Étude de l'implication de l'acide lysophosphatidique par

273
© Stephan Hasse, 2021 Étude de l'implication de l'acide lysophosphatidique par la production de vésicules extracellulaires vasculaires dans les dommages associés aux maladies rhumatismales auto-immunes systémiques Thèse Stephan Hasse Doctorat en microbiologie-immunologie Philosophiæ doctor (Ph. D.) Québec, Canada

Transcript of Étude de l'implication de l'acide lysophosphatidique par

© Stephan Hasse, 2021

Étude de l'implication de l'acide lysophosphatidique par la production de vésicules extracellulaires vasculaires

dans les dommages associés aux maladies rhumatismales auto-immunes systémiques

Thèse

Stephan Hasse

Doctorat en microbiologie-immunologie

Philosophiæ doctor (Ph. D.)

Québec, Canada

ii

Résumé

L’acide lysophosphatidique (LPA) est un lipide bioactif qui est formé dans le sang par

l’autotaxine. Le LPA est un médiateur important du système vasculaire, notamment par sa

modulation de l’immunité et de l’inflammation. Plusieurs espèces moléculaires de LPA

existent en fonction de leur acide gras. Les espèces moléculaires de LPA ont des affinités

différentes pour les récepteurs aux LPA. Il en résulte que les espèces moléculaires de LPA

peuvent avoir des effets différents, même si elles ciblent une même cellule.

Parmi ses nombreux effets, le LPA induit l’activation des plaquettes et est le seul activateur

endogène connu des globules rouges (GR). L’activation des plaquettes et des GR induit la

libération de vésicules extracellulaires (EV). Les EV de plaquettes (PEV) et les EV de GR

(REV) ont des effets pro-inflammatoires et sont des acteurs importants de la coagulation.

Le LPA est connu pour promouvoir la pathophysiologie de la polyarthrite rhumatoïde (PAR),

une maladie rhumatismale auto-immune systémique (MRAS). Les patients touchés par les

MRAS comme la PAR ou le lupus érythémateux disséminé (LED) présentent une

inflammation vasculaire importante et sont plus à même de développer des maladies

cardiovasculaires comme l’athérosclérose. Les maladies cardiovasculaires sont la première

cause de mortalité chez ces patients. Le LPA et les EV promeuvent tous deux l’inflammation

vasculaire et le développement de maladies cardiovasculaires. Ils sont également impliqués

dans la coagulation. L’hypothèse à l’origine des travaux de cette thèse est que le LPA via

l’activation des GR peut promouvoir l’inflammation vasculaire et participer aux dommages

vasculaires associés aux MRAS comme l’athérosclérose et la thrombose.

Dans cette thèse, nous avons d’abord étudié l’action des principales espèces moléculaires de

LPA trouvées dans le plasma sur les GR. Par des approches de cytométrie en flux à haute

sensibilité, nous avons montré que certaines espèces moléculaires de LPA induisent

l’exposition de la phosphatidylsérine (PS) par les GR et la libération de REV PS- et PS+

similaire à celles trouvées dans le plasma de patients LED. Cependant, d’autres espèces

moléculaires de LPA inhibent l’activation des GR. J’ai établi les principales voies de

signalisation impliquées dans l’activation et l’inhibition des GR. De plus, nous avons mis en

iii

évidence que, même si elle est possible dans le plasma, l’activation des GR par le LPA

dépend de son environnement.

Notre deuxième focus était centré les potentielles associations entre l’autotaxine et les EV

avec le risque de thrombose et le développement de l’athérosclérose chez des patients LED.

Nous avons montré que l’autotaxine n’était pas augmentée ni associée avec l’activité de la

maladie chez les patients LED. Et bien que les patients LED présentaient des quantités très

importantes de PEV et de REV, elles n’étaient pas associées avec l’activité de la maladie.

Cependant, les quantités de REV PS+ sont associées avec un risque plus élevé de thrombose

chez les patients SLE. De plus, le groupe de patients avec des quantités élevées de REV PS+

présentait également des concentration d’autotaxine plasmatique plus élevées.

Le travail présenté dans cette thèse approfondit la compréhension de l’effet du LPA sur

l’activation des GR et leur libération de REV. Il met également en évidence l’implication

potentielle du LPA et des REV dans les thromboses associées aux patients MRAS.

iv

Abstract

The lysophosphatidic acid (LPA) is a bioactive lipid which is formed by autotaxin in blood.

LPA is an important mediator in the vascular system mainly through its modulation of

immunity and inflammation. Several LPA species exist depending on the fatty acid. LPA

species varies in their affinity for the LPA receptors, which means that LPA species may

have different effects, even if they target a same cell.

Among its numerous biological actions, LPA induces platelet activation and is the only

known endogenous activator of red blood cells (RBCs). Both platelet and RBC activation

lead to the liberation of extracellular vesicles (EVs). Platelet EVs (PEVs) and RBC EVs

(REVs) are the two main populations of EVs found in blood. Both PEVs and REVs have

been described as pro-inflammatory mediators and are important actors of the coagulation.

LPA is a known promoter of the pathophysiology of rheumatoid arthritis (RA), a systemic

autoimmune rheumatic disease (SARD). Patients affected by SARDs such as RA and

systemic lupus erythematosus (SLE) present high vascular inflammation and are more prone

to develop cardiovascular diseases for instance atherosclerosis. Cardiovascular diseases are

the first cause of mortality for these patients. LPA and EVs are two mediators which

promotes vascular inflammation and the development of cardiovascular diseases. Also, both

are pro-coagulant factors. The hypothesis driving this thesis is that LPA through the

activation of RBCs promotes vascular inflammation and participate to the vascular damages

associated with MRAS patients such as atherosclerosis and thrombosis.

In this thesis, we first focused our interest to study the action of major blood LPA species on

RBCs. Through high sensitivity flow cytometry, we found that some LPA species induces

the exposition of phosphatidylserine (PS) by RBCs and the liberation of PS- and PS+ REVs

similar to those found in the plasma of LED patients. However, other species were inhibitors

of RBC activation. We have established the main LPA’s signaling pathways involved in the

activation and inhibition as well that even if it is possible in the plasma, RBC activation by

LPA is affected by the environment.

v

Our second focus was on the potential associations of autotaxin and EVs with thrombotic

risk and the development of atherosclerosis in SLE patients. We found that autotaxin were

not elevated in SLE patients nor associated with the disease activity. Even though, SLE

patients presented high quantities of PEVs and REVs, they were not associated with the

disease activity. However, we showed that the quantities of PS+ REVs were associated with

a higher risk of thrombosis in SLE patients. Moreover, the group of patients with high

quantities of PS+ REVs also presented higher quantities of plasmatic autotaxin.

The work presented in this thesis brings a better understanding of LPA impact on RBC

activation and REV liberation. It also highlights the potential implication of both LPA and

REVs in thrombosis associated with SARD patients.

vi

Table des matières

Résumé _________________________________________________________________ ii Abstract ________________________________________________________________ iv Table des matières ________________________________________________________ vi Liste des figures __________________________________________________________ ix Liste des tableaux _________________________________________________________ x

Liste des abréviations ______________________________________________________ xi Remerciements __________________________________________________________ xv Avant-propos __________________________________________________________ xvii Introduction _____________________________________________________________ 1

1 L’axe autotaxine / acide lysophosphatidique / lipide-phosphate phosphatase _____ 1 1.1 L’acide lysophosphatidique ______________________________________________________ 2

1.1.1 Structure, espèce et nomenclature _____________________________________________ 2 1.1.2 L’isolation et l’identification ________________________________________________ 3 1.1.3 L’acide lysophosphatidique chez les mammifères ________________________________ 4

1.2 Synthèse de l’acide lysophosphatidique _____________________________________________ 5 1.2.1 Synthèse intracellulaire _____________________________________________________ 6 1.2.2 Synthèse extracellulaire ____________________________________________________ 6

1.3 L’autotaxine __________________________________________________________________ 7 1.3.1 Isoformes _______________________________________________________________ 8 1.3.2 Structure et expression _____________________________________________________ 9 1.3.3 Régulation de l’expression _________________________________________________ 10

1.4 L’acide lysophosphatidique vasculaire _____________________________________________ 11 1.5 Signalisation dépendante de l’acide lysophosphatidique _______________________________ 14

1.5.1 La famille EDG des récepteurs couplés aux protéines G : LPA1, 2 et 3 ______________ 15 1.5.1.1 LPA1/Edg2 ________________________________________________________ 15 1.5.1.2 LPA2/Edg4 ________________________________________________________ 18 1.5.1.3 LPA3/Edg7 ________________________________________________________ 21

1.5.2 Récepteurs couplés aux protéines G de type non-EDG ___________________________ 24 1.5.2.1 LPA4/P2Y9 ________________________________________________________ 24 1.5.2.2 LPA5 _____________________________________________________________ 25 1.5.2.3 LPA6/P2Y5 ________________________________________________________ 27 1.5.2.4 GPR87 ____________________________________________________________ 28

1.5.3 Récepteurs non couplés à des protéines G _____________________________________ 28 1.5.3.1 TRPV1____________________________________________________________ 28 1.5.3.2 TREK-1/-2 _________________________________________________________ 29 1.5.3.3 PPARγ ____________________________________________________________ 29 1.5.3.4 Activation des cibles intracellulaires par le LPA ___________________________ 29

1.6 Régulation de l’activité du LPA : les lipide-phosphate phosphatases _____________________ 30 2 Vésicules extracellulaires _______________________________________________ 32

2.1 Diversité et formation des EV ___________________________________________________ 32 2.1.1 Les classes : exosomes, microvésicules, corps apoptotiques _______________________ 32 2.1.2 Isolation et étude _________________________________________________________ 35

2.2 Vésicules extracellulaires de plaquettes ____________________________________________ 37 2.2.1 Présentation de la plaquette ________________________________________________ 37 2.2.2 Description générale ______________________________________________________ 39 2.2.3 Fonctions_______________________________________________________________ 40

2.3 Vésicules extracellulaires de globules rouges _______________________________________ 40 2.3.1 Présentation des globules rouges ____________________________________________ 40 2.3.2 Description générale ______________________________________________________ 43 2.3.3 Fonctions_______________________________________________________________ 44

3 L’acide lysophosphatidique et les vésicules extracellulaires dans les maladies

rhumatismales auto-immunes systémiques _______________________________________ 45

vii

3.1 Polyarthrite rhumatoïde ________________________________________________________ 45 3.2 Lupus érythémateux disséminé __________________________________________________ 46 3.3 Comorbidité : athérosclérose ____________________________________________________ 48

4 Objectif _____________________________________________________________ 52 Chapitre 1 : Interplay between LPA2 and LPA3 in LPA-mediated phosphatidylserine cell

surface exposure and extracellular vesicles release by erythrocytes ________________ 53 1 Résumé ______________________________________________________________ 53 2 Abstract _____________________________________________________________ 55 3 Introduction __________________________________________________________ 56 4 Material and methods __________________________________________________ 57

4.1 Products ____________________________________________________________________ 57 4.2 Human plasma samples ________________________________________________________ 58 4.3 RBC isolation and activation ____________________________________________________ 58 4.4 Platelet and EV-free plasma preparation ___________________________________________ 59 4.5 RBC and REV labeling for flow cytometry _________________________________________ 59 4.6 Control for REV detection by flow cytometry _______________________________________ 60 4.7 Analysis and statistics _________________________________________________________ 60

5 Results ______________________________________________________________ 61 5.1 Detection of activated RBCs and REVs by flow cytometry _____________________________ 61 5.2 LPA species differentially activate RBCs. __________________________________________ 61 5.3 Characterization of RBC activation by LPA 18:1. ____________________________________ 62 5.4 LPA3 receptor induce RBC activation. ____________________________________________ 63 5.5 LPA2 receptor inhibits PS- REV formation. _________________________________________ 63 5.6 LPA 20:4 inhibits both RBC PS exposure and the production of PS- REVs. ________________ 64 5.7 RBC activation by LPA in physiological condition. __________________________________ 65

6 Discussion ___________________________________________________________ 66 7 References ___________________________________________________________ 69 8 Figures and legends ___________________________________________________ 74

Chapitre 2 : Plasma level of red blood cell-derived phosphatidylserine positive

extracellular vesicles are associated with thrombosis in systemic erythematous lupus

patients ________________________________________________________________ 83 1 Résumé ______________________________________________________________ 83 2 Abstract _____________________________________________________________ 85 3 Introduction __________________________________________________________ 86 4 Material and methods __________________________________________________ 87

4.1 SLE patients and healthy donors _________________________________________________ 87 4.2 SARD-BDB protocol __________________________________________________________ 87 4.3 Flow cytometry_______________________________________________________________ 88

4.3.1 Detection of platelet activation ______________________________________________ 88 4.3.2 Detection of plasmatic EVs ________________________________________________ 88

4.4 Autotaxin measurement ________________________________________________________ 89 4.5 Analysis and Statistics _________________________________________________________ 89

5 Results ______________________________________________________________ 89 5.1 Patient’s characteristics ________________________________________________________ 89 5.2 SLE patients present higher platelet activation and plasma EV levels at baseline ____________ 90 5.3 Prevalent and incident SLE patients show similar levels of plasma EVs and platelet activation. 90 5.4 Platelet activation is associated with the SLEDAI score in incident cases of SLE. ___________ 91 5.5 Higher PS+ REVs are associated with vascular damages in SLE patients. __________________ 91

6 Discussion ___________________________________________________________ 93 7 References ___________________________________________________________ 97 8 Figures, legends and tables ____________________________________________ 101

Discussion ____________________________________________________________ 110 1 Mise en contexte _____________________________________________________ 110

viii

2 Impact des limitations techniques dans l’analyse des vésicules extracellulaires __ 110 3 Résumé des travaux et discussion _______________________________________ 112

3.1 L’acide lysophosphatidique et les vésicules extracellulaires de globules rouges ____________ 112 3.2 Les vésicules extracellulaires de globules rouges dans le lupus érythémateux disséminée ____ 115

4 Perspectives _________________________________________________________ 117 Conclusion ____________________________________________________________ 119 Bibliographie __________________________________________________________ 121 Annexe I : Targeting the autotaxin - Lysophosphatidic acid receptor axis in cardiovascular

diseases _______________________________________________________________ 170 1 Abstract ____________________________________________________________ 171 2 Graphical abstract ___________________________________________________ 172 3 Lysophosphatidic acid and its receptors __________________________________ 173 4 LPA production pathways _____________________________________________ 175 5 The LPA-induced responses in cells of the cardiovascular system ____________ 176 6 The ATX-LPA axis in cardiovascular diseases ____________________________ 180 7 Targeted ATX-LPA therapy ___________________________________________ 184 8 Conclusions _________________________________________________________ 187 9 References __________________________________________________________ 187

Annexe II :Phosphatidylserine-specific phospholipase A1: A friend or the devil in disguise

_____________________________________________________________________ 196 1 Abstract ____________________________________________________________ 197 2 General introduction _________________________________________________ 198 3 Expression of PLA1A and lysoPS receptors in cells ________________________ 205 4 Expression of PLA1A in disease states ___________________________________ 207 5 Other enzymes regulating serine phospholipid metabolism in neural system ___ 216 6 Conclusions _________________________________________________________ 217 7 References __________________________________________________________ 217

Annexe III: Platelet-derived extracellular vesicles contain an active proteasome involved

in protein processing for antigen presentation via class I major histocompatibility

molecules _____________________________________________________________ 225 1 Abstract ____________________________________________________________ 227 2 Introduction _________________________________________________________ 228 3 Material and methods _________________________________________________ 229 4 Results _____________________________________________________________ 230 5 Discussion __________________________________________________________ 237 6 References: _________________________________________________________ 241 7 Figures _____________________________________________________________ 246

ix

Liste des figures

Introduction

Figure 1 : Structure biochimique du LPA. ................................................................... 2

Figure 2 : Sites d’hydrolyses des phospholipases de type A, B, C et D. ........................... 5

Figure 3 : Structure des isoformes d’autotaxine. .......................................................... 9

Figure 4 : Synthèse, signalisation et dégradation du LPA. ............................................13

Figure 5 : Récapitulatif du contenu trouvé dans les EV à l’exception des organelles. ......33

Figure 6 : Libération des différentes vésicules extracellulaires. ....................................34

Figure 7 : Les différentes méthodes d’isolation des EV. ..............................................35

Figure 8 : Interaction des globules rouges pour leur élimination par les macrophages. ....42

Figure 9 : Progression d’une plaque d’athérosclérose. .................................................50

Chapitre 1 :

Figure 1 : RBC activation and REV detection by high-sensitivity flow cytometry. .........74

Figure 2 : RBC activation by LPA varies depending of the fatty acid. ...........................75

Figure 3 : LPA induced RBC activation leads to two distinct REV populations. .............76

Figure 4 : LPA1/3 mediates RBC activation by LPA. ..................................................77

Figure 5 : LPA2 inhibits PS- REV production. ...........................................................78

Figure 6 : LPA 20:4 inhibits PS- REV production through LPA2 and PS exposure by RBCs.

...............................................................................................................................79

Figure 7 : LPA 18:1 induces PS+ REVs in platelet-free and EV-free plasma from healthy

donors. ....................................................................................................................80

Figure 8 : High plasmatic quantities of PS+ and PS- REV are present in SLE patients. ....81

Figure 9 : LPA signaling in RBCs. ............................................................................82

Chapitre 2 :

Figure 1 : High platelet activation and EV quantities are found in incident and prevalent SLE

patients. . ............................................................................................................... 105

Supplementary Figure 1 : Platelet activation and EV detection by high-sensitivity flow

cytometry. . ............................................................................................................ 107

Conclusion

Figure 1 : Récapitulatif des contributions des travaux de cette thèse. .......................... 120

x

Liste des tableaux

Chapitre 2 :

Table 1 : characteristics for SLE patients included in the study at baseline. ................. 101

Table 2 : High platelet activation and EV quantities are found in SLE patients at baseline.

............................................................................................................................. 103

Table 3 : Spearman correlation between our measurement and the total SLEDAI score for

SLE patients. .......................................................................................................... 103

Table 4 : Comparison of SLE patients with low and high PS+ REVs. .......................... 104

xi

Liste des abréviations

ACR American College of Rheumatology

ADN Acide désoxyribonucléique

ADP Adénosine diphosphate

AGPTA Acylglycerophosphate acyltransférase

ARF6 (ADP-ribosylation factor 6)

ARN Acide ribonucléique

ATP Adénosine triphosphate

ATX Autotaxine

CCL (chemokine CC ligands)

CD (cluster of differentiation)

CMH Complexe majeur d’histocompatibilité

CXCL (chemokine CXC ligands)

DAGK Diacylglycerols kinases

DLD (Deterministic lateral displacement)

Edg Gènes de différentiation endothéliales (endothelial differentiation gene)

EGF Facteurs de croissance épidermique (Epidermal Growth Factor)

EGFR Récepteur des EGF (EGF receptor)

ELISA (enzyme-linked immunosorbent assay)

ESCRT Complexe de tri endosomal nécessaire au transport (Endosomal Sorting

Complex Required for Transport)

EULAR European Alliance of Associations for Rheumatology (anciennement

EUropean League Against Rheumatism)

EV Vésicule extracellulaire (Extracellular Vesicle)

xii

Fc receptors Récepteurs aux fragments cristallisables

FGF Facteurs de croissance des fibroblastes (fibroblast growth factor)

GIPC Protéine d’interaction en C-terminus de type Gα (Galpha-interacting protein

C-terminus)

GPAT Glycerophosphates acyltransferases

GPR Récepteur couplé au protéine G (G Protein-Coupled Receptor)

GR Globules rouges

Ig Immunoglobuline

IL Interleukine

IP3 Inositol trisphosphate

ISEV Société internationale pour les vésicules extracellulaires (International

Society for Extracellular Vesicles)

LDL Lipoprotéine de basse densité (low density lipoprotein)

LED Lupus érythémateux disséminé

LPA Acide lysophosphatidique (lysophosphatidic acid)

LPAR Récepteur au LPA (LPA receptor)

LPP Lipide-phosphate phosphatases

Lyso-PS Lysophosphatidylsérine

MAGI-3 Guanylate kinase associé à la membrane avec une orientation inversé 3

(membrane-associated guanylate kinase with inverted orientation-3)

MAGK Monoacylglycerols kinases

MAP kinases (Mitogen-activated protein kinases)

MRAS Maladie rhumatismale auto-immune systémique

Nabs Auto-anticorps naturels (natural antibodies)

xiii

NFTA1 Facteur nucléaire des lymphocytes T activés 1 (Nuclear factor of activated T

cells 1)

NFκB Facteur nucléaire κ B (Nuclear factor κ B)

NHERF2 facteur 2 de régulation des échanges sodium hydrogène (sodium/hydrogen

exchanger regulatory factor 2)

oxLDL LDL oxydé (oxidized LDL)

PAR Polyarthrite rhumatoïde

PCR réaction de polymérisation en chaîne (Polymerase chain reaction)

PDZ (post synaptic density protein (PSD95), Drosophila disc large tumor

suppressor (Dlg1), and zonula occludens-1 protein (zo-1))

PEV Vésicules extracellulaires de plaquettes (platelet-derived EV)

PI3K Phosphoinositide 3-kinase

PKC Protéine kinase C

PLA/B/C/D Phospholipase de type A/B/C/D

PMA (Phorbol myristate acetate)

PPARγ récepteur intracellulaire activé par les proliférateurs de peroxysomes

(peroxisome proliferator-activated receptor gamma)

PRP Plasma riche en plaquettes

PS Phosphatidylsérine

RAB (RAS-related protein in brain)

REV EV de globule rouge (red blood cell EVs)

RhoA (Ras homolog family member A)

RhoGEF facteur d’échange de nucléotide guanine spécifique à RhoA (Rho-specific

guanine nucleotide exchange factors)

Rnase Ribonucléase

xiv

ROCK (Rho-associated protein kinase)

RT-PCR Transcription inverse PCR (reverse transcription-PCR)

SIMPLE (small integral membrane protein of lysosomes and late endosomes)

SIRPα (Signal regulatory protein α)

SLEDAI Indice d’activité de la maladie LED (SLE disease activity index)

SLICC Systemic Lupus International Collaborating Clinics

STAT3 Signal de transduction et d’activation de transcription 3 (Signal transducer

and activator of transcription 3)

TAP Protéines de transport associées à l’antigène (Transporters associated with

Antigen Processing)

TAZ (PDZ-binding motif)

TGF (Transforming growth factor)

TLR Récepteurs de type Toll (Toll-like receptors)

TNF Facteur de nécrose tumorale (Tumor necrosis factor)

TREK-1/-2 Canaux à ion de potassium apparenté TWIK-1 et -2 (TWIK related K+

channel-1 and -2)

TRIP6 protéine d’interaction au récepteur de la thyroïde 6 (thyroid receptor-

interacting protein 6)

TRPV1 Récepteur transitoire à potentiel vanilloïde 1 (transient receptor potential

vanilloid 1)

YAP (yes-associated protein 1)

xv

Remerciements

Je remercie mon directeur de thèse, le docteur Sylvain Bourgoin pour avoir m’avoir

accompagné tout au long de cette thèse. J’ai énormément apprécié notre relation de travail

que ce soit l’autonomie et la liberté qu’il m’a accordées pour gérer mes projets ou sa patience

et son acceptation de mes résultats négatifs.

Je remercie également l’ensemble des membres de notre laboratoire. Merci Lynn Davis, cela

a toujours été un plaisir de travailler et de discuter avec toi. Merci Chenqi Zhao, j’ai toujours

apprécié ta gentillesse et ton aide sur mes projets. Enfin merci Myriam pour ton esprit et ta

gentillesse ainsi que pour m’avoir permis mettre le point final à mes expériences.

Je remercie également l’ensemble des membres de l’équipe Boilard et Fernandez avec

lesquelles j’ai beaucoup interagi au cours de mon doctorat. Je pense tout particulièrement à

Isabelle Allaeys, Tania Lévesque, et Anne Zufferey. Vous avez été une source précieuse

d’aide et de conseil ainsi que de la bonne humeur dans nos rangées de travail. Mes

compétences ne seraient pas ce qu’elles sont sans votre apport.

Je remercie aussi les nombreux étudiants, post-doctorants et professionnels de recherche que

j’ai côtoyé. Je ne serai jamais suffisamment reconnaissant pour avoir croisé le chemin de

Geneviève, Julien, Anne, Pepito, Patate, Tania, Yann, Katerina, Oona, Aurélie, Marine,

Régis, Andréa, et Anthony. Vous avez tous été au long de ces cinq années une source de joie,

de conseil, d’encouragement et d’inspiration. Et, je suis sûr que vous continuerez de l’être.

Je ne permettrai pas d’oublier mes colocataires, Camille, Yann, Abde, Bibi et Guinness ainsi

que Mathieu et Laurence qui me permirent de me changer régulièrement les idées autour d’un

repas, d’un jeu de société ou d’un beigne.

Je remercie mes amis clermontois, Lucas, Loïc et Mazière pour ne citer qu’eux, qui malgré

leurs habitudes, ont eu la retenue et la délicatesse de ne pas me demander trop souvent quand

je finissais et ce que j’allais faire après. Merci à ma famille de m’avoir soutenu et d’avoir

compris la démarche qui nous a séparés par un océan. Et merci à mon frère de m’avoir

accueilli pour une partie de l’écriture de cette thèse.

xvi

Enfin, je ne remercierai jamais assez ma compagne qui, malgré la distance, m’a soutenu,

encouragé et a été une source de bien-être et de calme au quotidien. Ta compétence et ta

passion pour la science m’impressionne et me stimule pour améliorer mon travail. Merci.

xvii

Avant-propos

Le Dr Sylvain G Bourgoin a conçu et dirigé le projet de recherche. Il a participé à l’analyse

des données et corrigé les articles de cette thèse. Le Dr Éric Boilard a apporté son expertise

au projet de recherche. Le Dr Paul Fortin a contribué et à l’analyse des données obtenues sur

les échantillons de la biobanque MRAS du CHU de Québec – Université Laval.

J’ai conçu et réalisé les expériences, analysé et interprété les données, réalisé les analyses

statistiques et écrit les manuscrits des articles présentés aux chapitre 2 et 3 de ce document

en collaboration avec les auteurs mentionnés ci-dessous.

L’article qui constitue le chapitre 1, intitulé Interplay between LPA2 and LPA3 in LPA-

mediated phosphatidylserine cell surface exposure and extracellular vesicles release by

erythrocytes, a été publié dans le journal Biochemical Pharmacology en 2021:

Hasse S, Duchez AC, Fortin P, Boilard E, Bourgoin SG. (2021) Interplay between LPA2 and

LPA3 in LPA-mediated phosphatidylserine cell surface exposure and extracellular vesicles

release by erythrocytes. Biochem Pharmacol. 2021 Jun 30;192:114667. doi:

10.1016/j.bcp.2021.114667. Online ahead of print. PMID: 34216604

L’article qui constitue le chapitre 2, intitulé Plasma level of red blood cell-derived

phosphatidylserine positive extracellular vesicles are associated with thrombosis in

systemic erythematous lupus patients, a été soumis au journal Lupus Science & Medicine

pour publication (lupus-2021-000605).

Hasse S, Julien AS, Duchez AC, Chenqi Zhao C, Fortin P, Boilard E, Bourgoin SG.

Au cours de mon doctorat, j’ai collaboré à la rédaction de deux revues de littérature. La

première en tant que co-premier auteur qui est intitulée Targeting the autotaxin -

Lysophosphatidic acid receptor axis in cardiovascular diseases est présentée en

Annexe I :

xviii

Zhao Y, Hasse S, Zhao C, Bourgoin SG. (2019) Targeting the autotaxin - Lysophosphatidic

acid receptor axis in cardiovascular diseases. Biochem Pharmacol. 2019 Jun;164:74-81. doi:

10.1016/j.bcp.2019.03.035. Epub 2019 Mar 27. PMID: 30928673

La seconde, intitulée Phosphatidylserine-specific phospholipase A1: A friend or the devil in

disguise est présentée en Annexe II :

Zhao Y, Hasse S, Bourgoin SG. (2021) Phosphatidylserine-specific phospholipase A1: A

friend or the devil in disguise. Prog Lipid Res. 2021 Jun 22;83:101112. doi:

10.1016/j.plipres.2021.101112. Online ahead of print. PMID: 34166709

J’ai aussi collaboré significativement à plusieurs projets qui ne sont pas inclus dans cette

thèse. J’ai participé significativement à l’imagerie en microscopie à transmission ainsi qu’à

la rédaction et aux analyses statistiques dans cet article en Annexe III qui vient d’être publié

dans le journal Blood :

Marcoux G, Laroche A, Hasse S, Bellio M, Mbarik M, Tamagne M, Allaeys I, Zufferey A,

Lévesque T, Rebetz J, Karakeussian-Rimbaud A, Turgeon J, Bourgoin SG, Hamzeh-

Cognasse H, Cognasse F, Kapur R, Semple JW, Hebert MJ, Pirenne F, Overkleeft H, Florea

B, Dieude M, Vingert B and Boilard E. Platelet EVs contain an active proteasome involved

in protein processing for antigen presentation via MHC-I molecules. Blood. 2021 Jul

22:blood.2020009957. doi: 10.1182/blood.2020009957. Epub ahead of print. PMID:

34293122

J’ai également assisté significativement la réalisation d’expérience de l’article intitulé

Phospholipase A1 member A activates fibroblast-like synoviocytes through the autotax-

in-lysophosphatidic acid receptor axis, qui est en cours de révision par le journal

International Journal of Molecular Sciences.

Zhao Y, Hasse S, Vaillancourt M, Zhao C, Davis L, Boilard E, Fortin P, Di Battista J,

Poubelle PE, Bourgoin SG. Phospholipase A1 member A activates fibroblast-like

synoviocytes through the autotax-in-lysophosphatidic acid receptor axis. (ijms-1418430)

Seule la numérotation des titres a été changé par rapport aux versions publiées des articles.

1

Introduction

1 L’axe autotaxine / acide lysophosphatidique / lipide-

phosphate phosphatase

Les lipides qui présentent un groupement phosphate sont nommés phospholipides. Ils sont

essentiels aux structures membranaires ainsi qu’au transport des protéines. Bien que leur

identification et leur caractérisation datent du milieu du 19e siècle, l’identification d’une

activité biologique propre aux phospholipides ne débute que dans les années 1950. L’intérêt

pour l’acide lysophosphatidique (lysophosphatidic acid, LPA) découle du travail sur les

facteurs de Darmstoff1 et d’Arneil2. Vogt associe un facteur de stimulation des muscles lisses

qu’il nomme Darmstoff à des extraits de lipides d’intestins de mammifères et

d’amphibiens1,3. En 1963, Vogt montre les effets contractiles de différents lipides sur des

duodénums de lapins, dont celui du LPA1. Dans ces mêmes années, l’équipe d’Arneil met en

évidence un facteur vasoconstricteur dans le plasma humain qui bien que peu détectable lors

de la préparation du plasma, s’accumule quand il est entreposé à température ambiante2. De

plus, il montre par des approches de chromatographie et de traitement par des phospholipases

que ce facteur, dit d’Arneil, est proche de la lysophosphatidylcholine4. Il faut attendre

l’année 1979 pour que cette substance soit formellement identifiée comme le LPA5. Les

premiers travaux sur le LPA se concentrent sur son effet vasoconstricteur et sur les

plaquettes5,6. La découverte, au début des années 90, d’un récepteur au LPA va accélérer son

étude7. Depuis que l’importance du LPA a été établie dans des processus variés aussi bien

physiologiques, du développement embryonnaire, au recrutement lymphocytaire ou encore à

la pousse des cheveux que pathologiques comme dans le cancer, les maladies

cardiovasculaires ou les maladies rhumatismales auto-immunes systémiques (MRAS).

2

1.1 L’acide lysophosphatidique

1.1.1 Structure, espèce et nomenclature

Le LPA regroupe l’ensemble des lipides formés par un squelette de glycérol avec un

groupement phosphate en position sn-3 et un acide gras en position sn-1 ou 2 (Figure 1) et

fait partie de la famille des médiateurs lipidiques bioactifs. L’acide gras forme une queue

hydrophobe connectée par le glycérol à un groupement phosphate hydrophile.

Les LPA sont divisés en trois classes en fonction de la liaison de l’acide gras au squelette de

glycérol. Les trois classes de LPA possibles sont les acyl-, alkyl- ou alkenyl-, soit

respectivement une liaison ester, éther ou vinyl éther. Les LPA vont être ensuite subdivisés

en différentes espèces selon de la nature de la chaîne carbonée de l’acide gras présent,

considérant sa longueur et son nombre d’insaturations. La longueur de la chaine est

importante pour l’activité du LPA. Les LPA à chaine courte, en dessous de 14 carbones, ne

présentent pas d’activité biologique, contrairement aux LPA à chaine longue, de 14 à 26

carbones8. Enfin, un dernier élément est la position de l’acide gras sur le squelette de glycérol

qui est soit en position sn-1 ou sn-2. Les LPA avec l’acide gras en position sn-2 sont instables

et peuvent spontanément migrer en position sn-1 à un ratio de 1 pour 99. Ces trois éléments,

illustrés en Figure 1, modifient la conformation en 3 dimensions du LPA et donc son activité

biologique8,10.

Je vais utiliser la nomenclature suivante pour définir les espèces de LPA: la position de

l’acide gras sur le glycérol- la liaison entre le glycérol et l’acide gras- LPA la longueur : le

Figure 1: Structure biochimique du LPA. L’acide gras se présente le plus souvent sous forme acyl- en

position sn-1 du glycérol. Quand l’acide gras est présent sur la position sn-2 du glycérol il peut migrer

spontanément en position sn-1.

3

nombre d’insaturations de l’acide gras. Par exemple, un 1-acyl-LPA 18:1, est un LPA dont

l’acide gras est en position sn-1 du glycérol par une liaison acyl et à une chaîne de 18 carbones

qui contient une insaturation.

1.1.2 L’isolation et l’identification

L’isolation et l’extraction de lipides reposent sur leurs propriétés de solvatation. L’acide gras

des lipides est lipophile tandis que le groupement de tête est hydrophile. Donc plus l’acide

gras présente une longue chaine carbonée, plus le lipide sera soluble dans des solvants

organiques et insoluble dans l’eau. À l’inverse plus le groupement de tête est important, plus

le lipide sera soluble dans l’eau11. Les phospholipides, ce qui comprend le LPA, présentent

une solubilité intermédiaire dans la balance lipophile/hydrophile. Historiquement, l’isolation

et l’extraction des lipides avec une solubilité intermédiaire se font avec la méthode de Folch12

ou celle de Bligh et Dyer13. Ces deux méthodes reposent sur le potentiel de ces lipides à être

soluble dans un mélange de méthanol/chloroforme. Le mélange de l’échantillon avec le

méthanol, le chloroforme et une solution aqueuse va permettre l’obtention d’une phase

aqueuse et d’une phase méthanol/chloroforme qui contient les lipides. Ces deux méthodes

utilisent une solution aqueuse différente et effectuent la séparation de la phase organique et

aqueuse selon des techniques différentes. La méthode Bligh et Dyer utilise de l’eau et

l’obtention des 2 phases se fait par ajout d’eau et de chloroforme au mélange de

méthanol/chloroforme/eau13. La méthode Folch utilise du sérum physiologique comme

solution aqueuse et la séparation des 2 phases se fait sans ajout de solvant organique ou

aqueux12.

De nombreuses adaptations existent pour certaines applications, notamment pour des raisons

de sécurité et pour cibler certains glycérophospholipides difficilement isolables avec les

méthodes d’origine. Les modifications sont principalement l’utilisation de solvant moins

toxiques ou plus adapté à l’automatisation par exemple, ou servent à modifier les conditions

comme le pH ou la température. Une méthode à base de butanol a été développée pour

l’isolation et l’extraction du LPA. Les échantillons sont mélangés au 1-butanol et du 1-

butanol saturé en eau (2:1, v/v). Une fois formée, la phase organique contient le LPA14,15.

Cette méthode présente un taux de récupération supérieur à 95 %14.

4

Historiquement, l’étude des lipides se faisait par chromatographies sur couche mince puis à

l’aide de la chromatographie en phase liquide à haute performance. Actuellement, la

technique la plus répandue est la chromatographie en phase liquide à haute performance

associée à la spectrométrie de masse. Elle permet d’une part la détection des espèces

moléculaires de LPA et leur quantification relative14,16-18. D’autre part, la quantification

absolue du LPA total et de ses espèces est également possible à l’aide de standards internes16.

La manipulation des lipides peut engendrer des modifications qui vont affecter la nature des

espèces et des lipides identifiés. Pour limiter la perte, les modifications et la dégradation des

lipides au cours du processus d’isolation et d’identification, il est recommandé de travailler

avec de la verrerie et de limiter l’exposition à l’air et à la lumière16,18.

1.1.3 L’acide lysophosphatidique chez les mammifères

Les classes acyl-, alkyl- et alkenyl-LPA sont détectées dans les fluides biologiques humains19

et dans les tissus de rat20-22. Les acyl-LPA sont toutefois la forme prépondérante19-22. Les

formes acyl-LPA 16:0, 18:0, 18:1 et 20:4 sont les quatre espèces présentes en quantités

élevées dans les tissus de rat. La proportion de chacune de ces espèces varie significativement

d’un tissu à l’autre20,23. Les espèces saturées sont celles les plus abondantes avec, notamment,

les acyl-LPA 16:0 et 18:0 qui peuvent représenter jusqu’à 30% et 60%, respectivement du

LPA total détecté dans les tissus22.

Le LPA est trouvé dans le milieu extracellulaire24,25 et dans le milieu intracellulaire26 au

niveau du noyau27, du réticulum endoplasmique28 et des mitochondries29. L’activité

biologique du LPA est principalement médiée par le LPA extracellulaire et les récepteurs qui

y sont associés. Le LPA intracellulaire est avant tout un intermédiaire dans le métabolisme

des glycérophospholipides. Sa formation intracellulaire a aussi été décrite dans le contexte

d’inhibition de l’activité de l’acide phosphatidique. Cependant, l’activation d’un récepteur

intracellulaire par le LPA intracellulaire a été mis en évidence30,31 et l’accumulation de LPA

intracellulaire module la survie et la migration de cellules tumorales32. Une activité

biologique propre au LPA intracellulaire reste encore débattue33. Bien que le LPA ait un rôle

dans le milieu extra- et intracellulaire, il n’y a pas d’évidence qu’il soit transporté à travers

5

la membrane plasmique26. La synthèse du LPA extra- et intracellulaire est faite par des

mécanismes distincts.

1.2 Synthèse de l’acide lysophosphatidique

Différents mécanismes conduisent à la formation de LPA intracellulaire et extracellulaire. La

seule voie commune qui peut conduire à la production de LPA intracellulaire et

extracellulaire est l’oxydation de phospholipide sous l’action d’oxydants et de radicaux

libres. L’oxydation de lipoprotéine de base densité permet la production d’acyl- et d’alkyl-

LPA34,35. Les autres voies de synthèse du LPA sont spécifiques soit aux compartiments intra

ou extracellulaires et font intervenir diverses phospholipases.

Les phospholipases sont la classe d’enzyme capable d’hydrolyser certaine liaison ester dans

les lipides qui présentent un groupement phosphate. Il existe quatre classes de phospholipases

en fonction de la position de la liaison qu’elles hydrolysent (Figure 2)36. Les phospholipases

de type A (PLA) sont capables d’hydrolyser la liaison de l’acide gras position sn-1 ou sn-2

du squelette de glycérol et forment un acide gras et un lysophospholipide. Deux sous-classes

existent, les PLA1 qui hydrolysent la liaison en position sn-1 et les PLA2 qui hydrolysent la

liaison en position sn-2. Les phospholipases de type B (PLB) sont capables d’hydrolyser la

liaison entre les acides gras et le squelette de glycérol en position sn-1 et sn-2. Les

phospholipases de type C (PLC) et D (PLD) hydrolysent les liaisons de chaque côté du

groupement phosphate. Les PLC hydrolysent la liaison entre le groupement phosphate et le

squelette de glycérol. Enfin, les PLD hydrolysent la liaison entre le groupement phosphate et

le groupement de tête qui peut être une choline, une sérine ou une éthanolamine.

Figure 2 : Sites d’hydrolyses des phospholipases de type A, B, C et D.

6

1.2.1 Synthèse intracellulaire

Le LPA intracellulaire peut être formé selon trois substrats différents : le monoacylglycérol,

le glycérol-3-phosphate et l’acide phosphatidique (Figure 4, partie supérieure)37. Le LPA

peut être formé par l’hydrolyse d’un acide gras de l’acide phosphatidique par une PLA1/238.

L’acide phosphatidique est généré par l’hydrolyse du groupement de tête de phospholipides

membranaires par des PLD1/2 ou par l’ajout du groupement phosphate à un diacylglycérol

par une diacylglycérol kinase. La formation à partir du glycérol-3-phosphate se fait par

l’ajout d’un acide gras par des glycérol-3-phosphate acyltransférases39. Enfin, la formation

de LPA à partir du monoacylglycérol se fait par ajout d’un groupement phosphate en sn-3

par une monoacylglycérol kinase40.

La fonction principale du LPA intracellulaire est de servir d’intermédiaire au métabolisme

des glycérophospholipides. Il peut donc être rapidement pris en charge par des

lysophosphatases et des acyl glycerol-3-phosphate acyltransférases41 pour former

respectivement du glycérol-3-phosphate et de l’acide phosphatidique.

La famille des glycérol-3-phosphate acyltransférases (1 à 4) et les acyl glycérol-3-phosphates

acyltransférases sont localisées sur la membrane des mitochondries29,39 et du réticulum

endoplasmique28,39. La production du LPA est donc localisée à ces compartiments.

Cependant, le LPA peut être transporté entre différents compartiments intracellulaires par

son association avec la protéine de liaison cytosolique du LPA (cytosolic LPA-binding

protein)39. La protéine de transport est capable d’inhiber, dans la mitochondrie, ou de

stimuler, dans le réticulum endoplasmique, la production de LPA39.

1.2.2 Synthèse extracellulaire

À ce jour, deux mécanismes de production de LPA extracellulaire ont été décrits, soit à partir

d’acide phosphatidique, soit de phospholipides comme la phosphatidyl-sérine, -choline ou -

éthanolamine (Figure 4, partie du centre).

Des PLA1/2 peuvent hydrolyser un acide gras de l’acide phosphatidique pour former le LPA.

Ce mécanisme a été mis en évidence, dans les follicules pileux avec la PLA1 membranaire

spécifique pour l’acide phosphatidique, PA-PLA1α également appelé lipase H42-44. Il a aussi

7

été montré sur des vésicules extracellulaires (extracellular vesicles, EV) par des PLA2

secrétées45 et dans des lignées de cellules cancéreuses d’ovaire par des PLA2 membranaires46.

Le second mécanisme requiert l’hydrolyse d’un des acides gras de la phosphatidyl-sérine, -

choline ou -éthanolamine par des PLA1/2 pour former des lysophospholipides42,47. Le

groupement de tête des lysophospholipides est ensuite clivé par une PLD pour former le LPA.

L’activité de la PLD dans les milieux extracellulaires est assurée par l’autotaxine et constitue

la source majoritaire du LPA extracellulaire48,49.

Cette voie de synthèse utilise des sources diverses de substrats. Les phosphatidyl -sérines, -

cholines ou -éthanolamines peuvent être présentes dans les lipoprotéines50 et à la suite d’une

asymétrie de la membrane plasmique des cellules42,46,47 et de certaines EV45,51. Les EV

peuvent aussi être une source directe de lysophospholipides51. L’oxydation de lipoprotéines

génère également des lysophospholipides qui peuvent être transformés en LPA par

l’autotaxine52-54. Enfin, le milieu extracellulaire peut contenir des quantités importantes de

lysophospholipides comme c’est le cas dans le sang où la concentration en

lysophosphatidylcholine est de l’ordre de 140 µM chez l’humain55-57.

1.3 L’autotaxine

L’autotaxine (abrégée en ATX dans les figures et manuscrit) est une enzyme secrétée de la

famille des ectonucléotides pyrophosphatase/phosphodiestérase (ENPP) et peut être notée

ENPP2. Les modèles d’invalidation génique de l’autotaxine sont léthaux à cause de son rôle

essentiel dans le maintien des vaisseaux lors de la vasculogenèse embryonnaire58-60 et lors du

développement du système nerveux59,61. Un défaut d’autotaxine ou de son activité chez des

souris adultes n’induit aucune létalité ni phénotype visible62. En revanche, elle est impliquée

dans le développement de nombreuses pathologies dont l’obésité63,64, des cancers65,66, des

maladies pulmonaires67, cardiovasculaires68,69 et inflammatoires70. À ce jour, l’ensemble des

effets biologiques de l’autotaxine ont été associés à la production de LPA58-60.

L’autotaxine présente une double activité catalytique. D’une part elle peut hydrolyser des

groupements phosphates sur des nucléotides par son activité

pyrophosphatase/phosphodiestérase71. D’autre part, elle peut former du LPA et de la

8

sphingosine-1-phosphate à partir de lysophospholipide48,49 et de

sphingosylphosphorylcholine72, respectivement, par son activité de PLD (Figure 2).

L’affinité de l’autotaxine pour la lysophosphatidylcholine, un des principaux substrats pour

la formation du LPA, est trois fois plus forte que pour la sphingosylphosphorylcholine72 et

dix fois plus forte que pour les nucléotides49. L’activité PLD est donc son activité principale

et son affinité pour les lysophospholipides expliquent que les effets biologiques de

l’autotaxine sont associés avec la formation de LPA.

L’expression de l’autotaxine est détectée dans la quasi-totalité des tissus testés, à l’exception

des cellules musculaires lisses et des cellules endothéliales aortiques73-76. Les tissus adipeux

et lymphoïdes présentent une expression importante de l’autotaxine75,76. En effet, depuis qu’il

a été montré que l’expression de l’autotaxine dans le tissu adipeux affecte ses quantités

plasmatiques, le tissu adipeux est considéré comme une source majeure de l’autotaxine du

milieu extracellulaire76.

1.3.1 Isoformes

Le gène de l’autotaxine, noté ATX, est composé de 27 exons et 26 introns et est présent chez

l’humain sur la région chromosomiale 8q2473,77,78. La forme murine présente une homologie

de 93% et une structure similaire à la forme humaine73,79. De nombreux épissages alternatifs

du gène sont possibles et cinq isoformes ont été détectées chez l’humain, notées ATXα, β, γ,

δ et ε (Figure 3)73,74. Le gène ATX est fortement conservé dans l’évolution80 et les isoformes

α, β, γ sont présentes chez d’autres mammifères comme la souris et le rat73. L’ensemble de

ces isoformes ont des activités PLD et de pyrophosphatase/phosphodiestérase avec des

affinités similaires pour leurs substrats73,74. Les différentes isoformes se distinguent par leur

proportion et la localisation tissulaire de leur expression73. L’ATXβ est la plus représentée et

est considérée comme la forme canonique. Elle représente la forme la plus abondante dans

les tissus testés à l’exception du cerveau. C’est l’isoforme qui est la plus utilisée pour l’étude

de l’ATX73,74,81. ATXδ est la deuxième isoforme la plus fréquente et présente une distribution

similaire à ATXβ. ATXγ est l’isoforme majoritaire dans le cerveau, mais elle est peu détectée

dans les autres tissus73. ATXα et ATXε sont faiblement détectées dans les tissus73,74. En

9

revanche, ATXα est la seule isoforme capable de lier les héparanes sulfates ce qui lui permet

de localiser la production de LPA à la membrane plasmique81.82

1.3.2 Structure et expression

Toutes les isoformes de l’autotaxine ont la même structure et le même mécanisme de

sécrétion (Figure 4, partie supérieur droite)73,74. L’autotaxine est d’abord sous forme de

pré-pro-enzyme et partage la structure des ENPP1-3 soit en N-terminal un peptide signal,

avec domaine transmembranaire, suivi de 2 domaines somatomedin B, puis le domaine

catalytique, et se termine avec un domaine de type nucléase en C-terminal. Contrairement

aux ENPP1 et 3 dont le peptide signal est conservé et permet l’ancrage du domaine

transmembranaire à la membrane plasmique, le peptide signal de l’autotaxine contient un site

de clivage83. Une fois le peptide signal clivé, la forme pro-enzyme de l’autotaxine entre dans

la voie de sécrétion classique, soit dépendante du Golgi83,84. Les domaines somatomedin B

et de type nucléase sont nécessaires à cette sécrétion. Le domaine de type nucléase permet

son transport au Golgi85, où une glycosylation dans les domaines somatomedin B permet sa

sécrétion et son activité catalytique86. Avant d’être libérée dans le milieu extracellulaire, la

forme pro-enzyme de l’autotaxine est clivée davantage en N-terminal par une pro-protéine

convertase de type furine et perd son domaine transmembranaire83. La forme extracellulaire

active de l’autotaxine consiste en N-terminal de 2 domaines somatomedin B avec une

glycosylation suivie du domaine catalytique et enfin du domaine de type nucléase83,86,87.

Le domaine catalytique de l’autotaxine assure l’activité nucléotide

pyrophosphatase/phosphodiestérase et PLD sur un même site actif88,89. Bien que le domaine

de type nucléase ne porte pas d’activité catalytique, il est essentiel pour assurer la liaison des

Figure 3: Structure des isoformes d’autotaxine. ATX autotaxine, SP peptide signal, SMB domaines

somatomedin B, PDE domaine central catalytique phosphodiestérase, NUC domaine C-terminal similaire à

nucléase. (Adaptée de Perrakis et Moolenaar, 2014(82))

10

substrats et est nécessaire à l’activité du domaine catalytique90,91. Les produits de l’activité

catalytique de l’autotaxine, que sont le LPA et la sphingosine-1-phosphate, inhibent son

activité enzymatique83,87. Cette inhibition est de type mixte, c’est-à-dire que le LPA et la

sphingosine ne sont pas en compétition avec le substrat pour le site actif, mais se lient à un

deuxième site sur les domaines somatomedin B83,87.

Enfin, ce sont les domaines somatomedin B qui permettent la liaison de l’autotaxine aux

intégrines β1 et β387,92 et aux héparanes sulfates pour l’isoforme α81. Cela permet de localiser

la production de LPA à proximité des récepteurs aux LPA à la surface des cellules81,87,92.

1.3.3 Régulation de l’expression

L’expression du gène ATX est régulée au niveau épigénétique93,94, transcriptionnelle et post-

transcriptionnelle95. Sous le contrôle de nombreux facteurs de transcription, sa transcription

est stimulée par la famille de la protéine activatrice 1 (activating protein-1, AP-1) qui met en

jeu c-Jun96-98, la protéine de spécificité 1 (Specific protein 1, SP1)98, le facteur HOX1399, le

facteur nucléaire κ B (Nuclear factor κ B, NFκB)100-102, le facteur nucléaire des lymphocytes

T activés 1 (Nuclear factor of activated T cells 1, NFTA1)103, le signal de transduction et

d’activation de transcription 3 (Signal transducer and activator of transcription 3,

STAT3)104 ainsi que la β-caténine105. SP3 est le seul facteur de transcription identifié comme

un répresseur98. Enfin sa régulation post-transcriptionnelle est sous le contrôle de deux

protéines de liaison à l’ARN. L’antigène humain R (Human antigen R) permet la stabilisation

de l’ARN messager et stimule l’expression de l’ATX tandis que le facteur de liaison et

dégradation ARE/poly(U) 1 (ARE/poly(U)-binding/degradation factor 1) l’inhibe95.

Ces régulations de l’expression d’ATX sont mises en jeux par différents médiateurs

extracellulaires comme des facteurs de croissance ou encore des médiateurs pro-

inflammatoires. Les facteurs de croissance épidermique (Epidermal Growth Factor, EGF),

des fibroblastes (fibroblast growth factor, FGF)106 ainsi que le facteur de nécrose tumorale

(tumor necrosis factor, TNF)70,106,107 et l’interleukine (IL-) 6108 stimulent directement

l’expression d’ATX. L’activation des récepteurs de type Toll (Toll-like receptors, TLR) 3, 4

et 9 par, respectivement, des ARN doubles brins, des lipopolysaccharides et l’ADN,

stimulent également son expression de manière indirecte105,109. Les TLR induisent la

11

production d’interféron α et β qui activent le récepteur à l’interféron α/β 1 et stimulent

l’expression d’ATX109. Enfin, l’IL-1β a été rapportée comme un activateur106 et un

inhibiteur110,111 de son expression. Outre l’IL-1, le facteur de croissance transformant β106,

l’IL-4106 ainsi que les produits de l’autotaxine, soit le LPA et la sphingosine-1-phosphate107,

inhibent son expression.

1.4 L’acide lysophosphatidique vasculaire

Dans le compartiment vasculaire, qui est le compartiment d’intérêt des travaux de cette thèse,

le LPA est de forme acyl-LPA que ce soit dans le plasma ou dans le sérum humain, bien que

la présence d’alkyl-LPA ait été proposée dans certains contextes35,112-114. Les espèces acyl-

LPA 16:0, 18:0, 18:1, 18:2 et 20:4 sont parmi les espèces les plus représentées14. Cependant,

la proportion de chaque espèce varie du plasma au sérum. Dans le plasma, l’espèce la plus

représentée est l’acyl LPA 18:2 suivie du 18:1, 18:0, 16:0 et 20:414. Dans le sérum, l’acyl

LPA 20:4 et 18:2 sont trouvés en quantité similaire suivis de l’acyl LPA 18:1, 16:0 et 18:014.

Dans la vasculature, le LPA peut être associé avec l’albumine23,115 ou avec la gelsoline116,117.

L’association avec ces protéines protègent le LPA de la dégradation et peut moduler

positivement et négativement ses effets.

Le LPA vasculaire est formé directement dans le milieu extracellulaire par l’autotaxine qui

explique l’augmentation observée dans le sérum14,47,118. L’accumulation du LPA lors de la

préparation du sérum est associée avec la libération de l’autotaxine contenue dans les

granules des plaquettes119. L’activation plaquettaire est une importante source de manière

locale d’autotaxine119. L’autotaxine peut être associée avec différents acteurs vasculaires :

d’une part les cellules, notamment les plaquettes activées92,120 et les EV, et d’autre part avec

les lipoprotéines, où elle utilise les phospholipides oxydés comme substrat54,68. Le tissu

adipeux serait une source importante de l’autotaxine75,121. En effet, la perte d’expression de

l’autotaxine dans les adipocytes entraine la diminution de 40% des quantités de LPA

plasmatique dans des modèles murins75.

La quantité plasmatique de LPA chez les personnes saines est encore sujette à débat. En

fonction des études, elle varie en quantités de l’ordre de 0,1 µM122,123 jusqu’à atteindre

1 µM124,125 alors qu’un dernier groupe d’études détecte des quantités de l’ordre de

12

0,7 µM14,126,127. L’ensemble des études établissent que la concentration de LPA plasmatique

est plus élevées chez la femme que chez l’homme14,122,123,126. Enfin, une étude a associé

positivement les quantités de LPA plasmatique avec l’indice de masse corporelle126. En

situation pathologique, les quantités de LPA plasmatique peuvent atteindre jusqu’à

12 µM124,125,127.

Figure 4: Synthèse, signalisation et dégradation du LPA. La partie supérieure gauche présente la synthèse

la synthèse intracellulaire du LPA par l’action des diacylglycerol kinases (DAGK); monoacylglycerol kinases

(MAGK); glycerophosphate acyltransférases (GPAT) et les phospholipases de type A et D (PLA1/2 et PLD).

Le LPA intracellulaire est dégradé par des phosphatases, des lipide-phosphate phosphatases (LPP) et par

l’acylglycerophosphate acyltransférase (AGPTA). La partie supérieure gauche présente la synthèse et la

sécrétion d’ATX. Le centre présente la synthèse extracellulaire du LPA par l’ATX et les PLA1/2 et sa

dégradation par les LPP. L’oxydation des lipoprotéines à faible densité peut également produire du LPA intra

et extracellulaire. La partie inférieure présente la signalisation induite du LPA sur les 7 récepteurs aux protéines

G (LPA1 à 6 et GPR87), le récepteur intracellulaire PPARγ et les canaux ioniques TRPV1, TREK1 et 2. La

figure a été créée à l’aide de BioRender.com.

13

14

1.5 Signalisation dépendante de l’acide lysophosphatidique

L’étude de la signalisation dépendante du LPA a débuté en 1996 avec la découverte du

premier récepteur au LPA et s’est étoffé au fil des ans7. Depuis, six récepteurs aux protéines

G sont considérés comme les cibles principales du LPA et ont été nommés récepteurs au LPA

1 à 6, notés LPA1-6 selon l’ordre de leur découverte7,128-132. Les LPA1-6 sont subdivisés en

deux familles, ceux dont l’expression est reliée aux gènes de différentiation endothéliales

(endothelial differentiation gene, Edg) et ceux qui sont proches des récepteurs purinergiques,

P2Y. En plus de ces récepteurs, le LPA peut activer le récepteur couplé aux protéines G 87

(G Protein-Coupled Receptor 87, GPR87)133,134. Enfin, il a été rapporté que le LPA active le

récepteur couplé aux protéines G P2Y10135. Cependant, une étude subséquente a identifié

non pas le LPA, mais la lysophosphatidylsérine (Lyso-PS) comme ligand de P2Y10136. Il n’y

a pas eu de publication additionnelle rapportant le LPA comme activateur du P2Y10.

Outre les récepteurs aux protéines G, le LPA est un ligand du récepteur intracellulaire activé

par les proliférateurs de peroxysomes (peroxisome proliferator-activated receptor gamma,

PPARγ)30, ainsi que de plusieurs canaux ioniques comme le récepteur transitoire à potentiel

vanilloïde 1 (transient receptor potential vanilloid 1, TRPV1)137 et les canaux à ion de

potassium apparenté TWIK-1 et -2 (TWIK related K+ channel-1 and -2, TREK-1/-2)138.

La signalisation du LPA a plusieurs niveaux de complexité. D’abord, il y a le patron

d’expression de chaque récepteur qui varie en fonction du tissu et du développement128,139.

Chaque récepteur peut s’associer avec différents médiateurs intracellulaires. Les récepteurs

aux protéines G activés par le LPA peuvent interagir avec quatre protéines G différentes

(Gα12/13, Gαq/11, Gαs et Gαi). Ensuite, les effets médiés par les récepteurs au LPA peuvent leur

être propres, partagés ou encore opposés à ceux des autres récepteurs au LPA. Enfin, les

récepteurs ont des affinités différentes pour les espèces moléculaires de LPA. Il en résulte

que les effets du LPA sur l’environnement cellulaire ne s’explique pas seulement en fonction

des récepteurs présents et de leur médiateurs intracellulaires associés mais également en

fonction des espèces moléculaires de LPA mis en jeux dans l’environnement extracellulaire.

La signalisation dépendante des récepteurs est récapitulée dans la partie inférieure de la

Figure 4.

15

1.5.1 La famille EDG des récepteurs couplés aux protéines G : LPA1, 2 et 3

1.5.1.1 LPA1/Edg2

En 1996, le LPA est identifié comme ligand du récepteur codé par le gène de la zone

ventriculaire 1 (ventricular zone gene-1)7. Le récepteur est nommé par la suite LPA1. LPA1

est codé par le gène LPAR1 dans la région chromosomique 9q31.3140. Il est le deuxième

membre de la famille des récepteurs couplés aux protéines G de type EDG. De ce fait, il

partage une homologie importante avec LPA2 et 3 qui sont également des récepteurs de la

famille EDG128,141. LPA1 est fortement exprimé dans le cerveau, le cœur et les intestins, mais

son expression est communément détectée dans d’autres tissus128,139. LPA1 est le récepteur

au LPA le plus étudié. Un de ses principaux rôles est le développement et le fonctionnement

du système nerveux142. Cependant, il régule aussi de nombreux mécanismes biologiques

comme la tumorigenèse143-145, l’ostéogenèse146,147, l’inflammation et l’immunité148,149 ou

encore le système vasculaire150-152.

Activation et signalisation

La position de l’acide gras sur le squelette de glycérol n’affecte pas l’interaction du LPA

avec LPA1, cependant les formes acyl-LPA présentent une affinité plus forte comparée aux

alkyl- ou alkeny-LPA8. Les espèces insaturées de LPA présentent une affinité plus forte avec

LPA1. Les espèces de LPA qui contiennent les acides gras 16:1, 18:1, 18:2, 18:3 et 20:4

présentent la plus grande affinité pour LPA1, viennent ensuite les formes saturées, d’abord

le LPA 16:0 et ensuite 18:08. LPA 12:0 et 14:0 sont capables d’activer le LPA1 mais

nécessitent de très forte concentrations8.

La signalisation de LPA1 repose sur son interaction avec les 3 protéines G, Gα12/13, Gαq/11, et

Gαi/o 8,153,154. Son association avec Gα12/13 permet l’activation de la signalisation dépendante

de RhoA/ROCK principalement impliquée dans le réarrangement du cytosquelette155. LPA1

active la voie de signalisation dépendante de la PLC et des PKC par son interaction avec

Gαq/11154. Cette voie permet notamment à LPA1 de réguler l’entrée d’ions à la membrane

cellulaire par l’activation du canal calcique TRPV1156,157 ou l’inhibition du canal potassium

TREK-1158. Enfin sous contrôle de LPA1, Gαi/o induit les signalisations dépendantes des

16

MAP kinases et de la PI3K153 ainsi que l’inhibition de l’adénylyl cyclase154. L’association de

LPA1 à Gαi/o permet notamment la transactivation du récepteur à l’EGFR159.

Le LPA1 présente des domaines PDZ en C-terminal qui est l’acronyme des trois premières

protéines où ce domaine a été mis en évidence160. Les domaines PDZ permettent l’interaction

de l’extrémité C-terminale avec des protéines spécifiques161. Seules deux protéines

interagissent avec LPA1 par les domaines PDZ, soit la protéine d’interaction en C-terminus

de type Gα (Galpha-interacting protein C-terminus, GIPC)162 et le facteur d’échange de

nucléotide guanine spécifique à RhoA (Rho-specific guanine nucleotide exchange factors,

RhoGEF)163. L’association avec GIPC induit la dégradation de LPA1 dans les endosomes et

ainsi inhibe sa signalisation du LPA1162,164. L’interaction avec RhoGEF stimule la

signalisation dépendante de RhoA163.

Principales fonctions

Dans le système nerveux, LPA1 est exprimé par les neurones centraux et périphériques ainsi

que par les cellules gliales comme les astrocytes, les cellules de Schwann ou les

oligodendrocytes165. LPA1 promeut leur migration, leur prolifération166 et leur différentiation

ainsi que la survie cellulaire pour les cellules de Schwann167 et les neurones168. Cependant,

LPA1 peut également induire l’apoptose des neurones par l’initiation de dysfonctionnements

mitochondriaux169. De plus, le LPA1 module les flux calciques neuronaux170,171, la

production de neurotransmetteurs170,172 ainsi que l’expression des gènes associés avec la

balance d’excitation et d’inhibition dans l’hippocampe173. Enfin, LPA1 est impliqué dans le

changement de morphologie154,165,174 et dans la formation de myéline167,175.

Il résulte que le modèle d’invalidation génique de LPA1 chez la souris entraine, entre autres,

une malformation de plusieurs régions du cerveau ainsi qu’une mortalité néonatale de 50 %

à cause d’un défaut dans le comportement d’allaitement142. Les études d’invalidations

géniques conditionnelles subséquentes ont mis en évidence un lien entre LPA1 avec

différents comportements comme l’anxiété173,176,177, la régulation des émotions173, la

consommation d’alcool173 ou de nourriture178 ou encore la mémoire spatiale176,177. Enfin, son

absence induit des symptômes similaires à ceux induits lors de la schizophrénie170,172,179.

Outre le développement et le comportement, LPA1 est impliqué dans la médiation de la

17

douleur. Dans la douleur neuropathique, qui est la douleur due à une blessure ou une maladie

du système de somesthésie, LPA1 participe à l’initiation et à l’amplification de la douleur

centrale et périphérique155,180,181. Plus récemment, LPA1 a été associé à la médiation de la

douleur d’origine inflammatoire182 et aux réponses anormales de douleurs dans le contexte

du diabète183. Enfin des études récentes s’intéressent à son rôle dans la progression de la

sclérose en plaque et de la sclérose latérale amyotrophique184,185.

En dehors de ses effets spécifiques au système nerveux, le LPA1 module la minéralisation

osseuse en stimulant sa formation186 et sa résorption146. Sa signalisation stimule la formation

osseuse par la différenciation des ostéoblastes en ostéocytes187-189. Elle induit aussi le

bourgeonnement de la membrane des ostéoblastes et par conséquent la libération d’EV190.

Bien qu’il augmente l’expression de médiateur anti-inflammatoire comme le suppresseur de

tumorigénicité 2 (suppression of tumorigenity 2)191, LPA1 induit également l’expression de

cytokines pro-inflammatoires par les ostéoblastes comme IL-6 et IL-8 qui promeuvent la

différenciation en ostéoclaste147,187,192. De plus, LPA1 stimule l’activité de résorption146.

LPA1 semble davantage favoriser la minéralisation de l’os en situation physiologique186,189.

Cependant dans des modèles pathologiques, son rôle dans la résorption est mis en avant146,147.

Similairement, LPA1 stimule la formation du cartilage en stimulant la prolifération des

chondrocytes et l’assemblage de fibronectine193,194, mais il semble lié à sa dégradation dans

l’arthrite rhumatoïde147,195. Cette différence peut venir de son implication dans

l’inflammation qui promeut l’activité des ostéoclastes et donc la dégradation osseuse comme

dans un modèle d’arthrite rhumatoïde147,192.

En effet LPA1 promeut l’inflammation par la production de nombreuses cytokines pro-

inflammatoires comme IL-1, IL-6, IL-8 et IL-17 par différents types cellulaires147-

149,187,192,196. Il favorise l’adoption d’un phénotype inflammatoire par les macrophages185 et

la différenciation des lymphocytes T en lymphocytes T auxiliaires149. Il induit également

l’expression des protéines d’adhésion des cellules endothéliales148,149 et le recrutement de

neutrophiles et de macrophages au site inflammatoire148,185,197,198. LPA1 a été associé avec

l’inflammation neuronale185,199, pulmonaire198, abdominale196, systémique196 ainsi que celle

dans la membrane synoviale qui contribue à la progression de l’arthrite

rhumatoïde147,149,195,200.

18

LPA1 promeut le développement de fibroses par son effet pro-inflammatoire201-203 et en

participant au recrutement et à la prolifération des fibroblastes150,204 ainsi qu’à la formation

de collagène198,203,205. Le LPA1 est essentielle pour le développement de la fibrose dans le

modèle de sclérodermie induit par la bléomycine206.

L’effet de LPA1 dans le recrutement de cellules immunitaires et dans la fibrose, est

partiellement médié par l’augmentation de la perméabilité des parois intestinales et

vasculaires150,207. Outre son action sur la perméabilité de l’endothélium vasculaire, LPA1

stimule le recrutement et la prolifération des cellules du muscle lisse vasculaire208,209 ce qui

lui permet d’induire la formation de néo-intima à la suite de dommages aux vaisseaux

sanguins209. LPA1 module le tonus vasculaire. L’activation du LPA1 des cellules

endothéliales induit la vasodilatation151,210 alors que son activation sur les cellules

musculaires lisses induit une vasoconstriction152.

Enfin, le LPA1 présente un rôle mixte dans la tumorigenèse. LPA1 peut stimuler la survie211,

la motilité212,213, l’invasion212,213, la prolifération cellulaire214 ou encore la formation de

métastases par différentes lignées cancéreuses213. Il peut aussi stimuler l’expression

d’oncogènes143,144, de facteurs de croissance215-217 et de cytokines215. De même, plusieurs

études impliquent LPA1 dans les mécanismes de résistance aux traitements anti-

cancéreux143,144. Cependant, de nombreuses lignées cancéreuses présentent une mutation

rendant LPA1 inactif ou réprimant son expression145. Il inhibe la progression de certaines

tumeurs par la répression de la motilité218,219 ou de l’expression de facteurs de croissance220.

1.5.1.2 LPA2/Edg4

LPA2 est codé par le gène LPAR2 situé dans la région chromosomique 19p13.11 chez

l’humain et présente une forte homologie avec les deux autres récepteurs de type EDG, LPA1

et LPA3128,141. L’expression de LPA2 est détectée dans de nombreux tissus mais à des

niveaux souvent plus faibles que LPA1128,139. Une forte expression de LPA2 est présente chez

les leucocytes et dans le tissu testiculaire128 et LPA2 est également retrouvé dans l’intestin et

le cerveau139,221. L’étude de LPA2 est principalement axée sur la protection de l’endothélium

intestinal, l’organisation du système nerveux et vasculaire ainsi que sur l’immunité. Enfin,

19

LPA2 stimule également la tumorigenèse ce qui explique pourquoi il est présent dans de

nombreuses lignées cancéreuses128,222-225.

Activation et signalisation

L’affinité des espèces de LPA pour LPA2 n’est pas affectée par la position de l’acide gras

sur le squelette de glycérol8. En revanche, les formes acyl-LPA sont privilégiées par rapport

aux formes alkyl- et alkenyl-LPA8. Les formes de LPA avec les acides gras 16:0, 16:1, 18:1,

18:2, 18:3 et 20:4 ont l’affinité la plus forte avec LPA2, vient ensuite LPA 14:0 puis LPA

18:0 et enfin LPA 12:0 qui active très faiblement le récepteur8.

LPA2 est capable de s’associer avec 3 protéines G, Gα12/13, Gαq/11, et Gαi/o154,226,227. Bien que

LPA2 puisse s’associer à Gα12/13 pour activer RhoA/ROCK227, LPA2 peut aussi activer cette

voie par son association avec Gαq/11 201,228,229. L’activation de la voie RhoA/ROCK par Gαq/11

permet à LPA2 d’induire l’expression de l’intégrine β6 et la transactivation de la signalisation

au TGF-β 201,228,229. Gαq/11 permet également de promouvoir l’activation de la PLC et

l’accumulation de DAG et d’IP3. L’accumulation d’IP3 permet à LPA2 d’induire la

mobilisation de calcium, pas seulement par son association avec Gαq/11, mais également avec

Gαi/o230,231. L’association de LPA2 avec Gαi/o permet également l’activation des voies des

MAP kinases et de PI3 kinase/AKT ainsi que la transactivation d’EGFR232-234.

LPA2 se différencie des autres récepteurs au LPA par un niveau de régulation supplémentaire

de son activité. Son extrémité C-terminale présente des domaines de liaison de CXXC235,236

et PDZ235,237. À l’aide des domaines PDZ, LPA2 interagit avec le facteur 2 de régulation des

échanges sodium hydrogène (sodium/hydrogen exchanger regulatory factor 2, NHERF2)236-

238, la guanylate kinase associée à la membrane avec une orientation inversée 3 (membrane-

associated guanylate kinase with inverted orientation-3, MAGI-3)238,239 et RhoGEF163. Son

interaction avec RhoGEF promeut l’activation de RhoA163. L’interaction de LPA2 avec

MAGI-3 promeut son association avec Gα12/13 tandis que NHERF2 stimule celle avec

Gαq/11238. MAGI-3 et NHERF2 sont en compétition pour LPA2 et donc ont un impact sur la

voie de signalisation induite suite à l’activation de LPA2238.

20

Outre les protéines qui interagissent avec ses domaines PDZ, LPA2 présente également des

motifs CXXC qui peuvent lier la protéine d’interaction au récepteur de la thyroïde 6 (thyroid

receptor-interacting protein 6, TRIP6)235,236,240 et le facteur inducteur d’apoptose Siva-

1236,241. Le recrutement de TRIP6 au LPA2 amplifie l’activation de NFκB dépendante de

LPA2240. Contrairement à TRIP6, Siva-1 réprime la signalisation dépendante de LPA2236,241.

Une fois lié à Siva-1, LPA2 est ubiquitinylé, ce qui conduit à la dégradation de LPA2 et de

Siva-1241.

Les interactions de LPA2 avec NHEFR2 and TRIP6 permettent également de localiser ses

effets dans l’environnement intracellulaire235,242,243. Cela permet, par exemple, d’orienter la

migration cellulaire en fonction d’un gradient de LPA242, de localiser l’effet de LPA2 au

cytosquelette235 ou proche d’effecteurs membranaires243.

Principales fonctions

Similairement à LPA1, LPA2 protège les progéniteurs de neurones contre l’apoptose244, mais

semble induire l’apoptose des neurones169. LPA2 participe aussi à la transduction neuronale

par la libération de glutamate et la mobilisation de calcium245. Enfin, LPA2 stimule la perte

de myéline après des blessures du système nerveux246.

LPA2 est impliqué dans le maintien de l’intégrité vasculaire et intestinale247-249. Il régule les

échanges de liquide par l’activation d’échangeur d’anion qui lui donne un effet anti-

diarrhéique234,250. Il induit la production de prostaglandines E2 qui sont impliquées dans la

protection des cellules gastriques contre l’environnement délétère de l’estomac248. Enfin, le

LPA2 stimule plusieurs mécanismes cellulaires impliqués dans la survie cellulaire et la

résistance à la radiation251-255. D’une part, LPA2 promeut la réparation de l’ADN252-254.

D’autre part, il diminue différents signaux apoptotiques. LPA2 inhibe la translocation de

BAX à la mitochondrie ainsi que la production de médiateurs pro-apoptotiques solubles254.

Enfin, l’activation de LPA2 induit la dégradation du facteur pro-apoptotique Siva-2 qui lie le

LPA2 activé241.

Au niveau vasculaire, LPA2 stimule la lymphangiogenèse et l’angiogenèse par l’induction

d’IL-8256,257. Il participe également au recrutement des cellules du muscle lisse en partenariat

21

avec LPA1 en réponse à une blessure de la paroi vasculaire258. Enfin, LPA2 inhibe la

différenciation des progéniteurs myéloïdes vers les voies de mégacaryocytes et érythrocytes

dans les étapes précoces de différenciation et uniquement vers le destin d’érythrocytes dans

les étages tardives259-261.

LPA2 impacte le milieu vasculaire et intestinal également de par son rôle dans l’immunité et

l’inflammation. Chez les macrophages, il stimule leur recrutement262, la production de

purine246, de cytokines pro-inflammatoires263 et des métalloprotéases matricielles264. La

signalisation du LPA2 chez les macrophages est associée à de l’inflammation dans le système

nerveux central ainsi qu’à de l’inflammation musculaire, intestinale et vasculaire262-264.

L’importance de LPA2 dans l’immunité a été la plus étudiée dans le contexte allergique. En

effet, LPA2 est impliqué dans l’allergie en réponse à une stimulation des muqueuses,

systémique ou des voies respiratoires265. Au niveau pulmonaire, LPA2 stimule le recrutement

des éosinophiles, des lymphocytes TH2 au poumon266,267. Il induit l’activation des cellules

dendritiques, lymphocytes T et la production de cytokines pro-inflammatoires265-269.

Outre ses effets pro-inflammatoires, LPA2 induit la production de cytokines pro-fibrosantes

et la transactivation du récepteur au TGFβ201,228,229,270. De plus, il induit le recrutement et la

différenciation de fibroblastes en myofibroblastes ainsi que l’accumulation de fibronectine,

d’actine et de collagène270. Ses effets promeuvent le développement de fibroses, notamment

pulmonaire228,270.

Enfin, LPA2 est fréquemment exprimé dans les cancers et supporte leur développement.

C’est notamment le cas pour les cancers de l’intestin222,271,272, du sein273,274 et des

ovaires233,275-277. Il stimule la transformation tumorale278,279, la prolifération219,240,273,280,281,

migration219,273,276,277 et l’invasion des cellules tumorales222,273,276,277. Récemment,

l’expression de LPA2 par les cellules cancéreuses est un facteur de

chimiorésistance223,224,227,282.

1.5.1.3 LPA3/Edg7

LPA3 est codé par le gène LPAR3 situé dans la région chromosomique 1p22.3 chez l’humain.

Il présente une forte homologie avec les récepteurs autres récepteurs de type EDG, LPA1 et

22

2129,141. Bien que trouvé dans de nombreux tissus, LPA3 est fortement exprimé au cerveau,

au cœur, aux testicules, à l’utérus, et aux poumons129,283-285. Les principaux domaines où le

rôle de LPA3 est étudié, sont la grossesse286,287, le maintien du système vasculaire259,288,289,

l’immunité148,290 ainsi que dans le cancer215,291.

Activation et signalisation

Le LPA3 a une affinité plus forte pour les espèces de LPA avec l’acide gras en position sn-2

et pour les formes insaturées8,129. LPA3 lie plus facilement d’abord les formes acyl-LPA puis

les alkyl- et enfin les alkeny-LPA8. Les formes de LPA avec les acides gras insaturées 18:1,

18:2 et 18:3 présentent la plus forte affinité avec LPA3 suivi du LPA 20:4 puis des formes

14:0, 16:0, 16:1 et 18:08. La forme LPA 12:0 est également capable d’activer LPA3, mais

seulement à de très fortes concentrations8.

LPA3 s’associe avec les protéines G, Gα12/13292,293, Gαq/11

283, et Gαi/o294. Quand LPA3 interagit

avec Gα12/13, il active la signalisation dépendante de RhoA, ROCK et YAP292,293. Par son

association avec Gαq/11, LPA3 peut activer la signalisation dépendante de la PLC154,219,295

ainsi que la mobilisation de calcium par l’activation de la PLC et la production d’IP3154,296.

Par l’activation de Gαi/o, LPA3 induit, d’une part, la signalisation dépendante de PI3K,

d’AKT et de NFκB219,256,297, qui permet notamment l’activation de la β-caténine297 et la voie

des MAP kinases105. D’autre part, l’interaction de LPA3 avec Gαi/o permet également

d’activer la voie de signalisation dépendante de la PLC, du DAG et des PKC qui est commune

avec Gαq/11297. Enfin, son association avec Gαi/o lui permet d’inhiber l’accumulation d’AMP

cyclique154. Les trois voies, dépendantes de Gα12/13, Gαq/11 et de Gαi/o, sont capables d’induire

la transactivation du récepteur à l’EGFR293,294,298. Enfin la signalisation dépendante de RhoA

et ROCK peut être activée par LPA3 de manière indépendante de Gα12/13219,296.

