’žπ‘Ÿ Γ— 𝐿2(𝑔,𝕏) .Let π‘Ÿ > 0 and 𝑔 : (βˆ’βˆž,βˆ’π‘Ÿ] β†’ ℝ be a non-negative, locally Lebesgue integrable function. Assume that there is a

non-negative measurable, locally bounded function πœ‚(β‹…) on (βˆ’βˆž, 0] such that 𝑔(πœ‰ + πœƒ) ≀ πœ‚(πœ‰)𝑔(πœƒ) for all πœ‰ ∈ (βˆ’βˆž, 0]and πœƒ ∈ (βˆ’βˆž,βˆ’π‘Ÿ] βˆ– π‘πœ‰, where π‘πœ‰ βŠ‚ (βˆ’βˆž,βˆ’π‘Ÿ] is a set with Lebesgue measure zero. We denote by π’«π’žπ‘Ÿ Γ— 𝐿2(𝑔,𝕏)the set of all functions πœ‘ : (βˆ’βˆž, 0] β†’ 𝕏 such that πœ‘βˆ£[βˆ’π‘Ÿ, 0] ∈ π’«π’ž([βˆ’π‘Ÿ, 0],𝕏) and

∫ βˆ’π‘Ÿ

βˆ’βˆž 𝑔(πœƒ)βˆ₯πœ‘(πœƒ)βˆ₯2π•π‘‘πœƒ < +∞. Inπ’«π’žπ‘Ÿ Γ— 𝐿2(𝑔,𝕏), we consider the seminorm defined by

βˆ₯πœ‘βˆ₯ℬ = supπœƒβˆˆ[βˆ’π‘Ÿ,0]

βˆ₯πœ‘(πœƒ)βˆ₯𝕏 +

(∫ βˆ’π‘Ÿ

βˆ’βˆžπ‘”(πœƒ)βˆ₯πœ‘(πœƒ)βˆ₯2π•π‘‘πœƒ

)1/2

.

From the proceeding conditions, the space π’«π’žπ‘Ÿ Γ— 𝐿2(𝑔,𝕏) satisfies the axioms (A) and (B). Moreover, when π‘Ÿ = 0, we

can take 𝐻 = 1, 𝐾(𝑑) =(1 +

∫ 0

βˆ’π‘‘π‘”(πœƒ)

)1/2

and 𝑀(𝑑) = πœ‚(βˆ’π‘‘) for 𝑑 β‰₯ 0.

IJNS homepage: http://www.nonlinearscience.org.uk/

414 International Journal of Nonlinear Science, Vol.11(2011), No.4, pp. 412-426

Let 0 < 𝑑1 < β‹… β‹… β‹… < 𝑑𝑛 < π‘Ž be pre-fixed numbers. We introduce the space π’«π’ž = π’«π’ž([0, π‘Ž];𝕏) formed by all functions𝑒 : [0, π‘Ž] β†’ 𝕏 such that are continuous at 𝑑 βˆ•= 𝑑𝑖, 𝑒(π‘‘βˆ’π‘– ) = 𝑒(𝑑𝑖) and 𝑒(𝑑+𝑖 ) exists, for all 𝑖 = 1, ....𝑛. In this paper, weassume that π’«π’ž is endowed with the norm βˆ₯𝑒βˆ₯π’«π’ž = supπ‘ βˆˆ[0,π‘Ž] βˆ₯𝑒(𝑠)βˆ₯𝕏. It is clear that (π’«π’ž, βˆ₯ β‹… βˆ₯π’«π’ž) is a Banach space;see [9] for details.

In what follows, we put 𝑑0 = 0, 𝑑𝑛+1 = π‘Ž, and for 𝑒 ∈ π’«π’ž, we denote by ��𝑖 ∈ 𝐢([𝑑𝑖, 𝑑𝑖+1],𝕏), 𝑖 = 0, 1, 2, ..., 𝑛, thefunction given by

��𝑖(𝑑) =

{𝑒(𝑑), for 𝑑 ∈ (𝑑, 𝑑𝑖+1],

𝑒(𝑑+𝑖 ), for 𝑑 = 𝑑𝑖.

Moreover, for ℬ βŠ‚ π’«π’ž, we employ the notation ��𝑖, 𝑖 = 0, 1, 2, ..., 𝑛, for the sets ��𝑖 = {��𝑖 : 𝑒 ∈ 𝐡}.

Lemma 2 ([9]). A Set 𝐡 βŠ‚ π’«π’ž is relatively compact in π’«π’ž if and only if the set 𝐡𝑖 is relatively compact in the space𝐢([𝑑𝑖, 𝑑𝑖+1];𝕏), for every 𝑖 = 0, 1, ..., 𝑛.

In the following definition, we introduce the concept of a mild solution for the problem (1.1)-(1.3).

Definition 1 ([28]). A function 𝑒 : (βˆ’βˆž, 0]βˆͺ𝐼 β†’ 𝕏 is called a mild solution of the abstract Cauchy problem (1.1)-(1.3),if 𝑒0 = πœ™ ∈ ℬ; π‘’βˆ£πΌ ∈ π’«π’ž(𝐼;𝕏); the function 𝑠→ 𝐴𝑇 (π‘‘βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠) is integrable in [0, 𝑑) for all 𝑑 ∈ 𝐼 and

𝑒(𝑑) = 𝑇 (𝑑)(πœ™(0) + 𝑔(0, πœ™)

)βˆ’ 𝑔(𝑑, 𝑒𝑑)βˆ’βˆ« 𝑑

0

𝐴𝑇 (π‘‘βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠)𝑑𝑠+

∫ 𝑑

0

𝑇 (π‘‘βˆ’ 𝑠)𝑓(𝑠, 𝑒𝑠)𝑑𝑠

+βˆ‘π‘‘π‘–<𝑑

𝑇 (π‘‘βˆ’ 𝑑𝑖)𝐼𝑖(𝑒𝑑𝑖) +βˆ‘π‘‘π‘–<𝑑

[𝑔(𝑑, 𝑒𝑑)βˆ£π‘‘+𝑖

βˆ’ 𝑔(𝑑, 𝑒𝑑)βˆ£π‘‘βˆ’π‘–

], 𝑑 ∈ 𝐼.(4)

Motivated by the previous definition, we introduce the following assumptions. There exists a Banach space (𝕐, βˆ₯ β‹… βˆ₯𝕐)continuously included in 𝕏 such that

(S1) The function 𝑠→ 𝑇 (π‘‘βˆ’ 𝑠)𝑦 ∈ 𝐢([𝑑,+∞);𝕐), 𝑑 β‰₯ 0.

(S2) The function 𝑠 β†’ 𝐴𝑇 (𝑑 βˆ’ 𝑠) defined from (𝑑,+∞), 𝑑 > 0 into 𝐿(𝕐,𝕏) is continuous and there is a functionβ„‹(β‹…) ∈ 𝐿1([0,∞);ℝ+) such that

βˆ₯𝐴𝑇 (π‘‘βˆ’ 𝑠)βˆ₯β„’(𝕐,𝕏) ≀ β„‹(π‘‘βˆ’ 𝑠), for all 𝑑 > 𝑠.

Remark 3 Assume that (S1) and (S2) hold and 𝑒 ∈ 𝐢([0, 𝑑];𝕐), then from the Bochner’s criterion for integrable func-tions and the estimate

βˆ₯𝐴𝑇 (π‘‘βˆ’ 𝑠)𝑒(𝑠)βˆ₯𝕏 ≀ βˆ₯𝐴𝑇 (π‘‘βˆ’ 𝑠)βˆ₯β„’(𝕐,𝕏)βˆ₯𝑒(𝑠)βˆ₯𝕐 ≀ β„‹(π‘‘βˆ’ 𝑠)βˆ₯𝑒(𝑠)βˆ₯𝕐,

we have that the function 𝑠 β†’ 𝐴𝑇 (𝑑 βˆ’ 𝑠)𝑒(𝑠) is integrable over [0, 𝑑) for all 𝑑 > 0. For additional remarks about thesetypes of condition in partial neutral differential equations, see e.g.[20]. In general, we observe that, except in trivialcases, the operator function 𝑠→ 𝐴𝑇 (π‘‘βˆ’ 𝑠) is not integrable over [0,t](see e.g.[5]).

To obtain our results we need the following results.

Theorem 4 ([6, Theorem 6.5.4]) Leray-Schauder’s Alternative Theorem). Let 𝐷 be a closed convex subset of a Banachspace (β„€, βˆ₯ β‹… βˆ₯β„€) and assume that 0 ∈ 𝐷. If 𝐹 : 𝐷 β†’ 𝐷 is a completely continuous map, then the set {π‘₯ ∈ 𝐷 : π‘₯ =πœ†πΉ (π‘₯), 0 < πœ† < 1} is unbounded or the map 𝐹 has a fixed point in 𝐷.

Theorem 5 ([22, Corollary 4.3.2]). Let 𝐷 be a closed, convex and bounded subset of a Banach space (β„€, βˆ₯ β‹… βˆ₯β„€). If𝐡,𝐢 : 𝐷 β†’ β„€ are continuous functions such that

(a) 𝐡𝑧 + 𝐢𝑧 ∈ 𝐷 for all 𝑧 ∈ β„€;

(b) 𝐢(𝐷) is compact;

(c) there exists 0 ≀ 𝛾 < 1 such that βˆ₯𝐡𝑧 βˆ’π΅π‘€βˆ₯ ≀ 𝛾βˆ₯𝑧 βˆ’ 𝑀βˆ₯ for all 𝑧, 𝑀 ∈ 𝐷;

then there exists π‘₯ ∈ 𝐷 such that 𝐡π‘₯+ 𝐢π‘₯ = π‘₯.

IJNS email for contribution: [email protected]

S. Sivasankaran, V. Vijayakumar, M. M. Arjunan: Existence of Global Solutions for Impulsive Abstract Partial Neutral β‹… β‹… β‹… 415

3 Local Existence

In this section, we study the existence of mild solutions for the impulsive systems (1.1)-(1.3), when 𝐼 = [0, π‘Ž]. To obtainour results, we introduce the following conditions.

(H1) The function 𝑔 : 𝐼 Γ— ℬ β†’ 𝕏 is completely continuous, 𝑔(𝐼 Γ— ℬ) βŠ‚ π‘Œ , 𝑔 ∈ 𝐢(𝐼 Γ— ℬ,𝕐) and there exist positiveconstants 𝑐1 and 𝑐2 such that

βˆ₯𝑔(𝑑, πœ™)βˆ₯𝕐 ≀ 𝑐1βˆ₯πœ™βˆ₯ℬ + 𝑐2, 𝑑 ∈ 𝐼, πœ™ ∈ ℬ.

(H2) The function 𝑓 : 𝐼 Γ— ℬ Γ— 𝕏 β†’ 𝕏 satisfies the following conditions.

(a) The function 𝑓(𝑑, β‹…) : ℬ β†’ 𝕏 is continuous for all 𝑑 ∈ 𝐼 .

(b) The function 𝑓(β‹…, πœ™) : 𝐼 β†’ 𝕏 is strongly measurable for all πœ™ ∈ ℬ.

