environmental control of nannoplankton and foraminifera ...

13
1 BULLETIN OF THE MARINE GEOLOGY Volume 24 No. 1, June 2009 ENVIRONMENTAL CONTROL OF NANNOPLANKTON AND FORAMINIFERA ASSEMBLAGES IN MADURA WATERS by : Vijaya Isnaniawardhani 1) (Manuscript received October 08, 2008) ABSTRACT Nannoplankton is widely used for determining age of sediments following the other microorganism foraminifera since the late 1960s; and it was started being used for marine geography study in the year of 1984. This topic interests to be done in Indonesia as one of the tropic region. The research covered a study about environment using nannoplankton and it is compared with the same study using foraminifera. Methods of the study include: (1) collecting secondary data and samples; (2) collecting field data record; (3) laboratory analyses upon sediment samples to determine the content of nannoplankton and foraminifera (micropaleontology analyses), the texture and composition of minerals (by means of grain size, petrology megascopic and microscopic analyses) (4) intergrating all of the analyses result. Madura waters can be divided into four zones, among all : (I) inner shelf (water depth less than 30 m) in Madura Strait, (II) inner shelf in open marine north of Madura, (III) outer shelf (water depth 30 to 80 m) in Madura Strait, and (IV) outer shelf in open marine north of Madura. Inner shelf in the Madura Strait (Zone I) is characterized by less than 1% sediment of nannoplankton (are made up of Gephyrocapsa oceanica); rare assemblages of benthic foraminifera only (Ammonia spp., arenaceous carbonate test taxa such as : Ammobaculites spp., Textularia agglutinans, Haplophragmoides spp., and milliolidae). Inner shelf open marine north of Madura (Zone II) yielded few nannoplankton assemblages, dominated by Gephyrocapsa oceanica with low number of Emiliania huxleyi, Helicosphaera carteri, H. pavimentum, H. walichii and Pontosphaera spp; common foraminifera assemblages consist of rare planktic Globigerinoides ruber, G. trilobus sacculiferus, G. conglobatus with one or two dominant benthic (Elphidium spp, Ammonia spp., Pseudorotalia spp., Asterorotalia spp.). Outer shelf of Madura Strait (Zone III) assigned by common nannoplankton assemblages, dominated by Gephyrocapsa oceanica and Emiliania huxleyi with few to common Helicosphaera carteri, H. pavimentum, H. wallichii, Pontosphaera spp., Calcidiscus leptoporus, Umbellosphaera irregularis and Umbilicosphaera spp.; common benthic foraminifera assemblages Elphidium spp, Ammonia spp., Cibicides spp., Pseudorotalia spp., and Asterorotalia spp. with rare planktic Globigerinoides ruber, G. trilobus sacculiferus, and G. conglobatus. In the outer shelf open marine north of Madura (Zone IV), it is recorded abundant of nannoplankton Gephyrocapsa oceanica, Emiliania huxleyi, 1. Faculty of Geology, University of Padjadjaran, Bandung

Transcript of environmental control of nannoplankton and foraminifera ...

1BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

ENVIRONMENTAL CONTROL OF NANNOPLANKTON AND FORAMINIFERA ASSEMBLAGES IN MADURA WATERS

by :

Vijaya Isnaniawardhani1)

(Manuscript received October 08, 2008)

ABSTRACT

Nannoplankton is widely used for determining age of sediments following the othermicroorganism foraminifera since the late 1960s; and it was started being used for marinegeography study in the year of 1984. This topic interests to be done in Indonesia as one of thetropic region.

The research covered a study about environment using nannoplankton and it is compared withthe same study using foraminifera. Methods of the study include: (1) collecting secondary dataand samples; (2) collecting field data record; (3) laboratory analyses upon sediment samples todetermine the content of nannoplankton and foraminifera (micropaleontology analyses), thetexture and composition of minerals (by means of grain size, petrology megascopic andmicroscopic analyses) (4) intergrating all of the analyses result.

Madura waters can be divided into four zones, among all : (I) inner shelf (water depth lessthan 30 m) in Madura Strait, (II) inner shelf in open marine north of Madura, (III) outer shelf(water depth 30 to 80 m) in Madura Strait, and (IV) outer shelf in open marine north of Madura.

Inner shelf in the Madura Strait (Zone I) is characterized by less than 1% sediment ofnannoplankton (are made up of Gephyrocapsa oceanica); rare assemblages of benthicforaminifera only (Ammonia spp., arenaceous carbonate test taxa such as : Ammobaculitesspp., Textularia agglutinans, Haplophragmoides spp., and milliolidae). Inner shelf openmarine north of Madura (Zone II) yielded few nannoplankton assemblages, dominated byGephyrocapsa oceanica with low number of Emiliania huxleyi, Helicosphaera carteri, H.pavimentum, H. walichii and Pontosphaera spp; common foraminifera assemblages consistof rare planktic Globigerinoides ruber, G. trilobus sacculiferus, G. conglobatus with one ortwo dominant benthic (Elphidium spp, Ammonia spp., Pseudorotalia spp., Asterorotaliaspp.). Outer shelf of Madura Strait (Zone III) assigned by common nannoplankton assemblages,dominated by Gephyrocapsa oceanica and Emiliania huxleyi with few to commonHelicosphaera carteri, H. pavimentum, H. wallichii, Pontosphaera spp., Calcidiscusleptoporus, Umbellosphaera irregularis and Umbilicosphaera spp.; common benthicforaminifera assemblages Elphidium spp, Ammonia spp., Cibicides spp., Pseudorotaliaspp., and Asterorotalia spp. with rare planktic Globigerinoides ruber, G. trilobussacculiferus, and G. conglobatus. In the outer shelf open marine north of Madura (Zone IV), itis recorded abundant of nannoplankton Gephyrocapsa oceanica, Emiliania huxleyi,

1. Faculty of Geology, University of Padjadjaran, Bandung

2 BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

Helicosphaera carteri, H. pavimentum, H. wallichii, Pontosphaera spp., Discoasterspp., Calcidiscus leptoporus, Umbellosphaera irregularis, Umbilicosphaera spp.; thepresence of moderate divers and abundance of planktic foraminifera Globigerina calida,Pulleniatina obliquiloculata, Orbulina universa, Hastigerina aequilateralis withcommon abundance benthic Bolivina spp., Bulimina spp., Cibicides spp., Pseudorotaliaspp., Asterorotalia spp., Lenticulina spp., Cassidulina spp., Siphonina spp., the presenceof Uvigerina spp. are noted.

The most significant physical environment parameter of each zone controlling appearance ofmarker species and abundancy of microorganism assemblages are bathymetry, salinity,temperature, pH and sediment due to fluvial supply.

Keywords : nannoplankton, foraminifera, environment, marker species, Madura Waters

SARI

Nannoplankton telah digunakan secara luas untuk penentuan umur sedimen di sampingmikroorganisme lain, foraminifera, sejak tahun 1960-an; dan mulai digunakan untuk studigeografi laut pada tahun 1984. Kajian ini menarik untuk dilakukan di Indonesia yang termasukdaerah tropis.