Principales fonctions

Similairement à LPA1, LPA3 est impliqué au cerveau dans la réponse aux douleurs

neuropathiques et anormales180,183,299,300. Les effets cellulaires qui ont été rapportés sont en

revanche bien plus limités que pour LPA1. LPA3 induit la formation chez les neurones de

neurites, soit un prolongement de celui-ci qui peut être un axone ou une dendrite154,300. Il peut

23

également induire la libération d’ATP par les macrophages du système nerveux, les

microglies301.

LPA3 a différentes fonctions au niveau vasculaire. D’une part, de manière opposée à LPA2,

LPA3 stimule l’érythropoïèse259,261,297. Il inhibe également la différenciation vers les

mégacaryocytes302. D’autre part, similairement à LPA2, LPA3 stimule l’angiogenèse et la

lymphangiogenèse par la production d’IL-8 et de VEGF256,288,298,303,304. Il est également

impliqué dans la réparation de la paroi vasculaire et du cœur après blessure par le recrutement

et la prolifération de cellules musculaires lisses et de cardiomyocytes209,289,293. Cependant les

effets de LPA3 sur les cardiomyocytes peuvent mener à une hypertrophie cardiaque305-307.

LPA3 permet le recrutement aux sites inflammatoires et l’activation de neutrophiles et de

monocytes ainsi que de ses formes différenciées que sont les macrophages et les cellules

dendritiques 105,197,290,308. Leur activation par LPA3 conduit à la libération de nombreux

médiateurs pro-inflammatoires comme le leucotriène B4, la prostaglandine E2 ou

CCL8105,197,290. Le recrutement des monocytes par LPA3 se fait par l’expression de cytokines

dont l’IL-1, CXCL8 (IL-8) et CCL2 ainsi que par l’expression de facteur d’adhésion par les

cellules endothéliales148. Enfin, LPA3 induit l’internalisation de lipoprotéines oxydées de

basse densité (oxidized low density lipoprotein, oxLDL) par les macrophages et donc leur

transformation en cellules spumeuses309,310. La motilité des cellules spumeuses est inhibée

par LPA3311.

Les modèles d’invalidation génique ont mis évidence que LPA3 est un acteur important dans

l’implantation des embryons dans l’endomètre utérin286,287. De même, chez l’humain, la

diminution de son expression dans les endomètres utérins est associée avec une baisse de la

fertilité à cause de soucis d’implantation des embryons312,313. LPA3 active la cyclooxygénase

2 et l’oxide nitrique synthase inductible314-316. Cela lui permet de stimuler la production des

prostaglandines E2 et I2286,315-317 et de transformer les cellules stromales en cellules

sécrétrices315. Cela permet à LPA3 de promouvoir l’implantation de l’embryon par le

développement de la vascularisation314,315 et la décidualisation, soit une modification de

l’endomètre permettant l’implantation de l’embryon306,314-316. Enfin, LPA3 est impliqué dans

les contractions utérines318,319.

24

LPA3 est fréquemment exprimé par les cellules cancéreuses215,275,320-323. LPA3 stimule la

migration et l’invasion de ces cellules144,215,219,292,321,323. De plus, il stimule leur survie,

notamment en réponse à des traitements, et leur prolifération cellulaire par l’inhibition de la

sénescence et l’expression de facteurs de croissance144,219,324,325. Cependant, l’absence

d’expression de LPA3 est associée à une mortalité plus forte dans le cancer du sein et lors de

métastases pulmonaires ou au cerveau291. De plus, des études mettent en évidence une

inhibition de la migration et de la survie ainsi que de l’angiogenèse282,326-328. Il en résulte que

l’implication de LPA3 dans la tumorigenèse est ambigüe.

1.5.2 Récepteurs couplés aux protéines G de type non-EDG

1.5.2.1 LPA4/P2Y9

LPA4 est le premier récepteur de type non-EDG identifié qui est codé par le gène LPAR4

présent dans la région chromosomique Xq21.1 chez l’humain. Il présente moins de 20 %

d’homologie avec les LPA1 à 3 mais est proche des LPA5 et 6132,141. LPA4 est fortement

exprimé dans les ovaires bien qu’une faible expression de LPA4 soit retrouvée dans de

nombreux tissus comme le cœur ou le thymus130,329. La signalisation de LPA4 a

principalement été étudiée dans le cancer330-332, l’ostéogenèse333,334, ainsi que la perméabilité

vasculaire335,336 et l’angiogenèse335,337-339.

Activation et signalisation

L’affinité des espèces de LPA pour LPA4 a été étudiée de manière limitée. Le LPA4 préfère

les LPA sous forme acyl- puis alkyl- et enfin alkenyl-LPA130. Parmi les espèces testées, le

LPA avec l’acide gras 18:1 présente l’affinité la plus forte suivie du LPA 18:0, puis de 16:0

et enfin 14:0130.

Une fois activé, le LPA4 est le seul récepteur au LPA capable de s’associer aux quatre

protéines G soit Gα12/13, Gαq/11, Gαs et Gαi/o 130,329. L’activation de LPA4 peut donc conduire à

l’accumulation d’AMP cyclique par son association avec Gαs 130,340. Son association avec

Gα12/13 active la signalisation RhoA/ROCK et YAP/TAZ 339,341. Quand LPA4 est associé à

Gαi/o, il met en jeu la signalisation ERK et PI3K278,330 et peut induire l’entrée de calcium dans

la cellule par l’activation de canaux cationiques329. Enfin LPA4 peut aussi induire l’activation

25

de la PLC et la mobilisation du calcium intracellulaire par son association avec Gαq/11329.

Étonnamment, LPA4 peut interagir avec Gαi/o et Gαs, alors que Gαi/o peut inhiber

l’accumulation d’AMP cyclique dépendante de Gαs. Cependant LPA4 privilégie l’interaction

avec Gαs à celle avec Gαi/o329. Enfin, la signalisation dépendante de LPA4 peut inhiber

l’activité de PPARγ342.

Principales fonctions

Bien que LPA4 inhibe la motilité cellulaire330-332 et promeut l’infiltration des leucocytes dans

les tumeurs341, son implication dans la tumorigenèse est contreversée. LPA4 stimule

également la formation d’invadopode343, et la transformation des cellules en cellules

cancéreuses278. LPA4 réprime la formation de tissu osseux en inhibant la différenciation des

ostéoblastes333,334.

Dans l’angiogenèse, LPA4 est impliqué dans le bourgeonnement de nouveaux vaisseaux par

le réarrangement du cytosquelette d’actine des cellules endothéliales335,338,339,341. De plus,

LPA4 renforce les jonctions adhérentes des cellules endothéliales vasculaires335 et stimule le

recrutement des cellules de la paroi vasculaire comme les cellules du muscle lisse et les

péricytes337. Il permet donc d’assurer le maintien et de moduler la perméabilité de la paroi

vasculaire335,336,341. Il est notamment impliqué dans la transmigration des leucocytes336,341.

Son action dans le maintien et le développement du système vasculaire est partiellement

médiée en partenariat avec LPA6339.

1.5.2.2 LPA5

LPA5 est codé par le gène LPAR5 présent dans la région chromosomique 12p13.31 chez

l’humain. Le LPA5 présente une homologie plus importante avec les LPA4 et 6 qu’avec les

récepteurs LPA1 à 3132,141. Son expression est principalement détectée dans le cœur, le

placenta, le cerveau et les intestins131 et dans certaines cellules immunitaires344,345. LPA5 est

impliqué dans les accidents ischémiques transitoires346,347, le comportement comme

l’anxiété348, la nociception348, l’immunité349-352 la régulation de la progression tumorale353.

26

Activation et signalisation

LPA5 présente une affinité plus forte avec des espèces de LPA sous ses formes alkyl- plutôt

qu’acyl-LPA112,354. Les espèces de LPA avec un acide gras 16:0, 18:1, 18:2, 18:3 et 20:4

présentent des affinités similaires pour LPA5. Seules les formes LPA 18:0 et 20:0 ont des

affinités plus faibles354. La farnesyl pyrophosphate et l’arachidonoyl-glycine sont également

des ligands de LPA5 même s’ils présentent des affinités plus faibles que le LPA354,355.

Les effets du LPA5 sont induits par son association avec deux protéines G. L’association à

la protéine Gα12/13 permet d’activer la signalisation RhoA/ROCK131. LPA5 interagit

également avec la protéine Gαq/11, ce qui induitl’activation de la PLC et des PKC131,356. Les

voies de signalisation en aval de LPA5 permettent l’activation de canaux ioniques 357,358 et la

transactivation du récepteur à l’EGFR357. Enfin la signalisation dépendante de LPA5 permet

l’accumulation d’AMP cyclique bien que LPA5 n’interagisse pas avec la protéine Gαs131.

Principales fonctions

La signalisation de LPA5 dans l’intestin et les reins permet l’absorption de liquides par

l’activation de l’échangeur d’ion sodium et potassium 3 356,357,359. Au cerveau, l’implication

de LPA5 dans la nociception et le comportement s’explique d’abord par son activation du

canal ionique TRPV1358. D’autre part, l’activation de LPA5 promeut un environnement

inflammatoire par l’activation des macrophages346,360, la différentiation de la microglie en

macrophage de type M346,361 et la production de cytokines346,352.

En dehors du cerveau, son action est plus ambiguë. LPA5 induit la sécrétion de cytokines

pro-inflammatoires chez les mastocytes362 et contrôle la voie d’activation des plaquettes

dépendante du LPA112,354,363. Cependant, LPA5 est décrit comme un activateur et un

inhibiteur de l’activation des macrophages351,360. Ses effets répresseurs de l’inflammation et

de l’immunité sont supportés également par son inhibition de la signalisation des récepteurs

des lymphocytes B349 et T350 et la libération de cytokines anti-inflammatoires351.

Enfin, dans le cancer, LPA5 diminue la chimiorésistance de différentes lignées

cancéreuses223,353,364 par l’inhibition de la migration353,365-368, de l’invasion332,369 et de la

survie cellulaire332,353. Bien que le LPA5 est majoritairement décrit comme un inhibiteur de

27

la tumorigenèse, plusieurs études ont rapporté que le LPA promeut la prolifération et la

motilité de certaine cellules cancéreuses et inhibe l’activité cytotoxique des lymphocytes T

CD8+ 350,370-372.

1.5.2.3 LPA6/P2Y5

LPA6, codé par le gène LPAR6 présent dans la région chromosomique 13q14 chez l’humain,

est le dernier ajout aux récepteurs au LPA. Il est un récepteur de la classe P2Y qui est

phylogénétiquement proche des récepteurs LPA4 et LPA5132,141. Bien que son étude soit

encore limitée, LPA6 est étudié dans les domaines classiques du LPA comme le

cancer331,332,373, l’immunité et l’homéostasie vasculaire336,351,374,375, mais également dans la

pousse de cheveux44,132.

Activation et signalisation

Le LPA6 a besoin de concentration de LPA plus élevée que les LPA1 à 5 pour être activé376.

Les formes alkyl- et acyl-LPA partagent des affinités similaires pour le LPA6376. De plus, il

est, avec LPA3, le seul récepteur au LPA à préférer les formes de LPA avec l’acide gras en

position sn-2 sur le squelette de glycérol376. LPA6 utilise du LPA formé au niveau des

follicules pileux, non par l’autotaxine, mais par la PA-PLA1α qui forme des 2-acyl-LPA43,44.

Enfin, l’espèce de LPA avec un acide gras 18:2 présente l’affinité la plus forte pour LPA6,

puis vient le LPA 18:1, ensuite 20:4 puis 16:0 après 18:0 et en dernier le LPA 14:0376.

LPA6 active la signalisation RhoA/ROCK par son association avec la protéine Gα12/13375,377

ainsi que les signalisations des MAPK et de la PI3K par la protéine Gαi377. Enfin,

l’accumulation d’AMP cyclique, qui est dépendante de la protéine Gαs, mise en évidence par

une première étude132, n’a pas été observé par deux autres équipes132,376. L’association de

LPA6 avec la protéine Gαs est donc incertaine. L’activation de LPA6 induit la transactivation

du récepteur au EGF44, module l’expression de cytokines351, la motilité331,332,373 et l’adhésion

cellulaire336,374,375,378.

28

Principales fonctions

LPA6 est un acteur majeur dans la différentiation et la maturation des follicules pileux43,44,379.

Sa mutation est notamment associée à la perte de cheveux chez l’humain44,132. Outre le

domaine capillaire, LPA6 participe la formation de nouveaux vaisseaux vasculaires339 et la

transmigration des lymphocytes336 bien que ce soit LPA4 qui soit déterminant dans ces

processus.

1.5.2.4 GPR87

Le LPA a été identifié comme le ligand du récepteur orphelin couplé aux protéines G

GPR87133. Les rares études sur le GPR87 se concentrent sur son rôle pro-tumorale dans le

cancer380-382.

Bien que l’activation de GPR87 par le LPA ait été mise en évidence, aucune étude décrivant

en détail son interaction avec les espèces de LPA ou ses voies de signalisation n’a été publiée.

Une seule étude a lié les effets du LPA induits par GPR87 à l’activation de la voie AKT134.

1.5.3 Récepteurs non couplés à des protéines G

1.5.3.1 TRPV1

TRPV1 est un canal calcique exprimé fortement dans les neurones383,384. Il est également

présent dans de nombreux autres tissus dont les tissus nerveux, vasculaires et certaines

cellules immunitaires384. TRPV1 est impliqué dans la thermoception, la nociception et

l’inflammation385,386. L’activation de TRPV1 par le LPA a été mis en évidence dans le

système nerveux pour la nociception chronique et aigue137,156,157,387,388 et pour les

démangeaisons358. L’activation de TRPV1 est également impliquée dans la vasoconstriction

dépendante au LPA389.

Le LPA active TRPV1 de manière indirecte dans les neurones du ganglion spinal par sa

signalisation dépendante de LPA1156,157 ou de LPA5358. Le LPA peut interagir directement

avec TRPV1 pour l’activer137,358,387. Parmi les espèces testées, seules les formes de acyl-,

alkyl-LPA 18:1 et leur analogue l’acide phosphatidique 18:1 cyclique peuvent interagir

directement avec TRPV1387. Le site de liaison du LPA est situé sur la partie intracellulaire

29

de TRPV1358,387. En revanche, le mécanisme par lequel le LPA intracellulaire active TREK-

1 et -2 est encore inconnu.

1.5.3.2 TREK-1/-2

TREK-1 et -2 sont des canaux à ion potassium de la famille des canaux potassium à 2 pores.

Ces canaux sont fortement exprimés dans les neurones et les cellules cardiaques. Ils sont

également détectés dans les poumons, le tractus intestinal, les reins et les testicules390. Cette

famille de récepteurs est impliquée dans la conduction de potassium de la membrane. Ces

récepteurs jouent un rôle neuroprotecteur390 et sont impliqués dans la nociception155.

Le LPA inhibent l’activité de TREK-1 et -2 de manière indirecte par la signalisation

dépendante du LPA1/3155,158. Cependant, de manière similaire à TRPV1, le LPA

intracellulaire peut activer TREK-1 et -2138.

1.5.3.3 PPARγ

Le PPARγ est un facteur de transcription de la famille des récepteurs nucléaires. Fortement

exprimé dans les tissus vasculaires et adipeux, PPARγ a été associé avec le métabolisme des

lipides, la régulation de la fonction endocrine et l’inflammation391,392. L’activation du PPARγ

par le LPA promeut, entre autres, le remodelage de la paroi vasculaire35,393, ainsi que la

transition de monocyte en macrophage394,395.

La signalisation du LPA dépendante de LPA1 et 3 est capable de moduler positivement et

négativement l’activité du PPARγ33,394,396-399. Outre cette action indirecte, le LPA active

également le PPARγ par interaction directe30,399. L’activation du PPARγ peut être

indépendante de l’ajout de LPA extracellulaire31,393,398, mais au contraire dépendre de la

synthèse de LPA intracellulaire31.

1.5.3.4 Activation des cibles intracellulaires par le LPA

Le mécanisme d’action du LPA sur ses cibles intracellulaires n’est pas encore complétement

décrit. Bien que le LPA peut moduler ces récepteurs par sa signalisation dépendante de ses

récepteurs membranaires, il reste à élucider les mécanismes d’interaction directe. Le LPA

active le PPARγ chez des levures transfectées en absence d’hormones et des récepteurs au

30

LPA30. Il pourrait donc être internalisé par un mécanisme encore inconnu et avoir une action

transcellulaire. En revanche, l’activation de TRPV1 par le LPA5 est abolie par l’inhibition

de la PLD intracellulaire nécessaire à la production de LPA intracellulaire358. Par ailleurs,

stimuler la voie de synthèse de LPA dépendant d’une glycerol-3-phosphate acyltransferase 1

permet l’activation du PPARγ31 et promeut la migration cellulaire32. Ces études suggèrent un

rôle de second messager pour le LPA intracellulaire.

1.6 Régulation de l’activité du LPA : les lipide-phosphate phosphatases

L’activité du LPA est principalement régulée par sa dégradation en monoacyl-glycérol à la

suite de l’hydrolyse du groupement phosphate par des lipides phosphate-phosphatases400,401.

Les monoacyl-glycérols n’ont pas d’activité biologique propre à l’exception du 2-

arachidonylglycérol qui peut être impliqué dans la signalisation des cannabinoïdes402.

Différentes lipides phosphate-phosphatases existent chez l’humain en fonction des tissus et

des compartiments cellulaires considérés, comme la LPA phosphatase dans les

mitochondries403,404 ou la phosphatase prostatique acide dans le liquide séminal405.

Cependant, les régulateurs majeurs des quantités de LPA extracellulaires sont les lipide-

phosphate phosphatases (LPP)400.

Les LPP, anciennement nommées phosphatases d’acide phosphatidique, sont des protéines

transmembranaires qui peuvent hydrolyser le groupement phosphate de certains lipides

phosphorylés que sont le LPA, la shingosine-1-phosphate, les acides phosphatidiques et les

céramides-1-phosphate. L’hydrolyse du groupement phosphate peut être fait par les LPP

quand ces lipides sont associés à de l’albumine ou sous forme de micelle401. Il existe 3 classes

distinctes de LPP, soit les LPP1, LPP2 et LPP3. Toutes les LPP sont des protéines avec 6

domaines transmembranaires et qui présentent 3 sites catalytiques406. Les 3 classes de LPP

partagent la même orientation avec les extrémités N- et C-terminales cytosoliques et leurs

sites catalytiques sont situées dans le milieu extracellulaire ou du bord de la lumière des

membrane intracellulaires406,407. Les 3 classes de LPP sont présentes à la membrane

plasmique et ont une activité catalytique dans le milieu extracellulaire400,408,409, même si elles

sont associées à des sous-domaines distincts de la membrane plasmique410,411. Elles peuvent

également être localisées sur des membranes intracellulaires. Les LPP3 sont détectées au

31

niveau du réticulum endoplasmique412, de vésicules cytoplasmiques et dans le compartiment

périnucléaire413 alors que les LPP2 sont détectées au Golgi414 et sur des vésicules

cytoplasmiques413. Les LPP1 ont été décrites à ce jour uniquement à la membrane

plasmique410,411, même si elle a des effets intracellulaires409. Les LPP peuvent former des

homo ou hétérodimères ce qui n’affecte pas leur activité, mais affecte leur localisation407.

Outre leur localisation cellulaire, les LPP varient dans leur patron d’expression tissulaire. Les

LPP1 et 3 sont détectées dans de nombreux tissu au contraire des LPP2.

À l’inverse de l’invalidation génique de LPP2 qui ne présente pas de phénotype415,

l’invalidation de LPP3 est létale au stade embryonnaire à cause d’un défaut de

vasculogenèse416, et celle de LPP1 à une incidence sur la morphologie, la reproduction et le

pelage des souris417. De plus, la LPP2 promeut l’avancée du cycle cellulaire418 alors qu’au

contraire les LPP1 et 3 inhibent la prolifération et la survie cellulaire419,420. Même si les LPP

partagent une même activité enzymatique, structure et orientation, elles ont, par leur

distribution tissulaire et cellulaire, des fonctions distinctes bien qu’il existe une certaine

redondance entre LPP1 et LPP3.

Des études d’invalidations géniques conditionnelles ont montré que LPP1 et 3 inhibent

l’action du LPA421,422 et régulent les quantités plasmatiques de LPA400. L’action des LPP sur

la signalisation du LPA se fait, d’une part, par la dégradation du LPA extracellulaire dont le

LPA plasmatique400,423, et d’autre part, en agissant sur la signalisation intracellulaire en aval

des récepteurs au LPA409,424. La localisation des LPP à des domaines membranaires

spécifiques permet de localiser la production du LPA à certains sites378. Les mécanismes

d’action des LPP sur la signalisation intracellulaire des récepteurs au LPA ne sont pas encore

décrits en détail. Cependant, une étude a associé l’inhibition intracellulaire de la signalisation

du LPA par les LPP avec la réduction des quantités intracellulaires d’acide phosphatidique

409. Cela est supporté par le fait que les LPP modulent les quantités d’acide phosphatidique

intracellulaire413 qui sont nécessaires au recrutement de certains médiateurs importants de la

signalisation dépendante des protéines G telles les protéines ras425 ou Raf-1426.

32

2 Vésicules extracellulaires

J’utilise le terme EV selon la définition de la Société internationale pour les vésicules

extracellulaires (ISEV) soit « terme générique pour les particules naturellement libérées par

des cellules, qui sont délimitées par une bicouche lipidique et qui ne peuvent pas se répliquer,

i.e. ne contiennent pas un noyau fonctionnel »427. Les EV sont conservées dans l’ensemble

des trois domaines du vivant soit archée, procaryote et eucaryote y compris chez les

végétaux428. Chez l’humain, elles sont trouvées dans l’ensemble des fluides biologiques

comme le plasma, la lymphe ou les liquides synoviaux429-431. Les principaux rôles associés

aux EV sont la communication intercellulaire, l’élimination de composé cellulaire, la

coagulation, la modulation de l’inflammation et de la réponse immune432,433. Les EV qui sont

impliquées dans la progression de différentes pathologies inflammatoires, auto-immunes et

dans le cancer, peuvent servir de biomarqueurs434-436. Enfin leur utilisation comme des

plateformes médicamenteuses ou vaccinales est également étudiée435-437.

2.1 Diversité et formation des EV

2.1.1 Les classes : exosomes, microvésicules, corps apoptotiques

Les EV sont libérées soit de manière passive ou active par les cellules. Le feuillet externe de

leur membrane présente des protéines comme des récepteurs, des molécules d’adhésion, ainsi

que des lipides, notamment la PS438-441 (Figure 5). Leur cytosol contient des protéines et des

acides nucléiques soit de l’ADN, des ARN messagers ou encore des microARN438,439,442

(Figure 5). Les EV peuvent également contenir des organelles comme les mitochondries ou

le protéasome439,442,443. 438

La composition de la membrane et le contenu du cytosol des EV dépend d’abord de la cellule

qui les produit, puis du stimulus et enfin du mécanisme qui conduit à leur formation. En effet

bien que la classification des EV soit encore débattue, leur subdivision en trois catégories

selon leur mécanisme de formation est fréquemment trouvée dans la littérature. Ces trois

subdivisions sont les corps apoptotiques, les microvésicules et les exosomes432(Figure 6).

33

Tout d’abord, les corps apoptotiques sont des fragments de cellules entrées en apoptose. Ce

sont des EV de grande taille, entre 500 et 5 000 nm qui peuvent contenir de l’ADN et des

organelles. Les corps apoptotiques transfèrent des protéines et de l’ADN, dont des oncogènes

à des cellules hôtes444,445 et sont également une source d’auto-antigènes446.

Les microvésicules, aussi appelées microparticules ou ectosomes, sont les EV produites par

un bourgeonnement de la membrane plasmique447. Les microvésicules ont une forme de

sphère ou de tubule448 et une taille comprise entre 100 et 1 000 nm, similaire aux bactéries et

à différents agrégats protéiques dont les complexes immuns449. Les plus grandes peuvent

contenir différentes organelles442. Le bourgeonnement des microvésicules a été associé avec

la perte de l’asymétrie de la membrane plasmique par la mobilisation de calcium et l’action

des flippases, floppases et scramblases450-452. Bien que l’exposition de la phosphatidylsérine

(PS) à la suite de l’asymétrie ne soit pas ubiquitaire, la PS reste fréquemment utilisée comme

un marqueur des microvésicules448,453. Leur formation peut faire intervenir la protéine

ARF6454 ainsi que des protéines de la famille du complexe de tri endosomal nécessaire au

Figure 5: Récapitulatif du contenu trouvé dans les EV à l’exception des organelles. (Colombo et al.,

2014(434))

34

transport (i.e. endosomal sorting complex required for transport ou ESCRT) bien qu’on

eût initialement restreint leurs fonctions à la production d’exosomes455-458.

Enfin les exosomes sont des EV formées dans les corps multivésiculaires puis libérées dans

le milieu extracellulaire par la fusion des corps multivésiculaires à la membrane plasmique459.

Les exosomes ont une taille similaire au virus entre 50 à 150 nm460. La principale voie de

formation des exosomes dans les corps multivésiculaires repose sur les protéines

ESCRT459,461. Des voies indépendantes des ESCRT existent aussi et font intervenir soit des

céramides, des tétraspanines ou les protéines dites SIMPLE (i.e. small integral membrane

protein of lysosomes and late endosomes)459,462-464. La fusion les corps multivésiculaires

avec la membrane plasmique est sous le contrôle de protéines de la famille RAB (i.e. RAS-

related protein in brain)459,465.

L’origine cellulaire et les mécanismes de production des EV permet d’obtenir une grande

hétérogénéité dans la composition des EV détectées dans les fluides biologiques429. Cette

hétérogénéité est accrue par la nature des stimuli à l’origine de la formation des EV qui

modifient le contenu des EV en cours de formation et donc leur fonction432. Il en résulte

qu’une même cellule peut, par exemple, libérer des EV pro- et anti-inflammatoires en

fonction du contexte cellulaire466-469. 470

Figure 6 : Libération des différentes vésicules extracellulaires. Les cellules non-apoptotiques peuvent libérer

des microvésicules par l’invagination de la membrane plasmique et former des exosomes dans les corps

multivésiculaires qui sont libérés après fusion des corps multivésiculaires à la membrane plasmique. Les

cellules apoptotiques subissent une fragmentation de la cellule pour former des corps apoptotiques. (D’après

Bian et al., 2019(462))

35

Les EV peuvent interagir avec les composants du milieu extracellulaire et avec des cellules

par l’intermédiaire des protéines et des lipides présents à leur surface. L’interaction des EV

avec une cellule peut activer différentes réponses cellulaires dont leur absorption.

L’absorption des EV est faite soit par endocytose, soit par fusion de la membrane de l’EV

avec celle de la cellule432,459. L’absorption de l’EV permet le transfert de son contenu à la

cellule hôte et provoque des réponses cellulaires variées. Ce transfert peut être une source de

métabolites, mais également de modification de la cellule hôte. Par exemple, la fusion des

membranes peut apporter de nouvelles protéines membranaires ou encore l’apport d’ARNm

ou interférent peut modifier l’expression protéique de la cellule hôte432,459.

2.1.2 Isolation et étude

Les EV partagent des caractéristiques physiques similaires à différents composés présents

dans les fluides biologiques que ce soient les complexes immuns, les lipoprotéines, des

agrégats protéiques ou encore des virus471. Cela, ajouté à l’absence de consensus pour les

différentes classes d’EV que ce soit pour leurs caractéristiques physiques ou des marqueurs

spécifiques, rend difficile l’isolement et l’étude des EV472.

Les approches d’isolation d’EV reposent sur des critères distincts qui sont la densité, la taille

et la composition de la surface des EV473(Figure 7). Il est également possible d’isoler les EV

par leur précipitation dans un polymère473(Figure 7). Bien que la combinaison de plusieurs

Figure 7 : Les différentes méthodes d’isolation des EV. L’isolation des EV peut être faite en fonction de la

densité, la taille, la composition de leur surface ou par précipitation de polymère. Les avancées dans les

techniques microfluidiques ont permis le développement de puce d’isolement d’EV. DLD, Deterministic lateral

displacement (D’après Wang et al., 2018(469))

36

approches soit généralement privilégiée, deux méthodes sont plus communément utilisées,

soit l’ultracentrifugation, avec ou sans un gradient de densité, et la chromatographie

d’exclusion de taille473. Considérant qu’aucune technique ne permette l’isolation spécifique

ou complète d’une population d’EV, que ce soit en fonction du type, (exosomes ou

microvésicules) ou d’une origine cellulaire par exemple, il reste possible d’enrichir une

population ciblée.

Leur composition est étudiée de manière ciblée par des puces ARN/ADN ou par PCR pour

les acides nucléiques et par immunobuvardages de type western et des méthodes immuno-

enzymatiques de type ELISA (i.e enzyme-linked immunosorbent assay) pour les

protéines474,475. Les études non ciblées se font par séquençage et par spectrométrie de

masse474,476,477.

Il est aussi possible d’étudier les EV de manière individuelle. L’observation de la structure

et de la taille des EV a d’abord été faite à l’aide de la microscopie électronique et

atomique448,478. La microscopie optique est limitée aux plus grandes EV puisque la résolution

est limitée à 400 nm478. Cependant, la microscopie optique à fluorescence reste utilisée pour

détecter ou suivre des EV dans des tissus ou des modèles animaux, ce qui peut être fait par

vidéomicroscopie454,479. La taille des EV peut aussi être mesurée par des techniques de

diffusion dynamique de la lumière478 ou par suivi individuel de particule478,480. Ces approches

présentent cependant des inconvénients, notamment le temps et la complexité d’analyse d’un

grand nombre d’EV ou de plusieurs marqueurs simultanément. L’utilisation d’un cytomètre

en flux, dit de haute sensibilité d’une résolution pour les évènements jusqu’à une taille de

100 nm permet de combler ces limitations par l’analyse rapide d’un grand nombre d’EV. Ces

cytomètres en flux permettent la distinction de différentes populations d’EV en fonction de

leur taille, mais aussi selon différents marqueurs de surface ou intracellulaires tel que la

présence d’organelle429,442,478. Cette approche s’est imposée dans l’étude des EV477 et sera

centrale dans les travaux présentés dans cette thèse.

Les EV trouvées dans de la circulation sanguine sont pour la majorité issues soit des

plaquettes, dites PEV, soit des GR, dites REV448,481,482. Puisque les travaux de cette thèse

s’intéressent plus spécifiquement à ces EV, elles seront décrites plus en détail.

37

2.2 Vésicules extracellulaires de plaquettes

2.2.1 Présentation de la plaquette

Les plaquettes sont les cellules les plus représentées avec les GR. Les plaquettes sont des

éléments du sang de l’ordre de 2 µm délimités par une membrane plasmique qui sont

produites par les mégacaryocytes. Elles ne contiennent pas de noyau et ne sont donc pas

capable de réplication483,484. Par conséquent, les plaquettes seraient conformes avec la

définition des EV faite par l’ISEV, citée précédemment. Cependant, par souci de clarté et

pour éviter un débat sur la nature des plaquettes, je vais, dans ce document, assimiler les

plaquettes à des cellules vasculaires. Les PEV correspondent donc aux vésicules libérées par

les plaquettes soit des exosomes ou des microvésicules de plaquettes.

Par le réarrangement des microtubules, les mégacaryocytes forment des protubérances qui

peuvent se subdiviser pour former plusieurs pro-plaquettes. Les mégacaryocytes étant situés

dans la moelle osseuse, il est nécessaire pour les protubérances qui contiennent les pro-

plaquettes de s’allonger à travers l’endothélium vasculaire pour atteindre la circulation

sanguine485,486. Une fois dans le flux sanguin, les pro-plaquettes sont scindées pour libérer

les plaquettes487,488. Au cours de l’élongation et de la formation des pro-plaquettes, le

mégacaryocyte fait la synthèse d’une grande quantité de protéines plaquettaires. Dans le

même temps, des protéines de membranes et des composants intracellulaires, dont des

organelles, vont être incorporés aux pro-plaquettes489. De fait, le contenu et la composition

membranaire des plaquettes reflète celui des mégacaryocytes. Elles présentent des organelles

incluant les mitochondries, les granules denses et α, le protéasome et les ribosomes.

D’ailleurs, les plaquettes sont capables de faire de la synthèse protéique grâce aux ARN

hérités des mégacaryocytes. Par l’intermédiaire de leurs granules, les plaquettes ont une

quantité importante de cytokines et chimiokines ainsi que de protéines membranaires. Une

partie des médiateurs présents dans les granules n’est pas transférée par le mégacaryocyte,

mais est acquise par internalisation d’EV490,491.

Le rôle premier des plaquettes est la coagulation. La présence de collagène ou du facteur de

von Willebrand induit l’activation des plaquettes492-495. Leur activation libère les granules α,

ce qui induit la présentation de protéines membranaires comme des intégrines à la surface

38

des plaquettes et la libération de protéines, comme l’autotaxine, le fibrinogène ou encore le

facteur de von Willebrand dans le milieu extracellulaire. Parmi les protéines membranaires

des plaquettes activées, des intégrines permettent l’agrégation des plaquettes entre elles ainsi

qu’avec d’autres cellules vasculaires comme les GR pour former un caillot496. En parallèle,

l’activation induit l’exposition de la PS à la surface des plaquettes, ce qui permet le

recrutement de cofacteurs de la coagulation497. Cela aboutit à la production de thrombine qui

stabilise le caillot par l’assemblage de filaments d’actine498. La thrombine et les médiateurs

libérés par les granules, amplifient l’activation plaquettaire et la synthèse de thrombine. Cela

permet de stabiliser le caillot498,499.

Le rôle des plaquettes n’est pas limité à l’initiation et à la promotion de la coagulation. Elles

présentent un nombre important de récepteurs qui peuvent induire leur activation.

L’ensemble des TLR exprimés chez l’humain, soit TLR1 à 10, y sont trouvés500. Les TLR

permettent la reconnaissance des motifs moléculaires associés soit aux dommages cellulaires,

des molécules d’origine endogène, soit aux pathogènes, alors des molécules d’origine

exogène. Le rôle de chaque TLR est dépendant de sa localisation et du motif qu’il reconnait.

Les TLR1, 2, 4, 5 et 6 sont présents à la membrane et reconnaissent différents types de

molécules de structures de micro-organismes501. Les TLR3, 7, 8 et 9 sont présents dans des

vésicules intracellulaires et reconnaissent des motifs d’acides nucléiques501. Également à leur

surface, plusieurs récepteurs aux fragments cristallisables des immunoglobulines (Ig) sont

présents et permettent de reconnaitre les IgA, E et G502-504. Elles présentent également des

récepteurs pour la thrombine505, l’ADP506, les prostaglandines506, différentes chimiokines507,

la sphingosine-1-phosphate508 et le LPA, en particulier LPA5 comme déjà présenté dans les

sections précédentes112,354,363. Il en résulte que les plaquettes peuvent être activées dans de

nombreux contextes inflammatoires et lors des réponses immunitaires innées et adaptatives.

En effet, les plaquettes activées sont capables de phagocytose, notamment de

pathogènes509,510, et elles libèrent des médiateurs pro-inflammatoires492,511,512. Ensuite, les

cytokines libérées et les intégrines présentes à la surface des plaquettes activées permettent

le recrutement et l’activation des cellules vasculaires dont les neutrophiles513,514, les

monocytes515, les cellules dendritiques515 et les lymphocytes516-519. L’activation des

lymphocytes T CD8+ par les plaquettes se fait lors de la présentation antigénique, par

39

l’intermédiaire du complexe majeur d’histocompatibilité de classe I (CMH I)520. Les

plaquettes contiennent un protéasome fonctionnel qui permet la production d’antigène pour

l’apprêtement du CMH I520-522. L’activation des plaquettes ne se limite pas uniquement à

stimuler la réponse immunitaire. Elles libèrent également des modulateurs de l’immunité

adaptative telle la sérotonine ou encore le facteur plaquettaire 4 qui inhibent respectivement

l’activation des cellules dendritiques523 ou des lymphocytes T524.

2.2.2 Description générale

Les PEV constituent la première population d’EV dans le sang et représentent plus de la

moitié des EV trouvées dans le sang448,481,482. Elles sont libérées de manière passive en

réponse aux pressions physiques exercées par le flot sanguin sur les plaquettes, dites

contrainte de cisaillement (i.e. shear stress)525 ou lors de leur entreposage suite à un

prélèvement sanguin526,527. Les EV peuvent également être produites de manière active par

l’activation des plaquettes en réponse à une multitude de signaux qui ont été brièvement

présentés dans la section précédente, dont la thrombine528 ou le LPA112,354,363. La libération

de PEV en réponse à la thrombine ou au collagène est associée à l’activation d’une

scramblase dépendante du calcium et à la perte d’asymétrie de la membrane plasmique452,529.

Les plaquettes présentent différentes protéines de surface dont des intégrines, la PS et le

CD41439. Ce dernier est souvent utilisé comme marqueur de l’origine plaquettaire des EV.

Les PEV contiennent une grande diversité de protéines intracellulaires dont des récepteurs,

des facteurs de transcription, de coagulation et des cytokines439. En plus des différentes

protéines, les PEV peuvent aussi contenir des microARN530,531. Enfin, elles peuvent aussi

contenir des organelles comme le protéasome ou les mitochondries442. Ces dernières peuvent

également être libérées par les plaquettes activées sans nécessairement être contenues dans

une vésicule, elles sont appelées alors mitochondries libres442,527. Les PEV présentent une

grande hétérogénéité de contenu429. D’une part, celles de grandes tailles ont une plus grande

probabilité d’avoir des mitochondries fonctionnelles et d’autre part les stimuli à l’origine de

la libération des PEV modulent leur contenu et donc leur activité429,468,532.

40

Les PEV sont éliminées de la circulation par phagocytose par les macrophages533 ou par

internalisation par les cellules endothéliales vasculaires si elles présentent de la PS534. Les

PEV négatives pour la PS seraient également drainées dans les vaisseaux lymphatiques535.

2.2.3 Fonctions

Les fonctions des PEV sont le reflet de celles des plaquettes, soit la coagulation466,467 et la

modulation de l’immunité. Les PEV peuvent adhérer à l’endothélium vasculaire endommagé

par leur fixation au collagène, au facteur de von Willebrand, au fibrinogène et aux

plaquettes466,536. De plus, certaines PEV peuvent exposer du facteur tissulaire et de la PS ce

qui permet le recrutement de différents facteurs de la coagulation et la production de

thrombine526,536,537. Cependant dans certaines conditions, les plaquettes libèrent également

des PEV avec des propriétés anticoagulantes468,469.

Dans l’immunité, les PEV ne sont pas seulement une source de médiateurs pro-

inflammatoires et de motifs de dommages associés aux dégâts cellulaires, mais peuvent

moduler l’activité de certaines cellules immunitaires439,442,538-540. Elles peuvent notamment

induire la différenciation de lymphocytes T régulateurs et aussi inhiber leur activité541,542.

Les PEV induisent également la différenciation et l’activation de lymphocyte B543,544.

Certaines sous-populations de PEV sont capables de présenter des antigènes et d’activer la

lymphoprolifération443,544. Les PEV ont donc un rôle dans la stimulation, mais également

dans l’inhibition de la réponse immune. Conséquence de leur petite taille, les PEV peuvent

diffuser dans les tissus et propager l’inflammation, comme c’est notamment le cas dans le

compartiment synovial de patients souffrant d’arthrite rhumatoïde447,545.

2.3 Vésicules extracellulaires de globules rouges

2.3.1 Présentation des globules rouges

Les GR sont des cellules sanguines les plus représentées avec des concentrations autour de

5x109 cellules/mL chez l’humain et représentent approximativement 45% du volume

sanguin. Leur fonction principale est d’assurer les échanges gazeux d’oxygène et de dioxyde

de carbone entre les poumons et les tissus.

41

Les globules rouges sont constitués de 1 à 3% de réticulocytes546. Les réticulocytes sont

formés dans la moelle osseuse par l’énucléation des érythroblastes, avant de rejoindre la

circulation sanguine. Ils ont une taille de 10 à 13 µm. Bien qu’ils ne présentent plus de noyau,

leur contenu faible en ARN messagers permet encore la synthèse de protéines nécessaires à

leur maturation547. Lors de la maturation, les réticulocytes produisent une importante quantité

d’hémoglobine, dont la synthèse débute plus tôt dans l’érythropoïèse. Cependant la

production d’hémoglobine est cette fois combinée à une dégradation des organelles, comme

les mitochondries, et également celles nécessaires à la synthèse protéique comme les

ribosomes548-551. Les réticulocytes présentent aussi une forte activité de RNase551,552 et il y a

également une dégradation ou une expulsion de protéines membranaires et intracellulaires,

soit par des autophagosomes553 ou bien par la production d’EV554-557. La maturation permet

d’une part la perte de nombreuses fonctions cellulaires des réticulocytes, mais aussi un

remodelage important de la membrane avec la perte de 20% de sa surface558-560. Ce

remodelage permet l’obtention de la forme biconcave qui leur confère une déformabilité

importante560,561. L’issue du processus de maturation aboutit aux érythrocytes.

Les érythrocytes constituent 97 à 99% des globules rouges546. Ce sont des cellules d’une

taille de 6 à 8 µm d’une forme biconcave qui contiennent de grande quantité d’hémoglobine

(plus de 90% de leur masse sèche) pour le transport d’oxygène et de dioxyde de carbone.

L’étape de maturation fait en sorte que les érythrocytes ne présentent ni noyau, ni organelles.

Il n’y a donc pas de synthèse de protéine chez les érythrocytes même s’ils contiennent encore

des ARN, notamment de petites tailles et des ARN interférents562-564. L’absence de

mitochondrie les empêche de consommer l’oxygène qu’ils transportent. Ils utilisent donc la

glycolyse comme source d’ATP560. Ils ont d’ailleurs une réserve importante d’ATP qui leur

permet de moduler leur forme ainsi que le tonus vasculaire par sa libération565. Enfin, leur

élimination de la circulation sanguine est faite après environ 120 jours par leur phagocytose

par des macrophages. Plusieurs mécanismes sont proposés (Figure 8). Le premier est que

BAND-3, la protéine transmembranaire la plus représentée à la membrane des érythrocytes,

soit ciblée par des auto-anticorps naturels (i.e. natural occurring antibodies)566. Le

deuxième reposerait sur la présence de CD47 à la membrane. CD47 interagit avec SIRPα

pour inhiber la phagocytose. Le vieillissement des érythrocytes est associé à une diminution

du CD47 membranaire567,568. Également, chez des érythrocytes vieillissants, l’interaction de

42

CD47 avec SIRPα permet sa liaison au macrophage et sa subséquente phagocytose569. Le

troisième est que les érythrocytes peuvent présenter à leur surface un signal de phagocytose

qui est la PS570-572. La PS qui est normalement dans le feuillet interne de la membrane peut

être exposé à la surface de cellules lors du vieillissement des érythrocytes573,574 ou lorsqu’ils

sont stimulés par du LPA575-577. La perte de l’asymétrie de la PS à la membrane est

partiellement expliquée par à une baisse de l’activité des flippases lors du vieillissement des

érythrocytes578. 579

Bien que le rôle des GR ait longtemps été confiné aux transports et aux échanges gazeux, de

nouvelles fonctions vasculaires émergent. Les GR seraient, d’une part, impliqués dans la

coagulation et la thrombose580. En effet, les GR peuvent s’agréger entre eux581 et également

avec les plaquettes par l’interaction du ligand Fas, côté plaquette, au récepteur Fas, côté

GR496 ou par sa liaison avec la fibrine582,583. L’association du ligand Fas à son récepteur

permet l’exposition de la PS par les GR et leur interaction avec les cellules

Figure 8: Les globules rouges et leur élimination par les macrophages. Les GR présentent de la PS à leur

surface suite à leur activation ou à leur vieillissement. La PS peut lier directement la stabilin-2 et le Tim-4 des

macrophages ou indirectement à ceux-ci par l’intermédiaire de Gas-6 et des lactadhérines ou la

trhombospondine-1. La présence du CD47 à la surface des GR permet d’inhiber la phagocytose. La protéine

Band-3 peut être liée à des auto-anticorps naturels (Nabs) ce qui induit la phagocytose des GR par

l’intermédiaire des récepteurs aux fragments cristallisables (Fc receptor). (D’après de Back et al., 2014(575))

43

endothéliales496,584. L’exposition de la PS permet également la génération de

thrombine496,584,585. Enfin, la présence de GR au sein du thrombus le stabilise et permet

d’accroitre la résistance de la fibrine à la lyse565,586,587.

D’autre part, les GR seraient un modulateur de l’inflammation vasculaire. Ils servent

d’entreposage vasculaire pour plusieurs cytokines et chimiokines588-590. Les cytokines

présentes chez les GR proviennent soit d’un stade plus précoce de l’érythropoïèse590, soit du

captage de cytokines circulantes par le récepteur aux antigènes et chimiokines Duffy (i.e.

Duffy antigen/chemokine receptor)588,591-593. Les cytokines et chimiokines stockées par les

GR peuvent être sécrétées par ces derniers et stimuler différentes cellules immunitaires dont

les neutrophiles et les lymphocytes T594,595. Outre les cytokines, les globules rouges

présentent le TLR9 qui permet la liaison de l’ADN CpG notamment l’ADN

mitochondriale596. Enfin, le CD235a et le récepteur Duffy permettent la liaison des GR à

plusieurs pathogènes et leur élimination lors de la phagocytose des GR par les

macrophages596-601.

2.3.2 Description générale

Les REV sont la deuxième population d’EV la plus abondante dans le système vasculaire

après celle d’origine plaquettaire448. Les REV peuvent présenter à leur surface le canal d’ion

Band 3, la PS, des tétraspanines et des glycoprotéines comme le CD235a, ou la glycophorine

A602. Cette dernière est notamment utilisée comme un marqueur spécifique des EV de GR.

Les REV contiennent notamment de l’hémoglobine et des ARN de petites tailles602.

La libération d’EV par les GR est souvent considérée comme un mécanisme passif en réponse

à des contraintes de cisaillement603,604, à leur vieillissement605,606 ou à leur stockage557.

Cependant, les GR libèrent également des EV de manière active au cours de leur maturation,

lors de l’hémolyse et en réponse à certains stimuli comme le LPA575,576. Le LPA est le seul

médiateur endogène connu qui peut activer la production de REV, mais des composés comme

le calcium ionophore ou le phorbol-12-myristate-13-acétate peuvent également

l’induire575,576. La production d’EV par les GR peut être faite de manière dépendante et

indépendante de la mobilisation intracellulaire de calcium575,576.

44

2.3.3 Fonctions

La production d’EV par les GR à plusieurs fonctions. Lors de la maturation, la libération

d’EV par la voie des exosomes ou par bourgeonnement, permet le remodelage de la

membrane du GR ou l’élimination de médiateurs intracellulaires tel le récepteur au facteur

tissulaire554-557,575. Ce mécanisme est également présent lors du vieillissement des GR

matures et des érythrocytes, qui perdent notamment de l’hémoglobine par la libération de

REV607.

Les REV agissent dans la continuité des fonctions des GR. Grâce à leur cargo en

hémoglobine, ils participent à la régulation des échanges gazeux par le captage de l’oxyde

d’azote circulant608-610 ou encore à la libération d’espèces réactives de l’oxygène611. Le

captage de l’oxyde d’azote par les REV inhibe la vasodilatation dépendante des cellules

endothéliales vasculaires608,609. La présentation de PS à leur surface permet également de lier

l’hème du milieu extracellulaire612.

Également, les REV sont capables d’initier et de promouvoir la coagulation441,613,614. Elles

sont d’une part une source mobilisable du facteur de von Willebrand615 et induisent

l’expression de protéines d’adhésion par cellules endothéliales615. Et d’autre part, elles

participent à la production de thrombine par l’activation du facteur XII441 ou par la cascade

de kallicréine616. De manière similaire aux GR et aux plaquettes, la production de thrombine

est initiée par l’exposition de la PS à la surface des REV, ce qui permet la liaison de cofacteur

de la coagulation ainsi que des inhibiteurs de la coagulation comme la protéine C

activée440,441.

Outre leur rôle dans la coagulation, elles participent à la modulation de l’immunité et de

l’inflammation. La génération de thrombine par les REV permet d‘activer le système du

complément617. Ils permettent également les interactions entre les plaquettes, les

neutrophiles, les lymphocytes T et les monocytes/macrophages614,618. Ces interactions

résultent en une production de nombreuses cytokines et chimiokines pro-

inflammatoires614,615,618 et également à l’activation des cellules endothéliales vasculaires615.

Sur les neutrophiles, les REV favorisent leur recrutement et leur « amorçage » (i.e.

priming)619,620. En parallèle à ces effets d’activation de l’immunité, les REV ont un potentiel

45

d’inhibition. En effet, leur internalisation inhibe l’activation et la survie des lymphocytes T621

et diminue la production de cytokines pro-inflammatoires pour les macrophages622.

3 L’acide lysophosphatidique et les vésicules extracellulaires

dans les maladies rhumatismales auto-immunes systémiques

3.1 Polyarthrite rhumatoïde

La polyarthrite rhumatoïde (PAR) est une maladie rhumatismales auto-immune systémique

avec une prévalence de 0,5 à 1% de la population et touche principalement les femmes qui

représente de 60 à 80% des cas623. La susceptibilité à développer l’PAR dépend en grande

partie de facteurs génétiques mais il existe de nombreux facteurs environnementaux comme

le tabagisme624. Le développement de la PAR se fait par l’activation et la propagation de la

réponse immunitaire adaptative contre des protéines modifiées du soi, notamment les

protéines citrullinées, ou d’anticorps appelés « facteur rhumatoïde »625. Cette première

réponse immunitaire ne suffit pas au déclenchement d’une PAR625. Un deuxième stress (i.e.

additional hit), comme la formation de complexes immuns ou l’activation du complément,

est nécessaire pour déclencher l’inflammation et le recrutement des cellules immunitaires au

niveau du tissu synovial de manière chronique. L’inflammation chronique du tissu synovial

conduit au cours du temps à la destruction du cartilage et de l’os. Les effets de la PAR ne se

limitent pas aux articulations et présentent des manifestations systémiques. Il existe

également une forme d’PAR dite séronégative où les patients ne présentent pas d’anticorps

dirigés contre des protéines du soi modifiées. Les patients atteint par une PAR sont

notamment plus à risque de développer des maladies cardiovasculaires, qui sont la première

cause de surmortalité des patients PAR par rapport à la population générale626-628. Les

patients PAR sont notamment sujet à un risque accru d’infarctus du myocarde et

d’évènements cérébrovasculaires plus élevés627,629. Ce risque a été associé à un

développement plus rapide de l’athérosclérose et à une instabilité accrue des plaques

d’athéroscléroses qui lors de leur rupture, entraine la formation d’un thrombus et le blocage

du flux sanguin627,629,630.

Le LPA a été montré comme un promoteur important de la pathophysiologie de la PAR dans

plusieurs modèles murins de PAR70,147,192. Chez l’humain, l’autotaxine est détectée dans le

46

liquide synoviale et son expression ainsi que celles de certains récepteurs au LPA, comme

LPA1, sont augmentés dans les tissus synoviaux, notamment les fibroblastes synoviaux de

type B70,149,192,631. Les fibroblastes synoviaux de type B contribuent à l’inflammation et à

l’hyperplasie du tissu synovial. Le LPA stimule la prolifération des synoviocytes de types B

et induit la libération de médiateurs pro-inflammatoires comme l’IL-6 et l’IL-8149,631,632 et de

métalloprotéases matricielles350. L’action du LPA ne se limite pas aux fibroblastes

synoviaux. Il stimule également le recrutement et l’activation de lymphocytes et de

macrophages dans le tissu synovial192,633. Enfin, il participe à la dégradation du cartilage et

de l’os par la formation et l’activation des ostéoclastes147,192.

L’inflammation dans les tissus synoviaux de patients PAR met également en jeux les EV.

Les patients présentent des quantités importantes d’EV d’origines diverses comme de

fibroblastes, de lymphocytes et de macrophages634-637. Le liquide synovial présente

également une infiltration d’EV de la circulation sanguine sous forme de PEV447,545,637,638.

Les PEV stimulent l’inflammation par l’apport d’IL-1α et β, ainsi que par l’induction de l’IL-

6 et l’IL-8 par les fibroblastes synoviaux447. Les PEV sont une source d’auto-antigènes, tel

que des protéines citrullinées ou de complexes immuns, et elles activent la réponse

inflammatoire lorsqu’elles sont internalisées par les neutrophiles545,639. Outre les PEV, les

EV du liquide synovial stimulent l’inflammation synoviale par la diffusion de microARN et

par l’apport de protéines citrullinées dans le tissu synoviale640-643. Les EV du liquide synovial

augmentent l’activation et la survie des lymphocytes636,641. Enfin, les EV des articulations

inflammées de patients PAR ont été proposées comme étant un facteur dans la coagulation

locale élevée et seraient impliquées dans les dépôts de fibrines visibles chez les patients

PAR644.

3.2 Lupus érythémateux disséminé

Le lupus érythémateux disséminé (LED) est une maladie rhumatismale auto-immune

systémique avec une prévalence qui varie de 19 à 159 par 100 000 personnes en fonction de

la zone géographique645. Le LED affecte principalement les femmes et, bien que le biais varie

fortement parmi les études, le ratio est considéré comme étant de 9 femmes pour 1

homme623,645.

47

Le LED est une pathologie complexe qui se caractérise par des atteintes à de multiples

organes et par un grand nombre de symptômes possibles. Parmi les manifestations les plus

fréquentes sont retrouvés les atteintes rénales, dite néprhite lupique, articulaires, cutanées ou

encore neurologiques645. Le fait que le LED puisse se présenter sous des formes très variées,

que ce soit sur des critères cliniques ou sérologiques, rend difficile son diagnostique. De plus,

le retard dans le diagnostique du LED augmente les risques dommages irréversibles aux

organes646.

Plusieurs systèmes de classification du LED ont été créés pour faciliter la conduite d’étude

clinique. Le premier a été fait par l’American College of Rheumatology (ACR) sur la base

de 11 critères cliniques et sérologiques647,648. Un patient doit présenter au moins 4 critères

pour être considéré comme atteint du LED. Un deuxième est fait par le Systemic Lupus

International Collaborating Clinics (SLICC) sur la base de 17 critères cliniques et

sérologiques648,649. Pour être considéré comme atteint du LED selon cette classification, un

patient a besoin de 4 critères, dont au minimum un clinique et un sérologique ou avoir une

atteinte rénale, la néphrite lupique, avec simultanément une mesure d’anticorps antinucléaire

ou contre l’ADN. Enfin, en 2019, l’ACR et l’European Alliance of Associations for

Rheumatology (EULAR) ont proposé une nouvelle classification basée sur 22 critères

cliniques et sérologiques648,650. Un patient est classifié comme atteint du LED s’il est positif

pour des anticorps antinucléaires et présente un score égal ou supérieur à 10. Cette nouvelle

classification présente une meilleure sensibilité, soit la probabilité que le test détecte la

maladie, que les classifications sur les critères ACR ou SLICC. Bien qu’elles puissent être

utilisées dans le cadre d’un diagnostique, ces classifications restent des outils pour aider la

recherche et n’ont pas une vocation à être couramment utilisé pour poser un diagnostic ou

pour décider d’un traitement.

La progression dans le temps du LED peut se faire de trois manières. D’abord la forme

quiescente, qui ne présente pas de symptôme clinique, mais qui est actif selon les critères

sérologiques, ensuite une forme active de manière chronique, et enfin une dernière forme

cyclique, qui alterne des poussées de la maladie avec des phases de rémission651. De plus, les

patients ont besoin d’un suivie important pour réduire, d’une part les risques de complication

liés à la pathologie et à son traitement, et d’autre part les dommages permanents aux organes.

48

Il est donc important d’évaluer l’activité de la maladie chez les patients645,651. Bien qu’il

existe plusieurs index, le plus utilisé est l’index SLEDAI pour systemic lupus erythematosus

disease index. Le SLEDAI est basé sur la présence de 24 critères qui inclus des atteintes de

9 organes différents lors des 10 jours précédents le test. Le SLEDAI permet l’obtention d’un

score qui augmente avec l’activité de la maladie652.

L’étiologie du LED reste encore floue mais implique des composantes génétiques et

environnementales645. Le LED est causé par une réponse de l’immunité innée et adaptative

contre des acides nucléiques ou des complexes protéiques contenant des acides nucléiques

originaires du soi, des phospholipides et des protéines mitochondriales653,654. La réponse

innée repose en grande partie sur la production d’interféron de type I par les cellules

dendritiques, les granulocytes et les neutrophiles655-657. La production d’interféron se fait

principalement en réponse à l’activation des TLR 7 et 9, respectivement par l’ARN simple

brin et par l’ADN CpG non méthylé657. Tandis que l’activation des lymphocytes B et T

conduit à la production de nombreux auto-anticorps et à la libération de cytokines658-661. Les

patients LED présentent des dommages aux organes en fonction de la nature locale de la

réponse immunitaire excessive aux auto-antigènes dans ces organes662-666. Similairement aux

patients RA, les patients affectés par le LED sont plus à risque que la population générale de

développer des maladies cardiovasculaires665,667-669. Les premières causes de mortalité chez

patients LED sont les maladies cardiovasculaires dont l’athérosclérose665,669.

Les patients lupiques présentent des quantités élevées d’EV circulantes. Similairement à leur

rôle dans la PAR, les EV stimulent l’inflammation principalement par la diffusion de

microARN670-672. Cela résulte à la libération augmentée de cytokines et chimiokines pro-

inflammatoires importantes dans la progression de la LED comme l’interféron-α, un

interféron de type I671-673. Elles sont également une source d’auto-antigènes674-676. Enfin, chez

les patients LED, les quantités de PEV sont associées avec l’épaississement de la paroi

vasculaire, un facteur de risque des accidents vasculaires674.

3.3 Comorbidité : athérosclérose

Les maladies cardiovasculaires représentent la première cause de mortalité au monde677-679.

L’athérosclérose est la principale cause des maladies cardiovasculaires678,679. L’inflammation

49

joue un rôle moteur dans la progression de l’athérosclérose ce qui explique de la trouver

comme facteur de comorbidité dans la PAR et le LED qui sont toutes deux des pathologies

associées à une forte inflammation systémique vasculaire627,629,630,665,669.

L’athérosclérose consiste en un épaississement de la paroi vasculaire par la formation d’un

noyaux fibreux et lipidique qui conduit à une réduction du flux sanguin. La progression de

l’athérosclérose se fait en trois phases (Figure 9). Les vaisseaux sanguins sont composés de

trois couches tissulaires, l’intima, la média et l’adventice, dans l’ordre d’éloignement à la

lumière du vaisseau. Dans la phase d’initiation, des lipoprotéines de la circulation

s’accumulent dans l’intima de la paroi vasculaire680. Cette accumulation permet la création

d’une plaque d’athérosclérose680. Au cours de la phase de progression, la plaque

d’athérosclérose se développe par la poursuite de l’accumulation de lipides et par le

recrutement de cellules. D’une part les cellules musculaires lisses de la média voient leur

prolifération et leur migration stimulées681. D’autre part, il y a également une infiltration par

des leucocytes, majoritairement des macrophages, mais également des lymphocytes T et des

neutrophiles682,683. Une fois présent dans la plaque d’athérosclérose les macrophages y

prolifèrent683. L’accumulation de lipides ne dépend plus uniquement des lipoprotéines

circulantes, mais également de l’intégration de cellules spumeuse dans la plaque. Les cellules

spumeuses sont des macrophages ou des cellules musculaires lisses gorgées de lipides684,685.

L’accumulation des lipides et le recrutement des cellules immunitaires dans la plaque

d’athérosclérose est facilité par l’activation de l’endothélium qui le rend plus perméable686.

Au fil des années les cellules présentes dans la plaque induisent la production de matrice

extracellulaire et accentuent la capture et la rétention des lipides678,681. Cette production

permet aussi la mise en place d’une chape fibreuse qui permet de stabiliser la plaque681,687.

Au cœur de la plaque se forme une accumulation de cellules mortes, de macrophages et de

cellules du muscle lisse, ainsi que de lipides qui est appelé noyau nécrotique688,689.

50

La progression de la plaque peut déboucher sur plusieurs complications, qui constituent la

dernière phase. D’une part, la plaque peut prendre trop d’espace dans la lumière du vaisseau

sanguin, ce qui va gêner le flux sanguin et peut mener à des ischémies lorsque l’apport en

oxygène devient insuffisant. D’autre part, si l’instabilité de la plaque est trop grande, une

rupture de la plaque peut se produire690-692. À la suite de cette rupture, le noyau nécrotique

va au contact de la circulation déclencher la coagulation et la formation d’un thrombus. La

formation de ce dernier peut bloquer le passage du sang686,690.

Figure 9: Progression d’une plaque d’athérosclérose. L’activation de l’endothélium augmente sa

perméabilité et induit la libération de cytokines pro-inflammatoires et l’expression de molécules d’adhésion.

La perméabilité de l’endothélium facilite l’accumulation de lipides tandis que les cytokines et les molécules

d’adhésion facilitent le recrutement des cellules immunitaires, principalement les macrophages.

L’inflammation au sein de la paroi vasculaire cause d’une part, le recrutement et la prolifération des cellules du

muscle lisse et d’autre part la formation de cellules spumeuses par internalisation de lipides par les macrophages

et les cellules du muscle lisse. Il en résulte un épaississement localisé de la paroi vasculaire. Le stress oxydatif

et l’hypoxie à l’intérieur de la plaque induit l’apoptose cellulaire et la formation d’un cœur nécrotique riche en

lipide. La plaque d’athérosclérose est protégée par la formation d’une chape fibreuse. Le développement de la

plaque résulte en une obstruction partielle de la lumière du vaisseau. La plaque peut rompre à cause d’un

amincissement de le chape fibreuse ou à cause d’une instabilité de la plaque. La rupture de celle-ci expose le

cœur nécrotique riche en lipides et en protéines matricielles aux plaquettes sanguines, ce qui induit la formation

d’un thrombus. (D’après Skeoch et Bruce, 2015(675))

51

Des modèles murins d’athérosclérose ont mis en évidence l’implication de l’autotaxine et de

certains récepteurs du LPA dans la progression de l’athérosclérose693,694. L’autotaxine

transportée par les lipoprotéines peut former du LPA lors de leur oxydation et favoriser

l’accumulation du LPA dans les plaques d’athérosclérose34,68,113. Le LPA participe à

l’inflammation et à l’hyperplasie de l’endothélium vasculaire par la libération de cytokines

pro-inflammatoires311,695-697. Il est également impliqué dans la formation de néo-intima par

la stimulation de la migration et de la prolifération des cellules endothéliales et du muscle

lisse311,698-700. Il augmente l’absorption de lipides par les macrophages ce qui permet leur

transformation en cellules spumeuses309,395,701. Le LPA inhibe la migration des cellules

spumeuses ce qui pourrait contribuer à leur rétention dans la plaque d’athérosclérose311.

Enfin, lors de la rupture de la plaque, le LPA et les fibres de collagène activent les plaquettes

enclenchant ainsi le processus de coagulation34,112,113.

Les plaques d’athérosclérose présentent différentes populations d’EV dont les REV702-705.

L’injection de certaines EV accélèrent la progression de l’athérosclérose dans un modèle

murin706. Les EV sont capables de moduler plusieurs mécanismes mis en jeu dans le

développement de l’athérosclérose. Tout d’abord, elles stimulent la migration et le

recrutement des lymphocytes et des monocytes/macrophages dans le la paroi vasculaire704,706-

709. Elles induisent également la production et la libération de cytokines et chimiokines pro-

inflammatoires702-704,706,710. D’autres EV sont impliquées dans le recrutement et la migration

de leucocytes. Les EV sont des apports de lipides aux macrophages et stimulent leur rétention

dans la plaque710-713. Cette modulation du contenu lipidique des macrophages favorise leur

transformation en cellules spumeuses711. Les EV sont également impliquées dans la

formation de néovascularisations et de microcalcifications au sein de la plaque

d’athérosclérose, ce qui la déstabilise714,715. Enfin le processus de coagulation qui se produit

lors d’une rupture de plaque implique les EV, comme cela a été décrit dans la section sur les

PEV et les REV.

Cependant, certaines populations d’EV ont des effets protecteurs contre l’athérosclérose.

Certaines EV protègent l’intégrité des cellules endothéliales716,717. D’autres peuvent inhiber

le recrutement et l’activation des monocytes et macrophages718-720. Enfin des EV peuvent

avoir des effets positifs et négatifs sur la progression des plaques comme c’est le cas pour les

52

EV de monocytes qui stimulent la formation de cellules spumeuses, mais inhibent

l’activation de lymphocytes T et la production de cytokines pro-inflammatoires711.

4 Objectif

Le LPA promeut le développement de plusieurs pathologies inflammatoires dont la PAR et

l’athérosclérose. Il est par ailleurs le seul médiateur endogène connu capable d’induire

l’activation des GR ce qui entraine notamment la libération de REV. De plus, un rôle des GR

dans la modulation de l’inflammation est proposé. Outre la capacité de stocker et libérer des

cytokines par les GR, leurs REV ont des activités pro-inflammatoires et stimulent la

coagulation. L’hypothèse au centre de cette thèse est que le LPA via l’activation des GR peut

promouvoir l’inflammation vasculaire et participer aux dommages vasculaires, comme

l’athérosclérose, associés aux maladies rhumatismales auto-immunes systémiques.

Notre premier objectif était d’évaluer le potentiel activateur de différentes espèces de LPA

sur les GR et d’examiner les voies de signalisation impliquées.

Un deuxième objectif était d’évaluer au sein de cohortes de patients atteints de maladies

rhumatismales auto-immunes systémiques si l’autotaxine et des niveaux élevés d’EV

sanguines étaient associés à un risque accru de thrombose et au développement de plaques

athéromateuses.

Ce projet permettrait donc d’approfondir l’implication du LPA et des EV sur les dysfonctions

du système vasculaire dans le contexte de maladies systémiques et auto-immunes telle l’PAR

et le LED.

53

Chapitre 1 : Interplay between LPA2 and LPA3 in LPA-

mediated phosphatidylserine cell surface exposure and

extracellular vesicles release by erythrocytes 1 Résumé

Un rôle plus large des globules rouges (GR) dans l’homéostasie vasculaire émerge,

notamment dans les évènements thrombotiques et dans l’inflammation. L’acide

lysophosphatidique (LPA) est le seul activateur connu des GR et induit l’exposition de

phosphatidylsérine et la libération de vésicules extracellulaires de GR (REV). Par des

approches de cytométrie en flux à haute sensibilité, nous avons étudié l’effet d’espèces

majeures de LPA plasmatique sur les GR. Trois de ces espèces induisent la présentation de

la PS et la libération de petites REV PS- et de grandes REV PS+ par l’activation du récepteur

LPA3. L’activation des GR est possible dans le plasma et libère des REV similaires à celles

trouvées dans le plasma de patients. Une quatrième espèce inhibe l’activation des GR par le

récepteur LPA2. Nos résultats suggèrent que les espèces de LPA présentent des activités

biologiques différentes chez les GR en fonction de l’activation des récepteurs LPA2 et/ou

LPA3.

54

Interplay between LPA2 and LPA3 in LPA-mediated phosphatidylserine cell surface

exposure and extracellular vesicles release by erythrocytes

Stephan Hasse1, Anne-Claire Duchez2, Paul Fortin2, Eric Boilard1, Sylvain G. Bourgoin1

1Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université

Laval, Département de microbiologie-infectiologie et d’immunologie, Université Laval,

Québec, QC, Canada G1V 4G2.

2Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université

Laval, Département de médecine, Faculté de médecine, Université Laval, QC, Canada G1V

4G2.

Corresponding author:

Sylvain G. Bourgoin, PhD

Centre de Recherche du Centre Hospitalier Universitaire de Québec

Faculté de Médecine de l’Université Laval

2705 Boul. Laurier, Québec, QC, Canada G1V 4G2

[email protected]

Phone: +1 (418) 525-4444, ext. 46136 Fax: (418) 654-2765

Key words: LPA, Erythrocytes, LPA receptors, Phosphatidylserine, Autoimmunity,

Extracellular Vesicles

55

2 Abstract

Evidence is growing for the role of red blood cells (RBCs) in vascular homeostasis, including

thrombogenic events and inflammation. Lysophosphatidic acid (LPA) is known to induce

phosphatidylserine (PS) exposure and the release of RBC Extracellular Vesicles (REVs).

Using high sensitivity flow cytometry, we examined the effects and the mechanisms by

which the LPA species commonly found in human plasma could activate RBCs. We report

that LPA 16:0, 18:0 and 18:1, but not LPA 20:4, induced PS exposure and the release of

small PS- and large PS+ REVs through LPA3 receptor signalling in RBCs. The release of

large PS+ REVs required higher concentrations of LPA. RBCs were not activated by LPA

20:4. Interestingly, blockade of LPA2 enhanced LPA-mediated PS- REV release in RBCs.

Furthermore, LPA receptor agonists and antagonists highlighted that LPA 20:4 inhibited

LPA3-dependent PS exposure and, through the LPA2 receptor, inhibited PS- REV

production. Activation of RBCs with LPA 18:1 in normal plasma stimulated the release of

PS- and PS+ REVs. REVs released in response to LPA were similar to those found in the

plasma of systemic lupus erythematosus patients. Our results suggest that LPA species

exhibit different biological activities in RBCs through targeting LPA2 and/or LPA3

receptors.

56

3 Introduction

Red blood cells (RBCs) have long been limited to their role as vehicles for gas exchanges

between blood and tissues and considered passive for other vascular processes such as

inflammation or coagulation. However, a lower concentration of RBCs in polycythemia vera

patients is associated with a lower number of thrombotic events and a lower death rate from

cardiovascular causes [1], thereby suggesting a role for RBCs in coagulation and thrombosis.

Furthermore, inhibition of RBC - platelet interaction protects from arterial thrombosis in

vivo[2]. In vitro experiment shows that interaction between RBCs and platelets contributes

to thrombin generation and thrombus formation[2]. A small subset of RBCs exposing

phosphatidylserine (PS) at their surface could contribute up to 40 % to the thrombin

generated in blood. PS exposition by RBCs promoted their binding to endothelial cells[3]

and could contribute to retinal vein occlusion[3]. In addition to the coagulation process,

RBCs constitute a storage site of vascular cytokines[4, 5] and are potential modulators of

blood cytokines and chemokines. Some such as IL-33 come from an earlier stage of RBC

development[6]. Others such as IL-8 are actively captured by RBCs through the Duffy

antigen receptor for chemokines[4]. Furthermore, RBCs can release cytokines in the milieu

without undergoing hemolysis[7]. Such RBC conditioned media could promote neutrophil

transmigration in vitro[8] and lymphocyte T survival and growth[7].

The release of extracellular vesicles (EVs) by RBCs also contributes to coagulation and

vascular inflammation. EVs are small vesicles from 30 nm up to 1 µm. EVs can originate

from the endosomal compartment before being released (exosomes) or through plasma

membrane budding of activated cells (microvesicles, ectosomes or microparticles). The

release of EVs containing membrane receptors by RBCs (REVs) is a mechanism associated

with a loss of functional responses during maturation of erythrocytes[9-11]. REVs are

capable of initiating and sustaining coagulation in vitro[12]. The increase of

hypercoagulation following REV injection in a mouse model of transfusion highlights their

role in coagulation processes[13]. REVs procoagulant activity is in part explained by the

upregulation of endothelial cell adhesion markers[14] and as a source of thrombin[15]

through the activation of factor XII or of the kallikrein cascade[12]. REVs could also have a

role in immunity, as suggested by the exacerbation of pro-inflammatory cytokine production

57

by REVs in lipopolysaccharide-induced inflammation[16]. REVs promote inflammation

further through thrombin generation[15, 16] and activation of the complement cascade[16].

With platelet EVs, REVs are the main EV population in the bloodstream[17]. Even if REV

release has long been considered passive in response to shear stress[18], aging[19, 20] or

storage[21], REV release can be induced in vitro by a mediator present in the plasma, the

lysophosphatidic acid (LPA)[22].

LPA is a bioactive lipid formed by a phosphate group on a glycerol backbone attached to a

fatty acid. LPA activity is mediated by six widely expressed LPA receptors (LPA1-6) and

atypical receptors such as the peroxisome proliferator-activated receptor γ[23]. The

functional responses to LPA depend on the pattern of LPA receptor expression and LPA

species affinity for the receptors[24, 25]. LPA is a critical mediator of the vascular system

homeostasis[26, 27]. LPA contributes to pro-thrombotic events and inflammatory diseases

such as atherosclerosis[28, 29]. LPA pro-inflammatory and pro-thrombotic functions are in

part explained by the activation of vascular cells such as platelets[30] and endothelial

cells[29]. It promotes platelet aggregation[30], cytokine production[29], and immune cell

recruitment[31]. However, knowledge on LPA impact on RBCs is limited. LPA is known to

have a dual role in the early steps of hematopoiesis. LPA3 promotes erythropoiesis at the

expense of megakaryopoiesis[32, 33], while LPA2 inhibits erythropoiesis[34]. LPA induces

the aggregation of mature RBCs[35], as well as the presentation of surface PS and the release

of pro-thrombotic REVs[22, 36].

Since RBCs and REVs have an active role in vascular physiology and LPA-mediated RBC

activation contributes to inflammation and coagulation, we studied the effect of common

blood LPA species on RBC PS exposure and EV release.

4 Material and methods

4.1 Products

LPA species (16:0, 18:0, 18:1, and 20:4), LPA3 agonist 2S-OMPT, and LPA1/3 antagonist

VPC 32183 were from Avanti Polar Lipids (Alabaster, Alabama, USA). LPA2 agonist GRI-

977143 and LPA2 antagonist H2L5186303 were from Tocris Bioscience (Bristol, UK).

58

4.2 Human plasma samples

Platelet-free plasma (PFP) samples, from systemic lupus erythematosus (SLE) patients and

age- and gender-matched healthy controls, were obtained from the Biobank and Repository

Data for Systemic Autoimmune Rheumatic Diseases of the CHU de Québec-Université

Laval Research Center. PFPs were prepared from blood samples using previously described

standardized procedures[37], which are presented in the section Platelet and EV-free plasma

preparation. All blood samples were obtained after informed consent. The study was

reviewed and approved by the ethics review board of the CHU de Québec-Université Laval

(Project # 2016-2558).

4.3 RBC isolation and activation

Whole blood was collected with sodium citrate as an anticoagulant from healthy anonymous

donors after obtaining informed consent. The blood was centrifuged at 282 g for 10 min to

separate the RBC pellet from plasma and leukocytes. The RBC pellet was collected and

washed thrice in phosphate-buffered saline (PBS: 1 mM KH2PO4, 154 mM NaCl, 3 mM

Na2HPO4; pH 7.4) unless otherwise stated. Washed RBCs were used right away at 108

cells/mL in PBS, when not stated otherwise, and were stimulated up to 2 h at 37 °C under

continuous agitation. In experiments looking at RBC activation in the presence of calcium or

albumin, washed RBCs in HEPES buffered physiological solution (HPS: 145 mM NaCl, 7.5

mM KCl, 10 mM glucose, 10 mM HEPES, pH 7.4 as previously described[36]) containing

2 mM CaCl2 (Sigma Aldrich, Oakville, ON, Canada) or 1 % lipid-free bovine serum albumin

(BSA, Sigma Aldrich, Oakville, ON, Canada) were stimulated with LPA 18:1 for 1 hour at

37 °C. Washed RBCs in EV-free and PFP (V/V), prepared as described in the section below,

were used to mimic physiological conditions. RBCs were centrifuged at 282 g for 10 min,

resuspended one last time in EV-free PFP (V/V), and stimulated with LPA 18:1 for 1 h and

24 h under rotating agitation at 37°C. PBS and HPS were prepared with chemical of

analytical grade obtain from Sigma Aldrich (Oakville, ON, Canada) and HEPES from Wisent

(St-Bruno, Québec, Canada).

59

4.4 Platelet and EV-free plasma preparation

PFP were prepared as previously described[37]. Blood from healthy donors was centrifuged

at 282 g for 10 min at room temperature (RT). The plasmatic fraction was centrifuged at 2

500 g for 20 min at RT. The supernatant was further centrifuged 3 times at 3 500 g for 5 min

at RT to obtain PFP. Finally, PFP was centrifuged at 100 000 g for 90 min at 18 °C to remove

all EVs. The plasma free of both platelets and EVs of 3 healthy donors were pooled and

stored at -20 °C before use.

4.5 RBC and REV labeling for flow cytometry

Following stimulation, 15 µl of stimulated RBCs at 108 cells/mL or 2 µl RBCs in PFP (V/V)

were collected and labeled with 3 µl anti-CD235a-PECy7 (BD Bioscience Canada,

Mississauga, ON, Canada), a marker of RBC, and 3 µl Annexin V FITC (BD Bioscience

Canada, Mississauga, ON, Canada) for PS detection, in 100 µl final of Annexin V binding

buffer (BD Bioscience Canada, Mississauga, ON, Canada) for 30 min in the dark at RT.

Labeling was stopped by adding 200 µl of Annexin V binding buffer and samples were

analyzed within 90 min to prevent labeling loss. PS exposure on RBCs and REVs were

analyzed using a high sensitivity flow cytometer BD Canto II Special Order Research Product

with a small particle option as previously described[38]. Performance tracking of high

sensitivity flow cytometry was done the day of use with BD cytometer setup and tracking

beads (BD Bioscience Canada, Mississauga, ON, Canada). REVs and PS+ REVs absolute

concentrations were determined using 2 µm APC polystyrene beads (BD Bioscience Canada,

Mississauga, ON, Canada) or 3 µm polystyrene beads (Polysciences, PA, USA) of known

concentration in each sample. The gating strategy for RBC activation and REV detection are

presented in Figure 1 A and B. The gate to discriminate the event of a size between 100 nm

and 1,000 nm was set using silica particles of known dimensions of 100, 500 and 1,000 nm

(Kisker Biotech GmbH & Co. Steinfurt, Germany) (Figure 1C). Voltages for the detection

of RBCs were set as follows: FSC at 160 Volt (V), SSC at 300 V, PECy7 at 450 V and FITC

at 500 V. A diode was used to optimize RBC detection. REVs were detected with the

following settings: FSC-PMT at 390 volts (V), SSC at 460 V, PECy7 at 500 V, FITC at 400

V and APC at 550 V. Detection of REVs in the plasma of SLE patients were done with the

60

following settings: 300 V, SSC at 300 V, PECy7 at 500 V, FITC at 500 V and APC at 500

V.