(c) There exists a continuous function π‘š : 𝐼 β†’ [0,∞) and a continuousnon-decreasing function π‘Š : [0,∞) β†’ (0,∞) such that

βˆ₯𝑓(𝑑, πœ™)βˆ₯ ≀ π‘š(𝑑)π‘Š (βˆ₯πœ™βˆ₯ℬ), for every (𝑑, πœ™) ∈ 𝐼 Γ— ℬ.

(H3) The maps 𝐼𝑖 : ℬ β†’ 𝕏 are completely continuous and uniformly bounded, 𝑖 ∈ 𝔽 = {1, 2, β‹… β‹… ⋅𝑁}. In what follows,we use the notation: 𝑁𝑖 = sup{βˆ₯𝐼𝑖(πœ™)βˆ₯ : πœ™ ∈ ℬ}.

(H4) There are positive constants 𝐿𝑖, such that

βˆ₯𝐼𝑖(πœ“1)βˆ’ 𝐼𝑖(πœ“2)βˆ₯ ≀ 𝐿𝑖βˆ₯πœ“1 βˆ’ πœ“2βˆ₯ℬ, πœ“1, πœ“2 ∈ ℬ, 𝑖 ∈ 𝔽.

(H5) The function 𝑔 : 𝐼 Γ— ℬ β†’ π‘Œ is Lipschitz constant; that is, there is a constant 𝐿𝑔 > 0 such that

βˆ₯𝑔(𝑑, πœ™1)βˆ’ 𝑔(𝑑, πœ™2)βˆ₯𝕐 ≀ 𝐿𝑔βˆ₯πœ™1 βˆ’ πœ™2βˆ₯ℬ, 𝑑 ∈ 𝐼, πœ™π‘– ∈ ℬ, 𝑖 = 1, 2.

(H6) Let 𝑦 : (βˆ’βˆž, 0] βˆͺ 𝐼 β†’ 𝕏 be the extension of πœ™ such that 𝑦(𝑑) = 𝑇 (𝑑)πœ™(0) for all 𝑑 ∈ 𝐼 and 𝑆(𝐼) the space𝑆(𝐼) = {π‘₯ : (βˆ’βˆž, 0]βˆͺ 𝐼 β†’ 𝕏 : π‘₯0 = 0, π‘₯∣𝐼 ∈ π’«π’ž(𝐼;𝕏)} endowed with uniform convergence topology in 𝐼 . Then

the set of functions{𝑑→ 𝑔(𝑑, π‘₯𝑑 + 𝑦𝑑); π‘₯ ∈ 𝑄

}is equicontinuous in 𝐼 for all bounded sets 𝑄 βŠ‚ 𝑆(𝐼).

After these preparations, we can formulate the main result of this section.

Theorem 6 Assume that the hypotheses (S1), (S2), (H1), (H2), (H3) and (H6) are fulfilled. Suppose, in addition, thatthe following properties hold.

(a) For all 𝑑, 𝑠 ∈ [0, π‘Ž], 𝑑 > 𝑠 and π‘Ÿ > 0, the set {𝑇 (π‘‘βˆ’ 𝑠)𝑓(𝑠, πœ“) : 𝑠 ∈ [0, 𝑑], βˆ₯πœ“βˆ₯ℬ ≀ π‘Ÿ} is relatively compact in 𝕏.

(b) πœ‡ = 𝑐1πΎπ‘Ž

(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +

∫ π‘Ž

0β„‹(𝑠)𝑑𝑠

)< 1, οΏ½οΏ½πΎπ‘Ž

1βˆ’πœ‡

∫ π‘Ž

0π‘š(𝑠)𝑑𝑠 <

βˆ«βˆžπ‘

π‘‘π‘ π‘Š (𝑠) , where 𝑖𝑐 : 𝕐 β†’ 𝕏 is the inclusion

operator and

𝑐 =πΎπ‘Ž

1βˆ’ πœ‡

[(��𝐻 + 𝑐1οΏ½οΏ½βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +πΎβˆ’1

π‘Ž π‘€π‘Ž

)βˆ₯πœ™βˆ₯ℬ + 𝑐2βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(οΏ½οΏ½ + 1) + 𝑐2

∫ π‘Ž

0

β„‹(𝑠)𝑑𝑠+ οΏ½οΏ½π‘βˆ‘π‘–=1

𝑁𝑖

],

(5)

where𝐻 is a constant given by Axiom (𝐴),πΎπ‘Ž andπ‘€π‘Ž are given byπΎπ‘Ž = sup0β‰€π‘‘β‰€π‘ŽπΎ(𝑑) andπ‘€π‘Ž = sup0β‰€π‘‘β‰€π‘Žπ‘€(𝑑),respectively.

Then there exists a mild solution of the initial value problem (1.1)-(1.3).

IJNS homepage: http://www.nonlinearscience.org.uk/

416 International Journal of Nonlinear Science, Vol.11(2011), No.4, pp. 412-426

Proof.Let 𝑆(𝐼) and 𝑦 : (βˆ’βˆž, π‘Ž] β†’ 𝕏 be introduced in (H6) and Ξ“ : 𝑆(𝐼) β†’ 𝑆(𝐼) be the operator defined by (Γ𝑒)0 = 0

and

Γ𝑒(𝑑) = 𝑇 (𝑑)𝑔(0, πœ™)βˆ’π‘”(𝑑, 𝑒𝑑+𝑦𝑑)βˆ’βˆ« 𝑑

0

𝐴𝑇 (π‘‘βˆ’π‘ )𝑔(𝑠, 𝑒𝑠+𝑦𝑠)𝑑𝑠+∫ 𝑑

0

𝑇 (π‘‘βˆ’π‘ )𝑓(𝑠, 𝑒𝑠+𝑦𝑠)𝑑𝑠+βˆ‘

0<𝑑𝑖<𝑑

𝑇 (π‘‘βˆ’π‘‘π‘–)𝐼𝑖(𝑒𝑑𝑖+𝑦𝑑𝑖),(6)

To prove that the function Γ𝑒 ∈ 𝑆(𝐼), we need to show that the following properties are satisfied:(i) The function Γ𝑒 is continuous in 𝑑 βˆ•= 𝑑𝑖.(ii) The limit limπ‘‘β†’π‘‘βˆ’π‘–

Γ𝑒(𝑑) = Γ𝑒(𝑑𝑖), for all 𝑖 = 1, ..., 𝑁 .(iii) The limit lim𝑑→𝑑+𝑖

Γ𝑒(𝑑), exists, for all 𝑖 = 1, ..., 𝑁 .Taking into the account that 𝑔 and 𝑑 β†’ 𝑇 (𝑑)𝑔(0, πœ™) are continuous, it follows from (S1), (H2) and the Remark 2

that the function Γ𝑒(𝑑) is continuous in 𝑑 βˆ•= 𝑑𝑖. On the other hand, from the definition of Ξ“, the Dominated ConvergenceTheorem and the condition (S2), we have that limπ‘‘β†’π‘‘βˆ’π‘–

Γ𝑒(𝑑) = Γ𝑒(𝑑𝑖) and that lim𝑑→𝑑+𝑖Γ𝑒(𝑑) = Γ𝑒(𝑑𝑖) + 𝐼𝑖(𝑒𝑑𝑖).

Next, we show that Ξ“ is a continuous operator. Let (𝑒𝑛)π‘›βˆˆβ„• be a sequence in 𝑆(𝐼) and 𝑒 ∈ 𝑆(𝐼) such that 𝑒𝑛 β†’ 𝑒in 𝑆(𝐼). By using the continuity of 𝑔 and conditions ((H2)βˆ’ (a)), (H3) and (H6), we prove that 𝑔(𝑑, 𝑒𝑛𝑠 + 𝑦𝑛𝑠 ) →𝑔(𝑑, 𝑒𝑠 + 𝑦𝑠) uniformly in 𝐼 , 𝑓(𝑠, 𝑒𝑛𝑠 + 𝑦𝑠) β†’ 𝑓(𝑠, 𝑒𝑠 + 𝑦𝑠) for all 𝑠 ∈ 𝐼 , and 𝐼𝑖(𝑒𝑛𝑑 + 𝑦𝑑) β†’ 𝐼(𝑒𝑑 + 𝑦𝑑) uniformly on 𝐼 .Using conditions (S2), ((H2)βˆ’ (b, c)) and Lebesgue’s Dominated Convergence Theorem, we conclude that∫ 𝑑

0

𝐴𝑇 (π‘‘βˆ’π‘ )𝑔(𝑠, 𝑒𝑛𝑠+𝑦𝑛𝑠 )π‘‘π‘ β†’βˆ« 𝑑

0

𝐴𝑇 (π‘‘βˆ’π‘ )𝑔(𝑠, 𝑒𝑠+𝑦𝑠)𝑑𝑠,∫ 𝑑

0

𝑇 (π‘‘βˆ’π‘ )𝑓(𝑠, 𝑒𝑛𝑠+𝑦𝑛𝑠 )π‘‘π‘ β†’βˆ« 𝑑

0

𝑇 (π‘‘βˆ’π‘ )𝑓(𝑠, 𝑒𝑠+𝑦𝑠)𝑑𝑠,

as 𝑛→ ∞, which clearly implies that Ξ“ is a continuous operator.In order to use Theorem 2, we need to obtain a π‘π‘Ÿπ‘–π‘œπ‘Ÿπ‘– bound for the solutions of the integral equations πœ†Ξ“π‘’ = 𝑒,

πœ† ∈ (0, 1). Let πœ† ∈ (0, 1) and let π‘₯πœ† be a solution of πœ†Ξ“π‘’ = 𝑒, 0 < πœ† < 1; taking into account that βˆ₯𝑦𝑑βˆ₯ℬ ≀(πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ and using Remark 2, (H2) and (H4), we find that

βˆ₯π‘₯πœ†(𝑑)βˆ₯ ≀��(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(𝑐1βˆ₯πœ™βˆ₯ℬ + 𝑐2)) + βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)

(𝑐1(πΎπ‘Žβˆ₯π‘₯πœ†βˆ₯𝑑 + (πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ) + 𝑐2

)+

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)(𝑐1(πΎπ‘Žβˆ₯π‘₯πœ†βˆ₯𝑠 + (πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ) + 𝑐2

)𝑑𝑠+ οΏ½οΏ½

∫ 𝑑

0

π‘š(𝑠)π‘Š (πΎπ‘Žβˆ₯π‘₯πœ†βˆ₯𝑠

+(πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ)𝑑𝑠+π‘βˆ‘π‘–=1

��𝑁𝑖,

where we are using the following notation: βˆ₯𝑓βˆ₯𝑑 = sup0≀𝑠≀𝑑 βˆ₯𝑓(𝑠)βˆ₯𝕏. Next, putting

π›Ώπœ†(𝑑) = πΎπ‘Žβˆ₯π‘₯πœ†βˆ₯𝑑 + (πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ,it follows that

βˆ₯π‘₯πœ†(𝑑)βˆ₯ ≀ βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(οΏ½οΏ½(𝑐1βˆ₯πœ™βˆ₯ℬ + 𝑐2)) + βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(𝑐1π›Ώπœ†(𝑑) + 𝑐2) +

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)(𝑐1π›Ώπœ†(𝑠) + 𝑐2)𝑑𝑠

+οΏ½οΏ½

∫ 𝑑

0

π‘š(𝑠)π‘Š (π›Ώπœ†(𝑠))𝑑𝑠+

π‘βˆ‘π‘–=1

��𝑁𝑖.