Studi ini mempelajari perubahan lingkungan berdasarkan analisis nannoplankton,dibandingkan dengan foraminifera yang umum dipakai untuk kegunaan sejenis. Metodepenelitian mencakup : (1) pengumpulan data sekunder dan sampel; (2) pengambilan datalapangan; (3) pekerjaan laboratorium meliputi analisis mikropaleontologi dan petrologi ; serta (4)integrasi seluruh hasil analisis.

Perairan Madura dapat dibedakan menjadi empat zona, yaitu: (I) Paparan dalam (kedalamanmuka air laut kurang dari 30 m) di Selat Madura; (II) Paparan dalam pada laut terbuka diPerairan Utara Madura; (III) Paparan luar (kedalaman muka air laut 30 hingga 80 m) di SelatMadura; dan (IV) Paparan luar pada laut terbuka di Perairan Utara Madura.

Paparan dalam di Selat Madura (Zona I) dicirikan oleh kumpulan nannoplankton kurang dari1% total sedimen (Gephyrocapsa oceanica); foraminifera bentik jarang (Ammonia spp.,cangkang gamping pasiran seperti Ammobaculites spp., Textularia agglutinans,Haplophragmoides spp., dan miliolida). Paparan dalam di laut terbuka (Zona II) dicirikan olehnannoplankton kurang melimpah yang didominasi oleh Gephyrocapsa oceanica denganbeberapa Emiliania huxleyi, Helicosphaera carteri, H. pavimentum, H. walichii,Pontosphaera spp; foraminifera cukup melimpah dengan plankton Globigerinoides ruber, G.trilobus sacculiferus, G. conglobatus dalam jumlah jarang serta satu atau dua jenis bentikyang dominan (Elphidium spp, Ammonia spp., Pseudorotalia spp., Asterorotalia spp.).Paparan luar di Selat Madura (Zona III) dicirikan oleh nannoplankton dalam jumlah yangumum, didominasi oleh Gephyrocapsa oceanica dan Emiliania huxleyi dengan beberapaHelicosphaera carteri, H. pavimentum, H. wallichii, Pontosphaera spp., Calcidiscusleptoporus, Umbellosphaera irregularis, Umbilicosphaera spp.; foraminifera bentikjumlahnya umum seperti Elphidium spp, Ammonia spp., Cibicides spp., Pseudorotaliaspp., dan Asterorotalia spp. dengan foraminifera planktik seperti Globigerinoides ruber, G.trilobus sacculiferus, dan G. conglobatus dalam jumlah jarang. Di paparan luar laut terbuka(Zona IV) teridentifikasi nannoplankton yang melimpah seperti Gephyrocapsa oceanica,

3BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

Emiliania huxleyi, Helicosphaera carteri, H. pavimentum, H. wallichii, Pontosphaeraspp., Discoaster spp., Calcidiscus leptoporus, Umbellosphaera irregularis,Umbilicosphaera spp.; dan beragam jenis foraminifera planktik seperti Globigerina calida,Pulleniatina obliquiloculata, Orbulina universa dan Hastigerina aequilateralis sertaforaminifera bentik seperti Bolivina spp., Bulimina spp., Cibicides spp., Pseudorotaliaspp., Asterorotalia spp., Lenticulina spp., Cassidulina spp., Siphonina spp. danUvigerina spp. dalam jumlah yang umum.

Parameter lingkungan fisik yang paling berpengaruh dalam mengontrol kehadiran spesiespenunjuk (indikator) dan kelimpahan kumpulan mikroorganisma adalah: batimetri, salinitas,temperatur, pH dan sedimen.

Katakunci : nannoplankton, foraminifera, lingkungan, spesies penunjuk, Perairan Madura

INTRODUCTIONSince the lates 1960s, nannoplankton

has been used in the geological studyparticulary to determine the age ofsediment. In the last few years, the studyof nannoplakton has been developedespecially among others in geographicaldetermination. McIntyre, et al., 1970;Winter, et al., 1979; Wang and Samtleben,1983; Okada, 1984; Okada, 1992;Baumann, et al., 2001; and Gibbs, 2001recognized lateral oceanographiccondition changes based on thequalitative and quantitative analyses(appearance of marker species, amount-and number- of spesies) of nannoplanktonassemblages.

In Indonesia, the use of nannoplanktonto determine the age of sediment hassuccesful results. However, studies ofmarine geography and environment inusing nannoplankton has never beendone.

Madura Waters has been selected asthe study area as a lot of secondary dataand surface and core- samples can beused; this area is marked by theabundance of both nannoplankton andforaminifera as well.

This research is herein intended todetermine the environmental control of

nannoplankton and foraminiferaassemblages in waters near Madura.

MATERIAL AND METHOD Nannoplankton and foraminifera

assemblages were studied in twenty sixshallow marine surface sediment samplesfrom Madura Strait and twenty foursamples from open marine water north ofMadura. The fifty samples collected byMarine Geological Institute (MGI) wereobtained from the area betweencoordinates 5°48’00” S to 8°00’00” S and112°24’00” E – 114°30’00” E.

The actual research was done in severalstages, namely :1. collection of secondary data and

shallow samples (seabed surfacesediment from grab sampler andsediment from the uppermost part ofcore samples from one metre ofgravity corer

2. collecting field data record (physicaloceanographyc factors measurement)

3. laboratory analyses upon sedimentsamples to determine the content ofnannoplankton and foraminifera(micropaleontology analyses), thetexture and composition of minerals(by means of grain size, petrologymegascopic and microscopicanalyses).

4 BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

The samples were prepared usingnannoplankton smear slide andforaminifera residue preparationmethods. The nannoplankton slideswere examined using a lightmicroscope of 1000 magnification inboth cross-polaried and phased lightfor contrast. Foraminifera examinedusing a slab microscope of 40magnification.

4. Intergrating all of analyses result The taxonomy of nannoplankton is

referred to Perch-Nielsen (1985), plankticforaminifera is referred to Bolli andSaunders (1985), and benthic foraminiferais referred to van Marle (1991).

RESULTTwenty-three nannoplankton taxa,

sixteen planktic- and thirty-four benthic-foraminifera were identified in thesediment samples. Few reworked occurin each samples. Nannoplankkton taxa inthe surface sediment samples of MaduraWaters are among all : FamilyBraarudosphaeraceae Deflandre (1947):Braarudosphaera bigelowii (Grand andBraarud, 1935) Deflandre (1947); FamilyCalciosoleniaceae Kamptner (1927):Scapholithus spp; Family CeratolithaceaeNorris (1965): Ceratolithus cristatusKamptner (1950); Family CocolithaceaePoche (1913): Coccolithus pelagicus(Wallich, 1877) Schiller (1930), Calcidiscusleptoporus (Murray and Blackman, 1989)Loblich and Tappan (1978) andUmbilicosphaera spp; FamilyDiscoasteraceae Tan (1927): Discoasterspp.; Family Helicosphaeraceae Black(1971): Helicosphaera carteri (Wallich,1877) Kamptner (1954), Helicosphaerahyalina Gaarder (1970), Helicosphaerapavimentum Okada and Mc Intyre (1977),Helicosphaera wallichii (Lohmann, 1902)Boudreaux and Hay (1969), Helicosphaera