4.6 Control for REV detection by flow cytometry

To evaluate the sensitivity of REV detection, we performed serial dilution, triton treatment

and ultracentrifugation of REV samples as previously described[38]. RBCs were first

removed by centrifugation at 1 300 g for 10 min at RT, and the supernatants were then

centrifuged two more times at 3 500 g for 10 min at RT. EVs were destroyed using 0.05 %

Triton X-100 (Sigma Aldrich, Oakville, ON, Canada) for 1 h at 37 °C or removed by

centrifugation at 100 000 g for 1 h and 30 min at 18 °C. EV depletion data are express as a

percentage of the total number of EVs in untreated samples. Labeling in PBS with 50 µM

EDTA (Wisent, St-Bruno, Québec, Canada), instead of Annexin V buffer, verified the

specificity of Annexin V labeling. We also performed a coincidence test for the detection of

REVs to verify that our measurements were quantitative. Two-fold serial dilution of REV

samples were prepared and measured by high sensitivity flow cytometry (Figure 1F).

4.7 Analysis and statistics

Flow cytometry data were analyzed using FlowJo V10 software (FlowJo, LLC, OR, USA),

and statistical analyses performed using GraphPad Prism 7.0 software (GraphPad Software,

San Diego, USA). Since the number of repetitions for each experience is under 15, we only

used nonparametric tests for our statistical analysis. The strength of activation by LPA

species or LPA receptor agonists showed substantial variations between blood donors.

Therefore, when looking for increase or inhibition of REV production by RBCs, we mitigated

the variations by normalizing the data to the positive control. The Mann-Whitney test

assessed the difference between two experimental conditions. Multiple comparisons used a

two-way ANOVA with Dunnett's multiple comparison post-test to analyze RBC activation

in response to increasing concentrations of LPA and stimulation length. Statistical analyzes

used Kruskal-Wallis tests with Dunn’s multiple comparison post-test or Friedman's test with

Dunn's multiple comparison post-test. Post-test comparisons used the positive or negative

controls, and results were expressed as the mean ± standard error of the mean.

61

5 Results

5.1 Detection of activated RBCs and REVs by flow cytometry

We monitored PS exposure at the surface of RBCs as a marker of RBC activation. Events

positive for the RBC marker CD235a and Annexin V to detect PS were considered (Figure

1A). The gating for PS+ RBCs was validated using RBCs stimulated with calcium ionophore

as a positive control (Figure 1A). We also used the RBC marker CD235a to detect REVs.

Events of a size comprised between 100 nm and 1 000 nm and positive for the RBC marker

CD235a were considered as REVs (Figure 1B). We further discriminated the PS+ REVs

using Annexin V-FITC labeling (Figure 1B). The gate to discriminate the events between

100 nm and 1 000 nm were set with 100 nm, 500 nm and 1 000 nm beads (Figure 1C). To

validate the specificity of REV detection, we monitored the loss of signal for REVs in

supernatants of RBCs activated with LPA 18:1 after treatment with Triton X 100 or

ultracentrifugation at 100 000 g, which destroys the EV lipid bilayer and pellets REVs,

respectively. Triton X 100 treatment or ultracentrifugation reduced the REV populations by

at least 95% compared to untreated supernatants (Figure 1D). The data confirmed the

specificity of REV detection using our experimental approaches. Calcium-free medium

supplemented with EDTA abolished Annexin V labeling of REVs and validated the

specificity of PS detection by Annexin V at the surface of REVs (Figure 1E). Finally, serial

dilution of REV samples resulted in similar reduction of REV detection (Figure 1F).

Although, we detected fewer event, it did not affect the mean nor the median fluorescence of

the RBC marker, CD235a-PECy7, which confirmed that each event we measured is a single

EV and not a cluster of EVs (Figure 1F-G).

5.2 LPA species differentially activate RBCs.

Though LPA is known to induce PS exposure and EV release by RBCs, there is no report on

individual LPA species. We choose to evaluate 4 LPA species, i.e. LPA 16:0, 18:0, 18:1 and

LPA 20:4. It allowed us to have LPA with a long or short fatty acid, either unsaturated,

monounsaturated, or polyunsaturated. Furthermore, all 4 species are commonly found in the

plasma[39, 40] and they are also produced in large quantities following platelet activation[40,

62

41] and during lipoprotein oxidation[40]. We used a concentration of 10 µM of LPA species

to stimulate RBCs, as was done in a previous study of RBC activation by LPA[22].

LPA 16:0, 18:0, and 18:1 induced PS exposure by RBCs (Figure 2A) and REV release

(Figure 2B and C). Surprisingly, LPA 20:4 did not induce PS exposure (Figure 2A) nor

REV release (Figure 2B and C). Our results show a functional discrepancy between LPA

species. Further analysis of LPA-mediated RBC activation used LPA 18:1, since it is the

most potent species that we tested.

5.3 Characterization of RBC activation by LPA 18:1.

We assessed the kinetics of externalization of PS and REV release by RBCs incubated with

various concentrations of LPA 18:1. High concentrations of LPA, 10 µM, and 20 µM resulted

in rapid and transient PS exposure by RBCs (Figure 3A). Furthermore, LPA induced

significant REV accumulation for all concentrations tested except the lowest (Figure 3B).

REV release in the media is seen as soon as 2 min after stimulation and reaches a maximum

after 1 h (Figure 3B). Interestingly, low concentrations of LPA (2.5 µM) induced significant

REV accumulation (Figure 3B) but not PS exposure by RBCs (Figure 3A). Altogether the

data indicate that low concentrations of LPA 18:1 can induce the production of REVs by

RBCs in the absence of PS cell surface exposure.

Interestingly, PS- and PS+ REVs have distinct sizes. PS- REVs show relative size of about

100 nm. On the other hand, PS+ REVs have a size between 500 nm and 1 000 nm (Figure

3C). Using the same gating strategy, we detected similar smaller PS- and larger PS+ REV

subpopulations in PFPs of SLE patients (Figure 3D).

LPA 18:1 induced the release of PS+ REVs in a dose-dependent manner (Figure 3E). In

opposition, the production of PS- REVs reached a plateau with a concentration of 5 µM

(Figure 3F). RBCs released mainly PS- REVs when stimulated with 2.5 µM (87.3 % ± 5.5)

and 5 µM (85.7% ± 3.4) while PS+ REVs were produced at concentration of 10 µM (53.9 %

± 12.5) and 20 µM (90.2 % ± 3.4) (Figure 3G). Thus LPA 18:1, depending on the

concentration, induces the release of 2 distinct populations of REVs, small PS- and large PS+

possibly through two different mechanisms. To further understand the mechanisms leading

63

to RBC activation and the release of those two REV populations, we investigated whether

the production of those REVs was induced through the activation of LPA receptors.

5.4 LPA3 receptor induce RBC activation.

To our knowledge no published paper investigated the presence of LPA receptors on mature

RBCs and only two LPA receptors, LPA2 and 3, were reported on the precursors of RBCs[32,

33]. We first investigated the implication of the receptors LPA1 and LPA3 since both

receptors often mediate similar functions. Since no agonists for LPA1 are available, we

stimulated the RBCs with an agonist selective for LPA3, 2-OMPT. RBC stimulation with

2S-OMPT resulted in PS exposure and REV release (Figure 4A and B). As for RBC

activation with LPA 18:1, a low concentration of 2S-OMPT only induced the release of PS-

REVs (Figure 4B), and a high concentration of 2S OMPT led to significant accumulation of

both PS- and PS+ REVs (Figure 4C and D). To confirm that LPA activation of RBCs goes

through LPA3 (or LPA1), we stimulated RBCs with LPA 16:0, 18:0, and 18:1 in the presence

of VPC32183, an LPA1/3 receptor antagonist. VPC32183 reduced LPA 16:0-, 18:0-, and

18:1-induced cell surface exposure of PS and REV release by RBCs (Figure 4E and F).

Furthermore, VPC32183 strongly reduced the release of PS+ REVs in response to LPA 16:0,

18:0, and 18:1 (Figure 4G). VPC32183 strongly inhibited the release of PS- REVs in

response to LPA 16:0 and 18:0 or 18:1 to a lesser extent. Altogether these data suggest that

LPA-mediated RBC activation is dependent on LPA1/3 receptors.

5.5 LPA2 receptor inhibits PS- REV formation.

Knowing the complexity and redundancy of LPA signaling and the role played by LPA2 in

the regulation of erythropoiesis, we examined if LPA2 also contributes to LPA mediated

RBC activation and production of REVs. RBC incubation by GRI-977143, an LPA2 agonist,

did not induce RBC PS exposure (Figure 5A) nor the release of REVs (Figure 5B). We

further tested LPA2 implication in RBC activation by stimulating RBCs with LPA species

in the presence of H2L5186303, an LPA2 antagonist. H2L5186303 did not affect RBC PS

exposure induced by LPA 16:0, 18:0, and 18:1 (Figure 5C). Surprisingly, H2L5186303

enhanced the production of REVs induced by LPA 16:0 and 18:1 compared to the control

without H2L5186303, 199.2 % ± 88.0 (p=0.0350) and 157.3 % ± 59.5 (p=0.0450),

64

respectively (Figure 5D). Stimulation of RBCs with LPA 16:0 and 18:1 in the presence of

H2L5186303 only increased the release of PS- REVs (Figure 5F), but not that of PS+ REVs

(Figure 5E). To confirm the ability of LPA2 to inhibit PS- REV release, we induced the

release of REVs in the presence of 2S-OMPT, a selective LPA3 agonist, and the LPA2

agonist GRI-977143. As shown in Figure 5G, 10 µM of GRI-977143 reduced to 41.76 % ±

14.03 (p=0.0011) the production of PS- REVs. A higher concentration of GRI-977143 (20

µM) did not further inhibit the production of PS- REVs (Figure 5G), this might be due to

unknown off-target effects of high concentrations of the LPA2 antagonist. The data suggest

that LPA2 inhibits PS- REV release.

5.6 LPA 20:4 inhibits both RBC PS exposure and the production of PS-

REVs.

Since LPA2 has an inhibitory action, we assessed if LPA 20:4, which showed no activation

effect, could inhibit RBC activation. To address this point, we stimulated RBCs with 2S-

OMPT in the presence of LPA 20:4. Interestingly, 20µM LPA 20:4 reduced 2S-OMPT

mediated RBC PS exposure (11.30 % ± 8.81 versus 77.80 % ± 22.50; p=0.0107) (Figure 6A)

and strongly inhibited the production of REVs. Of note, LPA 20:4 had no impact on the

release of PS+ REVs (Figure 6B) but drastically reduced the production of PS- REVs induced

by 2S-OMPT (Figure 6C). Since PS+ REV accumulations were similar in the absence or

presence of LPA 20:4, we reasoned that LPA 20:4 mediated inhibition of PS- REV release

may be mediated by LPA2. To confirm this, we tried to rescue 2S-OMPT activation in the

presence of LPA 20:4 by adding the LPA2 antagonist, H2L5186303. The addition of

H2L5186303 enhanced in a dose-dependent manner LPA 20:4-mediated inhibition of PS cell

surface exposure induced by 2S-OMPT (Figure 6D). As expected, H2L5186303 at 30 µM

antagonized the inhibitory effect of LPA 20:4 on 2S-OMPT-mediated PS- REV release by

RBCs (Figure 6E). Together, these data support that LPA 20:4 inhibits the release of PS-

REVs through LPA2 signaling and inhibit PS exposure on RBCs through an LPA2

independent mechanism.

65

5.7 RBC activation by LPA in physiological condition.

All previous experiments used calcium- and albumin-free PBS. Given the presence of

albumin and millimolar concentration of calcium in the plasma, the vascular environment

likely impacts the ability of LPA to activate RBCs. Albumin binds numerous lipids including

lyso-phospholipids, thereby buffering the concentration of albumin-free LPA which prevents

the degradation of LPA by phosphatases and serves as a carrier to deliver this lipid to cells

and tissues [42, 43]. To evaluate the impact of albumin and calcium, two main components

of blood, on LPA-mediated effect on RBCs we used HEPES buffered physiological solution

(HPS) as described previously for RBC incubation in the presence of a high concentration of

calcium[36]. The strongest activator of RBCs LPA 18:1 was selected for this series of

experiments. LPA 18:1 induced PS externalization by RBCs and calcium enhanced LPA

18:1-mediated cell surface exposure of PS (Figure 7A). LPA 18:1 also stimulated the release

of PS+ (Figure 7B) and PS- REVs (Figure 7C). However, the release of PS+ REVs was lower

(Figure 7B), and that of PS- REVs strongly reduced in the presence of calcium (Figure 7C).

The addition of 1 % BSA to the medium supplemented with or without calcium abolished

LPA 18:1-mediated PS exposure by RBCs (Figure 7A) and the release of PS+ and PS- REVs

(Figure 7B and C).

Since major blood components impact LPA-mediated RBC activation, we investigated next

LPA effects in a closer physiological condition. We resuspended washed RBCs in an

equivalent volume of PFP- and EVs-free plasma to mimic the vascular compartment. In those

conditions, the stimulation with LPA 18:1 for 1 h or 24 h had no discernable impact on the

level of PS exposure by RBCs (Figure 7D). However, RBCs stimulated for 1 h with 20 µM

of LPA 18:1 showed a significant release of PS- REVs (Figure 7F) and higher quantities of

PS+ REVs albeit not significant (Figure 7E). After 24 h, the accumulation of PS+ REVs was

significantly higher for RBCs stimulated with 20 µM of LPA 18:1 (Figure 7E). REV

populations produced by RBCs stimulated with LPA 18:1 in EVs-free PFP, as characterized

by flow cytometry (Figure 7F), resemble those detected in the PFPs of SLE patients (Figure

3D). Interestingly, SLE patients showed higher plasmatic PS+ and PS- REV levels compared

to plasma of healthy controls (Figure 8A and B). Our data show that the REVs released by

RBCs in vitro can be observed in conditions that approximate to the vascular compartment.

66

6 Discussion

In this study, we showed that three LPA species, 16:0, 18:0, and 18:1, activate RBCs by

inducing PS exposure and the release of REVs. The REVs produced in response to LPA are

mainly small PS- EVs, but another population of larger PS+ EVs was also released. LPA-

mediated PS exposure and REV release as well were through the LPA3 receptor and possibly

LPA1. Among the LPA species tested, LPA 20:4 inhibited PS exposure on RBCs and the

release of small PS- REVs. Inhibition by LPA 20:4 of the release of the PS- REVs is through

the LPA2 receptors (Figure 9). Our data do not exclude the possibility that LPA 16:0 and

18:1 bind to LPA2 and contribute to limiting RBC activation through LPA3. Finally, we were

capable of reproducing part of RBC activation by LPA, including PS exposure and the release

of PS+ and PS- REVs, using conditions that mirror the vascular environment.

Even if we validated that LPA3 activates RBCs by inducing both PS exposure and REV

release using an agonist for LPA3 and an antagonist for LPA1 and LPA3, a role for LPA1

remains unclear. LPA species affinity for the LPA receptors is dependent on the fatty acid

chain[24, 25]. LPA 20:4 binding affinity for LPA3 has been reported among the lowest for

LPA species, whereas LPA 20:4 binding affinity for LPA1 is similar to LPA 16:0, 18:0 and

18:1[25]. A role for LPA1 in RBC activation is not excluded but could not be addressed in-

depth due to the lack of LPA1 selective agonists. Furthermore, even if LPA1 and LPA3

usually mediate similar biological functions, a role for LPA in promoting erythropoiesis has

been associated solely with LPA3[32]. To this day, no study showed an implication of LPA1

in RBC functions. An unambiguous approach to determine if LPA1 modulates the production

of REV and PS exposure by RBCs would require mouse knockout for LPA1.

LPA2 is known to inhibit to erythropoiesis[34]. In this study we provide evidence that

inhibition of small PS- REV release by LPA 20:4-activated RBCs depends on LPA2. Among

the species we tested, the one with the highest affinity for LPA2 is LPA 20:4[25], which is

in line with the effects of 20:4 reported in this study. However, LPA 16:0 and 18:1 could also

activate LPA2 but with a lower affinity than LPA 20:4[25]. Our data suggest that LPA2 can

mitigate LPA 16:0 or 18:1-mediated production of EVs by RBCs, as evidenced by the

increased production of EVs in the presence of an LPA2 antagonist. Other methods such as

67

silencing of LPA receptors are not amenable in mature RBCs. However, the observation that

LPA2 antagonist H2L5186303 can abolish the inhibitory effect of LPA 20:4 on LPA3

agonist-mediated production of EVs reinforces the hypothesis that signaling through LPA2

inhibits the release of small PS- EVs (Figure 9).

Increased inhibition of LPA 20:4-mediated PS exposure with H2L5186303 was unexpected

in experiments where RBCs were activated by the LPA2 agonist 2-S-OMPT. H2L518630 is

a competitive antagonist with a 50% inhibitory concentration (IC50) one hundred times

inferior for LPA2 than for LPA3. Competition between H2L518630 and 2-S-OMPT from

binding to LPA3 is unlikely since LPA 20:4-mediated inhibition of PS- REV release by 2-S-

OMPT is abolished by the LPA2 receptor antagonist. The inhibition of PS exposure by RBCs

seen with increasing concentration of H2L5186303 could be due to an unknown off-target

effect in the presence of LPA 20:4. Further, studies needed to unravel the mechanisms by

which LPA 20:4 modulates RBC PS exposure. Signaling through LPA5 is a pathway that

contributes to activation platelets, which share the same progenitor cell as RBCs[44].

Moreover, activation of LPA5 by 20:4 was reported[44]. The absence of available selective

agonists/antagonists for LPA5, LPA4, and LPA6 precludes further analysis of signaling

pathways involved in LPA 20:4 mediated inhibition of PS exposure in mature RBCs.

Depending on the study, the concentration of LPA in human plasma ranges from 50 nM to

1 µM[45-47], and up to 14 distinct LPA species are detected[45]. Most studies focus on 6

species: LPA 16:0, 18:0, 18:1, 18:2, 20:4 and 22:6; and with the following relative

abundance: LPA 18:2 > LPA 20:4 > LPA 16:0 ≥ LPA 18:1 = LPA 18:0 = LPA 22:6[39, 45-

47]. Platelet activation, a major driving force behind LPA increase in plasma, leads to LPA

16:0, 18:0, 18:1 and 20:4 accumulation with no significant changes in LPA 18:2 and 22:6

levels[40, 48, 49]. In the present study, we selected four LPA species (i.e. LPA 16:0, 18:0,

18:1 and 20:4) that are consistently detected in human plasma and produced upon platelet

activation or lipoprotein oxidation[40]. Since LPA 18:2 is the most prevalent species in

human plasma and the levels of LPA 22:6 and 18:2 are increased in acute coronary syndrome

patient[40], a future study of those LPA species on RBCs would be of interest.

An analysis of EVs present in human PFP by cryo-electronic microscopy reported that 95 %

of EVs in PFP were under 1 µm with an average diameter of 275 ± 150 nm[17]. Furthermore,

68

the same study found that only a fraction of PFP REVs were PS+[17]. Similarly, Zetasizer

analysis reported average size of 200 nm for REVs produced in vitro[36]. These findings

support our observations that RBCs release mainly small PS- EVs. However, confocal

microscopy and classic flow cytometry studies also highlighted the production of PS+

REVs[22, 36]. The previous study using classic flow cytometry reported that 98 % of REVs

produced in response to LPA were PS+[22]. Less than 1 % of EVs are detected using classic

flow cytometry as compared to cryo-electronic microscopy[17]. The main limitation of

classic flow cytometry is the detection of the small size vesicles released by cells. Our

findings suggest that the PS+ REVs detected in classic flow cytometry could apply only to

the largest REVs that only account for a small fraction of total REVs[17, 36].

We showed that plasma from healthy donors deprived of cells and EVs, LPA 18:1 was able

to induce the release of PS+ and PS- REVs. Since plasma components can alter the LPA

effects on RBCs, plasma composition may play a crucial role in inhibiting or promoting RBC

activation by LPA. Vascular inflammation is associated with chronic rheumatic

inflammatory diseases. PS+ and PS- REV levels are higher in pathologies with vascular

inflammation such as SLE. Further studies should aim at determining whether RBCs from

SLE and rheumatoid arthritis patients are more prone to activation by LPA or whether the

plasma of patients enhances LPA-mediate PS externalization and EV production by RBCs

from healthy controls.

Patients with rheumatoid arthritis and SLE suffer from comorbidities, with cardiovascular

diseases being the most preponderant factor[50, 51]. Cardiovascular dysfunctions

(atherosclerosis, coronary heart disease, stroke, heart failure) and thromboembolic events

correlated to systemic inflammation in rheumatoid arthritis and SLE[52]. REVs and PS

exposing RBCs were associated with activation of the blood coagulation cascade[3, 13] and

vascular inflammation[16, 53, 54]. Vascular LPA levels are higher in patients with

atherosclerosis[55] and those suffering from acute coronary syndrome[56, 57]. Plasma from

rheumatoid arthritis patients shows higher levels of autotaxin, the enzyme responsible for

LPA extracellular production[58]. Activated platelets are a significant source of LPA

including LPA 16:0, 18:0, 18:1, and 20:4[49]. The present study shows that some of those

species induce PS exposure and REV release by RBCs. Since both PS exposure and REVs

69

can promote coagulation and inflammation[13, 15, 16], RBC activation by LPA could be a

noteworthy mediator for the amplification of inflammation and the coagulation cascade.

Therefore, LPA capacity to modulate RBC physiology is a pathway worth investigating to

understand how RBCs contribute to vascular physiology in atherosclerosis or rheumatoid

arthritis.

7 References

[1] R. Marchioli, G. Finazzi, G. Specchia, R. Cacciola, R. Cavazzina, D. Cilloni, V. De

Stefano, E. Elli, A. Iurlo, R. Latagliata, F. Lunghi, M. Lunghi, R.M. Marfisi, P. Musto, A.

Masciulli, C. Musolino, N. Cascavilla, G. Quarta, M.L. Randi, D. Rapezzi, M. Ruggeri, E.

Rumi, A.R. Scortechini, S. Santini, M. Scarano, S. Siragusa, A. Spadea, A. Tieghi, E.

Angelucci, G. Visani, A.M. Vannucchi, T. Barbui, Cardiovascular events and intensity of

treatment in polycythemia vera, N Engl J Med 368(1) (2013) 22-33.

[2] C. Klatt, I. Krüger, S. Zey, K.J. Krott, M. Spelleken, N.S. Gowert, A. Oberhuber, L. Pfaff,

W. Lückstädt, K. Jurk, M. Schaller, H. Al-Hasani, J. Schrader, S. Massberg, K. Stark, H.

Schelzig, M. Kelm, M. Elvers, Platelet-RBC interaction mediated by FasL/FasR induces

procoagulant activity important for thrombosis, J Clin Invest 128(9) (2018) 3906-3925.

[3] M.P. Wautier, E. Héron, J. Picot, Y. Colin, O. Hermine, J.L. Wautier, Red blood cell

phosphatidylserine exposure is responsible for increased erythrocyte adhesion to

endothelium in central retinal vein occlusion, J Thromb Haemost 9(5) (2011) 1049-55.

[4] M.C. Szabo, K.S. Soo, A. Zlotnik, T.J. Schall, Chemokine class differences in binding to

the Duffy antigen-erythrocyte chemokine receptor, The Journal of biological chemistry

270(43) (1995) 25348-51.

[5] E. Karsten, E. Breen, B.R. Herbert, Red blood cells are dynamic reservoirs of cytokines,

Sci Rep 8(1) (2018) 3101.

[6] J. Wei, J. Zhao, V. Schrott, Y. Zhang, M. Gladwin, G. Bullock, Y. Zhao, Red Blood Cells

Store and Release Interleukin-33, J Investig Med 63(6) (2015) 806-10.

[7] R.F. Antunes, C. Brandão, M. Maia, F.A. Arosa, Red blood cells release factors with

growth and survival bioactivities for normal and leukemic T cells, Immunol Cell Biol 89(1)

(2011) 111-21.

[8] K. Fredriksson, J. Lundahl, L. Palmberg, D.J. Romberger, X.D. Liu, S.I. Rennard, C.M.

Skold, Red blood cells stimulate human lung fibroblasts to secrete interleukin-8,

Inflammation 27(2) (2003) 71-8.

[9] C. Harding, J. Heuser, P. Stahl, Endocytosis and intracellular processing of transferrin

and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor

shedding, Eur J Cell Biol 35(2) (1984) 256-63.

[10] B.T. Pan, K. Teng, C. Wu, M. Adam, R.M. Johnstone, Electron microscopic evidence

for externalization of the transferrin receptor in vesicular form in sheep reticulocytes, J Cell

Biol 101(3) (1985) 942-8.

[11] R.M. Johnstone, A. Mathew, A.B. Mason, K. Teng, Exosome formation during

maturation of mammalian and avian reticulocytes: evidence that exosome release is a major

route for externalization of obsolete membrane proteins, J Cell Physiol 147(1) (1991) 27-36.

70

[12] E.N. Lipets, O.A. Antonova, O.N. Shustova, K.V. Losenkova, A.V. Mazurov, F.I.

Ataullakhanov, Use of Thrombodynamics for revealing the participation of platelet,

erythrocyte, endothelial, and monocyte microparticles in coagulation activation and

propagation, PLoS One 15(5) (2020) e0227932.

[13] Y. Kim, B.T. Xia, A.D. Jung, A.L. Chang, W.A. Abplanalp, C.C. Caldwell, M.D.

Goodman, T.A. Pritts, Microparticles from stored red blood cells promote a hypercoagulable

state in a murine model of transfusion, Surgery 163(2) (2018) 423-429.

[14] M. Straat, M.E. van Hezel, A. Böing, A. Tuip-De Boer, N. Weber, R. Nieuwland, R.

van Bruggen, N.P. Juffermans, Monocyte-mediated activation of endothelial cells occurs

only after binding to extracellular vesicles from red blood cell products, a process mediated

by β-integrin, Transfusion 56(12) (2016) 3012-3020.

[15] P.E. Van Der Meijden, M. Van Schilfgaarde, R. Van Oerle, T. Renné, H. ten Cate, H.M.

Spronk, Platelet- and erythrocyte-derived microparticles trigger thrombin generation via

factor XIIa, J Thromb Haemost 10(7) (2012) 1355-62.

[16] D. Zecher, A. Cumpelik, J.A. Schifferli, Erythrocyte-derived microvesicles amplify

systemic inflammation by thrombin-dependent activation of complement, Arterioscler

Thromb Vasc Biol 34(2) (2014) 313-20.

[17] N. Arraud, R. Linares, S. Tan, C. Gounou, J.M. Pasquet, S. Mornet, A.R. Brisson,

Extracellular vesicles from blood plasma: determination of their morphology, size,

phenotype and concentration, J Thromb Haemost 12(5) (2014) 614-27.

[18] P. Sens, N. Gov, Force balance and membrane shedding at the red-blood-cell surface,

Phys Rev Lett 98(1) (2007) 018102.

[19] F.L. Willekens, J.M. Werre, Y.A. Groenen-Döpp, B. Roerdinkholder-Stoelwinder, B.

de Pauw, G.J. Bosman, Erythrocyte vesiculation: a self-protective mechanism?, Br J

Haematol 141(4) (2008) 549-56.

[20] G.J. Bosman, E. Lasonder, Y.A. Groenen-Döpp, F.L. Willekens, J.M. Werre, The

proteome of erythrocyte-derived microparticles from plasma: new clues for erythrocyte aging

and vesiculation, J Proteomics 76 Spec No. (2012) 203-10.

[21] P. Burger, E. Kostova, E. Bloem, P. Hilarius-Stokman, A.B. Meijer, T.K. van den Berg,

A.J. Verhoeven, D. de Korte, R. van Bruggen, Potassium leakage primes stored erythrocytes

for phosphatidylserine exposure and shedding of pro-coagulant vesicles, Br J Haematol

160(3) (2013) 377-86.

[22] S.M. Chung, O.N. Bae, K.M. Lim, J.Y. Noh, M.Y. Lee, Y.S. Jung, J.H. Chung,

Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure

and procoagulant microvesicle generation in human erythrocytes, Arterioscler Thromb Vasc

Biol 27(2) (2007) 414-21.

[23] G. Tigyi, Aiming drug discovery at lysophosphatidic acid targets, Br J Pharmacol 161(2)

(2010) 241-70.

[24] A. Tokumura, J. Sinomiya, S. Kishimoto, T. Tanaka, K. Kogure, T. Sugiura, K.

Satouchi, K. Waku, K. Fukuzawa, Human platelets respond differentially to lysophosphatidic

acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic

acids, The Biochemical journal 365(Pt 3) (2002) 617-28.

[25] K. Bandoh, J. Aoki, A. Taira, M. Tsujimoto, H. Arai, K. Inoue, Lysophosphatidic acid

(LPA) receptors of the EDG family are differentially activated by LPA species. Structure-

activity relationship of cloned LPA receptors, FEBS Lett 478(1-2) (2000) 159-65.

[26] M. Tanaka, S. Okudaira, Y. Kishi, R. Ohkawa, S. Iseki, M. Ota, S. Noji, Y. Yatomi, J.

Aoki, H. Arai, Autotaxin stabilizes blood vessels and is required for embryonic vasculature

71

by producing lysophosphatidic acid, The Journal of biological chemistry 281(35) (2006)

25822-30.

[27] L.A. van Meeteren, P. Ruurs, C. Stortelers, P. Bouwman, M.A. van Rooijen, J.P.

Pradère, T.R. Pettit, M.J. Wakelam, J.S. Saulnier-Blache, C.L. Mummery, W.H. Moolenaar,

J. Jonkers, Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation

during development, Mol Cell Biol 26(13) (2006) 5015-22.

[28] M. Bot, S.C. de Jager, L. MacAleese, H.M. Lagraauw, T.J. van Berkel, P.H. Quax, J.

Kuiper, R.M. Heeren, E.A. Biessen, I. Bot, Lysophosphatidic acid triggers mast cell-driven

atherosclerotic plaque destabilization by increasing vascular inflammation, J Lipid Res 54(5)

(2013) 1265-74.

[29] Z. Zhou, P. Subramanian, G. Sevilmis, B. Globke, O. Soehnlein, E. Karshovska, R.

Megens, K. Heyll, J. Chun, J.S. Saulnier-Blache, M. Reinholz, M. van Zandvoort, C. Weber,

A. Schober, Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing

CXCL1 from the endothelium, Cell Metab 13(5) (2011) 592-600.

[30] N. Haserück, W. Erl, D. Pandey, G. Tigyi, P. Ohlmann, C. Ravanat, C. Gachet, W. Siess,

The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte

aggregate formation in whole blood: involvement of P2Y1 and P2Y12 receptors, Blood

103(7) (2004) 2585-92.

[31] C. Zhao, A. Sardella, J. Chun, P.E. Poubelle, M.J. Fernandes, S.G. Bourgoin, TNF-alpha

promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2

ligand chemokines, J Lipid Res 52(7) (2011) 1307-18.

[32] C.L. Chiang, S.S. Chen, S.J. Lee, K.C. Tsao, P.L. Chu, C.H. Wen, S.M. Hwang, C.L.

Yao, H. Lee, Lysophosphatidic acid induces erythropoiesis through activating

lysophosphatidic acid receptor 3, Stem Cells 29(11) (2011) 1763-73.

[33] K.H. Lin, M.W. Li, Y.C. Chang, Y.N. Lin, Y.H. Ho, W.C. Weng, C.J. Huang, B.E.

Chang, C.L. Yao, H. Lee, Activation of Lysophosphatidic Acid Receptor 3 Inhibits

Megakaryopoiesis in Human Hematopoietic Stem Cells and Zebrafish, Stem Cells Dev 27(3)

(2018) 216-224.

[34] K.H. Lin, Y.H. Ho, J.C. Chiang, M.W. Li, S.H. Lin, W.M. Chen, C.L. Chiang, Y.N. Lin,

Y.J. Yang, C.N. Chen, J. Lu, C.J. Huang, G. Tigyi, C.L. Yao, H. Lee, Pharmacological

activation of lysophosphatidic acid receptors regulates erythropoiesis, Sci Rep 6 (2016)

27050.

[35] L. Kaestner, P. Steffen, D.B. Nguyen, J. Wang, L. Wagner-Britz, A. Jung, C. Wagner,

I. Bernhardt, Lysophosphatidic acid induced red blood cell aggregation in vitro,

Bioelectrochemistry 87 (2012) 89-95.

[36] D.B. Nguyen, T.B. Ly, M.C. Wesseling, M. Hittinger, A. Torge, A. Devitt, Y. Perrie, I.

Bernhardt, Characterization of Microvesicles Released from Human Red Blood Cells, Cell

Physiol Biochem 38(3) (2016) 1085-99.

[37] I. Melki, I. Allaeys, N. Tessandier, T. Lévesque, N. Cloutier, A. Laroche, N. Vernoux,

Y. Becker, H. Benk-Fortin, A. Zufferey, E. Rollet-Labelle, M. Pouliot, G. Poirier, N. Patey,

C. Belleannee, D. Soulet, S.E. McKenzie, A. Brisson, M.E. Tremblay, C. Lood, P.R. Fortin,

E. Boilard, Platelets release mitochondrial antigens in systemic lupus erythematosus, Sci

Transl Med 13(581) (2021).

[38] G. Marcoux, A.C. Duchez, N. Cloutier, P. Provost, P.A. Nigrovic, E. Boilard, Revealing

the diversity of extracellular vesicles using high-dimensional flow cytometry analyses, Sci

Rep 6 (2016) 35928.

72

[39] D.L. Baker, D.M. Desiderio, D.D. Miller, B. Tolley, G.J. Tigyi, Direct quantitative

analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray

ionization liquid chromatography-mass spectrometry, Anal Biochem 292(2) (2001) 287-95.

[40] M. Kurano, A. Suzuki, A. Inoue, Y. Tokuhara, K. Kano, H. Matsumoto, K. Igarashi, R.

Ohkawa, K. Nakamura, T. Dohi, K. Miyauchi, H. Daida, K. Tsukamoto, H. Ikeda, J. Aoki,

Y. Yatomi, Possible involvement of minor lysophospholipids in the increase in plasma

lysophosphatidic acid in acute coronary syndrome, Arterioscler Thromb Vasc Biol 35(2)

(2015) 463-70.

[41] A.L. Bolen, A.P. Naren, S. Yarlagadda, S. Beranova-Giorgianni, L. Chen, D. Norman,

D.L. Baker, M.M. Rowland, M.D. Best, T. Sano, T. Tsukahara, K. Liliom, Y. Igarashi, G.

Tigyi, The phospholipase A1 activity of lysophospholipase A-I links platelet activation to

LPA production during blood coagulation, J Lipid Res 52(5) (2011) 958-70.

[42] A.E. Thumser, J.E. Voysey, D.C. Wilton, The binding of lysophospholipids to rat liver

fatty acid-binding protein and albumin, The Biochemical journal 301 ( Pt 3)(Pt 3) (1994)

801-6.

[43] G. Tigyi, R. Miledi, Lysophosphatidates bound to serum albumin activate membrane

currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells, The

Journal of biological chemistry 267(30) (1992) 21360-7.

[44] J.R. Williams, A.L. Khandoga, P. Goyal, J.I. Fells, D.H. Perygin, W. Siess, A.L. Parrill,

G. Tigyi, Y. Fujiwara, Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate

receptor indicates role in human platelet activation, The Journal of biological chemistry

284(25) (2009) 17304-19.

[45] K. Kano, H. Matsumoto, N. Kono, M. Kurano, Y. Yatomi, J. Aoki, Suppressing post-

collection lysophosphatidic acid (LPA) metabolism improves the precision of plasma LPA

quantification, J Lipid Res (2021) 100029.

[46] D.L. Baker, P. Morrison, B. Miller, C.A. Riely, B. Tolley, A.M. Westermann, J.M.

Bonfrer, E. Bais, W.H. Moolenaar, G. Tigyi, Plasma lysophosphatidic acid concentration and

ovarian cancer, Jama 287(23) (2002) 3081-2.

[47] B. Yang, L. Wang, X. Wan, Y. Li, X. Yu, Y. Qin, Y. Luo, F. Wang, O. Huang, Elevated

plasma levels of lysophosphatidic acid and aberrant expression of lysophosphatidic acid

receptors in adenomyosis, BMC Womens Health 17(1) (2017) 118.

[48] T. Sano, D. Baker, T. Virag, A. Wada, Y. Yatomi, T. Kobayashi, Y. Igarashi, G. Tigyi,

Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and

sphingosine 1-phosphate generation in blood, The Journal of biological chemistry 277(24)

(2002) 21197-206.

[49] J.M. Gerrard, P. Robinson, Identification of the molecular species of lysophosphatidic

acid produced when platelets are stimulated by thrombin, Biochim Biophys Acta 1001(3)

(1989) 282-5.

[50] F. Wolfe, D.M. Mitchell, J.T. Sibley, J.F. Fries, D.A. Bloch, C.A. Williams, P.W. Spitz,

M. Haga, S.M. Kleinheksel, M.A. Cathey, The mortality of rheumatoid arthritis, Arthritis

Rheum 37(4) (1994) 481-94.

[51] G. Thomas, J. Mancini, N. Jourde-Chiche, G. Sarlon, Z. Amoura, J.R. Harlé, E. Jougla,

L. Chiche, Mortality associated with systemic lupus erythematosus in France assessed by

multiple-cause-of-death analysis, Arthritis Rheumatol 66(9) (2014) 2503-11.

[52] M. Prasad, J. Hermann, S.E. Gabriel, C.M. Weyand, S. Mulvagh, R. Mankad, J.K. Oh,

E.L. Matteson, A. Lerman, Cardiorheumatology: cardiac involvement in systemic rheumatic

disease, Nat Rev Cardiol 12(3) (2015) 168-76.

73

[53] M. Straat, A.N. Böing, A. Tuip-De Boer, R. Nieuwland, N.P. Juffermans, Extracellular

Vesicles from Red Blood Cell Products Induce a Strong Pro-Inflammatory Host Response,

Dependent on Both Numbers and Storage Duration, Transfus Med Hemother 43(4) (2016)

302-305.

[54] R.M. Belizaire, P.S. Prakash, J.R. Richter, B.R. Robinson, M.J. Edwards, C.C. Caldwell,

A.B. Lentsch, T.A. Pritts, Microparticles from stored red blood cells activate neutrophils and

cause lung injury after hemorrhage and resuscitation, J Am Coll Surg 214(4) (2012) 648-55;

discussion 656-7.

[55] W. Siess, K.J. Zangl, M. Essler, M. Bauer, R. Brandl, C. Corrinth, R. Bittman, G. Tigyi,

M. Aepfelbacher, Lysophosphatidic acid mediates the rapid activation of platelets and

endothelial cells by mildly oxidized low density lipoprotein and accumulates in human

atherosclerotic lesions, Proc Natl Acad Sci U S A 96(12) (1999) 6931-6.

[56] T. Dohi, K. Miyauchi, R. Ohkawa, K. Nakamura, M. Kurano, T. Kishimoto, N.

Yanagisawa, M. Ogita, T. Miyazaki, A. Nishino, K. Yaginuma, H. Tamura, T. Kojima, K.

Yokoyama, T. Kurata, K. Shimada, H. Daida, Y. Yatomi, Increased lysophosphatidic acid

levels in culprit coronary arteries of patients with acute coronary syndrome, Atherosclerosis

229(1) (2013) 192-7.

[57] M. Kurano, K. Kano, T. Dohi, H. Matsumoto, K. Igarashi, M. Nishikawa, R. Ohkawa,

H. Ikeda, K. Miyauchi, H. Daida, J. Aoki, Y. Yatomi, Different origins of lysophospholipid

mediators between coronary and peripheral arteries in acute coronary syndrome, J Lipid Res

58(2) (2017) 433-442.

[58] I. Nikitopoulou, N. Oikonomou, E. Karouzakis, I. Sevastou, N. Nikolaidou-Katsaridou,

Z. Zhao, V. Mersinias, M. Armaka, Y. Xu, M. Masu, G.B. Mills, S. Gay, G. Kollias, V.

Aidinis, Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of

modeled arthritis, J Exp Med 209(5) (2012) 925-33.

74

8 Figures and legends

Figure 1. RBC activation and REV detection by high-sensitivity flow cytometry. (A)

RBCs were first gated according to size and granularity in SSC and FSC. Events were

considered for the RBC marker CD235a conjugated to PECy7 (upper left and right panels)

75

and for PS exposure, a marker of RBC activation, using FITC-conjugated Annexin V (upper

right panel). RBC stimulated with 5 µM of calcium ionophores served as positive control for

RBC activation. (B) REVs were defined as events with a size between 100 nm and 1 000 nm

(EV gate) and positive for the RBC marker CD235a (REV gate). Events in the FITC channel

were considered PS positive (PS+) REVs (REV PS+ gate). (C) The EV gate in SSC-H

(granularity) and FSC-PMT-H (relative size) were set with polystyrene beads of 100 nm,

500 nm, and 1 000 nm. (D) Specificity of REV detection was validated by the clearance of

REVs with 0.05% Triton X-100 (TX-100) treatment which destroys EV’s lipid bilayer and

by 100 000 g ultracentrifugation (ultra) which pellets EVs, (n=4). Results are the mean

percentage ± SD of the untreated condition (Ctrl). Statistical comparisons used the Kruskal-

Wallis test with the Dunnet post-test. (E) Calcium-free PBS supplemented with 50 µM of

EDTA (EDTA) was used for Annexin V labeling of REVs to validate the specificity of PS

detection at the surface of REVs. Data are the mean percentage ± SD of the labeling done in

Annexin V binding buffer (Ctrl). Statistical comparisons used the Mann-Whitney test. (F-H)

Two-fold serial dilutions of REV samples were quantified by high sensitivity flow cytometry

using polyester counting beads. REV concentrations and calculated dilution factors (F), the

mean (G) and the median (H) intensity of fluorescence for each dilution are presented (n=3).

Figure 2. RBC activation by LPA varies depending of the fatty acid. (A) Percentage of

RBCs exposing PS, (B) REVs and (C) PS+ REVs released in response to 10 µM LPA 16:0

(n=8), 18:0 (n=10), 18:1 (n=10) and 20:4 (n=4) after 1 h stimulation measured by high-

sensitivity flow cytometry. Data are the mean ± SEM, comparisons were done using Kruskal-

Wallis tests with Dunnet post-test, * p <0.05, **p <0.01, ***p <0.001, ****p <0.0001.

76

Figure 3. LPA induced RBC activation leads to two distinct REV populations. (A)

Percentage of RBCs exposing PS and (B) kinetics of REV released in response to increasing

concentration of LPA 18:1 measured by high-sensitivity flow cytometry (n=4). Statistical

comparisons used a two-way ANOVA with Dunnett's multiple comparison post-test. (C)

Representative dot plot for PS expression (left panel) and size (right panel) of REV released

77

by RBC in response to 10 µM of LPA 18:1 and (D) in PFP of SLE patients. (E) PS+ REV

and (F) PS- REV amount released in response to increasing concentration of LPA 18:1 after

0, 2, 15, 30, 60, and 120 min of stimulation measured by high-sensitivity flow cytometry.

(G) The relative percentage of PS- and PS+ REVs released in response to increasing LPA

18:1 concentration are the mean ± SEM. Statistical comparisons used a two-way ANOVA

with Dunnett's multiple comparison post-test, * p <0.05, **p <0.01, ***p <0.001, ****p

<0.0001.

Figure 4. LPA1/3 mediates RBC activation by LPA. (A) The percentage of RBCs exposing

PS, (B) REVs, (C) PS+ REVs, (D) PS- REVs released by RBCs stimulated with LPA3 agonist

2S-OMPT at 10 and 20 µM for 1 h measured by high-sensitivity flow cytometry (n=10). (E)

Percentage of RBCs exposing PS, (F) REVs, (G) PS+ REVs and (H) PS- REVs released in

response to LPA 16:0 (n=5), 18:0 (n=6) or 18:1 (n=7) in presence and in the absence of

LPA1/3 antagonist VPC32183 (VPC) at 5 or 15 µM measured by high-sensitivity flow

cytometry. REVs (total, PS+, PS-) are expressed as a percentage of total LPA-induced REVs.

78

Data are presented as mean ± SEM, Kruskal-Wallis test with Dunnet post-test, * p <0.05,

**p <0.01, ***p <0.001, ****p <0.0001.

Figure 5. LPA2 inhibits PS- REV production. (A) The percentage of RBCs exposing PS,

(B) REVs released by RBCs stimulated with LPA2 agonist GRI-977143 (GRI) at 10 and

20 µM for 1 h measured by high-sensitivity flow cytometry (n=10). (C) The percentage of

RBCs exposing PS, (D) REV, (E) PS+ REV and (F) PS- REVs released by RBCs stimulated

with 10 µM of LPA 16:0 (n=5), 18:0 (n=6) or 18:1 (n=7) in presence of LPA2 antagonist

H2L5186303 (H2L5) at 5 and 15 µM measured by high-sensitivity flow cytometry. REV

amounts (total, PS+, PS-) are expressed as a percentage of LPA induced REVs. (G) PS- REV

released by RBCs stimulated with 10 µM of 2S-OMPT in the presence of GRI measured by

high-sensitivity flow cytometry. PS- REV amounts are expressed as a percentage of LPA

induced REVs. All data are presented as mean ± SEM, Kruskal-Wallis test with Dunnet post-

test, *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001.

79

Figure 6. LPA 20:4 inhibits PS- REV production through LPA2 and PS exposure by

RBCs. (A) The percentage of RBCs exposing PS, (B) PS+ REVs, and (C) PS- REVs released

by RBCs stimulated with 10 µM of 2S-OMPT in the presence of LPA 20:4 measured by

high-sensitivity flow cytometry. (D) Percentage of RBCs exposing PS and (E) PS- REVs

released by RBCs stimulated by 10 µM of 2S-OMPT in the presence of 5 µM of LPA 20:4

and H2L5186303 (H2L5) measured by high-sensitivity flow cytometry. PS- REVs are

expressed as a percentage of 2S-OMPT-induced REV release. Data are presented as mean ±

SEM, Kruskal-Wallis test with Dunnet post-test, * p <0.05, **p <0.01, ***p <0.001, ****p

<0.0001.

80

Figure 7. LPA 18:1 induces PS+ REVs in platelet-free and EV-free plasma from healthy

donors. (A) The percentage of RBCs exposing PS, (B) PS+ REVs, and (C) PS- REVs released

by RBCs stimulated for 1 h by LPA 18:1 in the absence or presence of 1 % BSA and calcium

2 mM (n=4) measured by high-sensitivity flow cytometry. Statistical comparisons used a

two-way ANOVA with Dunnett's multiple comparison post-test. For each incubation milieu,

we compared RBC stimulation to their respective control without LPA. (D) The percentage

of RBCs exposing PS, (E) PS+ REVs, and (F) PS- REVs released after 1 h or 24 h stimulation

by LPA 18:1 of RBCs in EV-free PFP (V/V) measured by high-sensitivity flow cytometry

(n=5). Statistical comparisons used the Friedman test with Dunn's multiple comparison post-

test (G). Representative dot plot for PS expression (left panel) and size (right panel) of REV

populations produced by stimulation of washed RBCs in EV free PFP (V/V) with LPA 18:1

at 20 µM. * p <0.05, **p <0.01, ***p <0.001, ****p <0.0001.

81

Figure 8. High plasmatic quantities of PS+ and PS- REV are present in SLE patients.

(A) PS+ REV and (B) PS- REV plasmatic amounts in SLE patients (n=102) and healthy

controls (n=30) measured by high-sensitivity flow cytometry. Statistical comparisons used

the Mann-Whitney test. * p <0.05, **p <0.01, ***p <0.001, ****p <0.0001.

82

Figure 9. LPA signaling in RBCs. LPA 16:0, 18:0 and 18:1 activate LPA3 on RBC which

induces PS exposure and the release of small PS- REVs and large PS+ REVs. LPA2 activation

by LPA 20:4 inhibits the release of small PS- REVs when RBCs are stimulated. LPA 16:0

and 18:1 can also activate LPA2. LPA 20:4 inhibit PS exposure of stimulated RBC through

an unknown mechanism. Created with BioRender.com.

83

Chapitre 2 : Plasma level of red blood cell-derived

phosphatidylserine positive extracellular vesicles are

associated with thrombosis in systemic erythematous

lupus patients

1 Résumé

Les cellules activées libèrent des vésicules extracellulaires (EV). Les EV promeuvent la

coagulation et l’inflammation notamment en étant une source d’antigènes du soi. Les patients

atteints par le lupus érythémateux disséminé (LED) présentent un inflammation vasculaire

importante et ont un risque accru de développer des maladies cardiovasculaires. C’est

pourquoi nous pensions que les EV de plaquettes et de globules rouges (REV) pouvaient être

corrélées à l’activité de la maladie et aux dommages cardiovasculaires qui sont associés au

LED. Bien que les PEV et les REV soient augmentées chez les patients LED, elles ne sont

pas associées avec l’activité de la maladie. Cependant, la stratification de la cohorte en

fonction des REV positives pour la phosphatidylsérine a mis en évidence une incidence plus

importante de thrombose chez les patients qui en présentent de grandes quantités.

84

Red blood cell-derived phosphatidylserine positive extracellular vesicles are

associated with thrombosis in systemic erythematous lupus patients

Stephan Hasse1, Anne-Sophie Julien2, Anne-Claire Duchez1, Chenqi Zhao1, Eric Boilard1,

Paul Fortin3, Sylvain G. Bourgoin1

1Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université

Laval, Département de microbiologie-infectiologie et d’immunologie, Université Laval,

Québec, QC, Canada G1V 4G2.

2Département de mathématiques et statistique, Université Laval, QC, Canada G1V 4G2.

3Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université

Laval, Département de médecine, Faculté de médecine, Université Laval, QC, Canada G1V

4G2.

Short title: Extracellular vesicles promote thrombosis in SLE

Corresponding author:

Sylvain G. Bourgoin, PhD

Centre de Recherche du Centre Hospitalier Universitaire de Québec

Faculté de Médecine de l’Université Laval

2705 Boul. Laurier, Québec, QC, Canada G1V 4G2

[email protected]

Phone: +1 (418) 525-4444, ext. 46136 Fax: (418) 654-2765

Key words: Extracellular vesicles, ATX, CD62P, phosphatidylserine, platelets, erythrocytes,

lupus, thrombocytopenia, thrombosis

85

2 Abstract

Background. Extracellular vesicles (EVs) released by blood cells have pro-inflammation

and pro-coagulant action. Systemic lupus erythematosus (SLE) patients present high vascular

inflammation and are prone to develop cardiovascular diseases. Therefore, we postulated that

the EV populations found in blood, platelet EVs (PEVs) and red blood cell EVs (REVs) are

associated with SLE disease activity and SLE-associated cardiovascular accidents.

Method. We assessed ATX plasma levels by ELISA, the platelet activation markers PAC1

and CD62P, ATX bound to platelets, and the amounts of plasma PEVs and REVs by flow

cytometry in a cohort of 102 SLE patients, including 29 incident cases of SLE and 30

controls. Correlation analyses explored the associations with the clinical parameters.

Result. Platelet activation markers were increased in SLE patients compared to control, with

the marker CD62P associated with the SLEDAI. The incident cases show additional

associations between platelet markers (CD62P/ATX and PAC1/CD62P) and the SLEDAI.

SLE patients presented higher levels of PEVs, phosphatidylserine positive (PS+) PEVs,

REVs, and PS+ REVs, but there is no association with disease activity. When stratified

according to the plasma level of PS+ REVs, the group of SLE patients with a high level of

PS+ REVs presented a higher number of past thrombosis events and higher ATX levels.

Conclusion. Incident and prevalent forms of SLE cases present similar levels of platelet

activation markers, with CD62P correlating with disease activity. Though EVs are not

associated with disease activity, the incidence of thrombosis is higher in patients with a high

level of PS+ REVs.

86

3 Introduction

Systemic lupus erythematosus (SLE) is a Systemic Autoimmune Rheumatic Disease

(SARD). SLE patients present a wide range of clinical phenotypes. One characteristic of SLE

is a high vascular inflammation associated with damages in multiple organs [1]. Patients with

SLE have a higher risk of dying from cardiovascular diseases [2]. The vascular inflammation

associated with SLE development relates to an immune response to autoantigens [3, 4] and

a production of type I interferon [5-7].

Platelet activation also induces the liberation of extracellular vesicles [8]. Extracellular

vesicles (EVs) are small vesicles liberated by activated cells. The EVs includes exosomes

and microvesicles. The fusion of multivesicular bodies with the plasma membrane releases

the exosomes. Plasma membrane budding generates the microvesicles, which often occurs

after cell loss of the membrane phospholipid asymmetry. Some EVs formed after the loss of

the plasma membrane asymmetry presents the phosphatidylserine (PS) at their surface. EVs

from platelets (PEVs) and red blood cells (REVs) can, through the exposition of PS, recruit

mediators of the coagulation cascade and initiate the formation of blood cloth [9-11]. SLE

patients present higher levels of platelet activation in SLE is a source of autoantigen, notably

by the release of free mitochondria [8, 12]. SLE patients have increased circulating EVs,

notably from platelet origin [13, 14] and serve as a source for interferon-α and bind sites for

immune complexes [15-17]. The exosomes are also associated with enhanced pro-

inflammatory cytokine and chemokine production, notably type I interferon in SLE [15, 16,

18].

PEVs are the largest EV population in the blood, which are found in higher amounts in the

plasma SLE patients. However, besides that PEVs are a source of autoantigens and bind

immune complexes, there is little knowledge on their role in SLE [14, 19]. In some studies,

there was an association between PEVs and the SLE disease index (SLEDAI) [14], but no

association was reported in others [20]. However, PEVs were associated with the progression

of atherosclerosis in SLE patients through the thickening of the vascular wall [19].

Platelet activation also releases autotaxin (ATX), a phospholipase with pro-inflammatory

properties. ATX is associated with the pathophysiology of rheumatoid arthritis and

87

cardiovascular diseases [21-23]. ATX catalyzes the production of lysophosphatidic acid

(LPA), one of the few known activators of red blood cells which induce the liberation of

REVs [24, 25]. SLE are more at risk to suffer from cardiovascular diseases that are the

leading cause of death for SLE patients. EVs and platelet activation are factors in the

development of cardiovascular diseases and other autoimmune diseases. PEVs and REVs

have pro-inflammatory and pro-coagulant activities [9, 10, 26-28]. Since SLE patients have

a high level of plasma EVs, we focused our study on PEVs and REVs, the two most abundant

EV populations found in the blood, and the associated vascular events.

4 Material and methods

4.1 SLE patients and healthy donors

SARD-BDB (Systemic Autoimmune Rheumatic Disease biobank and database repository of

the CHU de Québec-Université Laval) recruited prevalent SLE patients with a disease

duration superior to 15 months and incident SLE patients with a disease duration equal or

under 15 months. A control group formed by 30 healthy donors, under no medication and

without known illness, was recruited (mean age 50±8 years, female 63.33%).

4.2 SARD-BDB protocol

The SARD-BDB provided the plasma and platelet-free plasma (PFP) from SLE patients. The

PFP was processed using previously described standardized protocols [12]. Patients included

in the study gave informed written consent according to the declaration of Helsinki. The

ethics review board of the CHU de Québec-Université Laval reviewed and validated the

study (Project # 2016-2558). SLE patients had to meet the American College of

Rheumatology (ACR) classification criteria for SLE revised in 1997 [29, 30].

Antiphospholipid syndrome (APS) was diagnosed according to the 2006 revised Sapporo

criteria [31]. Variables were collected at the time of the first visit to the SARD-BDB

including, sociodemographic variables, diseases characteristics, clinical variables, common

hematology tests, cardiovascular and thrombosis risk factors, and current use medication.

88

4.3 Flow cytometry

4.3.1 Detection of platelet activation

Five µL of PRP were incubated 30 min at room temperature in the dark with 3 µL of anti-

CD41-V450 (BD Bioscience Canada, Mississauga, ON, Canada), a marker of platelets, 15

µL of anti-CD62P-APC and 15 µL of anti-PAC1-FITC (BD Bioscience Canada,

Mississauga, ON, Canada) and anti-ATX (BD Bioscience Canada, Mississauga, ON,

Canada) in 100 µL of PBS. The samples were mixed with 400 µL of PBS to stop labelling

and analyzed using a high sensitivity flow cytometer BD Canto II Special Order Research

Product with the gating strategy described in supplementary figure 1A. The flow cytometer

settings were as follows: FSC at 300 V, SSC at 335 V, Pacific blue at 500 V, FITC at 500 V,

PE at 500 V and APC at 500 V.

4.3.2 Detection of plasmatic EVs

Five µL of PFP were incubated for 30 min at room temperature and in the dark with 3 µl

anti-CD41-V450 (BD Bioscience Canada, Mississauga, ON, Canada), a marker for platelet-

derived EVs, and with 3 µl anti-CD235a-PECy7 (BD Bioscience Canada, Mississauga, ON,

Canada) to label the REVs. To detect PS exposed on the outer membrane leaflet, we added

3 µl Annexin V FITC (BD Bioscience Canada, Mississauga, ON, Canada) to the plasma

samples in 100 µl final Annexin V binding buffer (BD Bioscience Canada, Mississauga, ON,

Canada). The samples were mixed with Annexin V binding buffer (200 µL) to stop labelling

and processed under 90 min on a high sensitivity flow cytometer BD Canto II Special Order

Research Product with a small particle option as previously described [32]. The

supplementary figure 1B shows the gating strategy for the detection of plasmatic PEVs and

REVs. Silica particles of 100, 500 and 1,000 nm (Kisker Biotech GmbH & Co. Steinfurt,

Germany) allowed to set up a gate differentiating the events of size between 100 to 1 000 nm

(Supp. Fig. 1B). The flow cytometer settings were as follows: FSC at 300 V, SSC at 300 V,

PECy7 at 500 V, FITC at 500 V and APC at 500 V. To determine the absolute amounts of

REVs and PEVs in the samples, we added known concentrations of 2 µm APC polystyrene

beads (BD Bioscience Canada, Mississauga, ON, Canada) or 3 µm polystyrene beads

(Polysciences, PA, USA).

89

Specificity of EV detection was validated by destroying EVs from the sample by Triton X-

100 treatment or pelleting EVs by a 100 000 g ultracentrifugation (Supp. Fig. 1D). Labelling

in EDTA-supplemented buffer and absence of annexin V buffer was used to validate the

specificity of Annexin V labelling (Supp. Fig. 1E). Finally, a coincidence test validated that

our measurements of PEV and REVs were quantitative (Supp. Fig. 1F and G).

Every day before monitoring platelets activation markers and plasma EVs, a test of

performance tracking of high sensitivity flow cytometry was done using BD cytometer setup

and tracking beads (BD Bioscience Canada, Mississauga, ON, Canada).

4.4 Autotaxin measurement

Plasmatic concentrations of autotaxin (ng/mL) were quantified using a Human ENPP-

2/Autotaxin Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA) and following

the manufacturer instructions.

4.5 Analysis and Statistics

Flow cytometry data analysis used the FlowJo V10 software (FlowJo, LLC, OR, USA) and

statistical analysis with GraphPad Prism 7.0 software (GraphPad Software, San Diego, USA)

and SAS version 9.4 (SAS Institute Inc, Cary, North Carolina, USA). Comparisons between

groups used the Kruskal-Wallis tests with Dunn’s multiple comparison post-test or the

Wilcoxon Mann Whitney test for continuous variables, depending on the number of groups.

The Exact Pearson Chi-Square Test was used to compare groups for discrete variables.

Spearman’s correlation coefficient (rs) determined the association between continuous

variables. Only variables monitored at the first visit (baseline) were considered for the

analyses.

5 Results

5.1 Patient’s characteristics

The characteristics at baseline of the 102 SLE patients included in the cohort are presented

in Table 1. For 29 of 102 patients, the SLE diagnosis was 15 months or less before their

90

inclusion in the cohort. These patients that started their treatments recently and had not their

SLE under control were considered incident cases. The SLE prevalent cases were the patients

treated for more than 15 months. Women represented 83% of all SLE cases. About a quarter

of the patients had thrombocytopenia (23.5%). SLE patients with renal disorders and

antiphospholipid syndrome represented 24.5% and 15.7% of the SLE cohort, respectively.

The prevalence of thrombophilia in the SLE cohort was 11.8%. Furthermore, 30 patients had

atherosclerosis plaques, and 42 had no plaques (Table 1).

5.2 SLE patients present higher platelet activation and plasma EV levels at

baseline

When all the prevalent and the incident cases were considered at baseline, SLE patients

present a higher percentage of platelet with the activation marker PAC1 and CD62P by

comparison to healthy controls (Table 2). In addition, a higher number of platelets were

positive for the phospholipase ATX (Table 2). ATX is known to be secreted by and to bind

the integrins of activated platelets [33-35]. However, the total ATX plasma level was not

different between the SLE and the healthy group (Table 2). The plasma of SLE patients

shows high levels of platelet- and RBC-derived EVs, including those exposing PS at their

surface (Table 2). Furthermore, 79.3% of the plasma PEVs and 23.6% of the plasma REVs

were PS+ in the control group, and this proportion increased respectively to 87.8% and 45.2%

in the SLE cohort (Table 2).

5.3 Prevalent and incident SLE patients show similar levels of plasma EVs

and platelet activation.

We investigated the difference between recently diagnosed and established cases of SLE by

comparing the incident and prevalent cases (n=29 and n=73, respectively). The levels of

platelet activation markers and plasma EVs of the prevalent SLE were not significantly

different from those of the incident SLE cases (Fig. 1A & 1B). ATX plasma concentration

in healthy controls, prevalent and incident SLE cases are similar (Fig. 1C). However, plasma

EV levels in prevalent and incident cases were significantly different from those of the

control group (Fig. 1C & 1D). The incident SLE cases show no significant difference for the

91

platelet activation marker PAC1 or CD62P compared to healthy control (Fig. 1A, upper &

middle panels). In comparison to healthy patients, we report a significantly higher

percentage of platelets exposing both the activation markers PAC1 and CD62P (Fig. 1A,

lower panel). The prevalent and the incident SLE cases did not show a significant difference

for the platelet activation marker PAC1 compared to healthy control (Fig. 1A, upper panel).

In contrast, the amounts of CD62P positive (Fig. 1A, middle panel) and PAC1-CD62P

double-positive platelets (Fig. 1A, lower panel) were significantly different from the control

group. Compared to healthy controls, the levels of double-positive PAC1-ATX (Fig. 1B,

upper panel), double-positive CD62P-ATX (Fig. 1B, middle panel), and triple-positive

PAC1-CD62P-ATX platelets (Fig. 1B, lower panel) were significantly different with those

of prevalent but not those the incident SLE cases.

5.4 Platelet activation is associated with the SLEDAI score in incident cases

of SLE.

Despite significant increases in the incident and prevalent SLE groups, there was no

association between the EV populations and the SLEDAI score (Table 3). Only CDP62P, a

marker of platelet activation, was consistently associated with a higher SLEDAI score for the

incident and prevalent cases, or when we considered the whole SLE cohort patients

(Table 3). However, incident SLE cases show additional associations with platelet activation

markers as the levels of platelets highly positive for both CD62P and ATX or CD62P and

PAC1 are significantly associated with the SLEDAI score (Table 3).

5.5 Higher PS+ REVs are associated with vascular damages in SLE patients.

Incident and prevalent SLE patients did not present differences in plasmatic levels of ATX,

platelet activation and for both RBC and platelet EVs (Fig. 1A-E). Therefore, we choose not

to distinguish between the incident and prevalent SLE cases while analyzing the potential

clinical implications of high plasma levels of PS+ REVs. Based on the levels of PS+ REVs,

we divided the SLE cohort into two distinct groups (Fig. 1E). One group of patients had a

concentration of PS+ REVs similar to that of healthy controls. The second group of patients

showed a high plasma concentration of PS+ REVs. We applied a cut off at 1000 EV/µL to

92

distinguish the patients with a level of plasma PS+ REVs within the range of the healthy

controls from those with EV concentrations superior to the cut-off. The latter were considered

high plasma levels of PS+ REVs. Fifty-two SLE patients (51%) had a plasma PS+ REV

number over the cut-off level. The 50 SLE patients with a concentration of plasma PS+ REVs

lower than the cut off were considered “normal” for these biomarkers.

As anticipated, the SLE patients with a higher level of PS+ REVs also show a higher number

of REVs and PEVs (total and PS+) compared to those with “normal” concentrations of PS+

REVs (Table 4). Furthermore, the high PS+ REVs levels are associated with a lower platelet

count and high plasma level of plasma ATX (Table 4). Compared to patients with a normal

PS+ REV level, the plasma ATX amount was significantly higher in patients with elevated

PS+ REVs. The high PS+ REV counts were not associated with the disease duration or recent

disease onset but correlated with thrombophilia (Table 4). Only two patients with low plasma

PS+ REV levels (4%) had a history of venous thrombosis. Among patients with high PS+

REVs, 5 (10%) presented a history of venous thrombosis, 4 (8%) of arterial thrombosis and

one (2%) of microcirculation thrombosis. In this group of patients, we also highlight an

association between the plasma levels of PS+ REVs and the presence of autoantibodies

(Table 4). Surprisingly, patients with high amounts of PS+ REVs tend to have a lower

SLEDAI score, and antiphospholipid syndrome incidence tended to be higher than for

patients with low PS+ REV levels (Table 4).

93

6 Discussion

In this study, we report on a high plasma level of REVs in SLE patients. Furthermore, the

percentage of PS+ REVs in the plasma of SLE patients almost doubled compared to the

healthy group. The patients with a high level of plasma REVs also have elevated plasma

PEVs. There was no correlation between the EV levels, including those that are PS+, and the

SLEDAI. About half of the SLE patients had PS+ REV levels like the healthy controls.

However, a high level of PS+ REVs was positively associated with thrombocytopenia and a

higher incidence of thrombotic events.

A high level of platelet activation markers and plasma PEVs were reported previously in SLE

patients [36]. CD62P (P-selectin) is only present on the activated platelet following the fusion

of the α-granules with the plasma membrane [37]. The platelet activation marker CD62P (P-

selectin) is elevated in SLE patients and is positively associated with the SLEDAI score [36].

This study confirms the positive association between the number of CD62P+ platelets and

disease activity. The stratification of the incident and prevalent cases of SLE did not highlight

differences regarding the levels of plasma EVs, PS+ EVs, and platelet activation markers. In

incident SLE cases, the percentages of platelets positive for CD62P, CD62P/ATX or

PAC1/ATX double-positive, and PAC1/CD32P/ATX triple-positive, were not statistically

different from the healthy group. It may be due to the small number of newly diagnosed SLE

patients included in the present study. However, in the incident and prevalent cases, the

SLEDAI score correlated with platelet activation as monitored by the cell surface exposure

of CD62P. In incident SLE cases, we found other associations between the platelet activation

markers and the SLEDAI score. Those include the CD62P/ATX and CD62P/PAC1 double-

positive platelets. PAC1 monitor the activation of αIIbβ3 integrin complex in platelets [38,

39]. Of note, the ATX stored in α-granules and released upon platelet activation can bind the

platelet αIIbβ3 integrin [33-35]. It would suggest that the liberation of α-granule and the

activated form of platelets integrins contributes to the early phase of SLE disease progression.

While, at later stages, when the disease becomes chronic, only the liberation of the content

of α-granule is of importance.

94

It was possible to stratify the SLE patients based on the levels of plasma PS+ REVs. About

half of the patients had plasma levels of PS+ REVs below the threshold of 1 000 REVs/µL

found in healthy controls. The other half were SLE patients with high to very high levels of

PS+ REVs. The results suggest that a high amount of plasma PS+ REVs is associated with a

higher incidence of cardiovascular events. A longitudinal study on incident cases with no

antecedent thrombosis or cardiovascular diseases would confirm if SLE patients with a high

level of plasma PS+ REVs are more at risk of thrombosis. REVs exposing PS+ can recruit

different actors of the coagulation cascade and be a source for the generation of large

quantities of thrombin [10, 40]. REVs are also a source of the von Willebrand factor [41].

SLE patients with a high plasma level of PS+ REVs also show high amounts of plasma ATX.

ATX is the enzyme that produces LPA [42]. The binding of ATX to αIIbβ3 integrin of

activated platelets enhance its catalytic activity [33, 34]. Though we did not monitor the

plasma LPA levels, a role for LPA in RBC activation and production of PS+ REVs cannot be

excluded [24, 43].

Recent studies highlighted a possible role for phosphatidylserine-specific phospholipase A1

in SLE physiopathogenesis [44, 45]. Serum levels of phosphatidylserine-specific

phospholipase A1 are significantly higher in SLE patients with high disease activity. Besides,

patient treatment with immunosuppressive therapies lowered the amount of serum

phosphatidylserine-specific phospholipase A1 [44]. Serum phosphatidylserine-specific

phospholipase A1 and ATX are also higher in patients with lupus nephritis [45]. However,

there was an inverse correlation between the levels of serum ATX and disease activity [45].

Of note, we observed that patients with a normal plasma PS+ REV level tend to have a higher

SLEDAI and lower levels of plasma ATX. The role of ATX and phosphatidylserine-specific

phospholipase A1 in SLE pathophysiology is not known. Increased expression of

phosphatidylserine-specific phospholipase A1 is associated with many pathological

conditions, including autoimmune and cardiovascular diseases [46]. Phosphatidylserine-

specific phospholipase A1 can hydrolyse PS into lysoPS, and ATX can hydrolyze the lysoPS

into LPA [46]. On one side, long-chain lysoPS may contribute to immune cell activation,

including macrophages [47]. On the other side, stimulation of red blood cells with LPA

induces the liberation of REVs [24, 25]. LPA induces the production of REVs by red blood

cells in a concentration- and LPA species-dependent manner and through activation of

95

LPAR3 [48]. Low concentrations of LPA induce of the production of PS- REVs while the

production of PS+ REVs by red blood cells requires concentrations of LPA ≥ 5 µM [48].

Further studies should determine if the SLE patients with high plasma of PS+ REVs and ATX

also show elevated amounts of phosphatidylserine-specific phospholipase A1.

A higher percentage of patients with elevated amounts of plasma PS+ REV presented

abnormal quantities of glycoprotein and cardiolipin auto-antibodies. In SLE patients, higher

disease activity and clinical manifestations such as thrombosis were associated previously

with glycoprotein and cardiolipin antibody levels [49-53]. During our study, a change in the

coding variables occurred for cardiolipin and glycoprotein auto-antibodies. The changes may

have affected the validity of the statistical analysis between the group, especially for auto-

antibody variables.

Atherosclerosis is a lead cause of cardiovascular incidents and is a known comorbidity factor

in SLE [54-58]. PEVs exposing PS were associated with accelerated thickening of the intima-

media in SLE patients [19]. In addition, several EV populations promote the development of

atherosclerosis through the recruitment of immune cells in the vascular wall and the

production of cytokines[59-61]. Besides, through the uptake of EVs, vascular wall infiltrated

macrophages accumulate lipids and transform into foam cells [62-64]. Macrophages

phagocyte the PS+ EVs at a higher rate [65]. Therefore, even if PS+ REVs are not associated

with SLE progression, they still could be implicated in the progression of atherosclerosis and

thrombotic events associated with SLE. We did not dispose of sufficient measurements to

investigate a potential link between the levels of PS+ REVs and the carotid intima-media

thickness test. The overtime impacts of PS+ REVs and other blood cell-derived PS+ EVs on

the thickening of carotid intima-media of SLE patients would be worth investigating in SLE

patients.

In summary, SLE patients show a high number of plasma PEVs and REVs and high surface

exposure of the platelet activation markers PAC1 and CD62P compared to age- and gender-

matched controls. There are no significant differences between the incident and prevalent

cases of SLE. The levels of EVs do not correlate with the SLEDAI score. However, the

analyses of CD62P exposure on the platelet surface show an association with SLEDAI,

consistent with the documented association between this platelet activation marker and

96

disease activity. The plasma PS+ REVs segregate the patients into groups with normal and

high PS+ REV levels, respectively. The analyses show a higher incidence of

thrombocytopenia and thrombotic events in SLE patients with a high level of PS+ REVs.

Further studies are required to determine if the plasma level of PS+ REVs is a potential

biomarker for managing the cardiovascular risk of individuals with SLE.

97

7 References

1. Kaul, A., et al., Systemic lupus erythematosus. Nat Rev Dis Primers, 2016. 2: p.

16039.

2. Yurkovich, M., et al., Overall and cause-specific mortality in patients with systemic

lupus erythematosus: a meta-analysis of observational studies. Arthritis Care Res (Hoboken),

2014. 66(4): p. 608-16.

3. Zhu, H., et al., Autoantigen Microarray for High-throughput Autoantibody Profiling

in Systemic Lupus Erythematosus. Genomics Proteomics Bioinformatics, 2015. 13(4): p.

210-8.

4. Yaniv, G., et al., A volcanic explosion of autoantibodies in systemic lupus

erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun

Rev, 2015. 14(1): p. 75-9.

5. Crow, M.K., M. Olferiev, and K.A. Kirou, Targeting of type I interferon in systemic

autoimmune diseases. Transl Res, 2015. 165(2): p. 296-305.

6. Stetson, D.B., Endogenous retroelements and autoimmune disease. Curr Opin

Immunol, 2012. 24(6): p. 692-7.

7. Lövgren, T., et al., Induction of interferon-alpha production in plasmacytoid dendritic

cells by immune complexes containing nucleic acid released by necrotic or late apoptotic

cells and lupus IgG. Arthritis Rheum, 2004. 50(6): p. 1861-72.

8. Lood, C., et al., Decreased platelet size is associated with platelet activation and anti-

phospholipid syndrome in systemic lupus erythematosus. Rheumatology (Oxford), 2017.

56(3): p. 408-416.

9. Kim, Y., et al., Microparticles from stored red blood cells promote a hypercoagulable

state in a murine model of transfusion. Surgery, 2018. 163(2): p. 423-429.

10. Lipets, E.N., et al., Use of Thrombodynamics for revealing the participation of

platelet, erythrocyte, endothelial, and monocyte microparticles in coagulation activation and

propagation. PLoS One, 2020. 15(5): p. e0227932.

11. Tripisciano, C., et al., Different Potential of Extracellular Vesicles to Support

Thrombin Generation: Contributions of Phosphatidylserine, Tissue Factor, and Cellular

Origin. Sci Rep, 2017. 7(1): p. 6522.

12. Melki, I., et al., Platelets release mitochondrial antigens in systemic lupus

erythematosus. Sci Transl Med, 2021. 13(581).

13. Sellam, J., et al., Increased levels of circulating microparticles in primary Sjögren's

syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease

activity. Arthritis Res Ther, 2009. 11(5): p. R156.

14. López, P., et al., Circulating microparticle subpopulations in systemic lupus

erythematosus are affected by disease activity. Int J Cardiol, 2017. 236: p. 138-144.

15. Salvi, V., et al., Exosome-delivered microRNAs promote IFN-α secretion by human

plasmacytoid DCs via TLR7. JCI Insight, 2018. 3(10).

16. Kato, Y., et al., Apoptosis-derived membrane vesicles drive the cGAS-STING

pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum

Dis, 2018. 77(10): p. 1507-1515.

98

17. Dominguez-Gutierrez, P.R., et al., Positive correlation of STAT1 and miR-146a with

anemia in patients with systemic lupus erythematosus. J Clin Immunol, 2014. 34(2): p. 171-

80.

18. Dong, C., et al., Circulating Exosomes Derived-miR-146a from Systemic Lupus

Erythematosus Patients Regulates Senescence of Mesenchymal Stem Cells. Biomed Res Int,

2019. 2019: p. 6071308.

19. Fortin, P.R., et al., Distinct Subtypes of Microparticle-containing Immune Complexes

Are Associated with Disease Activity, Damage, and Carotid Intima-media Thickness in

Systemic Lupus Erythematosus. J Rheumatol, 2016. 43(11): p. 2019-2025.

20. Pereira, J., et al., Circulating platelet-derived microparticles in systemic lupus

erythematosus. Association with increased thrombin generation and procoagulant state.

Thromb Haemost, 2006. 95(1): p. 94-9.

21. Miyabe, Y., et al., Activation of fibroblast-like synoviocytes derived from rheumatoid

arthritis via lysophosphatidic acid-lysophosphatidic acid receptor 1 cascade. Arthritis Res

Ther, 2014. 16(5): p. 461.

22. Miyabe, Y., et al., Necessity of lysophosphatidic acid receptor 1 for development of

arthritis. Arthritis Rheum, 2013. 65(8): p. 2037-47.

23. Yang, L., et al., LPA receptor 4 deficiency attenuates experimental atherosclerosis. J

Lipid Res, 2019. 60(5): p. 972-980.

24. Nguyen, D.B., et al., Characterization of Microvesicles Released from Human Red

Blood Cells. Cell Physiol Biochem, 2016. 38(3): p. 1085-99.

25. Khandoga, A.L., et al., GPR92/LPA₅ lysophosphatidate receptor mediates

megakaryocytic cell shape change induced by human atherosclerotic plaques. Cardiovasc

Res, 2011. 90(1): p. 157-64.

26. Melki, I., et al., Platelet microvesicles in health and disease. Platelets, 2017. 28(3): p.

214-221.

27. Zecher, D., A. Cumpelik, and J.A. Schifferli, Erythrocyte-derived microvesicles

amplify systemic inflammation by thrombin-dependent activation of complement.

Arterioscler Thromb Vasc Biol, 2014. 34(2): p. 313-20.

28. Fischer, D., et al., Microparticles from stored red blood cells enhance procoagulant

and proinflammatory activity. Transfusion, 2017. 57(11): p. 2701-2711.

29. Hochberg, M.C., Updating the American College of Rheumatology revised criteria

for the classification of systemic lupus erythematosus. Arthritis Rheum, 1997. 40(9): p. 1725.

30. Tan, E.M., et al., The 1982 revised criteria for the classification of systemic lupus

erythematosus. Arthritis Rheum, 1982. 25(11): p. 1271-7.

31. Miyakis, S., et al., International consensus statement on an update of the classification

criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost, 2006. 4(2): p.

295-306.

32. Marcoux, G., et al., Revealing the diversity of extracellular vesicles using high-

dimensional flow cytometry analyses. Sci Rep, 2016. 6: p. 35928.

33. Fulkerson, Z., et al., Binding of autotaxin to integrins localizes lysophosphatidic acid

production to platelets and mammalian cells. J Biol Chem, 2011. 286(40): p. 34654-63.

