Design, Construction and Evaluation of a Stacked Polyphase ...

90
Design, Construction and Evaluation of a Stacked Polyphase Bridges Converter for Integrated Electric Drive Systems in Automotive Applications MOJGAN NIKOUIE Doctoral Thesis Stockholm, Sweden 2019

Transcript of Design, Construction and Evaluation of a Stacked Polyphase ...

Design, Construction and Evaluation of a StackedPolyphase Bridges Converter for Integrated Electric

Drive Systems in Automotive Applications

MOJGAN NIKOUIE

Doctoral ThesisStockholm, Sweden 2019

TRITA-EECS-AVL 2019:34ISBN 978-91-7873-153-4

KTHElectric Power and Energy Systems

School of Electrical Engineering and Computer ScienceSE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framläggestill offentlig granskning för avläggande av teknologie doktorsexamen i Elektrotek-niska system tisdagen den 7:e maj 2019 klockan 10.00 i Kollegiesalen, Brinellvägen8, Kungliga Tekniska högskolan, Stockholm.

© Mojgan Nikouie, May 2019

Tryck: Universitetsservice US AB

iii

Abstract

This thesis presents a new concept for integration of the electricdrive system, specifically for electric and hybrid electric vehicle appli-cations. The topology introduces an integration between the so-calledstacked polyphase bridges (SPB) converter and fractional-slot concen-trated permanent-magnet synchronous machine. The SPB converter iscomprised of an arbitrary number of submodules that are connected inseries to a dc-source voltage. A very compact integrated electric drivesystem is gained by the integration. Several advantages are potentiallygained from the concept, such as considerably shortening the powercables interconnecting the converter with the machine and as well asreduction in terms of electromagnetic interference, weight, and size.The principal focus of the thesis is on the design, construction, andcontrol of the SPB converter. Three different generations for the SPBconverter, all with four submodules, have been developed within theproject. In the first two generations, a submodule consists of a two-layerprinted circuit board (PCB) including both power and control circuits,whereas in the third generation, each submodule has separate powerand control boards. The power circuit is a conventional two-level three-phase converter. In the third generation, the power PCBs can handlean rms current of 100 A and a dc-link voltage of 100 V.Along with the design of the converter, control algorithms have beendeveloped. A conventional proportional–integral (PI) current controlleris implemented on the microprocessor of each control board, on whichouter control loops are added. One important contribution concern-ing the control is the stability analysis and balancing controller designresulting thereof. Since the submodules are series connected to the dc-source voltage, it is essential to ensure that the total voltage is sharedequally among the submodules.Secondly, a study of the SPB converter under fault is made. It is as-sumed that one submodule is facing a short- or open-circuited powertransistor and the behavior of the converter is studied. A proposal fora safe way of short circuiting the faulty submodule is presented.Finally, torque ripple minimization is discussed. It is shown that usingan estimator for the flux linkage harmonics in the machine as well asadding a resonant part to the PI current controller can be an efficientmethod to suppress the ripple.

iv

v

Sammanfattning

Denna avhandling presenterar ett nytt koncept för integration avelektriska drivsystem, speciellt med tillämpning inom el- och hybridfor-don. Den nya topologin introducerar en integration mellan den så kalladestacked polyphase bridges (SPB)-omvandlaren och en så kallad fractio-nal slot winding permanentmagnet-synkronmaskin. SPB-omvandlarenbestår av ett godtyckligt antal submoduler som är anslutna i serie till enlikspänningskälla. Ett mycket kompakt integrerat elektrisk drivsystemuppnås genom integrationen. Flera fördelar är potentiellt uppnådda frånkonceptet, till exempel avsevärt förkortning av kraftkablarna som kopp-lar om omvandlaren med maskinen, såväl som minskning i termer avelektromagnetisk störning, vikt och storlek.Huvudfokuset på avhandlingen är design, konstruktion och reglering avSPB-omvandlaren. Tre olika generationer av SPB-omvandlaren, alla medfyra submoduler, har utvecklats inom projektet. I de två första gene-rationerna består en submodul av ett tvåskikts kretskort (PCB), sominkluderar både effekt- och styrkretsar, medan varje submodul har se-parata kraft- och styrkort i den tredje generationen. Effektkretsen ären konventionell tvånivå trefasomvandlare. I tredje generationen kan ef-fektkretskortet hantera en fasström på 100 A effektivvärde och en lik-spänning på 100 V.Parallellt med konstruktionen har regleralgoritmer utvecklats. En kon-ventionell proportionell–integrerande (PI) strömregulator är implemen-terad på mikroprocessorn hos varje styrkort, till vilken yttre reglerlooparlagts. Ett viktigt bidrag beträffande regleringen är stabilitetsanalysenoch balanseringsregulatorutformningen som resulterar därav. Eftersomsubmodulerna är seriekopplade till likspänningskällan är det viktigt attsäkerställa att den totala spänningen delas lika mellan submodulerna.För det andra görs en undersökning av SPB-omvandlaren under fel. Detantas att en submodul har fått kortslutning eller avbrott i en effekttran-sistor och omvandlarens beteende studeras. Ett förslag till ett säkert sättatt kortsluta den felaktiga submodulen presenteras.Slutligen diskuteras momentrippel. Det visas hur man kan använda enestimator för flödesövertonerna i maskinen och lägga till en resonansdel iPI-strömregulatorn för att erhålla en effektiv metod för undertryckningav momentripplet.