spp.; Family PontosphaeraceaeLemmermann (1908): Pontosphaeradiscopora Schiller (1925) andPontosphaera japonica (Takayama, 1967)Nishida (1971), Family Princiaceae Hayand Mohler (1967): Emiliania huxleyi(Lohmann, 1902) Hay and Mohler in Hayet al. (1967), Gephyrocapsa oceanicaKamptner (1943), Gephyrocapsa spp.,Pseudoemiliania lacunosa (Kamptner,1963) Gartner (1963), and Reticulofenestraspp; Family RabdosphaeraceaeLemmermann (1908): Rabdosphaera spp.,Family Sphenolithaceae Deflandre inGrasse (1952) Sphenolithus spp.; FamilySyracosphaeraceae Lemmermann (1908):Syracosphaera spp.; FamilyThoracosphaeraceae Schiller (1930):Thoracosphaera spp; and Insertae sedis:Umbellosphaera irregularis Paasche inMarkali and Paasche (1955). Plankticforaminifera assemblages in the sedimentconsist of: Globigerina bermudezi Seiglie,Globigerina calida Parker, Globigerinaspp., Globigerinoides ruber (d'Orbigny),Globigerinoides trilobus trilobus (Reuss),Globigerinoides trilobus immaturusLeRoy, Globigerinoides trilobus sacculiferBrady, Globigerinoides spp.,Globorotalia humerosa Takayanagi danSaito, Globorotalia menardii cultrata(d'Orbigny), Globorotalia tumidatumida (Brady), Globorotalia ungulataBermudez, Globorotalia spp.,Hastigerina aequilateralis (Brady),Hastigerina siphonifera (d'Orbigny),Orbulina spp. D'Orbigny (1839) andPulleniatina spp. Cushman (1927).Hyaline benthic foraminifera taxa wereidentified among all: Family AlmaenidaeMyatlyuk, 1959: Annomalinella spp.;Family Amphistiginidae Cushman, 1927:Amphistegina spp.; Family BagginidaeCushman (1927): Cancris spp.; FamilyBolivinidae Glaessner, 1937: Bolivina

5BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

spp.; Family Cassidulinidae d'Orbigny,1839: Cassidulina spp.; FamilyCibicididae Cushman, 1927: Cibicidesspp.; Family Elphidinae Galloway, 1933:Elphidium crispum (Linnaeus) andElphidium spp.; Family EponinidaeHofker, 1951: Eponides spp.; FamilyLagenidae Reuss, 1862: Fissurina spp. andLagena spp.; Family NodosariidaeEhrenberg, 1838: Dentalina spp. andNodosaria spp.; Family ReussellaCushman, 1933: Reusella spp.; FamilyRotaliidae Ehrenberg, 1839: Ammoniabecarii (Linnaeus) s.l., Asterorotalia spp.and Pseudorotalia spp.; FamilySphaeroidinidae Cushman, 1927:Sphaeroidina bulloides d'Orbigny andSphaeroidina spp.; Family UvigerinidaeHaeckel, 1894: Uvigerina spp.; FamilyVaginulinidae Reuss, 1860: Lenticulinacostata (Fichtel and Moll) and Lenticulinaspp. Arenaceous test benthic foraminiferacan be identified among all: FamilyTextulariidae Ehrenberg, 1839: Textulariaspp.; Family HaplophragmoididaeMaync, 1952: Haplophragmoides spp.;and Family Lituolidae De Blainville, 1827:Ammobaculites spp. Porceleneous testbenthic or Family Miliolidae Ehrenberg,1839 in the samples are: Flintina spp.,Pyrgo spp., Qunqueloculina seminulum(Linnaeus), Quinqueloculina spp.,Spiroloculina communis Cushman andTodd, Spiroloculina depresa d'Orbigny,Spiroloculina spp., Triloculinatricarinata d'Orbigny and Triloculinaspp.

The distribution and the abundancepattern of nannoplankton & foraminiferaassemblages are shown in Table 1.

Megascopically and microscopically,sediment can be classified into: clay, siltyclay, sandy clay, clayey silt, silt, sandy silt,clayey sand, silty sand, and fine-,medium-, coarse- grained sand. The shape

of material sediment can be differentiatedinto rounded to well rounded (0,7-0,9),subrounded to rounded (0,5-0,7),subangular to subrounded (0,3-0,5); thesphericity of sediment can bedifferentiated into high to very high (0,7-0,9), average to high (0,5-0,7) and low toaverage (0,3-0,5) (shown in Table 2). Thesediment textural analyses result iscompiled by Masria (1991), Astjario, et al.(1991), Arifin, et al. (1992) and Astjario, etal. (1998), as shown in Figure 1.

According to Ingle (1980), marinebiofasies is divided into: inner shelf (0 - 50m; 0 – 150 ft), outer shelf (50 – 150 m; 150 –470 ft), upper bathyal (150 – 500 m; 460 –1560 ft), upper middle bathyal (500 – 1500m; 1560 – 4700 ft), lower middle bathyal(1500 – 2000 m; 4700 – 6250 ft), and lowerbathyal (2000 m + ; 6250 ft+).

Based on bathymetry and physicaloceanographic parameters includingsediment (type, texture and mineralcomposition) Madura waters can bedivided into four zones, among all : (I)inner shelf (water depth less than 30 m) instrait, (II) inner shelf in open marine, (III)outer shelf in strait, and (IV) outer shelf(water depth 30 - 80 m) in open marine.The difference of condition were signedby the characteristic distribution and theabundance pattern of nannoplankton &foraminifera assemblages in restricted andopen marine in Madura Waters. (Table 3and Figure 2).

In water depth less than 30 meters(inner shelf) in the Madura Strait (Zone I),the zone is being indicated by variousgrain-size sediment (clay to sand), lowsalinity, low sea surface temperature(29,3° C) and pH = 6,0-7,3; theassemblages of nannoplankton is less than1% of sediment, and are made up of theonly species, Gephyrocapsa oceanica; thebenthic foraminifera noted included

6 BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

Braarudosphaera bigelowiiScapolithusCeratolithus cristatusCoccolithus pelagicusCalcidiscus leptoporusUmbilicosphaeraHelicosphaera carteriHelicosphaera hyalinaHelicosphaera pavimentumHelicosphaera wallichiiHelicosphaera spp.Pontosphaera discoporaPontosphaera japonicaEmiliania huxleyiGephyrocapsa oceanicaGephyrocapsa spp.RabdosphaeraSyracosphaeraThoracosphaeraUmbelosphaera irregularisOthersGlobigerina bermudezi Globigerina spp.Globigerinoides ruberGlobigerinoides trrilobus immaturusGlobigerinoides trrilobus sacculiferus Globigerinoides trrilobus trilobus Globigerinoides spp.Globorotalia humerosa humerosaGloborotalia menardiiGloborotalia tumida tumidaGloborotalia ungulataGloborotalia spp.Hastigerina aequilateralisHastigerina siphoniferaOrbulina universaPulleniatina sppAmphistegina spp. Anomalinella spp. Asterorotalia spp. Bolivina spp. Cancris spp. Cassidulina spp. Cibicides spp. Dentalina spp. Elphidium crispum Elphidium spp.Eponides spp.Fissurina spp.Lagena spp.Lenticulina spp.Nodosaria spp.Pseudorotalia spp. Reusella spp.Ammonia becariiAmmonia spp.Sphaeroidina buloidesUvigerina spp.Textularia agglutinans

Haplophragmoides spp.