We obtain after some simplification and a rearrangement of terms

π›Ώπœ†(𝑑) ≀[πΎπ‘ŽοΏ½οΏ½π» + 𝑐1πΎπ‘ŽοΏ½οΏ½βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +π‘€π‘Ž

]βˆ₯πœ™βˆ₯ℬ + 𝑐2πΎπ‘Žβˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(οΏ½οΏ½ + 1) +πΎπ‘Žπ‘2

∫ π‘Ž

0

β„‹(𝑠)𝑑𝑠

+𝑐1πΎπ‘Ž

(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +

∫ π‘Ž

0

β„‹(𝑠)𝑑𝑠)π›Ώπœ†(𝑑) +πΎπ‘ŽοΏ½οΏ½

∫ 𝑑

0

π‘š(𝑠)π‘Š (π›Ώπœ†(𝑠))𝑑𝑠+πΎπ‘ŽοΏ½οΏ½

π‘βˆ‘π‘–=1

𝑁𝑖.

From the hypothesis (b), we have that

π›Ώπœ†(𝑑) ≀ 𝑐+οΏ½οΏ½πΎπ‘Ž

1βˆ’ πœ‡

∫ 𝑑

0

π‘š(𝑠)π‘Š (π›Ώπœ†(𝑠))𝑑𝑠.

IJNS email for contribution: [email protected]

S. Sivasankaran, V. Vijayakumar, M. M. Arjunan: Existence of Global Solutions for Impulsive Abstract Partial Neutral β‹… β‹… β‹… 417

Denote by π›½πœ†(𝑑) the right-hand side of the previous inequality. Computing π›½β€²πœ†(𝑑) and observing that π›Ώπœ†(𝑑) ≀ π›½πœ†(𝑑)

for 𝑑 ∈ 𝐼 , we arrive at

π›½β€²πœ†(𝑑) ≀

οΏ½οΏ½πΎπ‘Ž

1βˆ’ πœ‡π‘š(𝑑)π‘Š (π›½πœ†(𝑑)),

hence ∫ π›½πœ†(𝑑)

π›½πœ†(0)

𝑑𝑠

π‘Š (𝑠)≀ οΏ½οΏ½πΎπ‘Ž

1βˆ’ πœ‡

∫ π‘Ž

0

π‘š(𝑠)𝑑𝑠 β‰€βˆ« ∞

𝑐

𝑑𝑠

π‘Š (𝑠).

This allow us to conclude that the set of functions {π›½πœ† : πœ† ∈ (0, 1)} is bounded. This implies that {π‘’πœ† : π‘’πœ† = Ξ“π‘’πœ†, πœ† ∈(0, 1)} is bounded in 𝑆(𝐼).

It remains to show that Ξ“ is completely continuous. To this end, we introduce the decomposition Ξ“ = Ξ“1 +Ξ“2, where(Γ𝑖𝑒)0 = 0, 𝑖 = 1, 2, and

Ξ“1𝑒(𝑑) = 𝑇 (𝑑)𝑔(0, πœ™)βˆ’ 𝑔(𝑑, 𝑒𝑑 + 𝑦𝑑)βˆ’βˆ« 𝑑

0

𝐴𝑇 (π‘‘βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠)𝑑𝑠+

∫ 𝑑

0

𝑇 (π‘‘βˆ’ 𝑠)𝑓(𝑠, 𝑒𝑠 + 𝑦𝑠)𝑑𝑠, 𝑑 ∈ [0, π‘Ž],

Ξ“2𝑒(𝑑) =βˆ‘

0<𝑑𝑖<𝑑

𝑇 (π‘‘βˆ’ 𝑑𝑖)𝐼𝑖(𝑒𝑑𝑖 + 𝑦𝑑𝑖), 𝑑 ∈ [0, π‘Ž].

We now prove that Ξ“1 is a completely continuous operator. We consider 𝑒 in π΅π‘Ÿ(0, 𝑆(𝐼)), an open ball of radius π‘Ÿ.Applying now the Mean Value Theorem for the Bochner integral (see [22, Lemma 2.1.3]), we infer that

(Ξ“1𝑒)(𝑑) βŠ‚ 𝑇 (𝑑)𝑔(0, πœ™)βˆ’ 𝑔(𝑑, 𝑒𝑑 + 𝑦𝑑)βˆ’ π‘‘π‘π‘œ{𝐴𝑇 (π‘‘βˆ’ πœƒ)𝑔(πœƒ, π‘’πœƒ + π‘¦πœƒ), πœƒ ∈ [0, 𝑑], 𝑒 ∈ π΅π‘Ÿ(0, 𝑆(𝐼))}𝕐

+π‘‘π‘π‘œ{𝑇 (π‘‘βˆ’ πœƒ)𝑓(πœƒ, π‘’πœƒ + π‘¦πœƒ), πœƒ ∈ [0, 𝑑], 𝑒 ∈ π΅π‘Ÿ(0, 𝑆(𝐼))}.Taking the advantage of assumptions (a) and (H1), we conclude that

{(Ξ“1𝑒)(𝑑) : 𝑒 ∈ π΅π‘Ÿ(0, 𝑆(𝐼))} is a compact subset of 𝕏.Now, we prove that the set of functions {(Ξ“1(𝑒);𝑒 ∈ π΅π‘Ÿ(0, 𝑆(𝐼))} is equicontinuous in 𝐼 . To this end, consider

0 < πœ€ < 𝑑 < 𝑑′ for 𝑑, 𝑑′ ∈ [0, π‘Ž]; then there is 0 < 𝛿 < πœ€ such that

βˆ₯𝑇 (𝑑)𝑔(0, πœ™)βˆ’ 𝑇 (𝑑′)𝑔(0, πœ™)βˆ₯ < πœ€,

βˆ₯𝑔(𝑑, 𝑒𝑑 + 𝑦𝑑)βˆ’ 𝑔(𝑑′, 𝑒𝑑′ + 𝑦𝑑′)𝑑𝑠)βˆ₯ < πœ€,

βˆ₯𝑇 (π‘‘βˆ’ 𝑠)𝑓(𝑒𝑠 + 𝑦𝑠)βˆ’ 𝑇 (𝑑′ βˆ’ 𝑠)𝐺(𝑒𝑠 + 𝑦𝑠, )βˆ₯ < πœ€,

for all 𝑠 ∈ [0, 𝑑], βˆ£π‘‘βˆ’ π‘‘β€²βˆ£ < 𝛿 and 𝑒 ∈ π΅π‘Ÿ(0, 𝑆(𝐼)). On the other-hand, using the continuity of the map (𝑑, 𝑠) β†’ 𝐴𝑇 (π‘‘βˆ’ 𝑠)for 𝑑 > 𝑠, we arrive at

βˆ₯𝐴𝑇 (π‘‘βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ’π΄π‘‡ (𝑑′ βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ₯ < πœ€,

for all 𝑠 ∈ [0, π‘‘βˆ’ πœ€], βˆ£π‘‘βˆ’ π‘‘β€²βˆ£ < 𝛿 and 𝑒 ∈ π΅π‘Ÿ(0, 𝑆(𝐼)). Under these conditions, for 𝑒 ∈ π΅π‘Ÿ(0, 𝑆(𝐼)), βˆ£π‘‘βˆ’ π‘‘β€²βˆ£ < 𝛿, we inferthat

βˆ₯Ξ“1𝑒(𝑑)βˆ’ Ξ“1𝑒(𝑑′)βˆ₯ ≀ βˆ₯(𝑇 (𝑑)βˆ’ 𝑇 (𝑑′))𝑔(0, πœ™)βˆ₯+ βˆ₯𝑔(𝑑, 𝑒𝑑 + 𝑦𝑑)βˆ’ 𝑔(𝑑′, 𝑒𝑑′ + 𝑦𝑑′)βˆ₯+

∫ 𝑑′

𝑑

βˆ₯𝐴𝑇 (𝑑′ βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ₯𝑑𝑠

+

∫ π‘‘βˆ’πœ€

0

βˆ₯(𝐴𝑇 (π‘‘βˆ’ 𝑠)βˆ’π΄π‘‡ (𝑑′ βˆ’ 𝑠))𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ₯𝑑𝑠+∫ 𝑑

π‘‘βˆ’πœ€

βˆ₯(𝐴𝑇 (π‘‘βˆ’ 𝑠)βˆ’π΄π‘‡ (𝑑′ βˆ’ 𝑠))𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ₯𝑑𝑠

+

∫ 𝑑

0

βˆ₯(𝑇 (π‘‘βˆ’ 𝑠)βˆ’ 𝑇 (𝑑′ βˆ’ 𝑠))𝑓(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ₯𝑑𝑠+∫ 𝑑′

𝑑

βˆ₯𝑇 (𝑑′ βˆ’ 𝑠)𝑓(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ₯𝑑𝑠.

From the above estimate, one can deduce the following inequality:

βˆ₯Ξ“1𝑒(𝑑)βˆ’ Ξ“1𝑒(𝑑′)βˆ₯ ≀ 2πœ€+ πœ€(π‘‘βˆ’ πœ€) + πœ€π‘‘+ (𝑐1(πΎπ‘Žπ‘Ÿ +πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž))

∫ 𝑑

π‘‘βˆ’πœ€

β„‹(π‘‘βˆ’ 𝑠)𝑑𝑠+

∫ 𝑑′

𝑑

β„‹(π‘‘βˆ’ 𝑠)𝑑𝑠

+οΏ½οΏ½π‘Š (𝑐1(πΎπ‘Žπ‘Ÿ +πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž))

∫ 𝑑′

𝑑

π‘š(𝑠)𝑑𝑠,

IJNS homepage: http://www.nonlinearscience.org.uk/

418 International Journal of Nonlinear Science, Vol.11(2011), No.4, pp. 412-426

which shows the equicontinuity at 𝑑 ∈ 𝐼 . So, to conclude the proof, we show that Ξ“2 is completely continuous. We observethat the continuity of Ξ“2 is obvious. On the other hand, for π‘Ÿ > 0, 𝑑 ∈ [𝑑𝑖, 𝑑𝑖+1], 𝑖 β‰₯ 1, and 𝑒 ∈ π΅π‘Ÿ = π΅π‘Ÿ(0,π’«π’ž([0, π‘Ž];𝕏)),we have that there exists π‘Ÿ > 0 such that