99

34. Pamuklar, Z., et al., Autotaxin/lysopholipase D and lysophosphatidic acid regulate

murine hemostasis and thrombosis. J Biol Chem, 2009. 284(11): p. 7385-94.

35. Leblanc, R., et al., Interaction of platelet-derived autotaxin with tumor integrin αVβ3

controls metastasis of breast cancer cells to bone. Blood, 2014. 124(20): p. 3141-50.

36. Boilard, E., P. Blanco, and P.A. Nigrovic, Platelets: active players in the pathogenesis

of arthritis and SLE. Nat Rev Rheumatol, 2012. 8(9): p. 534-42.

37. Blair, P. and R. Flaumenhaft, Platelet alpha-granules: basic biology and clinical

correlates. Blood Rev, 2009. 23(4): p. 177-89.

38. Shattil, S.J., et al., Changes in the platelet membrane glycoprotein IIb.IIIa complex

during platelet activation. J Biol Chem, 1985. 260(20): p. 11107-14.

39. Lu, Q. and R.A. Malinauskas, Comparison of two platelet activation markers using

flow cytometry after in vitro shear stress exposure of whole human blood. Artif Organs, 2011.

35(2): p. 137-44.

40. Van Der Meijden, P.E., et al., Platelet- and erythrocyte-derived microparticles trigger

thrombin generation via factor XIIa. J Thromb Haemost, 2012. 10(7): p. 1355-62.

41. Straat, M., et al., Monocyte-mediated activation of endothelial cells occurs only after

binding to extracellular vesicles from red blood cell products, a process mediated by β-

integrin. Transfusion, 2016. 56(12): p. 3012-3020.

42. Tanaka, M., et al., Autotaxin stabilizes blood vessels and is required for embryonic

vasculature by producing lysophosphatidic acid. J Biol Chem, 2006. 281(35): p. 25822-30.

43. Chung, S.M., et al., Lysophosphatidic acid induces thrombogenic activity through

phosphatidylserine exposure and procoagulant microvesicle generation in human

erythrocytes. Arterioscler Thromb Vasc Biol, 2007. 27(2): p. 414-21.

44. Sawada, T., et al., Serum phosphatidylserine-specific phospholipase A(1) as a novel

biomarker for monitoring systemic lupus erythematosus disease activity. Int J Rheum Dis,

2019. 22(11): p. 2059-2066.

45. Iwata, Y., et al., Higher serum levels of autotaxin and phosphatidylserine-specific

phospholipase A(1) in patients with lupus nephritis. Int J Rheum Dis, 2021. 24(2): p. 231-

239.

46. Zhao, Y., S. Hasse, and S.G. Bourgoin, Phosphatidylserine-specific phospholipase

A1: A friend or the devil in disguise. Prog Lipid Res, 2021. 83: p. 101112.

47. Khandelwal, N., et al., Fatty acid chain length drives lysophosphatidylserine-

dependent immunological outputs. Cell Chem Biol, 2021. 28(8): p. 1169-1179.e6.

48. Hasse, S., et al., Interplay between LPA2 and LPA3 in LPA-mediated

phosphatidylserine cell surface exposure and extracellular vesicles release by erythrocytes.

Biochem Pharmacol, 2021. 192: p. 114667.

49. Samarkos, M., et al., Clinical significance of IgA anticardiolipin and anti-beta2-GP1

antibodies in patients with systemic lupus erythematosus and primary antiphospholipid

syndrome. Clin Rheumatol, 2006. 25(2): p. 199-204.

50. Sebastiani, G.D., et al., Anticardiolipin and anti-beta2GPI antibodies in a large series

of European patients with systemic lupus erythematosus. Prevalence and clinical

associations. European Concerted Action on the Immunogenetics of SLE. Scand J

Rheumatol, 1999. 28(6): p. 344-51.

100

51. Danowski, A., T.S. Kickler, and M. Petri, Anti-beta2-glycoprotein I: prevalence,

clinical correlations, and importance of persistent positivity in patients with antiphospholipid

syndrome and systemic lupus erythematosus. J Rheumatol, 2006. 33(9): p. 1775-9.

52. Shen, Y.M., et al., IgA antiphospholipid antibodies are an independent risk factor for

thromboses. Lupus, 2008. 17(11): p. 996-1003.

53. Sweiss, N.J., et al., IgA anti-beta2-glycoprotein I autoantibodies are associated with

an increased risk of thromboembolic events in patients with systemic lupus erythematosus.

PLoS One, 2010. 5(8): p. e12280.

54. Libby, P., et al., Atherosclerosis. Nat Rev Dis Primers, 2019. 5(1): p. 56.

55. Gustafsson, J.T., et al., Risk factors for cardiovascular mortality in patients with

systemic lupus erythematosus, a prospective cohort study. Arthritis Res Ther, 2012. 14(2):

p. R46.

56. Kaplan, M.J., Premature vascular damage in systemic lupus erythematosus.

Autoimmunity, 2009. 42(7): p. 580-6.

57. Urowitz, M.B., D. Ibañez, and D.D. Gladman, Atherosclerotic vascular events in a

single large lupus cohort: prevalence and risk factors. J Rheumatol, 2007. 34(1): p. 70-5.

58. Organization, W.H., Cardiovascular diseases (CVDs) Fact Sheet. 2017. 2017.

59. Fu, Z., et al., Oxidized low-density lipoprotein-induced microparticles promote

endothelial monocyte adhesion via intercellular adhesion molecule 1. Am J Physiol Cell

Physiol, 2017. 313(5): p. C567-c574.

60. Li, C., et al., Endothelial microparticles-mediated transfer of microRNA-19b

promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE(-/-

) mice. Biochem Biophys Res Commun, 2018. 495(2): p. 1922-1929.

61. Gao, W., et al., Exosomes derived from mature dendritic cells increase endothelial

inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell

Mol Med, 2016. 20(12): p. 2318-2327.

62. Nguyen, M.A., et al., Extracellular Vesicles Secreted by Atherogenic Macrophages

Transfer MicroRNA to Inhibit Cell Migration. Arterioscler Thromb Vasc Biol, 2018. 38(1):

p. 49-63.

63. Barberio, M.D., et al., Cholesterol efflux alterations in adolescent obesity: role of

adipose-derived extracellular vesical microRNAs. J Transl Med, 2019. 17(1): p. 232.

64. Keyel, P.A., et al., Coordinate stimulation of macrophages by microparticles and TLR

ligands induces foam cell formation. J Immunol, 2012. 189(9): p. 4621-9.

65. Matsumoto, A., et al., Phosphatidylserine-deficient small extracellular vesicle is a

major somatic cell-derived sEV subpopulation in blood. iScience, 2021. 24(8): p. 102839.

101

8 Figures, legends and tables

Table 1: characteristics for SLE patients included in the study at baseline.

Demographics mean±SD or % (n)

Age, years, n=102 49.98 ± 14.58

Gender, Female, n=102 83.33 (85)

BMI, n=101 25.49 ± 4.66

Disease duration, years, n=98 10.63 ± 12.07

Onset, n=102

Incident 28.43 (29)

Prevalent 71.57 (73)

APS, n=102 15.69 (16)

ACR criteria n=99 % (n)

Arthritis 77.45 (79)

Thrombocytopenia 23.53 (24)

Malar rash 25.49 (26)

Discoid rash 17.65 (18)

Hemolytic anemia 3.92 (4)

Renal disorder 24.51 (25)

Medication n=102 % (n)

NSAID/ Cox-II Inhibitors 24.51 (25)

Antipalutic drugs 75.49 (77)

Immunomodulators 84.31 (86)

Methotrexate 15.69 (16)

Biologic agents 6.86 (7)

Steroids 21.57 (22)

Other DMARD 27.45 (28)

Prednisone 20.59 (21)

Clinical characteristics mean±SD or % (n)

SLEDAI, n=99 3.07 ± 3.70

Platelet, 109/L, n=101 227.20 ± 74.91

MPV, fL, n=101 8.92 ± 6.10

Hemoglobin, g/L, n=101 129.34 ± 12.29

CRP, mg/L, n=82 4.47 ± 7.25

ESR, mm/hour, n=94 13.55 ± 16.55

Lupus anticoagulant, n=97 10.78 (11)

Anti-cardiolipine IGG, n=97 equivocal 1.96 (2)

abnormal 14.71 (13)

Anti-cardiolipine IGM, n=97 equivocal 0.98 (1)

102

abnormal 12.74 (12)

Glycoprotein IGG, n=97 abnormal 7.84 (8)

Glycoprotein IGM, n=97 abnormal 14.71 (15)

Cardiovascular damages mean±SD or % (n)

Thrombophilia, n=102 Venous 6.86 (7)

Arterial 3.92 (4)

Microcirculation 0.98 (1)

Plaque, n=72 29.41 (30)

CIMT, n=35 0.62 ± 0.12

ACR American college of rheumatology; APS antiphospholipid syndrome; BMI body mass index; CIMT carotid intima-media thickness; CRP C reactive protein; DMARD Disease Modifying Anti Rheumatic Drug; ESR erythrocyte sedimentation rate; MPV mean platelet volume; NSAID nonsteroidal anti-inflammatory drug; SLEDAI SLE disease activity index.

103

Table 2: High platelet activation and EV quantities are found in SLE patients at baseline.

healthy SLE Pvalue

ATX, ng/mL 257.8 (219.9; 340.1) 251.4 (197.9; 334.6) 0.2428

Platelet, %

PAC1+ 3.65 (1.10; 8.50) 7.85 (2.88; 15.75) 0.0109

PAC1+ ATX+ 0.60 (0.20; 1.00) 1.90 (0.60; 4.30) 0.0026

CD62P+ 2.35 (1.70; 4.30) 5.55 (2.33; 9.53) 0.0044

CD62P+ ATX+ 0.70 (0.30; 0.80) 1.35 (0.60; 4.35) 0.0029

PAC1+ CD62P+ 0.70 (0.40; 1.40) 2.00 (0.90; 4.98) 0.0002

PAC1+ CD62P+ ATX+ 0.28 (0.15; 0.63) 0.85 (0.379; 3,24) 0.0011

Evs, EVs/µL

PEVs 478 (275; 1073) 3569 (1732; 7183) <0.0001

PS+ PEVs 377 (221; 816) 3228 (1581; 6299) <0.0001

REVs 423 (296; 602) 1936 (846; 4527) <0.0001

PS+ REVs 90 (55; 143) 1064 (165; 2304) <0.0001

Results are presented as median (Interquartile range), Pvalue based on Wilcoxon Mann Whitney Test

Table 3: Spearman correlation between our measurement and the total SLEDAI score for

SLE patients.

All SLE Prevalent SLE Incident SLE

n rs Pvalue n rs Pvalue n rs Pvalue

Plasmatic ATX 95 -0.17 0.0998 69 -0.17 0.1695 26 -0.18 0.3717

Platelet activation 39 22 17

PAC1+ 0.09 0.5859 -0.08 0.7141 0.46 0.0646

PAC1+ ATX+ 0.02 0.9032 -0.18 0.4273 0.41 0.1040

CD62P+ 0.48 0.0021 0.43 0.0479 0.59 0.0127

CD62P+ ATX+ 0.19 0.2492 0.03 0.8818 0.56 0.0207

PAC1+ CD62P+ 0.27 0.0927 0.01 0.9790 0.65 0.0045

PAC1+ CD62P+ ATX+ 0.12 0.4565 -0.04 0.8600 0.43 0.0817

PEVs 99 72 27

Total 0.06 0.5377 0.01 0.9093 0.28 0.1574

PS+ 0.05 0.6389 0.00 0.9842 0.25 0.2122

REVs 99 72 27

Total -0.07 0.4806 -0.09 0.4623 0.04 0.8275

PS+ -0.08 0.4274 -0.12 0.3166 0.16 0.4325

104

Table 4: Comparison of SLE patients with low and high PS+ REVs.

PS+ REV

Demographic characteristics low high Pvalue

Gender, n Female 44 (88) 41 (79) 0.2897

Age, years 52.00 (41.00; 62.00) 50.50 (37.50; 59.00) 0.5592

Disease duration, years 7.93(0.76; 21.64) 3.58 (1.41; 15.87) 0.1426

Onset, n Incident 16 (32) 13 (25) 0.5124

Prevalent 34 (68) 39 (75)

APS 4 (8) 12 (23) 0.0551

Clinical characteristics

SLEDAI 2.00 (0.00; 6.00) 1.50 (0.00; 4.00) 0.0776

Platelet, 109/L 242.00 (195.00; 291.00) 202.00 (176.50; 246.00) 0.0262

MPV, fL 8.70 (8.00; 10.00) 8.90 (8.05; 9.55) 0.6992

Hemoglobin, g/L 129.00 (121.00; 137.00) 131.00 (124.00; 138.00) 0.3264

CRP, mg/L 2.90 (1.21; 3.42) 2.00 (1.00; 5.00) 0.7683

ESR, mm/hour 8.00 (4.00; 20.00) 6.00 (3.00; 14.00) 0.1674

Lupus anticoagulant presence 4/41 (10) 7/48 (15) 0.5374

Anti-cardiolipine IGG abnormal 3/37 (8) 10/50 (20) 0.0700

equivocal 2/37 (5) 0/50 (0)

Anti-cardiolipine IGM abnormal 3/37 (8) 9/50 (18) 0.1600

equivocal 1/37 (3) 0/50 (0)

Glycoprotein IGG abnormal 1/37 (3) 7/50 (14) 0.1300

Glycoprotein IGM abnormal 4/37 (11) 11/50 (22) 0.2500

Laboratory measurements

ATX, ng/mL 227.75 (183.10; 295.30) 274.50 (207.83; 408.73) 0.0318

PEVs, EVs/µL 2419 (1012; 4566) 4853 (2532; 8230) 0.0006

PS+ PEVs, EVs/µL 2042 (866; 4051) 4384 (2238; 7696) 0.0006

REVs, EVs/µL 842 (426; 1387) 4436 (3064; 7166) <.0001

ACR criteria

Arthritis 37 (76) 42 (84) 0.3262

Thrombocytopenia 9 (18) 15 (30) 0.2414

Malar rash 17 (35) 9 (18) 0.0705

Discoid rash 11 (22) 7 (14) 0.3080

Hemolytic anemia 3 (6) 1 (2) 0.3622

Renal disorder 12 (24) 13 (26) 1.0000

Cardiovascular damages

Thrombophilia 2 (4) 10 (19) 0.0283

Medication

NSAID/ Cox-II Inhibitors 14 (28) 11 (21) 0.4931

Prednisone 8 (16) 13 (25) 0.3299

Immunomodulators 42 (86) 44 (88) 0.7742

105

Continuous variables are presented as median (Interquartile range), Pvalue based on Wilcoxon Mann Whitney Test. Categorical variables are presented as n (%), Pvalue based on Exact Pearson Chi Square Test.

Fig. 1: High platelet activation and EV levels are found in incident and prevalent SLE

patients at baseline. (A) Percentage of platelets expressing the activation marker PAC1

(upper panel), CD62P (middle panel) and the combination of PAC1 and CD62P (Lower

106

panel) for the healthy (n=30), prevalent (n=22) and incident SLE (n=18) group. (B)

Percentage of platelets expressing ATX and the activation marker PAC1 (upper panel),

CD62P (middle panel) or the combination of PAC1 and CD62P (Lower panel) for the healthy

(n=30), prevalent (n=22) and incident SLE (n=18) group. (C) Plasma concentration of ATX

for the healthy (n=30), prevalent (n=70) and incident SLE (n=28) (D) Number of plasma

PEVs (upper panel) and PS+ PEVs (lower panel) for the healthy (n=30), prevalent (n=73)

and incident SLE (n=29) group. (E) Plasma REV (upper panel) and PS+ REV levels (lower

panel) for the healthy (n=30), prevalent (n=73) and incident SLE (n=29) group. Data are

presented as median with interquartile range, Kruskal-Wallis test with Dunnett post-test,

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

107

108

Supplementary Figure 1: Platelet activation and EV detection by high-sensitivity flow

cytometry. (A) Plasma samples of SLE patients were assessed by high-sensitivity flow

cytometry (BD Canto II Special Order Research Product). Platelet were first gated according

to size (SSC) and granularity (FSC), and then for labeling with V450 fluorochrome-

conjugated antibodies directed against CD41a (CD41-V450-H), a platelet marker. Platelets

where then analyzed for the expression of several activation markers, firstly FITC

fluorochrome-conjugated antibodies directed against PAC1 (PAC1-FITC-H) alone or in

combination with ATX-PE-H, the APC fluorochrome-conjugated antibodies directed against

CD62P (CD62P-FITC-H) alone or in combination with ATX-PE-H, and lastly the

combination of PAC1-FITC-H and CD62P-FITC-H. Platelets positive for both PAC1 and

CD62P activation markers and labeled with PE fluorochrome-conjugated antibodies directed

against ATX (ATX-PE-H) were monitored. (B) PFP samples of SLE patients were assessed

by high-sensitivity flow cytometry (BD Canto II Special Order Research Product). Events

positive for the EV gate set for relative sizes comprised between 100 nm and 1 000 nm on

SSC and FSC-photomultiplier tube (PMT). EVs positive for the expression of CD41-V450-

H were considered PEVs and EVs positive for the expression of PECy7 fluorochrome-

conjugated antibodies directed against CD235a (CD235a-PECy7-H), a marker of RBC, were

considered REVs. Finally, we assessed the fluorescence labelling of PEVs and REVs using

FITC-conjugated Annexin V which binds PS (Annexin V-FTIC-H). (C) The EV gate in SSC-

H (granularity) and FSC-PMT-H (relative size) were set with polystyrene beads of 100 nm,

500 nm, and 1 000 nm. (D) Specificity of PEV and REV detection was validated by the

clearance of PEVs and REVs with 0.05% Triton X-100 (TX-100) treatment (n=6) which

destroys EV’s lipid bilayer and by 100, 000g ultracentrifugation (ultra) which pellets EVs,

(n=3) which are presented as the percentage of the untreated control (Ctrl). Data show the

mean percentage ± SD. Each condition was compared to its untreated control using the paired

t test. (E) Calcium-free PBS supplemented with 50 µM of EDTA (EDTA) was used for

Annexin V labeling of PEVs and REVs to validate the specificity of PS detection at their

surface (n=6) which is presented as the percentage of untreated (Ctrl). Data show the mean

percentage ± SD. Statistical comparisons used the paired t test. (F) Two-fold serial dilutions

of PEV samples were quantified by high sensitivity flow cytometry using polyester counting

beads. PEV concentrations and calculated dilution factors (left panel), and the median (right

109

panel) intensity of fluorescence for each dilution are presented (n=3). Data are presented as

mean ± SD (G) Two-fold serial dilutions of REV samples were quantified by high sensitivity

flow cytometry using polyester counting beads. REV concentrations and calculated dilution

factors (left panel), and the median (right panel) intensity of fluorescence for each dilution

are presented (n=3). Data are presented as mean ± SD.

110

Discussion

1 Mise en contexte

Le LPA est un lipide bioactif avec un rôle important dans la physiologie vasculaire. Le LPA

est un médiateur pro-inflammatoire qui est associé avec la progression de pathologies

inflammatoires comme l’arthrite rhumatoïde, une maladie rhumatismale auto-immune, ou

encore comme l’athérosclérose. Le LPA est notamment associé à l’activation des plaquettes

et à l’activation de la cascade de la coagulation lors de la rupture de plaques

d’athéroscléroses. Outre les plaquettes, le LPA est également connu comme le seul activateur

endogène des GR.

L’activation de cellules induit la libération d’EV. Les EV sont de petites vésicules

membranaires libérées dans le milieu extracellulaire par les cellules. Elles sont notamment

impliquées dans la communication intercellulaire et dans la régulation de l’environnement

vasculaire avec des effets pro-inflammatoires et sur le processus de la coagulation.

Les travaux présentés dans cette thèse ont examiné la modulation de l’activité des GR

par le LPA et leur implication possible dans la promotion des dommages vasculaires

associés aux MRAS.

2 Impact des limitations techniques dans l’analyse des vésicules

extracellulaires

La recherche sur les EV est un champ d’investigation récent qui ne présente pas encore

d’approches standardisées que ce soit dans la nomenclature, l’isolation, la caractérisation,

l’entreposage ou encore l’analyse des EV. Bien que les recommandations de l’ISEV

permettent d’avoir de plus en plus d’études qui respectent des normes communes, il reste

encore de nombreuses considérations méthodologiques et expérimentales à résoudre427,471,721.

Ma thèse étant centrée sur l’analyse d’EV par cytométrie en flux à haute sensibilité, je me

suis heurté à plusieurs limitations et problèmes posés par cette approche. Je vais revenir sur

les plus significatifs.

111

L’analyse d’EV dans des échantillons obtenus sur de grandes périodes, lors d’études

longitudinales par exemple, se heurte à plusieurs limitations. L’évolution de la sensibilité de

l’appareil lors d’un bris peut modifier grandement les limites de détection de l’appareil. Cela

peut rendre difficile, voire impossible, l’inclusion de mesure prise avant et après le bris dans

une même étude, et cela même avec l’utilisation d’un contrôle interne et une quantification

absolue. Même sans bris, la puissance des lasers diminue au fur et à mesure de leur utilisation.

Cette diminution réduit progressivement la fluorescence détectée pour un même réglage. Si

cela n’est pas vérifié et pris en compte régulièrement, il y a un risque de perdre les populations

de EV qui sont proches de la limite de détection.

De plus, le comportement des lots d’anticorps peut également varier au cours de l’étude

même pour des cibles bien établies. Cela peut donc conduire à l’abandon de marqueur

d’intérêt en cours d’étude à cause d’une perte de sensibilité de l’anticorps pour sa cible sur

les EV ou par l’apparition d’agrégats d’anticorps détectés par le cytomètre en flux à haute

sensibilité qui parasitent la détection des EV ciblées.

Ces soucis sont apparus au cours de mes travaux de thèse. Dans une première situation,

l’utilisation de tubes d’un même lot, mais commandés à des temps différents sur un même

échantillon produisait des résultats différents bien que l’analyse soit effectuée en parallèle

avec le même protocole. Cependant, le même test sur des cellules conduisait à des résultats

similaires. Dans la deuxième situation, un changement de lot d’anticorps a résulté dans

l’apparition d’agrégats non spécifiques qui se superposaient avec nos populations d’intérêt.

Le test des anticorps sur des populations d’EV de grande taille et sur des cellules a montré

une même spécificité de l’anticorps par rapport au lot précédent. Dans les deux cas, les

compagnies nous ont communiqué qu’elles n’avaient pas modifié le protocole de production

des anticorps et que la validation des anticorps avait été faite sur des cellules. L’absence de

validation des anticorps sur des EV pose plusieurs problèmes. D’une part, cela augmente la

variabilité des mesures déjà importante avec cette approche et d’autre part limite la

reproduction de résultats et donc limite leur validation722,723.

Réaliser les mesures une fois sur l’ensemble des échantillons dans un laps de temps limité

permet de réduire l’impact de l’évolution du matériel et des anticorps utilisés. Cependant, si

le projet requiert l’obtention d’échantillon sur de grandes périodes comme cela était notre

112

cas, il est nécessaire d’entreposer les échantillons à analyser ce qui peut avoir un impact sur

les résultats. En effet, la préparation et l’entreposage des EV peuvent induire la perte des EV

les plus fragiles ou de forte densité ainsi que modifier leur membrane724,725. Il en résulte qu’en

fonction de la solution d’entreposage des EV et des cycles de congélation / décongélation, le

contenu en EV de l’échantillon peut augmenter ou diminuer427,724,726. De plus au cours du

temps, malgré des conditions adéquates d’entreposage la quantité d’EV diminue dans les

échantillons727. Enfin, l’effet de l’entreposage n’affecte pas les populations d’EV de manière

homogène728.

La modification des populations d’EV peut mener à des analyses biaisées. Les

problématiques liées à l’entreposage des EV sont également importantes lorsque les

échantillons sont analysés au fur et à mesure du projet, mais peuvent être limitées notamment

par l’analyse des EV directement dans les échantillons frais, soit sans entreposage. Plusieurs

études conseillent cette approche pour les analyses dans les liquides biologiques427,724.

3 Résumé des travaux et discussion

3.1 L’acide lysophosphatidique et les vésicules extracellulaires de globules

rouges

Bien qu’il soit déjà connu, que le LPA active les GR par l’induction de la présentation de PS

à leur surface ainsi que par la libération d’EV positives pour la PS, les mécanismes ont été

peu étudiés575,576. L’externalisation de la PS par les GR en réponse au LPA est associée à la

mobilisation de calcium intracellulaire et à l’activation de la PKC. Les deux protéines G,

Gαq/11, et Gαi/o, peuvent être associées aux récepteurs au LPA et sont capables d’activer la

PKC. Par ailleurs, aucune étude n’avait étudié la possible hétérogénéité d’effet des

différentes espèces moléculaires de LPA sur l’activation des GR. Au vu de la littérature

limitée sur l’activation des GR par le LPA, nous avons voulu évaluer l’impact des espèces

moléculaires de LPA sur les GR, en particulier celles qui sont les plus abondantes dans la

circulation. Nous avons donc privilégié quatre espèces de LPA qui d’une part représentaient

la diversité des espèces moléculaires du LPA (saturé, mono-insaturé et poly-insaturé).

D’autre part, ces espèces étaient des formes majeures dans le plasma d’individu sain, mais

étaient produites lors de l’activation plaquettaire et lors de la préparation de sérum14,47,118,119.

113

Nous avons montré que l’activation des GR par le LPA varie en fonction de l’espèce

moléculaire avec notamment le LPA 20:4 qui ne présente aucun effet activateur. Et

contrairement aux études précédentes, nous avons montré que l’activation des GR par le LPA

ne débouche pas uniquement sur la libération de REV PS+, mais également sur la libération

de plus petites REV négatives pour la PS575,576. Cela s’explique en partie par la sensibilité de

la technique que nous avons utilisée qui permet de détecter des EV de petites tailles

(~ 100 nm). De plus, nous avons identifié un nouvel effet du LPA, il peut aussi inhiber

l’activation des GR. Enfin, nous avons été les premiers à associer l’effet du LPA sur les GR

matures à l’activation des récepteurs LPA2 et LPA3.

Notre étude de l’effet des espèces moléculaires de LPA sur les GR s’est heurtée à plusieurs

limitations. L’expression des récepteurs au LPA, a été mise en évidence dans les progéniteurs

myéloïdes communs729 et certains comme le LPA2 et les LPA3 sont impliqués dans la

régulation de l’érythropoïèse260,261,297. Cependant, leur présence chez les GR matures reste

encore inconnue. Des travaux antérieurs dans le laboratoire sur différentes cellules connues

pour exprimer les récepteurs au LPA ont montré que les anticorps disponibles contre les

récepteurs aux LPA ne permettaient pas la détection par immuno-buvardage de leur

expression basale. De plus, bien que les GR matures présentent des ARN messagers, la

maturation des globules rouges après l’énucléation présente une forte activité de dégradation

de l’ARN547,551,564 et l’hémoglobine contenue par les GR altère l’efficacité de la transcription

et de l’amplification des ARN par la technique de PCR730,731. Ces deux raisons pourraient

expliquer pourquoi nous n’avons pas pu détecter d’ARN messager pour les récepteurs au

LPA par des approches de RT-PCR. Il en résulte que nous n’avons pas pu valider la présence

des récepteurs au LPA autrement qu’avec des approches fonctionnelles soit par l’utilisation

d’agonistes et d’antagonistes. La disponibilité d’agonistes et d’antagonistes sélectifs pour les

récepteurs au LPA a limité le nombre de récepteurs que nous avons pu étudier. Il serait donc

intéressant d’approfondir les mécanismes d’action du LPA sur les GR à partir de modèles

murins ou par la différenciation in vitro de progéniteurs de GR. Ces modèles permettraient

notamment de supprimer ou de moduler l’expression de manière certaine des récepteurs au

LPA à des étapes précoces de l’érythropoïèse et ainsi s’assurer de leur absence sur les GR

matures.

114

Bien que nous ayons montré que l’activation des GR par le LPA est possible dans le plasma,

il n’y a pas encore d’estimations fiables des concentrations de LPA présente en circulation.

En effet, les études chez des sujets sains font état de concentrations allant de 50 nM à 1 µM

et jusqu’à 12 µM dans des situations pathologiques14,124,125,127,732. Il n’existe pas de protocole

standardisé pour le dosage du LPA plasmatique et il peut être synthétisé ou dégradé lors de

la manipulation d’échantillon sanguin. Les techniques d’extractions du LPA pour également

produire du LPA de façon artéfactuelle. Cela explique la grande variabilité entre les études

et empêche une estimation précise des concentrations du LPA plasmatique. De plus, la demi-

vie du LPA est courte et sa production peut être faite proche de son site d’action suite à la

liaison de l’autotaxine aux intégrines ou aux héparanes sulfates présents à la surface des

cellules. La concentration locale de LPA pourrait donc fortement varier de celle mesurée

dans la circulation générale, mais avoir un plus grand impact dans l’activation des cellules

vasculaires.

Nous avons aussi montré que les différentes espèces moléculaires de LPA n’ont pas toutes le

même potentiel activateur avec certaines qui montrent uniquement un effet inhibiteur pour

des concentrations physiologiques. L’activation des GR par la concentration de LPA

plasmatique pourrait donc dépendre de l’équilibre entre les espèces activatrices et inhibitrices

et pas seulement de la concentration totale de LPA.

De plus, nous avons montré que l’environnement module l’activation dépendante du LPA. Il

reste donc difficile à évaluer si l’activation par le LPA des GR est possible et est impliquée

dans des situations physiologiques ou pathologiques. Même si l’activation des GR n’a été

montrée que pour le LPA, ceux-ci peuvent être activés par d’autres voies signalétiques. En

effet, les GR expriment notamment le TLR9 qui peuvent lier de l’ADN mitochondrial596.

L’activation du TLR9 pourrait constituer un autre signal activateur que le LPA. Il serait donc

aussi intéressant de voir l’impact d’autres signaux activateurs des GR sur l’activation

dépendante du LPA. Stimuler les GR avec du PFP issu de patients souffrant de différentes

pathologies permettrait d’étudier plus en détail la potentiel implication du LPA plasmatique

dans les processus pathologiques.

Enfin, selon mes observations, le LPA induit deux populations de REV. Les REV de grande

taille PS+ ont déjà été associées dans des études antérieures à la coagulation et à

115

l’inflammation441,614. Cependant, l’études fonctionnelles des REV utilisent des REV

provenant de l’entreposage de GR441,613,614. Le stimulus à l’origine de la production des EV

est connu pour moduler leur composition et leur fonction429,468,532. Il serait donc important de

valider les effets biologiques des REV PS+ et PS- induit par le LPA dans l’inflammation et la

coagulation. De plus, les EV PS+ et PS- ont des demi-vies et une bio-distributions

différentes733. Les REV PS+ et les REV PS- pourraient donc jouer des rôles différents dans

l’environnement vasculaire.

3.2 Les vésicules extracellulaires de globules rouges dans le lupus

érythémateux disséminée

Contrairement à notre hypothèse, les quantités plasmatiques d’autotaxine chez les patients

LED étaient similaires à celles des individus sains, et celles-ci n’étaient pas associées avec

l’activité de la maladie. De plus, les quantités de PEV et de REV des patients LED étaient

élevées bien que non associées à l’activité de la maladie. Bien que les études s’accordent sur

l’augmentation des PEV chez les patients LED, leur association avec le SLEDAI est encore

débattue734,735. Nos résultats corroborent donc la publication qui n’associe pas les PEV avec

l’activité de la maladie735. Les quantités de REV PS+ nous ont permis de stratifier la cohorte

de patient LED en deux groupes, celui avec des quantités similaires aux individus sains et

l’autre qui présente des quantités élevées de EV plasmatique. Les patients LED avec des

quantités élevées de REV PS+ sont plus à risque d’avoir un historique de thrombose.

Les REV participent à la coagulation notamment par l’apport de thrombine et du facteur de

von Willebrand441,613,615,616. Ils sont aussi capables d’initier la coagulation dans certaines

conditions expérimentales441. Le recrutement des médiateurs de la cascade de coagulation

qui conduit à la production de thrombine par les REV est favorisé par la présence de la PS+

à leur surface440,441. Les quantités élevées de REV PS+ pourraient donc faciliter la coagulation

chez les patients LED et conférer une susceptibilité au développement de thromboses.

D’autre part, les EV sont associées à plusieurs étapes du développement de l’athérosclérose

qui la première cause des évènements thrombotiques677-679, notamment par l’apport de lipide

aux macrophages qui se transforment en cellules spumeuses710-713. En effet, les EV qui

présentent la PS sont plus sujets à leur internalisation par les macrophages733. Des quantités

116

importantes de REV PS+ pourraient donc également stimuler le développement de

l’athérosclérose chez les patients LED par leur phagocytose par les macrophages.

Les patients LED qui ont des quantités élevées de REV PS+ présentent des concentrations

d’autotaxine plus élevées que les patients avec des quantités faibles de REV PS+. Les

quantités d’autotaxine pourraient ainsi avoir un impact sur les concentrations de LPA

plasmatiques et avoir des effets sur les cellules sanguines. L’activation des GR par le LPA

est une source potentielle de REV PS+. De plus, le LPA stimule la progression de plusieurs

étapes de l’athérosclérose qui est la cause majeure des évènements thrombotiques677-679. En

effet, le LPA stimule l’infiltration et l’activation des macrophages dans la paroi vasculaire et

leur différenciation en cellules de spumeuses par accumulation de lipides309,395,701. Il en

résulte un environnement pro-inflammatoire qui peut attirer d’autres cellules incluant des

neutrophiles. De plus lors de la rupture des plaques, le LPA est un des signaux d’activation

des plaquettes et promeut la coagulation et la formation d’un caillot thrombotique34,112,113. Ce

serait en accord avec notre observation que les patients avec des quantités élevées de REV

PS+ présentent également des concentrations de plaquettes circulantes plus faibles que le

groupe avec des quantités normales de REV PS+. Donc même si l’autotaxine ne semble pas

associée au développement du LED, elle pourrait tout de même être impliquée dans le

développement de l’athérosclérose et dans la formation de thromboses associées avec le

LED.

Les quantités élevées de REV PS+ pourraient également servir de source locale de

phospholipides pour la production de lyso-PS par des phospholipases capables d’utiliser les

phospholipides présents sur la membrane d’EV45,51. Cela est supporté par une étude récente

qui a fait état de quantité plus élevé de la PLA1 spécifique de la PS dans le sérum de patients

LED et que les quantités de la PLA1 spécifique de la PS étaient associées avec le SLEDAI736.

Les lyso-PS pourraient ensuite servir de précurseur pour la production de LPA par

l’autotaxine mais pourraient également présenter une activité biologique qui leur est propre,

notamment par l’intermédiaire de ses trois récepteurs couplés aux protéines G, P2Y10,

GPR34, et GPR174136,737. Ces récepteurs sont exprimés par les cellules hématopoïétiques. Le

lyso-PS à des effets répresseurs sur l’inflammation en inhibant la prolifération des

lymphocytes T738,739. Cependant il peut également promouvoir l’inflammation par

117

l’inhibition de la différenciation des lymphocytes T en lymphocytes régulateurs738,

l’activation du TLR2737,740, la libération d’histamine par les mastocytes, ainsi qu’en facilitant

la phagocytose et la libération de cytokines pro-inflammatoires par les macrophages737,741,742.

Les REV PS+ pourraient potentiellement avoir un rôle pro-inflammatoire et promouvoir

l’athérosclérose en étant une source de phospholipides pour la production de LPA et de lyso-

PS. En effet, l’inflammation pourrait augmenter la perméabilité vasculaire et facilité

l’extravasation des EV dans les tissus vasculaires.

Bien que notre étude n’ait pas montré d’augmentation des quantités plasmatiques

d’autotaxine, une augmentation de l’autotaxine sérique a déjà été rapportée pour des patients

LED avec des atteintes aux reins (néphrite lupique)743. L’autotaxine est sécrétée dans le

milieu extracellulaire et peut être trouvée sous forme libre, mais également associée à

différents transporteurs comme les plaquettes activées et les lipoprotéines. Les patients LED

présentent également une proportion de plaquettes activées et de plaquettes activées positives

pour l’autotaxine plus importante que les contrôles sains. Nos mesures ont été faites sur du

plasma sans plaquette et donc ne prend pas en considération l’autotaxine associée aux

plaquettes. Nos mesures pourraient donc sous-estimer les quantités d’autotaxine présentes

dans la circulation.

4 Perspectives

Les travaux de cette thèse ont souligné la complexité de la signalisation du LPA qui permet

des effets différents sur une même cellule en fonction de l’espèce moléculaire utilisée. De

plus, les différentes espèces moléculaires de LPA ont des concentrations différentes dans le

plasma et ne fluctuent pas de manière homogène, par exemple lors de l’activation des

plaquettes14,25,127. Cependant, l’étude des effets du LPA est encore souvent réalisé avec une

seule espèce moléculaire, dont l'idendité n'est pas toujours précisée 112,144,213,575. Il serait donc

important d’étudier l’effet de chaque espèce moléculaire majeure de LPA vasculaire sur les

cellules vasculaires comme les plaquettes ou les cellules endothéliales ainsi que dans les

fonctions vasculaires que ce soit l’inflammation ou la coagulation. Ces études seraient

bénéfiques pour une meilleure compréhension du rôle du LPA en situation pathologique.

118

Nous avons établi que certaines espèces moléculaires de LPA induisaient la libération de

deux populations de REV, les PS- et PS+. Il serait important d’une part de vérifié si elles sont

également pro-coagulantes et pro-inflammatoire à l’instar des REV issues de l’entreposage

de GR576,613,614,617,618. D’autre part, le LPA et les EV sont associées au développement de

l’athérosclérose et il est connu que les REV sont retrouvées dans les plaques 705. Il serait donc

pertinent d’évaluer les effets des REV induit par le LPA sur les cellules et fonctions

impliquées dans la progression des plaques d’athérosclérose comme les cellules

endothéliales, les cellules musculaires lisses ou les macrophages.

Nous avons observé que le groupe de patients LED avec des quantités élevées de REV PS+

avait une incidence de thrombose plus élevée. La construction de notre étude ne permet pas

de définir si les quantités importantes REV PS+ puissent être un facteur de risque ou

simplement une conséquence de la thrombose. Il serait donc nécessaire de compléter ce

travail avec une étude longitudinale pour définir si les quantités importantes de REV PS+ sont

un facteur de risque du développement de thromboses. Ce type d’étude sur plusieurs années

ou décennies nécessiterait une large cohorte de patients pour assurer qu’à son terme, le

nombre de patients suivis soit suffisant pour chaque groupe et qu’il y ait un nombre suffisant

de cas de thrombose pour tirer une conclusion.

Sachant que les REV sont impliquées dans la coagulation et peuvent induire un état d’hyper

coagulabilité dans des modèles murins de transfusion441,613,614, il serait à propos d’examiner

si de grandes quantités de REV PS+ dans le plasma de patients LED facilitent le

déclenchement de la coagulation par rapport à des plasmas de patients LED avec peu de REV

PS+ ou issus de donneurs sains. D’autre part, il serait intéressant d’établir si cette association,

entre la thrombose et les REV PS+, est retrouvée dans d’autres MRAS, notamment dans la

PAR. Également, les PEV ont déjà été associées à l’épaississement de la paroi vasculaire qui

est une conséquence de l’athérosclérose674. Puisque l’athérosclérose est une cause majeure

de thrombose, il serait pertinent d’évaluer une potentielle association entre les REV PS+ avec

l’épaississement de la paroi vasculaire chez les patients LED.

Enfin, les patients LED avec des quantités importantes de REV PS+ présentaient aussi des

concentrations d’autotaxine plasmatique plus forte que les patients LED avec de faibles

quantités de REV PS+. Il serait pertinent de mesurer les quantités de LPA présentes pour

119

chaque groupe. Cela permettrait d’une part d’évaluer si l’augmentation des concentrations

d’autotaxine se reflètent bien par une augmentation de LPA. Et d’autre part, cela permettrait

de déterminer les espèces moléculaires de LPA et d’étudier une potentielle association de ces

dernières avec les quantités de REV.

Conclusion

Les travaux présentés dans cette thèse ont permis la description des effets des espèces

vasculaires majeures de LPA sur l’activation des GR. Ces travaux ont mis en évidence des

effets activateurs et inhibiteurs du LPA sur l’exposition de PS par les GR et la production de

REV. Enfin, ces travaux ont permis, à notre connaissance, la première association d’une

population de REV, les PS+, à une situation pathologique qu’est la thrombose. Les

contributions de cette thèse sont soulignées dans le schéma récapitulatif (Figure 10).

120

Figure 110: Récapitulatif des contributions des travaux de cette thèse. Les flèches bleus (activation et

inhibition) et les encadrés bleus illustrent les apports de mes travaux de thèse.

La figure a été créée à l’aide de BioRender.com.

121

Bibliographie

1. Vogt W. Pharamacologically active acidic phospholipids and glycolipids. Biochem

Pharmacol. 1963;12:415-420.

2. Arneil GC, Dekanski JB. Excess of vasopressor activity in plasma of nephritic

children with hypertension. Lancet. 1954;267(6850):1204-1207.

3. Vogt W. Pharmacologically active lipidsoluble acids of natural occurrence. Nature.

1957;179(4554):300-304; passim.

4. Khairallah PA, Page IH. A vasopressor lipid in incubated plasma. Am J Physiol.

1960;199:341-345.

5. Schumacher KA, Classen HG, Spath M. Platelet aggregation evoked in vitro and in

vivo by phosphatidic acids and lysoderivatives: identity with substances in aged serum

(DAS). Thromb Haemost. 1979;42(2):631-640.

6. Tokumura A, Fukuzawa K, Tsukatani H. Effects of synthetic and natural

lysophosphatidic acids on the arterial blood pressure of different animal species. Lipids.

1978;13(8):572-574.

7. Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a

lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral

cortex. J Cell Biol. 1996;135(4):1071-1083.

8. Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K. Lysophosphatidic acid

(LPA) receptors of the EDG family are differentially activated by LPA species. Structure-

activity relationship of cloned LPA receptors. FEBS Lett. 2000;478(1-2):159-165.

9. Pluckthun A, Dennis EA. Acyl and phosphoryl migration in lysophospholipids:

importance in phospholipid synthesis and phospholipase specificity. Biochemistry.

1982;21(8):1743-1750.

10. Tokumura A, Sinomiya J, Kishimoto S, et al. Human platelets respond differentially

to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked

lysophosphatidic acids. Biochem J. 2002;365(Pt 3):617-628.

11. Triebl A, Trotzmuller M, Eberl A, Hanel P, Hartler J, Kofeler HC. Quantitation of

phosphatidic acid and lysophosphatidic acid molecular species using hydrophilic interaction

liquid chromatography coupled to electrospray ionization high resolution mass spectrometry.

J Chromatogr A. 2014;1347:104-110.

12. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and

purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509.

13. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J

Biochem Physiol. 1959;37(8):911-917.

14. Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi GJ. Direct quantitative analysis

of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization

liquid chromatography-mass spectrometry. Anal Biochem. 2001;292(2):287-295.

15. Scherer M, Schmitz G, Liebisch G. Simultaneous quantification of cardiolipin,

bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS

including correction of isotopic overlap. Anal Chem. 2010;82(21):8794-8799.

122

16. Peterson BL, Cummings BS. A review of chromatographic methods for the

assessment of phospholipids in biological samples. Biomed Chromatogr. 2006;20(3):227-

243.

17. Khoury S, Canlet C, Lacroix MZ, Berdeaux O, Jouhet J, Bertrand-Michel J.

Quantification of Lipids: Model, Reality, and Compromise. Biomolecules. 2018;8(4).

18. Fuchs B, Suss R, Teuber K, Eibisch M, Schiller J. Lipid analysis by thin-layer

chromatography--a review of the current state. J Chromatogr A. 2011;1218(19):2754-2774.

19. Xiao YJ, Schwartz B, Washington M, et al. Electrospray ionization mass

spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the

lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal Biochem.

2001;290(2):302-313.

20. Sugiura T, Nakane S, Kishimoto S, et al. Occurrence of lysophosphatidic acid and its

alkyl ether-linked analog in rat brain and comparison of their biological activities toward

cultured neural cells. Biochim Biophys Acta. 1999;1440(2-3):194-204.

21. Liliom K, Guan Z, Tseng JL, Desiderio DM, Tigyi G, Watsky MA. Growth factor-

like phospholipids generated after corneal injury. Am J Physiol. 1998;274(4):C1065-1074.

22. Das AK, Hajra AK. Quantification, characterization and fatty acid composition of

lysophosphatidic acid in different rat tissues. Lipids. 1989;24(4):329-333.

23. Thumser AE, Voysey JE, Wilton DC. The binding of lysophospholipids to rat liver

fatty acid-binding protein and albumin. Biochem J. 1994;301 ( Pt 3):801-806.

24. Gellett AM, Kharel Y, Sunkara M, Morris AJ, Lynch KR. Biosynthesis of alkyl

lysophosphatidic acid by diacylglycerol kinases. Biochem Biophys Res Commun.

2012;422(4):758-763.

25. Bolen AL, Naren AP, Yarlagadda S, et al. The phospholipase A1 activity of

lysophospholipase A-I links platelet activation to LPA production during blood coagulation.

J Lipid Res. 2011;52(5):958-970.

26. Watson SP, McConnell RT, Lapetina EG. Decanoyl lysophosphatidic acid induces

platelet aggregation through an extracellular action. Evidence against a second messenger

role for lysophosphatidic acid. Biochem J. 1985;232(1):61-66.

27. Baker RR, Chang HY. Lysophosphatidic acid, alkylglycerophosphate and

alkylacetylglycerophosphate increase the neuronal nuclear acetylation of 1-acyl

lysophosphatidyl choline by inhibition of lysophospholipase. Mol Cell Biochem. 1999;198(1-

2):47-55.

28. Das AK, Horie S, Hajra AK. Biosynthesis of glycerolipid precursors in rat liver

peroxisomes and their transport and conversion to phosphatidate in the endoplasmic

reticulum. J Biol Chem. 1992;267(14):9724-9730.

29. Haldar D, Lipfert L. Export of mitochondrially synthesized lysophosphatidic acid. J

Biol Chem. 1990;265(19):11014-11016.

30. McIntyre TM, Pontsler AV, Silva AR, et al. Identification of an intracellular receptor

for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl

Acad Sci U S A. 2003;100(1):131-136.

31. Stapleton CM, Mashek DG, Wang S, et al. Lysophosphatidic acid activates

peroxisome proliferator activated receptor-gamma in CHO cells that over-express glycerol

3-phosphate acyltransferase-1. PLoS One. 2011;6(4):e18932.

32. Marchan R, Buttner B, Lambert J, et al. Glycerol-3-phosphate Acyltransferase 1

Promotes Tumor Cell Migration and Poor Survival in Ovarian Carcinoma. Cancer Res.

2017;77(17):4589-4601.

123

33. Simon MF, Daviaud D, Pradere JP, et al. Lysophosphatidic acid inhibits adipocyte

differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of

peroxisome proliferator-activated receptor gamma2. J Biol Chem. 2005;280(15):14656-

14662.

34. Siess W, Zangl KJ, Essler M, et al. Lysophosphatidic acid mediates the rapid

activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and

accumulates in human atherosclerotic lesions. Proc Natl Acad Sci U S A. 1999;96(12):6931-

6936.

35. Zhang C, Baker DL, Yasuda S, et al. Lysophosphatidic acid induces neointima

formation through PPARgamma activation. J Exp Med. 2004;199(6):763-774.

36. Aloulou A, Rahier R, Arhab Y, Noiriel A, Abousalham A. Phospholipases: An

Overview. Methods Mol Biol. 2018;1835:69-105.

37. Yu J, Loh K, Song ZY, Yang HQ, Zhang Y, Lin S. Update on glycerol-3-phosphate

acyltransferases: the roles in the development of insulin resistance. Nutr Diabetes.

2018;8(1):34.

38. Gerrard JM, Robinson P. Identification of the molecular species of lysophosphatidic

acid produced when platelets are stimulated by thrombin. Biochim Biophys Acta.

1989;1001(3):282-285.

39. Vancura A, Haldar D. Regulation of mitochondrial and microsomal phospholipid

synthesis by liver fatty acid-binding protein. J Biol Chem. 1992;267(20):14353-14359.

40. Simpson CM, Itabe H, Reynolds CN, King WC, Glomset JA. Swiss 3T3 cells

preferentially incorporate sn-2-arachidonoyl monoacylglycerol into sn-1-stearoyl-2-

arachidonoyl phosphatidylinositol. J Biol Chem. 1991;266(24):15902-15909.

41. Vancura A, Carroll MA, Haldar D. A lysophosphatidic acid-binding cytosolic protein

stimulates mitochondrial glycerophosphate acyltransferase. Biochem Biophys Res Commun.

1991;175(1):339-343.

42. Sonoda H, Aoki J, Hiramatsu T, et al. A novel phosphatidic acid-selective

phospholipase A1 that produces lysophosphatidic acid. J Biol Chem. 2002;277(37):34254-

34263.

43. Yoshimasu T, Kanazawa N, Kambe N, Nakamura M, Furukawa F. Identification of

736T>A mutation of lipase H in Japanese siblings with autosomal recessive woolly hair. J

Dermatol. 2011;38(9):900-904.

44. Inoue A, Arima N, Ishiguro J, Prestwich GD, Arai H, Aoki J. LPA-producing enzyme

PA-PLA(1)alpha regulates hair follicle development by modulating EGFR signalling. EMBO

J. 2011;30(20):4248-4260.

45. Fourcade O, Simon MF, Viode C, et al. Secretory phospholipase A2 generates the

novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated

cells. Cell. 1995;80(6):919-927.

46. Eder AM, Sasagawa T, Mao M, Aoki J, Mills GB. Constitutive and lysophosphatidic

acid (LPA)-induced LPA production: role of phospholipase D and phospholipase A2. Clin

Cancer Res. 2000;6(6):2482-2491.

47. Sano T, Baker D, Virag T, et al. Multiple mechanisms linked to platelet activation

result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol

Chem. 2002;277(24):21197-21206.

48. Umezu-Goto M, Kishi Y, Taira A, et al. Autotaxin has lysophospholipase D activity

leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol.

2002;158(2):227-233.

124

49. Tokumura A, Majima E, Kariya Y, et al. Identification of human plasma

lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a

multifunctional phosphodiesterase. J Biol Chem. 2002;277(42):39436-39442.

50. Bergmark C, Dewan A, Orsoni A, et al. A novel function of lipoprotein [a] as a

preferential carrier of oxidized phospholipids in human plasma. J Lipid Res.

2008;49(10):2230-2239.

51. Jethwa SA, Leah EJ, Zhang Q, et al. Exosomes bind to autotaxin and act as a

physiological delivery mechanism to stimulate LPA receptor signalling in cells. J Cell Sci.

2016;129(20):3948-3957.

52. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification

of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of

low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984;81(12):3883-3887.

53. Choi J, Zhang W, Gu X, et al. Lysophosphatidylcholine is generated by spontaneous

deacylation of oxidized phospholipids. Chem Res Toxicol. 2011;24(1):111-118.

54. Nsaibia MJ, Mahmut A, Boulanger MC, et al. Autotaxin interacts with lipoprotein(a)

and oxidized phospholipids in predicting the risk of calcific aortic valve stenosis in patients

with coronary artery disease. J Intern Med. 2016;280(5):509-517.

55. Rabini RA, Galassi R, Fumelli P, et al. Reduced Na(+)-K(+)-ATPase activity and

plasma lysophosphatidylcholine concentrations in diabetic patients. Diabetes.

1994;43(7):915-919.

56. Okita M, Gaudette DC, Mills GB, Holub BJ. Elevated levels and altered fatty acid

composition of plasma lysophosphatidylcholine(lysoPC) in ovarian cancer patients. Int J

Cancer. 1997;71(1):31-34.

57. Sasagawa T, Suzuki K, Shiota T, Kondo T, Okita M. The significance of plasma

lysophospholipids in patients with renal failure on hemodialysis. J Nutr Sci Vitaminol

(Tokyo). 1998;44(6):809-818.

58. Tanaka M, Okudaira S, Kishi Y, et al. Autotaxin stabilizes blood vessels and is

required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem.

2006;281(35):25822-25830.

59. van Meeteren LA, Ruurs P, Stortelers C, et al. Autotaxin, a secreted

lysophospholipase D, is essential for blood vessel formation during development. Mol Cell

Biol. 2006;26(13):5015-5022.

60. Ferry G, Giganti A, Coge F, Bertaux F, Thiam K, Boutin JA. Functional invalidation

of the autotaxin gene by a single amino acid mutation in mouse is lethal. FEBS Lett.

2007;581(18):3572-3578.

61. Fotopoulou S, Oikonomou N, Grigorieva E, et al. ATX expression and LPA

signalling are vital for the development of the nervous system. Dev Biol. 2010;339(2):451-

464.

62. Katsifa A, Kaffe E, Nikolaidou-Katsaridou N, et al. The Bulk of Autotaxin Activity

Is Dispensable for Adult Mouse Life. PLoS One. 2015;10(11):e0143083.

63. D'Souza K, Paramel GV, Kienesberger PC. Lysophosphatidic Acid Signaling in

Obesity and Insulin Resistance. Nutrients. 2018;10(4).

64. Nishimura S, Nagasaki M, Okudaira S, et al. ENPP2 contributes to adipose tissue

expansion and insulin resistance in diet-induced obesity. Diabetes. 2014;63(12):4154-4164.

65. Euer N, Schwirzke M, Evtimova V, et al. Identification of genes associated with

metastasis of mammary carcinoma in metastatic versus non-metastatic cell lines. Anticancer

Res. 2002;22(2A):733-740.

125

66. Brisbin AG, Asmann YW, Song H, et al. Meta-analysis of 8q24 for seven cancers

reveals a locus between NOV and ENPP2 associated with cancer development. BMC Med

Genet. 2011;12:156.

67. Oikonomou N, Mouratis MA, Tzouvelekis A, et al. Pulmonary autotaxin expression

contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol.

2012;47(5):566-574.

68. Bouchareb R, Mahmut A, Nsaibia MJ, et al. Autotaxin Derived From Lipoprotein(a)

and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve.

Circulation. 2015;132(8):677-690.

69. Dohi T, Miyauchi K, Ohkawa R, et al. Increased lysophosphatidic acid levels in

culprit coronary arteries of patients with acute coronary syndrome. Atherosclerosis.

2013;229(1):192-197.

70. Nikitopoulou I, Oikonomou N, Karouzakis E, et al. Autotaxin expression from

synovial fibroblasts is essential for the pathogenesis of modeled arthritis. J Exp Med.

2012;209(5):925-933.

71. Clair T, Lee HY, Liotta LA, Stracke ML. Autotaxin is an exoenzyme possessing 5'-

nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol Chem.

1997;272(2):996-1001.

72. Clair T, Aoki J, Koh E, et al. Autotaxin hydrolyzes sphingosylphosphorylcholine to

produce the regulator of migration, sphingosine-1-phosphate. Cancer Res.

2003;63(17):5446-5453.

73. Giganti A, Rodriguez M, Fould B, et al. Murine and human autotaxin alpha, beta, and

gamma isoforms: gene organization, tissue distribution, and biochemical characterization. J

Biol Chem. 2008;283(12):7776-7789.

74. Hashimoto T, Okudaira S, Igarashi K, Hama K, Yatomi Y, Aoki J. Identification and

biochemical characterization of a novel autotaxin isoform, ATXdelta, with a four-amino acid

deletion. J Biochem. 2012;151(1):89-97.

75. Dusaulcy R, Rancoule C, Gres S, et al. Adipose-specific disruption of autotaxin

enhances nutritional fattening and reduces plasma lysophosphatidic acid. J Lipid Res.

2011;52(6):1247-1255.

76. Kanda H, Newton R, Klein R, Morita Y, Gunn MD, Rosen SD. Autotaxin, an

ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into

secondary lymphoid organs. Nat Immunol. 2008;9(4):415-423.

77. Kawagoe H, Soma O, Goji J, et al. Molecular cloning and chromosomal assignment

of the human brain-type phosphodiesterase I/nucleotide pyrophosphatase gene (PDNP2).

Genomics. 1995;30(2):380-384.

78. Lee HY, Murata J, Clair T, et al. Cloning, chromosomal localization, and tissue

expression of autotaxin from human teratocarcinoma cells. Biochem Biophys Res Commun.

1996;218(3):714-719.

79. Nishimasu H, Okudaira S, Hama K, et al. Crystal structure of autotaxin and insight

into GPCR activation by lipid mediators. Nat Struct Mol Biol. 2011;18(2):205-212.

80. Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C. Nucleotide

pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol.

2000;35(6):393-432.

81. Houben AJ, van Wijk XM, van Meeteren LA, et al. The polybasic insertion in

autotaxin alpha confers specific binding to heparin and cell surface heparan sulfate

proteoglycans. J Biol Chem. 2013;288(1):510-519.

126

82. Perrakis A, Moolenaar WH. Autotaxin: structure-function and signaling. J Lipid Res.

2014;55(6):1010-1018.

83. van Meeteren LA, Ruurs P, Christodoulou E, et al. Inhibition of autotaxin by

lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem. 2005;280(22):21155-

21161.

84. Jansen S, Stefan C, Creemers JW, et al. Proteolytic maturation and activation of

autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J Cell Sci.

2005;118(Pt 14):3081-3089.

85. Jansen S, Andries M, Derua R, Waelkens E, Bollen M. Domain interplay mediated

by an essential disulfide linkage is critical for the activity and secretion of the metastasis-

promoting enzyme autotaxin. J Biol Chem. 2009;284(21):14296-14302.

86. Jansen S, Callewaert N, Dewerte I, Andries M, Ceulemans H, Bollen M. An essential

oligomannosidic glycan chain in the catalytic domain of autotaxin, a secreted

lysophospholipase-D. J Biol Chem. 2007;282(15):11084-11091.

87. Hausmann J, Kamtekar S, Christodoulou E, et al. Structural basis of substrate

discrimination and integrin binding by autotaxin. Nat Struct Mol Biol. 2011;18(2):198-204.

88. Gijsbers R, Aoki J, Arai H, Bollen M. The hydrolysis of lysophospholipids and

nucleotides by autotaxin (NPP2) involves a single catalytic site. FEBS Lett. 2003;538(1-

3):60-64.

89. Koh E, Clair T, Woodhouse EC, Schiffmann E, Liotta L, Stracke M. Site-directed

mutations in the tumor-associated cytokine, autotaxin, eliminate nucleotide

phosphodiesterase, lysophospholipase D, and motogenic activities. Cancer Res.

2003;63(9):2042-2045.

90. Gijsbers R, Ceulemans H, Bollen M. Functional characterization of the non-catalytic

ectodomains of the nucleotide pyrophosphatase/phosphodiesterase NPP1. Biochem J.

2003;371(Pt 2):321-330.

91. Cimpean A, Stefan C, Gijsbers R, Stalmans W, Bollen M. Substrate-specifying

determinants of the nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP2.

Biochem J. 2004;381(Pt 1):71-77.

92. Pamuklar Z, Federico L, Liu S, et al. Autotaxin/lysopholipase D and lysophosphatidic

acid regulate murine hemostasis and thrombosis. J Biol Chem. 2009;284(11):7385-7394.

93. Parris TZ, Kovacs A, Hajizadeh S, et al. Frequent MYC coamplification and DNA

hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas.

Oncogenesis. 2014;3:e95.

94. Li S, Wang B, Xu Y, Zhang J. Autotaxin is induced by TSA through HDAC3 and

HDAC7 inhibition and antagonizes the TSA-induced cell apoptosis. Mol Cancer.

2011;10:18.

95. Sun S, Zhang X, Lyu L, Li X, Yao S, Zhang J. Autotaxin Expression Is Regulated at

the Post-transcriptional Level by the RNA-binding Proteins HuR and AUF1. J Biol Chem.

2016;291(50):25823-25836.

96. Black EJ, Clair T, Delrow J, Neiman P, Gillespie DA. Microarray analysis identifies

Autotaxin, a tumour cell motility and angiogenic factor with lysophospholipase D activity,

as a specific target of cell transformation by v-Jun. Oncogene. 2004;23(13):2357-2366.

97. Sioletic S, Czaplinski J, Hu L, et al. c-Jun promotes cell migration and drives

expression of the motility factor ENPP2 in soft tissue sarcomas. J Pathol. 2014;234(2):190-

202.

127

98. Farina AR, Cappabianca L, Ruggeri P, et al. Constitutive autotaxin transcription by

Nmyc-amplified and non-amplified neuroblastoma cells is regulated by a novel AP-1 and

SP-mediated mechanism and abrogated by curcumin. FEBS Lett. 2012;586(20):3681-3691.

99. Williams TM, Williams ME, Kuick R, et al. Candidate downstream regulated genes

of HOX group 13 transcription factors with and without monomeric DNA binding capability.

Dev Biol. 2005;279(2):462-480.

100. Corcoran DL, Feingold E, Dominick J, et al. Footer: a quantitative comparative

genomics method for efficient recognition of cis-regulatory elements. Genome Res.

2005;15(6):840-847.

101. Lovas A, Weidemann A, Albrecht D, Wiechert L, Weih D, Weih F. p100 Deficiency

is insufficient for full activation of the alternative NF-kappaB pathway: TNF cooperates with

p52-RelB in target gene transcription. PLoS One. 2012;7(8):e42741.

102. Cloney DL, Gray RW, Bruns ME, et al. Intestinal vitamin D-dependent calbindin-

D9k and alkaline phosphatase in spontaneously hypertensive rats. Am J Physiol. 1991;260(5

Pt 1):G691-697.

103. Braeuer RR, Zigler M, Kamiya T, et al. Galectin-3 contributes to melanoma growth

and metastasis via regulation of NFAT1 and autotaxin. Cancer Res. 2012;72(22):5757-5766.

104. Azare J, Doane A, Leslie K, et al. Stat3 mediates expression of autotaxin in breast

cancer. PLoS One. 2011;6(11):e27851.

105. Li S, Xiong C, Zhang J. ATX and LPA receptor 3 are coordinately up-regulated in

lipopolysaccharide-stimulated THP-1 cells through PKR and SPK1-mediated pathways.

FEBS Lett. 2012;586(6):792-797.

106. Wu JM, Xu Y, Skill NJ, et al. Autotaxin expression and its connection with the TNF-

alpha-NF-kappaB axis in human hepatocellular carcinoma. Mol Cancer. 2010;9:71.

107. Benesch MG, Zhao YY, Curtis JM, McMullen TP, Brindley DN. Regulation of

autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. J

Lipid Res. 2015;56(6):1134-1144.

108. Castelino FV, Bain G, Pace VA, et al. An Autotaxin/Lysophosphatidic

Acid/Interleukin-6 Amplification Loop Drives Scleroderma Fibrosis. Arthritis Rheumatol.

2016;68(12):2964-2974.

109. Song J, Guan M, Zhao Z, Zhang J. Type I Interferons Function as Autocrine and

Paracrine Factors to Induce Autotaxin in Response to TLR Activation. PLoS One.

2015;10(8):e0136629.

110. Kehlen A, Englert N, Seifert A, et al. Expression, regulation and function of autotaxin

in thyroid carcinomas. Int J Cancer. 2004;109(6):833-838.

111. Kehlen A, Lauterbach R, Santos AN, et al. IL-1 beta- and IL-4-induced down-

regulation of autotaxin mRNA and PC-1 in fibroblast-like synoviocytes of patients with

rheumatoid arthritis (RA). Clin Exp Immunol. 2001;123(1):147-154.

112. Khandoga AL, Pandey D, Welsch U, Brandl R, Siess W. GPR92/LPA(5)

lysophosphatidate receptor mediates megakaryocytic cell shape change induced by human

atherosclerotic plaques. Cardiovasc Res. 2011;90(1):157-164.

113. Rother E, Brandl R, Baker DL, et al. Subtype-selective antagonists of

lysophosphatidic Acid receptors inhibit platelet activation triggered by the lipid core of

atherosclerotic plaques. Circulation. 2003;108(6):741-747.

114. Haseruck N, Erl W, Pandey D, et al. The plaque lipid lysophosphatidic acid stimulates

platelet activation and platelet-monocyte aggregate formation in whole blood: involvement

of P2Y1 and P2Y12 receptors. Blood. 2004;103(7):2585-2592.

128

115. Tigyi G, Miledi R. Lysophosphatidates bound to serum albumin activate membrane

currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J Biol

Chem. 1992;267(30):21360-21367.

116. Goetzl EJ, Lee H, Azuma T, Stossel TP, Turck CW, Karliner JS. Gelsolin binding

and cellular presentation of lysophosphatidic acid. J Biol Chem. 2000;275(19):14573-14578.

117. Mintzer E, Sargsyan H, Bittman R. Lysophosphatidic acid and lipopolysaccharide

bind to the PIP2-binding domain of gelsolin. Biochim Biophys Acta. 2006;1758(1):85-89.

118. Yagi T, Shoaib M, Kuschner C, et al. Challenges and Inconsistencies in Using

Lysophosphatidic Acid as a Biomarker for Ovarian Cancer. Cancers (Basel). 2019;11(4).

119. Leblanc R, Lee SC, David M, et al. Interaction of platelet-derived autotaxin with

tumor integrin alphaVbeta3 controls metastasis of breast cancer cells to bone. Blood.

2014;124(20):3141-3150.

120. Fulkerson Z, Wu T, Sunkara M, Kooi CV, Morris AJ, Smyth SS. Binding of autotaxin

to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. J

Biol Chem. 2011;286(40):34654-34663.

121. Smyth SS, Mueller P, Yang F, Brandon JA, Morris AJ. Arguing the case for the

autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the

development and complications of atherosclerosis. Arterioscler Thromb Vasc Biol.

2014;34(3):479-486.

122. Hosogaya S, Yatomi Y, Nakamura K, et al. Measurement of plasma lysophosphatidic

acid concentration in healthy subjects: strong correlation with lysophospholipase D activity.

Ann Clin Biochem. 2008;45(Pt 4):364-368.

123. Garcia-Marchena N, Pizarro N, Pavon FJ, et al. Potential association of plasma

lysophosphatidic acid (LPA) species with cognitive impairment in abstinent alcohol use

disorders outpatients. Sci Rep. 2020;10(1):17163.

124. Sedlakova I, Vavrova J, Tosner J, Hanousek L. Lysophosphatidic acid (LPA)-a

perspective marker in ovarian cancer. Tumour Biol. 2011;32(2):311-316.

125. Zhang YJ, Cao LY, Fu ZZ, Wang YJ, Wang GX, Gu T. Clinical significance of

plasma lysophosphatidic acid levels in the differential diagnosis of ovarian cancer. J Cancer

Res Ther. 2015;11(2):375-380.

126. Michalczyk A, Budkowska M, Dolegowska B, Chlubek D, Safranow K.

Lysophosphatidic acid plasma concentrations in healthy subjects: circadian rhythm and

associations with demographic, anthropometric and biochemical parameters. Lipids Health

Dis. 2017;16(1):140.

127. Baker DL, Morrison P, Miller B, et al. Plasma lysophosphatidic acid concentration

and ovarian cancer. JAMA. 2002;287(23):3081-3082.

128. An S, Bleu T, Hallmark OG, Goetzl EJ. Characterization of a novel subtype of human

G protein-coupled receptor for lysophosphatidic acid. J Biol Chem. 1998;273(14):7906-

7910.

129. Bandoh K, Aoki J, Hosono H, et al. Molecular cloning and characterization of a novel

human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem.

1999;274(39):27776-27785.

130. Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-

coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol

Chem. 2003;278(28):25600-25606.

129

131. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. GPR92 as a new G12/13- and Gq-

coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem.

2006;281(33):23589-23597.

132. Pasternack SM, von Kugelgen I, Al Aboud K, et al. G protein-coupled receptor P2Y5

and its ligand LPA are involved in maintenance of human hair growth. Nat Genet.

2008;40(3):329-334.

133. Tabata K, Baba K, Shiraishi A, Ito M, Fujita N. The orphan GPCR GPR87 was

deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res

Commun. 2007;363(3):861-866.

134. Ochiai S, Furuta D, Sugita K, Taniura H, Fujita N. GPR87 mediates lysophosphatidic

acid-induced colony dispersal in A431 cells. Eur J Pharmacol. 2013;715(1-3):15-20.

135. Murakami M, Shiraishi A, Tabata K, Fujita N. Identification of the orphan GPCR,

P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor.

Biochem Biophys Res Commun. 2008;371(4):707-712.

136. Inoue A, Ishiguro J, Kitamura H, et al. TGFalpha shedding assay: an accurate and

versatile method for detecting GPCR activation. Nat Methods. 2012;9(10):1021-1029.

137. Nieto-Posadas A, Picazo-Juarez G, Llorente I, et al. Lysophosphatidic acid directly

activates TRPV1 through a C-terminal binding site. Nat Chem Biol. 2011;8(1):78-85.

138. Chemin J, Patel A, Duprat F, Zanzouri M, Lazdunski M, Honore E. Lysophosphatidic

acid-operated K+ channels. J Biol Chem. 2005;280(6):4415-4421.

139. Ohuchi H, Hamada A, Matsuda H, et al. Expression patterns of the lysophospholipid

receptor genes during mouse early development. Dev Dyn. 2008;237(11):3280-3294.

140. Contos JJ, Chun J. Complete cDNA sequence, genomic structure, and chromosomal

localization of the LPA receptor gene, lpA1/vzg-1/Gpcr26. Genomics. 1998;51(3):364-378.

141. Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature

review: IUPHAR Review 8. Br J Pharmacol. 2014;171(15):3575-3594.

142. Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J. Requirement for the lpA1

lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci U S A.

2000;97(24):13384-13389.

143. Venkatraman G, Benesch MG, Tang X, Dewald J, McMullen TP, Brindley DN.

Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved

in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB

J. 2015;29(3):772-785.

144. Fukushima K, Takahashi K, Yamasaki E, et al. Lysophosphatidic acid signaling via

LPA1 and LPA3 regulates cellular functions during tumor progression in pancreatic cancer

cells. Exp Cell Res. 2017;352(1):139-145.

145. Obo Y, Yamada T, Furukawa M, et al. Frequent mutations of lysophosphatidic acid

receptor-1 gene in rat liver tumors. Mutat Res. 2009;660(1-2):47-50.

146. David M, Machuca-Gayet I, Kikuta J, et al. Lysophosphatidic acid receptor type 1

(LPA1) plays a functional role in osteoclast differentiation and bone resorption activity. J

Biol Chem. 2014;289(10):6551-6564.

147. Orosa B, Garcia S, Martinez P, Gonzalez A, Gomez-Reino JJ, Conde C.

Lysophosphatidic acid receptor inhibition as a new multipronged treatment for rheumatoid

arthritis. Ann Rheum Dis. 2014;73(1):298-305.

148. Lin CI, Chen CN, Lin PW, Chang KJ, Hsieh FJ, Lee H. Lysophosphatidic acid

regulates inflammation-related genes in human endothelial cells through LPA1 and LPA3.

Biochem Biophys Res Commun. 2007;363(4):1001-1008.

130

149. Miyabe Y, Miyabe C, Iwai Y, et al. Activation of fibroblast-like synoviocytes derived

from rheumatoid arthritis via lysophosphatidic acid-lysophosphatidic acid receptor 1

cascade. Arthritis Res Ther. 2014;16(5):461.

150. Tager AM, LaCamera P, Shea BS, et al. The lysophosphatidic acid receptor LPA1

links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak.

Nat Med. 2008;14(1):45-54.

151. Ruisanchez E, Dancs P, Kerek M, et al. Lysophosphatidic acid induces vasodilation

mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. FASEB

J. 2014;28(2):880-890.

152. Dancs PT, Ruisanchez E, Balogh A, et al. LPA1 receptor-mediated thromboxane A2

release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction.

FASEB J. 2017;31(4):1547-1555.

153. Gomez-Larrauri A, Gangoiti P, Presa N, et al. Phosphatidic Acid Stimulates Myoblast

Proliferation through Interaction with LPA1 and LPA2 Receptors. Int J Mol Sci. 2021;22(3).

154. Ishii I, Contos JJ, Fukushima N, Chun J. Functional comparisons of the

lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-

7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol.

2000;58(5):895-902.

155. Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H. Initiation of neuropathic

pain requires lysophosphatidic acid receptor signaling. Nat Med. 2004;10(7):712-718.

156. Pan HL, Zhang YQ, Zhao ZQ. Involvement of lysophosphatidic acid in bone cancer

pain by potentiation of TRPV1 via PKCepsilon pathway in dorsal root ganglion neurons. Mol

Pain. 2010;6:85.

157. Robering JW, Gebhardt L, Wolf K, Kuhn H, Kremer AE, Fischer MJM.

Lysophosphatidic acid activates satellite glia cells and Schwann cells. Glia. 2019;67(5):999-

1012.

158. Cohen A, Sagron R, Somech E, Segal-Hayoun Y, Zilberberg N. Pain-associated

signals, acidosis and lysophosphatidic acid, modulate the neuronal K(2P)2.1 channel. Mol

Cell Neurosci. 2009;40(3):382-389.

159. Komachi M, Damirin A, Malchinkhuu E, et al. Signaling pathways involved in DNA

synthesis and migration in response to lysophosphatidic acid and low-density lipoprotein in

coronary artery smooth muscle cells. Vascul Pharmacol. 2009;50(5-6):178-184.

160. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between

NMDA receptor subunits and the postsynaptic density protein PSD-95. Science.

1995;269(5231):1737-1740.

161. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and

modification. Cell Commun Signal. 2010;8:8.

162. Varsano T, Taupin V, Guo L, Baterina OY, Jr., Farquhar MG. The PDZ protein GIPC

regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates

the cell's response to LPA. PLoS One. 2012;7(11):e49227.

163. Yamada T, Ohoka Y, Kogo M, Inagaki S. Physical and functional interactions of the

lysophosphatidic acid receptors with PDZ domain-containing Rho guanine nucleotide

exchange factors (RhoGEFs). J Biol Chem. 2005;280(19):19358-19363.

164. Shano S, Hatanaka K, Ninose S, Moriyama R, Tsujiuchi T, Fukushima N. A

lysophosphatidic acid receptor lacking the PDZ-binding domain is constitutively active and

stimulates cell proliferation. Biochim Biophys Acta. 2008;1783(5):748-759.

131

165. Weiner JA, Fukushima N, Contos JJ, Scherer SS, Chun J. Regulation of Schwann cell

morphology and adhesion by receptor-mediated lysophosphatidic acid signaling. J Neurosci.

2001;21(18):7069-7078.

166. Shano S, Moriyama R, Chun J, Fukushima N. Lysophosphatidic acid stimulates

astrocyte proliferation through LPA1. Neurochem Int. 2008;52(1-2):216-220.

167. Weiner JA, Chun J. Schwann cell survival mediated by the signaling phospholipid

lysophosphatidic acid. Proc Natl Acad Sci U S A. 1999;96(9):5233-5238.

168. Olianas MC, Dedoni S, Onali P. Inhibition of TNF-alpha-induced neuronal apoptosis

by antidepressants acting through the lysophosphatidic acid receptor LPA1. Apoptosis.

2019;24(5-6):478-498.

169. Zhang J, Li Y, Wang C, et al. Lysophosphatidic Acid Induces Apoptosis of PC12

Cells Through LPA1 Receptor/LPA2 Receptor/MAPK Signaling Pathway. Front Mol

Neurosci. 2020;13:16.

170. Musazzi L, Di Daniel E, Maycox P, Racagni G, Popoli M. Abnormalities in

alpha/beta-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of

LPA1 receptor knockout mice. Int J Neuropsychopharmacol. 2011;14(7):941-953.

171. Moller T, Contos JJ, Musante DB, Chun J, Ransom BR. Expression and function of

lysophosphatidic acid receptors in cultured rodent microglial cells. J Biol Chem.

2001;276(28):25946-25952.

172. Harrison SM, Reavill C, Brown G, et al. LPA1 receptor-deficient mice have

phenotypic changes observed in psychiatric disease. Mol Cell Neurosci. 2003;24(4):1170-

1179.

173. Moreno-Fernandez RD, Rosell-Valle C, Bacq A, et al. LPA1 receptor and chronic

stress: Effects on behaviour and the genes involved in the hippocampal excitatory/inhibitory

balance. Neuropharmacology. 2020;164:107896.

174. Anliker B, Choi JW, Lin ME, et al. Lysophosphatidic acid (LPA) and its receptor,

LPA1 , influence embryonic schwann cell migration, myelination, and cell-to-axon

segregation. Glia. 2013;61(12):2009-2022.

175. Weiner JA, Hecht JH, Chun J. Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-

2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain.

J Comp Neurol. 1998;398(4):587-598.

176. Castilla-Ortega E, Sanchez-Lopez J, Hoyo-Becerra C, et al. Exploratory, anxiety and

spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiol

Learn Mem. 2010;94(1):73-82.

177. Santin LJ, Bilbao A, Pedraza C, et al. Behavioral phenotype of maLPA1-null mice:

increased anxiety-like behavior and spatial memory deficits. Genes Brain Behav.

2009;8(8):772-784.

178. Dusaulcy R, Daviaud D, Pradere JP, Gres S, Valet P, Saulnier-Blache JS. Altered

food consumption in mice lacking lysophosphatidic acid receptor-1. J Physiol Biochem.

2009;65(4):345-350.

179. Roberts C, Winter P, Shilliam CS, et al. Neurochemical changes in LPA1 receptor

deficient mice--a putative model of schizophrenia. Neurochem Res. 2005;30(3):371-377.

180. Uchida H, Nagai J, Ueda H. Lysophosphatidic acid and its receptors LPA1 and LPA3

mediate paclitaxel-induced neuropathic pain in mice. Mol Pain. 2014;10:71.

181. Rivera RR, Lin ME, Bornhop EC, Chun J. Conditional Lpar1 gene targeting identifies

cell types mediating neuropathic pain. FASEB J. 2020;34(7):8833-8842.

132

182. Srikanth M, Chew WS, Hind T, et al. Lysophosphatidic acid and its receptor LPA1

mediate carrageenan induced inflammatory pain in mice. Eur J Pharmacol. 2018;841:49-56.

183. Ueda H, Neyama H, Matsushita Y. Lysophosphatidic Acid Receptor 1- and 3-

Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice.