Ammobaculites spp.Flintina spp.Pyrgo spp.Quinqueloculina seminulum Quinqueloculina spp.Spiroculina columnisSpiroloculina spp.Triloculina spp.

GB - 385,00

GB - 4311,00

21

12

21

13

GB - 177,50

GB - 186,00

GB - 295,00

GB - 216,50

GB - 205,50

GB - 3210,00

GB - 194,50

GB - 307,00

GB - 317,50

SG - 28 (SBY)5,00

SG - 20 (SBY)5,00

SG - 02 (SBY)9,00

SG - 47 (SBY)10,00

11

11

11

15

SG - 30 (SBY)5,00

SG - 04 (SBY)5,00

13

11

11

11

1SG - 06 (SBY)

4,00SG - 09 (SBY)

4,00SG - 10 (SBY)

5,003

12

12

31

1SG - 04 (S)

7,501

31

11

11

23

11

SG - 05 (S)8,00

41

11

24

11

11

1PGC - 26

12,001

11

14

21

11

12

11

11

2BSK - 38

15,601

11

11

12

22

21

21

22

11

21

1

GM - 1027,00

33

22

32

22

2847

215

21

38

36

41

12

18

GM - 2125,00

32

13

22

253

281

211

11

52

23

21

35

11

12

22

21

3GM - 16

23,001

11

11

21

21

1653

71

14

32

32

13

11

11

43

12

GB - 2429,00

11

42

11

21

27

13

55

19

61

11

21

11

11

2

PGC - 0242,00

152

141

41

17

52

23

32

33

21

32

73

15

32

21

72

93

21

33

413

PGC - 0542,00

232

23

32

2432

13

128

52

21

42

15

76

24

134

56

46

21

39

32

92

4PGC - 03

56,004

34

43

22

348

364

213

23

416

168

72

43

87

132

23

39

311

PGC - 0954,00

33

12

24

4333

420

22

21

22

21

37

15

38

24

73

53

84

58

32

53

32

314

P - 3237,00

118

21

81

288

126

756

372

252

226

23

32

14

11

32

23

75

610

21

26

12

72

13

81

45

48

P - 3035,00

11

22

23

2227

28

19

11

11

33

66

27

36

42

42

33

34

3P - 22

32,001

281

15

126

1326

18

2854

262

252

69

41

11

31

12

23

34

25

21

33

22

26

BSK - 0472,00

147

46

202

7428

429

3276

884

184

3512

32

22

23

22

319

97

112

11

326

37

133

13

810

72

814

11P - 27

28,001

517

116

1113

182

19

22

11

43

55

11

31

21

21

3P - 15

40,001

362

24

2823

271

3327

5252

22

281

226

33

21

23

27

34

54

62

119

13

88

45

22

42

12

25

P - 2423,00

126

12

2325

241

2727

5150

11

224

41

11

11

13

22

24

21

21

1BSK - 16

55,003

34

32

362

373

419

53

311

116

49

36

312

39

112

21

52

25

75

B SK - 0152,50

134

23

54

3432

314

2528

4847

39

343

37

53

33

75

26

91

41

91

12

83

37

33

21

22

23

211

GM - 1869,00

12

33

44

234

482

465

1713

69

42

32

98

115

416

24

162

95

313

33

65

31

83

33

73

313

GM - 0169,00

93

93

189

2918

1615

239

554

242

424

57

18

31

71

12

123

69

63

198

214

23

273

713

92

22

24

61

78

GM - 1163,00

17

33

102

288

329

1164

541

311

137

37

63

61

11

217

57

156

1424

63

725

28

142

21

11

13

47

GM - 3161,00

131

12

73

2526

283

2739

2654

116

231

26

22

17

53

310

22

183

21

212

221

31

36

23

54

712

GM - 3257,00

126

22

81

2526

226

2851

522

261

262

22

21

14

12

27

1712

101

619

34

103

13

211

24

46

16GM - 15

73,002

374

43

2717

343

3947

7357

31

444

138

149

14

44

73

24

14

34

1812

93

314

315

19

21

2311

192

32

31

13

929

GM - 0455,00

55

12

21

126

153

541

152

25

11

12

43

22

65

314

216

44

71

26

43

68

17GM - 13

77,006

24

34

214

322

214

4663

42

318

36

84

42

52

23

63

614

134

174

56

234

229

33

144

44

171

52

16

1010

GM - 2942,00

14

22

22

23

824

622

420

31

23

12

23

42

52

41

25

north of MaduraPORCELENEOUS

(Zone IV) (Zone II)

Inner shelf in Madura Strait (Zone I)

Outer shelf in open marine

Inner shelf

in open marine

ZONATION

Table 1. Distribution of Nannoplankton And Foraminifera Assem

balges in The Surface Sediment of Madura W

aters

SAMPLE

NANNOPLANKTON

DEPTH

BENTHIC FORAMINIFERA

Others

FORAMINIFERAHYALIN

ARENACEOUSnorth of Madura

Outer shelf in Madura Strait

(Zone II)

PLANKTIC

7BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

Meg

asco

pic

Fine Sand

Silt

Clay

GM

- 18

-5.9

9811

3.80

569

.00

Cla

y, g

reen

ish

grey

, fos

sil

Cla

y<0

,005

-0,4

<0,0

0515

851

22

12

11

11

11

15

80-

60.4

29.9

9.7

Silty

san

GM

- 01

-6.0

0011

2.61

269

.00

Cla

y, g

reen

ish

grey

, fos

sil

Silty

cla

y<0

,005

-0,8

0.5

3367

47

22

31

22

21

12

22

1552

-58

.121

.320

.6Si

lty sa

nG

M -

11-6

.000

113.

016

63.0

0C

lay,

gre

enis

h gr

ey

Cla

y<0

,005

-0,0

10.

0418

821

34

23

11

12

676

-62

.922

.914

.2Si

lty sa

nG

M -

31-6

.248

112.

476

61.0

0C

lay,

gre

enis

h gr

ey, f

ossi

lC

lay

<0,0

05-0

,08

<0,0

0520

802

22

53

22

220

60-

3.6

27.9

68.5

Silty

cla

GM

- 32

-6.4

0511

3.26

457

.00

Cla

y, g

reen

ish

grey

, fos

sil

Cla

y<0

,005

-0,1

<0,0

0522

781

18

14

21

11

11

3048

-6.

921

.971

.2Si

lty c

laG

M -

15-6

.418

113.

894

73.0

0C

lay,

gre

enis

h gr

ey, f

ossi

lC

lay

<0,0

05-0

,02

<0,0

0520

802

19

31

11

11

1565

-6.

834

.958

.3Si

lty c

laG

M -

04-6

.499

112.

676

55.0

0C

lay,

gre

enis

h gr

ey, f

ossi

lSi

lty c

lay

<0,0

05-0

,06

<0,0

0526

743

53

21

11

12

24

132

42-

7.9

24.3

67.8

Silty

cla

GM

- 13

-6.5

8211

4.00

077

.00

Cla

y, g

reen

ish

grey

, fos

sil

Cla

y<0

,005

-0,0

1<0

,005

2278

74

32

11

11

11

2850

-2.