[ ΛœΞ“2𝑒]𝑖(𝑑) ∈

βŽ§βŽ¨βŽ©βˆ‘π‘–

𝑗=1 𝑇 (π‘‘βˆ’ 𝑑𝑗)𝐼𝑗(π΅π‘Ÿ(0;ℬ)), 𝑑 ∈ (𝑑𝑖, 𝑑𝑖+1),βˆ‘π‘–π‘—=1 𝑇 (𝑑𝑖+1 βˆ’ 𝑑𝑗)𝐼𝑗(π΅π‘Ÿ(0;ℬ)), 𝑑 = 𝑑𝑖+1,βˆ‘π‘–βˆ’1𝑗=1 𝑇 (𝑑𝑖 βˆ’ 𝑑𝑗)𝐼𝑗(π΅π‘Ÿ(0;ℬ)) + 𝐼𝑖(π΅π‘Ÿ(0;ℬ)), 𝑑 = 𝑑𝑖,

where π΅π‘Ÿ(0;ℬ) is an open ball of radius π‘Ÿ. From condition (H4) it follows that [ ΛœΞ“2(π΅π‘Ÿ)]𝑖(𝑑) is relatively compact in 𝕏,for all 𝑑 ∈ [𝑑𝑖, 𝑑𝑖+1], 𝑖 β‰₯ 1. Moreover, using the fact that the operators {𝐼𝑖}𝑖 are compact and the strong continuity of(𝑇 (𝑑))𝑑β‰₯0, we conclude that for πœ€ > 0, there exists 𝛿 > 0 such that

βˆ₯𝑇 (π‘‘βˆ’ 𝑑𝑖)𝑧 βˆ’ 𝑇 (π‘ βˆ’ 𝑑𝑖)𝑧βˆ₯ ≀ πœ€, 𝑧 βˆˆπ‘βˆͺ𝑖=1

𝐼𝑖(π΅π‘Ÿ(0,ℬ)), (3.3)

for all 𝑑𝑖, 𝑖 = 1, ..., 𝑁 , 𝑑, 𝑠 ∈ (𝑑𝑖, 𝑑𝑖+1] with βˆ£π‘‘ βˆ’ π‘ βˆ£ < 𝛿. Thus for 𝑒 ∈ π΅π‘Ÿ, 𝑑 ∈ [𝑑𝑖, 𝑑𝑖+1], 𝑖 β‰₯ 0, and 0 < βˆ£β„Žβˆ£ < 𝛿 with𝑑+ β„Ž ∈ [𝑑𝑖, 𝑑𝑖+1], we have that

βˆ₯[ ΛœΞ“2𝑒]𝑖(𝑑+ β„Ž)βˆ’ [ ΛœΞ“2𝑒]𝑖(𝑑)βˆ₯ ≀ π‘πœ€, 𝑖 = 1, ..., 𝑁. (3.4)

We have shown that the set ˜[Ξ“2(π΅π‘Ÿ)]𝑖 is uniformly equicontinuous for 𝑖 β‰₯ 0. Now, from Lemma 1, we conclude that Ξ“2

is completely continuous.We have proven that Ξ“ satisfies the conditions of Theorem 2, which allows us infer the existence of a mild solution of

the problem (1.1)-(1.3). This completes the proof of the theorem.If the map 𝐹 and 𝐼𝑖, 𝑖 = 1, ..., 𝑁 fulfill some Lipschitz condition instead of the compactness properties considered in

Theorem 4, we also can establish an existence result.

Theorem 7 Suppose that the assumptions (S1), (S2), (H2), (H4) and (H5) are satisfied and that the condition (a) ofTheorem 4 is fulfilled. If

[πΎπ‘ŽπΏπ‘”

(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +

∫ π‘Ž

0

β„‹(𝑠)𝑑𝑠)+ οΏ½οΏ½πΎπ‘Ž

π‘βˆ‘π‘–=1

𝐿𝑖 + οΏ½οΏ½πΎπ‘Ž limπ‘Ÿβ†’βˆž inf

π‘Š (π‘Ÿ)

π‘Ÿ

∫ π‘Ž

0

π‘š(𝑠)𝑑𝑠]< 1,

where 𝑖𝑐 denotes the inclusion operator from 𝕐 into 𝕏, then there exists a mild solution of the impulsive problem (1.1)-(1.3).

Proof. Let Ξ“ be the function given in the proof of Theorem 4 and consider the decomposition Ξ“ = Ξ“1 + Ξ“2, where(Γ𝑖𝑒) = 0 on (βˆ’βˆž, 0], 𝑖 = 1, 2, and

Ξ“1𝑒(𝑑) = 𝑇 (𝑑)𝑔(0, πœ™)βˆ’ 𝑔(𝑑, 𝑒𝑑 + 𝑦𝑑)βˆ’βˆ« 𝑑

0

𝐴𝑇 (π‘‘βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠)𝑑𝑠+βˆ‘

0<𝑑𝑖<𝑑

𝑇 (π‘‘βˆ’ 𝑑𝑖)𝐼𝑖(𝑒𝑑𝑖 + 𝑦𝑑𝑖), 𝑑 ∈ [0, π‘Ž],

Ξ“2𝑒(𝑑) =

∫ 𝑑

0

𝑇 (π‘‘βˆ’ 𝑠)𝑓(𝑠, 𝑒𝑠 + 𝑦𝑠)𝑑𝑠, 𝑑 ∈ [0, π‘Ž].

We claim that there exists π‘Ÿ > 0 such that Ξ“(π΅π‘Ÿ(0, 𝑆(𝐼))) βŠ‚ π΅π‘Ÿ(0, 𝑆(𝐼)). In fact, if we assume that this assertion is false,then for all π‘Ÿ > 0 we can choose π‘₯π‘Ÿ ∈ π΅π‘Ÿ = π΅π‘Ÿ(0, 𝑆(𝐼)) and π‘‘π‘Ÿ ∈ [0, π‘Ž] such that βˆ₯Ξ“π‘₯π‘Ÿ(π‘‘π‘Ÿ)βˆ₯ > π‘Ÿ. Observe that standardcomputations involving the phase space axioms yield

π‘Ÿ ≀ βˆ₯Ξ“π‘₯π‘Ÿ(π‘‘π‘Ÿ)βˆ₯ ≀ οΏ½οΏ½βˆ₯𝑔(0, πœ™)βˆ₯𝕐 + βˆ₯𝑖𝑐βˆ₯𝐿(𝕐,𝕏) sup0β‰€π‘‘β‰€π‘Ž

βˆ₯𝑔(𝑑, 0)βˆ₯𝕐 + 𝐿𝑔βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(πΎπ‘Žπ‘Ÿ + (πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ)

+

∫ π‘Ž

0

β„‹(𝑠)𝑑𝑠(𝐿𝑔(πΎπ‘Žπ‘Ÿ + (πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ) + sup

0β‰€πœβ‰€π‘Žβˆ₯𝑔(𝜏, 0)βˆ₯𝕐

)+οΏ½οΏ½

∫ π‘Ž

0

π‘š(𝑠)π‘Š ((πΎπ‘Žπ‘Ÿ +πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ)𝑑𝑠+ οΏ½οΏ½π‘βˆ‘π‘–=1

(𝐿𝑖(πΎπ‘Žπ‘Ÿ + (πΎπ‘ŽοΏ½οΏ½π» +π‘€π‘Ž)βˆ₯πœ™βˆ₯ℬ) + βˆ₯𝐼𝑖(0)βˆ₯).

IJNS email for contribution: [email protected]

S. Sivasankaran, V. Vijayakumar, M. M. Arjunan: Existence of Global Solutions for Impulsive Abstract Partial Neutral β‹… β‹… β‹… 419

Thus,

1 ≀[πΎπ‘ŽπΏπ‘”

(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +

∫ π‘Ž

0

β„‹(𝑠)𝑑𝑠)+ οΏ½οΏ½πΎπ‘Ž

π‘βˆ‘π‘–=1

𝐿𝑖 + οΏ½οΏ½πΎπ‘Ž limπ‘Ÿβ†’βˆž inf

π‘Š (π‘Ÿ)

π‘Ÿ

∫ π‘Ž

0

π‘š(𝑠)𝑑𝑠],

which is contrary to our assumptions.Let π‘Ÿ > 0 such that Ξ“(π΅π‘Ÿ(0, 𝑆(𝐼))) βŠ‚ π΅π‘Ÿ(0, 𝑆(𝐼)). It follows from the proof of Lemma 3.1 in [10] that Ξ“2 is

completely continuous in π΅π‘Ÿ(0, 𝑆(𝐼)). Moreover, the estimate

βˆ₯Ξ“1π‘’βˆ’ Ξ“1𝑣βˆ₯∞ ≀[πΎπ‘ŽπΏπΉ

(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +

∫ π‘Ž

0

β„‹(𝑠)𝑑𝑠)+ οΏ½οΏ½πΎπ‘Ž

π‘βˆ‘π‘–=1

𝐿𝑖

]βˆ₯π‘’βˆ’ 𝑣βˆ₯∞,

𝑒, 𝑣 ∈ π΅π‘Ÿ, shows that Ξ“1 is a contraction on π΅π‘Ÿ. Consequently, Ξ“ is a condensing operator from π΅π‘Ÿ into π΅π‘Ÿ. Then theexistence of a mild solution of (1.1)-(1.3) is a consequence of Theorem 3. This completes the proof.

4 Global solutionsIn this section, we study the existence of mild solutions for the impulsive problem

𝑑

𝑑𝑑(𝑒(𝑑) + 𝑔(𝑑, 𝑒𝑑)) = 𝐴𝑒(𝑑) + 𝑓(𝑑, 𝑒𝑑), 𝑑 ∈ 𝐼 = [0,∞), (7)

𝑒0 = πœ‘ ∈ ℬ (8)

Δ𝑒(𝑑𝑖) = 𝐼𝑖(𝑒𝑑𝑖), 0 < 𝑑1 < 𝑑2 < β‹… β‹… β‹… < 𝑑𝑛 < β‹… β‹… β‹… (9)

where (𝑑𝑖)π‘–βˆˆβ„• is an increasing sequence of positive numbers.Let β„Ž : [0,∞) β†’ [0,∞) be a positive, non-decreasing, continuous function such that β„Ž(0) = 1 and limπ‘‘β†’βˆž β„Ž(𝑑) =

+∞. In addition, suppose that the map (𝑑, 𝑠) β†’ 𝑇 (π‘‘βˆ’π‘ ) is uniformly bounded. Moreover, π’«π’ž([0,∞);𝕏) and (π’«π’žβ„Ž)0(𝕏)

denote the spaces

π’«π’ž([0,∞);𝑋) =

⎧⎨⎩π‘₯ : [0,∞) β†’ 𝑋 : π‘₯∣[0,π‘Ž]

∈ π’«π’ž, βˆ€π‘Ž ∈ (0,∞) βˆ– {𝑑𝑖 : 𝑖 ∈ β„•},π‘₯0 = 0,

βˆ₯π‘₯βˆ₯∞ = sup𝑑β‰₯0 βˆ₯π‘₯(𝑑)βˆ₯ <∞

⎫⎬⎭(π’«π’ž)0β„Ž(𝕏) =

{π‘₯ ∈ π’«π’ž([0,∞);𝕏) : lim

π‘‘β†’βˆžβˆ₯π‘₯(𝑑)βˆ₯β„Ž(𝑑)

= 0

},

endowed with the norms βˆ₯π‘₯βˆ₯∞ = sup𝑑β‰₯0 βˆ₯π‘₯(𝑑)βˆ₯ and βˆ₯π‘₯βˆ₯π’«π’žβ„Ž= sup𝑑β‰₯0

βˆ₯π‘₯(𝑑)βˆ₯β„Ž(𝑑) , respectively.