vi

Acknowledgements

I would like to thank the former director of the Swedish Electromobility Centre(SEC) Elna Holmberg for giving me the opportunity to pursue my Ph.D. studies.The financing provided by SEC is gratefully acknowledged.

A special thanks goes to my supervisors Professor Hans-Peter Nee and Asso-ciate Professor Oskar Wallmark for their guidance during the project.

I am grateful to Professor Torbjörn Thiringer for being a great mentor dur-ing and after my master studies and for making me inspired to work on researchprojects.

I appreciate the help that I got from Jesper Freiberg and Dr. Nicholas Honethduring the practical work in the lab. Also I would like to acknowledge the helpand the technical inputs that I got from Jimmy Hogbrink and his colleagues atEskilstuna Elektronikpartner AB (EEPAB).

I am thankful to the administration group especially Brigitt Högberg, EleniNylén and Peter Lönn for their support and help.

Many thanks to the colleagues and my friends at the department, especiallyDr. Arash Edvin Risseh, (soon to be) Dr. Panagiotis Bakas, Mohsen Asoodar andDr. Erik Velander, who is my current colleague at Bombardier Transportation. Iwould like to use the opportunity to thank my managers Tomas Landström andAnn Persson for giving me the time that I needed to finish my thesis, as well as myvery nice colleagues at the Converter group.

My sincere gratitude goes to my love, for his support and for believing in me.Finally, I would like to thank my parents and my siblings for being on my

side and encouraging me all the time.

Stockholm, May 2019Mojgan

vii

Contents

Contents ix

1 Introduction 31.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Purpose of the Thesis and Contributions . . . . . . . . . . . . . . . . 71.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Design and Construction of the Stacked Polyphase Bridges Con-verter 132.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 The SPB-Converter Concept . . . . . . . . . . . . . . . . . . . . . . 142.3 Electric Machine Design . . . . . . . . . . . . . . . . . . . . . . . . . 162.4 Power Converter Design . . . . . . . . . . . . . . . . . . . . . . . . . 192.5 Power Converter Design (Generations I and II) . . . . . . . . . . . . 232.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Controller Design and Stability Analysis of the SPB Converter 273.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.2 Stability Analysis of the DC-Link Voltage . . . . . . . . . . . . . . . 313.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Fault Handling 354.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.2 Fault Handling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 354.3 Short-Circuited MOSFET Fault . . . . . . . . . . . . . . . . . . . . . 364.4 Open-Circuited MOSFET Fault . . . . . . . . . . . . . . . . . . . . . 394.5 Detection of the Faulty Switches . . . . . . . . . . . . . . . . . . . . 414.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Torque Ripple Minimization 455.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455.2 Torque Ripple Originating from Non-Sinusoidal Flux Linkage . . . . 45

ix

x CONTENTS

5.3 Methods for Torque Ripple Minimization via Control . . . . . . . . . 465.4 PIR Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusions and Future Work 516.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 53

Appendix I: Schematic Diagrams for Electrical Machines, Powerand Control Boards 57

Appendix II: Appended Publications 81

Acronyms

CAN Controller area network

EMI Electromagnetic interference

EV Electric vehicle

FET Field-effect transistor

FSCW Fractional-slot concentrated winding

GAN Gallium-nitride

HEV Hybrid electric vehicle

IGBT Insulated-gate bipolar transistors

IMD Integrated machine drive

IMMD Integrated modular motor drive

MCU Micro controller unit

MHF Modular high-frequency

MOSFET Metal-oxide-semiconductor field-effect transistor

PCB Printed circuit board

PI Proportional–integral

PIR Proportional–integral–resonant

PM Permanent-magnet

PMSM Permanent-magnet synchronous machine

PPB Parallel-connected polyphase bridges

SPB Stacked polyphase bridges

1

2 CONTENTS

SPI Serial peripheral interference

SVM Space vector modulation

VSI Voltage source inverter

Chapter 1

Introduction

1.1 Background

The story of electrical vehicles (EVs) goes far back to the middle of the 19thcentury, when English and French inventors built the very first practical electriccars, see Figure 1.1 [1]. Although the technology of using electricity for propulsionwas interesting at the time, it lost its popularity by 1920, when it could not competewith the combustion engine technology. EVs had finally vanished from the marketby 1935.