418

.978

.7C

lay

GM

- 10

-6.7

3811

2.47

842

.00

Silt,

gre

enis

h gr

ey, f

ossi

lSi

lty c

lay

0,00

5-0,

030.

0146

548

520

12

21

11

12

238

16-

4.6

56.8

38.6

Cla

yey

sG

M -

21-6

.817

112.

547

5.00

Silt,

gre

enis

h gr

ey, f

ossi

lSi

lty c

lay

0,00

5-0,

2>0

,255

4510

1518

33

11

22

405

3.6

30.1

56.6

9.7

Sand

y si

GM

- 16

-6.8

2711

2.50

711

.00

Silt,

gre

enis

h gr

ey, f

ossi

lSi

lty c

lay

< 0,

005-

0,1

<0,0

0552

4824

410

36

11

11

138

10-

8.8

58.9

32.3

Cla

yey

sG

M -

29-6

.833

112.

950

27.0

0C

lay,

gre

enis

h gr

ey, f

ossi

lC

lay

<0,0

05-0

,01

<0,0

0522

781

18

31

11

68

70-

4.9

18.6

76.5

Cla

yG

B -

38-6

.834

113.

624

25.0

0C

lay,

gre

enis

h gr

ey

Cla

y<

0,00

5-0,

01<0

,005

418

781

13

21

31

82

870

-2.

517

.979

.6C

lay

GB

- 43

-6.8

3411

3.89

123

.00

Cla

y, g

reen

ish

grey

C

lay

< 0,

005-

0,01

<0,0

058

1775

12

63

11

41

64

71-

3.4

19.1

77.5

Cla

yG

B -

24-6

.845

112.

764

29.0

0Si

lt, g

reen

ish

grey

Sand

y si

lt<0

,002

-0,2

0.13

3359

80,

5-0,

90,

5-0,

90,

35-0

,52

26

61

32

101

41

1048

4-

29.6

60.4

10.0

Sand

y si

GB

- 17

-6.9

0811

2.72

97.

50Si

lt y sa

nd, g

reen

ish

grey

Silty

sand

<0,0

05-0

,20.

0625

5436

100,

3-0,

70,

3-0,

71-

217

52

610

11

81

21

26

308

-57

.824

.817

.4Si

lty sa

nG

B -

18-6

.908

112.

765

6.00

Silt y

sand

, gre

enis

h gr

ey, f

ossi

lFi

ne sa

nd0,

03-0

,20.

125

100

0,3-

0,7

0,3-

0,7

0,35

-0,5

107

211

102

12

487

-55

.230

.913

.9Si

lty sa

nG

B -

29-6

.909

112.

692

5.00

Coa

rse

sand

, gre

enis

h gr

ey, f

ossi

lC

oars

e sa

nd0,

1-1

0.3

100

0,3-

0,7

0,5-

0,7

0,35

-0,5

32

33

410

22

22

22

54

477

-78

.912

.28.

9Sa

ndG

B -

21-6

.909

112.

801

6.50

Silty

sand

, gre

enis

h gr

ey, f

ossi

lSi

lty sa

n d<0

,005

-0,1

0.12

560

2515

0,3-

0,7

0,3-

0,5

1-2

41

315

122

61

142

520

15-

59.8

29.2

11.0

Silty

san

GB

- 20

-6.9

2411

2.78

35.

50Si

lt y sa

nd, g

reen

ish

grey

, fos

sil

Silty

sand

<0,0

05-0

,15

0.12

569

2110

0,3-

0,5

0,3-

0,7

>44

15

22

1210

11

61

222

45

1210

-58

.130

.711

.2Si

lty sa

nG

B -

32-6

.927

112.

719

10.0

0Si

lt y sa

nd, g

reen

ish

grey

, fos

sil

Silty

sand

0,01

-0,1

0.07

6436

0,3-

0,7

0,3-

0,7

1-2

511

212

32

227

1125

3.1

56.2

27.8

12.9

Silty

san

GB

- 19

-6.9

3911

2.76

54.

50Fi

ne sa

nd, g

reen

ish

grey

, fos

sil

Fine

sand

0,05

-0,2

0.15

100

0,3-

0,5

0,3-

0,5

1-2

176

114

114

12

141

2-

60.6

35.8

3.6

Silty

san

GB

- 30

-6.9

4511

2.70

37.

00Si

lt y sa

nd, g

reen

ish

grey

, fos

sil

Silty

sand

0,00

5-0,

10.

1566

340,

3-0,

50,

3-0,

52-

44

62

137

725

215

19-

57.8

34.7

7.5

Silty

san

GB

- 31

-6.9

6711

2.69

87.

50M

ediu

m sa

nd, g

reen

ish

grey

, fos

sil

Sand

0,03

-0,3

0.05

100

0,1-

0,3

0,1-

0,3

>42

1012

1010

82

43

345

11.8

65.4

13.8

9.0

Sand

SG -

28 (S

BY

)-7

.190

112.

822

5.00

Silty

sand

, gre

enis

h gr

eySa

nd0,

05-0

,70.

1590

100,

1-0,

50,

1-0,

50,

35-0

,512

17

113

67

11

435

210

6.1

56.5

19.2

18.2

Silty

san

SG -

20 (S

BY

)-7

.192

112.

785

5.00

Sand

y si

lt, g

reen

ish

grey

Sa

ndy

silt

0,00

5-0,

50.

125

3166

30,

1-0,

50,

1-0,

51-

23

12

31

23

11

12

25

420

463

-56

.027

.912

.9Si

lty sa

nSG

- 02

(SB

Y)

-7.1

9511

2.79

29.

00M

ediu

m sa

nd, g

reen

ish

grey

Sand

0,05

-0,1

50.

125

955

0,1-

0,5

0,1-

0,5

>43

46

413

45

44

52

383

5-

71.1

16.9

7.4

Sand

SG -

47 (S

BY

)-7

.198

112.

705

10.0

0M

ediu

m sa

nd, g

reen

ish

grey

Cla

yey

sand

<0,0

05-0

,5<0

,005

576

370,

5-0,

70,

5-0,

72-

43

44

215

71

11

52

111

66

3113

.568

.616

.41.

5Sa

ndSG

- 30

(SB

Y)

-7.2

1411

2.83

95.

00Sa

ndy

silt,

gre

enis

h gr

ey

Sand

y si

lt<0

,005

-0,1

<0,0

0521

6514

0,5-

0,9

0,3-

0,7

1-2

16

15

11

22

25

2045

95.

752

.923

.717

.7Si

lty sa

nSG

- 04

(SB

Y)

-7.2

1911

2.82

65.

00M

ediu

m sa

nd, g

reen

ish

grey

Sand

0,02

-0,5

0.2

937

0,3-

0,7

0,1-

0,3

2-4

126

92

106

63

21

132

37

-78

.114

.35.

5Sa

ndSG

- 06

(SB

Y)

-7.2

5111

2.82

34.

00M

ediu

m sa

nd, g

reen

ish

grey

Silty

sand

<0,0

05-0

,10.

062

5323

240,

1-0,

30,

1-0,

31-

21

83

15

122

112

24

26

617

18-

19.2

58.3

18.3

Sand

y si

SG -

09 (S

BY

)-7

.292

112.