To get the next results, we need a very detailed knowledge of the relativity compact sets of the space (π’«π’ž)0β„Ž(𝕏). Wewill use the following result.

Lemma 8 A bounded set ℬ βŠ‚ (π’«π’ž)0β„Ž(𝕏) is relatively compact in (π’«π’ž)0β„Ž(𝕏) if, and only if:

(a) The set π΅π‘Ž = {π‘’βˆ£[0,π‘Ž]: 𝑒 ∈ 𝐡} is relatively compact in π’«π’ž([0, π‘Ž];𝕏), for all π‘Ž ∈ (0,∞) βˆ– {𝑑𝑖; 𝑖 ∈ β„•}.

(b) limπ‘‘β†’βˆžβˆ₯π‘₯(𝑑)βˆ₯β„Ž(𝑑) = 0, uniformly for π‘₯ ∈ 𝐡.

We introduce the following concept of global solution of system (4.1)-(4.3).

Definition 2 A function 𝑒 : ℝ β†’ 𝕏 is called a global solution of the problem (4.1)-(4.3), if the conditions (4.2) and (4.3)are verified; π‘’βˆ£[0,π‘Ž]

∈ π’«π’ž([0, π‘Ž];𝕏) for all π‘Ž ∈ (0,+∞) βˆ– {𝑑𝑖 : 𝑖 ∈ β„•} and

𝑒(𝑑) = 𝑇 (𝑑)(πœ™(0)+𝑔(0, πœ™)

)βˆ’π‘”(𝑑, 𝑒𝑑)βˆ’βˆ« 𝑑

0

𝐴𝑇 (π‘‘βˆ’π‘ )𝑔(𝑠, 𝑒𝑠)𝑑𝑠+∫ 𝑑

0

𝑇 (π‘‘βˆ’π‘ )𝑓(𝑠, 𝑒𝑠)𝑑𝑠+βˆ‘π‘‘π‘–<𝑑

𝑇 (π‘‘βˆ’π‘‘π‘–)𝐼𝑖(𝑒𝑑𝑖), 𝑑 ∈ 𝐼 = [0,∞).

(10)

IJNS homepage: http://www.nonlinearscience.org.uk/

420 International Journal of Nonlinear Science, Vol.11(2011), No.4, pp. 412-426

We have to prove the following theorem.

Theorem 9 Assume that the hypotheses (S1), (S2), (H2), (H3), (H6) and the condition (a) of Theorem 4 are valid in𝐼 = [0, π‘Ž] for all π‘Ž > 0. Suppose, in addition, that functions 𝑀(β‹…) and 𝐾(β‹…) given by Axiom (A) are bounded and thatthe following conditions hold.

(a) For all 𝐽 > 0, limπ‘‘β†’βˆž 1β„Ž(𝑑)

∫ 𝑑

0π‘š(𝑠)π‘Š (π½β„Ž(𝑠))𝑑𝑠 = 0.

(b) The function 𝑔 : 𝐼 ×ℬ β†’ 𝕐 is completely continuous and there exists a positive continuous function 𝑐1 : [0,∞) β†’[0,∞) with 𝑐1(𝑑) β†’ 0 when 𝑑 β†’ ∞ and a positive constant 𝑑2 such that βˆ₯𝑔(𝑑, πœ“)βˆ₯𝕐 ≀ 𝑐1(𝑑)βˆ₯πœ“βˆ₯ℬ + 𝑑2 for all𝑑 > 0, πœ“ ∈ ℬ and

limπ‘‘β†’βˆž

1

β„Ž(𝑑)

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)β„Ž(𝑠)𝑑𝑠 = 0.

(c) πœ‚ =(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)πΎβˆžπ‘1,∞ + sup𝑑β‰₯0𝐾∞

∫ 𝑑

0β„‹(π‘‘βˆ’ 𝑠)𝑐1(𝑠)𝑑𝑠

)< 1.

(d) ��𝐾∞1βˆ’πœ‚

∫∞0π‘š(𝑠)𝑑𝑠 <

βˆ«βˆžπ‘

1π‘Š (𝑠)𝑑𝑠, with

𝑐 = (1βˆ’ πœ‚)βˆ’1((��𝐾∞𝐻 +π‘€βˆž + ��𝐾∞βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)𝑐1,∞)βˆ₯πœ™βˆ₯ℬ + βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)𝐾∞(οΏ½οΏ½ + 1)𝑑2 + ��𝐾∞

βˆžβˆ‘π‘–=1

𝑁𝑖

+𝑑2𝐾∞∫ ∞

0

β„‹(𝑠)𝑑𝑠)<∞,

where 𝑐1,∞ = sup𝑑β‰₯0 𝑐1(𝑑), 𝐾∞ = sup𝑑β‰₯0𝐾(𝑑), π‘€βˆž = sup𝑑β‰₯0𝑀(𝑑).

Then there exists a global solution of (4.1)-(4.3).

Proof. Let 𝑦 : ℝ β†’ 𝕏 be the extension of πœ™ such that 𝑦(𝑑) = 𝑇 (𝑑)πœ™(0), 𝑑 β‰₯ 0 and 𝑆(∞) be the set defined by

𝑆(∞) ={π‘₯ : ℝ β†’ 𝕏 : π‘₯0 = 0 π‘Žπ‘›π‘‘ π‘₯∣[0,∞)

∈ π’«π’ž0β„Ž(𝕏)

},

endowed with the norm βˆ₯π‘₯βˆ₯π’«π’žβ„Ž= sup𝑑β‰₯0

βˆ₯π‘₯(𝑑)βˆ₯β„Ž(𝑑) and Ξ“ : 𝑆(∞) β†’ 𝑆(∞) be the operator defined by (Γ𝑒)0 = 0 and

Γ𝑒(𝑑) = 𝑇 (𝑑)𝑔(0, πœ™)βˆ’ 𝑔(𝑑, 𝑦𝑑 + 𝑒𝑑)βˆ’βˆ« 𝑑

0

𝐴𝑇 (π‘‘βˆ’ 𝑠)𝑔(𝑠, 𝑦𝑠 + 𝑒𝑠)𝑑𝑠+

∫ 𝑑

0

𝑇 (π‘‘βˆ’ 𝑠)𝑓(𝑠, 𝑦𝑠 + 𝑒𝑠)𝑑𝑠

+βˆ‘π‘‘π‘–<𝑑

𝑇 (π‘‘βˆ’ 𝑑𝑖)𝐼𝑖(𝑦𝑑𝑖 + 𝑒𝑑𝑖), 𝑑 β‰₯ 0.

Since βˆ₯𝑒(𝑑)βˆ₯ ≀ βˆ₯𝑒βˆ₯π’«π’žβ„Žβ„Ž(𝑑) for all 𝑑 β‰₯ 0, we have that

βˆ₯Γ𝑒(𝑑)βˆ₯β„Ž(𝑑)

≀ οΏ½οΏ½βˆ₯𝑔(0, πœ™)βˆ₯β„Ž(𝑑)

+βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)

[𝑐1(𝑑)𝐾∞βˆ₯𝑒βˆ₯π’«π’žβ„Ž

β„Ž(𝑑)]

β„Ž(𝑑)+

βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)[𝑐1(𝑑)(��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ + 𝑑2]

β„Ž(𝑑)+

οΏ½οΏ½

β„Ž(𝑑)

βˆžβˆ‘π‘–=1

𝑁𝑖

+1

β„Ž(𝑑)

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)(𝑐1(𝑠)(𝐾∞βˆ₯𝑒βˆ₯π’«π’žβ„Ž

+ (��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ) + 𝑑2

)β„Ž(𝑠)𝑑𝑠

+οΏ½οΏ½

β„Ž(𝑑)

∫ 𝑑

0

π‘š(𝑠)π‘Š ((𝐾∞βˆ₯𝑒βˆ₯π’«π’žβ„Ž+ (��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ)β„Ž(𝑠))𝑑𝑠,

so by (a) and (b), we have that Γ𝑒 ∈ 𝑆(∞).Next, we show that Ξ“(π΅π‘Ÿ), where π΅π‘Ÿ = π΅π‘Ÿ(0, (π’«π’ž)0β„Ž(𝕏)), satisfies the conditions of Lemma 2. To do this, we show

the continuity of the operator Ξ“. Let (𝑒𝑛)π‘›βˆˆβ„• be a sequence in 𝑆(∞) and 𝑒 ∈ 𝑆(∞) such that 𝑒𝑛 β†’ 𝑒 in 𝑆(∞). Take𝐢 = sup{βˆ₯𝑒𝑛βˆ₯π’«π’žβ„Ž

, βˆ₯𝑒βˆ₯π’«π’žβ„Ž; 𝑛 ∈ β„•}, 𝐽 = (��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ + 𝐢𝐾∞ and the function πœ‡ : [0,∞) β†’ ℝ defined

by πœ‡(𝑑) = 𝑐1(𝑑)𝐽 + 𝑑2. From the conditions (a), (b) and (c), there exists 𝐿1 > 0 such that

2

β„Ž(𝑑)

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)πœ‡(𝑠)β„Ž(𝑠)𝑑𝑠+2οΏ½οΏ½

β„Ž(𝑑)

∫ 𝑑

0

π‘š(𝑠)π‘Š (π½β„Ž(𝑠))𝑑𝑠+2οΏ½οΏ½

β„Ž(𝑑)

βˆžβˆ‘π‘–=1

𝑁𝑖 <πœ€

2,

IJNS email for contribution: [email protected]

S. Sivasankaran, V. Vijayakumar, M. M. Arjunan: Existence of Global Solutions for Impulsive Abstract Partial Neutral β‹… β‹… β‹… 421

for 𝑑 β‰₯ 𝐿1. From the proof of Theorem 4, we have that 𝑔(𝑑, 𝑒𝑛𝑑 + 𝑦𝑑) β†’ 𝑔(𝑑, 𝑒𝑑 + 𝑦𝑑) uniformly for 𝑑 ∈ [0, 𝐿1], when𝑛→ ∞. From Lebesgue’s Dominated Convergence Theorem, we can fix a positive number π‘πœ€ > 0 such that

1

β„Ž(𝑑)βˆ₯𝑔(𝑑, 𝑒𝑛𝑑 + 𝑦𝑑)βˆ’ 𝑔(𝑑, 𝑒𝑑 + 𝑦𝑑)βˆ₯+ οΏ½οΏ½

β„Ž(𝑑)

∫ 𝐿1

0

βˆ₯𝑓(𝑠, 𝑒𝑛𝑠 + 𝑦𝑠)βˆ’ 𝑓(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ₯𝑑𝑠

+1

β„Ž(𝑑)

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)βˆ₯𝑔(𝑠, 𝑒𝑛𝑠 + 𝑦𝑠)βˆ’ 𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠)βˆ₯𝑑𝑠

+οΏ½οΏ½

β„Ž(𝑑)