Cells. 2020;9(8).

184. Gento-Caro A, Vilches-Herrando E, Garcia-Morales V, et al. Interfering with

lysophosphatidic acid receptor edg2/lpa1 signalling slows down disease progression in

SOD1-G93A transgenic mice. Neuropathol Appl Neurobiol. 2021.

185. Fransson J, Gomez-Conde AI, Romero-Imbroda J, et al. Activation of Macrophages

by Lysophosphatidic Acid through the Lysophosphatidic Acid Receptor 1 as a Novel

Mechanism in Multiple Sclerosis Pathogenesis. Mol Neurobiol. 2021;58(2):470-482.

186. Gennero I, Laurencin-Dalicieux S, Conte-Auriol F, et al. Absence of the

lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased

bone mass. Bone. 2011;49(3):395-403.

187. Aki Y, Kondo A, Nakamura H, Togari A. Lysophosphatidic acid-stimulated

interleukin-6 and -8 synthesis through LPA1 receptors on human osteoblasts. Arch Oral Biol.

2008;53(3):207-213.

188. Yu ZL, Li DQ, Huang XY, et al. Lysophosphatidic acid upregulates connective tissue

growth factor expression in osteoblasts through the GPCR/PKC and PKA pathways. Int J

Mol Med. 2016;37(2):468-474.

189. Alioli CA, Demesmay L, Laurencin-Dalacieux S, et al. Expression of the type 1

lysophosphatidic acid receptor in osteoblastic cell lineage controls both bone mineralization

and osteocyte specification. Biochim Biophys Acta Mol Cell Biol Lipids.

2020;1865(8):158715.

190. Panupinthu N, Zhao L, Possmayer F, Ke HZ, Sims SM, Dixon SJ. P2X7 nucleotide

receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic

acid. J Biol Chem. 2007;282(5):3403-3412.

191. Waters KM, Tan R, Genetos DC, Verma S, Yellowley CE, Karin NJ. DNA

microarray analysis reveals a role for lysophosphatidic acid in the regulation of anti-

inflammatory genes in MC3T3-E1 cells. Bone. 2007;41(5):833-841.

192. Miyabe Y, Miyabe C, Iwai Y, et al. Necessity of lysophosphatidic acid receptor 1 for

development of arthritis. Arthritis Rheum. 2013;65(8):2037-2047.

193. Nishioka T, Arima N, Kano K, et al. ATX-LPA1 axis contributes to proliferation of

chondrocytes by regulating fibronectin assembly leading to proper cartilage formation. Sci

Rep. 2016;6:23433.

194. Hurst-Kennedy J, Boyan BD, Schwartz Z. Lysophosphatidic acid signaling promotes

proliferation, differentiation, and cell survival in rat growth plate chondrocytes. Biochim

Biophys Acta. 2009;1793(5):836-846.

195. Mizuno K, Komiya M, Okuyama K, Imada K, Sato T. Lysophosphatidic Acid

Augments the Gene Expression and Production of Matrix Metalloproteinases-1 and -3 in

Human Synovial Fibroblasts in Vitro. Biol Pharm Bull. 2021;44(1):131-135.

196. Zhao J, Wei J, Weathington N, et al. Lysophosphatidic acid receptor 1 antagonist

ki16425 blunts abdominal and systemic inflammation in a mouse model of peritoneal sepsis.

Transl Res. 2015;166(1):80-88.

197. Zhao C, Sardella A, Chun J, Poubelle PE, Fernandes MJ, Bourgoin SG. TNF-alpha

promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2

ligand chemokines. J Lipid Res. 2011;52(7):1307-1318.

133

198. Chen X, Walther FJ, van Boxtel R, et al. Deficiency or inhibition of lysophosphatidic

acid receptor 1 protects against hyperoxia-induced lung injury in neonatal rats. Acta Physiol

(Oxf). 2016;216(3):358-375.

199. Gao L, Shi H, Sherchan P, et al. Inhibition of lysophosphatidic acid receptor 1

attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of

intracerebral haemorrhage in mice. Brain Behav Immun. 2021;91:615-626.

200. Wang H, Tu S, Yang S, et al. Berberine Modulates LPA Function to Inhibit the

Proliferation and Inflammation of FLS-RA via p38/ERK MAPK Pathway Mediated by

LPA1. Evid Based Complement Alternat Med. 2019;2019:2580207.

201. Geng H, Lan R, Liu Y, et al. Proximal tubule LPA1 and LPA2 receptors use divergent

signaling pathways to additively increase profibrotic cytokine secretion. Am J Physiol Renal

Physiol. 2021;320(3):F359-F374.

202. Ohashi T, Yamamoto T. Antifibrotic effect of lysophosphatidic acid receptors LPA1

and LPA3 antagonist on experimental murine scleroderma induced by bleomycin. Exp

Dermatol. 2015;24(9):698-702.

203. Ledein L, Leger B, Dees C, et al. Translational engagement of lysophosphatidic acid

receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin

1 mouse. Br J Pharmacol. 2020;177(18):4296-4309.

204. Olianas MC, Dedoni S, Onali P. Antidepressants activate the lysophosphatidic acid

receptor LPA(1) to induce insulin-like growth factor-I receptor transactivation, stimulation

of ERK1/2 signaling and cell proliferation in CHO-K1 fibroblasts. Biochem Pharmacol.

2015;95(4):311-323.

205. Pradere JP, Klein J, Gres S, et al. LPA1 receptor activation promotes renal interstitial

fibrosis. J Am Soc Nephrol. 2007;18(12):3110-3118.

206. Castelino FV, Seiders J, Bain G, et al. Amelioration of dermal fibrosis by genetic

deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model

of scleroderma. Arthritis Rheum. 2011;63(5):1405-1415.

207. Lin S, Han Y, Jenkin K, et al. Lysophosphatidic Acid Receptor 1 Is Important for

Intestinal Epithelial Barrier Function and Susceptibility to Colitis. Am J Pathol.

2018;188(2):353-366.

208. Bao L, Qi J, Wang YW, et al. The atherogenic actions of LPC on vascular smooth

muscle cells and its LPA receptor mediated mechanism. Biochem Biophys Res Commun.

2018;503(3):1911-1918.

209. Subramanian P, Karshovska E, Reinhard P, et al. Lysophosphatidic acid receptors

LPA1 and LPA3 promote CXCL12-mediated smooth muscle progenitor cell recruitment in

neointima formation. Circ Res. 2010;107(1):96-105.

210. Chabowski DS, Kadlec AO, Ait-Aissa K, et al. Lysophosphatidic acid acts on LPA1

receptor to increase H2 O2 during flow-induced dilation in human adipose arterioles. Br J

Pharmacol. 2018;175(22):4266-4280.

211. Deng W, Balazs L, Wang DA, Van Middlesworth L, Tigyi G, Johnson LR.

Lysophosphatidic acid protects and rescues intestinal epithelial cells from radiation- and

chemotherapy-induced apoptosis. Gastroenterology. 2002;123(1):206-216.

212. Fisher KE, Pop A, Koh W, Anthis NJ, Saunders WB, Davis GE. Tumor cell invasion

of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type

matrix metalloproteinase-1-dependent signaling. Mol Cancer. 2006;5:69.

213. Shi W, Zhang C, Ning Z, et al. CMTM8 as an LPA1-associated partner mediates

lysophosphatidic acid-induced pancreatic cancer metastasis. Ann Transl Med. 2021;9(1):42.

134

214. Amaral RF, Geraldo LHM, Einicker-Lamas M, TCLS ES, Mendes F, Lima FRS.

Microglial lysophosphatidic acid promotes glioblastoma proliferation and migration via

LPA1 receptor. J Neurochem. 2021;156(4):499-512.

215. Yu S, Murph MM, Lu Y, et al. Lysophosphatidic acid receptors determine

tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst.

2008;100(22):1630-1642.

216. Kitayoshi M, Kato K, Tanabe E, et al. Enhancement of endothelial cell migration by

constitutively active LPA(1)-expressing tumor cells. Biochem Biophys Res Commun.

2012;422(2):339-343.

217. Shida D, Fang X, Kordula T, et al. Cross-talk between LPA1 and epidermal growth

factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer

cell motility and invasion. Cancer Res. 2008;68(16):6569-6577.

218. Kato K, Yoshikawa K, Tanabe E, et al. Opposite roles of LPA1 and LPA3 on cell

motile and invasive activities of pancreatic cancer cells. Tumour Biol. 2012;33(5):1739-

1744.

219. Hayashi M, Okabe K, Kato K, et al. Differential function of lysophosphatidic acid

receptors in cell proliferation and migration of neuroblastoma cells. Cancer Lett.

2012;316(1):91-96.

220. Windischhofer W, Huber E, Rossmann C, et al. LPA-induced suppression of periostin

in human osteosarcoma cells is mediated by the LPA(1)/Egr-1 axis. Biochimie.

2012;94(9):1997-2005.

221. Contos JJ, Chun J. Genomic characterization of the lysophosphatidic acid receptor

gene, lp(A2)/Edg4, and identification of a frameshift mutation in a previously characterized

cDNA. Genomics. 2000;64(2):155-169.

222. Zhang Z, Zhu X. Clinical Significance of Lysophosphatidic Acid Receptor-2 (LPA2)

and Kruppel-Like Factor 5 (KLF5) Protein Expression Detected by Tissue Microarray in

Gastric Adenocarcinoma. Med Sci Monit. 2019;25:4705-4715.

223. Ishimoto K, Minami A, Minami K, Ueda N, Tsujiuchi T. Different effects of

lysophosphatidic acid receptor-2 (LPA2) and LPA5 on the regulation of chemoresistance in

colon cancer cells. J Recept Signal Transduct Res. 2021;41(1):93-98.

224. Minami K, Ueda N, Ishimoto K, Tsujiuchi T. Lysophosphatidic acid receptor-2

(LPA2)-mediated signaling enhances chemoresistance in melanoma cells treated with

anticancer drugs. Mol Cell Biochem. 2020;469(1-2):89-95.

225. Komachi M, Tomura H, Malchinkhuu E, et al. LPA1 receptors mediate stimulation,

whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in

response to lysophosphatidic acid and malignant ascites. Carcinogenesis. 2009;30(3):457-

465.

226. Han SG, Baek SI, Son TJ, Lee H, Kim NH, Yu YG. Preparation of functional human

lysophosphatidic acid receptor 2 using a P9( *) expression system and an amphipathic

polymer and investigation of its in vitro binding preference to Galpha proteins. Biochem

Biophys Res Commun. 2017;487(1):103-108.

227. Minami K, Ueda N, Ishimoto K, et al. Cooperation of G12/13 and Gi proteins via

lysophosphatidic acid receptor-2 (LPA2) signaling enhances cancer cell survival to cisplatin.

Biochem Biophys Res Commun. 2020;532(3):427-432.

228. Xu MY, Porte J, Knox AJ, et al. Lysophosphatidic acid induces alphavbeta6 integrin-

mediated TGF-beta activation via the LPA2 receptor and the small G protein G alpha(q). Am

J Pathol. 2009;174(4):1264-1279.

135

229. Geng H, Lan R, Singha PK, et al. Lysophosphatidic acid increases proximal tubule

cell secretion of profibrotic cytokines PDGF-B and CTGF through LPA2- and Galphaq-

mediated Rho and alphavbeta6 integrin-dependent activation of TGF-beta. Am J Pathol.

2012;181(4):1236-1249.

230. Oh YS, Jo NW, Choi JW, et al. NHERF2 specifically interacts with LPA2 receptor

and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3

activation. Mol Cell Biol. 2004;24(11):5069-5079.

231. An S, Bleu T, Zheng Y, Goetzl EJ. Recombinant human G protein-coupled

lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol Pharmacol.

1998;54(5):881-888.

232. Wang GL, Wen ZQ, Xu WP, Wang ZY, Du XL, Wang F. Inhibition of

lysophosphatidic acid receptor-2 expression by RNA interference decreases lysophosphatidic

acid-induced urokinase plasminogen activator activation, cell invasion, and migration in

ovarian cancer SKOV-3 cells. Croat Med J. 2008;49(2):175-181.

233. Chen SU, Chou CH, Lee H, Ho CH, Lin CW, Yang YS. Lysophosphatidic acid up-

regulates expression of interleukin-8 and -6 in granulosa-lutein cells through its receptors

and nuclear factor-kappaB dependent pathways: implications for angiogenesis of corpus

luteum and ovarian hyperstimulation syndrome. J Clin Endocrinol Metab. 2008;93(3):935-

943.

234. Singla A, Kumar A, Priyamvada S, et al. LPA stimulates intestinal DRA gene

transcription via LPA2 receptor, PI3K/AKT, and c-Fos-dependent pathway. Am J Physiol

Gastrointest Liver Physiol. 2012;302(6):G618-627.

235. Xu J, Lai YJ, Lin WC, Lin FT. TRIP6 enhances lysophosphatidic acid-induced cell

migration by interacting with the lysophosphatidic acid 2 receptor. J Biol Chem.

2004;279(11):10459-10468.

236. E S, Lai YJ, Tsukahara R, et al. Lysophosphatidic acid 2 receptor-mediated

supramolecular complex formation regulates its antiapoptotic effect. J Biol Chem.

2009;284(21):14558-14571.

237. Holcomb J, Jiang Y, Lu G, et al. Structural insights into PDZ-mediated interaction of

NHERF2 and LPA(2), a cellular event implicated in CFTR channel regulation. Biochem

Biophys Res Commun. 2014;446(1):399-403.

238. Lee SJ, Ritter SL, Zhang H, Shim H, Hall RA, Yun CC. MAGI-3 competes with

NHERF-2 to negatively regulate LPA2 receptor signaling in colon cancer cells.

Gastroenterology. 2011;140(3):924-934.

239. Zhang H, Wang D, Sun H, Hall RA, Yun CC. MAGI-3 regulates LPA-induced

activation of Erk and RhoA. Cell Signal. 2007;19(2):261-268.

240. Lin FT, Lin VY, Lin VT, Lin WC. TRIP6 antagonizes the recruitment of A20 and

CYLD to TRAF6 to promote the LPA2 receptor-mediated TRAF6 activation. Cell Discov.

2016;2.

241. Lin FT, Lai YJ, Makarova N, Tigyi G, Lin WC. The lysophosphatidic acid 2 receptor

mediates down-regulation of Siva-1 to promote cell survival. J Biol Chem.

2007;282(52):37759-37769.

242. Ren A, Moon C, Zhang W, et al. Asymmetrical macromolecular complex formation

of lysophosphatidic acid receptor 2 (LPA2) mediates gradient sensing in fibroblasts. J Biol

Chem. 2014;289(52):35757-35769.

136

243. Zhang W, Penmatsa H, Ren A, et al. Functional regulation of cystic fibrosis

transmembrane conductance regulator-containing macromolecular complexes: a small-

molecule inhibitor approach. Biochem J. 2011;435(2):451-462.

244. Sun Y, Nam JS, Han DH, et al. Lysophosphatidic acid induces upregulation of Mcl-

1 and protects apoptosis in a PTX-dependent manner in H19-7 cells. Cell Signal.

2010;22(3):484-494.

245. Vogt J, Kirischuk S, Unichenko P, et al. Synaptic Phospholipid Signaling Modulates

Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways. Cereb

Cortex. 2017;27(1):131-145.

246. Lopez-Serrano C, Santos-Nogueira E, Francos-Quijorna I, Coll-Miro M, Chun J,

Lopez-Vales R. Lysophosphatidic acid receptor type 2 activation contributes to secondary

damage after spinal cord injury in mice. Brain Behav Immun. 2019;76:258-267.

247. Tanaka T, Morito K, Kinoshita M, et al. Orally administered phosphatidic acids and

lysophosphatidic acids ameliorate aspirin-induced stomach mucosal injury in mice. Dig Dis

Sci. 2013;58(4):950-958.

248. Tanaka T, Ohmoto M, Morito K, et al. Type 2 lysophosphatidic acid receptor in

gastric surface mucous cells: Possible implication of prostaglandin E2 production.

Biofactors. 2014;40(3):355-361.

249. Deng W, Shuyu E, Tsukahara R, et al. The lysophosphatidic acid type 2 receptor is

required for protection against radiation-induced intestinal injury. Gastroenterology.

2007;132(5):1834-1851.

250. Singla A, Dwivedi A, Saksena S, et al. Mechanisms of lysophosphatidic acid (LPA)

mediated stimulation of intestinal apical Cl-/OH- exchange. Am J Physiol Gastrointest Liver

Physiol. 2010;298(2):G182-189.

251. Kuo B, Szabo E, Lee SC, et al. The LPA2 receptor agonist Radioprotectin-1 spares

Lgr5-positive intestinal stem cells from radiation injury in murine enteroids. Cell Signal.

2018;51:23-33.

252. Balogh A, Shimizu Y, Lee SC, et al. The autotaxin-LPA2 GPCR axis is modulated

by gamma-irradiation and facilitates DNA damage repair. Cell Signal. 2015;27(9):1751-

1762.

253. Patil R, Szabo E, Fells JI, et al. Combined mitigation of the gastrointestinal and

hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist.

Chem Biol. 2015;22(2):206-216.

254. Kiss GN, Lee SC, Fells JI, et al. Mitigation of radiation injury by selective stimulation

of the LPA(2) receptor. Biochim Biophys Acta. 2013;1831(1):117-125.

255. Schleicher SM, Thotala DK, Linkous AG, et al. Autotaxin and LPA receptors

represent potential molecular targets for the radiosensitization of murine glioma through

effects on tumor vasculature. PLoS One. 2011;6(7):e22182.

256. Chen RJ, Chen SU, Chou CH, Lin MC. Lysophosphatidic acid receptor 2/3-mediated

IL-8-dependent angiogenesis in cervical cancer cells. Int J Cancer. 2012;131(4):789-802.

257. Mu H, Calderone TL, Davies MA, et al. Lysophosphatidic acid induces

lymphangiogenesis and IL-8 production in vitro in human lymphatic endothelial cells. Am J

Pathol. 2012;180(5):2170-2181.

258. Panchatcharam M, Miriyala S, Yang F, et al. Lysophosphatidic acid receptors 1 and

2 play roles in regulation of vascular injury responses but not blood pressure. Circ Res.

2008;103(6):662-670.

137

259. Ho YH, Yao CL, Lin KH, et al. Opposing regulation of megakaryopoiesis by LPA

receptors 2 and 3 in K562 human erythroleukemia cells. Biochim Biophys Acta.

2015;1851(2):172-183.

260. Chiang JC, Chen WM, Lin KH, et al. Lysophosphatidic acid receptors 2 and 3

regulate erythropoiesis at different hematopoietic stages. Biochim Biophys Acta Mol Cell Biol

Lipids. 2021;1866(1):158818.

261. Lin KH, Ho YH, Chiang JC, et al. Pharmacological activation of lysophosphatidic

acid receptors regulates erythropoiesis. Sci Rep. 2016;6:27050.

262. Puigdomenech-Poch M, Martinez-Muriana A, Andres-Benito P, Ferrer I, Chun J,

Lopez-Vales R. Dual Role of Lysophosphatidic Acid Receptor 2 (LPA2) in Amyotrophic

Lateral Sclerosis. Front Cell Neurosci. 2021;15:600872.

263. Wang Z, Shi W, Tian D, et al. Autotaxin stimulates LPA2 receptor in macrophages

and exacerbates dextran sulfate sodium-induced acute colitis. J Mol Med (Berl).

2020;98(12):1781-1794.

264. Gu C, Wang F, Zhao Z, Wang H, Cong X, Chen X. Lysophosphatidic Acid Is

Associated with Atherosclerotic Plaque Instability by Regulating NF-kappaB Dependent

Matrix Metalloproteinase-9 Expression via LPA2 in Macrophages. Front Physiol.

2017;8:266.

265. Emo J, Meednu N, Chapman TJ, et al. Lpa2 is a negative regulator of both dendritic

cell activation and murine models of allergic lung inflammation. J Immunol.

2012;188(8):3784-3790.

266. Kondo M, Tezuka T, Ogawa H, et al. Lysophosphatidic Acid Regulates the

Differentiation of Th2 Cells and Its Antagonist Suppresses Allergic Airway Inflammation.

Int Arch Allergy Immunol. 2021;182(1):1-13.

267. Zhao Y, Tong J, He D, et al. Role of lysophosphatidic acid receptor LPA2 in the

development of allergic airway inflammation in a murine model of asthma. Respir Res.

2009;10:114.

268. Park GY, Lee YG, Berdyshev E, et al. Autotaxin production of lysophosphatidic acid

mediates allergic asthmatic inflammation. Am J Respir Crit Care Med. 2013;188(8):928-940.

269. Knowlden SA, Hillman SE, Chapman TJ, et al. Novel Inhibitory Effect of a

Lysophosphatidic Acid 2 Agonist on Allergen-Driven Airway Inflammation. Am J Respir

Cell Mol Biol. 2016;54(3):402-409.

270. Huang LS, Fu P, Patel P, et al. Lysophosphatidic acid receptor-2 deficiency confers

protection against bleomycin-induced lung injury and fibrosis in mice. Am J Respir Cell Mol

Biol. 2013;49(6):912-922.

271. Lin S, Wang D, Iyer S, et al. The absence of LPA2 attenuates tumor formation in an

experimental model of colitis-associated cancer. Gastroenterology. 2009;136(5):1711-1720.

272. Yamashita H, Kitayama J, Shida D, et al. Differential expression of lysophosphatidic

acid receptor-2 in intestinal and diffuse type gastric cancer. J Surg Oncol. 2006;93(1):30-35.

273. Li M, Xiao D, Zhang J, et al. Expression of LPA2 is associated with poor prognosis

in human breast cancer and regulates HIF-1alpha expression and breast cancer cell growth.

Oncol Rep. 2016;36(6):3479-3487.

274. Chen M, Towers LN, O'Connor KL. LPA2 (EDG4) mediates Rho-dependent

chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol

Cell Physiol. 2007;292(5):C1927-1933.

275. Hu YL, Albanese C, Pestell RG, Jaffe RB. Dual mechanisms for lysophosphatidic

acid stimulation of human ovarian carcinoma cells. J Natl Cancer Inst. 2003;95(10):733-740.

138

276. Jeong KJ, Park SY, Seo JH, et al. Lysophosphatidic acid receptor 2 and Gi/Src

pathway mediate cell motility through cyclooxygenase 2 expression in CAOV-3 ovarian

cancer cells. Exp Mol Med. 2008;40(6):607-616.

277. Park J, Jang JH, Oh S, et al. LPA-induced migration of ovarian cancer cells requires

activation of ERM proteins via LPA1 and LPA2. Cell Signal. 2018;44:138-147.

278. Taghavi P, Verhoeven E, Jacobs JJ, et al. In vitro genetic screen identifies a

cooperative role for LPA signaling and c-Myc in cell transformation. Oncogene.

2008;27(54):6806-6816.

279. Kortlever RM, Brummelkamp TR, van Meeteren LA, Moolenaar WH, Bernards R.

Suppression of the p53-dependent replicative senescence response by lysophosphatidic acid

signaling. Mol Cancer Res. 2008;6(9):1452-1460.

280. No YR, Lee SJ, Kumar A, Yun CC. HIF1alpha-Induced by Lysophosphatidic Acid Is

Stabilized via Interaction with MIF and CSN5. PLoS One. 2015;10(9):e0137513.

281. Yun CC, Sun H, Wang D, et al. LPA2 receptor mediates mitogenic signals in human

colon cancer cells. Am J Physiol Cell Physiol. 2005;289(1):C2-11.

282. Ueda N, Minami K, Ishimoto K, Tsujiuchi T. Effects of lysophosphatidic acid (LPA)

receptor-2 (LPA2) and LPA3 on the regulation of chemoresistance to anticancer drug in lung

cancer cells. Cell Signal. 2020;69:109551.

283. Im DS, Heise CE, Harding MA, et al. Molecular cloning and characterization of a

lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol.

2000;57(4):753-759.

284. Contos JJ, Chun J. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene:

genomic structure, chromosomal localization, and expression pattern. Gene.

2001;267(2):243-253.

285. Ye X, Herr DR, Diao H, Rivera R, Chun J. Unique uterine localization and regulation

may differentiate LPA3 from other lysophospholipid receptors for its role in embryo

implantation. Fertil Steril. 2011;95(6):2107-2113, 2113 e2101-2104.

286. Ye X, Hama K, Contos JJ, et al. LPA3-mediated lysophosphatidic acid signalling in

embryo implantation and spacing. Nature. 2005;435(7038):104-108.

287. Hama K, Aoki J, Inoue A, et al. Embryo spacing and implantation timing are

differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol

Reprod. 2007;77(6):954-959.

288. Wei H, Wang F, Wang X, et al. Lysophosphatidic acid promotes secretion of VEGF

by increasing expression of 150-kD Oxygen-regulated protein (ORP150) in mesenchymal

stem cells. Biochim Biophys Acta. 2013;1831(8):1426-1434.

289. Wang F, Liu S, Pei J, et al. LPA3-mediated lysophosphatidic acid signaling promotes

postnatal heart regeneration in mice. Theranostics. 2020;10(24):10892-10907.

290. D'Aquilio F, Procaccini M, Izzi V, et al. Activatory properties of lysophosphatidic

acid on human THP-1 cells. Inflammation. 2005;29(4-6):129-140.

291. Shim SJ, Shin E, Lee CS, Koo JS. The expressions of autotaxin-lysophosphatidate

signaling-related proteins in metastatic breast cancer. Int J Clin Exp Pathol.

2019;12(8):2920-2930.

292. Cai H, Xu Y. The role of LPA and YAP signaling in long-term migration of human

ovarian cancer cells. Cell Commun Signal. 2013;11(1):31.

293. Zuo C, Li X, Huang J, et al. Osteoglycin attenuates cardiac fibrosis by suppressing

cardiac myofibroblast proliferation and migration through antagonizing lysophosphatidic

139

acid 3/matrix metalloproteinase 2/epidermal growth factor receptor signalling. Cardiovasc

Res. 2018;114(5):703-712.

294. Hernandez M, Barrero MJ, Crespo MS, Nieto ML. Lysophosphatidic acid inhibits

Ca2+ signaling in response to epidermal growth factor receptor stimulation in human

astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai)

protein. J Neurochem. 2000;75(4):1575-1582.

295. Lin CC, Lin CE, Lin YC, et al. Lysophosphatidic acid induces reactive oxygen species

generation by activating protein kinase C in PC-3 human prostate cancer cells. Biochem

Biophys Res Commun. 2013;440(4):564-569.

296. Sriwai W, Zhou H, Murthy KS. G(q)-dependent signalling by the lysophosphatidic

acid receptor LPA(3) in gastric smooth muscle: reciprocal regulation of MYPT1

phosphorylation by Rho kinase and cAMP-independent PKA. Biochem J. 2008;411(3):543-

551.

297. Chiang CL, Chen SS, Lee SJ, et al. Lysophosphatidic acid induces erythropoiesis

through activating lysophosphatidic acid receptor 3. Stem Cells. 2011;29(11):1763-1773.

298. Lin CI, Chen CN, Huang MT, et al. Lysophosphatidic acid upregulates vascular

endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3),

COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell

Signal. 2008;20(10):1804-1814.

299. Ma L, Uchida H, Nagai J, et al. Lysophosphatidic acid-3 receptor-mediated feed-

forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic

pain. Mol Pain. 2009;5:64.

300. Furuta D, Yamane M, Tsujiuchi T, Moriyama R, Fukushima N. Lysophosphatidic

acid induces neurite branch formation through LPA3. Mol Cell Neurosci. 2012;50(1):21-34.

301. Fujita R, Ma Y, Ueda H. Lysophosphatidic acid-induced membrane ruffling and

brain-derived neurotrophic factor gene expression are mediated by ATP release in primary

microglia. J Neurochem. 2008;107(1):152-160.

302. Lin KH, Li MW, Chang YC, et al. Activation of Lysophosphatidic Acid Receptor 3

Inhibits Megakaryopoiesis in Human Hematopoietic Stem Cells and Zebrafish. Stem Cells

Dev. 2018;27(3):216-224.

303. Saatian B, Zhao Y, He D, et al. Transcriptional regulation of lysophosphatidic acid-

induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial

epithelial cells. Biochem J. 2006;393(Pt 3):657-668.

304. Rivera-Lopez CM, Tucker AL, Lynch KR. Lysophosphatidic acid (LPA) and

angiogenesis. Angiogenesis. 2008;11(3):301-310.

305. Yang J, Nie Y, Wang F, et al. Reciprocal regulation of miR-23a and lysophosphatidic

acid receptor signaling in cardiomyocyte hypertrophy. Biochim Biophys Acta.

2013;1831(8):1386-1394.

306. Yang J, Xu J, Han X, et al. Lysophosphatidic Acid Is Associated With Cardiac

Dysfunction and Hypertrophy by Suppressing Autophagy via the LPA3/AKT/mTOR

Pathway. Front Physiol. 2018;9:1315.

307. Chen J, Chen Y, Zhu W, et al. Specific LPA receptor subtype mediation of LPA-

induced hypertrophy of cardiac myocytes and involvement of Akt and NFkappaB signal

pathways. J Cell Biochem. 2008;103(6):1718-1731.

308. Chan LC, Peters W, Xu Y, Chun J, Farese RV, Jr., Cases S. LPA3 receptor mediates

chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA).

J Leukoc Biol. 2007;82(5):1193-1200.

140

309. Chang CL, Hsu HY, Lin HY, Chiang W, Lee H. Lysophosphatidic acid-induced

oxidized low-density lipoprotein uptake is class A scavenger receptor-dependent in

macrophages. Prostaglandins Other Lipid Mediat. 2008;87(1-4):20-25.

310. Chen L, Zhang J, Deng X, et al. Lysophosphatidic acid directly induces macrophage-

derived foam cell formation by blocking the expression of SRBI. Biochem Biophys Res

Commun. 2017;491(3):587-594.

311. Chen L, Zhang J, Yang X, Liu Y, Deng X, Yu C. Lysophosphatidic acid decreased

macrophage foam cell migration correlated with downregulation of fucosyltransferase 8 via

HNF1alpha. Atherosclerosis. 2019;290:19-30.

312. Wei Q, St Clair JB, Fu T, Stratton P, Nieman LK. Reduced expression of biomarkers

associated with the implantation window in women with endometriosis. Fertil Steril.

2009;91(5):1686-1691.

313. Achache H, Tsafrir A, Prus D, Reich R, Revel A. Defective endometrial prostaglandin

synthesis identified in patients with repeated implantation failure undergoing in vitro

fertilization. Fertil Steril. 2010;94(4):1271-1278.

314. Beltrame JS, Sordelli MS, Canumil VA, Franchi AM, Ribeiro ML. Lysophosphatidic

acid-triggered pathways promote the acquisition of trophoblast endovascular phenotype in

vitro. J Cell Biochem. 2018;119(1):758-772.

315. Inoue S, Tanabe E, Shibata A, et al. Ethionine regulates cell motile activity through

LPA receptor-3 in liver epithelial WB-F344 cells. Mol Cell Biochem. 2013;383(1-2):173-

177.

316. Sordelli MS, Beltrame JS, Cella M, et al. Interaction between lysophosphatidic acid,

prostaglandins and the endocannabinoid system during the window of implantation in the rat

uterus. PLoS One. 2012;7(9):e46059.

317. Shah BH, Catt KJ. Roles of LPA3 and COX-2 in implantation. Trends Endocrinol

Metab. 2005;16(9):397-399.

318. Chen Q, Zhang Y, Peng H, et al. Transient {beta}2-adrenoceptor activation confers

pregnancy loss by disrupting embryo spacing at implantation. J Biol Chem.

2011;286(6):4349-4356.

319. Markiewicz W, Kaminska K, Bogacki M, Maslanka T, Jaroszewski J. Participation

of analogues of lysophosphatidic acid (LPA): oleoyl-sn-glycero-3-phosphate (L-alpha-LPA)

and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT) in uterine smooth muscle

contractility of the pregnant pigs. Pol J Vet Sci. 2012;15(4):635-643.

320. Si J, Su Y, Wang Y, Yan YL, Tang YL. Expressions of lysophosphatidic acid

receptors in the development of human ovarian carcinoma. Int J Clin Exp Med.

2015;8(10):17880-17890.

321. Okabe K, Hayashi M, Kato K, et al. Lysophosphatidic acid receptor-3 increases

tumorigenicity and aggressiveness of rat hepatoma RH7777 cells. Mol Carcinog.

2013;52(4):247-254.

322. Nakamoto T, Yasuda K, Yasuhara M, et al. Expression of the endothelial cell

differentiation gene 7 (EDG-7), a lysophosphatidic acid receptor, in ovarian tumor. J Obstet

Gynaecol Res. 2005;31(4):344-351.

323. Sun K, Cai H, Duan X, et al. Aberrant expression and potential therapeutic target of

lysophosphatidic acid receptor 3 in triple-negative breast cancers. Clin Exp Med.

2015;15(3):371-380.

141

324. Fukui R, Kato K, Okabe K, et al. Enhancement of Drug Resistance by

Lysophosphatidic Acid Receptor-3 in Mouse Mammary Tumor FM3A Cells. J Toxicol

Pathol. 2012;25(3):225-228.

325. Lin CE, Chen SU, Lin CC, et al. Lysophosphatidic acid enhances vascular endothelial

growth factor-C expression in human prostate cancer PC-3 cells. PLoS One.

2012;7(7):e41096.

326. Minami K, Ueda N, Ishimoto K, et al. Roles of endothelial cells in the regulation of

cell motility via lysophosphatidic acid receptor-2 (LPA2) and LPA3 in osteosarcoma cells.

Exp Mol Pathol. 2021;118:104596.

327. Tanabe E, Kitayoshi M, Hirane M, et al. Downregulation of activation factors of

endothelia and fibroblasts via lysophosphatidic acid signaling in a mouse lung cancer LL/2

cell line. J Recept Signal Transduct Res. 2013;33(5):286-290.

328. Fukui R, Tanabe E, Kitayoshi M, Yoshikawa K, Fukushima N, Tsujiuchi T. Negative

regulation of cell motile and invasive activities by lysophosphatidic acid receptor-3 in colon

cancer HCT116 cells. Tumour Biol. 2012;33(6):1899-1905.

329. Lee CW, Rivera R, Dubin AE, Chun J. LPA(4)/GPR23 is a lysophosphatidic acid

(LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated

Rho activation. J Biol Chem. 2007;282(7):4310-4317.

330. Lee Z, Cheng CT, Zhang H, et al. Role of LPA4/p2y9/GPR23 in negative regulation

of cell motility. Mol Biol Cell. 2008;19(12):5435-5445.

331. Takahashi K, Fukushima K, Onishi Y, et al. Lysophosphatidic acid (LPA) signaling

via LPA4 and LPA6 negatively regulates cell motile activities of colon cancer cells. Biochem

Biophys Res Commun. 2017;483(1):652-657.

332. Ishii S, Hirane M, Fukushima K, Tomimatsu A, Fukushima N, Tsujiuchi T. Diverse

effects of LPA4, LPA5 and LPA6 on the activation of tumor progression in pancreatic cancer

cells. Biochem Biophys Res Commun. 2015;461(1):59-64.

333. Liu YB, Kharode Y, Bodine PV, Yaworsky PJ, Robinson JA, Billiard J. LPA induces

osteoblast differentiation through interplay of two receptors: LPA1 and LPA4. J Cell

Biochem. 2010;109(4):794-800.

334. Salles JP, Laurencin-Dalicieux S, Conte-Auriol F, Briand-Mesange F, Gennero I.

Bone defects in LPA receptor genetically modified mice. Biochim Biophys Acta.

2013;1831(1):93-98.

335. Takara K, Eino D, Ando K, et al. Lysophosphatidic Acid Receptor 4 Activation

Augments Drug Delivery in Tumors by Tightening Endothelial Cell-Cell Contact. Cell Rep.

2017;20(9):2072-2086.

336. Hata E, Sasaki N, Takeda A, et al. Lysophosphatidic acid receptors LPA4 and LPA6

differentially promote lymphocyte transmigration across high endothelial venules in lymph

nodes. Int Immunol. 2016;28(6):283-292.

337. Sumida H, Noguchi K, Kihara Y, et al. LPA4 regulates blood and lymphatic vessel

formation during mouse embryogenesis. Blood. 2010;116(23):5060-5070.

338. Yukiura H, Hama K, Nakanaga K, et al. Autotaxin regulates vascular development

via multiple lysophosphatidic acid (LPA) receptors in zebrafish. J Biol Chem.

2011;286(51):43972-43983.

339. Yasuda D, Kobayashi D, Akahoshi N, et al. Lysophosphatidic acid-induced

YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4.

J Clin Invest. 2019;129(10):4332-4349.

142

340. Rhee HJ, Nam JS, Sun Y, et al. Lysophosphatidic acid stimulates cAMP accumulation

and cAMP response element-binding protein phosphorylation in immortalized hippocampal

progenitor cells. Neuroreport. 2006;17(5):523-526.

341. Eino D, Tsukada Y, Naito H, et al. LPA4-Mediated Vascular Network Formation

Increases the Efficacy of Anti-PD-1 Therapy against Brain Tumors. Cancer Res.

2018;78(23):6607-6620.

342. Yanagida K, Igarashi H, Yasuda D, et al. The Galpha12/13-coupled receptor LPA4

limits proper adipose tissue expansion and remodeling in diet-induced obesity. JCI Insight.

2018;3(24).

343. Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM. Autotaxin

promotes cancer invasion via the lysophosphatidic acid receptor 4: participation of the cyclic

AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Res.

2010;70(11):4634-4643.

344. Kotarsky K, Boketoft A, Bristulf J, et al. Lysophosphatidic acid binds to and activates

GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J

Pharmacol Exp Ther. 2006;318(2):619-628.

345. Amisten S, Braun OO, Bengtsson A, Erlinge D. Gene expression profiling for the

identification of G-protein coupled receptors in human platelets. Thromb Res.

2008;122(1):47-57.

346. Sapkota A, Lee CH, Park SJ, Choi JW. Lysophosphatidic Acid Receptor 5 Plays a

Pathogenic Role in Brain Damage after Focal Cerebral Ischemia by Modulating

Neuroinflammatory Responses. Cells. 2020;9(6).

347. Sapkota A, Park SJ, Choi JW. Receptor for Advanced Glycation End Products Is

Involved in LPA5-Mediated Brain Damage after a Transient Ischemic Stroke. Life (Basel).

2021;11(2).

348. Callaerts-Vegh Z, Leo S, Vermaercke B, Meert T, D'Hooge R. LPA5 receptor plays

a role in pain sensitivity, emotional exploration and reversal learning. Genes Brain Behav.

2012;11(8):1009-1019.

349. Hu J, Oda SK, Shotts K, et al. Lysophosphatidic acid receptor 5 inhibits B cell antigen

receptor signaling and antibody response. J Immunol. 2014;193(1):85-95.

350. Mathew D, Kremer KN, Strauch P, Tigyi G, Pelanda R, Torres RM. LPA5 Is an

Inhibitory Receptor That Suppresses CD8 T-Cell Cytotoxic Function via Disruption of Early

TCR Signaling. Front Immunol. 2019;10:1159.

351. Ciesielska A, Hromada-Judycka A, Ziemlinska E, Kwiatkowska K. Lysophosphatidic

acid up-regulates IL-10 production to inhibit TNF-alpha synthesis in Mvarphis stimulated

with LPS. J Leukoc Biol. 2019;106(6):1285-1301.

352. Plastira I, Joshi L, Bernhart E, et al. Small-Molecule Lysophosphatidic Acid Receptor

5 (LPAR5) Antagonists: Versatile Pharmacological Tools to Regulate Inflammatory

Signaling in BV-2 Microglia Cells. Front Cell Neurosci. 2019;13:531.

353. Minami K, Ueda N, Maeda H, Ishimoto K, Otagaki S, Tsujiuchi T. Modulation of

chemoresistance by lysophosphatidic acid (LPA) signaling through LPA5 in melanoma cells

treated with anticancer drugs. Biochem Biophys Res Commun. 2019;517(2):359-363.

354. Williams JR, Khandoga AL, Goyal P, et al. Unique ligand selectivity of the

GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J Biol

Chem. 2009;284(25):17304-17319.

143

355. Oh DY, Yoon JM, Moon MJ, et al. Identification of farnesyl pyrophosphate and N-

arachidonylglycine as endogenous ligands for GPR92. J Biol Chem. 2008;283(30):21054-

21064.

356. Cha B, Chen T, Sarker R, et al. Lysophosphatidic acid stimulation of NHE3

exocytosis in polarized epithelial cells occurs with release from NHERF2 via ERK-PLC-

PKCdelta signaling. Am J Physiol Cell Physiol. 2014;307(1):C55-65.

357. Yoo BK, He P, Lee SJ, Yun CC. Lysophosphatidic acid 5 receptor induces activation

of Na(+)/H(+) exchanger 3 via apical epidermal growth factor receptor in intestinal epithelial

cells. Am J Physiol Cell Physiol. 2011;301(5):C1008-1016.

358. Kittaka H, Uchida K, Fukuta N, Tominaga M. Lysophosphatidic acid-induced itch is

mediated by signalling of LPA5 receptor, phospholipase D and TRPA1/TRPV1. J Physiol.

2017;595(8):2681-2698.

359. Jenkin KA, He P, Yun CC. Expression of lysophosphatidic acid receptor 5 is

necessary for the regulation of intestinal Na(+)/H(+) exchanger 3 by lysophosphatidic acid

in vivo. Am J Physiol Gastrointest Liver Physiol. 2018;315(4):G433-G442.

360. Gaire BP, Lee CH, Kim W, Sapkota A, Lee DY, Choi JW. Lysophosphatidic Acid

Receptor 5 Contributes to Imiquimod-Induced Psoriasis-Like Lesions through NLRP3

Inflammasome Activation in Macrophages. Cells. 2020;9(8).

361. Plastira I, Bernhart E, Goeritzer M, et al. 1-Oleyl-lysophosphatidic acid (LPA)

promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype.

J Neuroinflammation. 2016;13(1):205.

362. Lundequist A, Boyce JA. LPA5 is abundantly expressed by human mast cells and

important for lysophosphatidic acid induced MIP-1beta release. PLoS One.

2011;6(3):e18192.

363. Khandoga AL, Fujiwara Y, Goyal P, et al. Lysophosphatidic acid-induced platelet

shape change revealed through LPA(1-5) receptor-selective probes and albumin. Platelets.

2008;19(6):415-427.

364. Minami K, Ueda N, Ishimoto K, Tsujiuchi T. LPA5-mediated signaling induced by

endothelial cells and anticancer drug regulates cellular functions of osteosarcoma cells. Exp

Cell Res. 2020;388(1):111813.

365. Jongsma M, Matas-Rico E, Rzadkowski A, Jalink K, Moolenaar WH. LPA is a

chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor.

PLoS One. 2011;6(12):e29260.

366. Dong Y, Hirane M, Araki M, Fukushima N, Tsujiuchi T. Lysophosphatidic acid

receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells. Biochem

Biophys Res Commun. 2014;446(2):585-589.

367. Dong Y, Hirane M, Araki M, Fukushima N, Honoki K, Tsujiuchi T. Lysophosphatidic

acid receptor-5 negatively regulates cell motile and invasive activities of human sarcoma cell

lines. Mol Cell Biochem. 2014;393(1-2):17-22.

368. Araki M, Kitayoshi M, Dong Y, et al. Inhibitory effects of lysophosphatidic acid

receptor-5 on cellular functions of sarcoma cells. Growth Factors. 2014;32(3-4):117-122.

369. Lee SC, Fujiwara Y, Tigyi GJ. Uncovering unique roles of LPA receptors in the tumor

microenvironment. Receptors Clin Investig. 2015;2(1).

370. Lee SC, Fujiwara Y, Liu J, et al. Autotaxin and LPA1 and LPA5 receptors exert

disparate functions in tumor cells versus the host tissue microenvironment in melanoma

invasion and metastasis. Mol Cancer Res. 2015;13(1):174-185.

144

371. Hidaka M, Nishihara M, Tokumura A. Three lysophosphatidic acids with a distinct

long chain moiety differently affect cell differentiation of human colon epithelial cells to

goblet cells. Life Sci. 2018;197:73-79.

372. Zhao WJ, Zhu LL, Yang WQ, et al. LPAR5 promotes thyroid carcinoma cell

proliferation and migration by activating class IA PI3K catalytic subunit p110beta. Cancer

Sci. 2021;112(4):1624-1632.

373. Takahashi K, Fukushima K, Otagaki S, et al. Effects of LPA1 and LPA6 on the

regulation of colony formation activity in colon cancer cells treated with anticancer drugs. J

Recept Signal Transduct Res. 2018;38(1):71-75.

374. Ren Y, Guo L, Tang X, et al. Comparing the differential effects of LPA on the barrier

function of human pulmonary endothelial cells. Microvasc Res. 2013;85:59-67.

375. Masago K, Kihara Y, Yanagida K, et al. Lysophosphatidic acid receptor, LPA6,

regulates endothelial blood-brain barrier function: Implication for hepatic encephalopathy.

Biochem Biophys Res Commun. 2018;501(4):1048-1054.

376. Yanagida K, Masago K, Nakanishi H, et al. Identification and characterization of a

novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem. 2009;284(26):17731-17741.

377. Lee M, Choi S, Hallden G, Yo SJ, Schichnes D, Aponte GW. P2Y5 is a G(alpha)i,

G(alpha)12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces

intestinal cell adhesion. Am J Physiol Gastrointest Liver Physiol. 2009;297(4):G641-654.

378. Yukiura H, Kano K, Kise R, Inoue A, Aoki J. LPP3 localizes LPA6 signalling to non-

contact sites in endothelial cells. J Cell Sci. 2015;128(21):3871-3877.

379. Hayashi R, Inoue A, Suga Y, Aoki J, Shimomura Y. Analysis of unique mutations in

the LPAR6 gene identified in a Japanese family with autosomal recessive woolly

hair/hypotrichosis: Establishment of a useful assay system for LPA6. J Dermatol Sci.

2015;78(3):197-205.

380. Okazoe H, Zhang X, Liu D, et al. Expression and role of GPR87 in urothelial

carcinoma of the bladder. Int J Mol Sci. 2013;14(6):12367-12379.

381. Wang L, Zhou W, Zhong Y, et al. Overexpression of G protein-coupled receptor

GPR87 promotes pancreatic cancer aggressiveness and activates NF-kappaB signaling

pathway. Mol Cancer. 2017;16(1):61.

382. Glatt S, Halbauer D, Heindl S, et al. hGPR87 contributes to viability of human tumor

cells. Int J Cancer. 2008;122(9):2008-2016.

383. Sanchez JF, Krause JE, Cortright DN. The distribution and regulation of vanilloid

receptor VR1 and VR1 5' splice variant RNA expression in rat. Neuroscience.

2001;107(3):373-381.

384. Toth A, Czikora A, Pasztor ET, et al. Vanilloid receptor-1 (TRPV1) expression and

function in the vasculature of the rat. J Histochem Cytochem. 2014;62(2):129-144.

385. Morales-Lazaro SL, Rosenbaum T. A painful link between the TRPV1 channel and

lysophosphatidic acid. Life Sci. 2015;125:15-24.

386. Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P. Inflammation, Cancer

and Immunity-Implication of TRPV1 Channel. Front Oncol. 2019;9:1087.

387. Morales-Lazaro SL, Serrano-Flores B, Llorente I, et al. Structural determinants of the

transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs. J Biol

Chem. 2014;289(35):24079-24090.

388. Tigyi G. Lipids: LPA activates TRPV1--and it hurts. Nat Chem Biol. 2011;8(1):22-

23.

145

389. Phan TX, Ton HT, Gulyas H, et al. TRPV1 expressed throughout the arterial

circulation regulates vasoconstriction and blood pressure. J Physiol. 2020;598(24):5639-

5659.

390. Hernandez-Araiza I, Morales-Lazaro SL, Canul-Sanchez JA, Islas LD, Rosenbaum

T. Role of lysophosphatidic acid in ion channel function and disease. J Neurophysiol.

2018;120(3):1198-1211.

391. Marx N, Duez H, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors

and atherogenesis: regulators of gene expression in vascular cells. Circ Res.

2004;94(9):1168-1178.

392. Sharma AM, Staels B. Review: Peroxisome proliferator-activated receptor gamma

and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose

metabolism. J Clin Endocrinol Metab. 2007;92(2):386-395.

393. Cheng Y, Makarova N, Tsukahara R, et al. Lysophosphatidic acid-induced arterial

wall remodeling: requirement of PPARgamma but not LPA1 or LPA2 GPCR. Cell Signal.

2009;21(12):1874-1884.

394. Gustin C, Van Steenbrugge M, Raes M. LPA modulates monocyte migration directly

and via LPA-stimulated endothelial cells. Am J Physiol Cell Physiol. 2008;295(4):C905-914.

395. Ray R, Rai V. Lysophosphatidic acid converts monocytes into macrophages in both

mice and humans. Blood. 2017;129(9):1177-1183.

396. Bagga S, Price KS, Lin DA, Friend DS, Austen KF, Boyce JA. Lysophosphatidic acid

accelerates the development of human mast cells. Blood. 2004;104(13):4080-4087.

397. Rodway HA, Hunt AN, Kohler JA, Postle AD, Lillycrop KA. Lysophosphatidic acid

attenuates the cytotoxic effects and degree of peroxisome proliferator-activated receptor

gamma activation induced by 15-deoxyDelta12,14-prostaglandin J2 in neuroblastoma cells.

Biochem J. 2004;382(Pt 1):83-91.

398. Murch O, Collin M, Thiemermann C. Lysophosphatidic acid reduces the organ injury

caused by endotoxemia-a role for G-protein-coupled receptors and peroxisome proliferator-

activated receptor-gamma. Shock. 2007;27(1):48-54.

399. Tsukahara T, Yamagishi S, Matsuda Y, Haniu H. Lysophosphatidic acid signaling

regulates the KLF9-PPARgamma axis in human induced pluripotent stem cell-derived

neurons. Biochem Biophys Res Commun. 2017;491(1):223-227.

400. Tomsig JL, Snyder AH, Berdyshev EV, et al. Lipid phosphate phosphohydrolase type

1 (LPP1) degrades extracellular lysophosphatidic acid in vivo. Biochem J. 2009;419(3):611-

618.

401. Roberts R, Sciorra VA, Morris AJ. Human type 2 phosphatidic acid

phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface

activity of the 2a isoform. J Biol Chem. 1998;273(34):22059-22067.

402. van der Bend RL, de Widt J, van Corven EJ, Moolenaar WH, van Blitterswijk WJ.

Metabolic conversion of the biologically active phospholipid, lysophosphatidic acid, in

fibroblasts. Biochim Biophys Acta. 1992;1125(1):110-112.

403. Li J, Dong Y, Lu X, et al. Crystal structures and biochemical studies of human

lysophosphatidic acid phosphatase type 6. Protein Cell. 2013;4(7):548-561.

404. Hiroyama M, Takenawa T. Isolation of a cDNA encoding human lysophosphatidic

acid phosphatase that is involved in the regulation of mitochondrial lipid biosynthesis. J Biol

Chem. 1999;274(41):29172-29180.

146

405. Tanaka M, Kishi Y, Takanezawa Y, Kakehi Y, Aoki J, Arai H. Prostatic acid

phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett. 2004;571(1-

3):197-204.

406. Zhang QX, Pilquil CS, Dewald J, Berthiaume LG, Brindley DN. Identification of

structurally important domains of lipid phosphate phosphatase-1: implications for its sites of

action. Biochem J. 2000;345 Pt 2:181-184.

407. Long JS, Pyne NJ, Pyne S. Lipid phosphate phosphatases form homo- and hetero-

oligomers: catalytic competency, subcellular distribution and function. Biochem J.

2008;411(2):371-377.

408. Ishikawa T, Kai M, Wada I, Kanoh H. Cell surface activities of the human type 2b

phosphatidic acid phosphatase. J Biochem. 2000;127(4):645-651.

409. Alderton F, Darroch P, Sambi B, et al. G-protein-coupled receptor stimulation of the

p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate

phosphatases 1, 1a, and 2 in human embryonic kidney 293 cells. J Biol Chem.

2001;276(16):13452-13460.

410. Jia YJ, Kai M, Wada I, Sakane F, Kanoh H. Differential localization of lipid

phosphate phosphatases 1 and 3 to cell surface subdomains in polarized MDCK cells. FEBS

Lett. 2003;552(2-3):240-246.

411. Kai M, Sakane F, Jia YJ, Imai S, Yasuda S, Kanoh H. Lipid phosphate phosphatases

1 and 3 are localized in distinct lipid rafts. J Biochem. 2006;140(5):677-686.

412. Barila D, Plateroti M, Nobili F, et al. The Dri 42 gene, whose expression is up-

regulated during epithelial differentiation, encodes a novel endoplasmic reticulum resident

transmembrane protein. J Biol Chem. 1996;271(47):29928-29936.

413. Long J, Darroch P, Wan KF, et al. Regulation of cell survival by lipid phosphate

phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-

phosphate pools. Biochem J. 2005;391(Pt 1):25-32.

414. Kai M, Wada I, Imai S, Sakane F, Kanoh H. Cloning and characterization of two

human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem.

1997;272(39):24572-24578.

415. Zhang N, Sundberg JP, Gridley T. Mice mutant for Ppap2c, a homolog of the germ

cell migration regulator wunen, are viable and fertile. Genesis. 2000;27(4):137-140.

416. Escalante-Alcalde D, Hernandez L, Le Stunff H, et al. The lipid phosphatase LPP3

regulates extra-embryonic vasculogenesis and axis patterning. Development.

2003;130(19):4623-4637.

417. Yue J, Yokoyama K, Balazs L, et al. Mice with transgenic overexpression of lipid

phosphate phosphatase-1 display multiple organotypic deficits without alteration in

circulating lysophosphatidate level. Cell Signal. 2004;16(3):385-399.

418. Morris KE, Schang LM, Brindley DN. Lipid phosphate phosphatase-2 activity

regulates S-phase entry of the cell cycle in Rat2 fibroblasts. J Biol Chem. 2006;281(14):9297-

9306.

419. Tang X, Benesch MG, Dewald J, et al. Lipid phosphate phosphatase-1 expression in

cancer cells attenuates tumor growth and metastasis in mice. J Lipid Res. 2014;55(11):2389-

2400.

420. Tanyi JL, Morris AJ, Wolf JK, et al. The human lipid phosphate phosphatase-3

decreases the growth, survival, and tumorigenesis of ovarian cancer cells: validation of the

lysophosphatidic acid signaling cascade as a target for therapy in ovarian cancer. Cancer Res.

2003;63(5):1073-1082.

147

421. Panchatcharam M, Salous AK, Brandon J, et al. Mice with targeted inactivation of

ppap2b in endothelial and hematopoietic cells display enhanced vascular inflammation and

permeability. Arterioscler Thromb Vasc Biol. 2014;34(4):837-845.

422. Panchatcharam M, Miriyala S, Salous A, et al. Lipid phosphate phosphatase 3

negatively regulates smooth muscle cell phenotypic modulation to limit intimal hyperplasia.

Arterioscler Thromb Vasc Biol. 2013;33(1):52-59.

423. Hooks SB, Santos WL, Im DS, Heise CE, Macdonald TL, Lynch KR.

Lysophosphatidic acid-induced mitogenesis is regulated by lipid phosphate phosphatases and

is Edg-receptor independent. J Biol Chem. 2001;276(7):4611-4621.

424. Pilquil C, Dewald J, Cherney A, et al. Lipid phosphate phosphatase-1 regulates

lysophosphatidate-induced fibroblast migration by controlling phospholipase D2-dependent

phosphatidate generation. J Biol Chem. 2006;281(50):38418-38429.

425. Tsai MH, Yu CL, Wei FS, Stacey DW. The effect of GTPase activating protein upon

ras is inhibited by mitogenically responsive lipids. Science. 1989;243(4890):522-526.

426. Rizzo MA, Shome K, Watkins SC, Romero G. The recruitment of Raf-1 to

membranes is mediated by direct interaction with phosphatidic acid and is independent of

association with Ras. J Biol Chem. 2000;275(31):23911-23918.

427. Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of

extracellular vesicles 2018 (MISEV2018): a position statement of the International Society

for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles.

2018;7(1):1535750.

428. Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and

archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun.

2012;80(6):1948-1957.

429. Marcoux G, Duchez AC, Cloutier N, Provost P, Nigrovic PA, Boilard E. Revealing

the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci

Rep. 2016;6:35928.

430. Tessandier N, Melki I, Cloutier N, et al. Platelets Disseminate Extracellular Vesicles

in Lymph in Rheumatoid Arthritis. Arterioscler Thromb Vasc Biol. 2020;40(4):929-942.

431. Foers AD, Chatfield S, Dagley LF, et al. Enrichment of extracellular vesicles from

human synovial fluid using size exclusion chromatography. J Extracell Vesicles.

2018;7(1):1490145.

432. Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological properties of extracellular

vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

433. Tetta C, Ghigo E, Silengo L, Deregibus MC, Camussi G. Extracellular vesicles as an

emerging mechanism of cell-to-cell communication. Endocrine. 2013;44(1):11-19.

434. Slomka A, Urban SK, Lukacs-Kornek V, Zekanowska E, Kornek M. Large

Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol.

2018;9:2723.

435. Tian J, Casella G, Zhang Y, Rostami A, Li X. Potential roles of extracellular vesicles

in the pathophysiology, diagnosis, and treatment of autoimmune diseases. Int J Biol Sci.

2020;16(4):620-632.

436. Urbanelli L, Buratta S, Tancini B, et al. The Role of Extracellular Vesicles in Viral

Infection and Transmission. Vaccines (Basel). 2019;7(3).

437. de Jong OG, Kooijmans SAA, Murphy DE, et al. Drug Delivery with Extracellular

Vesicles: From Imagination to Innovation. Acc Chem Res. 2019;52(7):1761-1770.

148

438. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions

of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255-289.

439. Aatonen M, Gronholm M, Siljander PR. Platelet-derived microvesicles: multitalented

participants in intercellular communication. Semin Thromb Hemost. 2012;38(1):102-113.

440. Koshiar RL, Somajo S, Norstrom E, Dahlback B. Erythrocyte-derived microparticles

supporting activated protein C-mediated regulation of blood coagulation. PLoS One.

2014;9(8):e104200.

441. Lipets EN, Antonova OA, Shustova ON, Losenkova KV, Mazurov AV,

Ataullakhanov FI. Use of Thrombodynamics for revealing the participation of platelet,

erythrocyte, endothelial, and monocyte microparticles in coagulation activation and

propagation. PLoS One. 2020;15(5):e0227932.

442. Boudreau LH, Duchez AC, Cloutier N, et al. Platelets release mitochondria serving

as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation.

Blood. 2014;124(14):2173-2183.

443. Marcoux G, Laroche A, Hasse S, et al. Platelet EVs contain an active proteasome

involved in protein processing for antigen presentation via MHC-I molecules. Blood. 2021.

444. Holmgren L, Szeles A, Rajnavolgyi E, et al. Horizontal transfer of DNA by the uptake

of apoptotic bodies. Blood. 1999;93(11):3956-3963.

445. Singh P, Goel H, Husain M, et al. Tubular cell HIV-entry through apoptosed CD4 T

cells: a novel pathway. Virology. 2012;434(1):68-77.

446. Turiak L, Misjak P, Szabo TG, et al. Proteomic characterization of thymocyte-derived

microvesicles and apoptotic bodies in BALB/c mice. J Proteomics. 2011;74(10):2025-2033.

447. Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis

via collagen-dependent microparticle production. Science. 2010;327(5965):580-583.

448. Arraud N, Linares R, Tan S, et al. Extracellular vesicles from blood plasma:

determination of their morphology, size, phenotype and concentration. J Thromb Haemost.

2014;12(5):614-627.

449. Gyorgy B, Modos K, Pallinger E, et al. Detection and isolation of cell-derived

microparticles are compromised by protein complexes resulting from shared biophysical

parameters. Blood. 2011;117(4):e39-48.

450. Baroni M, Pizzirani C, Pinotti M, et al. Stimulation of P2 (P2X7) receptors in human

dendritic cells induces the release of tissue factor-bearing microparticles. FASEB J.

2007;21(8):1926-1933.

451. Beer KB, Rivas-Castillo J, Kuhn K, et al. Extracellular vesicle budding is inhibited

by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry. Proc

Natl Acad Sci U S A. 2018;115(6):E1127-E1136.

452. Fujii T, Sakata A, Nishimura S, Eto K, Nagata S. TMEM16F is required for

phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc

Natl Acad Sci U S A. 2015;112(41):12800-12805.

453. Linares R, Tan S, Gounou C, Brisson AR. Imaging and Quantification of

Extracellular Vesicles by Transmission Electron Microscopy. Methods Mol Biol.

2017;1545:43-54.

454. Muralidharan-Chari V, Clancy J, Plou C, et al. ARF6-regulated shedding of tumor

cell-derived plasma membrane microvesicles. Curr Biol. 2009;19(22):1875-1885.

455. Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ. Exosomes and HIV

Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol.

2006;172(6):923-935.

149

456. Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ. Higher-order oligomerization

targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 2007;5(6):e158.

457. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-

containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment

of TSG101 protein. Proc Natl Acad Sci U S A. 2012;109(11):4146-4151.

458. Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34(19):2398-2407.

459. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular

vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-228.

460. Gyorgy B, Szabo TG, Pasztoi M, et al. Membrane vesicles, current state-of-the-art:

emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667-2688.

461. Thery C, Boussac M, Veron P, et al. Proteomic analysis of dendritic cell-derived

exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol.

2001;166(12):7309-7318.

462. Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles

into multivesicular endosomes. Science. 2008;319(5867):1244-1247.

463. Nazarenko I, Rana S, Baumann A, et al. Cell surface tetraspanin Tspan8 contributes

to molecular pathways of exosome-induced endothelial cell activation. Cancer Res.

2010;70(4):1668-1678.

464. Zhu H, Guariglia S, Yu RY, et al. Mutation of SIMPLE in Charcot-Marie-Tooth 1C

alters production of exosomes. Mol Biol Cell. 2013;24(11):1619-1637, S1611-1613.

465. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol.

2009;10(8):513-525.

466. Zubairova LD, Nabiullina RM, Nagaswami C, et al. Circulating Microparticles Alter

Formation, Structure, and Properties of Fibrin Clots. Sci Rep. 2015;5:17611.

467. Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have

50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb

Haemost. 2007;97(3):425-434.

468. Tans G, Rosing J, Thomassen MC, Heeb MJ, Zwaal RF, Griffin JH. Comparison of

anticoagulant and procoagulant activities of stimulated platelets and platelet-derived

microparticles. Blood. 1991;77(12):2641-2648.

469. Berckmans RJ, Nieuwland R, Boing AN, Romijn FP, Hack CE, Sturk A. Cell-derived

microparticles circulate in healthy humans and support low grade thrombin generation.

Thromb Haemost. 2001;85(4):639-646.

470. Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived

extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell

Res Ther. 2019;10(1):158.

471. Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for

definition of extracellular vesicles and their functions: a position statement from the

International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.

472. Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection,

isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2.

473. Wang W, Luo J, Wang S. Recent Progress in Isolation and Detection of Extracellular

Vesicles for Cancer Diagnostics. Adv Healthc Mater. 2018;7(20):e1800484.

474. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated

transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

Nat Cell Biol. 2007;9(6):654-659.

150

475. Ueda K, Ishikawa N, Tatsuguchi A, Saichi N, Fujii R, Nakagawa H. Antibody-

coupled monolithic silica microtips for highthroughput molecular profiling of circulating

exosomes. Sci Rep. 2014;4:6232.

476. Li J, He X, Deng Y, Yang C. An Update on Isolation Methods for Proteomic Studies

of Extracellular Vesicles in Biofluids. Molecules. 2019;24(19).

477. Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and

characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles.

2016;5:32945.

478. Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The

Methods of Choice for Extracellular Vesicles (EVs) Characterization. Int J Mol Sci.

2017;18(6).

479. Di Vizio D, Morello M, Dudley AC, et al. Large oncosomes in human prostate cancer

tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181(5):1573-

1584.

480. Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular

vesicles using Nanoparticle Tracking Analysis. Nanomedicine. 2011;7(6):780-788.

481. Benameur T, Osman A, Parray A, Ait Hssain A, Munusamy S, Agouni A. Molecular

Mechanisms Underpinning Microparticle-Mediated Cellular Injury in Cardiovascular

Complications Associated with Diabetes. Oxid Med Cell Longev. 2019;2019:6475187.

482. Flaumenhaft R, Dilks JR, Richardson J, et al. Megakaryocyte-derived microparticles:

direct visualization and distinction from platelet-derived microparticles. Blood.

2009;113(5):1112-1121.

483. Patel SR, Hartwig JH, Italiano JE, Jr. The biogenesis of platelets from megakaryocyte

proplatelets. J Clin Invest. 2005;115(12):3348-3354.

484. Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure. Handb

Exp Pharmacol. 2012(210):3-22.

485. Cramer EM, Norol F, Guichard J, et al. Ultrastructure of platelet formation by human

megakaryocytes cultured with the Mpl ligand. Blood. 1997;89(7):2336-2346.

486. Schulze H, Shivdasani RA. Molecular mechanisms of megakaryocyte differentiation.

Semin Thromb Hemost. 2004;30(4):389-398.

487. Sabri S, Foudi A, Boukour S, et al. Deficiency in the Wiskott-Aldrich protein induces

premature proplatelet formation and platelet production in the bone marrow compartment.

Blood. 2006;108(1):134-140.

488. Jiang J, Woulfe DS, Papoutsakis ET. Shear enhances thrombopoiesis and formation

of microparticles that induce megakaryocytic differentiation of stem cells. Blood.

2014;124(13):2094-2103.

489. Richardson JL, Shivdasani RA, Boers C, Hartwig JH, Italiano JE, Jr. Mechanisms of

organelle transport and capture along proplatelets during platelet production. Blood.

2005;106(13):4066-4075.

490. Lopez-Vilchez I, Diaz-Ricart M, Galan AM, et al. Internalization of Tissue Factor-

Rich Microvesicles by Platelets Occurs Independently of GPIIb-IIIa, and Involves CD36

Receptor, Serotonin Transporter and Cytoskeletal Assembly. J Cell Biochem.

2016;117(2):448-457.

491. Beikmann BS, Tomlinson ID, Rosenthal SJ, Andrews AM. Serotonin uptake is

largely mediated by platelets versus lymphocytes in peripheral blood cells. ACS Chem

Neurosci. 2013;4(1):161-170.

151

492. Cloutier N, Allaeys I, Marcoux G, et al. Platelets release pathogenic serotonin and

return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci U S

A. 2018;115(7):E1550-E1559.

493. Dubois C, Panicot-Dubois L, Merrill-Skoloff G, Furie B, Furie BC. Glycoprotein VI-

dependent and -independent pathways of thrombus formation in vivo. Blood.

2006;107(10):3902-3906.

494. Massberg S, Gawaz M, Gruner S, et al. A crucial role of glycoprotein VI for platelet

recruitment to the injured arterial wall in vivo. J Exp Med. 2003;197(1):41-49.

495. Dubois C, Panicot-Dubois L, Gainor JF, Furie BC, Furie B. Thrombin-initiated

platelet activation in vivo is vWF independent during thrombus formation in a laser injury

model. J Clin Invest. 2007;117(4):953-960.

496. Klatt C, Kruger I, Zey S, et al. Platelet-RBC interaction mediated by FasL/FasR

induces procoagulant activity important for thrombosis. J Clin Invest. 2018;128(9):3906-

3925.

497. Lentz BR. Exposure of platelet membrane phosphatidylserine regulates blood

coagulation. Prog Lipid Res. 2003;42(5):423-438.

498. Jackson SP, Nesbitt WS, Kulkarni S. Signaling events underlying thrombus

formation. J Thromb Haemost. 2003;1(7):1602-1612.

499. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med.

2008;359(9):938-949.

500. Koupenova M, Mick E, Mikhalev E, Benjamin EJ, Tanriverdi K, Freedman JE. Sex

differences in platelet toll-like receptors and their association with cardiovascular risk

factors. Arterioscler Thromb Vasc Biol. 2015;35(4):1030-1037.

501. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors

in infection and immunity. Immunity. 2011;34(5):637-650.

502. Qian K, Xie F, Gibson AW, Edberg JC, Kimberly RP, Wu J. Functional expression

of IgA receptor FcalphaRI on human platelets. J Leukoc Biol. 2008;84(6):1492-1500.

503. Hasegawa S, Pawankar R, Suzuki K, et al. Functional expression of the high affinity

receptor for IgE (FcepsilonRI) in human platelets and its' intracellular expression in human

megakaryocytes. Blood. 1999;93(8):2543-2551.

504. King M, McDermott P, Schreiber AD. Characterization of the Fc gamma receptor on

human platelets. Cell Immunol. 1990;128(2):462-479.

505. Xu WF, Andersen H, Whitmore TE, et al. Cloning and characterization of human

protease-activated receptor 4. Proc Natl Acad Sci U S A. 1998;95(12):6642-6646.

506. Hollopeter G, Jantzen HM, Vincent D, et al. Identification of the platelet ADP

receptor targeted by antithrombotic drugs. Nature. 2001;409(6817):202-207.

507. Clemetson KJ, Clemetson JM, Proudfoot AE, Power CA, Baggiolini M, Wells TN.

Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human

platelets. Blood. 2000;96(13):4046-4054.

508. Motohashi K, Shibata S, Ozaki Y, Yatomi Y, Igarashi Y. Identification of

lysophospholipid receptors in human platelets: the relation of two agonists, lysophosphatidic

acid and sphingosine 1-phosphate. FEBS Lett. 2000;468(2-3):189-193.

509. Male R, Vannier WE, Baldeschwieler JD. Phagocytosis of liposomes by human

platelets. Proc Natl Acad Sci U S A. 1992;89(19):9191-9195.

510. White JG. Platelets are covercytes, not phagocytes: uptake of bacteria involves

channels of the open canalicular system. Platelets. 2005;16(2):121-131.

152

511. von Hundelshausen P, Schmitt MM. Platelets and their chemokines in

atherosclerosis-clinical applications. Front Physiol. 2014;5:294.

512. Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates.

Blood Rev. 2009;23(4):177-189.

513. Ehlers R, Ustinov V, Chen Z, et al. Targeting platelet-leukocyte interactions:

identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein

Ibalpha. J Exp Med. 2003;198(7):1077-1088.

514. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular

traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463-469.

515. Han P, Hanlon D, Arshad N, et al. Platelet P-selectin initiates cross-presentation and

dendritic cell differentiation in blood monocytes. Sci Adv. 2020;6(11):eaaz1580.

516. Silva-Cardoso SC, Affandi AJ, Spel L, et al. CXCL4 Exposure Potentiates TLR-

Driven Polarization of Human Monocyte-Derived Dendritic Cells and Increases Stimulation

of T Cells. J Immunol. 2017;199(1):253-262.

517. Czapiga M, Kirk AD, Lekstrom-Himes J. Platelets deliver costimulatory signals to

antigen-presenting cells: a potential bridge between injury and immune activation. Exp

Hematol. 2004;32(2):135-139.

518. Buchner K, Henn V, Grafe M, de Boer OJ, Becker AE, Kroczek RA. CD40 ligand is

selectively expressed on CD4+ T cells and platelets: implications for CD40-CD40L

signalling in atherosclerosis. J Pathol. 2003;201(2):288-295.

519. Mudd JC, Panigrahi S, Kyi B, et al. Inflammatory Function of CX3CR1+ CD8+ T

Cells in Treated HIV Infection Is Modulated by Platelet Interactions. J Infect Dis.

2016;214(12):1808-1816.

520. Chapman LM, Aggrey AA, Field DJ, et al. Platelets present antigen in the context of

MHC class I. J Immunol. 2012;189(2):916-923.

521. Zufferey A, Schvartz D, Nolli S, Reny JL, Sanchez JC, Fontana P. Characterization

of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules. J

Proteomics. 2014;101:130-140.

522. Klockenbusch C, Walsh GM, Brown LM, et al. Global proteome analysis identifies

active immunoproteasome subunits in human platelets. Mol Cell Proteomics.

2014;13(12):3308-3319.

523. Katoh N, Soga F, Nara T, et al. Effect of serotonin on the differentiation of human

monocytes into dendritic cells. Clin Exp Immunol. 2006;146(2):354-361.

524. Fleischer J, Grage-Griebenow E, Kasper B, et al. Platelet factor 4 inhibits

proliferation and cytokine release of activated human T cells. J Immunol. 2002;169(2):770-

777.

525. Reininger AJ, Heijnen HF, Schumann H, Specht HM, Schramm W, Ruggeri ZM.

Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under

high shear stress. Blood. 2006;107(9):3537-3545.

526. Keuren JF, Magdeleyns EJ, Govers-Riemslag JW, Lindhout T, Curvers J. Effects of

storage-induced platelet microparticles on the initiation and propagation phase of blood

coagulation. Br J Haematol. 2006;134(3):307-313.

527. Marcoux G, Duchez AC, Rousseau M, et al. Microparticle and mitochondrial release

during extended storage of different types of platelet concentrates. Platelets. 2017;28(3):272-

280.

528. Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ. Assembly of the platelet

prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies

153

in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem.

1989;264(29):17049-17057.

529. Bevers EM, Comfurius P, Zwaal RF. Changes in membrane phospholipid distribution

during platelet activation. Biochim Biophys Acta. 1983;736(1):57-66.

530. Laffont B, Corduan A, Ple H, et al. Activated platelets can deliver mRNA regulatory

Ago2*microRNA complexes to endothelial cells via microparticles. Blood.

2013;122(2):253-261.

531. Laffont B, Corduan A, Rousseau M, et al. Platelet microparticles reprogram

macrophage gene expression and function. Thromb Haemost. 2016;115(2):311-323.

532. Perez-Pujol S, Marker PH, Key NS. Platelet microparticles are heterogeneous and

highly dependent on the activation mechanism: studies using a new digital flow cytometer.

Cytometry A. 2007;71(1):38-45.

533. Dasgupta SK, Abdel-Monem H, Niravath P, et al. Lactadherin and clearance of

platelet-derived microvesicles. Blood. 2009;113(6):1332-1339.

534. Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P. Developmental

endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium.

Circulation. 2012;125(13):1664-1672.

535. Milasan A, Tessandier N, Tan S, Brisson A, Boilard E, Martel C. Extracellular

vesicles are present in mouse lymph and their level differs in atherosclerosis. J Extracell

Vesicles. 2016;5:31427.

536. Keuren JF, Magdeleyns EJ, Bennaghmouch A, Bevers EM, Curvers J, Lindhout T.

Microparticles adhere to collagen type I, fibrinogen, von Willebrand factor and surface

immobilised platelets at physiological shear rates. Br J Haematol. 2007;138(4):527-533.

537. Hoffman M, Monroe DM, Roberts HR. Coagulation factor IXa binding to activated

platelets and platelet-derived microparticles: a flow cytometric study. Thromb Haemost.

1992;68(1):74-78.

538. Melki I, Tessandier N, Zufferey A, Boilard E. Platelet microvesicles in health and

disease. Platelets. 2017;28(3):214-221.

539. Nomura S, Okamae F, Abe M, et al. Platelets expressing P-selectin and platelet-

derived microparticles in stored platelet concentrates bind to PSGL-1 on filtrated leukocytes.

Clin Appl Thromb Hemost. 2000;6(4):213-221.

540. Marcoux G, Magron A, Sut C, et al. Platelet-derived extracellular vesicles convey

mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse

reactions. Transfusion. 2019;59(7):2403-2414.

541. Sadallah S, Amicarella F, Eken C, Iezzi G, Schifferli JA. Ectosomes released by

platelets induce differentiation of CD4+T cells into T regulatory cells. Thromb Haemost.

2014;112(6):1219-1229.

542. Dinkla S, van Cranenbroek B, van der Heijden WA, et al. Platelet microparticles

inhibit IL-17 production by regulatory T cells through P-selectin. Blood. 2016;127(16):1976-

1986.

543. Yari F, Motefaker M, Nikougoftar M, Khayati Z. Interaction of Platelet-Derived

Microparticles with a Human B-Lymphoblast Cell Line: A Clue for the Immunologic

Function of the Microparticles. Transfus Med Hemother. 2018;45(1):55-61.

544. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-

mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-

derived membrane vesicles. Blood. 2008;111(10):5028-5036.

154

545. Cloutier N, Tan S, Boudreau LH, et al. The exposure of autoantigens by

microparticles underlies the formation of potent inflammatory components: the

microparticle-associated immune complexes. EMBO Mol Med. 2013;5(2):235-249.

546. Deiss A, Kurth D. Circulating reticulocytes in normal adults as determined y the new

methylene blue method. Am J Clin Pathol. 1970;53(4):481-484.

547. Lee E, Choi HS, Hwang JH, Hoh JK, Cho YH, Baek EJ. The RNA in reticulocytes is

not just debris: it is necessary for the final stages of erythrocyte formation. Blood Cells Mol

Dis. 2014;53(1-2):1-10.

548. Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic

maturation of erythroid cells. Nature. 2008;454(7201):232-235.

549. Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for

mitochondrial clearance. EMBO Rep. 2010;11(1):45-51.

550. Grullich C, Duvoisin RM, Wiedmann M, van Leyen K. Inhibition of 15-lipoxygenase

leads to delayed organelle degradation in the reticulocyte. FEBS Lett. 2001;489(1):51-54.

551. Burka ER. RNase activity in erythroid cell lysates. J Clin Invest. 1969;48(9):1724-

1732.

552. Valentine WN, Fink K, Paglia DE, Harris SR, Adams WS. Hereditary hemolytic

anemia with human erythrocyte pyrimidine 5'-nucleotidase deficiency. J Clin Invest.

1974;54(4):866-879.

553. Griffiths RE, Kupzig S, Cogan N, et al. Maturing reticulocytes internalize plasma

membrane in glycophorin A-containing vesicles that fuse with autophagosomes before

exocytosis. Blood. 2012;119(26):6296-6306.

554. Harding C, Heuser J, Stahl P. Endocytosis and intracellular processing of transferrin

and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor

shedding. Eur J Cell Biol. 1984;35(2):256-263.

555. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for

externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol.

1985;101(3):942-948.