860

4.00

Sand

y si

lt, g

reen

ish

grey

Fi

ne sa

nd<0

,005

-0,4

0.2

8310

70,

5-0,

70,

3-0,

71-

28

11

73

172

92

11

12

185

510

7-

21.1

57.2

17.9

Sand

y si

SG -

10 (S

BY

)-7

.309

112.

876

5.00

Sand

y si

lt, g

reen

ish

grey

Sa

ndy

silt

0,00

5-0,

350.

134

606

0,5-

0,9

0,5-

0,9

1-2

33

43

64

11

11

11

41

2337

6-

16.7

55.3

24.1

Cla

yey

sSG

-04(

S)-7

.057

114.

062

7.50

Cla

y, g

reen

ish

grey

Si

lty c

lay

<0,0

05-0

,01

<0,0

057

3162

23

49

131

41

141

21-

7.4

12.5

80.1

Cla

ySG

-05(

S)-7

.091

114.

079

8.00

Fine

sand

, gre

enis

h gr

eySi

lty c

lay

<0,0

05-0

,1<0

,005

930

618

23

87

11

11

41

11

295

27-

10.4

28.8

59.7

Silty

cla

PGC

-02

-7.2

4211

3.47

342

.00

Cla

yey

sand

, gre

enis

h gr

ey,

foss

ilC

lay

<0,0

05-0

,01

<0,0

055

1382

25

41

11

21

158

24-

2.6

13.7

83.7

Cla

yPG

C-2

6-7

.253

113.

200

12.0

0Fi

ne sa

nd, g

reen

ish

grey

Cla

y<0

,005

-0,0

1<0

,005

615

794

15

11

13

13

159

20-

4.1

18.6

77.1

Cla

yPG

C-0

5-7

.289

113.

427

42.0

0C

lay,

gre

enis

h gr

ey, f

ossi

l C

lay

<0,0

05-0

,1<0

,005

612

823

56

11

11

5330

-8.

956

.834

.3C

laye

y s

PGC

-03

-7.4

0011

3.48

056

.00

Cla

y, d

ark

grey

C

lay

<0,0

05-0

,01

<0,0

053

1483

14

51

11

21

157

26-

2.5

17.3

80.2

Cla

yPG

C-0

9-7

.403

113.

391

54.0

0C

lay,

gre

enis

h gr

ey

Cla

y<0

,005

-0,0

1<0

,005

711

873

32

11

11

150

37-

3.9

16.7

79.4

Cla

yP-

32-7

.475

113.

975

37.0

0C

lay,

gre

enis

h gr

ey

Cla

y<0

,005

-0,0

1<0

,005

515

801

31

23

21

11

11

340

40-

3.5

19.3

77.2

Cla

yP-

30-7

.500

113.

045

35.0

0C

lay,

gre

enis

h gr

ey

Cla

y<0

,005

-0,0

1<0

,005

517

781

52

12

11

11

14

11

3246

-2.

639

.657

.8Si

lty c

l aP-

22-7

.527

113.

081

32.0

0C

lay,

dar

k gr

ey

Cla

y<0

,005

-0,0

1<0

,005

2278

14

14

13

11

13

11

1068

-4.

418

.876

.5C

lay

BSK

-04

-7.5

6711

3.81

572

.00

Cla

y, g

reen

ish

grey

, fos

sil

Cla

y<0

,005

-0,0

1<0

,005

814

781

25

42

31

31

78-

10.1

26.8

60.6

Silty

cl a

P-27

-7.5

7111

3.01

028

.00

Cla

y, g

reen

ish

grey

C

lay

<0,0

05-0

,01

<0,0

0521

791

81

35

11

14

75-

6.7

25.8

67.5

Silty

cla

P-15

-7.5

7311

3.22

040

.00

Cla

y, g

reen

ish

grey

C

lay

<0,0

05-0

,01

<0,0

0511

1475

31

34

21

11

11

51

12

73-

5.1

16.0

78.9

Cla

yP-

24-7

.608

113.

046

23.0

0C

lay,

gre

enis

h gr

ey

Cla

y<0

,005

-0,0

1<0

,005

1610

741

11

64

22

11

51

174

-6.

615

.078

.4C

lay

BSK

-16

-7.6

4611

3.64

355

.00

Silt,

gre

y gr

een

Silty

cla

y<0

,005

-0,0

1<0

,005

1415

711

13

62

21

22

24

11

171

1.8

4.2

34.2

59.2

Silty

cla

BSK

-01

-7.6

5811

3.82

952

.50

Silt y

sand

, bro

wni

sh g

rey

Silty

sand

0,05

-0,4

0.1

4848

40,

1-0,

50,

1-0,

31-

23

93

52

21

22

18

24

444

44

1.8

10.2

33.7

46.1

Silty

cla

BSK

-38

-7.7

5411

3.30

315

.60

Cla

y, g

reen

ish

grey

C

lay

<0,0

05-0

,01

<0,0

059

1477

15

13

21

11

11

41

177

-4.

914

.780

.4C

lay

Coo

rdin

ate

Dep

th

Medium - coarse sand

SandSiltClay & Mud

Text

ure

Gra

in si

ze A

naly

sis

Sediment Type

Sediment Type

Mic

rosc

opic

% F

ract

ion

Carbonate Shells/fossil

Vol

cani

c M

ater

ial

Size

Sorting

% G

rain

Car

bona

te

Mea

n (m

m)

Sphericity

Roundness

Ran

ge (m

m)

Felsdpars

Sample Code/Core

Des

crip

tion

S / L

ate

East

/ Lo

n(m

)

Ore minerals

Carbonate minerals

Shap

eC

oars

e gr

ain

Hornblende Biotite Mica Cloride

Fine

gra

in

Lithic (sediment rock)

Igneous Rock

Quartz

Pyroclastic rock

Pyroxenes

Oth

ers

Tab

le 2

. Meg

asco

pic,

Mic

rosc

opic

and

Gra

in si

ze A

naly

ses o

f Sed

imen

t in

Mad

ura

Wat

ers

Carbonate mud

ClayLithic (sediment rock)Volcanic material

Min

eral

ogy

Carbon

Limestone

Glaukonit

8 BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

Figure 1. Sea Surface Sediment Map of Madura Waters (modified from Masria, 1991; Arifin et al.,1992 and Astjario et al., 1998)

9BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

MA

RK

ER S

PEC

IES

MA

RK

ER S

PEC

IES

AB

UN

DA

NC

E

Inne

r she

lfC

lay,

(i)

Sphe

ricity

and

roun

dnes

s (i)

Dom

inat

ed

Mad

e up

of t

he o

nly

spec

ies

(i)N

o to

ver

y ra

reA

mm

onia

spp.

, (i)

No

plan

ktic

fora

min

Mad

ura

Stra

itsi

lt,

inde

x al

ter s

igni

fican

t by

lith

icG

ephy

roca

psa

ocea

nica.

( � 1

4 in

divi

du),

Are

nace

ous b

enth

ic(ii

)N

o to

rare

ben

thic

fora

m(Z

one

I)sa

ndy

silt,

du

ring

trans

port

(ii)

Vol

cani

c be

ing

less

(A

mm

obac

ulite

ssp

p.,

( ��1

4 in

divi

du,

Bat

hym

etry

= 0

-3 m

silty

sand

, (0

,1 to

0,5

)m

ater

ial >

than

1%

Text

ular

ia a

gglu

tinan

s, ��

10 sp

ecie

s)Se

a su

rfac

e te

mpe

ratu

re =

29,

3 ° C

sa

nd.