βˆ‘π‘‘π‘–β‰€πΏ1

βˆ₯𝐼𝑖(𝑒𝑛𝑑𝑖 + 𝑦𝑑𝑖)βˆ’ 𝐼𝑖(𝑒𝑑𝑖 + 𝑦𝑑𝑖)βˆ₯ <πœ€

2,

for all 𝑑 ∈ [0, 𝐿1] and 𝑛 β‰₯ π‘πœ€. Using the above inequality, for 𝑑 ∈ [0, 𝐿1] and 𝑛 β‰₯ π‘πœ€, we have that

sup

{βˆ₯Γ𝑒𝑛(𝑑)βˆ’ Γ𝑒(𝑑)βˆ₯β„Ž(𝑑)

: 𝑑 ∈ [0, 𝐿1], 𝑛 β‰₯ π‘πœ€

}≀ πœ€ (11)

On the other hand, for 𝑑 β‰₯ 𝐿1 and 𝑛 β‰₯ π‘πœ€, we get

βˆ₯Γ𝑒𝑛(𝑑)βˆ’ Γ𝑒(𝑑)βˆ₯β„Ž(𝑑)

≀ βˆ₯𝑔(𝑑, 𝑒𝑛𝑑 + 𝑦𝑑)βˆ’ 𝑔(𝑑, 𝑒𝑑 + 𝑦𝑑)βˆ₯β„Ž(𝑑)

+1

β„Ž(𝑑)

∫ 𝐿1

0

βˆ₯𝐴𝑇 (π‘‘βˆ’ 𝑠)(𝑔(𝑠, 𝑒𝑛𝑠 + 𝑦𝑠)βˆ’ 𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠))βˆ₯𝑑𝑠

+1

β„Ž(𝑑)

∫ 𝑑

𝐿1

βˆ₯𝐴𝑇 (π‘‘βˆ’ 𝑠)(𝑔(𝑠, 𝑒𝑛𝑠 + 𝑦𝑠)βˆ’ 𝑔(𝑠, 𝑒𝑠 + 𝑦𝑠))βˆ₯𝑑𝑠

+1

β„Ž(𝑑)

∫ 𝐿1

0

βˆ₯𝑇 (π‘‘βˆ’ 𝑠)(𝑓(𝑠, 𝑒𝑛𝑠 + 𝑦𝑠)βˆ’ 𝑓(𝑠, 𝑒𝑠 + 𝑦𝑠))βˆ₯𝑑𝑠+ 1

β„Ž(𝑑)

∫ 𝑑

𝐿1

βˆ₯𝑇 (π‘‘βˆ’ 𝑠)(𝑓(𝑠, 𝑒𝑛𝑠 + 𝑦𝑠)βˆ’ 𝑓(𝑠, 𝑒𝑠 + 𝑦𝑠))βˆ₯𝑑𝑠

+οΏ½οΏ½

β„Ž(𝑑)

βˆ‘π‘‘π‘–β‰€πΏ1

βˆ₯𝐼𝑖(𝑒𝑛𝑑𝑖 + 𝑦𝑑𝑖)βˆ’ 𝐼𝑖(𝑒𝑑𝑖 + 𝑦𝑑𝑖)βˆ₯+2οΏ½οΏ½

β„Ž(𝑑)

βˆ‘π‘‘π‘–β‰₯𝐿1

𝑁𝑖

≀ 2

β„Ž(𝑑)

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)πœ‡(𝑠)β„Ž(𝑠)𝑑𝑠+2οΏ½οΏ½

β„Ž(𝑑)

∫ 𝑑

0

π‘š(𝑠)π‘Š (π½β„Ž(𝑠))𝑑𝑠+2οΏ½οΏ½

β„Ž(𝑑)

βˆžβˆ‘π‘–=1

𝑁𝑖 +πœ€

2,

and thus

sup{βˆ₯Γ𝑒𝑛(𝑑)βˆ’ Γ𝑒(𝑑)βˆ₯

β„Ž(𝑑): 𝑑 β‰₯ 𝐿1, 𝑛 β‰₯ π‘πœ€

}≀ πœ€. (12)

Using inequalities (4.5) and (4.6), we conclude that Ξ“ is continuous.Next, we prove that the set Ξ“(π΅π‘Ÿ) is relatively compact. Let π‘Ÿ > 0 be a positive real number, 𝐽 = (��𝐾∞𝐻 +

π‘€βˆž)βˆ₯πœ™βˆ₯ℬ + π‘ŸπΎβˆž. From the proof of Theorem 4, it follows that the set Ξ“(π΅π‘Ÿ)∣[0,π‘Ž] = {Ξ“π‘’βˆ£[0,π‘Ž] : 𝑒 ∈ π΅π‘Ÿ} is relativelycompact in π’«π’ž([0, π‘Ž];𝕏) for all π‘Ž ∈ (0,∞) βˆ– {𝑑𝑖, 𝑖 ∈ β„•}. Moreover, for π‘₯ ∈ π΅π‘Ÿ, we have that

βˆ₯Γ𝑒(𝑑)βˆ₯β„Ž(𝑑)

≀ 1

β„Ž(𝑑)[οΏ½οΏ½βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(𝑐1(0)βˆ₯πœ™βˆ₯ℬ + 𝑑2)] +

1

β„Ž(𝑑)

(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)𝑐1(𝑑)π½β„Ž(𝑑) + 𝑑2)

+οΏ½οΏ½

β„Ž(𝑑)

∫ 𝑑

0

π‘š(𝑠)π‘Š (π½β„Ž(𝑠))𝑑+οΏ½οΏ½

β„Ž(𝑑)

βˆžβˆ‘π‘–=1

𝑁𝑖 +1

β„Ž(𝑑)

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)(𝑐1(𝑠)π½β„Ž(𝑠) + 𝑑2

)𝑑𝑠

≀ 1

β„Ž(𝑑)[οΏ½οΏ½βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(𝑐1(0)βˆ₯πœ™βˆ₯ℬ + 𝑑2)] +

𝐽𝑐1,βˆžβ„Ž(𝑑)

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)β„Ž(𝑠)𝑑𝑠+𝑑2β„Ž(𝑑)

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)𝑑𝑠+ βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(𝑐1(𝑑)𝐽

+𝑑2β„Ž(𝑑)

)+

οΏ½οΏ½

β„Ž(𝑑)

∫ 𝑑

0

π‘š(𝑠)π‘Š (π½β„Ž(𝑠))𝑑𝑠+οΏ½οΏ½

β„Ž(𝑑)

βˆžβˆ‘π‘–=1

𝑁𝑖,

(13)

which enables us to conclude that βˆ₯Γ𝑒(𝑑)βˆ₯β„Ž(𝑑) β†’ 0, when 𝑑→ ∞, uniformly for π‘₯ ∈ π΅π‘Ÿ.

By Lemma 4.1, we infer that Ξ“(π΅π‘Ÿ) is relatively compact in (π’«π’ž)0β„Ž(𝕏). Thus, Ξ“ is completely continuous. To finishthe proof, we need to obtain an π‘Ž π‘π‘Ÿπ‘–π‘œπ‘Ÿπ‘– estimate for the solutions of the integral equations πœ†Ξ“π‘’ = 𝑒, πœ† ∈ (0, 1). To this

IJNS homepage: http://www.nonlinearscience.org.uk/

422 International Journal of Nonlinear Science, Vol.11(2011), No.4, pp. 412-426

end, let π‘’πœ† be the solution of the equation πœ†Ξ“π‘’πœ† = π‘’πœ†. For 𝑑 β‰₯ 0, we have that

βˆ₯π‘’πœ†(𝑑)βˆ₯ ≀ βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)[𝑐1,∞

((οΏ½οΏ½(1 +𝐾∞𝐻) +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ +𝐾∞βˆ₯π‘’πœ†βˆ₯𝑑

)]+ βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)(οΏ½οΏ½ + 1)𝑑2

+

∫ 𝑑

0

β„‹(π‘‘βˆ’ 𝑠)(𝑐1(𝑠)((��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ +𝐾∞βˆ₯π‘’πœ†βˆ₯𝑠) + 𝑑2

)𝑑𝑠

+οΏ½οΏ½

∫ 𝑑

0

π‘š(𝑠)π‘Š ((��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ +𝐾∞βˆ₯π‘’πœ†βˆ₯𝑠)𝑑𝑠+ οΏ½οΏ½βˆžβˆ‘π‘–=1

𝑁𝑖.

Puttingπ›Ώπœ†(𝑑) = (��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ +𝐾∞βˆ₯π‘’πœ†βˆ₯𝑑,

we have that

π›Ώπœ†(𝑑) ≀ (1βˆ’ πœ‚)βˆ’1((��𝐾∞𝐻 +π‘€βˆž + ��𝐾∞βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)𝑐1,∞)βˆ₯πœ™βˆ₯ℬβˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)𝐾∞(οΏ½οΏ½ + 1)𝑑2 + 𝑑2𝐾∞

∫ ∞

0

β„‹(𝑠)𝑑𝑠

+��𝐾∞∫ 𝑑

0

π‘š(𝑠)π‘Š (π›Ώπœ†(𝑠))𝑑𝑠+ οΏ½οΏ½πΎβˆžβˆžβˆ‘π‘–=1

𝑁𝑖

),

where πœ‚ =(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)πΎβˆžπ‘1,∞ + sup𝑑β‰₯0𝐾∞

∫ 𝑑

0β„‹(𝑑 βˆ’ 𝑠)𝑐1(𝑠)𝑑𝑠

). Denoting the right-hand side of the previous

expression as π›½πœ†(𝑑), we see that

π›½β€²πœ†(𝑑) ≀

��𝐾∞1βˆ’ πœ‚

π‘š(𝑑)π‘Š (π›½πœ†(𝑑)),

and subsequently, upon integrating over [0, 𝑑], we obtain∫ π›½πœ†(𝑑)

π›½πœ†(0)

𝑑𝑠

π‘Š (𝑠)≀ ��𝐾∞

1βˆ’ πœ‡

∫ π‘Ž

0

π‘š(𝑠)𝑑𝑠 β‰€βˆ« ∞

𝑐

𝑑𝑠

π‘Š (𝑠)

The above inequality together with condition (d) enables us to conclude that the set of functions {π‘’πœ† : π‘’πœ† = πœ†Ξ“π‘’πœ†} isbounded in π’«π’ž([0,∞);𝕏). Note that, if π‘₯ ∈ π’«π’ž([0,∞);𝕏), then βˆ₯π‘₯βˆ₯π’«π’žβ„Ž

≀ βˆ₯π‘₯βˆ₯∞. This allows us to conclude that theset {π‘’πœ† : π‘’πœ† = πœ†Ξ“π‘’πœ†, πœ† ∈ (0, 1)} is bounded in 𝑆(∞). Finally, from Theorem 2 we infer the existence of a fixed pointof Ξ“, and consequently, the existence of a global solution of (4.1)-(4.3). This completes the proof.

If we suppose that the functions 𝐼𝑖, 𝑖 ∈ β„• are Lipschitz continuous, then we have the following result.