556. Johnstone RM, Mathew A, Mason AB, Teng K. Exosome formation during

maturation of mammalian and avian reticulocytes: evidence that exosome release is a major

route for externalization of obsolete membrane proteins. J Cell Physiol. 1991;147(1):27-36.

557. Burger P, Kostova E, Bloem E, et al. Potassium leakage primes stored erythrocytes

for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol.

2013;160(3):377-386.

558. Waugh RE, McKenney JB, Bauserman RG, Brooks DM, Valeri CR, Snyder LM.

Surface area and volume changes during maturation of reticulocytes in the circulation of the

baboon. J Lab Clin Med. 1997;129(5):527-535.

559. Come SE, Shohet SB, Robinson SH. Surface remodelling of reticulocytes produced

in response to erythroid stress. Nat New Biol. 1972;236(66):157-158.

560. Kirby BS, Hanna G, Hendargo HC, McMahon TJ. Restoration of intracellular ATP

production in banked red blood cells improves inducible ATP export and suppresses RBC-

endothelial adhesion. Am J Physiol Heart Circ Physiol. 2014;307(12):H1737-1744.

561. Li H, Yang J, Chu TT, et al. Cytoskeleton Remodeling Induces Membrane Stiffness

and Stability Changes of Maturing Reticulocytes. Biophys J. 2018;114(8):2014-2023.

562. Rathjen T, Nicol C, McConkey G, Dalmay T. Analysis of short RNAs in the malaria

parasite and its red blood cell host. FEBS Lett. 2006;580(22):5185-5188.

155

563. Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte

microRNA expression in sickle cell diseases. PLoS One. 2008;3(6):e2360.

564. Doss JF, Corcoran DL, Jima DD, Telen MJ, Dave SS, Chi JT. A comprehensive joint

analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics.

2015;16:952.

565. van der Spuy WJ, Pretorius E. Interaction of red blood cells adjacent to and within a

thrombus in experimental cerebral ischaemia. Thromb Res. 2013;132(6):718-723.

566. Hornig R, Lutz HU. Band 3 protein clustering on human erythrocytes promotes

binding of naturally occurring anti-band 3 and anti-spectrin antibodies. Exp Gerontol.

2000;35(8):1025-1044.

567. Fossati-Jimack L, Azeredo da Silveira S, Moll T, et al. Selective increase of

autoimmune epitope expression on aged erythrocytes in mice: implications in anti-

erythrocyte autoimmune responses. J Autoimmun. 2002;18(1):17-25.

568. Anniss AM, Sparrow RL. Expression of CD47 (integrin-associated protein) decreases

on red blood cells during storage. Transfus Apher Sci. 2002;27(3):233-238.

569. Burger P, Hilarius-Stokman P, de Korte D, van den Berg TK, van Bruggen R. CD47

functions as a molecular switch for erythrocyte phagocytosis. Blood. 2012;119(23):5512-

5521.

570. Li MO, Sarkisian MR, Mehal WZ, Rakic P, Flavell RA. Phosphatidylserine receptor

is required for clearance of apoptotic cells. Science. 2003;302(5650):1560-1563.

571. Kobayashi N, Karisola P, Pena-Cruz V, et al. TIM-1 and TIM-4 glycoproteins bind

phosphatidylserine and mediate uptake of apoptotic cells. Immunity. 2007;27(6):927-940.

572. Park SY, Jung MY, Kim HJ, et al. Rapid cell corpse clearance by stabilin-2, a

membrane phosphatidylserine receptor. Cell Death Differ. 2008;15(1):192-201.

573. Bosman GJ, Cluitmans JC, Groenen YA, Werre JM, Willekens FL, Novotny VM.

Susceptibility to hyperosmotic stress-induced phosphatidylserine exposure increases during

red blood cell storage. Transfusion. 2011;51(5):1072-1078.

574. Boas FE, Forman L, Beutler E. Phosphatidylserine exposure and red cell viability in

red cell aging and in hemolytic anemia. Proc Natl Acad Sci U S A. 1998;95(6):3077-3081.

575. Nguyen DB, Ly TB, Wesseling MC, et al. Characterization of Microvesicles Released

from Human Red Blood Cells. Cell Physiol Biochem. 2016;38(3):1085-1099.

576. Chung SM, Bae ON, Lim KM, et al. Lysophosphatidic acid induces thrombogenic

activity through phosphatidylserine exposure and procoagulant microvesicle generation in

human erythrocytes. Arterioscler Thromb Vasc Biol. 2007;27(2):414-421.

577. Nguyen DB, Wagner-Britz L, Maia S, et al. Regulation of phosphatidylserine

exposure in red blood cells. Cell Physiol Biochem. 2011;28(5):847-856.

578. Seki M, Arashiki N, Takakuwa Y, Nitta K, Nakamura F. Reduction in flippase

activity contributes to surface presentation of phosphatidylserine in human senescent

erythrocytes. J Cell Mol Med. 2020;24(23):13991-14000.

579. de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of

macrophages and red blood cells; a complex love story. Front Physiol. 2014;5:9.

580. Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular events and intensity of

treatment in polycythemia vera. N Engl J Med. 2013;368(1):22-33.

581. Yu FT, Armstrong JK, Tripette J, Meiselman HJ, Cloutier G. A local increase in red

blood cell aggregation can trigger deep vein thrombosis: evidence based on quantitative

cellular ultrasound imaging. J Thromb Haemost. 2011;9(3):481-488.

156

582. Lominadze D, Dean WL. Involvement of fibrinogen specific binding in erythrocyte

aggregation. FEBS Lett. 2002;517(1-3):41-44.

583. Carvalho FA, Connell S, Miltenberger-Miltenyi G, et al. Atomic force microscopy-

based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano.

2010;4(8):4609-4620.

584. Wautier MP, Heron E, Picot J, Colin Y, Hermine O, Wautier JL. Red blood cell

phosphatidylserine exposure is responsible for increased erythrocyte adhesion to

endothelium in central retinal vein occlusion. J Thromb Haemost. 2011;9(5):1049-1055.

585. Whelihan MF, Zachary V, Orfeo T, Mann KG. Prothrombin activation in blood

coagulation: the erythrocyte contribution to thrombin generation. Blood. 2012;120(18):3837-

3845.

586. Wohner N, Sotonyi P, Machovich R, et al. Lytic resistance of fibrin containing red

blood cells. Arterioscler Thromb Vasc Biol. 2011;31(10):2306-2313.

587. Choi MH, Park GH, Lee JS, et al. Erythrocyte Fraction Within Retrieved Thrombi

Contributes to Thrombolytic Response in Acute Ischemic Stroke. Stroke. 2018;49(3):652-

659.

588. Szabo MC, Soo KS, Zlotnik A, Schall TJ. Chemokine class differences in binding to

the Duffy antigen-erythrocyte chemokine receptor. J Biol Chem. 1995;270(43):25348-

25351.

589. Karsten E, Breen E, Herbert BR. Red blood cells are dynamic reservoirs of cytokines.

Sci Rep. 2018;8(1):3101.

590. Wei J, Zhao J, Schrott V, et al. Red Blood Cells Store and Release Interleukin-33. J

Investig Med. 2015;63(6):806-810.

591. Mannu F, Arese P, Cappellini MD, et al. Role of hemichrome binding to erythrocyte

membrane in the generation of band-3 alterations in beta-thalassemia intermedia

erythrocytes. Blood. 1995;86(5):2014-2020.

592. Neote K, Darbonne W, Ogez J, Horuk R, Schall TJ. Identification of a promiscuous

inflammatory peptide receptor on the surface of red blood cells. J Biol Chem.

1993;268(17):12247-12249.

593. Lee JS, Wurfel MM, Matute-Bello G, et al. The Duffy antigen modifies systemic and

local tissue chemokine responses following lipopolysaccharide stimulation. J Immunol.

2006;177(11):8086-8094.

594. Fredriksson K, Lundahl J, Palmberg L, et al. Red blood cells stimulate human lung

fibroblasts to secrete interleukin-8. Inflammation. 2003;27(2):71-78.

595. Antunes RF, Brandao C, Maia M, Arosa FA. Red blood cells release factors with

growth and survival bioactivities for normal and leukemic T cells. Immunol Cell Biol.

2011;89(1):111-121.

596. Hotz MJ, Qing D, Shashaty MGS, et al. Red Blood Cells Homeostatically Bind

Mitochondrial DNA through TLR9 to Maintain Quiescence and to Prevent Lung Injury. Am

J Respir Crit Care Med. 2018;197(4):470-480.

597. Horuk R, Chitnis CE, Darbonne WC, et al. A receptor for the malarial parasite

Plasmodium vivax: the erythrocyte chemokine receptor. Science. 1993;261(5125):1182-

1184.

598. McHenry AM, Adams JH. The crystal structure of P. knowlesi DBPalpha DBL

domain and its implications for immune evasion. Trends Biochem Sci. 2006;31(9):487-491.

157

599. Asher DR, Cerny AM, Finberg RW. The erythrocyte viral trap: transgenic expression

of viral receptor on erythrocytes attenuates coxsackievirus B infection. Proc Natl Acad Sci

U S A. 2005;102(36):12897-12902.

600. Beck Z, Brown BK, Wieczorek L, et al. Human erythrocytes selectively bind and

enrich infectious HIV-1 virions. PLoS One. 2009;4(12):e8297.

601. He W, Neil S, Kulkarni H, et al. Duffy antigen receptor for chemokines mediates

trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS

susceptibility. Cell Host Microbe. 2008;4(1):52-62.

602. Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from

Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol

Sci. 2020;22(1).

603. Sens P, Gov N. Force balance and membrane shedding at the red-blood-cell surface.

Phys Rev Lett. 2007;98(1):018102.

604. Buerck JP, Burke DK, Schmidtke DW, Snyder TA, Papavassiliou DV, O'Rear EA.

Production of erythrocyte microparticles in a sub-hemolytic environment. J Artif Organs.

2021;24(2):135-145.

605. Bosman GJ, Lasonder E, Groenen-Dopp YA, Willekens FL, Werre JM. The proteome

of erythrocyte-derived microparticles from plasma: new clues for erythrocyte aging and

vesiculation. J Proteomics. 2012;76 Spec No.:203-210.

606. Willekens FL, Werre JM, Groenen-Dopp YA, Roerdinkholder-Stoelwinder B, de

Pauw B, Bosman GJ. Erythrocyte vesiculation: a self-protective mechanism? Br J Haematol.

2008;141(4):549-556.

607. Willekens FL, Roerdinkholder-Stoelwinder B, Groenen-Dopp YA, et al. Hemoglobin

loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood.

2003;101(2):747-751.

608. Donadee C, Raat NJ, Kanias T, et al. Nitric oxide scavenging by red blood cell

microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion.

Circulation. 2011;124(4):465-476.

609. Liu C, Zhao W, Christ GJ, Gladwin MT, Kim-Shapiro DB. Nitric oxide scavenging

by red cell microparticles. Free Radic Biol Med. 2013;65:1164-1173.

610. Poisson J, Tanguy M, Davy H, et al. Erythrocyte-derived microvesicles induce

arterial spasms in JAK2V617F myeloproliferative neoplasm. J Clin Invest.

2020;130(5):2630-2643.

611. Jank H, Salzer U. Vesicles generated during storage of red blood cells enhance the

generation of radical oxygen species in activated neutrophils. ScientificWorldJournal.

2011;11:173-185.

612. Camus SM, De Moraes JA, Bonnin P, et al. Circulating cell membrane microparticles

transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood.

2015;125(24):3805-3814.

613. Kim Y, Xia BT, Jung AD, et al. Microparticles from stored red blood cells promote

a hypercoagulable state in a murine model of transfusion. Surgery. 2018;163(2):423-429.

614. Fischer D, Büssow J, Meybohm P, et al. Microparticles from stored red blood cells

enhance procoagulant and proinflammatory activity. Transfusion. 2017;57(11):2701-2711.

615. Straat M, van Hezel ME, Boing A, et al. Monocyte-mediated activation of endothelial

cells occurs only after binding to extracellular vesicles from red blood cell products, a process

mediated by beta-integrin. Transfusion. 2016;56(12):3012-3020.

158

616. Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renné T, ten Cate H, Spronk

HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor

XIIa. J Thromb Haemost. 2012;10(7):1355-1362.

617. Zecher D, Cumpelik A, Schifferli JA. Erythrocyte-derived microvesicles amplify

systemic inflammation by thrombin-dependent activation of complement. Arterioscler

Thromb Vasc Biol. 2014;34(2):313-320.

618. Danesh A, Inglis HC, Jackman RP, et al. Exosomes from red blood cell units bind to

monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood.

2014;123(5):687-696.

619. Cardo LJ, Wilder D, Salata J. Neutrophil priming, caused by cell membranes and

microvesicles in packed red blood cell units, is abrogated by leukocyte depletion at

collection. Transfus Apher Sci. 2008;38(2):117-125.

620. Belizaire RM, Prakash PS, Richter JR, et al. Microparticles from stored red blood

cells activate neutrophils and cause lung injury after hemorrhage and resuscitation. J Am Coll

Surg. 2012;214(4):648-655; discussion 656-647.

621. Nazimek K, Bustos-Moran E, Blas-Rus N, et al. Syngeneic red blood cell-induced

extracellular vesicles suppress delayed-type hypersensitivity to self-antigens in mice. Clin

Exp Allergy. 2019;49(11):1487-1499.

622. Sadallah S, Eken C, Schifferli JA. Erythrocyte-derived ectosomes have

immunosuppressive properties. J Leukoc Biol. 2008;84(5):1316-1325.

623. Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front

Neuroendocrinol. 2014;35(3):347-369.

624. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nat Rev Dis Primers.

2018;4:18001.

625. Arend WP, Firestein GS. Pre-rheumatoid arthritis: predisposition and transition to

clinical synovitis. Nat Rev Rheumatol. 2012;8(10):573-586.

626. Radner H, Lesperance T, Accortt NA, Solomon DH. Incidence and Prevalence of

Cardiovascular Risk Factors Among Patients With Rheumatoid Arthritis, Psoriasis, or

Psoriatic Arthritis. Arthritis Care Res (Hoboken). 2017;69(10):1510-1518.

627. Aubry MC, Maradit-Kremers H, Reinalda MS, Crowson CS, Edwards WD, Gabriel

SE. Differences in atherosclerotic coronary heart disease between subjects with and without

rheumatoid arthritis. J Rheumatol. 2007;34(5):937-942.

628. Sparks JA, Chang SC, Liao KP, et al. Rheumatoid Arthritis and Mortality Among

Women During 36 Years of Prospective Follow-Up: Results From the Nurses' Health Study.

Arthritis Care Res (Hoboken). 2016;68(6):753-762.

629. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident

cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational

studies. Ann Rheum Dis. 2012;71(9):1524-1529.

630. Mason JC, Libby P. Cardiovascular disease in patients with chronic inflammation:

mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur

Heart J. 2015;36(8):482-489c.

631. Zhao C, Fernandes MJ, Prestwich GD, et al. Regulation of lysophosphatidic acid

receptor expression and function in human synoviocytes: implications for rheumatoid

arthritis? Mol Pharmacol. 2008;73(2):587-600.

632. Zhao C, Hui W, Fernandes MJ, Poubelle PE, Bourgoin SG. Lysophosphatidic acid-

induced IL-8 secretion involves MSK1 and MSK2 mediated activation of CREB1 in human

fibroblast-like synoviocytes. Biochem Pharmacol. 2014;90(1):62-72.

159

633. Hui W, Zhao C, Bourgoin SG. LPA Promotes T Cell Recruitment through Synthesis

of CXCL13. Mediators Inflamm. 2015;2015:248492.

634. Pasztoi M, Sodar B, Misjak P, et al. The recently identified hexosaminidase D enzyme

substantially contributes to the elevated hexosaminidase activity in rheumatoid arthritis.

Immunol Lett. 2013;149(1-2):71-76.

635. Messer L, Alsaleh G, Freyssinet JM, et al. Microparticle-induced release of B-

lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res Ther. 2009;11(2):R40.

636. Zhang HG, Liu C, Su K, et al. A membrane form of TNF-alpha presented by

exosomes delays T cell activation-induced cell death. J Immunol. 2006;176(12):7385-7393.

637. Michael BNR, Kommoju V, Kavadichanda Ganapathy C, Negi VS. Characterization

of cell-derived microparticles in synovial fluid and plasma of patients with rheumatoid

arthritis. Rheumatol Int. 2019;39(8):1377-1387.

638. Burbano C, Rojas M, Munoz-Vahos C, et al. Extracellular vesicles are associated with

the systemic inflammation of patients with seropositive rheumatoid arthritis. Sci Rep.

2018;8(1):17917.

639. Duchez AC, Boudreau LH, Naika GS, et al. Platelet microparticles are internalized in

neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-

IIA. Proc Natl Acad Sci U S A. 2015;112(27):E3564-3573.

640. Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in

synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum.

2008;58(4):1001-1009.

641. Takamura Y, Aoki W, Satomura A, Shibasaki S, Ueda M. Small RNAs detected in

exosomes derived from the MH7A synovial fibroblast cell line with TNF-alpha stimulation.

PLoS One. 2018;13(8):e0201851.

642. Skriner K, Adolph K, Jungblut PR, Burmester GR. Association of citrullinated

proteins with synovial exosomes. Arthritis Rheum. 2006;54(12):3809-3814.

643. Foers AD, Garnham AL, Chatfield S, et al. Extracellular Vesicles in Synovial Fluid

from Rheumatoid Arthritis Patients Contain miRNAs with Capacity to Modulate

Inflammation. Int J Mol Sci. 2021;22(9).

644. Berckmans RJ, Nieuwland R, Tak PP, et al. Cell-derived microparticles in synovial

fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-

dependent mechanism. Arthritis Rheum. 2002;46(11):2857-2866.

645. Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis

Primers. 2016;2:16039.

646. Faurschou M, Starklint H, Halberg P, Jacobsen S. Prognostic factors in lupus

nephritis: diagnostic and therapeutic delay increases the risk of terminal renal failure. J

Rheumatol. 2006;33(8):1563-1569.

647. Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of

systemic lupus erythematosus. Arthritis Rheum. 1982;25(11):1271-1277.

648. Aringer M, Leuchten N, Johnson SR. New Criteria for Lupus. Curr Rheumatol Rep.

2020;22(6):18.

649. Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the Systemic

Lupus International Collaborating Clinics classification criteria for systemic lupus

erythematosus. Arthritis Rheum. 2012;64(8):2677-2686.

650. Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against

Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus

Erythematosus. Arthritis Rheumatol. 2019;71(9):1400-1412.

160

651. Ceccarelli F, Perricone C, Massaro L, et al. Assessment of disease activity in Systemic

Lupus Erythematosus: Lights and shadows. Autoimmun Rev. 2015;14(7):601-608.

652. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the

SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies

in SLE. Arthritis Rheum. 1992;35(6):630-640.

653. Zhu H, Luo H, Yan M, Zuo X, Li QZ. Autoantigen Microarray for High-throughput

Autoantibody Profiling in Systemic Lupus Erythematosus. Genomics Proteomics

Bioinformatics. 2015;13(4):210-218.

654. Yaniv G, Twig G, Shor DB, et al. A volcanic explosion of autoantibodies in systemic

lupus erythematosus: a diversity of 180 different antibodies found in SLE patients.

Autoimmun Rev. 2015;14(1):75-79.

655. Crow MK, Olferiev M, Kirou KA. Targeting of type I interferon in systemic

autoimmune diseases. Transl Res. 2015;165(2):296-305.

656. Stetson DB. Endogenous retroelements and autoimmune disease. Curr Opin

Immunol. 2012;24(6):692-697.

657. Lövgren T, Eloranta ML, Båve U, Alm GV, Rönnblom L. Induction of interferon-

alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic

acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum.

2004;50(6):1861-1872.

658. Ettinger R, Sims GP, Robbins R, et al. IL-21 and BAFF/BLyS synergize in

stimulating plasma cell differentiation from a unique population of human splenic memory

B cells. J Immunol. 2007;178(5):2872-2882.

659. Koshy M, Berger D, Crow MK. Increased expression of CD40 ligand on systemic

lupus erythematosus lymphocytes. J Clin Invest. 1996;98(3):826-837.

660. Simpson N, Gatenby PA, Wilson A, et al. Expansion of circulating T cells resembling

follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus

erythematosus. Arthritis Rheum. 2010;62(1):234-244.

661. McKinney EF, Lyons PA, Carr EJ, et al. A CD8+ T cell transcription signature

predicts prognosis in autoimmune disease. Nat Med. 2010;16(5):586-591, 581p following

591.

662. Clynes R, Dumitru C, Ravetch JV. Uncoupling of immune complex formation and

kidney damage in autoimmune glomerulonephritis. Science. 1998;279(5353):1052-1054.

663. Knight JS, Kaplan MJ. Lupus neutrophils: 'NET' gain in understanding lupus

pathogenesis. Curr Opin Rheumatol. 2012;24(5):441-450.

664. Deng GM, Tsokos GC. Pathogenesis and targeted treatment of skin injury in SLE.

Nat Rev Rheumatol. 2015;11(11):663-669.

665. Kaplan MJ. Premature vascular damage in systemic lupus erythematosus.

Autoimmunity. 2009;42(7):580-586.

666. McMahon M, Grossman J, Skaggs B, et al. Dysfunctional proinflammatory high-

density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus

erythematosus. Arthritis Rheum. 2009;60(8):2428-2437.

667. Yurkovich M, Vostretsova K, Chen W, Aviña-Zubieta JA. Overall and cause-specific

mortality in patients with systemic lupus erythematosus: a meta-analysis of observational

studies. Arthritis Care Res (Hoboken). 2014;66(4):608-616.

668. Gustafsson JT, Simard JF, Gunnarsson I, et al. Risk factors for cardiovascular

mortality in patients with systemic lupus erythematosus, a prospective cohort study. Arthritis

Res Ther. 2012;14(2):R46.

161

669. Urowitz MB, Ibañez D, Gladman DD. Atherosclerotic vascular events in a single

large lupus cohort: prevalence and risk factors. J Rheumatol. 2007;34(1):70-75.

670. Dong C, Zhou Q, Fu T, et al. Circulating Exosomes Derived-miR-146a from Systemic

Lupus Erythematosus Patients Regulates Senescence of Mesenchymal Stem Cells. Biomed

Res Int. 2019;2019:6071308.

671. Salvi V, Gianello V, Busatto S, et al. Exosome-delivered microRNAs promote IFN-

alpha secretion by human plasmacytoid DCs via TLR7. JCI Insight. 2018;3(10).

672. Kato Y, Park J, Takamatsu H, et al. Apoptosis-derived membrane vesicles drive the

cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus.

Ann Rheum Dis. 2018;77(10):1507-1515.

673. Dominguez-Gutierrez PR, Ceribelli A, Satoh M, Sobel ES, Reeves WH, Chan EK.

Positive correlation of STAT1 and miR-146a with anemia in patients with systemic lupus

erythematosus. J Clin Immunol. 2014;34(2):171-180.

674. Fortin PR, Cloutier N, Bissonnette V, et al. Distinct Subtypes of Microparticle-

containing Immune Complexes Are Associated with Disease Activity, Damage, and Carotid

Intima-media Thickness in Systemic Lupus Erythematosus. J Rheumatol. 2016;43(11):2019-

2025.

675. Ullal AJ, Reich CF, 3rd, Clowse M, et al. Microparticles as antigenic targets of

antibodies to DNA and nucleosomes in systemic lupus erythematosus. J Autoimmun.

2011;36(3-4):173-180.

676. Nielsen CT, Østergaard O, Stener L, et al. Increased IgG on cell-derived plasma

microparticles in systemic lupus erythematosus is associated with autoantibodies and

complement activation. Arthritis Rheum. 2012;64(4):1227-1236.

677. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics-2017

Update: A Report From the American Heart Association. Circulation. 2017;135(10):e146-

e603.

678. Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers.

2019;5(1):56.

679. Organization WH. Cardiovascular diseases (CVDs) Fact Sheet; 2017.

680. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause

atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical

studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.

Eur Heart J. 2017;38(32):2459-2472.

681. Bennett MR, Sinha S, Owens GK. Vascular Smooth Muscle Cells in Atherosclerosis.

Circ Res. 2016;118(4):692-702.

682. Wanschel A, Seibert T, Hewing B, et al. Neuroimmune guidance cue Semaphorin 3E

is expressed in atherosclerotic plaques and regulates macrophage retention. Arterioscler

Thromb Vasc Biol. 2013;33(5):886-893.

683. Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional

macrophage accumulation in atherosclerosis. Nat Med. 2013;19(9):1166-1172.

684. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA.

Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-

like cells in human atherosclerosis. Circulation. 2014;129(15):1551-1559.

685. Singh A, Sen P. Lipid droplet: A functionally active organelle in monocyte to

macrophage differentiation and its inflammatory properties. Biochim Biophys Acta Mol Cell

Biol Lipids. 2021;1866(10):158981.

162

686. Skeoch S, Bruce IN. Atherosclerosis in rheumatoid arthritis: is it all about

inflammation? Nat Rev Rheumatol. 2015;11(7):390-400.

687. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of

calcification on the biomechanical stability of atherosclerotic plaques. Circulation.

2001;103(8):1051-1056.

688. Clarke MC, Talib S, Figg NL, Bennett MR. Vascular smooth muscle cell apoptosis

induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition

of phagocytosis. Circ Res. 2010;106(2):363-372.

689. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma.

Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol. 1995;147(2):251-

266.

690. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and

rupture. Circ Res. 2014;114(12):1852-1866.

691. Amento EP, Ehsani N, Palmer H, Libby P. Cytokines and growth factors positively

and negatively regulate interstitial collagen gene expression in human vascular smooth

muscle cells. Arterioscler Thromb. 1991;11(5):1223-1230.

692. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix

metalloproteinases and matrix degrading activity in vulnerable regions of human

atherosclerotic plaques. J Clin Invest. 1994;94(6):2493-2503.

693. Kritikou E, van Puijvelde GH, van der Heijden T, et al. Inhibition of lysophosphatidic

acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient

mice. Sci Rep. 2016;6:37585.

694. Yang L, Kraemer M, Fang XF, et al. LPA receptor 4 deficiency attenuates

experimental atherosclerosis. J Lipid Res. 2019;60(5):972-980.

695. Chang CL, Lin ME, Hsu HY, et al. Lysophosphatidic acid-induced interleukin-1 beta

expression is mediated through Gi/Rho and the generation of reactive oxygen species in

macrophages. J Biomed Sci. 2008;15(3):357-363.

696. Zhou Z, Subramanian P, Sevilmis G, et al. Lipoprotein-derived lysophosphatidic acid

promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab.

2011;13(5):592-600.

697. Tripathi H, Al-Darraji A, Abo-Aly M, et al. Autotaxin inhibition reduces cardiac

inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol

Cell Cardiol. 2020;149:95-114.

698. Panetti TS, Nowlen J, Mosher DF. Sphingosine-1-phosphate and lysophosphatidic

acid stimulate endothelial cell migration. Arterioscler Thromb Vasc Biol. 2000;20(4):1013-

1019.

699. Kim J, Keys JR, Eckhart AD. Vascular smooth muscle migration and proliferation in

response to lysophosphatidic acid (LPA) is mediated by LPA receptors coupling to Gq. Cell

Signal. 2006;18(10):1695-1701.

700. Gaaya A, Poirier O, Mougenot N, et al. Plasticity-related gene-1 inhibits

lysophosphatidic acid-induced vascular smooth muscle cell migration and proliferation and

prevents neointima formation. Am J Physiol Cell Physiol. 2012;303(10):C1104-1114.

701. An D, Hao F, Zhang F, et al. CD14 is a key mediator of both lysophosphatidic acid

and lipopolysaccharide induction of foam cell formation. J Biol Chem. 2017;292(35):14391-

14400.

702. Canault M, Leroyer AS, Peiretti F, et al. Microparticles of human atherosclerotic

plaques enhance the shedding of the tumor necrosis factor-alpha converting

163

enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. Am

J Pathol. 2007;171(5):1713-1723.

703. Gao W, Liu H, Yuan J, et al. Exosomes derived from mature dendritic cells increase

endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-

kappaB pathway. J Cell Mol Med. 2016;20(12):2318-2327.

704. Li C, Li S, Zhang F, et al. Endothelial microparticles-mediated transfer of microRNA-

19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in

apoE(-/-) mice. Biochem Biophys Res Commun. 2018;495(2):1922-1929.

705. Leroyer AS, Isobe H, Lesèche G, et al. Cellular origins and thrombogenic activity of

microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol.

2007;49(7):772-777.

706. Hoyer FF, Giesen MK, Nunes Franca C, Lutjohann D, Nickenig G, Werner N.

Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice.

J Cell Mol Med. 2012;16(11):2777-2788.

707. Fu Z, Zhou E, Wang X, et al. Oxidized low-density lipoprotein-induced

microparticles promote endothelial monocyte adhesion via intercellular adhesion molecule

1. Am J Physiol Cell Physiol. 2017;313(5):C567-c574.

708. Rautou PE, Leroyer AS, Ramkhelawon B, et al. Microparticles from human

atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and

transendothelial migration. Circ Res. 2011;108(3):335-343.

709. Wadey RM, Connolly KD, Mathew D, Walters G, Rees DA, James PE. Inflammatory

adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular

endothelial cells. Atherosclerosis. 2019;283:19-27.

710. Zakharova L, Svetlova M, Fomina AF. T cell exosomes induce cholesterol

accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol.

2007;212(1):174-181.

711. Keyel PA, Tkacheva OA, Larregina AT, Salter RD. Coordinate stimulation of

macrophages by microparticles and TLR ligands induces foam cell formation. J Immunol.

2012;189(9):4621-4629.

712. Nguyen MA, Karunakaran D, Geoffrion M, et al. Extracellular Vesicles Secreted by

Atherogenic Macrophages Transfer MicroRNA to Inhibit Cell Migration. Arterioscler

Thromb Vasc Biol. 2018;38(1):49-63.

713. Barberio MD, Kasselman LJ, Playford MP, et al. Cholesterol efflux alterations in

adolescent obesity: role of adipose-derived extracellular vesical microRNAs. J Transl Med.

2019;17(1):232.

714. Wang F, Chen FF, Shang YY, et al. Insulin resistance adipocyte-derived exosomes

aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE(-/-)

mice. Int J Cardiol. 2018;265:181-187.

715. Hutcheson JD, Goettsch C, Bertazzo S, et al. Genesis and growth of extracellular-

vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15(3):335-

343.

716. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic

bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.

717. Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of

MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in

glucose-damaged endothelial microparticles. Circulation. 2013;128(18):2026-2038.

164

718. Li J, Tan M, Xiang Q, Zhou Z, Yan H. Thrombin-activated platelet-derived exosomes

regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-

inflammation response. Thromb Res. 2017;154:96-105.

719. Njock MS, Cheng HS, Dang LT, et al. Endothelial cells suppress monocyte activation

through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood.

2015;125(20):3202-3212.

720. Huang C, Han J, Wu Y, et al. Exosomal MALAT1 derived from oxidized low-density

lipoprotein-treated endothelial cells promotes M2 macrophage polarization. Mol Med Rep.

2018;18(1):509-515.

721. Poupardin R, Wolf M, Strunk D. Adherence to minimal experimental requirements

for defining extracellular vesicles and their functions. Adv Drug Deliv Rev.

2021;176:113872.

722. van der Pol E, Sturk A, van Leeuwen T, Nieuwland R, Coumans F. Standardization

of extracellular vesicle measurements by flow cytometry through vesicle diameter

approximation. J Thromb Haemost. 2018;16(6):1236-1245.

723. Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F.

Standardization of pre-analytical variables in plasma microparticle determination: results of

the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J

Thromb Haemost. 2013.

724. Yuana Y, Böing AN, Grootemaat AE, et al. Handling and storage of human body

fluids for analysis of extracellular vesicles. J Extracell Vesicles. 2015;4:29260.

725. Lőrincz Á M, Timár CI, Marosvári KA, et al. Effect of storage on physical and

functional properties of extracellular vesicles derived from neutrophilic granulocytes. J

Extracell Vesicles. 2014;3:25465.

726. Bæk R, Søndergaard EK, Varming K, Jørgensen MM. The impact of various

preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed

by protein microarray. J Immunol Methods. 2016;438:11-20.

727. Kriebardis AG, Antonelou MH, Georgatzakou HT, Tzounakas VL, Stamoulis KE,

Papassideri IS. Microparticles variability in fresh frozen plasma: preparation protocol and

storage time effects. Blood Transfus. 2016;14(2):228-237.

728. Trummer A, De Rop C, Tiede A, Ganser A, Eisert R. Recovery and composition of

microparticles after snap-freezing depends on thawing temperature. Blood Coagul

Fibrinolysis. 2009;20(1):52-56.

729. Evseenko D, Latour B, Richardson W, et al. Lysophosphatidic acid mediates myeloid

differentiation within the human bone marrow microenvironment. PLoS One.

2013;8(5):e63718.

730. Sidstedt M, Hedman J, Romsos EL, et al. Inhibition mechanisms of hemoglobin,

immunoglobulin G, and whole blood in digital and real-time PCR. Anal Bioanal Chem.

2018;410(10):2569-2583.

731. Al-Soud WA, Rådström P. Purification and characterization of PCR-inhibitory

components in blood cells. J Clin Microbiol. 2001;39(2):485-493.

732. Kano K, Matsumoto H, Kono N, Kurano M, Yatomi Y, Aoki J. Suppressing

postcollection lysophosphatidic acid metabolism improves the precision of plasma LPA

quantification. J Lipid Res. 2021;62:100029.

733. Matsumoto A, Takahashi Y, Ogata K, et al. Phosphatidylserine-deficient small

extracellular vesicle is a major somatic cell-derived sEV subpopulation in blood. iScience.

2021;24(8):102839.

165

734. López P, Rodríguez-Carrio J, Martínez-Zapico A, Caminal-Montero L, Suárez A.

Circulating microparticle subpopulations in systemic lupus erythematosus are affected by

disease activity. Int J Cardiol. 2017;236:138-144.

735. Pereira J, Alfaro G, Goycoolea M, et al. Circulating platelet-derived microparticles in

systemic lupus erythematosus. Association with increased thrombin generation and

procoagulant state. Thromb Haemost. 2006;95(1):94-99.

736. Sawada T, Kurano M, Shirai H, et al. Serum phosphatidylserine-specific

phospholipase A1 as a novel biomarker for monitoring systemic lupus erythematosus disease

activity. Int J Rheum Dis. 2019;22(11):2059-2066.

737. Shanbhag K, Mhetre A, Khandelwal N, Kamat SS. The Lysophosphatidylserines-An

Emerging Class of Signalling Lysophospholipids. J Membr Biol. 2020;253(5):381-397.

738. Barnes MJ, Li CM, Xu Y, An J, Huang Y, Cyster JG. The lysophosphatidylserine

receptor GPR174 constrains regulatory T cell development and function. J Exp Med.

2015;212(7):1011-1020.

739. Barnes MJ, Cyster JG. Lysophosphatidylserine suppression of T-cell activation via

GPR174 requires Gαs proteins. Immunol Cell Biol. 2018;96(4):439-445.

740. van der Kleij D, Latz E, Brouwers JF, et al. A novel host-parasite lipid cross-talk.

Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune

polarization. J Biol Chem. 2002;277(50):48122-48129.

741. Kamat SS, Camara K, Parsons WH, et al. Immunomodulatory

lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat Chem Biol.

2015;11(2):164-171.

742. Frasch SC, Bratton DL. Emerging roles for lysophosphatidylserine in resolution of

inflammation. Prog Lipid Res. 2012;51(3):199-207.

743. Iwata Y, Kitajima S, Yamahana J, et al. Higher serum levels of autotaxin and

phosphatidylserine-specific phospholipase A1 in patients with lupus nephritis. Int J Rheum

Dis. 2021;24(2):231-239.

744. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med.

2007;357(24):2482-2494.

745. Ribeiro LS, Migliari Branco L, Franklin BS. Regulation of Innate Immune Responses

by Platelets. Front Immunol. 2019;10:1320.

746. Rayes J, Bourne JH, Brill A, Watson SP. The dual role of platelet-innate immune cell

interactions in thrombo-inflammation. Res Pract Thromb Haemost. 2020;4(1):23-35.

747. Semple JW, Italiano JE, Jr., Freedman J. Platelets and the immune continuum. Nat

Rev Immunol. 2011;11(4):264-274.

748. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets

as immune and inflammatory cells. Blood. 2014;123(18):2759-2767.

749. Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle cuisine: platelets served with

inflammation. J Immunol. 2015;194(12):5579-5587.

750. Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol.

2019;105(6):1111-1121.

751. Garraud O, Cognasse F. Are Platelets Cells? And if Yes, are They Immune Cells?

Front Immunol. 2015;6:70.

752. Opperman CM, Sishi BJ. Tumor necrosis factor alpha stimulates p62 accumulation

and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31(2):83-

94.

166

753. Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser

B Phys Biol Sci. 2009;85(1):12-36.

754. Dieude M, Bell C, Turgeon J, et al. The 20S proteasome core, active within apoptotic

exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl

Med. 2015;7(318):318ra200.

755. Shi DS, Smith MC, Campbell RA, et al. Proteasome function is required for platelet

production. J Clin Invest. 2014;124(9):3757-3766.

756. Murai K, Kowata S, Shimoyama T, et al. Bortezomib induces thrombocytopenia by

the inhibition of proplatelet formation of megakaryocytes. Eur J Haematol. 2014;93(4):290-

296.

757. Nayak MK, Kulkarni PP, Dash D. Regulatory role of proteasome in determination of

platelet life span. J Biol Chem. 2013;288(10):6826-6834.

758. Grundler K, Rotter R, Tilley S, et al. The proteasome regulates collagen-induced

platelet aggregation via nuclear-factor-kappa-B (NFkB) activation. Thromb Res.

2016;148:15-22.

759. Nayak MK, Kumar K, Dash D. Regulation of proteasome activity in activated human

platelets. Cell Calcium. 2011;49(4):226-232.

760. Grundler Groterhorst K, Mannell H, Pircher J, Kraemer BF. Platelet Proteasome

Activity and Metabolism Is Upregulated during Bacterial Sepsis. Int J Mol Sci. 2019;20(23).

761. Gupta N, Li W, Willard B, Silverstein RL, McIntyre TM. Proteasome proteolysis

supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol.

2014;34(1):160-168.

762. Colberg L, Cammann C, Greinacher A, Seifert U. Structure and function of the

ubiquitin-proteasome system in platelets. J Thromb Haemost. 2020.

763. Yukawa M, Sakon M, Kambayashi J, et al. Purification and characterization of

endogenous protein activator of human platelet proteasome. J Biochem. 1993;114(3):317-

323.

764. Yukawa M, Sakon M, Kambayashi J, et al. Proteasome and its novel endogeneous

activator in human platelets. Biochem Biophys Res Commun. 1991;178(1):256-262.

765. Boegel S, Lower M, Bukur T, Sorn P, Castle JC, Sahin U. HLA and proteasome

expression body map. BMC Med Genomics. 2018;11(1):36.

766. Semple JW, Speck ER, Milev YP, Blanchette V, Freedman J. Indirect allorecognition

of platelets by T helper cells during platelet transfusions correlates with anti-major

histocompatibility complex antibody and cytotoxic T lymphocyte formation. Blood.

1995;86(2):805-812.

767. Zufferey A, Speck ER, Machlus KR, et al. Mature murine megakaryocytes present

antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv.

2017;1(20):1773-1785.

768. Iannacone M, Sitia G, Isogawa M, et al. Platelets mediate cytotoxic T lymphocyte-

induced liver damage. Nat Med. 2005;11(11):1167-1169.

769. Verschoor A, Neuenhahn M, Navarini AA, et al. A platelet-mediated system for

shuttling blood-borne bacteria to CD8alpha+ dendritic cells depends on glycoprotein GPIb

and complement C3. Nat Immunol. 2011;12(12):1194-1201.

770. Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited.

Transfus Med Rev. 2020.

771. Marcoux G, Laroche A, Espinoza Romero J, Boilard E. Role of platelets and

megakaryocytes in adaptive immunity. Platelets. 2020:1-12.

167

772. Pariser DN, Hilt ZT, Ture SK, et al. Lung megakaryocytes are immune modulatory

cells. J Clin Invest. 2020.

773. Puhm F, Boilard E, Machlus KR. Platelet Extracellular Vesicles: Beyond the Blood.

Arterioscler Thromb Vasc Biol. 2020:ATVBAHA120314644.

774. Siljander PR. Platelet-derived microparticles - an updated perspective. Thromb Res.

2011;127 Suppl 2:S30-33.

775. Burnouf T, Chou ML, Goubran H, Cognasse F, Garraud O, Seghatchian J. An

overview of the role of microparticles/microvesicles in blood components: Are they

clinically beneficial or harmful? Transfus Apher Sci. 2015;53(2):137-145.

776. Gyorgy B, Szabo TG, Turiak L, et al. Improved flow cytometric assessment reveals

distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One.

2012;7(11):e49726.

777. Tessandier N, Melki I, Cloutier N, et al. Platelets Disseminate Extracellular Vesicles

in Lymph in Rheumatoid Arthritis. Arterioscler Thromb Vasc Biol.

2020:ATVBAHA119313698.

778. French SL, Butov KR, Allaeys I, et al. Platelet-derived extracellular vesicles infiltrate

and modify the bone marrow during inflammation. Blood Adv. 2020;4(13):3011-3023.

779. Verdoes M, Florea BI, Menendez-Benito V, et al. A fluorescent broad-spectrum

proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem Biol.

2006;13(11):1217-1226.

780. Raz V, Raz Y, Paniagua-Soriano G, et al. Proteasomal activity-based probes mark

protein homeostasis in muscles. J Cachexia Sarcopenia Muscle. 2017;8(5):798-807.

781. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release

two types of membrane vesicles: microvesicles by surface shedding and exosomes derived

from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791-

3799.

782. Semple JW, Rebetz J, Kapur R. Transfusion-associated circulatory overload and

transfusion-related acute lung injury. Blood. 2019;133(17):1840-1853.

783. Kapur R, Kim M, Rebetz J, et al. Gastrointestinal microbiota contributes to the

development of murine transfusion-related acute lung injury. Blood Adv. 2018;2(13):1651-

1663.

784. Kapur R, Kim M, Aslam R, et al. T regulatory cells and dendritic cells protect against

transfusion-related acute lung injury via IL-10. Blood. 2017;129(18):2557-2569.

785. McKenzie SE, Taylor SM, Malladi P, et al. The role of the human Fc receptor Fc

gamma RIIA in the immune clearance of platelets: a transgenic mouse model. J Immunol.

1999;162(7):4311-4318.

786. Melki I, Allaeys I, Tessandier N, et al. Platelets release mitochondrial antigens in

systemic lupus erythematosus. Sci Transl Med. 2021;13(581).

787. Angenieux C, Dupuis A, Gachet C, de la Salle H, Maitre B. Cell surface expression

of HLA I molecules as a marker of young platelets. J Thromb Haemost. 2019;17(9):1511-

1521.

788. Nunez-Avellaneda D, Mosso-Pani MA, Sanchez-Torres LE, Castro-Mussot ME,

Corona-de la Pena NA, Salazar MI. Dengue Virus Induces the Release of sCD40L and

Changes in Levels of Membranal CD42b and CD40L Molecules in Human Platelets. Viruses.

2018;10(7).

168

789. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN. Localization,

quantitation, and in situ detection of specific peptide-MHC class I complexes using a

monoclonal antibody. Immunity. 1997;6(6):715-726.

790. Rand ML, Wang H, Bang KW, Packham MA, Freedman J. Rapid clearance of

procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb

Haemost. 2006;4(7):1621-1623.

791. Rank A, Nieuwland R, Crispin A, et al. Clearance of platelet microparticles in vivo.

Platelets. 2011;22(2):111-116.

792. Lefrancais E, Ortiz-Munoz G, Caudrillier A, et al. The lung is a site of platelet

biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105-109.

793. Campbell RA, Schwertz H, Hottz ED, et al. Human megakaryocytes possess intrinsic

antiviral immunity through regulated induction of IFITM3. Blood. 2019;133(19):2013-2026.

794. Princiotta MF, Finzi D, Qian SB, et al. Quantitating protein synthesis, degradation,

and endogenous antigen processing. Immunity. 2003;18(3):343-354.

795. Sixt SU, Dahlmann B. Extracellular, circulating proteasomes and ubiquitin -

incidence and relevance. Biochim Biophys Acta. 2008;1782(12):817-823.

796. Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. The platelet

microparticle proteome. J Proteome Res. 2005;4(5):1516-1521.

797. Dean WL, Lee MJ, Cummins TD, Schultz DJ, Powell DW. Proteomic and functional

characterisation of platelet microparticle size classes. Thromb Haemost. 2009;102(4):711-

718.

798. Capriotti AL, Caruso G, Cavaliere C, Piovesana S, Samperi R, Laganà A. Proteomic

characterization of human platelet-derived microparticles. Anal Chim Acta. 2013;776:57-63.

799. Benaroudj N, Tarcsa E, Cascio P, Goldberg AL. The unfolding of substrates and

ubiquitin-independent protein degradation by proteasomes. Biochimie. 2001;83(3-4):311-

318.

800. Chen Z, Larregina AT, Morelli AE. Impact of extracellular vesicles on innate

immunity. Curr Opin Organ Transplant. 2019;24(6):670-678.

801. Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles

from Professional Antigen-Presenting Cells. Annu Rev Immunol. 2018;36:435-459.

802. Lindenbergh MFS, Wubbolts R, Borg EGF, van 't Veld EM, Boes M, Stoorvogel W.

Dendritic cells release exosomes together with phagocytosed pathogen; potential

implications for the role of exosomes in antigen presentation. J Extracell Vesicles.

2020;9(1):1798606.

803. Federici C, Shahaj E, Cecchetti S, et al. Natural-Killer-Derived Extracellular

Vesicles: Immune Sensors and Interactors. Front Immunol. 2020;11:262.

804. Zeng F, Morelli AE. Extracellular vesicle-mediated MHC cross-dressing in immune

homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol.

2018;40(5):477-490.

805. Noulsri E. Effects of Cell-Derived Microparticles on Immune Cells and Potential

Implications in Clinical Medicine. Lab Med. 2020.

806. Gitz E, Pollitt AY, Gitz-Francois JJ, et al. CLEC-2 expression is maintained on

activated platelets and on platelet microparticles. Blood. 2014;124(14):2262-2270.

807. Vogt MB, Lahon A, Arya RP, Spencer Clinton JL, Rico-Hesse R. Dengue viruses

infect human megakaryocytes, with probable clinical consequences. PLoS Negl Trop Dis.

2019;13(11):e0007837.

169

808. Becker Y, Marcoux G, Allaeys I, et al. Autoantibodies in Systemic Lupus

Erythematosus Target Mitochondrial RNA. Front Immunol. 2019;10:1026.

809. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights

into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21(5):298-312.

810. Sabanovic B, Piva F, Cecati M, Giulietti M. Promising Extracellular Vesicle-Based

Vaccines against Viruses, Including SARS-CoV-2. Biology (Basel). 2021;10(2).

811. Bliss CM, Parsons AJ, Nachbagauer R, et al. Targeting Antigen to the Surface of EVs

Improves the. Mol Ther Methods Clin Dev. 2020;16:108-125.

812. Baker GR, Sullam PM, Levin J. A simple, fluorescent method to internally label

platelets suitable for physiological measurements. Am J Hematol. 1997;56(1):17-25.

813. Blessinger SA, Tran JQ, Jackman RP, et al. Immunodeficient mice are better for

modeling the transfusion of human blood components than wild-type mice. PLoS One.

2020;15(7):e0237106.

170

Annexe I : Targeting the autotaxin - Lysophosphatidic

acid receptor axis in cardiovascular diseases

Yang Zhao 1 , Stephan Hasse 1 , Chenqi Zhao 2 , Sylvain G Bourgoin 3

Affiliations :

1 Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval,

Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine,

Université Laval, Québec, QC G1V4G2, Canada.

2 Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval,

Canada.

3 Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval,

Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine,

Université Laval, Québec, QC G1V4G2, Canada. Electronic address:

[email protected].

Keywords: Lysophosphatidic acid, Autotaxin, Atherosclerosis, Inflammation, Vascular

remodelling

171

1 Abstract

Lysophosphatidic acid (LPA) is a well-characterized bioactive lipid mediator, which is

involved in development, physiology, and pathological processes of the cardiovascular

system. LPA can be produced both inside cells and in biological fluids. The majority of

extracellular LPA is produced locally by the secreted lysophospholipase D, autotaxin (ATX),

through its binding to various β integrins or heparin sulfate on cell surface and hydrolyzing

various lysophospholipids. LPA initiates cellular signalling pathways upon binding to and

activation of its G protein-coupled receptors (LPA1-6). LPA has potent effects on various

blood cells and vascular cells involved in the development of cardiovascular diseases such

as atherosclerosis and aortic valve sclerosis. LPA signalling drives cell migration and

proliferation, cytokine production, thrombosis, fibrosis, as well as angiogenesis. For instance,

LPA promotes activation and aggregation of platelets through LPA5, increases expression of

adhesion molecules in endothelial cells, and enhances expression of tissue factor in vascular

smooth muscle cells. Furthermore, LPA induces differentiation of monocytes into

macrophages and stimulates oxidized low-density lipoproteins (oxLDLs) uptake by

macrophages to form foam cells during formation of atherosclerotic lesions through LPA1-

3. This review summarizes recent findings of the roles played by ATX, LPA and LPA

receptors (LPARs) in atherosclerosis and calcific aortic valve disease. Targeting the ATX-

LPAR axis may have potential applications for treatment of patients suffering from various

cardiovascular diseases.

172

2 Graphical abstract

LPA initiates cellular signalling pathways through LPA1-6 expressed by blood cells and

vascular cells, mediating the development of atherosclerosis. The ATX-LPA axis can be

targeted for potential treatment of CVDs.

173

3 Lysophosphatidic acid and its receptors

Lysophosphatidic acid (LPA) is a bioactive lipid mediator required for the maintenance of

homeostasis in multiple physiological functions and pathological processes. LPA possesses

a glycerol backbone with an aliphatic fatty acid chain attached at sn-1 or sn-2 position

(Fig. 1). The sn-1 and the sn-2 positions are predominantly occupied by saturated and

unsaturated fatty acids, respectively [1]. The subclasses of LPA include the acyl-, alkyl-, and

alkenyl-LPA species (Fig. 1). Among them, acyl-LPA species are the most abundant

glycerophospholipid species [2]. The length and number of the fatty acid chain unsaturation

determine the diversity of molecular species of acyl-LPA. Common acyl-LPA species

include 16:0, 18:0, 18:1, 18:2, 18:3, 20:4, 20:5, and 22:6. Additionally, sn-2 acyl-LPA

species are unstable and easily undergo acyl chain migration to produce sn-1 acyl-LPA [1].

LPA biological activities rely at least in part on the fatty acid position on the glycerol

backbone, length, and degree of saturation [2].

Fig. 1. LPA structures. Basic structure of LPA includes a glycerol backbone, an aliphatic

acid chain, and a phosphate moiety. LPA comprises the acyl-, alkyl-, and alkenyl-LPA

species. Acyl-LPA can also be divided into 1-acyl and 2-acyl LPA according to the sn

position of the acyl chain.

174

LPA has important pro-atherosclerotic, pro-inflammatory, and pro-thrombotic properties

during development of various diseases. Functions of LPA are driven through the activation

of specific G protein-coupled transmembrane LPA receptors (LPARs). So far six LPARs

have been identified and named LPA1-6 (Fig. 2). According to their primary structure,

LPA1-3 belong to the endothelial differentiation gene family and LPA4-6 are related to the

purinergic P2Y receptor family. LPARs transmit downstream signals through at least four

heterotrimeric Gα proteins (Gα12/13, Gαq/11, Gαi/o, and Gαs) to mediate various

physiological and pathological conditions (Fig. 2). Binding preferences of LPA species to

LPAR subtypes have been reported. For example, alkenyl-LPA activates both LPA1 and

LPA2, alkyl-LPA activates LPA1, whereas acyl-LPAs are ligands for LPA1-3 [2]. Among

LPARs, LPA3 [3] and LPA6 [4] have relative binding preferences towards unsaturated acyl

species of LPA, such as 18:1, 18:2, 18:3, 16:1, and 20:4 2-acyl LPA, while LPA4 [5] is

strongly activated by 18:1 1-acyl LPA [6]. Although LPARs have specific and overlapping

functions, LPA-mediated responses are dictated by distinct LPAR expression patterns in

tissues and cells. LPA1-3 are ubiquitously expressed with high expression levels in nervous

system [7], immune organs [8], and reproductive organs [9]. LPA4-6 are also widely

expressed, albeit at lower levels in various organs and cells.

Fig. 2. LPA synthesis and LPA receptors. Phospholipase D (PLD) hydrolyzes various

phospholipids (PLs) to form intracellular phosphatidic acid (PA). PA can be converted into

LPA by a phosphatidic acid specific phospholipase A1 (PA-PLA1) or a cellular PLA2

(cPLA2). Synthesis of extracellular LPA depends on the hydrolysis of phospholipids such as

phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE),

producing lysophosphatidylcholine (LPC), lysophosphatidylserine (LPS), and

175

lysophosphatidylethanolamine (LPE) by phospholipases A1 (PLA1) or secreted

phospholipase A2 (sPLA2), respectively. Lysophospholipids are subsequently hydrolysed by

ATX to produce LPA. LPA is rapidly metabolized into monoacylglycerol (MAG) by the

ecto-activities of lipid phosphate phosphatases (LPPs). LPA induces various physiological

and pathophysiological responses through binding to and activation of six LPA receptors

(LPA1 to LPA6), which transmit downstream signals through at least four heterotrimeric Gα

proteins (Gα12/13, Gαq/11, Gαi/o, and Gαs).

4 LPA production pathways

Intracellular produced LPA works not only as a precursor or an intermediate in the synthesis

of cell phospholipids, but it can also serve as an intracellular signalling molecule. LPA can

be produced inside cells through sequential hydrolysis of phosphatidylcholine by a

phospholipase D (PLD) and a phospholipase A (PLA) [10] (Fig. 2). In this pathway, PLD

produced phosphatidic acid in the inner layer of cell membrane is subsequently deacylated

into LPA by a phosphatidic acid specific PLA1 [10].

LPA produced in the circulation acts in an autacoid way. Autotaxin (ATX) is responsible for

the production of extracellular LPA using various lysophospholipids as substrates (Fig. 2),

with plasma lysophosphatidylcholine (LPC) being the most abundant one. ATX, a member

of the nucleotide pyrophophatase/phosphodiesterase protein family, was originally isolated

from melanoma cells and characterized as a cell motility factor [11]. ATX is an enzyme with

unique lysophospholipase D activity that cleaves the choline group of LPC to produce LPA.

Structure of ATX consists of two N-terminal somatomedin B-like domains, a central catalytic

phosphodiester domain, and a C-terminal nuclease-like domain; these domains form a

hydrophobic channel containing the lysophospholipid-binding pocket [12]. The N-terminal

somatomedin B-like domain of ATX can bind to β integrins to access cell surface

lysophospholipids and to locally produce LPA [12].

There are three isoforms of ATX, namely ATX-α, -β, and -γ. ATX has a broad tissue

expression such as in brain, kidney, and lymphoid organs; and ATX can be produced locally

by a plethora of cell types [13]. ATX expression can be increased by growth factors, such as

fibroblast and epidermal growth factor, bone morphogenetic protein 2 (BMP-2) and the Wnt-

1 signalling pathway, but be inhibited by TGF-β and cytokines, such as interleukin-1 (IL-1),

176

IL-4, and IFN-γ [14]. In the vascular compartment, ATX-β is the most abundant ATX

isoform responsible for synthesizing plasma LPA [15]. Although the relative cellular origins

of plasma ATX are still uncertain, adipose tissues are a major source of ATX [16].

Megakaryocytes, the cells responsible for the production of platelets, do not express ATX

mRNA. But the enzyme was nevertheless found stored in α-granules of resting platelets and

was secreted upon platelet activation [17].

Plasma LPA was originally reported to be produced by activated platelets, especially under

pathological conditions such as inflammation and atherosclerosis [18]. During the

coagulation process, activated platelets release a large amount of lysophospholipids, which

are subsequently converted to 18:2 and 20:4 LPA by ATX [1]. Recently, a novel

phospholipase purified from thrombin activated human platelets, the acyl-protein

thioesterase 1 also known as lysophospholipase A1, was reported to possess PLA1 activity

[1]. Lysophospholipase A1 can generate sn-2-esterified LPC, which can be converted into

LPA by ATX. Almost half of serum LPA is produced in a platelet-dependent pathway

according to previous studies [10]. Furthermore, LPA can be generated in a cell-free system,

by cell-derived microparticles (MPs) [19]. Extracellular LPA is metabolized by the ecto-

activities of cell-associated lipid phosphate phosphatases (LPPs), which are responsible for

the rapid turnover of plasma LPA [20] and for maintaining the physiological concentration

of extracellular LPA in the low µM range.

5 The LPA-induced responses in cells of the cardiovascular

system

5.1. LPA and platelets

Research findings on LPARs expression in blood cells/vascular bed cells and LPA-induced

functional responses in context of cardiovascular diseases (CVDs) are summarized in Table

1. ATX has been reported to bind β1 and β3 integrins [12]. One of the consequences of

platelet activation is the release of ATX stored in α-granules [17]. ATX binding to activated

platelet β3 integrins promotes LPA production and LPA-dependent responses [12]. LPA

induces platelet shape change [21] and activation [22]. In blood, LPA-activated platelets form

platelet aggregates and platelet-monocyte aggregates [21], [23]. LPA also promotes the

177

stabilization of the platelet aggregates [24]. Furthermore, LPA enhances platelet fibronectin

binding and assembly, thereby suggesting a role in fibronectin matrix deposition following

vascular wall wounding [24]. Inhibition of lipid core plaque-mediated platelet aggregation

and activation by LPAR antagonists point to a role for LPA in thrombus formation upon

atherosclerotic plaque rupture [25]. Although platelets express all six LPA receptors (LPA1-

6), LPA effects are mainly mediated by LPA5 [26].

178

5.2. LPA and endothelial cells

LPA contributes to the regulation of three endothelial cell-dependent processes: leukocyte

recruitment, angiogenesis, and vascular functions (Table 1). Silencing of LPA1 and LPA3 or

blocking those receptors with the selective antagonist Ki16425 attenuated LPA-induced

endothelial cell functional responses including chemokine C-X-C motif ligand 1 (CXCL1)

production [27], migration and proliferation [28]. LPA promotes leukocyte interaction with

the vascular wall through activation of LPA1/3 expressed on endothelial cells. Adhesion

proteins play a crucial role in leukocyte adhesion and migration across the vascular wall.

LPA increases the expression of the vascular cell adhesion molecules ICAM-1, VCAM-1,

and E-selectin [29], [30], [31]. LPA-mediated production of CXCL1 [27], IL-8 and monocyte

chemoattractant protein 1 (MCP-1) in endothelial cells also stimulates leukocyte adhesion to

the vascular wall [32]. IL-8 and MCP-1 are important mediators of leukocyte adhesion to the

endothelium under flow conditions [33]. In addition to these chemokines, LPA also induces

expression and secretion of the pro-inflammatory cytokine IL-1 in endothelial cells [31].

Studies using a mouse model of atherosclerosis suggested that LPA-mediated leukocyte

recruitment contributes to the initiation and the progression of atherosclerosis [27].

In vitro assays showed that LPA stimulated endothelial cell proliferation, migration, as well

as tube formation [28], [34]. LPA-induced cell migration, proliferation and tube formation

all contribute to angiogenesis, leading to new blood vessel formation from the existing

vasculature. LPA-induced angiogenesis depends on upregulation of the vascular endothelial

growth factor expression [35] and concomitant suppression of the angiogenesis repressor

CD36 expression in endothelial cells [36]. Taken together, these results suggest that the pro-

angiogenic properties of LPA contribute to development of imperfect intimal microvessels

commonly found in atherosclerotic plaques [37]. Those intimal microvessels are important

risk factors of plaque vulnerability since they are a source of intraplaque atherogenic lipids

and a cause for intraplaque haemorrhages [38]. Thus, LPA participates in atherosclerotic

plaque development and instability in part through its pro-angiogenic action and its ability to

recruit inflammatory cells.

Endothelial cell dysfunction is a characteristic of CVDs that is crucial to the initiation and

development of atherosclerosis. LPA influences some of endothelial cell functions that affect

179

the structure and the properties of the vascular endothelium. LPA stimulation decreases

endothelial cell confluence [39] and increases their motility [40]. Measurement of hydraulic

permeability in rat vessels showed increased permeability of the vascular endothelium in

response to LPA [39]. LPA also induces the expression of matrix metalloproteinase 2 (MMP-

2) in endothelial cells [40]. MMP-2 contributes to remodelling of the extracellular matrix.

Therefore, LPA could alter vessel functions and increase vessel leakage through upregulation

of MMP-2. LPA impact on vessel function is not limited to modulation of vascular

endothelium permeability, it also impacts the vascular tone by inducing vasodilatation or

vasoconstriction [41], [42]. Injection of LPA in the lumen of isolated murine aortae resulted

in nitric oxide synthase dependent vasodilation. Genetic depletion of the nitric oxide synthase

or the mechanical removal of endothelial cells resulted in vasoconstriction [42]. LPA was

shown to induced smooth muscle cell contraction through liberation of thromboxane A2

which results in vasoconstriction [41]. In both studies, the use of an antagonist of LPA1/3,

Ki16425, and genetic deletion of LPA1 abolished LPA-induced vasoconstriction and

vasodilation [41], [42].

5.3. LPA and smooth muscle cells

Smooth muscle cells are a major cell type in the hyperplasic vascular lesions seen in

atherosclerosis [43]. LPA administered to mice and rat was reported to increase neointima

formation [44]. LPA-induced neointima formation is partly mediated through the recruitment

of progenitor cells and their differentiation into vascular smooth muscle cells. Similar as in

endothelial cells, LPA-mediated activation of smooth muscle cells induces the expression

and the release of several cytokines and chemokines such as MCP-1 [45], CXCL12 [44] and

IL-6 [46], which promote leukocyte recruitment and inflammation. The LPA1/3 antagonist

Ki16425 inhibits LPA-induced cytokine production and neointima formation as well (Table

1 and [44]). A transcriptomics study only detected the expression of LPA1 mRNA in human

aortic smooth muscle cells [47], thereby suggesting that the effects of LPA in these cells were

mediated by LPA1. LPA also increases the production of tissue factor [48], which is found

at high level in the atherosclerotic plaque and is an important initiator of atherothrombosis

[49].

180

LPA stimulated smooth muscle cell proliferation and migration in vitro [50], [51] and in vivo

[51] in part through the induction of early growth response gene-1 expression and the

secretion of IL-6 [52]. In addition, smooth muscle cell growth was inhibited by an inhibitor

of NADPH oxidase, indicating a role for reactive oxygen species in LPA-dependent smooth

muscle cell proliferation [45].

5.4. LPA and monocytes

LPA also modulates monocyte recruitment and activation [53], [54] through the production

of reactive oxygen species, and the release of arachidonic acid and IL-1β [55]. LPA is an

important initiator of monocyte differentiation into macrophage [56] and formation of foam

cells [57], [58]. The LPA-dependent differentiation was associated with the inhibition of

high-density lipoprotein receptor SRB1 expression and generation of reactive oxygen species

[57], [58]. In atherosclerotic plaques, LPA enhances uptake of oxidized phospholipid by

macrophages [59]. Lipid uptake [59] and foam cell formation [57] are likely mediated

through LPA1 and/or LPA3. LPA may contribute to macrophage accumulation into

atherosclerotic plaques by inhibiting reverse transmigration across the endothelial layer [60].

Furthermore, LPA stimulates MMP-9 expression in THP-1 derived macrophages through

LPA2 [61]. MMP-9 also accelerates remodelling of the extracellular matrix of the artery wall,

resulting in progression and instability of the atherosclerotic plaque [61].

6 The ATX-LPA axis in cardiovascular diseases

ATX as well as the LPA-induced functional responses have been extensively studied in

various pathological conditions. Comprehensive reviews on the roles of lysophospholipids

in the development of atherosclerosis and other CVDs have been published previously [62],

[63]. Here we reviewed the most recent findings on the roles played by the ATX-LPA axis

to the development of cardiovascular pathologies such as atherosclerosis and calcific aortic

valve disease.

6.1. The ATX-LPA axis in atherosclerosis

LPA plays an important pro-thrombotic role and contributes to the development of

atherosclerotic plaques. Atherosclerosis is a slowly progressing arterial disease that is

181

characterized by inflammatory and regenerative processes, resulting in vascular remodelling

and formation of atherosclerotic plaques. Although plasma LPA level is in low µM range,

unsaturated long chain acyl-LPA species can be predominantly accumulated in the

atherosclerotic lipid-rich core [22]. In atherosclerosis, LPA can be generated locally by

oxidization of low-density lipoprotein (oxLDL) [22]. OxLDL are transporters of oxidized

lipids and ATX in human plasma [64]. These oxidized lipids and ATX participate to the

production of LPA in atherosclerotic lesions, which subsequently promote several

pathological processes of atherosclerosis [22]. In addition to oxLDL-derived LPA, ATX

originated from various cell types also produces LPA within the atherosclerotic lesions.

Plasma ATX originating from adipose tissues together with ATX secreted by vascular cells,

such as endothelial cells [65], smooth muscle cells [47] and macrophages [66], can bind to

activated β1 and β3 cell integrins [12]. ATX binding to integrins increases its catalytic

activity and contributes to localized LPA production [12]. Furthermore, ATX also binds to

exosomes [67]. When incubated with phospholipases in vitro, cell-derived MPs are capable

of producing LPA [19]. During development of atherosclerosis, vascular inflammation

results in increased endothelial permeability, allowing circulating MPs in the blood to diffuse

within the vascular wall [68], [69]. In addition to oxLDL, higher levels of MPs originated

from vascular cells are accumulated at the atherosclerotic plaque and could contribute to

intra-plaque LPA production [70]. Whether MPs contribute to the ATX-dependent LPA

production in CVDs is yet to be confirmed.

The primary location of newly generated LPA at the cell surface can be in proximity to its

receptors [71]. On the other hand, inflammation associated with atherosclerotic lesions and

vascular injuries can increase the expression of ATX and LPARs. The enhanced LPA

production subsequently promotes neointima formation, which worsens the atherosclerotic

lesions [72]. A mouse model showed that exogenously administered LPA can increase

atherosclerotic plaque burden through LPA1/3 [27]. Extracellular LPA levels can be

decreased by LPP3, which localizes to the plasma membrane and serves as a negative

regulator of LPA signalling through its dephosphorylation catalyzed function. Enhanced

LPP3 expression in animal models was shown to decrease circulating LPA level [73]. In

atherosclerosis, alterations of LPP3 expression in monocytes and vascular wall cells are

closely related to circulating LPA levels [74]. LPP3 was therefore suggested to be involved

182

in preventing the development of atherosclerosis, stabilizing atherosclerotic plaque, and

reducing the risks of complication associated with atherosclerosis [74]. Strategies to

stimulate LPP activity or protein expression could be envision for future treatments of CVDs.

Within the digestive tract, lysophospholipids coming from the diet are hydrolysed by ATX

to produce LPA in the intestinal lumen [75]. Intestinal LPC and LPA are absorbed and

transported into the plasma. These lysophospholipids, especially species with unsaturated

fatty acids such as arachidonic acid, can contribute to increased risks of CVDs by promoting

systemic inflammation and cell dysfunctions [76]. Atherosclerosis plaques in diabetic

patients are more vulnerable than those in non-diabetic patients with similar size of plaques.

One possibility is that carotid atheroma plaques of diabetic patients have a higher proportion

of polyunsaturated phospholipids such as 2-arachidonoyl-lysophosphatidylcholine [77]. This

lysophospholipid can be subsequently hydrolysed by ATX to produce C20:4 LPA, thereby

contributing to inflammation and to decreased atherosclerotic plaque stability. In addition,

ATX-derived LPA is also involved in mediating blood and vascular cell activation after

plaque rupture, further contributing to the progression and the complication of

atherosclerosis. LPA also serves as endogenous toll like receptor 4 ligand to activate NF-κB.

NF-κB signalling contributes to the development of atherosclerosis and the formation of

unstable plaques through enhanced inflammatory cytokine production and MMP-9

expression [78].

Acute coronary syndrome (ACS) is a life-threatening complication of atherosclerosis. In

ACS, most of the infarction is due to the formation of an occluding thrombus on the surface

of the atherosclerotic plaque. LPA has been suggested to increase the susceptibility of

atherosclerosis and its complications. For instance, a cross-sectional study of consecutive

patients showed a significant relationship between plasma LPA concentrations, especially

long chain unsaturated LPA species, and ACS [79]. Indeed, increased LPA levels were

detected in ACS patients, which were associated with ATX and platelet activation [79]. ATX

mass and enzymatic activity in the plasma from patients with coronary artery disease (CAD)

were associated with a higher risk of concurrent calcific aortic valve stenosis [80]. LPA levels

were higher in the plasma samples collected from coronary arteries than that from peripheral

arteries [81]. Elevated plasma LPA levels can be derived from different sources, to name a

183

few, ATX-mediated production of 18:2 LPA, the platelet-related production of 20:4 LPA,

and other pathways, which might include not only LPC but also

lysophosphatidylethanolamine and lysophosphatidylglycerol as sources of 22:6 LPA [82].

Indeed, CAD susceptibility was also linked to the PPAP2B gene, which encodes the

expression of LPP3 and negatively regulates plasma LPA level [74]. A genome-wide

association study identified 13 novel loci harboring one or more single nucleotide

polymorphisms associated with CAD, and reported that among these 13 novel loci, PPAP2B

displayed risk allele frequencies at 0.91 that are highly associated with the risk of CAD [74].

Taken together, those studies suggest that ATX-LPA axis contributes to the pathogenesis of

ACS.

6.2. The ATX-LPA axis in calcific aortic valve diseases

Calcific aortic valve stenosis (CAVS) is the most common chronic and multifactorial

valvular disorder among the calcific aortic valve diseases (CAVDs). Pathological changes

associated with CAVD include progressive fibrosis, large mineral deposits in the lipid-rich

area of aortic valve, leading to gradual obstruction of the aortic valve orifice. Fibrosis and

valve mineralization are two intertwine factors that play crucial roles in the pathological

hemodynamic changes of CAVDs [83]. Mendelian randomization studies revealed a

significant association between the development of CAVD and the lipoprotein(a) gene

variant re10455872 in these patients [84], [85], [86]. CAVD patients with high lipoprotein

levels were at higher risk to develop aortic valve stenosis. Lipoproteins were reported to be

transporters of oxidized phospholipids and ATX, which accumulate not only in

atherosclerotic plaques but also in the mineralized aortic valves [64]. Plasma lipoprotein-

associated PLA2 is expressed in platelets [87] and macrophages [88]. Mineralized aortic

valve tissues express high levels of lipoprotein-associated PLA2 [88]. This phospholipase

and ATX both contribute to LPA production from plasma lipoproteins, promoting a pro-

inflammatory condition that drives mineralization of the aortic valve. LPA derived from

oxLDL was shown to promote aortic valve mineralization through the LPA1-RhoA/ROCK-

NF-κB signalling pathway [87]. In human CAVS tissues, LPA1 mRNA was increased by

1.5-fold compared to those in control non-mineralized aortic valves [87]. Activation of LPA1

184

upregulates the expression of BMP2, a powerful morphogen signal that drives the osteogenic

program [88].

In addition to lipoproteins transported ATX, human explanted mineralized aortic valves

express high levels of ATX compared to non-mineralized valves. A 60% increase in ATX

enzymatic activity and a 1.5-fold increase in the levels of LPA in human mineralized aortic

valves were reported, respectively [64]. In a mouse model of CAVS, LPA promoted

inflammation and an osteogenic response through enhanced secretion of IL-6 and expression

of BMP2 [64]. Mass spectrophotometry analyses confirmed the enhanced LPA levels,

especially the unsaturated LPA species, in human aortic valve leaflets of CAVS patients [89].

A recent study revealed that the aggregation of platelets to endothelium-denudated aortic

valves contributes to the mineralization process of aortic valve through production of LPA

[90]. Platelets derived adenosine diphosphate can induce the release of ATX by valve

interstitial cells through P2RY1 receptors [90]. In turn, ATX binding to glycoprotein IIb/IIIa

(also known as integrin αIIbβ3) of platelets can promote the production of LPA during this

osteogenic process [90]. Both ex vivo and in vitro studies suggested that down regulation of

the LPP3 gene can promote the mineralization of aortic valves [91]. Medical interventions

targeting ATX and LPA1 have been suggested for treatment of CAVD.

7 Targeted ATX-LPA therapy

So far, no treatment targeting the ATX-LPA axis in CVDs has been fully developed.

However, pharmacological approaches targeting this pathway in other pathological

conditions, such as pulmonary and liver fibrosis, have been suggested (summarized below

and in Table 2). These examples of therapeutic approaches could potentially be developed

for the treatment of CVDs.

185

7.1. ATX inhibitors

Several ATX inhibitors have been evaluated in animal models and phase 2 clinical trials

(Table 2). For example, EX_31, an orally administered ATX inhibitor, reduced plasma LPA

by 95% in a rat model of liver fibrosis [92]. However, EX_31 had no impact on markers of

inflammation and fibrosis in rat models of advanced fibrosis [92]. PF-8380 is one of the few

ATX inhibitors tested for the treatment of CVDs. This compound was assessed in a mouse

model of cardiomyopathy induced by a high fat diet [93]. Blood ATX activity, plasma LPA

levels, and cardiovascular symptoms were decreased in mice orally administered PF-8380

compared to non-treated mice [93].

A phase 2 clinical trial of idiopathic pulmonary fibrosis has been completed using the ATX

inhibitor GLPG1690 [94]. In this study, idiopathic pulmonary fibrosis patients were

administered GLPG1690 or a placebo. Participants who received GLPG1690 showed lower

18:2 LPA blood levels compared to the group who received placebo. Although not

significant, treatment of idiopathic pulmonary fibrosis patients with GLPG1690 for 12 weeks

slightly improved forced vital capacity when compared to the group who received placebo.

These studies only suggest that ATX inhibitors can decrease blood LPA levels. Further

clinical studies are required to determine whether those ATX inhibitors can halt or slow

disease progression.

186

7.2. LPA sequestration

Systemic injection of anti-LPA antibodies was shown to reduce inflammation and

neurodegeneration in a zebrafish and in a mouse model of spinal cord lesion [95]. Mice

administered anti-LPA antibodies showed improved motor functions after spinal cord lesion

compared to non-treated mice [95]. LPA antibodies also diminished brain tissue damage and

inflammation in a mouse model of traumatic brain injury [96]. These studies suggest that

LPA antibody could be used to minimize injury-mediated neurone death and its associated

neurological dysfunctions.

7.3. LPA degradation

A genome-wide study highlighted a relation between CADs and the PPAP2B gene coding

for LPP3 [74]. Tetracyclines were shown in vitro to increase LPP1 and LPP3 cell surface

expression in malignant and non-malignant cell lines [73]. Interestingly, doxycycline

administration to rats accelerated the clearance of LPA from the circulation [73]. Enhancing

LPA degradation by vascular cells is a potential therapeutic option to reduce atherosclerotic

plaque development. Further studies are required to seriously evaluate the merits of this

strategy.

7.4. LPA receptors

The LPA1/3 antagonist Ki16425 has been used to study LPA signalling in CVDs [44] and

LPA-mediated responses in vascular wall cells [55]. So far Ki16425 has been used only in

preclinical studies. Other selective LPA1 antagonists such as ONO-7300243 [97] and ONO-

0300302 [98] have been tested for the treatment of benign prostatic hyperplasia and been

reported to reduce LPA-mediated increase in intraurethral pressure in rats and dogs.

Other LPAR antagonists have been evaluated in clinical trials. The LPA1 antagonist BMS-

986020 was used in a phase 2 clinical trial for the treatment of idiopathic pulmonary fibrosis

[99]. Patients receiving BMS-986020 showed a slower rate in respiratory capability decline

compared to the group administered placebo. However, the study was terminated before

completion due to serious side effects. On the other hand, a phase 2 clinical trials with another

LPA1/3 antagonist SAR100842 has been completed for the treatment of systemic sclerosis,

187

a disease characterized by skin fibrosis [100]. Transcription of LPA-induced genes

(plasminogen activator inhibitor-1, Wnt-2, and sFRP-4) was attenuated in skin samples of

patients administered SAR100842. No significant clinical improvement was achieved

compared to the control group [100]. However, it should be highlighted that the phase 2

clinical trials mentioned above have several limitations including the duration of the

treatments and the size of the cohorts (Table 2). Further studies are required to assess the

beneficial effects of those compounds for the treatment of fibrotic diseases.

8 Conclusions

Taking together, emerging evidence shows that the ATX-LPA axis is involved in CVD

development through: (1) production of pro-inflammatory cytokines and mediators, (2)

neointima formation, (3) immune cells recruitment, and (4) oxidized phospholipids uptake.

All those actions are involved in and associated to atherosclerosis development and increased

risk of atherothrombosis. Therefore, ATX and LPARs, especially LPA1, are potential targets

to mitigate the development of CVDs. Since the ATX-LPA axis is druggable, future studies

should evaluate whether ATX inhibitors and LPAR antagonists represent promising

strategies for preventing CVDs such as atherosclerosis and CAVD.

Acknowledgements

This project was supported by a research grant from the Canadian Institutes for Health

Research (MOP-142210). YZ is supported by the scholarship from China Scholarship

Council (CSC).

Disclosure statement

The authors have declared no conflicts of interest.

9 References

[1] A.L. Bolen, A.P. Naren, S. Yarlagadda, S. Beranova-Giorgianni, L. Chen, D. Norman,

D.L. Baker, M.M. Rowland, M.D. Best, T. Sano, T. Tsukahara, K. Liliom, Y. Igarashi, G.

Tigyi, The phospholipase A1 activity of lysophospholipase A-I links platelet activation to

LPA production during blood coagulation, J. Lipid Res. 52(5) (2011) 958-70.