(ii)

prec

enta

ge o

f fin

e gr

ain

ca

rbon

ate

sedi

men

tH

aplo

prag

moi

des

spp.

)

Salin

ity <

30

‰pr

opor

tiona

l with

&

Mili

olid

ae

pH =

6,0

- 7,

3di

stan

ce (0

to 7

8%);

(Qui

nque

locu

lina

spp)

Inne

r she

lfSi

lty c

lay

(i)%

fine

gra

in m

ater

ial <

55

%(i)

Car

bona

te

Gep

hyro

caps

a oc

eani

ca

(i)�

87 in

divi

du

Elp

hidi

um sp

p.,

(i)pl

ankt

ic fo

ram

in o

pen

mar

ine

(ii)

prec

enta

ge o

f fin

e gr

ain

>

70%

dom

inan

t.(ii

)�

12 s

peci

esA

mm

onia

spp.

,�

2 in

divi

du,

north

of M

adur

apr

opor

tiona

l with

dist

ance

Em

ilian

ia h

uxle

yi c

omm

onPs

eudo

rota

liasp

p.�

2 sp

ecie

s

(Zon

e II

)H

elic

osph

aera

car

teri

,an

dA

ster

orot

alia

spp.

(ii)

tota

l� 3

4 in

divi

du,

Bat

hym

etry

= 0

- 3

mH

. pav

imen

tum

, �

16 sp

esie

s

Sea

surf

ace

tem

pera

ture

= 2

9,4

° CH

. wal

lichi

i,Sa

linity

= 3

1 - 3

4 ‰

Pont

osph

aera

dis

copo

ra,

pH =

6,2

- 7,

6P.

mul

tipor

a,an

dSy

raco

spha

era

spp.

rare

.

Out

er sh

elf

Cla

y,

(i)pr

ecen

tage

of f

ine

grai

n

(i)C

arbo

nate

G

ephy

roca

psa

ocea

nica

and

(i)�

45 in

divi

du

Elp

hidi

um sp

p.,

(i)pl

ankt

ic fo

ram

in M

adur

a St

rait

silty

cla

y,

prop

ortio

nal w

ithdi

stan

ceco

nten

tE

mili

ania

hux

leyi

dom

inan

t.(ii

)��

8 s

peci

esA

mm

onia

spp.

,�

4 in

divi

du,

(Zon

e II

I)si

lty sa

nd(7

4 to

87%

)de

crea

sing

H

elic

osph

aera

car

teri

,(ii

i)at

sam

e de

pth,

C

ibic

ides

spp.

,�

2 sp

ecie

s

Bat

hym

etry

= 3

0 - 2

00 m

north

war

dH

. pav

imen

tum

,ab

unda

nce

Pseu

doro

talia

spp.

(ii)

tota

l � 3

0 in

divi

du,

Sea

surf

ace

tem

pera

ture

= 2

9,6

° C(6

8 to

1%

)H

. wal

lichi

i,in

this

zon

e is

and

Ast

eror

otal

ia sp

p�

17 sp

ecie

s

Salin

ity =

31

- 33

‰(ii

)Vol

cani

c Po

ntos

phae

ra d

isco

pora

, le

ss th

an

(iii)

at sa

me

dept

h,

pH =

6,2

- 7,

8m

ater

ial

P. m

ultip

ora,

Zone

IVab

unda

nce

in th

is z

one

co

nten

tan

dSy

raco

spha

era

spp.

rare

.is

less

than

Zon

e IV

incr

easi

ngC

alci

disc

us le

ptop

orus

, so

uthw

ard

Um

bello

spha

era

irre

gula

ris

(3 t

o 23

%)

and

Um

bilic

osph

aera

spp.

rare

foun

ded.

Out

er sh

elf

Cla

y,

(i)fin

e m

ater

ial d

omin

ant

(i)

Car

bona

te

Gep

hyro

caps

a oc

eani

ca a

nd(i)

� 15

0 in

divi

du

Bol

ivin

a sp

p.,

(i)pl

ankt

ic fo

ram

in o

pen

mar

ine

silty

cla

y( 7

8 to

85%

)

cont

ent

Em

ilian

ia h

uxle

yi a

bund

ant.

(ii)��

14

spec

ies

Cib

icid

es sp

p.,

� 9

indi

vidu

, no

rth o

f Mad

ura

(ii)

prec

enta

ge o

f fin

e gr

ain

de

crea

sing

H

elic

osph

aera

car

teri

, (ii

i)am

ount

- &Ps

eudo

rota

liasp

p.,

� 4

spec

ies

(Zon

e IV

)pr

opor

tiona

l with

dist

ance

north

war

dH

. pav

imen

tum

,nu

mbe

r-A

ster

orot

alia

spp.

(ii)

tota

l � 4

0 in

divi

du,

Bat

hym

etry

= 3

0 - 2

00 m

(42

to 1

0%)

H. w

allic

hii,

of sp

esie

s&

Uvi

geri

na sp

p.

� 16

spec

ies

Sea

surf

ace

tem

pera

ture

= 3

0,3

° C P

onto

spha

era

disc

opor

a,in

crea

ses

(ii)

amou

nt- &

Sa

linity

= 3

1 - 3

4 ‰

P. m

ultip

ora,

with

nu

mbe

r of

pH =

7,4

- 8,

2an

dSy

raco

spha

era

spp.

incr

easi

ng

plan

ktic

spec

ies

com

mon

.de

pth

incr

ease

s with

in

crea

sing

dep

th

Tab

le 3

. Phy

sica

l Ose

anog

raph

ic P

aram

eter

, Sed

imen

t Cha

ract

eris

tic a

nd M

icro

orga

nism

Ass

embl

ages

of M

adur

a W

ater

s

ZON

ESE

DIM

ENT

TEX

TUR

ETY

PEM

ICR

OO

RG

AN

ISM

ASS

EMB

LAG

ES

NA

NN

OPL

AN

KTO

NFO

RA

MIN

IFER

AA

BU

ND

AN

CE

CO

MPO

SITI

ON

10 BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

Ammonia spp., arenaceous carbonate testtaxa (Ammobaculites spp., Textulariaagglutinans, Haplophragmoides spp.),milliolidae (Quinqueloculina spp.); noneof the planktic foraminifera observed.

In inner shelf open marine north ofMadura (Zone II), very fine-grainedsediments, low temperature (29,4° C),normal salinity and pH 6,2 to 7,6 yieldedthe zone; the nannoplankton assemblages

are dominated by Gephyrocapsa oceanicatogether with a few Emiliania huxleyi,Helicosphaera carteri, H. pavimentum, H.wallichii, Pontosphaera spp; theforaminifera assemblages includesGlobigerinoides ruber, G. trilobussacculiferus, G. conglobatus, Elphidiumspp, Ammonia spp., Pseudorotalia spp.and Asterorotalia spp.