Theorem 10 Suppose that the hypotheses (S1), (S2), (H2), (H4) and (H6) are valid for all π‘Ž > 0. Assume also thatcondition (a) of Theorem 4 and condition (b) of Theorem 6 are satisfied and that

βˆ‘βˆžπ‘–=1 βˆ₯𝐼𝑖(0)βˆ₯ < +∞. If

𝑐1,∞𝐾∞(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +

∫ ∞

0

β„‹(𝑠)𝑑𝑠)+𝐾∞��

βˆžβˆ‘π‘–=1

𝐿𝑖 + lim infπ‘Ÿβ†’βˆž οΏ½οΏ½

∫ ∞

0

π‘š(𝑠)π‘Š (𝑇 (π‘Ÿ, 𝑠))

π‘Ÿπ‘‘π‘  < 1 (14)

where 𝑇 (π‘Ÿ, 𝑠) = (��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯𝐡 +πΎβˆžπ‘Ÿβ„Ž(𝑠), then there exists a global solution of the problem (4.1)-(4.3).

Proof. Let Ξ“ be the operator introduced in the Theorem 6 and consider the decomposition Ξ“ = Ξ“1+Ξ“2, where (Γ𝑖𝑒)0 = 0,𝑖 = 1, 2, and

Ξ“1𝑒(𝑑) = 𝑇 (𝑑)𝑔(0, πœ™)βˆ’ 𝑔(𝑑, 𝑦𝑑 + 𝑒𝑑)βˆ’βˆ« 𝑑

0

𝐴𝑇 (π‘‘βˆ’ 𝑠)𝑔(𝑠, 𝑦𝑠 + 𝑒𝑠)𝑑𝑠+

∫ 𝑑

0

𝑇 (π‘‘βˆ’ 𝑠)𝑓(𝑠, 𝑦𝑠 + 𝑒𝑠)𝑑𝑠, 𝑑 β‰₯ 0,

Ξ“2𝑒(𝑑) =βˆ‘π‘‘π‘–<𝑑

𝑇 (π‘‘βˆ’ 𝑑𝑖)𝐼𝑖(𝑦𝑑𝑖 + 𝑒𝑑𝑖), 𝑑 β‰₯ 0.

Proceeding as in the proof of the Theorem 6, we infer that the map Ξ“1 is completely continuous. Moreover, it is easy tosee that

βˆ₯Ξ“2π‘’βˆ’ Ξ“2𝑣βˆ₯π’«π’žβ„Žβ‰€ ��𝐾∞

βˆžβˆ‘π‘–=1

𝐿𝑖βˆ₯π‘’βˆ’ 𝑣βˆ₯π’«π’žβ„Ž, 𝑒, 𝑣 ∈ 𝑆(∞),

IJNS email for contribution: [email protected]

S. Sivasankaran, V. Vijayakumar, M. M. Arjunan: Existence of Global Solutions for Impulsive Abstract Partial Neutral β‹… β‹… β‹… 423

which implies that Ξ“2 is a contraction in 𝑆(∞). We prove that there is π‘Ÿ > 0 such that Ξ“π΅π‘Ÿ βŠ‚ π΅π‘Ÿ, where π΅π‘Ÿ =π΅π‘Ÿ(0, 𝑆(∞)). In fact, if we assume that the assertion is false, then, for every π‘Ÿ > 0, there exists π‘’π‘Ÿ ∈ π΅π‘Ÿ and π‘‘π‘Ÿ β‰₯ 0 suchthat βˆ₯Ξ“π‘’π‘Ÿ(𝑑

π‘Ÿ)β„Ž(π‘‘π‘Ÿ) βˆ₯ > π‘Ÿ. This yields that

π‘Ÿ ≀ 1

β„Ž(π‘‘π‘Ÿ)οΏ½οΏ½βˆ₯𝑔(0, πœ™)βˆ₯+ οΏ½οΏ½

β„Ž(π‘‘π‘Ÿ)

βˆ‘π‘‘π‘–<π‘‘π‘Ÿ

βˆ₯𝐼𝑖(π‘’π‘Ÿπ‘‘π‘– + 𝑦𝑑𝑖)βˆ₯+βˆ₯𝑔(π‘‘π‘Ÿ, π‘’π‘Ÿπ‘‘π‘Ÿ + π‘¦π‘‘π‘Ÿ )βˆ₯

β„Ž(π‘‘π‘Ÿ)

+1

β„Ž(π‘‘π‘Ÿ)

∫ π‘‘π‘Ÿ

0

βˆ₯𝐴𝑇 (π‘‘π‘Ÿ βˆ’ 𝑠)βˆ₯β„’(𝕐,𝕏)βˆ₯𝑔(𝑠, π‘’π‘Ÿπ‘  + 𝑦𝑠)βˆ₯𝕐𝑑𝑠+ 1

β„Ž(π‘‘π‘Ÿ)

∫ π‘‘π‘Ÿ

0

οΏ½οΏ½βˆ₯𝑓(𝑠, π‘’π‘Ÿπ‘  + 𝑦𝑠)βˆ₯𝑑𝑠

≀ 1

β„Ž(π‘‘π‘Ÿ)οΏ½οΏ½βˆ₯𝑔(0, πœ™)βˆ₯+ βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)𝑐1,∞((��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ +πΎβˆžπ‘Ÿβ„Ž(π‘‘π‘Ÿ))

β„Ž(π‘‘π‘Ÿ)

+1

β„Ž(π‘‘π‘Ÿ)

∫ π‘‘π‘Ÿ

0

β„‹(π‘‘π‘Ÿ βˆ’ 𝑠)[𝑐1,∞((��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ +πΎβˆžπ‘Ÿβ„Ž(𝑠)) + 𝑑2

]𝑑𝑠

+1

β„Ž(π‘‘π‘Ÿ)

∫ π‘‘π‘Ÿ

0

οΏ½οΏ½π‘š(𝑠)π‘Š ((��𝐾∞𝐻 +π‘€βˆž)βˆ₯πœ™βˆ₯ℬ +πΎβˆžπ‘Ÿβ„Ž(𝑠))𝑑𝑠

+οΏ½οΏ½

β„Ž(π‘‘π‘Ÿ)

βˆžβˆ‘π‘–=1

𝐿𝑖((��𝐾∞𝐻)βˆ₯πœ™βˆ₯+πΎβˆžπ‘Ÿβ„Ž(𝑑𝑖)) +βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏)𝑑2

β„Ž(π‘‘π‘Ÿ)+

οΏ½οΏ½

β„Ž(π‘‘π‘Ÿ)

βˆžβˆ‘π‘–=1

βˆ₯𝐼𝑖(0)βˆ₯,

which implies that

1 ≀ 𝑐1,∞𝐾∞(βˆ₯𝑖𝑐βˆ₯β„’(𝕐,𝕏) +

∫ ∞

0

β„‹(𝑠)𝑑𝑠)+𝐾∞��

βˆžβˆ‘π‘–=1

𝐿𝑖 + lim infπ‘Ÿβ†’βˆž οΏ½οΏ½

∫ ∞

0

π‘š(𝑠)π‘Š (𝑇 (π‘Ÿ, 𝑠))

π‘Ÿπ‘‘π‘ ,

which is contrary to our assumptions. This prove that there exists π‘Ÿ > 0 such that Ξ“ is a condensing operator from π΅π‘Ÿ intoπ΅π‘Ÿ. This completes the proof.

5 An applicationLet 𝕏 = 𝐿2([0, πœ‹]) be the space of functions which are square integrable and ℬ = π’«π’žπ‘Ÿ Γ— 𝐿2(𝑔,𝕏). Now, we considerthe operator 𝐴 : 𝐷(𝐴) βŠ‚ 𝕏 β†’ 𝕏 defined by 𝐴π‘₯ = π‘₯β€²β€², where

𝐷(𝐴) = {π‘₯ ∈ 𝕏 : π‘₯β€²β€² ∈ 𝕏, π‘₯(0) = π‘₯(πœ‹) = 0}.Is well known that 𝐴 is the infinitesimal generator of an analytic and compact semigroup (𝑇 (𝑑))𝑑β‰₯0 on 𝕏. Furthermore,𝐴 has a discrete spectrum, the eigenvalues are βˆ’π‘›2, 𝑛 ∈ β„•, with corresponding normalized eigenfunctions 𝑧𝑛(πœ‰) =( 2πœ‹ )

1/2𝑠𝑖𝑛(π‘›πœ‰), and the following properties hold.

(a) {𝑧𝑛 : 𝑛 ∈ β„•} is an orthonormal basis for 𝕏.

(b) If π‘₯ ∈ 𝐷(𝐴) then 𝐴π‘₯ = βˆ’βˆ‘βˆžπ‘›=1 𝑛

2⟨π‘₯, π‘§π‘›βŸ©π‘§π‘›.

(c) For π‘₯ ∈ 𝕏, 𝑇 (𝑑)π‘₯ =βˆ‘βˆž

𝑛=1 π‘’βˆ’π‘›2π‘‘βŸ¨π‘₯, π‘§π‘›βŸ©π‘§π‘›. In particular, we have that (𝑇 (𝑑))𝑑β‰₯0 is a uniformly stable semigroup

with βˆ₯𝑇 (𝑑)βˆ₯ ≀ π‘’βˆ’π‘‘ for all 𝑑 β‰₯ 0. Moreover, it is possible to define the fractional power of 𝐴; see e.g. [5, 15, 20].

(d) For each π‘₯ ∈ 𝕏 and each 𝛽 ∈ (0, 1), (βˆ’π΄)βˆ’π›½π‘₯ =βˆ‘π‘›

𝑖=11

𝑛2𝛽 ⟨π‘₯, π‘§π‘›βŸ©π‘§π‘›. In particular, βˆ₯(βˆ’π΄)βˆ’1/2βˆ₯ = 1.

(e) For each π‘₯ ∈ 𝕏 and 𝛽 ∈ (0, 1), (βˆ’π΄)𝛽π‘₯ =βˆ‘π‘›

𝑖=1 𝑛2π›½βŸ¨π‘₯, π‘§π‘›βŸ©π‘§π‘›. Moreover,

𝐷((βˆ’π΄)𝛽) ={π‘₯ : π‘₯ ∈ 𝕏,

π‘›βˆ‘π‘–=1

𝑛2π›½βŸ¨π‘₯, 𝑧𝑛𝑧𝑛 ∈ 𝕏

}.

Consider the impulsive partial neutral differential system,

βˆ‚

βˆ‚π‘‘

[𝑀(𝑑, πœ‰) +

∫ 𝑑

βˆ’βˆž

∫ πœ‹

0

π‘Ž1(𝑑)𝑏(π‘ βˆ’ 𝑑, πœ‚, πœ‰)𝑀(πœ‰, 𝑠)π‘‘πœ‚π‘‘π‘ ]=

βˆ‚2

βˆ‚πœ‰2𝑀(𝑑, πœ‰) + 𝑣(𝑑, 𝑀(𝑑, πœ‰))𝑑 β‰₯ 0, 0 ≀ πœ‰ ≀ πœ‹, (15)

IJNS homepage: http://www.nonlinearscience.org.uk/

424 International Journal of Nonlinear Science, Vol.11(2011), No.4, pp. 412-426

𝑀(𝑑, 0) = 𝑀(𝑑, πœ‹) = 0, 𝑑 β‰₯ 0, (16)

𝑀(𝜏, πœ‰) = πœ‘(𝜏, πœ‹), 𝜏 ≀ 0, 0 ≀ πœ‰ ≀ πœ‹, (17)

Δ𝑀(𝑑𝑖, β‹…) = 𝑀(𝑑+𝑖 , β‹…)βˆ’ 𝑀(β‹…, π‘‘βˆ’π‘– ) =∫ πœ‹

0

𝑝𝑖(πœ‰, 𝑀(𝑑𝑖, 𝑠))𝑑𝑠, (18)

where (𝑑𝑖)π‘–βˆˆβ„• is a strictly increasing sequence of positive real numbers. To treat this system, we assume the followingconditions.