[2] A. Tokumura, J. Sinomiya, S. Kishimoto, T. Tanaka, K. Kogure, T. Sugiura, K. Satouchi,

K. Waku, K. Fukuzawa, Human platelets respond differentially to lysophosphatidic acids

188

having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids,

Biochem. J. 365(Pt 3) (2002) 617-28.

[3] K. Bandoh, J. Aoki, A. Taira, M. Tsujimoto, H. Arai, K. Inoue, Lysophosphatidic acid

(LPA) receptors of the EDG family are differentially activated by LPA species. Structure-

activity relationship of cloned LPA receptors, FEBS Lett. 478(1-2) (2000) 159-65.

[4] K. Yanagida, K. Masago, H. Nakanishi, Y. Kihara, F. Hamano, Y. Tajima, R. Taguchi,

T. Shimizu, S. Ishii, Identification and characterization of a novel lysophosphatidic acid

receptor, p2y5/LPA6, J. Biol. Chem. 284(26) (2009) 17731-41.

[5] K. Noguchi, S. Ishii, T. Shimizu, Identification of p2y9/GPR23 as a novel G protein-

coupled receptor for lysophosphatidic acid, structurally distant from the Edg family, J. Biol.

Chem. 278(28) (2003) 25600-6.

[6] S. Okudaira, H. Yukiura, J. Aoki, Biological roles of lysophosphatidic acid signaling

through its production by autotaxin, Biochimie 92(6) (2010) 698-706.

[7] J.H. Hecht, J.A. Weiner, S.R. Post, J. Chun, Ventricular zone gene-1 (vzg-1) encodes a

lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral

cortex, J. Cell Biol. 135(4) (1996) 1071-83.

[8] S. An, T. Bleu, O.G. Hallmark, E.J. Goetzl, Characterization of a novel subtype of human

G protein-coupled receptor for lysophosphatidic acid, J. Biol. Chem. 273(14) (1998) 7906-

10.

[9] K. Bandoh, J. Aoki, H. Hosono, S. Kobayashi, T. Kobayashi, K. Murakami-Murofushi,

M. Tsujimoto, H. Arai, K. Inoue, Molecular cloning and characterization of a novel human

G-protein-coupled receptor, EDG7, for lysophosphatidic acid, J. Biol. Chem. 274(39) (1999)

27776-85.

[10] J. Aoki, A. Inoue, S. Okudaira, Two pathways for lysophosphatidic acid production,

Biochim. Biophys. Acta 1781(9) (2008) 513-8.

[11] M.L. Stracke, H.C. Krutzsch, E.J. Unsworth, A. Arestad, V. Cioce, E. Schiffmann, L.A.

Liotta, Identification, purification, and partial sequence analysis of autotaxin, a novel

motility-stimulating protein, J. Biol. Chem. 267(4) (1992) 2524-9.

[12] Z. Fulkerson, T. Wu, M. Sunkara, C.V. Kooi, A.J. Morris, S.S. Smyth, Binding of

autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian

cells, J. Biol. Chem. 286(40) (2011) 34654-63.

[13] S. Emoto, M. Kurano, K. Kano, K. Matsusaki, H. Yamashita, M. Nishikawa, K. Igarashi,

H. Ikeda, J. Aoki, J. Kitayama, Y. Yatomi, Analysis of glycero-lysophospholipids in gastric

cancerous ascites, J. Lipid Res. 58(4) (2017) 763-771.

[14] L.A. van Meeteren, W.H. Moolenaar, Regulation and biological activities of the

autotaxin-LPA axis, Prog Lipid Res 46(2) (2007) 145-60.

[15] A. Tokumura, E. Majima, Y. Kariya, K. Tominaga, K. Kogure, K. Yasuda, K.

Fukuzawa, Identification of human plasma lysophospholipase D, a lysophosphatidic acid-

producing enzyme, as autotaxin, a multifunctional phosphodiesterase, J. Biol. Chem. 277(42)

(2002) 39436-42.

[16] S.S. Smyth, P. Mueller, F. Yang, J.A. Brandon, A.J. Morris, Arguing the case for the

autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the

development and complications of atherosclerosis, Arterioscler Thromb Vasc Biol 34(3)

(2014) 479-86.

[17] R. Leblanc, S.C. Lee, M. David, J.C. Bordet, D.D. Norman, R. Patil, D. Miller, D. Sahay,

J. Ribeiro, P. Clezardin, G.J. Tigyi, O. Peyruchaud, Interaction of platelet-derived autotaxin

189

with tumor integrin alphaVbeta3 controls metastasis of breast cancer cells to bone, Blood

124(20) (2014) 3141-50.

[18] J. Aoki, A. Taira, Y. Takanezawa, Y. Kishi, K. Hama, T. Kishimoto, K. Mizuno, K.

Saku, R. Taguchi, H. Arai, Serum lysophosphatidic acid is produced through diverse

phospholipase pathways, J. Biol. Chem. 277(50) (2002) 48737-44.

[19] O. Fourcade, M.F. Simon, C. Viode, N. Rugani, F. Leballe, A. Ragab, B. Fournie, L.

Sarda, H. Chap, Secretory phospholipase A2 generates the novel lipid mediator

lysophosphatidic acid in membrane microvesicles shed from activated cells, Cell 80(6)

(1995) 919-27.

[20] J.L. Tomsig, A.H. Snyder, E.V. Berdyshev, A. Skobeleva, C. Mataya, V. Natarajan,

D.N. Brindley, K.R. Lynch, Lipid phosphate phosphohydrolase type 1 (LPP1) degrades

extracellular lysophosphatidic acid in vivo, Biochem. J. 419(3) (2009) 611-8.

[21] M. Retzer, M. Essler, Lysophosphatidic acid-induced platelet shape change proceeds

via Rho/Rho kinase-mediated myosin light-chain and moesin phosphorylation, Cell. Signal.

12(9-10) (2000) 645-8.

[22] W. Siess, K.J. Zangl, M. Essler, M. Bauer, R. Brandl, C. Corrinth, R. Bittman, G. Tigyi,

M. Aepfelbacher, Lysophosphatidic acid mediates the rapid activation of platelets and

endothelial cells by mildly oxidized low density lipoprotein and accumulates in human

atherosclerotic lesions, Proc Natl Acad Sci U S A 96(12) (1999) 6931-6.

[23] N. Haseruck, W. Erl, D. Pandey, G. Tigyi, P. Ohlmann, C. Ravanat, C. Gachet, W. Siess,

The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte

aggregate formation in whole blood: involvement of P2Y1 and P2Y12 receptors, Blood

103(7) (2004) 2585-92.

[24] O.E. Olorundare, O. Peyruchaud, R.M. Albrecht, D.F. Mosher, Assembly of a

fibronectin matrix by adherent platelets stimulated by lysophosphatidic acid and other

agonists, Blood 98(1) (2001) 117-24.

[25] E. Rother, R. Brandl, D.L. Baker, P. Goyal, H. Gebhard, G. Tigyi, W. Siess, Subtype-

selective antagonists of lysophosphatidic Acid receptors inhibit platelet activation triggered

by the lipid core of atherosclerotic plaques, Circulation 108(6) (2003) 741-7.

[26] J.R. Williams, A.L. Khandoga, P. Goyal, J.I. Fells, D.H. Perygin, W. Siess, A.L. Parrill,

G. Tigyi, Y. Fujiwara, Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate

receptor indicates role in human platelet activation, J. Biol. Chem. 284(25) (2009) 17304-19.

[27] Z. Zhou, P. Subramanian, G. Sevilmis, B. Globke, O. Soehnlein, E. Karshovska, R.

Megens, K. Heyll, J. Chun, J.S. Saulnier-Blache, M. Reinholz, M. van Zandvoort, C. Weber,

A. Schober, Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing

CXCL1 from the endothelium, Cell Metab 13(5) (2011) 592-600.

[28] C.I. Lin, C.N. Chen, M.T. Huang, S.J. Lee, C.H. Lin, C.C. Chang, H. Lee,

Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation

in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR

transactivation-dependent mechanisms, Cell. Signal. 20(10) (2008) 1804-14.

[29] H. Shimada, L.E. Rajagopalan, Rho kinase-2 activation in human endothelial cells drives

lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-kappaB p65,

J. Biol. Chem. 285(17) (2010) 12536-42.

[30] C. Rizza, N. Leitinger, J. Yue, D.J. Fischer, D.A. Wang, P.T. Shih, H. Lee, G. Tigyi,

J.A. Berliner, Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction, Lab.

Invest. 79(10) (1999) 1227-35.

190

[31] C.I. Lin, C.N. Chen, P.W. Lin, K.J. Chang, F.J. Hsieh, H. Lee, Lysophosphatidic acid

regulates inflammation-related genes in human endothelial cells through LPA1 and LPA3,

Biochem. Biophys. Res. Commun. 363(4) (2007) 1001-8.

[32] C.I. Lin, C.N. Chen, J.H. Chen, H. Lee, Lysophospholipids increase IL-8 and MCP-1

expressions in human umbilical cord vein endothelial cells through an IL-1-dependent

mechanism, J. Cell. Biochem. 99(4) (2006) 1216-32.

[33] R.E. Gerszten, E.A. Garcia-Zepeda, Y.C. Lim, M. Yoshida, H.A. Ding, M.A. Gimbrone,

Jr., A.D. Luster, F.W. Luscinskas, A. Rosenzweig, MCP-1 and IL-8 trigger firm adhesion of

monocytes to vascular endothelium under flow conditions, Nature 398(6729) (1999) 718-23.

[34] H. Lee, E.J. Goetzl, S. An, Lysophosphatidic acid and sphingosine 1-phosphate

stimulate endothelial cell wound healing, Am. J. Physiol. Cell Physiol. 278(3) (2000) C612-

8.

[35] C.I. Lin, C.N. Chen, M.T. Huang, S.J. Lee, C.H. Lin, C.C. Chang, H. Lee,

Lysophosphatidic acid up-regulates vascular endothelial growth factor-C and lymphatic

marker expressions in human endothelial cells, Cell. Mol. Life Sci. 65(17) (2008) 2740-51.

[36] B. Ren, J. Hale, S. Srikanthan, R.L. Silverstein, Lysophosphatidic acid suppresses

endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent

signaling pathway, Blood 117(22) (2011) 6036-45.

[37] C.M. Rivera-Lopez, A.L. Tucker, K.R. Lynch, Lysophosphatidic acid (LPA) and

angiogenesis, Angiogenesis 11(3) (2008) 301-10.

[38] R. Di Stefano, F. Felice, A. Balbarini, Angiogenesis as risk factor for plaque

vulnerability, Curr. Pharm. Des. 15(10) (2009) 1095-106.

[39] N.A. Neidlinger, S.K. Larkin, A. Bhagat, G.P. Victorino, F.A. Kuypers, Hydrolysis of

phosphatidylserine-exposing red blood cells by secretory phospholipase A2 generates

lysophosphatidic acid and results in vascular dysfunction, J. Biol. Chem. 281(2) (2006) 775-

81.

[40] W.T. Wu, C.N. Chen, C.I. Lin, J.H. Chen, H. Lee, Lysophospholipids enhance matrix

metalloproteinase-2 expression in human endothelial cells, Endocrinology 146(8) (2005)

3387-400.

[41] P.T. Dancs, E. Ruisanchez, A. Balogh, C.R. Panta, Z. Miklos, R.M. Nusing, J. Aoki, J.

Chun, S. Offermanns, G. Tigyi, Z. Benyo, LPA1 receptor-mediated thromboxane A2 release

is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction,

FASEB J. 31(4) (2017) 1547-1555.

[42] E. Ruisanchez, P. Dancs, M. Kerek, T. Nemeth, B. Farago, A. Balogh, R. Patil, B.L.

Jennings, K. Liliom, K.U. Malik, A.V. Smrcka, G. Tigyi, Z. Benyo, Lysophosphatidic acid

induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric

oxide synthase, FASEB J. 28(2) (2014) 880-90.

[43] L. Jonasson, J. Holm, O. Skalli, G. Bondjers, G.K. Hansson, Regional accumulations of

T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque,

Arteriosclerosis 6(2) (1986) 131-8.

[44] P. Subramanian, E. Karshovska, P. Reinhard, R.T. Megens, Z. Zhou, S. Akhtar, U.

Schumann, X. Li, M. van Zandvoort, C. Ludin, C. Weber, A. Schober, Lysophosphatidic acid

receptors LPA1 and LPA3 promote CXCL12-mediated smooth muscle progenitor cell

recruitment in neointima formation, Circ Res 107(1) (2010) 96-105.

[45] U. Kaneyuki, S. Ueda, S. Yamagishi, S. Kato, T. Fujimura, R. Shibata, A. Hayashida, J.

Yoshimura, M. Kojiro, K. Oshima, S. Okuda, Pitavastatin inhibits lysophosphatidic acid-

induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth

191

muscle cells by suppressing Rac-1-mediated reactive oxygen species generation, Vascul

Pharmacol 46(4) (2007) 286-92.

[46] F. Hao, M. Tan, D.D. Wu, X. Xu, M.Z. Cui, LPA induces IL-6 secretion from aortic

smooth muscle cells via an LPA1-regulated, PKC-dependent, and p38alpha-mediated

pathway, Am. J. Physiol. Heart Circ. Physiol. 298(3) (2010) H974-83.

[47] L. Bao, J. Qi, Y.W. Wang, Q. Xi, T. Tserennadmid, P.F. Zhao, J. Qi, A. Damirin, The

atherogenic actions of LPC on vascular smooth muscle cells and its LPA receptor mediated

mechanism, Biochem. Biophys. Res. Commun. 503(3) (2018) 1911-1918.

[48] M.Z. Cui, G. Zhao, A.L. Winokur, E. Laag, J.R. Bydash, M.S. Penn, G.M. Chisolm, X.

Xu, Lysophosphatidic acid induction of tissue factor expression in aortic smooth muscle

cells, Arterioscler Thromb Vasc Biol 23(2) (2003) 224-30.

[49] M.B. Taubman, L. Wang, C. Miller, The role of smooth muscle derived tissue factor in

mediating thrombosis and arterial injury, Thromb Res 122 Suppl 1 (2008) S78-81.

[50] J. Kim, J.R. Keys, A.D. Eckhart, Vascular smooth muscle migration and proliferation

in response to lysophosphatidic acid (LPA) is mediated by LPA receptors coupling to Gq,

Cell. Signal. 18(10) (2006) 1695-701.

[51] A. Gaaya, O. Poirier, N. Mougenot, T. Hery, F. Atassi, A. Marchand, J.S. Saulnier-

Blache, J. Amour, J. Vogt, A.M. Lompre, F. Soubrier, S. Nadaud, Plasticity-related gene-1

inhibits lysophosphatidic acid-induced vascular smooth muscle cell migration and

proliferation and prevents neointima formation, Am. J. Physiol. Cell Physiol. 303(10) (2012)

C1104-14.

[52] M.Z. Cui, E. Laag, L. Sun, M. Tan, G. Zhao, X. Xu, Lysophosphatidic acid induces

early growth response gene 1 expression in vascular smooth muscle cells: CRE and SRE

mediate the transcription, Arterioscler Thromb Vasc Biol 26(5) (2006) 1029-35.

[53] M. Fueller, D.A. Wang, G. Tigyi, W. Siess, Activation of human monocytic cells by

lysophosphatidic acid and sphingosine-1-phosphate, Cell. Signal. 15(4) (2003) 367-75.

[54] F. D'Aquilio, M. Procaccini, V. Izzi, V. Chiurchiu, V. Giambra, F. Carotenuto, P. Di

Nardo, P.M. Baldini, Activatory properties of lysophosphatidic acid on human THP-1 cells,

Inflammation 30(5) (2007) 167-77.

[55] C.L. Chang, M.E. Lin, H.Y. Hsu, C.L. Yao, S.M. Hwang, C.Y. Pan, C.Y. Hsu, H. Lee,

Lysophosphatidic acid-induced interleukin-1 beta expression is mediated through Gi/Rho

and the generation of reactive oxygen species in macrophages, J. Biomed. Sci. 15(3) (2008)

357-63.

[56] R. Ray, V. Rai, Lysophosphatidic acid converts monocytes into macrophages in both

mice and humans, Blood 129(9) (2017) 1177-1183.

[57] L. Chen, J. Zhang, X. Deng, Y. Liu, X. Yang, Q. Wu, C. Yu, Lysophosphatidic acid

directly induces macrophage-derived foam cell formation by blocking the expression of

SRBI, Biochem. Biophys. Res. Commun. 491(3) (2017) 587-594.

[58] S.S. Barbieri, S. Eligini, M. Brambilla, E. Tremoli, S. Colli, Reactive oxygen species

mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: critical

role of NADPH oxidase, Cardiovasc Res 60(1) (2003) 187-97.

[59] C.L. Chang, H.Y. Hsu, H.Y. Lin, W. Chiang, H. Lee, Lysophosphatidic acid-induced

oxidized low-density lipoprotein uptake is class A scavenger receptor-dependent in

macrophages, Prostaglandins Other Lipid Mediat 87(1-4) (2008) 20-5.

[60] J. Llodra, V. Angeli, J. Liu, E. Trogan, E.A. Fisher, G.J. Randolph, Emigration of

monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not

progressive, plaques, Proc Natl Acad Sci U S A 101(32) (2004) 11779-84.

192

[61] C. Gu, F. Wang, Z. Zhao, H. Wang, X. Cong, X. Chen, Lysophosphatidic Acid Is

Associated with Atherosclerotic Plaque Instability by Regulating NF-κB Dependent Matrix

Metalloproteinase-9 Expression via LPA(2) in Macrophages, Front Physiol 8 (2017) 266.

[62] A. Abdel-Latif, P.M. Heron, A.J. Morris, S.S. Smyth, Lysophospholipids in coronary

artery and chronic ischemic heart disease, Curr Opin Lipidol 26(5) (2015) 432-7.

[63] A. Schober, W. Siess, Lysophosphatidic acid in atherosclerotic diseases, Br. J.

Pharmacol. 167(3) (2012) 465-82.

[64] E. Im, R. Motiejunaite, J. Aranda, E.Y. Park, L. Federico, T.I. Kim, T. Clair, M.L.

Stracke, S. Smyth, A. Kazlauskas, Phospholipase Cgamma activation drives increased

production of autotaxin in endothelial cells and lysophosphatidic acid-dependent regression,

Mol. Cell. Biol. 30(10) (2010) 2401-10.

[65] S. Li, J. Zhang, Lipopolysaccharide induces autotaxin expression in human monocytic

THP-1 cells, Biochem. Biophys. Res. Commun. 378(2) (2009) 264-8.

[66] S.A. Jethwa, E.J. Leah, Q. Zhang, N.A. Bright, D. Oxley, M.D. Bootman, S.A. Rudge,

M.J. Wakelam, Exosomes bind to autotaxin and act as a physiological delivery mechanism

to stimulate LPA receptor signalling in cells, J. Cell Sci. 129(20) (2016) 3948-3957.

[67] N. Cloutier, A. Pare, R.W. Farndale, H.R. Schumacher, P.A. Nigrovic, S. Lacroix, E.

Boilard, Platelets can enhance vascular permeability, Blood 120(6) (2012) 1334-43.

[68] E. Boilard, P.A. Nigrovic, K. Larabee, G.F. Watts, J.S. Coblyn, M.E. Weinblatt, E.M.

Massarotti, E. Remold-O'Donnell, R.W. Farndale, J. Ware, D.M. Lee, Platelets amplify

inflammation in arthritis via collagen-dependent microparticle production, Science

327(5965) (2010) 580-3.

[69] A.S. Leroyer, H. Isobe, G. Leseche, Y. Castier, M. Wassef, Z. Mallat, B.R. Binder, A.

Tedgui, C.M. Boulanger, Cellular origins and thrombogenic activity of microparticles

isolated from human atherosclerotic plaques, J. Am. Coll. Cardiol. 49(7) (2007) 772-7.

[70] Z. Pamuklar, L. Federico, S. Liu, M. Umezu-Goto, A. Dong, M. Panchatcharam, Z.

Fulkerson, E. Berdyshev, V. Natarajan, X. Fang, L.A. van Meeteren, W.H. Moolenaar, G.B.

Mills, A.J. Morris, S.S. Smyth, Autotaxin/lysopholipase D and lysophosphatidic acid

regulate murine hemostasis and thrombosis, J. Biol. Chem. 284(11) (2009) 7385-94.

[71] C. Zhang, D.L. Baker, S. Yasuda, N. Makarova, L. Balazs, L.R. Johnson, G.K. Marathe,

T.M. McIntyre, Y. Xu, G.D. Prestwich, H.S. Byun, R. Bittman, G. Tigyi, Lysophosphatidic

acid induces neointima formation through PPARgamma activation, J. Exp. Med. 199(6)

(2004) 763-74.

[72] X. Tang, Y.Y. Zhao, J. Dewald, J.M. Curtis, D.N. Brindley, Tetracyclines increase lipid

phosphate phosphatase expression on plasma membranes and turnover of plasma

lysophosphatidate, J. Lipid Res. 57(4) (2016) 597-606.

[73] H. Schunkert, I.R. Konig, S. Kathiresan, M.P. Reilly, T.L. Assimes, H. Holm, M. Preuss,

A.F. Stewart, M. Barbalic, C. Gieger, D. Absher, Z. Aherrahrou, H. Allayee, D. Altshuler,

S.S. Anand, K. Andersen, J.L. Anderson, D. Ardissino, S.G. Ball, A.J. Balmforth, T.A.

Barnes, D.M. Becker, L.C. Becker, K. Berger, J.C. Bis, S.M. Boekholdt, E. Boerwinkle, P.S.

Braund, M.J. Brown, M.S. Burnett, I. Buysschaert, J.F. Carlquist, L. Chen, S. Cichon, V.

Codd, R.W. Davies, G. Dedoussis, A. Dehghan, S. Demissie, J.M. Devaney, P. Diemert, R.

Do, A. Doering, S. Eifert, N.E. Mokhtari, S.G. Ellis, R. Elosua, J.C. Engert, S.E. Epstein, U.

de Faire, M. Fischer, A.R. Folsom, J. Freyer, B. Gigante, D. Girelli, S. Gretarsdottir, V.

Gudnason, J.R. Gulcher, E. Halperin, N. Hammond, S.L. Hazen, A. Hofman, B.D. Horne, T.

Illig, C. Iribarren, G.T. Jones, J.W. Jukema, M.A. Kaiser, L.M. Kaplan, J.J. Kastelein, K.T.

Khaw, J.W. Knowles, G. Kolovou, A. Kong, R. Laaksonen, D. Lambrechts, K. Leander, G.

193

Lettre, M. Li, W. Lieb, C. Loley, A.J. Lotery, P.M. Mannucci, S. Maouche, N. Martinelli,

P.P. McKeown, C. Meisinger, T. Meitinger, O. Melander, P.A. Merlini, V. Mooser, T.

Morgan, T.W. Muhleisen, J.B. Muhlestein, T. Munzel, K. Musunuru, J. Nahrstaedt, C.P.

Nelson, M.M. Nothen, O. Olivieri, R.S. Patel, C.C. Patterson, A. Peters, F. Peyvandi, L. Qu,

A.A. Quyyumi, D.J. Rader, L.S. Rallidis, C. Rice, F.R. Rosendaal, D. Rubin, V. Salomaa,

M.L. Sampietro, M.S. Sandhu, E. Schadt, A. Schafer, A. Schillert, S. Schreiber, J.

Schrezenmeir, S.M. Schwartz, D.S. Siscovick, M. Sivananthan, S. Sivapalaratnam, A. Smith,

T.B. Smith, J.D. Snoep, N. Soranzo, J.A. Spertus, K. Stark, K. Stirrups, M. Stoll, W.H. Tang,

S. Tennstedt, G. Thorgeirsson, G. Thorleifsson, M. Tomaszewski, A.G. Uitterlinden, A.M.

van Rij, B.F. Voight, N.J. Wareham, G.A. Wells, H.E. Wichmann, P.S. Wild, C. Willenborg,

J.C. Witteman, B.J. Wright, S. Ye, T. Zeller, A. Ziegler, F. Cambien, A.H. Goodall, L.A.

Cupples, T. Quertermous, W. Marz, C. Hengstenberg, S. Blankenberg, W.H. Ouwehand,

A.S. Hall, P. Deloukas, J.R. Thompson, K. Stefansson, R. Roberts, U. Thorsteinsdottir, C.J.

O'Donnell, R. McPherson, J. Erdmann, N.J. Samani, Large-scale association analysis

identifies 13 new susceptibility loci for coronary artery disease, Nat. Genet. 43(4) (2011)

333-8.

[74] M. Navab, G. Hough, G.M. Buga, F. Su, A.C. Wagner, D. Meriwether, A.

Chattopadhyay, F. Gao, V. Grijalva, J.S. Danciger, B.J. Van Lenten, E. Org, A.J. Lusis, C.

Pan, G.M. Anantharamaiah, R. Farias-Eisner, S.S. Smyth, S.T. Reddy, A.M. Fogelman,

Transgenic 6F tomatoes act on the small intestine to prevent systemic inflammation and

dyslipidemia caused by Western diet and intestinally derived lysophosphatidic acid, J. Lipid

Res. 54(12) (2013) 3403-18.

[75] M. Navab, A. Chattopadhyay, G. Hough, D. Meriwether, S.I. Fogelman, A.C. Wagner,

V. Grijalva, F. Su, G.M. Anantharamaiah, L.H. Hwang, K.F. Faull, S.T. Reddy, A.M.

Fogelman, Source and role of intestinally derived lysophosphatidic acid in dyslipidemia and

atherosclerosis, J. Lipid Res. 56(4) (2015) 871-87.

[76] L. Menegaut, D. Masson, N. Abello, D. Denimal, C. Truntzer, P. Ducoroy, L. Lagrost,

J.P. Pais de Barros, A. Athias, J.M. Petit, L. Martin, E. Steinmetz, B. Kretz, Specific

enrichment of 2-arachidonoyl-lysophosphatidylcholine in carotid atheroma plaque from type

2 diabetic patients, Atherosclerosis 251 (2016) 339-347.

[77] Z.B. Zhou, B. Yang, X. Li, H. Liu, G. Lei, Lysophosphatidic Acid Promotes Expression

and Activation of Matrix Metalloproteinase 9 (MMP9) in THP-1 Cells via Toll-Like

Receptor 4/Nuclear Factor-kappaB (TLR4/NF-kappaB) Signaling Pathway, Med Sci Monit

24 (2018) 4861-4868.

[78] T. Dohi, K. Miyauchi, R. Ohkawa, K. Nakamura, M. Kurano, T. Kishimoto, N.

Yanagisawa, M. Ogita, T. Miyazaki, A. Nishino, K. Yaginuma, H. Tamura, T. Kojima, K.

Yokoyama, T. Kurata, K. Shimada, H. Daida, Y. Yatomi, Increased lysophosphatidic acid

levels in culprit coronary arteries of patients with acute coronary syndrome, Atherosclerosis

229(1) (2013) 192-7.

[79] M.J. Nsaibia, A. Mahmut, M.C. Boulanger, B.J. Arsenault, R. Bouchareb, S. Simard,

J.L. Witztum, M.A. Clavel, P. Pibarot, Y. Bosse, S. Tsimikas, P. Mathieu, Autotaxin interacts

with lipoprotein(a) and oxidized phospholipids in predicting the risk of calcific aortic valve

stenosis in patients with coronary artery disease, J Intern Med 280(5) (2016) 509-517.

[80] M. Kurano, K. Kano, T. Dohi, H. Matsumoto, K. Igarashi, M. Nishikawa, R. Ohkawa,

H. Ikeda, K. Miyauchi, H. Daida, J. Aoki, Y. Yatomi, Different origins of lysophospholipid

mediators between coronary and peripheral arteries in acute coronary syndrome, J. Lipid Res.

58(2) (2017) 433-442.

194

[81] M. Kurano, A. Suzuki, A. Inoue, Y. Tokuhara, K. Kano, H. Matsumoto, K. Igarashi, R.

Ohkawa, K. Nakamura, T. Dohi, K. Miyauchi, H. Daida, K. Tsukamoto, H. Ikeda, J. Aoki,

Y. Yatomi, Possible involvement of minor lysophospholipids in the increase in plasma

lysophosphatidic acid in acute coronary syndrome, Arterioscler Thromb Vasc Biol 35(2)

(2015) 463-70.

[82] N. Cote, A. Mahmut, D. Fournier, M.C. Boulanger, C. Couture, J.P. Despres, S. Trahan,

Y. Bosse, S. Page, P. Pibarot, P. Mathieu, Angiotensin receptor blockers are associated with

reduced fibrosis and interleukin-6 expression in calcific aortic valve disease, Pathobiology

81(1) (2014) 15-24.

[83] G. Thanassoulis, C.Y. Campbell, D.S. Owens, J.G. Smith, A.V. Smith, G.M. Peloso,

K.F. Kerr, S. Pechlivanis, M.J. Budoff, T.B. Harris, R. Malhotra, K.D. O'Brien, P.R.

Kamstrup, B.G. Nordestgaard, A. Tybjaerg-Hansen, M.A. Allison, T. Aspelund, M.H.

Criqui, S.R. Heckbert, S.J. Hwang, Y. Liu, M. Sjogren, J. van der Pals, H. Kalsch, T.W.

Muhleisen, M.M. Nothen, L.A. Cupples, M. Caslake, E. Di Angelantonio, J. Danesh, J.I.

Rotter, S. Sigurdsson, Q. Wong, R. Erbel, S. Kathiresan, O. Melander, V. Gudnason, C.J.

O'Donnell, W.S. Post, Genetic associations with valvular calcification and aortic stenosis, N

Engl J Med 368(6) (2013) 503-12.

[84] P.R. Kamstrup, A. Tybjaerg-Hansen, B.G. Nordestgaard, Elevated lipoprotein(a) and

risk of aortic valve stenosis in the general population, J. Am. Coll. Cardiol. 63(5) (2014) 470-

7.

[85] B.J. Arsenault, S.M. Boekholdt, M.P. Dube, E. Rheaume, N.J. Wareham, K.T. Khaw,

M.S. Sandhu, J.C. Tardif, Lipoprotein(a) levels, genotype, and incident aortic valve stenosis:

a prospective Mendelian randomization study and replication in a case-control cohort, Circ

Cardiovasc Genet 7(3) (2014) 304-10.

[86] R. Bouchareb, A. Mahmut, M.J. Nsaibia, M.C. Boulanger, A. Dahou, J.L. Lepine, M.H.

Laflamme, F. Hadji, C. Couture, S. Trahan, S. Page, Y. Bosse, P. Pibarot, C.A. Scipione, R.

Romagnuolo, M.L. Koschinsky, B.J. Arsenault, A. Marette, P. Mathieu, Autotaxin Derived

From Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization

of the Aortic Valve, Circulation 132(8) (2015) 677-90.

[87] M.J. Nsaibia, M.C. Boulanger, R. Bouchareb, G. Mkannez, K. Le Quang, F. Hadji, D.

Argaud, A. Dahou, Y. Bosse, M.L. Koschinsky, P. Pibarot, B.J. Arsenault, A. Marette, P.

Mathieu, OxLDL-derived lysophosphatidic acid promotes the progression of aortic valve

stenosis through a LPAR1-RhoA-NF-kappaB pathway, Cardiovasc Res 113(11) (2017)

1351-1363.

[88] A. Mahmut, M.C. Boulanger, D. El Husseini, D. Fournier, R. Bouchareb, J.P. Despres,

P. Pibarot, Y. Bosse, P. Mathieu, Elevated expression of lipoprotein-associated

phospholipase A2 in calcific aortic valve disease: implications for valve mineralization, J.

Am. Coll. Cardiol. 63(5) (2014) 460-9.

[89] M. Torzewski, A. Ravandi, C. Yeang, A. Edel, R. Bhindi, S. Kath, L. Twardowski, J.

Schmid, X. Yang, U.F.W. Franke, J.L. Witztum, S. Tsimikas, Lipoprotein(a) Associated

Molecules are Prominent Components in Plasma and Valve Leaflets in Calcific Aortic Valve

Stenosis, JACC Basic Transl Sci 2(3) (2017) 229-240.

[90] R. Bouchareb, M.C. Boulanger, L. Tastet, G. Mkannez, M.J. Nsaibia, F. Hadji, A.

Dahou, Y. Messadeq, B.J. Arsenault, P. Pibarot, Y. Bosse, A. Marette, P. Mathieu, Activated

platelets promote an osteogenic programme and the progression of calcific aortic valve

stenosis, Eur Heart J (2018). doi: 10.1093/eurheartj/ehy696

195

[91] G. Mkannez, V. Gagne-Ouellet, M. Jalloul Nsaibia, M.C. Boulanger, M. Rosa, D.

Argaud, F. Hadji, N. Gaudreault, G. Rheaume, L. Bouchard, Y. Bosse, P. Mathieu, DNA

methylation of a PLPP3 MIR transposon-based enhancer promotes an osteogenic programme

in calcific aortic valve disease, Cardiovasc Res 114(11) (2018) 1525-1535.

[92] M. Baader, T. Bretschneider, A. Broermann, J.F. Rippmann, B. Stierstorfer, C.A.

Kuttruff, M. Mark, Characterization of the properties of a selective, orally bioavailable

autotaxin inhibitor in preclinical models of advanced stages of liver fibrosis, Br. J.

Pharmacol. 175(4) (2018) 693-707.

[93] J. Weng, S. Jiang, L. Ding, Y. Xu, X. Zhu, P. Jin, Autotaxin/lysophosphatidic acid

signaling mediates obesity-related cardiomyopathy in mice and human subjects, J. Cell. Mol.

Med. 23(2) (2019) 1050-1058.

[94] T.M. Maher, E.M. van der Aar, O. Van de Steen, L. Allamassey, J. Desrivot, S. Dupont,

L. Fagard, P. Ford, A. Fieuw, W. Wuyts, Safety, tolerability, pharmacokinetics, and

pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary

fibrosis (FLORA): a phase 2a randomised placebo-controlled trial, Lancet Respir Med 6(8)

(2018) 627-635.

[95] Y. Goldshmit, R. Matteo, T. Sztal, F. Ellett, F. Frisca, K. Moreno, D. Crombie, G.J.

Lieschke, P.D. Currie, R.A. Sabbadini, A. Pebay, Blockage of lysophosphatidic acid

signaling improves spinal cord injury outcomes, Am J Pathol 181(3) (2012) 978-92.

[96] P.J. Crack, M. Zhang, M.C. Morganti-Kossmann, A.J. Morris, J.M. Wojciak, J.K.

Fleming, I. Karve, D. Wright, M. Sashindranath, Y. Goldshmit, A. Conquest, M. Daglas,

L.A. Johnston, R.L. Medcalf, R.A. Sabbadini, A. Pebay, Anti-lysophosphatidic acid

antibodies improve traumatic brain injury outcomes, J Neuroinflammation 11 (2014) 37.

[97] M. Terakado, H. Suzuki, K. Hashimura, M. Tanaka, H. Ueda, H. Kohno, T. Fujimoto,

H. Saga, S. Nakade, H. Habashita, Y. Takaoka, T. Seko, Discovery of ONO-7300243 from

a Novel Class of Lysophosphatidic Acid Receptor 1 Antagonists: From Hit to Lead, ACS

Med Chem Lett 7(10) (2016) 913-918.

[98] M. Terakado, H. Suzuki, K. Hashimura, M. Tanaka, H. Ueda, K. Hirai, M. Asada, M.

Ikura, N. Matsunaga, H. Saga, K. Shinozaki, N. Karakawa, Y. Takada, M. Minami, H.

Egashira, Y. Sugiura, M. Yamada, S. Nakade, Y. Takaoka, Discovery of a Slow Tight

Binding LPA1 Antagonist (ONO-0300302) for the Treatment of Benign Prostatic

Hyperplasia, ACS Med Chem Lett 8(12) (2017) 1281-1286.

[99] S.M. Palmer, L. Snyder, J.L. Todd, B. Soule, R. Christian, K. Anstrom, Y. Luo, R.

Gagnon, G. Rosen, Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial of BMS-

986020, a Lysophosphatidic Acid Receptor Antagonist for the Treatment of Idiopathic

Pulmonary Fibrosis, Chest 154(5) (2018) 1061-1069.

[100] Y. Allanore, O. Distler, A. Jagerschmidt, S. Illiano, L. Ledein, E. Boitier, I. Agueusop,

C.P. Denton, D. Khanna, Lysophosphatidic Acid Receptor 1 Antagonist SAR100842 for

Patients With Diffuse Cutaneous Systemic Sclerosis: A Double-Blind, Randomized, Eight-

Week Placebo-Controlled Study Followed by a Sixteen-Week Open-Label Extension Study,

Arthritis Rheumatol 70(10) (2018) 1634-1643.

196

Annexe II :Phosphatidylserine-specific phospholipase

A1: A friend or the devil in disguise

Yang Zhao 1 , Stephan Hasse 1 , Sylvain G Bourgoin 2

Affiliations :

1 Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université

Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval,

Québec, G1V 4G2, Canada.

2 Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université

Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval,

Québec, G1V 4G2, Canada. Electronic address: [email protected].

Keywords: Phosphatidylserine, Lysophosphatidylserine, PLA1A, Lysophosphatidylserine

receptors, Autoimmunity, Cancer

197

1 Abstract

Various human tissues and cells express phospholipase A1 member A (PLA1A), including

the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase

family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-

lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells

or extracellular vesicles is a potential source of substrate for the production of unsaturated

lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells,

dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several

lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum

levels and high PLA1A expression are associated with autoimmune disorders such as Graves'

disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with

metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through

mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is

necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune

response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS

receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune

responses, as well as regulations of immune cells.

198

2 General introduction

Sato et al. named the enzyme phosphatidylserine-specific phospholipase A1 (PS-PLA1) in

1997 [1]. PS-PLA1 specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or

lysophosphatidylserine (lysoPS) [1]. PS-PLA1 has the name phospholipase A1 member A

(PLA1A) in databases. We will use the official HGCN gene nomenclature PLA1A

throughout the review.

Activated rat platelets release two types of lipases having phospholipase A2 (PLA2) and

lysoPS specific lysophospholipase A activities [2]. These lipases come from dense granules

or α-granules rather than the lysosomal compartments [2]. The lysophospholipase activity

hydrolyzes both 1-acyl- and 2-acyl-lysoPS, but no other lysophospholipids [2]. At the same

time, Higashi et al. also partially purified a lysophospholipase from thrombin-activated rat

platelets [3]. The lysophospholipase activity was towards 1-acyl-sn-glycerol-3-phospho-l-

serine but none other lysophospholipids [3]. Yokoyama et al. later reported that platelets

released one protein with phospholipase A1 and lysophospholipase activities [4]. This

enzyme worked with PLA2 to hydrolyze platelet phospholipids during blood clotting [4].

The cDNA sequences encoding rat and human PLA1A were published in 1997 [1,5]. Purified

PLA1A has an apparent molecular weight of 55-kDa on SDS-polyacrylamide gel

electrophoresis [1]. They assessed the enzyme activity towards PS and lysoPS and

highlighted the structural similarity between PLA1A and other mammalian lipases [1]. Nagai

et al. mapped the human PLA1A gene to chromosome 3q13.13–13.2 [6] and PLA1A was

identified as a gene previously named nmd [5]. The murine ortholog of Pla1a localizes to

mouse chromosome 16 [7].

Following PLA1A purification, several studies have assessed its biological functions. For

instance, Aoki et al. reported that the addition of recombinant PLA1A to activated rat

platelets accelerated lysophosphatidic acid (LPA) production, thereby suggesting that

PLA1A could contribute to serum LPA level during blood clotting [8]. PLA1A proteins from

rat, human, and mouse are highly conserved [7]. PLA1A molecular structure, expression, and

hydrolytic activities have been reviewed previously [[9], [10], [11], [12]] and will not be

discussed in depth in this review. There is a growing number of publications on the putative

199

roles of PLA1A in disease states or its cellular functions. The involvements of

lysophospholipids and the potential roles of PLA1A in several diseases, such as acute

coronary syndrome (ACS), atherosclerosis, and gastric cancer, have been reviewed recently

[13]. This review will focus on more recent studies concerning the characterization of

PLA1A, expression in cells, and putative functions in various diseases, including cancer and

autoimmunity.

2.1. PLA1A belongs to the pancreatic lipase family

The pancreatic lipase family consists of six members: PLA1A, membrane-associated

phosphatidic acid-selective phospholipase A1a (mPA-PLA1a), mPA-PLA1b, hepatic lipase,

endothelial lipase, and pancreatic lipase-related protein 2. They are essentially extracellular

PLA1s [14,15]. PLA1A, mPA-PLA1a, and mPA-PLA1b consist of a subfamily with distinct

molecular features (a short lid domain and a deleted β9 domain) that distinguish them from

other lipases [15]. Extracellular PLA1s have no sequence homologies to intracellular PLA1s

and exhibit distinct functions [10]. We will not discuss the structures and roles of intracellular

PLA1s in this review.

The domain structure of pancreatic lipase family members determines their substrate

specificity and the ability to hydrolyze triglyceride and phospholipids. Crucial roles of lid,

β5, and β9 loops of pancreatic lipases in choosing substrate have been reviewed [9,12,14].

Fig. 1 shows the substrate specificity of the pancreatic lipases. Once the lipase contacts its

substrate, the lid undergoes a conformational change and adopts an open conformation with

β9 [9]. This conformational change allows the hydrophobic interaction with substrate acyl

chains and the ligand docking in the catalytic site [14]. Lipases are inactive in aqueous

solutions because the catalytic triad is obstructed by the lid [16].

200

Fig. 1. Substrate preference of pancreatic lipase family members. PLA1A, mPA-PLA1a and

b consist of a subfamily exhibiting phospholipase activity towards PLs. PL and LPL can

hydrolyze TG. EL, PLRP2 and HL can hydrolyze both TG and PLs. PLs, phospholipids; TG,

triglyceride; PLA1A, phospholipase A1 member A; mPA-PLA1, membrane-associated

phosphatidic acid-selective phospholipase A1; EL, endothelial lipase; PLRP2, pancreatic

lipase-related protein 2; HL, hepatic lipase; PL, pancreatic lipase; LPL, lipoprotein lipase.

All pancreatic lipase family members have quite a distinct affinity to heparan sulfate

proteoglycans (HSPGs). PLA1A affinity to heparin was also reported [3,15]. Membrane-

bound PLA1A can hydrolyze externalized PS and be internalized into living mammalian cells

through binding to HSPGs. There is no specific inhibitor of PLA1A. Like phospholipases

with a catalytic serine, PLA1A is sensitive to inhibition by diisopropyl fluorophosphate [1].

There are five transcript variants in homo sapiens encoding for different isoforms of PLA1A,

NM_015900.4 (variant 1), NM_001206960.2 (variant 2), NM_001206961.2 (variant 3),

NM_001293225.2 (variant 4), and NR_120610.2 (variant 5, non-coding) (https://www-ncbi-

nlm-nih-gov.acces.bibl.ulaval.ca/gene/51365). Variant 1 represents the longest transcript

encoding the full-length protein. Isoform 2 has the same N- and C- terminal but is shorter

than the full-length PLA1A, whereas isoform 3 and 4 both have a shorter N-terminus.

Among the two PLA1A mRNAs characterized in vivo, the larger one encodes the full-length

PLA1A, and the second mRNA encodes a truncated form named PLA1AΔC [12]. PLA1AΔC

lacks two-thirds of the C-terminal domain, including the β5 loop and basic residues [12],

which eliminates enzyme ability to hydrolyze PS in liposomes but retains its

lysophospholipase activity towards 1-acyl-lysoPS in solution [6,12]. As for other lipases, the

β5 loop of PLA1A is likely required for interfacial binding to membrane leaflet [12,14]. The

N-terminal domain, which is conserved in both PLA1A and PLA1AΔC, encompasses the

catalytic triad and the heparin-binding site, thereby suggesting that both isoforms have

similar affinity to HSPGs [6]. PLA1A and PLA1AΔC are expressed in various human organs,

201

tissues, and cells, with PLA1AΔC representing about 10–20% of total PLA1A [6].

PLA1AΔC and PLA1A can synergistically induce lipid signaling through hydrolyzing PS

exposed on damaged or activated cell surface and control the level of lysoPS [12].

2.2. Expression patterns of PLA1A

In rats, PLA1A is expressed in platelets, hearts, and lungs [10]. Rat platelets can release

PLA1A upon activation. Unlike rat, mouse and human platelets poorly express PLA1A [10].

Several human tissues express PLA1A

(https://gtexportal.org/home/gene/PLA1A#spliceVizBlock), including muscle, kidney, small

intestine, spleen, placenta, and testis, with the highest expression in the liver and prostate

gland [5,6]. Human fibroblasts, keratinocytes, melanomas, HepG2 and HeLa cells express

the PLA1A mRNA [6]. The sources of PLA1A in human serum have remained elusive [17].

One liver cancer study revealed that the serum PLA1A level was closely related to the PLA1A

mRNA level in non-hepatocellular carcinoma (HCC) tissues, indicating that the liver might

be a source of circulating PLA1A [18].

In 2010, Nakamura et al. generated anti-human PLA1A monoclonal antibodies [17]. Using

a novel enzyme immunoassay, they reported that the serum level of PLA1A in healthy

subjects was 33.8 ± 16.6 μg/L [17]. The concentration was significantly higher in men (13.8–

80.6 μg/L) than in women (12.1–68.8 μg/L), with no correlation between the age of the

subjects [17]. Furthermore, there was no association between serum PLA1A level and other

laboratory tests, such as total IgE concentration, platelet and leukocyte counts, tumor

markers, etc. [17]. Expression levels of PLA1A in pathophysiological conditions will be

reviewed in following paragraphs (summarized in Table 1).

202

2.3. Structural basis of PLA1A substrate specificity

The very short lid [1] and the deleted β9 loop [11] in PLA1A allow the enzyme to retain a

PLA1 but not a triglyceride lipase activity [15]. The short lid domain is hydrophilic, with an

orientation towards the solvent that accommodates the phospholipid polar heads [19]. The

short β9 loop is also responsible for the recognition of phospholipids [12]. The

lysophospholipase activity of PLA1A requires the β5 loop, whereas other motifs contribute

to stringent substrate specificity [14]. The serine amino and carboxyl groups of PS make

interaction with amino acid residues of the catalytic pocket of PLA1A [14]. Basic residues

located in the β5 loop allow the formation of an oxyanion hole close to the catalytic triad that

contributes to catalytic activity [9,12]. The proposed mechanism of catalysis in the case of

PLA1 suggests that the β9 loop stabilizes the sn-1 acyl chain of phospholipids. The sn-2 acyl

chain is oriented along with the lid domain and remains in interaction with the lipid layer.

The polar head group is found between the sn-1 and sn-2 acyl chains and fits into the

hydrophilic active-site groove [9,19].

2.4. PS, lysoPS, and lysoPS receptors

PS exposure is very slow in dying cells and possibly dependent on a scramblase activated by

caspase cleavage and phosphorylation [20]. Exposure of PS on the outer membrane leaflet is

203

the gold marker of cells undergoing apoptosis and is an eat-me signal for the clearance of

dying cells by macrophages (Mφ) [21], a process called efferocytosis. The engulfment of

apoptotic cells does not induce inflammation but promotes the secretion of anti-inflammatory

cytokines (IL-10 and TGFβ) and decreases the production of TNFα, IL-1β and IL-12 [[22],

[23], [24]]. PS functions as an immunosuppressive mediator for silent clearance of apoptotic

debris by Mφ.

The exposure of PS on the cell surface can occur in the absence of apoptosis. In that case,

cell surface exposure of PS is rapid and reversible, thereby preventing the engulfment of

viable PS exposing cells by Mφ and dendritic cells (DCs) [25,26]. The externalization of PS

has been reported in viable monocytes [27], activated mast cells [27,28], CD8+ T cells [29],

regulatory B cells [30], cancer cells and cancer cell-derived extracellular vesicles (EVs)

[31,32]. PS externalization on activated platelets is required for microparticles release and

plays a critical role in the recruitment and the activation of clotting factors with gamma-

carboxyglutamic domains [33,34]. Platelet-derived microparticles harboring IgG are

positively correlated with systemic lupus erythematosus (SLE) disease activity and vascular

damage [35]. EVs can be derived by various cell types and serve as cargos for the delivery

of proteins, lipids, and RNA to the target cells. In platelet-free plasma of SLE patients, the

amounts of EVs derived by platelets and red blood cells were significantly increased,

respectively (unpublished data). Among these EVs, the PS+ EVs were increased in SLE

patients compared to healthy controls (unpublished data). Besides, PLA1A level is increased

in active SLE patients [36]. Thus, PLA1A might impact immune regulatory processes and

inflammation through the production of 2-acyl-lysoPS converted from PS exposed at the cell

surface of activated cells, apoptotic cells, or various types of EVs (Fig. 2 and [[37], [38],

[39]]).

204

Fig. 2. Overview of the potential contributions of PLA1A, lysoPS, and ATX-derived LPA to

various diseases. In cells undergoing apoptosis or during cell activation, externalized PS on

surface of activated/apoptotic cells or EVs is converted by secreted PLA1A to lysoPS, which

can be subsequently metabolized into LPA by ATX. Circulating PLA1A can originate from

liver or be secreted by other cells. PLA1A, lysoPS and LPA participate in many pathological

processes, including autoimmune disorders, cancers, cardiometabolic disorders, and antiviral

innate immune responses, etc. EV, extracellular vesicles; PS, phosphatidylserine; PLA1A,

phospholipase A1 member A; lysoPS, lysophosphatidylserine; ATX, autotaxin; LPA,

lysophosphatidic acid; HCV, hepatitis C virus.

The sn-1 and the sn-2 positions of phospholipids are predominantly occupied by saturated

and unsaturated fatty acids, respectively [40]. Compared with secreted phospholipase A2

group IIa (sPLA2-IIa), PLA1A produces lysoPS more efficiently and is more potent in

inducing histamine release from rat peritoneal mast cells [11] and stimulating alkaline

phosphatase-tagged TGFα release [41]. 2-acyl-lysoPS is a lipid mediator for mast cells, T

cells, and neural cells [11]. The 2-acyl-lysoPS can undergo the spontaneous intra-molecular

acyl-migration to form the 1-acyl-lysoPS, which subsequently becomes the substrate of

PLA1A [42]. PLA1A can also hydrolyze 1-acyl-lysoPS produced by PLA2, which is crucial

for controlling the amount of 1-acyl-lysoPS and the subsequent activation of its receptors

[14,41]. Furthermore, PLA1A-derived lysoPS can be metabolized to LPA by circulating

autotaxin (ATX) in cancer ascites [43], or by cells expressing ATX, leading to autocrine

signaling in human fibroblast-like synoviocytes (Zhao et al., manuscript in preparation).

ATX is the primary extracellular LPA producing enzyme, and we previously reviewed the

205

roles and involvements of ATX-LPA receptor axis [44]. LPA receptors have ligand

selectivity and can be activated differentially by the LPA species [45]. LysoPS receptors also

show preference for lysoPS species. Several G protein-coupled receptors for lysoPS were

identified, including GPR34 (LPS1), P2Y10 (LPS2), A630033H20 (LPS2L), and GPR174

(LPS3) [46,47]. A630033H20 is expressed in mouse but is a pseudo-gene in human [46].

GPR34 prefers lysoPS with an unsaturated fatty acid at the sn-2 position like those produced

by PLA1A [41]. GPR174 is highly activated by 16:1 lysoPS and P2Y10 can be activated

similarly by 16:0 and 18:1 lysoPS [48]. We will discuss the functions of lysoPS and its

receptors in the following paragraphs.

3 Expression of PLA1A and lysoPS receptors in cells

3.1. Immune cells

Treg cells and memory CD4+ T cells, at a much lower level, express PLA1A

(https://www.proteinatlas.org/ENSG00000144837-PLA1A). A few reports suggested that

PLA1A and lysoPS receptors could be involved in immune cell rep rogramming, maturation,

and modulation of immune cell functional responses [38,39,49].

Unsaturated PS could inhibit mitogen-induced T cell activation, and serum PLA1A might

enhance the inhibitory effects through the generation of unsaturated lysoPS [38,39]. Of note,

among the tumor-infiltrating lymphocytes, there was a high enrichment of PLA1A mRNA in

tumor-promoting CD8+ T cells (31.1-fold) compared to native peripheral blood CD8+ T cells

[49]. Whether high levels of PLA1A expression are associated with reduced CD8+ T cell-

dependent cytotoxicity and poor prognostic survival are yet to establish. LysoPS species

(C18:0 > C18:1 > C16:0) and PLA1A transcripts were abundant in lymphoid tissues (spleen,

thymus) [39]. LysoPS suppressed T cell proliferation, Treg generation and homeostasis

through activation of GPR174, and the subsequent elevation of intracellular cAMP levels

[39,50]. GPR174 weakened the capacity of Treg to suppress the functions of Th1 subsets and

controlled tissue-specific immune responses [51]. TGFβ signals suppressed the expression

of GPR174 by Treg [51]. The blockade of GPR174 might be a potential treatment option for

autoimmune disorders [39].

206

Human and mouse DCs were reported to express PLA1A [39,52]. Treg cells can interfere

with the induction of mature DCs [52]. In immature Treg-DCs, which drive CD4+ T cells

polarization towards a regulatory phenotype, PLA1A was among the most downregulated

genes compared to mature DCs [52].

The TLR4 agonist lipopolysaccharide (LPS) enhanced PLA1A mRNA expression in human

THP-1 derived Mφ [53]. Immunosuppressive agents, such as corticosteroids, prednisolone,

6α-methylprednisolone, dexamethasone, and beclomethasone reduced LPS-mediated PLA1A

expression in THP-1 derived Mφ [53]. In LPS-induced peritoneal Mφ from microsomal

prostaglandin E synthase-1 knockout mice, the expression of Pla1a was modulated [54].

Kawamoto et al. found that nerve growth factor (NGF) could stimulate the release of

histamine from rat peritoneal mast cells incubated with activated rat platelets [55]. NGF

antibodies or inhibition of NGF receptor tyrosine kinase activity can completely block

histamine release by rat peritoneal mast cells [55]. Furthermore, histamine release by rat

peritoneal mast cells incubated with PS+ erythrocytes and NGF required the presence of

PLA1A, thereby suggesting a role for PLA1A-derived lysoPS in mast cell activation [55].

GPR34 is a highly expressed functional lysoPS receptor in rat mast cells [56]. PLA1A-

mediated production of 2-acyl-lysoPS may also contribute to histamine release by rat

peritoneal mast cells in response to cross-linking of the high-affinity IgE receptor, known as

FcεRI [57]. Histamine release was blocked by heparin, suggesting that PLA1A activity

required binding to cellular HSPGs [57].

3.2. Other cells

LysoPS was showed to promote the NGF-induced neural differentiation of PC12 cells [58].

NGF and lysoPS stimulated the growth of PC12 cells and enhanced neurite length [58]. The

cells developed only 1–2 neurites instead of the multipolar appearance induced by NGF alone

[58]. LysoPS was showed to stimulate intracellular calcium increase and chemotactic

migration in U87 human glioma cells [59] and L2071 mouse fibroblasts [60]. These effects

were dependent on the activation of PI3K, p38 MAPK, and JNK pathways [59,60]. A

pertussis toxin-insensitive but phospholipase C-dependent cascade was involved in the

intracellular calcium increase [60]. Pertussis toxin-sensitive chemotactic migration was

207

mediated through the PI3K and ERK pathways [60]. The lysoPS receptors expressed by

L2071 fibroblasts were not characterized.

4 Expression of PLA1A in disease states

Whether PLA1A has beneficial or harmful functions in healthy and disease states remains to

be determined. Under physiological conditions, the PS in the inner cell membrane layer is

not accessible to secreted PLA1A [11,12]. However, in cells undergoing apoptosis or during

cell activation, externalized PS can be converted by secreted PLA1A to lysoPS, which

potentially induces lysoPS receptor-dependent functional responses in various cell types

[11,12]. The PLA1A chromosome locus is not associated with human diseases [11]. However,

high PLA1A expression levels in melanoma cells or subtypes of prostate cancers,

autoimmune disorders such as SLE and Graves' disease suggest a role for PLA1A in the

regulation of tumor growth and autoimmunity [5,36,61,62]. The following paragraphs will

review the expression of PLA1A and the lysoPS receptors in autoimmune disorders, cancers,

cardiometabolic disorders, virus immunomodulation, and other diseases (summarized in

Table 1, Table 2, Table 3 and Fig. 2).

4.1. Autoimmune disorders

Serum PLA1A level was significantly higher in SLE patients compared to healthy controls

and patients with other systemic autoimmune rheumatic diseases, such as active rheumatoid

arthritis (RA), Sjögren syndrome, and systemic sclerosis [63]. Serum PLA1A level

significantly correlated with SLE disease activity index [36]. Patients with lupus nephritis

and diabetic nephropathy had similarly elevated plasma levels of PLA1A [63]. In the cohort

of patients with lupus nephritis, serum level of PLA1A was not correlated with activity index

or chronicity index, proteinuria, kidney survival, SLE disease activity index, and other

clinical laboratory data such as anti-double-stranded DNA antibody and complement proteins

(C3 and C4) [63]. Disease treatment reduced serum PLA1A levels [36,63]. However, serum

PLA1A level inversely correlated with the daily dose of prednisolone [63]. We have

compared plasma PLA1A levels between early diagnosed RA patients and a cohort of SLE

patients with age- and gender-matched controls. PLA1A levels were higher in early

208

diagnosed RA patients and SLE patients, with no sex-based differences. PLA1A levels in

synovial fluids from patients with RA and psoriatic arthritis were higher than those from

osteoarthritis and gout patients (Zhao et al., manuscript in preparation). Therefore, we do not

exclude that the levels of serum/plasma PLA1A in systemic autoimmune rheumatic diseases

would correlate with high systemic inflammation levels or tissue damages [36].

Graves' disease, also known as Basedow's disease, is an autoimmune disorder characterized

by overactive thyroid and the presence of antibody against the thyroid stimulating hormone

receptor [64]. Serum PLA1A level was higher in patients with Graves' disease and strongly

correlated with thyroid hormone levels [62]. Treatment with anti-thyroid reagents can lower

serum PLA1A levels, suggesting a possible link between PLA1A and the inflammation in

chronic autoimmune thyroiditis [62]. Changes in serum PLA1A levels also occurred in

patients with subacute thyroiditis or silent thyroiditis [62].

Intestinal inflammation modulates the expression of PLA1A and lysoPS receptors [65].

PLA1A expression was increased in inflamed ulcerated mucosa from Crohn's disease, even

in their noninflamed macroscopically normal-looking mucosa [66]. The PLA1A mRNA,

protein, and lipase activity were all enhanced in primary intestinal microvascular endothelial

cells and human colonic Caco-2 epithelial cells treated with inflammatory stimulations, such

as TNF-α, IL-1β, and LPS [65]. Besides, expression of all lysoPS receptors (GPR34,

GPR174, P2RY10) increased in Caco-2 cells after inflammatory stimulation [65].

The serum of systemic sclerosis patients showed an elevated level of PLA1A [36]. Serum

PLA1A is possibly associated with low-grade systemic inflammation. PLA1A may

contribute to progressive skin fibrosis in systemic sclerosis patients, as the expression of

PLA1A gene was increased 2.63-fold in response to the TLR3 agonist poly(I:C) [67].

Expression of PLA1A is elevated in various diseased tissues and is possibly induced in

response to inflammatory stimuli [57]. By hydrolyzing PS, PLA1A might contribute to

inflammation or interfere with processes involved in inflammation-resolution mechanisms

through coving the recognition of apoptotic cells/debris by other immune cells, such as Mφ

and DCs, leading to the development of autoimmunity [36,62]. The roles played by PLA1A

in the pathophysiology of many diseases remain to be established. Whether PLA1A is a

209

promising biomarker or a treatment target for autoimmune diseases needs further

investigation.

4.2. Cancers

There is growing information pointing to a role for PLA1A in tumor progression, such as

melanoma, prostate, liver, gastric, colorectal, and glioma cancers

(https://portals.broadinstitute.org/ccle/page?gene=PLA1A). PLA1A mRNA or protein level

was correlated with tumor progression and the poor disease outcomes [43,68]. PLA1A can

promote tumor progression through the generation of lysoPS and GPR34-induced activation

210

of the PI3K/Akt pathway [68] or through ATX-mediated conversion of lysoPS to LPA [43],

a lipid mediator associated with cancer progression and metastasis [69].

PLA1A was highly expressed in poorly-metastatic melanoma cell lines [5,70], suggesting a

link to cancer cell fate. Of note, the levels of serum PLA1A and that of ATX were

significantly higher in melanoma subjects and correlated with the clinical stages in females

[71]. In a recent study, increased PLA1A expression was positively correlated to disease

severity and routine diagnostic markers of metastatic melanoma [72].

Transmembrane serine protease 2/erythroblast transformation-specific transcription factor

(TMPRSS2/ERG) gene fusion events play a role in the initiation and progression of prostate

cancer [73]. The chromatin and gene expression are distinct between TMPRSS2/ERG positive

and non-TMPRSS2/ERG prostate cancers in the regions proximal to the PLA1A gene [74],

which is one of the target genes regulated by ERG [61,73]. Poly ADP-ribose polymerase 1

and the catalytic subunit of DNA protein kinase were required for ERG mediated

transcriptional activities, and the expression of PLA1A in VCaP cells decreased following

siRNA knockdown of ERG or incubation with small molecule inhibitors of poly ADP-ribose

polymerase 1 and catalytic subunit of DNA protein kinase [73,75,76]. However,

overexpression of various ΔERG constructs had no significant effect on PLA1A mRNA

expression [75]. In VCaP cells, the vitamin D receptor agonists induced expression of ERG

target genes but had mixed outcomes on PLA1A expression [77]. In PCa cells, PLA1A gene

expression was not induced in response to stimulation with androgen [78].

Elevated levels of PLA1A mRNA were detected in HCC tissues [18] and were associated

with higher serum PLA1A levels when compared to healthy controls, but no relationship

with clinical parameters was observed [18]. However, elevated serum PLA1A level

correlated to background PLA1A mRNA expression in normal tissues adjacent to the tumors,

but not in the HCC tissues [18]. The relationship between high serum PLA1A and hepatic

enzyme levels suggested that liver tissue injury could contribute to serum PLA1A in HCC

patients [18]. High GPR34 expression in HCC tissues correlated with poorly differentiated

HCC tumors [18]. Pla1a is part of a signature gene set modulated by nongenotoxic hepatic

tumorigens in rats, including peroxisome proliferator-activated receptor agonists and steroid

hormones [79]. Pla1a expression was increased in response to hepatotoxic agents such as

211

pirinixic acid, nafenopin, or phenobarbital, and was decreased by chloroform, pravastatin, or

methapyrilene [80].

In ascites of gastric cancer patients, the levels of lysoPS and PLA1A were positively

correlated [43]. Although ascites from gastric tumor patients and control cirrhosis patients

expressed similar amounts of PLA1A, higher levels of C18:0 and C18:1 lysoPS were

observed in the gastric tumor group [43].

PLA1A and lysoPS have different effects on colorectal cancer (CRC) cell growth and tumor

metastasis [68,81]. PLA1A expression was associated with tumor invasion, hematogenous

metastasis, and poor disease-free survival in CRC patients [81]. LysoPS failed to stimulate

CRC cell proliferation, but it stimulated tumor cell migration through GPR34 and PI3K/Akt

pathway [68]. These results possibly correlate with different expression patterns of lysoPS

receptors among cancer cell lines. For instance, CRC cell lines expressing only GPR34 were

less sensitive to high dose lysoPS-mediated inhibition of proliferation than cell lines

expressing all lysoPS receptors [68].

Differential expression of phospholipases and lysophospholipases correlated with alterated

glycerophosphocholine lipid metabolism in gliomas [82]. Expression of PLA1A was

increased in low-grade glioma but reduced in high-grade glioma compared to normal brain

tissues [82]. The distinct expression of PLA1A and other phospholipase genes (PLA2G4A

and LYPLA1) in low- and high-grade could help to grade astrocytomas [82].

Altogether the studies suggest a role for PLA1A in tumor invasion and metastasis through

GPR34-induced signaling [68,81]. The roles of PLA1A should take the tumor

microenvironment into account [43,69,71]. Surface exposure of PS, the release of PS-

positive EVs by tumor cells, and PLA1A can negatively impact tumor immunity and tumor-

killing through lysoPS-mediated suppression of immune cell functions and lysoPS

conversion into LPA by ATX [[37], [38], [39],69,83].

4.3. Cardiometabolic disorders

PLA1A might participate in ACS pathogenesis [13]. High PLA1A levels in serum samples

from culprit coronary arteries of patients with ACS significantly correlated with C18:0 and

212

18:1 lysoPS levels [84]. The monitoring of plasma serotonin levels in 141 consecutive

patients undergoing coronary angiography emphasized that serotonin, a biomarker of platelet

activation, was significantly associated with plasma lysoPS level in the ACS group [85].

Aspirin intake was without effect on plasma lysoPS levels, but plasma LPA and other

lysophospholipid levels were lower in patients who had taken aspirin regularly [85].

Correlation between serum PLA1A and plasma lysoPS levels was observed only in the ACS

group [85]. There was no significant difference in serum PLA1A level among the patients

with normal coronary arteries, stable angina pectoris, and ACS groups, thereby suggesting

that PLA1A might only contribute to plasma lysoPS during ACS [85].

In rats, PLA1A is released by activated platelets since it is only detected at high levels in the

serum but not in the plasma [10]. During blood coagulation, PS+ platelet-derived EVs provide

a catalytic surface for tenase and prothrombinase complexes [4]. Besides, these platelet-

derived EVs expose the PS substrate to the extracellular phospholipases, such as PLA1A and

sPLA2, which are responsible for lysoPS production [4]. LysoPS might activate platelets and

serotonin release through the P2Y10 receptor [13]. Incubation of washed activated rat

platelets reduced PS content but enhanced lysoPS accumulation, which was inhibited

partially by a PLA2 inhibitor [4]. Besides, blood clotting time was decreased, and thrombin

formation was increased, thereby suggesting a role for PLA1A in blood clotting [4]. Platelet

activation also initiated an upsurge in polyunsaturated (18:2 and 20:4) LPA production [40].

Incubation of activated rat platelets with recombinant PLA1A, sPLA2-IIa, and ATX induced

a drastic decrease in PS and an increase in LPA, indicating that PLA1A works with sPLA2

for producing lysophospholipids including various lysoPS species [4,8].

Evidence suggests an independent association between plasma triglyceride concentrations

and increased atherosclerosis risk [86]. In addition to its immunomodulatory functions,

lysoPS may contribute to atherosclerosis by influencing Mφ and platelet functions [13]. A

mouse insertional lipid defect (lpd) mutation led to hypertriglyceridemia and a fatty liver

phenotype [7]. Although PLA1A has homology to triglyceride lipases, the mouse Pla1a gene

is distinct from the lpd locus [7]. Lpdl, another lipase gene in the lpd locus, and its human

homolog LPDL have high sequence homology with PLA1A [86]. Nine DNA polymorphisms

in PLA1A were identified in a Caucasian population [87]. Although the sample size studied

213

was small (10 patients) to draw a valid conclusion, DNA sequence comparison of Caucasian

descents with hypertriglyceridemia and clinically normal subjects revealed no association

between PLA1A polymorphisms and hypertriglyceridemia [87].

Removal of excess cholesterol from cells and the capacity of high-density lipoproteins to

transport cholesterol for elimination by the liver is thought to be atheroprotective [88].

PLA1A likely participates in the high-density lipoprotein metabolism in vivo [89].

Overexpression of Pla1a in human apoA-I transgenic C57BL/6 mice led to increases in serum

phospholipids/apoA-I ratio and cholesterol efflux [89]. The high high-density lipoprotein

cholesterol levels and phospholipids/apoA-I ratio were associated with enhanced cholesterol

efflux via the scavenger receptor class BI and reduced efflux via the ATP-binding cassette

transporter 1, respectively [89].

Mesenchymal stromal cells contribute to the homeostasis of many organs. Proteomic

analyses of proteins secreted by mesenchymal stromal cells isolated from bone marrows,

visceral and subcutaneous adipose tissues only identified PLA1A in mesenchymal stromal

cells from tissues of high-fat but not normal diet-fed mice [90]. Thus, obesity can modify the

secretome content of MSCs [90]. Future studies using Pla1a knockout mice will establish

whether PLA1A plays a role in atherosclerosis, cardiometabolic syndromes, and obesity.

4.4. Antiviral innate immune responses

Several phospholipases contribute to hepatitis C virus (HCV) replication [[91], [92], [93],

[94], [95]]. Serum levels of PLA1A were higher in HCC patients with HCV-related liver

injury than in those with hepatitis B virus or non-hepatitis B virus, non-HCV-related liver

diseases [18]. PLA1A expression was upregulated by HCV infection [95], and PLA1A levels

were higher in the liver from HCV-infected patients [96]. In cells, PLA1A showed a reticular

pattern reminiscent of the endoplasmic reticulum that was not disturbed by HCV infection

[95]. PLA1A facilitated viral assembly through direct binding to HCV E2, NS2, and NS5A

proteins, leading to stabilization of the NS2-E2 and the NS2/NS5A complexes during

infection [95,96]. An amino acid motif essential for viral RNA replication in the C-terminal

domain I of NS5A drove the interaction with PLA1A [96]. The reduced expression of PLA1A

by siRNA silencing resulted in reduced HCV replication, decline in intracellular HCV RNA

214

level and viral proteins expression [95]. Though the impact of catalytically inactive PLA1A

was not tested on HCV replication, the effect of PLA1A silencing was reversed by addition

of lysoPS [95]. Furthermore, PLA1A might participate in the antiviral immune response

through TANK-binding kinase 1-mediated signaling [97]. PLA1A modulated the recruitment

of TANK-binding kinase 1 and its interactions with interferon regulatory factor 3 and

mitochondrial antiviral signaling proteins [97]. The knockdown of PLA1A reduced

recruitment of TANK-binding kinase 1 and interferon regulatory factor 3 to mitochondria,

leading to mitochondria morphology changes and inhibition of signaling for type I interferon

production [97].

HIV-1 Tat protein released by infected cells can affect bystander uninfected T cells functions,

contributing to HIV pathogenesis [98,99]. PLA1A mRNA was enhanced in Jurkat T cells [99]

and human brain microvascular endothelial cells exposed to Tat protein [100]. In the

cerebrospinal fluid of rhesus macaques with simian immunodeficiency virus-infected central

nervous system, fatty acids and phospholipids (C18:2, C16:0, and C18:0) were increased

[101]. These increases in lipid metabolites were concomitant with enhanced expression of

PLA1A (9.3-fold) and PLA2G4C (6.4-fold) in the hippocampus [101].

4.5. Other diseases

In patients with non-alcoholic fatty liver diseases, high serum PLA1A levels were reported

[18]. Non-alcoholic fatty liver diseases are common liver diseases. Multiple factors can

contribute to oxidative-stress-induced liver fibrosis, such as viruses, alcohol, high-fat diet,

obesity, insulin resistance, and gut-derived LPS [102,103]. LPS administered to rats

differently modulated numerous genes in the liver, including a 24.3-fold increase in Pla1a

expression compared to pair-fed animals, but in the alcohol-fed rats, LPS-mediated

expression of Pla1a was suppressed [104].

Vitreous eye fluids from proliferative diabetic retinopathy patients expressed higher PLA1A

compared to nondiabetic controls [105]. PLA1A might contribute to the development of

proliferative diabetic retinopathy through the synthesis of bioactive lysophospholipids [105].

Increased expression of PLA1A seems to be associated with fibrosis in multiple forms of

chronic disease, including liver, eyes, and kidneys [18,105,106].

215

Treatment of skin diseases includes the use of all-trans retinoic acid, but the all-trans retinoic

acid adverse effects on the epidermal barrier function limit its use [107]. In mouse skin

treated with all-trans retinoic acid, corneocytes and keratinocytes contained abnormal lipid

droplets in the cytoplasm, which is related to a hyperproliferative state [108]. Pla1a is one of

the upregulated epithelial barrier-associated genes in the all-trans retinoic acid-treated mouse

skin [108]. Besides Pla1a, several other phospholipases were either upregulated (Pla2g4e)

or downregulated (Pla2g2e and Lypla) [108]. PLA1A is highly expressed in skin samples of

discoid lupus patients compared to psoriasis patient samples, suggesting that specific

pathological traits regulate its expression [109]. Exposure of mouse skin to Staphylococcus

aureus strongly induced Pla1a transcripts [110]. Among human skin cells, PLA1A is only

expressed in melanocytes but not in keratinocytes or fibroblasts [111]. PLA1A expression in

diseased or infected skins might be related to recruitment of T-cell subsets expressing PLA1A

in skin lesions [49,109], stimulation of skin fibroblasts by TLR3 microbial ligands [67], or

TLR4 ligand-induced PLA1A expression in tissue-resident Mφ [53]. Further studies are

required to understand the roles played by PLA1A in skin immunity, inflammation, and

repair.

Pla1a was the most upregulated gene in peripheral blood cells isolated from long-term

surviving rats following allogeneic heart transplant compared to syngeneic graft

transplantation [112]. Increased expression of PLA1A was also observed in human biopsies

undergoing antibody-mediated rejection after heart transplantation [113]. In biopsies from

patients post kidney transplantation, elevated PLA1A expression in renal proximal tubule

epithelial cells and INFγ-stimulated endothelial cells during antibody-mediated rejection

have been reported [114,115]. INFγ-activated renal epithelial cells were likely the principal

source of PLA1A transcripts in acute allograft rejection [115]. Expression of PLA1A

correlated with histological lesions [115]. Urinary exosomes were released into the

extracellular environment by podocyte epithelial cells [116]. Proteomics analysis identified

PLA1A in enriched podocyte vesicles isolated from human urine [116]. The assessment of

PLA1A expression can help diagnose antibody-mediated rejection after organ transplantation,

possibly predicting future failure [115,117].

216

5 Other enzymes regulating serine phospholipid metabolism in

neural system

ABHD (α/β-hydrolase domain) containing-protein family plays a crucial role in lipid

metabolism. Mutations of the ABHD protein family members led to inherited inborn lipid

metabolic disorders [118]. Among the ABHD family members, ABHD16A and ABHD12

play crucial roles in the metabolism of serine phospholipids in mammalian brains as the

foremost PS lipase [119] and lysoPS lipase [120], respectively. Deficiencies of ABHD16A

(PS production) and ABHD12 (PS degradation) are associated with metabolic syndrome and

inflammatory neurodegenerative disease, respectively [[118], [119], [120]]. Mutation in

ABHD12 causes the neurodegenerative disorder PHARC, which means polyneuropathy,

hearing loss, ataxia, retinitis pigmentosa, and cataract [121]. The brain of ABHD12−/− mice

displayed at a younger age (2–6 months) a massive increase of long-chain lysoPS, which

acted as a TLR2 agonist in the microglia [120]. Activation of microglial TLR2 was

responsible for the subsequent age-dependent proinflammatory responses and neural death

in the ABHD12−/− mouse model, which was associated with auditory and motor defects

[120]. Both ABHD16A and ABHD12 are localized in the endoplasmic reticulum in the

central nervous system, especially in the cerebellum that is the most atrophic brain region in

PHARC patients [122]. ABHD16A [123] and ABHD12 [121,124] also exhibited

monoacylglycerol lipase activity towards 2-arachidonoylglycerol, responsible for neural

pain. Thus, ABHD16A and ABHD12 were responsible for the intracellular serine

phospholipids metabolism, and the ABHD16A-ABHD12-lysoPS pathway was assessed as

an emerging lysophospholipid signaling network for neuro-immunological disorders,

indicating their potential therapeutic relevance [119]. It is unknown that the conversion of

lysoPS to LPA by ATX in the brain contributes to neurodegenerative diseases.

DO264, a selective inhibitor of ABHD12, elevated the lysoPS level in mice brain and induced

manifestations similar to PHARC [125]. In contrast, a reversible inhibitor of ABHD16A (12-

thiazole abietanes) inhibiting the lipase activity towards PS reduced the lysoPS level and

brain inflammation [126]. GPR34 is expressed in microglial cells [127,128]. Deletion of

GPR34 impaired glial cell morphology, functional responses such as phagocytosis [127], and

217

the production of inflammatory cytokines involved in neuropathic pain [128]. Altogether, the

available information suggests that the altered metabolism of PS lipids and lysoPS-mediated

signaling in the brain can play a role in the pathogenesis of neurodegenerative disorders.

6 Conclusions

There is growing evidence suggesting roles for PLA1A in many pathological conditions,

including autoimmune disorders, cancers, cardiometabolic disorders, antiviral innate

immune responses, and other diseases. Elevated PLA1A expression and high PLA1A protein

levels are associated with various pathologies. Increased PLA1A expression and release in

tissues and biological fluids result in hydrolysis of surface exposed PS. Production of high

level of lysoPS might subsequently contribute to disease development through lysoPS

receptor activation. However, the roles of PLA1A in disease mechanism remain to be

established. Future studies will determine whether PLA1A is a valuable clinical biomarker

for disease diagnosis or a drug target.

Acknowledgments

This work was supported by the Canadian Institutes for Health Research (MOP-142210). YZ

was the recipient of a scholarship from the China Scholarship Council (CSC).

7 References

[1] Sato T, et al. Serine phospholipid-specific phospholipase A that is secreted from activated

platelets. A new member of the lipase family. J. Biol. Chem. 1997;272(4):2192–8.

[2] Horigome K, et al. Selective release of phospholipase A2 and lysophosphatidylserine-

specific lysophospholipase from rat platelets. J. Biochem.1987;101(1):53–61.

[3] Higashi S, et al. Purification and characterization of lysophospholipase released from rat

platelets. J. Biochem. 1988;103(3):442–7.

[4] Yokoyama K, Kudo I, Inoue K. Phospholipid degradation in rat calcium ionophore-

activated platelets is catalyzed mainly by two discrete secretory phospholipase As. J.

Biochem. 1995;117(6):1280–7.

[5] van Groningen JJ, et al. nmd, a novel gene differentially expressed in human melanoma

cell lines, encodes a new atypical member of the enzyme family of lipases. FEBS Lett.

1997;404(1):82–6.

[6] Nagai Y, et al. An alternative splicing form of phosphatidylserine-specific phospholipase

A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J.

Biol. Chem. 1999;274(16):11053–9.

218

[7] Wen XY, et al. Murine phosphatidylserine-specific phospholipase A1 (Ps-pla1) maps to

chromosome 16 but is distinct from the lpd (lipid defect) locus. Mamm. Genome

2001;12(2):129–32.