Figure 2. Environment Zone of Madura Waters (taken from 50 samples analyses)

11BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

In Madura Strait, the outer shelf zone(Zone III) is indicated by the accumulationof the relative fine-grained sediment, seasurface temperature = 29,6° C, normalsalinity, and pH 6,2 to 7,8; thenannoplankton assemblages aredominated by Gephyrocapsa oceanicaand Emiliania huxleyi which are closelyassociated with Helicosphaera carteri, H.pavimentum, H. wallichii, Pontosphaeraspp., and a few Calcidiscus leptoporus,Umbellosphaera irregularis,Umbilicosphaera spp.; the foraminiferaassemblages includes Globigerinoidesruber, G. trilobus sacculiferus, G.conglobatus, Elphidium spp, Ammoniaspp., Cibicides spp., Pseudorotalia spp.,and Asterorotalia spp. are common.

In the outer shelf open marine north ofMadura (Zone IV), which is indicated byclay, high temperature (30,3° C), normalsalinity, normal pH (7,4 to 8,2); thenannoplankton species such asGephyrocapsa oceanica, Emilianiahuxleyi, Helicosphaera carteri, H.pavimentum, H. wallichii, Pontosphaeraspp., Discoaster spp., Calcidiscusleptoporus, Umbellosphaera irregularis,Umbilicosphaera spp. are abundant; theforaminifera assemblages of Globigerinacalida, Pulleniatina obliquiloculata,Orbulina universa, Hastigerinaaequilateralis, Bolivina spp., Buliminaspp., Cibicides spp., Pseudorotalia spp.,Asterorotalia spp., Lenticulina spp.,Cassidulina spp., Siphonina spp., andUvigerina spp. are common. In openmarine, both amount- and number- ofspecies of nannoplankton as well asforaminifera increases with increasingwater depth.

Nannoplankton and foraminiferaassemblages displayed optimalabundancy in the very fine grain sediment(clay and silty clay); whilst few

nannoplankton species (such asGephyrocapsa oceanica) and foraminifera(Ammobaculites spp. and Haplophragmoidesspp.) are observed in coarser grain.

CONCLUSIONThe distribution and abundance of

both nannoplankton and foraminiferaassemblages in both Madura Strait andwater north of Madura are closely relatedto environment.

The most significant physicalenvironment parameter controllingappearance of marker species, amount-and number- of spesies in microorganismassemblages are bathymetry, salinity,temperature, pH and sediment due tofluvial supply.

This study displayed a goodcorrelation between nannoplankton aswell as foraminifera assemblages in thesense of environment interpretation. Inopen marine region, the abundancy ofshallow marine taxa reduces withincreasing water depth, on the other handthe abundancy and diversity index(number of species) of deeper marine taxaare present in proportional with depth. Instrait region, the asemblages is mostcontrolled by the physical and chemicalenvironment parameters.

ACKNOWLEDGEMENTSThe author thank to the head of the

Marine Geological Institute of Indonesiafor using samples to study. Thank also toProf. Dr. Emmy Suparka, Dr. RubiyantoKapid and Hamzah Latief, PhD forsupporting to publish this paper; Prof.Ris.Mimin Karmini for editing the script; thehead of Faculty of Geology and the headof PURISKA (Centre of Research andCollaboration) FMIPA University ofPadjadjaran for facilities support.

12 BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

REFERENCES Arifin, L., Darlan, Y., Kusnida, D.,

Kamiludin, U., and Silitonga, F.,1992, Laporan Penyelidikan Geologidan Geofisika Kelautan di PerairanUtara Pulau Madura, Lembar Peta1609 Jawa Timur, Pusat Penelitiandan Pengembangan Geologi Kelautan,10-12

Astjario, P., Budiono, K., Masduki, A. andHermasyah, G.M., 1998, PetaSebaran Sedimen Laut PerairanLembar 1608 (Surabaya), skala1:250.000, Pusat Penelitian danPengembangan Geologi Kelautan

Baumann, K., Young, J.R., Cachao, M., andZiveri, P., 2001, Biometric Study ofCoccolithus Pelagicus and ItsPalaeoenvironmental Utility, 18Agustus 2005, http://www-user.uni-bremen.de/∼micropal

Bolli, H.M., and Saunders, J.B, Oligoceneto Holocene Low Latitude PlankticForaminifera, in PlanktonStratigraphy, Bolli, H. M., Saunders,J .B., and Perch – Nielsen, K., Editor,Cambridge University Press, 155-262

Dwiyanto, B., and Sutardy, 1992, MarineGeologycal Institute (MGI)Sediment Cores Data Base VolumeI, Directorate General of Geology andMineral Resources, Ministry of Minesand Energy, 24-25, 32-33, 60-62, 93-95,110-113, 139-144.

Faturachman, A., and Saefudin, A., 1992,Marine Geologycal Institute (MGI)Sediment Cores Data Base VolumeII, Directorate General of Geology andMineral Resources, Ministry of Minesand Energy, 21-26, 32-33, 43-45, 49-52, 62-64, 73-75.

Gibbs, S., 2001, Pliocene to EarlyPleistocene Evolution ofNannofossil Assemblages inResponse to PalaeoceanographicChanges, 18 Agustus 2005, http://www-user.uni-bremen.de/∼micropal,

Ingle, James C. Jr, 1980, CenozoicPaleobathymetry and DepositionalHistory of Selected Sequenceswithin the Southern CaliforniaContinental Borderland, ChusmanFoundation Special Publication No.19, Memorial to Orville L. Bandy,163 - 195

Masria, M., 1991, Peta SedimenPermukaan Dasar Laut WilayahLaut Indonesia, skala 1 : 5.000.000,Pusat Penelitian dan PengembanganGeologi Kelautan

McIntyre, A., Be, A., and Roche, 1970,Modern Pasific Coccolithophorida :A Paleontological Thermometer,Lamont Doherty GeologicalObservatory Contribution No. 1574,New York, 27-41

Okada, H., 1984, Modern NannofossilAssemblages in Sediment of Coastaland Marginal Seas along theWestern Pasific Ocean and in theRed Sea, Uttrecht MicropaleontologyBulletin, Volume 30, 71-187

Okada, H., 1992, Biogeographic Control ofModern Nannofossil Assemblagesin Surface Sediments of Ise Bay,Mikawa Bay and Kumano-Nada,Off Coast of Central Japan, MemorieDi Scienze Geologiche, Allegato al,Volume XLIII , 431-449

Perch-Nielsen, K., 1986, CenozoicCalcareous Nannofossils, inPlankton Stratigraphy, Bolli, H. M.,Saunders, J .B., and Perch – Nielsen,

13BULLETIN OF THE MARINE GEOLOGYVolume 24 No. 1, June 2009

K., Editor, Cambridge UniversityPress, 427-544

van Marle, L.J., 1991, Eastern Indonesian,Late Cenozoic Smaller BenthicForaminifera, North Holland,Amsterdam/Oxford/New York/Tokyo

Wang, P., and Samtleben, C., 1983,Calcareous Nannoplankton in

Surface Sediments of the East ChinaSea, Marine Micropaleontology,Volume 8, 249-259

Winter, A., Reiss, Z., and Luz, B., 1979,Distribution of LivingCoccolithosphore Assemblages inGulf of Elat (Aqaba), MarineMicropaleontology, Volume 4, 197-223