(a)βˆ— The functions 𝑣 : ℝ Γ— ℝ β†’ ℝ, is continuous and there is a continuous and integrable function π‘š : ℝ β†’ [0,∞)such that

βˆ£π‘£(𝑑, π‘₯)∣ ≀ π‘š(𝑑)(∣π‘₯∣), 𝑑 β‰₯ 0, π‘₯ ∈ ℝ.

(b)βˆ— The function π‘Ž1 : ℝ β†’ [0,∞) is continuous and lim𝑑→+∞ π‘Ž1(𝑑) = 0.

(c)βˆ— The functions 𝑏(𝑠, πœ‚, πœ‰), βˆ‚βˆ‚πœ‰ 𝑏(𝑠, πœ‚, πœ‰) are integrable, 𝑏(𝑠, πœ‚, πœ‹) = 𝑏(𝑠, πœ‚, 0) = 0 and

𝐿𝐹 = sup

{∫ πœ‹

0

∫ 0

βˆ’βˆž

∫ πœ‹

0

(1

𝑔(𝑠)

βˆ‚π‘–π‘(𝑠, πœ‚, πœ‰)

βˆ‚πœ‰π‘–π‘‘πœ‚π‘‘π‘ π‘‘πœ‰

)2

: 𝑖 = 0, 1

}< +∞.

(d)βˆ— The functions 𝑝𝑖 : [0, πœ‹]Γ— ℝ β†’ ℝ, 𝑖 ∈ β„•, are continuous and there are positive constants 𝐿𝑖 such that

βˆ£π‘π‘–(πœ‰, 𝑠)βˆ’ 𝑝𝑖(πœ‰, 𝑠)∣ ≀ πΏπ‘–βˆ£π‘ βˆ’ π‘ βˆ£, πœ‰ ∈ [0, πœ‹], 𝑠, 𝑠 ∈ ℝ.

We now define the functions 𝑔, 𝑓 : [0,∞)Γ— ℬ β†’ 𝕏, 𝐼𝑖 : 𝕏 β†’ 𝕏 by

𝑔(𝑑, πœ™)(πœ‰) =

∫ 0

βˆ’βˆž

∫ πœ‹

0

π‘Ž1(𝑑)𝑏(𝑠, πœ‚, πœ‰)πœ™(𝑠, πœ‚)π‘‘πœ‚π‘‘π‘ , 𝑑 β‰₯ 0, πœ‰ ∈ [0, πœ‹],

𝑓(𝑑, πœ™)(πœ‰) = 𝑣(𝑑, πœ™(0, πœ‰)) 𝑑 β‰₯ 0, πœ‰ ∈ [0, πœ‹],

𝐼𝑖(πœ™)(πœ‰) =

∫ πœ‹

0

𝑝𝑖(πœ‰, πœ™(0, 𝑠))𝑑𝑠, 𝑖 ∈ β„•, πœ‰ ∈ [0, πœ‹],

and

𝕐 = 𝐷(𝐴1/2) =

{π‘₯(β‹…) ∈ 𝕏 :

βˆžβˆ‘π‘–=1

𝑛 < π‘₯, 𝑧𝑛 > 𝑧𝑛 ∈ 𝕏

}.

Using the properties of semigroup (𝑇 (𝑑))𝑑β‰₯0, we have that 𝕐 verifies the conditions (H1) (H2) and (H3). Moreover, inthis case

βˆ₯(βˆ’π΄) 12𝑇 (𝑑)βˆ₯𝕏 ≀ 𝑒

βˆ’π‘‘2 𝑑

βˆ’12√

2, π‘“π‘œπ‘Ÿ 𝑑 > 0.

It easy to see that problem (5.1)-(5.4) can be modeled as the abstract impulsive Cauchy problem (4.1)-(4.3).The next result follows directly from Theorem 7.

Proposition 11 Assume that the previous conditions hold. Moreover, suppose thatβˆ‘βˆž

𝑖=1[∫ πœ‹

0βˆ£π‘π‘–(πœ‰, 0)∣2π‘‘πœ‰]1/2 <∞. If

𝐾∞[𝐿𝑔

(1 + Ξ“(1/2)

)+ οΏ½οΏ½

∫ ∞

0

π‘š(𝑠)𝑑𝑠+

βˆžβˆ‘π‘–=1

𝐿𝑖

]< 1,

where Ξ“(β‹…) : (0,∞) β†’ ℝ denotes the Gamma function and 𝑐1,∞ = 𝐿1/2 sup𝑑β‰₯0 π‘Ž1(𝑑), then there is a global solution ofthe impulsive system (5.1)-(5.4).

IJNS email for contribution: [email protected]

S. Sivasankaran, V. Vijayakumar, M. M. Arjunan: Existence of Global Solutions for Impulsive Abstract Partial Neutral β‹… β‹… β‹… 425

AcknowledgmentsThe author V. Vijayakumar would like to thank Dr. V. Palanisamy, Principal and Dr. Chitra Manohar, Secretary, InfoInstitute of Engineering, Coimbatore, for their constant encouragements and support rendered to him during his researchwork.

References[1] A. Anguraj, M. Mallika Arjunan and E. Hernandez, Existence results for an impulsive neutral functional differ-

ential equation with state-dependent delay, Applicable Analysis, 86(7)(2007):861-872.[2] Y.K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for non-densely defined neutral impulsive

differential inclusions with nonlocal conditions, J. Appl. Math. Comput.,28(2008):79-91.[3] Y.K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential

equations with infinite delay, Nonlinear Anal.: Hybrid Systems, 2(1)(2008):209-218.[4] C. Cuevas, E. Hernandez and M. Rabelo, The existence of solutions for impulsive neutral functional differential

equations, Comput. Math. Appl., 58(2009):744-757.[5] T. Diagana, E. Hernandez and M. Rabello, Psuedo almost periodic solutions to some non-autonomous neutral

functional differential equations with unbounded delay, Math. Comput. Model., 45(2007):1241-1252.[6] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York (2003).[7] E. Hernandez and S. M. Tanaka Aki, Global solutions for abstract functional differential equations with nonlocal

conditions, Elect. J. Qualitative Theory of Differential Equations, 50(2009):1-8.[8] E. Hernandez, S. M. Tanaka Aki and H.R. HenrΔ±quez, Global solutions for abstract impulsive partial differential

equations, Comput. Math. Appl. , 56(2008):1206-1215.[9] E. Hernandez, M. Pierri and G. Goncalves, Existence results for an impulsive abstract partial differential equa-

tions with state-dependent delay, Comput. Math. Appl. 52(2006):411-420.[10] E. Hernandez and M. Mckibben, Some comments on: β€œExistence of solutions of abstarct nonlinear second-

order neutral functional integrodifferential equations” Comput. Math. Appl.50(2005):655-669.[11] E. Hernandez, Global solutions for abstract neutral differential equations, Nonlinear Anal.,72(2010):2210-2218.[12] E. Hernandez, Global solutions for abstract impulsive neutral differential equations, Math. Comput. Model.,

53(2011):196-204.[13] E. Hernandez, Global solutions for abstract impulsive differential equations, Nonlinear Anal.,72(2010):1280-

1290.[14] E. Hernandez and H.R. HenrΔ±quez, Impulsive partial neutral differential equations, Appl. Math. Lett.,

19(2006):215-222.[15] E. Hernandez, M. Rabello and H.R. Henriquez, Existence of solutions for impulsive partial neutral functional

differential equations, J. Math. Anal. Appl., 331(2007):1135-1158.[16] Y. Hino, S. Murakami and T. Naito, In Functional-differential equations with infinite delay, Lecture notes in

Mathematics, 1473, Springer-Verlog, Berlin (1991).[17] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Sci-

entific, Singapore, 1989.[18] J. H. Liu, Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Sys., 6(1999):77-85.[19] J. Liang, J.H. Liu and Ti-Jun Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach

spaces, Math. Comput. Model., 49(2009):798-804.[20] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, in: Progress in nonlinear

differential equations and their applications, Vol. 16, Brikhaauser Verlag, Basel, (1995).[21] M. Mallika Arjunan and V. Kavitha, Existence results for impulsive neutral functional differential equation with

state-dependent delay, Elect. J. Qualitative Theory of Differential Equations,26(2009):1-13.[22] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Robert E. Krieger Publ. Co.,

Florida (1987).[23] K. Nakagawa, Existence of a global solution for an impulsive semilinear parabolic equation and its asymptotic

behaviour, Commun. Appl. Anal., 4(3)(2000):403-409.[24] K. Nakagawa, Asymptotic behaviour of solutions of an impulsive semilinear parabolic Cauchy problem, Pro-

ceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, 1997), VSP, Utrecht(1998):335-340.

IJNS homepage: http://www.nonlinearscience.org.uk/

426 International Journal of Nonlinear Science, Vol.11(2011), No.4, pp. 412-426

[25] S. K. Ntouyas and P. Tsamatos, Global existence for semilinear evolution equations with nonlocal conditions,J. Math. Anal. Appl., 210(1997):679-687.

[26] A. Ouahab, Local and global existence and uniqueness results for impulsive functional differential equationswith multiple delay, J. Math. Anal. Appl., (1)(2006):456-472.

[27] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathemat-ical Sciences, 44, Springer-Verlag, New York-Berlin (1983).

[28] M. Rabelo, Existence of periodic solutions for neutral differential equations, Ph.D. Thesis, Universidade de SaoPaulo, Brazil, 2007.

[29] Y. V. Rogovchenko, Impulsive evolution systems: Main results and new trends, Dynam. Contin. Discrete Im-puls. Syst., 3(1)(1997):57-88.

[30] Y. V. Rogovchenko, Nonlinear impulsive evolution systems and application to population models, J. Math.Anal. Appl., 207(2)(1997): 300-315.

[31] A. M. Samoilenko and N.A. Perestyuk; Impulsive Differential Equations, World Scientific, Singapore, 1995.[32] J. Shen, X. Liu, Global existence results for impulsive differential equations, J. Math. Anal. Appl.,314

(2)(2006):546-557.[33] S. Sivasankaran, M. Mallika Arjunan and V. Vijayakumar, Existence of global solutions for impulsive functional

differential equations with nonlocal conditions, J. Nonlinear Sci. Appl., 4(2)(2011):102-114.[34] Zhiguo Luo, Jianhua Shen, Global existence results for impulsive functional differential equations, J. Math.

Anal. Appl.,323(1)(2003: 644-653.

IJNS email for contribution: [email protected]