[8] Aoki J, et al. Serum lysophosphatidic acid is produced through diverse phospholipase

pathways. J. Biol. Chem. 2002;277(50):48737–44.

[9] Carri`ere F, et al. Structural basis for the substrate selectivity of pancreatic lipases and

some related proteins. Biochim. Biophys. Acta 1998;1376(3):417–32.

[10] Aoki J, et al. Structure and function of extracellular phospholipase A1 belonging to the

pancreatic lipase gene family. Biochimie 2007;89(2):197–204.

[11] Aoki J, et al. Structure and function of phosphatidylserine-specific phospholipase A1.

Biochim. Biophys. Acta 2002;1582(1–3):26–32.

[12] Aloulou A, et al. Exploring the specific features of interfacial enzymology based on

lipase studies. Biochim. Biophys. Acta 2006;1761(9):995–1013.

[13] Yatomi Y, et al. Lysophospholipids in laboratory medicine. Proc. Jpn. Acad. Ser. B

Phys. Biol. Sci. 2018;94(10):373–89.

[14] Arima N, et al. Surface loops of extracellular phospholipase A(1) determine both

substrate specificity and preference for lysophospholipids. J. Lipid Res. 2012;53(3):513–21.

[15] Hiramatsu T, et al. Biochemical and molecular characterization of two phosphatidic

acid-selective phospholipase A1s, mPA-PLA1alpha and mPAPLA1beta. J. Biol. Chem.

2003;278(49):49438–47.

[16] Winkler FK, D’Arcy A, Hunziker W. Structure of human pancreatic lipase. Nature

1990;343(6260):771–4.

[17] Nakamura K, et al. A novel enzyme immunoassay for the determination of

phosphatidylserine-specific phospholipase A(1) in human serum samples. Clin. Chim. Acta

2010;411(15–16):1090–4.

[18] Uranbileg B, et al. Possible involvement of PS-PLA1 and lysophosphatidylserine

receptor (LPS1) in hepatocellular carcinoma. Sci. Rep. 2020;10(1):2659.

[19] Withers-Martinez C, et al. A pancreatic lipase with a phospholipase A1 activity: crystal

structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. Structure

1996;4(11):1363–74.

[20] Sakuragi T, Kosako H, Nagata S. Phosphorylation-mediated activation of mouse Xkr8

scramblase for phosphatidylserine exposure. Proc. Natl. Acad. Sci. U. S. A.

2019;116(8):2907–12.

[21] Schroit AJ, Madsen JW, Tanaka Y. In vivo recognition and clearance of red blood cells

containing phosphatidylserine in their plasma membranes. J. Biol. Chem.1985;260(8):5131–

8.

[22] Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of

apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J. Clin.

Invest. 2002;109(1):41–50.

[23] Voll RE, et al. Immunosuppressive effects of apoptotic cells. Nature 1997;390

(6658):350–1.

[24] Cvetanovic M, Ucker DS. Innate immune discrimination of apoptotic cells: repression

of proinflammatory macrophage transcription is coupled directly to specific recognition. J.

Immunol. 2004;172(2):880–9.

[25] Segawa K, Suzuki J, Nagata S. Constitutive exposure of phosphatidylserine on viable

cells. Proc. Natl. Acad. Sci. U. S. A. 2011;108(48):19246–51.

219

[26] Elliott JI, et al. Membrane phosphatidylserine distribution as a non-apoptotic signalling

mechanism in lymphocytes. Nat. Cell Biol. 2005;7(8):808–16.

[27] Appelt U, et al. Viable, apoptotic and necrotic monocytes expose phosphatidylserine:

cooperative binding of the ligand Annexin V to dying but not viable cells and implications

for PS-dependent clearance. Cell Death Differ. 2005;12(2):194–6.

[28] Smrz D, Draberova L, Draber P. Non-apoptotic phosphatidylserine externalization

induced by engagement of glycosylphosphatidylinositol-anchored proteins. J. Biol. Chem.

2007;282(14):10487–97.

[29] Fischer K, et al. Antigen recognition induces phosphatidylserine exposure on the cell

surface of human CD8+ T cells. Blood 2006;108(13):4094–101.

[30] Audo R, et al. Phosphatidylserine outer layer translocation is implicated in IL-10

secretion by human regulatory B cells. PLoS One 2017;12(1):e0169755.

[31] Riedl S, et al. In search of a novel target - phosphatidylserine exposed by nonapoptotic

tumor cells and metastases of malignancies with poor treatment efficacy. Biochim. Biophys.

Acta 2011;1808(11):2638–45.

[32] Sharma R, et al. Detection of phosphatidylserine-positive exosomes for the diagnosis of

early-stage malignancies. Br. J. Cancer 2017;117(4):545–52.

[33] Yang H, et al. TMEM16F forms a Ca2+ activated cation channel required for lipid

scrambling in platelets during blood coagulation. Cell 2012;151(1):111–22.

[34] Fujii T, et al. TMEM16F is required for phosphatidylserine exposure and microparticle

release in activated mouse platelets. Proc. Natl. Acad. Sci. U. S. A. 2015;112(41):12800–5.

[35] Fortin PR, et al. Distinct subtypes of microparticle-containing immune complexes are

associated with disease activity, damage, and carotid intima-media thickness in systemic

lupus erythematosus. J. Rheumatol. 2016;43(11):2019–25.

[36] Sawada T, et al. Serum phosphatidylserine-specific phospholipase A(1) as a novel

biomarker for monitoring systemic lupus erythematosus disease activity. Int. J.Rheum. Dis.

2019;22(11):2059–66.

[37] Birge RB, et al. Phosphatidylserine is a global immunosuppressive signal in

efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23(6):962–78.

[38] Bellini F, Bruni A. Role of a serum phospholipase A1 in the phosphatidylserineinduced

T cell inhibition. FEBS Lett. 1993;316(1):1–4.

[39] Barnes MJ, et al. The lysophosphatidylserine receptor GPR174 constrains regulatory T

cell development and function. J. Exp. Med. 2015;212(7):1011–20.

[40] Bolen AL, et al. The phospholipase A1 activity of lysophospholipase A-I links platelet

activation to LPA production during blood coagulation. J. Lipid Res.2011;52(5):958–70.

[41] Kitamura H, et al. GPR34 is a receptor for lysophosphatidylserine with a fatty acid at

the sn-2 position. J. Biochem. 2012;151(5):511–8.

[42] Plückthun A, Dennis EA. Acyl and phosphoryl migration in lysophospholipids:

importance in phospholipid synthesis and phospholipase specificity. Biochemistry

1982;21(8):1743–50.

[43] Emoto S, et al. Analysis of glycero-lysophospholipids in gastric cancerous ascites. J.

Lipid Res. 2017;58(4):763–71.

[44] Zhao Y, et al. Targeting the autotaxin - Lysophosphatidic acid receptor axis in

cardiovascular diseases. Biochem. Pharmacol. 2019;164:74–81.

[45] Bandoh K, et al. Lysophosphatidic acid (LPA) receptors of the EDG family are

differentially activated by LPA species. Structure-activity relationship of cloned LPA

receptors. FEBS Lett. 2000;478(1–2):159–65.

220

[46] Inoue A, et al. TGFalpha shedding assay: an accurate and versatile method for detecting

GPCR activation. Nat. Methods 2012;9(10):1021–9.

[47] Kihara Y, et al. Lysophospholipid receptor nomenclature review: IUPHAR Review 8.

Br. J. Pharmacol. 2014;171(15):3575–94.

[48] Ikubo M, et al. Structure-activity relationships of lysophosphatidylserine analogs as

agonists of G-protein-coupled receptors GPR34, P2Y10, and GPR174. J. Med. Chem.

2015;58(10):4204–19.

[49] Kwong BY, et al. Molecular analysis of tumor-promoting CD8+ T cells in two stage

cutaneous chemical carcinogenesis. J. Invest. Dermatol. 2010;130(6):1726–36.

[50] Barnes MJ, Cyster JG. Lysophosphatidylserine suppression of T-cell activation via

GPR174 requires Galphas proteins. Immunol. Cell Biol. 2018;96(4):439–45.

[51] Konkel JE, et al. Transforming growth factor-beta signaling in regulatory T cells

controls T Helper-17 cells and tissue-specific immune responses. Immunity 2017;46(4):660–

74.

[52] Mavin E, et al. Human regulatory T cells mediate transcriptional modulation ofdendritic

cell function. J. Immunol. 2017;198(1):138–46.

[53] Hosono H, et al. Expression of phosphatidylserine-specific phospholipase A(1) mRNA

in human THP-1-derived macrophages. Cell Transplant. 2010;19(6):759–64.

[54] Idborg H, et al. A9. 3 Deletion of mPGES-1 affects fatty acid composition and

eicosanoid profiles in mice. Ann. Rheum. Dis. 2013;72(Suppl. 1):A65.

[55] Kawamoto K, et al. Nerve growth factor activates mast cells through the collaborative

interaction with lysophosphatidylserine expressed on the membrane surface of activated

platelets. J. Immunol. 2002;168(12):6412–9.

[56] Sugo T, et al. Identification of a lysophosphatidylserine receptor on mast cells. Biochem.

Biophys. Res. Commun. 2006;341(4):1078–87.

[57] Hosono H, et al. Phosphatidylserine-specific phospholipase A1 stimulates histamine

release from rat peritoneal mast cells through production of 2-acyl-1- lysophosphatidylserine.

J. Biol. Chem. 2001;276(32):29664–70.

[58] Lourenssen S, Blennerhassett MG. Lysophosphatidylserine potentiates nerve growth

factor-induced differentiation of PC12 cells. Neurosci. Lett. 1998;248(2):77–80.

[59] Lee SY, et al. Lysophosphatidylserine stimulates chemotactic migration in U87 human

glioma cells. Biochem. Biophys. Res. Commun. 2008;374(1):147–51.

[60] Park KS, et al. Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic

migration via a process involving pertussis toxin-sensitive trimeric Gproteins. Mol.

Pharmacol. 2006;69(3):1066–73.

[61] Tomlins SA, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia

2008;10(2):177–88.

[62] Nakawatari K, et al. Elevated phosphatidylserine-specific phospholipase A1 level in

hyperthyroidism. Clin. Chim. Acta 2020;503:99–106.

[63] Iwata Y, et al. Higher serum levels of autotaxin and phosphatidylserine-specific

phospholipase A(1) in patients with lupus nephritis. Int. J. Rheum. Dis. 2021;24(2):231–9.

[64] Sugenoya A, et al. Correlation between thyrotropin-displacing activity and human

thyroid-stimulating activity by immunoglobulins from patients with Graves’ disease and

other thyroid disorders. J. Clin. Endocrinol. Metab. 1979;48(3):398–402.

[65] Tepasse P-R, et al. Tu1780-regulated expression of phosphatidylserine-specific

phospholipase A1 and lysophosphatidylserine receptors in human intestinal inflammation.

Gastroenterology 2018;154(6):S-1017.

221

[66] Hong SN, et al. RNA-seq reveals transcriptomic differences in inflamed and

noninflamed intestinal mucosa of Crohn’s disease patients compared with normal mucosa of

healthy controls. Inflamm. Bowel Dis. 2017;23(7):1098–108.

[67] Fang F, et al. A synthetic TLR3 ligand mitigates profibrotic fibroblast responses by

inducing autocrine IFN signaling. J. Immunol. 2013;191(6):2956–66.

[68] Iida Y, et al. Lysophosphatidylserine stimulates chemotactic migration of colorectal

cancer cells through GPR34 and PI3K/Akt pathway. Anticancer Res.2014;34(10):5465–72.

[69] Lee SC, et al. Regulation of tumor immunity by lysophosphatidic acid. Cancers (Basel)

2020;12(5):1202.

[70] Liu W, Peng Y, Tobin DJ. A new 12-gene diagnostic biomarker signature of melanoma

revealed by integrated microarray analysis. PeerJ. 2013;1:e49.

[71] Kurano M, et al. Association between serum autotaxin or phosphatidylserinespecific

phospholipase A1 levels and melanoma. J. Dermatol. 2018;45(5):571–9.

[72] Yang G, et al. PLA1A expression as a diagnostic marker of BRAF-mutant metastasis in

melanoma cancer. Sci. Rep. 2021;11(1):6056.

[73] Wang J, et al. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG

fusion gene transcripts. Cancer Res. 2008;68(20):8516–24.

[74] Kron KJ, et al. TMPRSS2-ERG fusion co-opts master transcription factors and activates

NOTCH signaling in primary prostate cancer. Nat. Genet. 2017;49(9):1336–45.

[75] Paulo P, et al. Molecular subtyping of primary prostate cancer reveals specific and

shared target genes of different ETS rearrangements. Neoplasia 2012;14(7):600–11.

[76] Brenner JC, et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase

in ETS gene fusion-positive prostate cancer. Cancer Cell 2011;19(5):664–78.

[77] Washington MN, Weigel NL. 1{alpha},25-Dihydroxyvitamin D3 inhibits growth of

VCaP prostate cancer cells despite inducing the growth-promoting TMPRSS2:ERG gene

fusion. Endocrinology 2010;151(4):1409–17.

[78] Goodwin JF, et al. DNA-PKcs-mediated transcriptional regulation drives prostate cancer

progression and metastasis. Cancer Cell 2015;28(1):97–113.

[79] Fielden MR, Brennan R, Gollub J. A gene expression biomarker provides early

prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic

chemicals. Toxicol. Sci. 2007;99(1):90–100.

[80] Fielden MR, et al. Development and evaluation of a genomic signature for the prediction

and mechanistic assessment of nongenotoxic hepatocarcinogens in the rat. Toxicol. Sci.

2011;124(1):54–74.

[81] Iida Y, et al. Phosphatidylserine-specific phospholipase A1 (PS-PLA1) expression in

colorectal cancer correlates with tumor invasion and hematogenous metastasis. Anticancer

Res. 2015;35(3):1459–64.

[82] Righi V, et al. 1H HR-MAS and genomic analysis of human tumor biopsies discriminate

between high and low grade astrocytomas. NMR Biomed. 2009;22(6):629–37.

[83] Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in

the development of resistance to cancer therapy. Biochim. Biophys. Acta Mol. Cell Biol.

Lipids 1865;2020(8):158716.

[84] Kurano M, et al. Different origins of lysophospholipid mediators between coronary and

peripheral arteries in acute coronary syndrome. J. Lipid Res. 2017;58(2):433–42.

[85] Kurano M, et al. Blood levels of serotonin are specifically correlated with plasma

lysophosphatidylserine among the glycero-lysophospholipids. BBA Clin. 2015;4:92–8.

222

[86] Wen XY, et al. Identification of a novel lipase gene mutated in lpd mice with

hypertriglyceridemia and associated with dyslipidemia in humans. Hum. Mol. Genet.

2003;12(10):1131–43.

[87] Wang J, et al. Polymorphisms in the gene encoding phosphatidylserine-specific

phospholipase A1 (PSPLA1). J. Hum. Genet. 2002;47(11):611–3.

[88] Kudinov VA, et al. High-density lipoproteins as homeostatic nanoparticles of blood

plasma. Int. J. Mol. Sci. 2020;21(22):8737.

[89] Yancey PG, et al. In vivo modulation of HDL phospholipid has opposing effects on SR-

BI- and ABCA1-mediated cholesterol efflux. J. Lipid Res. 2004;45(2):337–46.

[90] Ayaz-Guner S, et al. A comparative study on normal and obese mice indicates that the

secretome of mesenchymal stromal cells is influenced by tissue environment and

physiopathological conditions. Cell Commun. Sign. 2020;18(1):118.

[91] Xu S, et al. Cytosolic phospholipase A2 gamma is involved in hepatitis C virus

replication and assembly. J. Virol. 2012;86(23):13025–37.

[92] Li X, et al. Hepatocyte nuclear factor 4α and downstream secreted phospholipase A2

GXIIB regulate production of infectious hepatitis C virus. J. Virol. 2014;88(1):612–27.

[93] Farquhar MJ, et al. Autotaxin-lysophosphatidic acid receptor signalling regulates

hepatitis C virus replication. J. Hepatol. 2017;66(5):919–29.

[94] Menzel N, et al. MAP-kinase regulated cytosolic phospholipase A2 activity is essential

for production of infectious hepatitis C virus particles. PLoS Pathog.2012;8(7):e1002829.

[95] Guo M, et al. Phosphatidylserine-specific phospholipase A1 involved in hepatitis C virus

assembly through NS2 complex formation. J. Virol. 2015;89(4):2367–77.

[96] Yang Q, et al. Phosphatidylserine-specific phospholipase A1 is the critical bridge for

hepatitis C virus assembly. Virol. Sin. 2019;34(5):521–37.

[97] Gao X, et al. PLA1A participates in the antiviral innate immune response by facilitating

the recruitment of TANK-binding kinase 1 to mitochondria. J. Innate Immun.

2018;10(4):315–27.

[98] Ajasin D, Eugenin EA. HIV-1 tat: role in bystander toxicity. Front. Cell. Infect.

Microbiol. 2020;10:61.

[99] Liao W, et al. Combined metabonomic and quantitative real-time PCR analyses reveal

systems metabolic changes in Jurkat T-cells treated with HIV-1 Tat protein. J. Proteome Res.

2012;11(11):5109–23.

[100] Woollard SM, et al. Differential effects of Tat proteins derived from HIV-1 subtypes

B and recombinant CRF02_AG on human brain microvascular endothelial cells: implications

for blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab. 2014;34(6):1047–59.

[101] Wikoff WR, et al. Metabolomic analysis of the cerebrospinal fluid reveals changes in

phospholipase expression in the CNS of SIV-infected macaques. J. Clin. Invest.

2008;118(7):2661–9.

[102] Ferro D, et al. New insights into the pathogenesis of non-alcoholic fatty liver disease:

gut-derived lipopolysaccharides and oxidative stress. Nutrients 2020;12 (9):2762.

[103] Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of nonalcoholic

fatty liver disease (NAFLD). Metabolism 2016;65(8):1038–48.

[104] Deaciuc IV, et al. Microarray gene analysis of the liver in a rat model of chronic,

voluntary alcohol intake. Alcohol 2004;32(2):113–27.

[105] Abu El-Asrar AM, et al. Expression of bioactive lysophospholipids and processing

enzymes in the vitreous from patients with proliferative diabetic retinopathy. Lipids Health

Dis. 2014;13:187.

223

[106] Gomez IG, et al. TWEAK-Fn14 signaling activates myofibroblasts to drive progression

of fibrotic kidney disease. J. Am. Soc. Nephrol. 2016;27(12):3639–52.

[107] Ale SI, Laugier JP, Maibach HI. Differential irritant skin responses to tandem

application of topical retinoic acid and sodium lauryl sulphate: II. Effect of time between first

and second exposure. Br. J. Dermatol. 1997;137(2):226–33.

[108] Li J, Li Q, Geng S. All-trans retinoic acid alters the expression of the tight junction

proteins Claudin-1 and -4 and epidermal barrier function-associated genes in the epidermis.

Int. J. Mol. Med. 2019;43(4):1789–805.

[109] Jabbari A, et al. Dominant Th1 and minimal Th17 skewing in discoid lupus revealed

by transcriptomic comparison with psoriasis. J. Invest. Dermatol. 2014;134(1):87–95.

[110] Harris TA, et al. Resistin-like molecule α provides vitamin-A-dependent antimicrobial

protection in the skin. Cell Host Microbe 2019;25(6):777–88. e8.

[111] Reemann P, et al. Melanocytes in the skin–comparative whole transcriptome analysis

of main skin cell types. PLoS One 2014;9(12):e115717.

[112] Lu H, et al. Identification of alterations in gene expression in rat recipients with long-

term-surviving cardiac grafts. Transplant. Proc. 2002;34(7):2729–31.

[113] Loupy A, et al. Gene expression profiling for the identification and classification of

antibody-mediated heart rejection. Circulation 2017;135(10):917–35.

[114] Hidalgo LG, et al. NK cell transcripts and NK cells in kidney biopsies from patients

with donor-specific antibodies: evidence for NK cell involvement in antibodymediated

rejection. Am. J. Transplant. 2010;10(8):1812–22.

[115] Venner JM, et al. The molecular landscape of antibody-mediated kidney transplant

rejection: evidence for NK involvement through CD16a Fc receptors. Am. J. Transplant.

2015;15(5):1336–48.

[116] Prunotto M, et al. Proteomic analysis of podocyte exosome-enriched fraction from

normal human urine. J. Proteome 2013;82:193–229.

[117] Sellar´es J, et al. Molecular diagnosis of antibody-mediated rejection in human kidney

transplants. Am. J. Transplant. 2013;13(4):971–83.

[118] Xu J, et al. Sequence analysis and structure prediction of ABHD16A and the roles of

the ABHD family members in human disease. Open Biol. 2018;8(5):180017.

[119] Kamat SS, et al. Immunomodulatory lysophosphatidylserines are regulated by

ABHD16A and ABHD12 interplay. Nat. Chem. Biol. 2015;11(2):164–71.

[120] Blankman JL, et al. ABHD12 controls brain lysophosphatidylserine pathways that are

deregulated in a murine model of the neurodegenerative disease PHARC. Proc. Natl. Acad.

Sci. U. S. A. 2013;110(4):1500–5.

[121] Fiskerstrand T, et al. Mutations in ABHD12 cause the neurodegenerative disease

PHARC: an inborn error of endocannabinoid metabolism. Am. J. Hum. Genet.

2010;87(3):410–7.

[122] Singh S, Joshi A, Kamat SS. Mapping the neuroanatomy of ABHD16A, ABHD12, and

lysophosphatidylserines provides new insights into the pathophysiology of the human

neurological disorder PHARC. Biochemistry 2020;59(24):2299–311.

[123] Savinainen JR, et al. Biochemical and pharmacological characterization of the human

lymphocyte antigen B-associated transcript 5 (BAT5/ABHD16A). PLoS One

2014;9(10):e109869.

[124] Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that

hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 2007;14(12):1347–56.

224

[125] Ogasawara D, et al. Selective blockade of the lyso-PS lipase ABHD12 stimulates

immune responses in vivo. Nat. Chem. Biol. 2018;14(12):1099–108.

[126] Ahonen TJ, et al. Discovery of 12-thiazole abietanes as selective inhibitors of the

human metabolic serine hydrolase hABHD16A. ACS Med. Chem. Lett. 2018;9(12):1269–

73.

[127] Preissler J, et al. Altered microglial phagocytosis in GPR34-deficient mice. Glia

2015;63(2):206–15.

[128] Sayo A, et al. GPR34 in spinal microglia exacerbates neuropathic pain in mice. J.

Neuroinflammation 2019;16(1):82.

[129] Spivack K, et al. Enhancement of transgene expression by the β-catenin inhibitor

iCRT14. Plasmid 2021;114:102556.

[130] Xiong J, et al. Dysregulated choline metabolism in T-cell lymphoma: role of choline

kinase-α and therapeutic targeting. Blood Cancer J. 2015;5(3):287.

[131] Ning YL, et al. Bioinformatics analysis identifies hub genes and molecular pathways

involved in sepsis-induced myopathy. Med. Sci. Monit. 2020;26:e919665.

[132] Xu S. Transcriptome profiling in systems vascular medicine. Front. Pharmacol.

2017;8:563.

[133] Silvestri C, et al. Genome-wide identification of Smad/Foxh1 targets reveals a role for

Foxh1 in retinoic acid regulation and forebrain development. Dev. Cell 2008; 14(3):411–23.

[134] Czapski GA, et al. Acute systemic inflammatory response alters transcription profile

of genes related to immune response and Ca(2+) homeostasis inHippocampus; relevance to

neurodegenerative disorders. Int. J. Mol. Sci. 2020;21(21):7838.

[135] Yang S, et al. Immune defense is the primary function associated with the differentially

expressed genes in the cochlea following acoustic trauma. Hear. Res. 2016;333:283–94.

[136] Barger JL, et al. Gene expression profiling reveals differential effects of sodium

selenite, selenomethionine, and yeast-derived selenium in the mouse. Genes Nutr.

2012;7(2):155–65.

[137] Mencucci MV, et al. Integrative transcriptomic analysis of pancreatic islets from

patients with prediabetes/type 2 diabetes. Diabetes Metab. Res. Rev. 2021;37(1):e3359.

[138] Chan B, Sukhatme VP. Suppression of Tie-1 in endothelial cells in vitro induces a

change in the genome-wide expression profile reflecting an inflammatory function. FEBS

Lett. 2009;583(6):1023–8.

[139] Karagianni N, et al. An integrative transcriptome analysis framework for drug efficacy

and similarity reveals drug-specific signatures of anti-TNF treatment in a mouse model of

inflammatory polyarthritis. PLoS Comput. Biol. 2019;15(5):e1006933.

225

Annexe III: Platelet-derived extracellular vesicles contain

an active proteasome involved in protein processing

for antigen presentation via class I major

histocompatibility molecules

Genevieve Marcoux1,2, Audrée Laroche1,2, Stephan Hasse1,2, Marie Bellio1,2,

Maroua Mbarik1,2, Marie Tamagne3,4,5, Isabelle Allaeys1,2, Anne Zufferey1,2, Tania

Lévesque1,2, Johan Rebetz6, Annie Karakeussian-Rimbaud7,8, Julie Turgeon7,8,

Sylvain G. Bourgoin1,2, Hind Hamzeh-Cognasse9, Fabrice Cognasse9,10, Rick

Kapur11, John W. Semple6,12, Marie-Josée Hébert7,8, France Pirenne3,4,5, Herman S.

Overkleeft12, Bogdan I. Florea12, Mélanie Dieude7,8,14, Benoit Vingert3,4,5, Eric

Boilard1,2,8.

Affiliations :

1 Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval,

Québec, QC, Canada.

2 Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC,

Canada.

3 Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France

4 Etablissement Français du Sang, Ivry sur Seine, F-94200, France

5 Laboratory of Excellence GR-Ex, Paris, France

6 Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden

7 Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal,

Québec, Canada.

8 Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada

9 Université de Lyon, Université Jean Monnet, INSERM U1059, Saint-Etienne, France

10 Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.

11 Sanquin Research, Department of Experimental Immunohematology, Amsterdam and

Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the

Netherlands.

226

12 Departments of Pharmacology and Medicine, University of Toronto, Toronto, Canada

13 Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre,

Leiden, The Netherlands.

14 Département Microbiologie, Infectiologie et Immunologie, Faculté de Médecine,

Université de Montréal, Montréal, Québec, Canada.

Keywords: platelet, extracellular vesicles, proteasome, MHC-I, antigen

presentation, immunity

227

1 Abstract

In addition to their hemostatic role, platelets play a significant role in immunity. Once

activated, platelets release extracellular vesicles (EVs) formed by budding of their

cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to

perform diverse functions. It is unknown, however, whether the proteasome is transferred

from platelets to PEVs or whether its function is retained. We hypothesized that functional

protein processing and antigen presentation machinery is transferred to PEVs by activated

platelets. Using molecular and functional assays, we show that the active 20S proteasome is

enriched in PEVs along with MHC-I and lymphocyte costimulatory molecules (CD40L and

OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not

increase in platelet concentrates that caused adverse transfusion reactions. They were,

however, augmented after immune complex injections in mice. The complete biodistribution

of murine PEVs following injection into mice revealed that they could principally reach

lymphoid organs such as spleen and lymph nodes, in addition to the bone marrow, and to a

lesser extent liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA)

and loaded its antigenic peptide onto MHC-I molecules which promoted OVA-specific

CD8+ T lymphocyte proliferation. These results suggest that PEVs contribute to adaptive

immunity through cross-presentation of antigens and have privileged access to immune cells

through the lymphatic system, a tissue location that is inaccessible to platelets.

228

2 Introduction

Platelets are the second most abundant lineage in the blood and are best known for

their role in hemostasis.744 Platelets are small fragments produced by the large

multinucleated megakaryocyte in the bone marrow. They bear receptors that permit

recruitment of immune cells and carry an extensive set of immune and inflammatory

molecules (e.g. cytokines/chemokines, lipid mediators, hormones) stored in their

granules, cytoplasm, or synthesized by mRNA translation following platelet

activation. Thus, while platelets may mount an innate immune response against

injury, which is critical to combat pathogen invasion, organ and tissue damage may

also favor platelet activation and inflammation in chronic inflammatory diseases.745-

751

Albeit anucleate, the platelet cytoplasm includes numerous molecules comprising

the proteasome, which are transferred from megakaryocytes to their progeny. The

proteasome is a high molecular weight cylindrical protein complex through which

unwanted or damaged proteins are degraded.752,753 The central complex part, called

the 20S proteasome, is made up of twenty-eight distinct subunits,522 comprising the

three catalytic subunits necessary for the degradation of proteins into peptides of

three to fifteen amino acids in length.522,754 Proteasome activity in megakaryocytes

is required for platelet production755,756 and in platelets, the proteasome regulates

platelet lifespan,757 activation758-760 and the release of PEVs.761,762 The platelet

proteasome can hydrolyze proteins into smaller peptides,522,763,764 thereby enabling

peptide loading onto the platelet major histocompatibility complex (MHC) class I

molecules (MHC-I).765-767 Components of the peptide loading complex are also

expressed in platelets and are found in close proximity with MHC-I during platelet

activation.520,521 As platelets can efficiently form an immunological synapse with T-

lymphocytes to activate lymphocyte proliferation,520,768,769 they are known to fulfill

roles in cross-presentation of antigens in adaptive immunity. In a similar manner,

megakaryocytes cross-present antigens to CD8 T-lymphocytes, thereby suggesting

that they may also play a dual role in innate and adaptive immunity.767,770-772

229

Extracellular vesicles, produced in abundance by platelets, are small (up to 1µm in

diameter) membrane-bound vesicles released from the plasma membrane or

endosomal compartments of activated cells. Platelet EVs are heterogeneous in

terms of surface molecules and content (e.g. nucleic acids, lipids, transcription

factors, enzymes, mitochondria) and as such, may play diverse functions beyond

hemostasis.538,773,774 For instance, PEVs convey mitochondrial components that are

associated with inflammation and adverse transfusion reactions (ATRs).442,540,775

Despite the fact that platelets are restricted to the blood circulation, PEVs can cross

tissue barriers and enter synovial fluid,447,776 lymph535,777 and bone marrow778 where

they can deliver platelet-derived molecules and modulate target cells.773 For

instance, PEVs promote the formation of germinal centers and the production of IgG

by B-cells.543,544 They also interact with and modulate regulatory T cell differentiation

and activity.541,542 Thus, PEVs may be able to transport platelet-derived molecules

relevant to adaptive immunity into lymphoid organs. However, it is unknown whether

the proteasome and the molecules necessary for antigen presentation are also

transferred during the budding of PEVs. In this study, we evaluated whether

functional protein processing and antigen presentation machinery is transferred to

PEVs by activated platelets.

3 Material and methods

More details are presented in supplemental methods.

Labelling of murine platelets, DCs and PEVs

Platelets were isolated from C57BL/6J mice by retro-orbital or cardiac puncture in 200µL

ACD, 350µL Tyrode’s buffer pH 6.5. Whole blood was centrifuged at 600xg for 3min and

then at 400xg for 2min to remove red blood cells. Supernatant was spun at 1,300xg for 5 min

and the platelet-containing pellet was gently resuspended in 600µL Tyrode’s buffer pH 7.4.

Platelets were either left nonactivated or activated with thrombin (0.1U/mL) after addition of

5 mM of calcium for 90 min at RT (time based on kinetics of CD41+ Proteasome+ PEV

230

release shown in Supplementary figure 3C). Platelet EVs were obtained by two rounds of

centrifugation of stimulated platelets at 1,300xg for 5min at RT. Either activated platelets,

EVs or DCs were pulsed with 100µg/mL OVA protein (Sigma-Aldrich), 200µg/mL of OVA

peptide (SIINFEKL [Invivogen]) or left unpulsed for 4h at RT. These conditions were either

left unlabelled for lymphoproliferation and intracellular staining experiments or labelled for

Hs-FCM experiments.

Five µL of PEVs or platelet suspensions were labelled with 250nM LWA300 proteasome

probe in a total volume of 100μL for 90min at 30°C. Samples were then incubated with the

following antibodies for 30min at RT prior to dilution in Annexin V binding buffer and

analysis by Hs-FCM: BUV395 anti-CD41, BV650 anti-CD62p, BUV395 anti-CD41,

BV650 anti-CD62p, BV711 Annexin V, BV421 anti-OX40L, BUV737 anti-CD154 (all BD

Biosciences), PeCy7 anti-CD40, PeCy7 anti-MHC-I (AF6-88.5) and PE anti MHC-I bound

to OVA peptide (25D1.16) (all from Biolegend).

4 Results

PEVs contain functional proteasome

Following platelet activation by thrombin, remnant platelets were eliminated by

centrifugation and larger EVs were isolated by a second high-speed centrifugation

(18Kxg fraction). The supernatant obtained was further centrifuged at 100,000g and

smaller EVs (likely exosomes) were obtained from this pellet. We found that 98.10.5

% of proteins were retrieved in the larger EV 18Kxg fraction. Immunoblotting

confirmed that human PEVs from this fraction were enriched in proteasome 20S α

subunit, in addition to mitochondria (indicated by TOM20 expression) and CD41, but

lacked TSG101 (putative marker of exosomes) (Figure 1A-E). Using platelets as a

positive control, we assessed proteasome function in these PEVs. Proteasome-

associated trypsin-, caspase- and chymotrypsin-like activities were detectable in

platelets and significatively increased in the PEV fraction, but were undetectable

after treatment with epoxomicin, a proteasome inhibitor (Figure 1F). Visualization of

immunogold-labelled proteasome 20S α subunit by transmission electron

microscopy confirmed the presence of proteasomes in PEVs (Figure 1G). These

231

data suggest the catalytically active proteasome was transferred to PEVs upon their

release from platelets.

LWA300 is a conjugate between epoxomicin and BODIPY FL fluorophore that

generates an activity-based, plasma membrane-permeable inhibitor that can identify

the proteasome in cells.779,780 Using LWA300, we detected and quantified active

proteasome-containing PEVs directly in the platelet secretome.779,780 High-sensitivity

flow cytometry (Hs-FCM) confirmed PEV heterogeneity following platelet activation

by thrombin (Figure 1H). Approximately 16.66.5% of the larger (i.e. 500–900nm)

PEVs781 contained proteasome whereas smaller vesicles (i.e. less than 500nm) had

no detectable proteasome (Figure 1H and Supplementary figure 1). The detection

specificity of proteasome-containing PEVs by hs-FCM was confirmed using a

combination of controls. We confirmed efficient competition of the LWA300 probe by

unlabelled epoxomicin, and we determined the particulate nature and membrane

moiety of proteasome-containing PEVs, as they were respectively pelleted by

ultracentrifugation and sensitive to detergent treatment (Figure 1I-J). Confocal

microscopic visualization of platelets as positive controls, and PEVs from thrombin-

activated platelets labelled with LWA300 revealed that both platelets and a

subpopulation of PEVs contained active proteasome (Figure 1K).

Hs-FCM was further used to characterize proteasome-containing PEVs in terms of

surface markers and mitochondrial content. Approximately half of the proteasome-

containing PEVs exposed phosphatidylserine while the vast majority expressed

surface P-selectin (Supplementary figure 2A). Furthermore, 68.37.8% of the

proteasome-containing PEVs also contained mitochondria (Supplementary

figure 2A). Investigation of the mechanisms underlying release of active

proteasome-positive PEVs revealed that the total number of PEVs (with and without

proteasomes) were significantly reduced in the presence of actin inhibitors

(cytochalasins B, D, E and latrunculin A) but not by the tubulin polymerization

inhibitor nocodazole (Supplementary figure 2B). Proteasome release in PEVs was

not unique to thrombin stimulation as ADP, cross-linked collagen related peptide

232

(CRP-XL) and heat-aggregated IgG (HA-IgG) also triggered release of proteasome-

containing PEVs (Supplementary figure 2C).

Identification of proteasome-containing PEVs under physiological and

pathological conditions

The presence of proteasome-containing PEVs was assessed under conditions

conducive to platelet activation and PEV release. A mean of 1.82×106

(range:1.13×105 to 8.11×106, n=6) proteasome-containing PEVs/mL were detected

by hs-FCM in the blood of healthy individuals, which corresponded to 2.61.8% of

the total PEVs in blood. PEVs were quantified in platelet concentrates (PCs) known

to have caused ATRs and compared with control PCs that did not induce ATRs.

Given the reported increase in mitochondria-containing PEVs in ATRs,442,540 we also

determined their levels. High levels of proteasome-containing PEVs were found in

all tested PCs (Figure 2A) but the concentrations of proteasome-containing PEVs

(with or without mitochondria) were not significantly elevated in PCs that induced

ATR (Figure 2A). In contrast, compared with controls, the concentrations of

mitochondria-containing PEVs were increased in ATR-associated PCs, consistent

with prior findings.442,540

Transfusion-related acute lung injury (TRALI) is a potentially lethal adverse reaction

that can result from transfusion of PCs.782 Thus, we quantified proteasome-

containing PEVs in murine bronchoalveolar lavages in an inducible TRALI

model.783,784 Proteasome-containing PEVs were detected in bronchoalveolar

lavages from both TRALI and control mice (Figure 2B), however, no significant

difference was observed between the two groups (Figure 2B). This suggests that

proteasome-containing PEVs are not increased during lung inflammation in this

model and therefore may not participate to acute inflammation that characterizes the

pathogenesis.

Our in vitro investigations pointed to the high potency of immune complexes (HA-

IgG) in generating proteasome-containing PEVs (Supplementary figure 2C).

Although mice lack FcγRIIA, this is the only Fcγ receptor expressed by human

233

platelets that is capable of responding to immune complexes.785 Recent findings

indicate that circulating immune complexes stimulate the release of mitochondria-

containing PEVs in mice expressing the FcγRIIA transgene.492,786 Compared with

diluent injected control mice, there were significantly elevated levels of proteasome-

containing PEVs in plasma of mice with immune-complexes challenge (Figure 2C).

These findings confirmed that proteasome-containing PEVs are present under

various physiological and pathological conditions.

Protein processing by proteasome-containing PEVs

In order to study proteasome function in PEVs, we investigated its ability to process

proteins into smaller peptides by assessing their successful loading into the antigen-

binding groove of MHC-I molecules. We confirmed the expression of MHC-I on

resting and thrombin-activated murine platelets and verified whether MHC-I is

maintained on PEVs present in the platelet secretome. We found that washed resting

platelets did not express MHC-I on their surface (Figure 3A-B), however, thrombin

activation led to a significant increase in surface MHC-I expression (Figure 3A-B),

consistent with the reported presence of this molecule in α-granules and its release

upon activation.520,521,787,788 A small proportion (0.930.13%) of the spontaneously

released PEVs expressed MHC-I, but this proportion significantly increased upon

platelet activation with thrombin (means of 4.640.98%).

To determine whether PEV MHC-I can indeed load small peptides, we pulsed PEVs

present in the platelet secretome with the ovalbumin (OVA) peptide SIINFEKL and

monitored its association with MHC-I molecules using the 25D1.16 monoclonal

antibody, which specifically recognizes MHC-I/SIINFEKL complexes.789 Similarly

with platelets, PEVs loaded the SIINFEKL peptide onto their MHC-I molecules

(Figure 3C-D). Native OVA was also efficiently processed by platelets and the

SIINFEKL peptide was loaded in MHC-I (Figure 3C-E), consistent with prior work.520

We found that an average of 2.53±0.74% of CD41+ PEVs pulsed with the peptide

and 1.83±0.24% of CD41+ PEVs pulsed with OVA (n=18) were positive for 25D.1.16.

Of interest, incubation of native OVA with PEVs resulted in proteolysis of the former

and retrieval of the SIINFEKL peptide from MHC-I molecules expressed by the

234

PEVs. Taken together, the data show that PEVs can process native proteins into

smaller peptides thereby enabling antigen presentation through MHC-I.

Proteasome-containing PEVs can reach lymphoid organs and circulate through

the lymphatic system

Intravenously injected PEVs have a limited circulation time in human blood, ranging

from 10 min to hours depending on studies.790,791 It is unclear, however, whether

they can reach lymphoid organs. Fluorescently labelled PEVs generated from

activated mouse platelets were intravenously injected into mice and their presence

in blood and different organs was monitored. We could identify free PEVs (unbound

to cells) for up to 2 minutes in blood (Figure 4A and Supplementary figure 4A-C).

PEVs in blood were also mainly found bound to platelets and to leukocytes, mainly

Ly6G+ neutrophils, and to a lesser extent lymphocytes, but were mostly undetectable

by 60min (Figure 4A). Screening of individual PEVs in whole tissue sections in

different organs identified spleen and lymph nodes (popliteal and inguinal) as

primary targets, followed by liver, bone marrow, lungs, and kidneys, while none were

found in brain (Figure 4B-C and Supplementary figure 4D-E). Moreover,

aggregates of PEVs (i.e. larger than 1µm2 and up to 541µm2) were mainly observed

in spleen (mean size 2.84±0.16µm2), popliteal (4.16±0.40µm2) and inguinal

(4.08±0.30µm2) lymph nodes, followed by bone marrow (2.75±0.15µm2), lung

(33.51±7.15µm2) and liver (3.40±0.21µm2). This may reflect their accumulation into

smaller vessels or the internalization of numerous PEVs within single cellular

recipients in these organs (Figure 4B-C and Supplementary figure 4D-E).

Platelet EVs can circulate through the lymphatic system and the levels of PEVs in

lymph are increased in mouse models of atherosclerosis and autoimmune

inflammatory arthritis.535,773,777 Using the lymph from mice, we evaluated whether

PEVs were associated with proteasome and MHC-I molecules. We found that a

fraction of the PEVs in lymph expressed MHC-I (11.22.2%) and contained an active

proteasome (12.03.9%). Remarkably, a detectable proportion (1.60.7%) of the

lymph PEVs contained both proteasome and MHC-I molecules (Figure 4D-E) and

235

this was significant given the substantial number of PEVs in lymph (mean of

2.5×107/mL in mice777).

Proteasome-containing PEVs express lymphocyte co-stimulatory molecules

Efficient stimulation of adaptive immunity requires both recognition of the antigen-

MHC-I complexes by the T-cell receptor (TCR) and the activity of co-stimulatory

molecules. We evaluated whether platelets or proteasome-containing PEVs loaded

with SIINFEKL expressed co-stimulatory molecules in addition to other known PEV

markers displayed by CD41+ Proteasome+ EVs. Compared with PEVs that had

undetectable SIINFEKL loading, both platelets and PEVs present in the platelet

secretome loaded with SIINFEKL (25D1.16-positive) expressed higher levels of

proteasome (Figure 5). Moreover, in contrast to thrombin-activated platelets, where

phosphatidylserine expression is increased when loaded with SIINFEKL, both PEVs

bearing SIINFEKL and those negative for SIINFEKL expressed similar levels of

phosphatidylserine (Figure 5). Furthermore, both platelets and SIINFEKL-bearing

PEVs expressed higher levels of P-selectin, and the co-stimulatory

molecules CD40L, CD40 and OX40L (Figure 5). Thus, among the different subtypes

of PEVs, those with a higher density of antigen–MHC-I complexes show more

abundant expression of lymphocytes co-stimulatory molecules and bear a higher

content of active proteasome.

Proteasome-containing PEVs can support antigen-specific T cell activation

T cells isolated from OT-1 mice100 were co-incubated for 18h with PEVs present in

the platelet secretome that were either pulsed or not with the SIINFEKL peptide or

native OVA. Dendritic cells and platelets were treated similarly as positive controls

and for comparison (Figure 6A). The T cells (CD3+CD8+) were then washed and the

expression of CD40, OX40, IL-2 and IFN-γ was evaluated to assess T-cell activation.

Compared with DCs and platelets, PEVs could induce a significant release of IFN-γ

when pulsed with the OVA peptide, whereas native OVA led to an increase in IFN-γ

236

but did not reach statistical significance (Figure 6B). Moreover, DCs and, to a lesser

extent, platelets and PEVs were only capable of inducing significant CD40

expression by T lymphocytes previously pulsed with the OVA peptide (Figure 6C).

In contrast, OX40 and IL-2 expression were not induced by DCs, platelets or PEVs

under these experimental conditions (Figure 6D-6E).

Whether PEVs could stimulate T cell proliferation, a hallmark response by the

lymphocyte antigen-MHC-I complex was evaluated. T cells from OT-1 mice were

labelled with CFSE to monitor cellular division and co-incubated for 5 days with either

DCs, activated platelets or PEVs, which were either pulsed or not with either

SIINFEKL or native OVA (Figure 7A). Lymphoproliferation would be represented by

a decrease in the mean fluorescence intensity histogram, i.e. a dilution of CFSE

fluorescence. (Figure 7B).

As expected, we found that the proportion of lymphoproliferative cells was

significantly higher when OT-1 T lymphocytes were incubated with peptide- or native

OVA-pulsed DCs or activated platelets (Figure 7B-C). Of particular note is that PEVs

also supported T cell proliferation when pulsed with either the SIINFEKL or native

OVA (Figure 7B-C). In addition, when PEVs present in the platelet secretome were

removed from pulsed conditions by ultracentrifugation, no proliferation was

observed, confirming that the pulsed proteins alone, or the platelet secretome devoid

of PEVs, cannot support proliferation (Figure 7D). Furthermore, inhibition of PEV

proteasome by epoxomicin before pulsing with native OVA inhibited the ability of

PEV to induce T cell proliferation (Figure 7E left panel). The effect was directed

toward PEV proteasome, as addition of epoxomicin prior to peptide pulsing at the

same concentration used on DCs did not inhibit proliferation (Figure 7E right

panel). Thus, PEVs are capable of proteosome-dependent processing of native

proteins, thereby enabling peptide loading onto MHC-I. Platelet EVs express co-

stimulatory molecules, and their interaction with T lymphocytes promotes

lymphocyte cytokine production and proliferation.

237

5 Discussion

Megakaryocytes and platelets are emerging as active players in innate and adaptive

immunity.750,770,771 The platelet’s role in immunity is mainly confined to the blood

circulation, while megakaryocytes are localized in bone marrow and lungs. The latter

location potentially provides the megakaryocyte with more direct access to airborne

pathogens and allergens.772,792,793 In contrast, PEVs can additionally disseminate

into organs and tissues and this may be possibly due to their small dimensions and

the presence of unique surface molecules. In this study, we found that the

proteasome and the necessary machinery to process and present antigens to CD8+

T cells are packaged into PEVs by platelets. Thus, PEVs may extend the immune

functions played by platelets and megakaryocytes outside the confines of the blood.

Platelet EVs are heterogeneous in terms of surface molecules and their platelet-

derived content. The presence of mitochondria within PEVs is well

documented,442,527,540 but it was unknown whether other organelles were also

transferred from the platelet. The proteasome is much more abundant than

mitochondria, at around 800,000 copies per cell794 in contrast to approximately 3–7

mitochondria per platelet.442 Further investigation will be necessary to determine if

the presence of multiple organelles within a single vesicle is the result of a specific

sorting mechanism, or because those vesicles are larger and may have more

storage capacity. Nonetheless, we observed that the release of proteasome-

containing PEVs requires cytoskeleton remodeling via intact actin microfilament

dynamics and that a broad array of platelet agonists induce the release of

proteasome-containing PEVs.442

The presence of an extracellular proteasome has already been documented in

normal human blood, and elevated levels have been found in patients suffering from

autoimmune diseases, sepsis or trauma.795 Moreover, the 20S proteasome core is

present and active within EVs derived from apoptotic endothelial cells and regulates

tertiary lymphoid structure formation, autoantibody production and graft rejection

following transplantation.754 While some evidence supports that a circulating

238

extracellular proteasome may be transported by EVs, we show that EVs of platelet

origin, among the most abundant EVs in blood, do contain the proteasome. We

further suggest, based on our characterization of these EVs, that platelet

microvesicles, not exosomes, contain the proteasome. Consistent with this, mass

spectrometry analysis of the human PEV proteome identified numerous proteasomal

subunits.796-798 These include subunits of the 20S catalytic core and

immunoproteasome subunit (PSMB8), subunits of the 11S and 19S regulator and

the 26S proteasome.796-798 Moreover, with calnexin, calreticulin, ERP57 and ERP29,

other members of the ubiquitin-proteasome pathway were identified in PEVs such

as members of the E1 and E2 ubiquitin-conjugating enzyme family.796,798

Considering the presence of these proteins and the fact that intact ovalbumin needs

to be ubiquitinated for degradation by the proteasome,799 it points to the occurrence

of functional ubiquitination in PEVs. To our knowledge, there is no evidence of

protein TAP-1 and TAP-2 (related to TAP transporter) presence in PEVs. Further

investigations are required to see if the TAP transporter is present in PEVs and/or if

the processing pathway of the antigen differs in extracellular vesicles since there is

no reported endoplasmic reticulum in PEV. Thus, while proteomic data points to

ubiquitin-proteasome system proteins in PEVs, the present work unequivocally

demonstrates its presence and documents that the extracellular proteasome in

PEVs is functional and can contribute to antigen processing.

We used complementary approaches and developed a Hs-FCM-based assay to

detect active proteasome at the single EV level, thereby permitting quantification and

assessment of other molecules expressed by the EVs. In particular, the proteasome-

containing PEVs also expressed MHC-I and co-stimulatory molecules, which

enabled lymphocyte activation/proliferation and cytokine generation. These findings

demonstrate a novel and potentially important role for PEVs in adaptive immunity.

While our work suggests that PEVs may be involved in adaptive immunity through

antigen presentation, it does not necessarily exclude that other cells may release

proteasome-containing EVs capable of playing this role. Indeed, EVs derived from

DCs, B and T lymphocytes, macrophages and NK cells can perform cross-

presentation, suggesting that they also contain the necessary antigen

239

processing machinery.800-805 Further studies will be necessary to determine the

impact and the importance of PEVs as antigen presenting elements.

We identified proteasome-containing PEVs in the blood of healthy donors. As most

PEVs in blood under healthy conditions are suggested to originate from

megakaryocytes,482,806 the latter may also constitutively release proteasome-

containing EVs. Moreover, we found that numerous stimuli of human platelets, as

well as in vivo stimulation of mouse platelets could induce release of proteasomes

in PEVs, suggesting that proteasome release is at least conserved in both humans

and mice and takes place via platelet activation. Furthermore, platelets can actively

induce immunity against the Plasmodium berghei parasite520 and megakaryocytes

can be infected by Dengue virus807 and can also phagocytose E. coli.772 Given their

small size, intact microorganisms may not necessarily be present inside PEVs, but

PEVs might process cytosolic microbial proteins derived from intact

platelets/megakaryocytes that lack the ability to enter the lymphatic system. Thus,

PEVs may be implicated in immune surveillance and might contribute to presentation

of microbial antigens within lymph tissues. Future studies are however needed to

determine whether exposure to PEVs suffices to establish immunity in vivo, such as

to less immunodominant antigens than OVA, or whether co-stimulation by

inflammation or infection are needed to establish sustained immune response.

Self-antigens may also be presented by PEVs. Mitochondria were identified in a

proportion of the proteasome-containing PEVs, and although prior studies showed

that mitochondria-containing PEVs are rare in lymph (0.41±0.25% (n=4) of the PEVs

in mouse lymph contain mitochondria)777 in comparisons to proteasome-containing

PEVs 13.61±4.27% (n=6), these proportions might be augmented in certain

diseases. It would be interesting to determine whether PEVs contribute to the

formation of mitochondrial autoantibodies that are described in autoimmune

diseases, such as systemic lupus erythematosus.808 Furthermore, the presence of

proteasome-containing PEVs in platelet concentrates was not associated with

increased risks of ATR or TRALI in a mouse model. It remains to be verified whether

the presentation of platelet antigens (e.g. CD41 or CD61) by PEVs from PCs might

240

contribute to generation of anti-platelet immunity in transfused recipients, although

this has been shown with megakaryocytes.56 It is also not excluded that PEV might

also participate in other immune responses such as autoantibody production or in

tissue remodeling, or if they could be used a platform for cell-based

vaccines.434,436,437 The cross-presentation of PEVs presented here may allow for

new therapeutic possibilities such as in anti-tumor or anti-viral immunity or to induce

cytotoxic immunity by vaccination.809 For example, PEVs have already been

proposed as antigen carriers for vaccination,810,811 and our results suggest that these

types of PEVs are also endowed with cross-priming properties that offer new

prophylactic or therapeutic vaccination.

Human platelets injected into WT mice circulate less than 2h, in contrast to mouse

platelets transfused into mice that can circulate for several days.812,813 We thus used

mouse PEVs in our transfusion experiments, and yet most were undetectable from

the blood circulation after 15min, pointing to their rapid uptake in surrounding tissues.

In blood, the main absolute cellular target was the platelets, mostly because platelets

outnumber leukocytes, which might suggest that PEVs might recycle molecules back

to platelets. PEVs were also found in bone marrow, consistent with recent findings

that pointed to their role in the stimulation of megakaryocyte biogenesis.778 The main

organs that were targeted were the lymphoid organs. Our findings in mouse lymph

revealed that proteasome-containing PEVs can circulate in the lymphatic system,

potentially explaining their accumulation in lymphoid organs following intravenous

injection. This access to the lymphatic system by proteasome-containing PEVs may

reveal a new immune route for PEVs to reach lymphoid organs or infected tissues.

Our study highlights the diversity of PEVs and supports the concept that different

subtypes of PEVs may play different roles depending on their cargo and tissue

distribution.

Acknowledgments

We are grateful to the blood donors and patients who participated in this study. We

acknowledge the generous technical help provided by Nicolas Tessandier and

Carolanne Gélinas. We are thankful to Julie-Christine Lévesque from the Cytometry

241

and Microscopy platform (CHU de Quebec) and Richard Janvier from the

Microscopy platform (Université Laval).

6 References:

1. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med.

2007;357(24):2482-2494.

2. Ribeiro LS, Migliari Branco L, Franklin BS. Regulation of Innate Immune Responses

by Platelets. Front Immunol. 2019;10:1320.

3. Rayes J, Bourne JH, Brill A, Watson SP. The dual role of platelet-innate immune cell

interactions in thrombo-inflammation. Res Pract Thromb Haemost. 2020;4(1):23-35.

4. Semple JW, Italiano JE, Jr., Freedman J. Platelets and the immune continuum. Nat

Rev Immunol. 2011;11(4):264-274.

5. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets

as immune and inflammatory cells. Blood. 2014;123(18):2759-2767.

6. Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle cuisine: platelets served with

inflammation. J Immunol. 2015;194(12):5579-5587.

7. Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol.

2019;105(6):1111-1121.

8. Garraud O, Cognasse F. Are Platelets Cells? And if Yes, are They Immune Cells?

Front Immunol. 2015;6:70.

9. Opperman CM, Sishi BJ. Tumor necrosis factor alpha stimulates p62 accumulation

and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31(2):83-

94.

10. Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser

B Phys Biol Sci. 2009;85(1):12-36.

11. Klockenbusch C, Walsh GM, Brown LM, et al. Global proteome analysis identifies

active immunoproteasome subunits in human platelets. Mol Cell Proteomics.

2014;13(12):3308-3319.

12. Dieude M, Bell C, Turgeon J, et al. The 20S proteasome core, active within apoptotic

exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl

Med. 2015;7(318):318ra200.

13. Shi DS, Smith MC, Campbell RA, et al. Proteasome function is required for platelet

production. J Clin Invest. 2014;124(9):3757-3766.

14. Murai K, Kowata S, Shimoyama T, et al. Bortezomib induces thrombocytopenia by

the inhibition of proplatelet formation of megakaryocytes. Eur J Haematol. 2014;93(4):290-

296.

15. Nayak MK, Kulkarni PP, Dash D. Regulatory role of proteasome in determination of

platelet life span. J Biol Chem. 2013;288(10):6826-6834.

16. Grundler K, Rotter R, Tilley S, et al. The proteasome regulates collagen-induced

platelet aggregation via nuclear-factor-kappa-B (NFkB) activation. Thromb Res.

2016;148:15-22.

17. Nayak MK, Kumar K, Dash D. Regulation of proteasome activity in activated human

platelets. Cell Calcium. 2011;49(4):226-232.

18. Grundler Groterhorst K, Mannell H, Pircher J, Kraemer BF. Platelet Proteasome

Activity and Metabolism Is Upregulated during Bacterial Sepsis. Int J Mol Sci. 2019;20(23).

242

19. Gupta N, Li W, Willard B, Silverstein RL, McIntyre TM. Proteasome proteolysis

supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol.

2014;34(1):160-168.

20. Colberg L, Cammann C, Greinacher A, Seifert U. Structure and function of the

ubiquitin-proteasome system in platelets. J Thromb Haemost. 2020.

21. Yukawa M, Sakon M, Kambayashi J, et al. Purification and characterization of

endogenous protein activator of human platelet proteasome. J Biochem. 1993;114(3):317-

323.

22. Yukawa M, Sakon M, Kambayashi J, et al. Proteasome and its novel endogeneous

activator in human platelets. Biochem Biophys Res Commun. 1991;178(1):256-262.

23. Boegel S, Lower M, Bukur T, Sorn P, Castle JC, Sahin U. HLA and proteasome

expression body map. BMC Med Genomics. 2018;11(1):36.

24. Semple JW, Speck ER, Milev YP, Blanchette V, Freedman J. Indirect allorecognition

of platelets by T helper cells during platelet transfusions correlates with anti-major

histocompatibility complex antibody and cytotoxic T lymphocyte formation. Blood.

1995;86(2):805-812.

25. Zufferey A, Speck ER, Machlus KR, et al. Mature murine megakaryocytes present

antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv.

2017;1(20):1773-1785.

26. Chapman LM, Aggrey AA, Field DJ, et al. Platelets present antigen in the context of

MHC class I. J Immunol. 2012;189(2):916-923.

27. Zufferey A, Schvartz D, Nolli S, Reny JL, Sanchez JC, Fontana P. Characterization

of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules. J

Proteomics. 2014;101:130-140.

28. Iannacone M, Sitia G, Isogawa M, et al. Platelets mediate cytotoxic T lymphocyte-

induced liver damage. Nat Med. 2005;11(11):1167-1169.

29. Verschoor A, Neuenhahn M, Navarini AA, et al. A platelet-mediated system for

shuttling blood-borne bacteria to CD8alpha+ dendritic cells depends on glycoprotein GPIb

and complement C3. Nat Immunol. 2011;12(12):1194-1201.

30. Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited.

Transfus Med Rev. 2020.

31. Marcoux G, Laroche A, Espinoza Romero J, Boilard E. Role of platelets and

megakaryocytes in adaptive immunity. Platelets. 2020:1-12.

32. Pariser DN, Hilt ZT, Ture SK, et al. Lung megakaryocytes are immune modulatory

cells. J Clin Invest. 2020.

33. Melki I, Tessandier N, Zufferey A, Boilard E. Platelet microvesicles in health and

disease. Platelets. 2017;28(3):214-221.

34. Puhm F, Boilard E, Machlus KR. Platelet Extracellular Vesicles: Beyond the Blood.

Arterioscler Thromb Vasc Biol. 2020:ATVBAHA120314644.

35. Siljander PR. Platelet-derived microparticles - an updated perspective. Thromb Res.

2011;127 Suppl 2:S30-33.

36. Marcoux G, Magron A, Sut C, et al. Platelet-derived extracellular vesicles convey

mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse

reactions. Transfusion. 2019;59(7):2403-2414.

37. Boudreau LH, Duchez AC, Cloutier N, et al. Platelets release mitochondria serving

as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation.

Blood. 2014;124(14):2173-2183.

243

38. Burnouf T, Chou ML, Goubran H, Cognasse F, Garraud O, Seghatchian J. An

overview of the role of microparticles/microvesicles in blood components: Are they

clinically beneficial or harmful? Transfus Apher Sci. 2015;53(2):137-145.

39. Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis

via collagen-dependent microparticle production. Science. 2010;327(5965):580-583.

40. Gyorgy B, Szabo TG, Turiak L, et al. Improved flow cytometric assessment reveals

distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One.

2012;7(11):e49726.

41. Tessandier N, Melki I, Cloutier N, et al. Platelets Disseminate Extracellular Vesicles

in Lymph in Rheumatoid Arthritis. Arterioscler Thromb Vasc Biol.

2020:ATVBAHA119313698.

42. Milasan A, Tessandier N, Tan S, Brisson A, Boilard E, Martel C. Extracellular

vesicles are present in mouse lymph and their level differs in atherosclerosis. J Extracell

Vesicles. 2016;5:31427.

43. French SL, Butov KR, Allaeys I, et al. Platelet-derived extracellular vesicles infiltrate

and modify the bone marrow during inflammation. Blood Adv. 2020;4(13):3011-3023.

44. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-

mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-

derived membrane vesicles. Blood. 2008;111(10):5028-5036.

45. Yari F, Motefaker M, Nikougoftar M, Khayati Z. Interaction of Platelet-Derived

Microparticles with a Human B-Lymphoblast Cell Line: A Clue for the Immunologic

Function of the Microparticles. Transfus Med Hemother. 2018;45(1):55-61.

46. Sadallah S, Amicarella F, Eken C, Iezzi G, Schifferli JA. Ectosomes released by

platelets induce differentiation of CD4+T cells into T regulatory cells. Thromb Haemost.

2014;112(6):1219-1229.

47. Dinkla S, van Cranenbroek B, van der Heijden WA, et al. Platelet microparticles

inhibit IL-17 production by regulatory T cells through P-selectin. Blood. 2016;127(16):1976-

1986.

48. Verdoes M, Florea BI, Menendez-Benito V, et al. A fluorescent broad-spectrum

proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem Biol.

2006;13(11):1217-1226.

49. Raz V, Raz Y, Paniagua-Soriano G, et al. Proteasomal activity-based probes mark

protein homeostasis in muscles. J Cachexia Sarcopenia Muscle. 2017;8(5):798-807.

50. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release

two types of membrane vesicles: microvesicles by surface shedding and exosomes derived

from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791-

3799.

51. Semple JW, Rebetz J, Kapur R. Transfusion-associated circulatory overload and

transfusion-related acute lung injury. Blood. 2019;133(17):1840-1853.

52. Kapur R, Kim M, Rebetz J, et al. Gastrointestinal microbiota contributes to the

development of murine transfusion-related acute lung injury. Blood Adv. 2018;2(13):1651-

1663.

53. Kapur R, Kim M, Aslam R, et al. T regulatory cells and dendritic cells protect against

transfusion-related acute lung injury via IL-10. Blood. 2017;129(18):2557-2569.

54. McKenzie SE, Taylor SM, Malladi P, et al. The role of the human Fc receptor Fc

gamma RIIA in the immune clearance of platelets: a transgenic mouse model. J Immunol.

1999;162(7):4311-4318.

244

55. Cloutier N, Allaeys I, Marcoux G, et al. Platelets release pathogenic serotonin and

return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci U S

A. 2018;115(7):E1550-E1559.

56. Melki I, Allaeys I, Tessandier N, et al. Platelets release mitochondrial antigens in

systemic lupus erythematosus. Sci Transl Med. 2021;13(581).

57. Angenieux C, Dupuis A, Gachet C, de la Salle H, Maitre B. Cell surface expression

of HLA I molecules as a marker of young platelets. J Thromb Haemost. 2019;17(9):1511-

1521.

58. Nunez-Avellaneda D, Mosso-Pani MA, Sanchez-Torres LE, Castro-Mussot ME,

Corona-de la Pena NA, Salazar MI. Dengue Virus Induces the Release of sCD40L and

Changes in Levels of Membranal CD42b and CD40L Molecules in Human Platelets. Viruses.

2018;10(7).

59. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN. Localization,

quantitation, and in situ detection of specific peptide-MHC class I complexes using a

monoclonal antibody. Immunity. 1997;6(6):715-726.

60. Rand ML, Wang H, Bang KW, Packham MA, Freedman J. Rapid clearance of

procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb

Haemost. 2006;4(7):1621-1623.

61. Rank A, Nieuwland R, Crispin A, et al. Clearance of platelet microparticles in vivo.

Platelets. 2011;22(2):111-116.

62. Lefrancais E, Ortiz-Munoz G, Caudrillier A, et al. The lung is a site of platelet

biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105-109.

63. Campbell RA, Schwertz H, Hottz ED, et al. Human megakaryocytes possess intrinsic

antiviral immunity through regulated induction of IFITM3. Blood. 2019;133(19):2013-2026.

64. Marcoux G, Duchez AC, Rousseau M, et al. Microparticle and mitochondrial release

during extended storage of different types of platelet concentrates. Platelets. 2017;28(3):272-

280.

65. Princiotta MF, Finzi D, Qian SB, et al. Quantitating protein synthesis, degradation,

and endogenous antigen processing. Immunity. 2003;18(3):343-354.

66. Sixt SU, Dahlmann B. Extracellular, circulating proteasomes and ubiquitin -

incidence and relevance. Biochim Biophys Acta. 2008;1782(12):817-823.

67. Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. The platelet

microparticle proteome. J Proteome Res. 2005;4(5):1516-1521.

68. Dean WL, Lee MJ, Cummins TD, Schultz DJ, Powell DW. Proteomic and functional

characterisation of platelet microparticle size classes. Thromb Haemost. 2009;102(4):711-

718.

69. Capriotti AL, Caruso G, Cavaliere C, Piovesana S, Samperi R, Laganà A. Proteomic

characterization of human platelet-derived microparticles. Anal Chim Acta. 2013;776:57-63.

70. Benaroudj N, Tarcsa E, Cascio P, Goldberg AL. The unfolding of substrates and

ubiquitin-independent protein degradation by proteasomes. Biochimie. 2001;83(3-4):311-

318.

71. Chen Z, Larregina AT, Morelli AE. Impact of extracellular vesicles on innate

immunity. Curr Opin Organ Transplant. 2019;24(6):670-678.

72. Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles

from Professional Antigen-Presenting Cells. Annu Rev Immunol. 2018;36:435-459.

73. Lindenbergh MFS, Wubbolts R, Borg EGF, van 't Veld EM, Boes M, Stoorvogel W.

Dendritic cells release exosomes together with phagocytosed pathogen; potential

245

implications for the role of exosomes in antigen presentation. J Extracell Vesicles.

2020;9(1):1798606.

74. Federici C, Shahaj E, Cecchetti S, et al. Natural-Killer-Derived Extracellular

Vesicles: Immune Sensors and Interactors. Front Immunol. 2020;11:262.

75. Zeng F, Morelli AE. Extracellular vesicle-mediated MHC cross-dressing in immune

homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol.

2018;40(5):477-490.

76. Noulsri E. Effects of Cell-Derived Microparticles on Immune Cells and Potential

Implications in Clinical Medicine. Lab Med. 2020.

77. Flaumenhaft R, Dilks JR, Richardson J, et al. Megakaryocyte-derived microparticles:

direct visualization and distinction from platelet-derived microparticles. Blood.

2009;113(5):1112-1121.

78. Gitz E, Pollitt AY, Gitz-Francois JJ, et al. CLEC-2 expression is maintained on

activated platelets and on platelet microparticles. Blood. 2014;124(14):2262-2270.

79. Vogt MB, Lahon A, Arya RP, Spencer Clinton JL, Rico-Hesse R. Dengue viruses

infect human megakaryocytes, with probable clinical consequences. PLoS Negl Trop Dis.

2019;13(11):e0007837.

80. Becker Y, Marcoux G, Allaeys I, et al. Autoantibodies in Systemic Lupus

Erythematosus Target Mitochondrial RNA. Front Immunol. 2019;10:1026.

81. Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large

Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol.

2018;9:2723.

82. de Jong OG, Kooijmans SAA, Murphy DE, et al. Drug Delivery with Extracellular

Vesicles: From Imagination to Innovation. Acc Chem Res. 2019;52(7):1761-1770.

83. Urbanelli L, Buratta S, Tancini B, et al. The Role of Extracellular Vesicles in Viral

Infection and Transmission. Vaccines (Basel). 2019;7(3).

84. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights

into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21(5):298-312.

85. Sabanovic B, Piva F, Cecati M, Giulietti M. Promising Extracellular Vesicle-Based

Vaccines against Viruses, Including SARS-CoV-2. Biology (Basel). 2021;10(2).

86. Bliss CM, Parsons AJ, Nachbagauer R, et al. Targeting Antigen to the Surface of EVs

Improves the. Mol Ther Methods Clin Dev. 2020;16:108-125.

87. Baker GR, Sullam PM, Levin J. A simple, fluorescent method to internally label

platelets suitable for physiological measurements. Am J Hematol. 1997;56(1):17-25.

88. Blessinger SA, Tran JQ, Jackman RP, et al. Immunodeficient mice are better for

modeling the transfusion of human blood components than wild-type mice. PLoS One.

2020;15(7):e0237106.

246

7 Figures

Figure 1. Platelets and PEVs contain proteasome

247

(A) Proteasome 20S α subunit, CD41, TOM20, TSG101 and actin in human platelet

extracellular vesicles (PEVs) (18Kxg fraction) and platelet (PLTs) preparations (20 μg

protein per lane) were assessed by immunoblotting. Results are representative of five distinct

preparations. (B-E) Protein quantifications were assessed by densitometry using image lab

software (Biorad), results were normalized to actine and expressed as arbitrary units (AU).

Mean ± SEM, n=5, paired t-test *P < 0.5. (F) Proteasome function was assessed by measuring

trypsin-like, caspase-like or chymotrypsin-like activity of PEVs and platelets treated or not

with epoxomicin using the Proteasome-Glo™ chymotrypsin-like, trypsin-like and caspase-

like cell-based assays. Twenty and 10 μg of proteins were used for platelets and PEVs,

respectively. Mean ± SEM, n = 6, * P < 0.05, ** P < 0.01, *** P < 0.001, Mann-Whitney.

(G) TEM visualization of immunogold labelling of proteasome 20S α subunit in PEVs

released from thrombin (0.5U/mL)-activated platelets. Data are representative of three

independent experiments. (H) High-sensitivity flow cytometry (hs-FCM) analysis of resting

platelets and thrombin (0.5U/mL)-activated platelets. Two distinct populations of PEVs, i.e.

larger PEVs (approximately 17% of these PEVs contain active proteasome) and smaller

PEVs, not containing active proteasome. (n = 20 data are presented as mean ± SEM, ** P <

0.01, *** P < 0.001 and **** P < 0.0001, Kruskal–Wallis). (I-J) Controls were performed

to assess the specificity of PEV detection using hs-FCM. Sensitivity of CD41+Proteasome+

PEVs to competition by epoxomicin, ultracentrifugation (Ultracentri) or 0.05% Triton X-100

and unlabelled samples are presented as % of untreated (Control). Data are presented as mean

± SEM of 5 independent experiments, paired t-test ****P < 0.0001 compared with the

control. (K) Confocal microscopy visualization of proteasome content associated with

platelets (left panel) and PEVs (right panel). Visualization of CD41, wheat germ agglutinin

(WGA) to determine plasma membrane surface, proteasome (LWA300) and merge is

displayed in the region of interest (ROI). Populations originating from dashed lines squares

and represented in ROI are triple positives (white arrowheads) or CD41- and WGA-positive

but proteasome-negative (white arrows).

Figure 2. Identification of proteasome-containing PEVs under physiological and

pathological conditions

248

(A) Proteasome-containing PEVs detected by hs-FCM are found in PFP from platelet

concentrates that have caused adverse transfusion reaction (ATR) in recipients and in control

concentrates that did not induce ATR. The total number of proteasome-containing PEVs

(containing or not mitochondria (mito)), proteasome+mito-PEVs or proteasome+mito+PEVs

does not significantly differ between control and ATR, while proteasome- mito+ PEVs are

increased in ATR (no adverse reaction group [n = 33] vs. adverse reaction group [n = 34]

matched in terms of storage duration; data are presented as mean ± SEM, NS non-significant,

**** P < 0.0001, Student's t-test). (B) Proteasome-containing PEVs detected by hs-FCM are

found in bronchoalveolar lavages from mice after induction of transfusion related acute lung

injury (TRALI) with 34-1-2s and AF6-88.5.5.3 antibody and in control mice (n = 5, data are

presented as mean ± SEM, NS non-significant, Student's t-test). (C) Proteasome-containing

PEVs are detected at significantly higher levels in mice 1-hour post i.v. injection of HA-IgG

vs. control (diluent) mice. (n = 3, **P< 0.01, data are presented as mean ± SEM, Student’s t-

test)

249

Figure 3. Platelets and PEVs load and process OVA onto MHC-I

(A-B) Thrombin (0.1 U/mL)-activated murine platelets and their PEVs express MHC-I

(detected by hs-FCM). (n = 19, data are presented as mean ± SEM, **** P < 0.0001, Mann–

Whitney). Activated platelets and their PEVs are able to load the SIINFEKL peptide (C-D)

or to process and load ovalbumin (OVA) (C-E) onto MHC-I. (n = 19, **** P < 0.0001, data

are presented as mean ± SEM, Kruskal-Wallis test comparisons between pulsed (+) to

unpulsed (-))

250

Figure 4. PEVs in blood circulation can reach lymphoid organs and circulate in lymph

(A-C) Fluorescently labelled PEVs generated from activated mouse platelets were

intravenously injected into mice and their presence in blood (A) and different organs (B-C)

was monitored after 2, 15 and 60 minutes. Free PEVs (unbound to cells) were identified by

flow cytometry for up to 2 minutes in blood as well as PEVs bound to platelets and to

leukocytes (mainly Ly6G+ neutrophils, few lymphocytes), but were mostly undetectable by

60 minutes. Dashed lines represent mean of vehicle (n=9-13), n = 11 (2 min), n = 5 (15 min)

251

and n = 6 (60 min), data are presented as mean ± SEM, * P < 0.05, ** P < 0.01, *** P <

0.001, Kruskal-Wallis). (B) Representative images of CMFDA-labelled (Green) individual

PEVs (White arrowhead) and PEV aggregates (* white asterisk) in whole tissue sections

(Spleen, popliteal LN (PLN), inguinal LN (ILN), bone marrow, lungs and liver) at 15 and 60

min by confocal microscopy, nuclei (Hoeschst 3342) are in blue. Results are representative

of observations made in 5-6 mice per group. (C) PEVs and aggregates were quantified using

5 different sections for lymph nodes (PLN and ILN) (representing a total surface of at least

1.5mm2), 8 zones of 500,000 µm2 each, randomly assigned on 2 different sections for femurs

(total surface of 4 mm2) and 10 zones of 500,000 µm2 each, randomly assigned on 2 different

sections for lungs, spleen, kidneys and brain and 1 section for liver (total surface of 5 mm2)

using Zen 3.3 software. (n=6 (PBS 60min), 5 (15 min) and 6 (60 min, data are presented as

mean ± SEM, * P < 0.05, ** P < 0.01, Kruskal-Wallis). (D-E) PEVs in lymph were detected

by hs-FCM. (D) Gating strategy to analyze expression of MHC-I and proteasome (LWA300)

on CD41+ EVs in lymph and representative dot plot of labelled and unlabelled (CD41 only)

lymph. (E) Expression of MHC-I and proteasome (LWA300) on CD41+ EVs in lymph was

determined. +/+ double positive and −/− double negative for MHC-I and proteasome. (n = 6,

data are presented as mean ± SEM).

252

Figure 5. Platelets and PEVs with loaded OVA peptide express activation and co-

stimulatory molecules

(A-B) Activated platelets and (C-D) PEVs loaded with OVA peptide (25D1.16+) express

higher levels of proteasome (LWA300), and activation (Annexin V, P-selectin) and co-

stimulatory molecules (CD40, CD40L, OX40L). (A,C) Mean fluorescence intensity (MFI)

of the different markers assessed by hs-FCM (n = 7, data are mean ± SEM, NS non-

significant, * P < 0.05, Student t test). (B,D) Representative MFI histogram of the 25D1.16

negative and positive populations for each marker shown on CD41+ Proteasome+ events.

253

Figure 6. PEVs can induce antigen-specific T cell activation and cytokine production

through antigen presentation

(A) Schematic representation of the experimental plan. Cells and PEVs used for the

stimulation of lymphocytes assessed by intracellular cytokines staining (ICS). DC: dendritic

cells, NS: unpulsed, OVA: ovalbumin, O/N: overnight. (B-E) Expression of receptors or

cytokines by CD3+ CD8+ T cells co-incubated with either DCs, activated platelets (PLTs) or

PEVs, left unpulsed or pulsed with SIINFEKL (PP) or ovalbumin (OVA). (B) Interferon

gamma (IFN-γ) production, (C) CD40 expression, (D) OX40 expression and (E) IL-2

production (n = 6, 7 or 9; data are presented as mean ± SEM. * P < 0.05, ** P < 0.01

Wilcoxon vs. unpulsed). Dashed lines are unstimulated conditions.

254

Figure 7. PEVs loaded with native OVA process and present OVA peptide to induce

antigen-specific T cell lymphoproliferation

(A) Schematic representation of the experimental plan. DC: dendritic cells, NS: unpulsed,

OVA: ovalbumin, CFSE: Carboxyfluorescein succinimidyl ester. (B) Histogram showing

CFSE fluorescence shift of CD3+ CD8+ T cells populations when co-incubated with either

dendritic cells (DCs), activated platelets (PLTs) or PEVs left unpulsed or pulsed with

SIINFEKL peptide (PP) or ovalbumin (OVA) for 7 days. (C) Percentage of CD3+ CD8+

lymphoproliferative cells after co-incubation with either DCs, PLTs or PEVs unpulsed or

pulsed with PP or OVA for 7 days. (n = 14; data are presented as mean ± SEM. NS non-

255

significant, ** P < 0.01, *** P < 0.001, ****P < 0.0001, Friedman test followed by Dunn’s

post-test for multiple comparisons to unpulsed). (D) Percentage of CD3+ CD8+

lymphoproliferative cells after 7 days co-incubation with either PP pulsed DCs or supernatant

(surn) depleted of PEVs by ultracentrifugation, left unpulsed or pulsed with PP or OVA.

(n=5; data are presented as mean ± SEM, ** P < 0.01, Mann-Whitney vs. unpulsed). (E)

Proportion of CD3+ CD8+ lymphoproliferative cells after 7 days co-incubation with OVA-

pulsed PEVs treated or not with epoxomicin (epoxo) for 2 hours and PP-pulsed DCs (DC +

PP) treated or not with epoxomicin (epoxo). (n = 9 for PEVs and n = 3 for DC; data are mean

± SEM, NS non-significant, ** P < 0.01, Wilcoxon). Dashed lines are unstimulated

conditions.