Figure 1.1: An electric vehicle in 19th century (© Twitter, Life in Moments,@ histroryinmoment).

In the late 20th century, the world recognized the necessity and importance

3

4 CHAPTER 1. INTRODUCTION

of becoming independent of fossil fuels. It was then the first spark for supportand development of EVs and hybrid electric vehicles (HEVs) appeared again. Mostmajor auto-makers began to explore alternatives to combustion engine vehicles.The first to succeed was Toyota, which introduced the Prius model in 1997. Itbecame the world’s first mass-produced HEV by the early 2000s. Over a decadelater, a small Silicon Valley startup, Tesla Motors, made another revolution in EVhistory. They introduced the Model S, a luxury electric vehicle that could go morethan 200 miles on a single charge [1].

A study from International Energy Agency shows that the global share of us-age of EVs and HEVs has increased rapidly since 2010, see Figure 1.2 [2]. Thecompetition is among more than thirty different models of EVs and HEVs inthe world, including Mitsubishi i-MiEV, Nissan Leaf, Ford Focus Electric, TeslaModel S and X, BMW Active E and i3, Renault Fluence Z.E., Honda Fit EV,Toyota RAV4 EV and Prius, and models from several other manufacturers.

Figure 1.2: Evolution of the global electric car stock, 2010–16 [2](© OECD/IEA2017 Global EV Outlook, IEA Publishing, Licence: www.iea.org/t & c ).

Although there are great varieties in models, designs, and manufacturers ofEVs and HEVs, they all have similar power train designs. The power train in manyconventional electric drives consists of a battery (Li-ion type), a power converter(two-level, three-phase converter), and an electric machine (permanent-magnet syn-chronous machine (PMSM)), which are connected together by power cables. Fig-ure 1.3 shows a typical conventional hybrid electric drive.

Figure 1.4 illustrates the schematic diagram of a typical conventional electricdrive system in an EV or HEV. As can be seen, there is a voltage source inverter(VSI) that acts as an interface between the battery and the electric machine. Letus focus on the power converter for a while, since the topic in this thesis is relatedto the design of a recently proposed topology for the VSI.

As mentioned before, a two-level three-phase converter is usually employedfor this drive system. The switches of the converter are usually selected as silicon-

1.1. BACKGROUND 5

Figure 1.3: Power train of atypical hybrid electric vehicle (© 2012 Stevic Z,Radovanovic I. Published in [short citation] under CC BY 3.0 license. Availablefrom: http://dx.doi.org/10.5772/55237).

Eb

Rb Lb

Electric machinei

C

T1 T2 T3

T4 T5 T6

ia

ib

ic

ib

Power converterBattery

Figure 1.4: Schematic diagram of the drive system in a conventional EV/HEV.

based insulated-gate bipolar transistors (Si-IGBTs) with a drain-source voltage(uDS) rated at 600 V or more.

Another component that plays an important role in the converter is the direct-current (dc)-link capacitor. DC-link capacitors are essential to attenuate ripplecurrent, reduce the emission of electromagnetic interference (EMI), and suppressvoltage spikes caused by switching operations [3]. Usually aluminum electrolyticcapacitors are selected due to their high field strength, energy density, and capaci-

6 CHAPTER 1. INTRODUCTION

tance. For battery voltages ranging around 300–600 V, they become rather bulkyand heavy despite the high energy density. Moreover, the operating temperatureof aluminum electrolytic capacitors is limited to below 105C [4].

Large converter size, high voltage stresses on the components, and reliabilityissues have made researchers propose different topologies for electric drives in EVsand HEVs during the last decade. One of these topologies is the so-called integratedmachine drive (IMD). The IMD introduces an integration between the electric ma-chine and the power converter for use in an automotive power train as a singleunit. The IMD was used in Ford Hybrid Escape for the first time in 2004 [5]. TheIMD helps to reduce EMI by eliminating the power cables as well as reducing thesize, weight, and volume. However, it does not help to reduce the voltage stress onthe components. To circumvent this, the integrated modular motor drive (IMMD)concept has been introduced. The IMMD concept provides a promising approachto integrating motor drive electronics into the machine housing by modularizingboth the machine stator and the power converter [6]. This concept not only hasall the advantages of the IMD, but also reduces significantly the voltage stress onthe components. It also enables the potential for achieving a high level of faulttolerance to electrical faults.

In 2014, the development of the IMMD concept began by evaluation of ma-chine designs suitable for a compact IMMD. A six-phase, ten-pole permanent-magnet (PM) machine with 18 kW power was selected and connected to six, single-phase half-bridge converters. Each phase-leg inverter operates from a nominal 325-V bus by using two discrete 600-V IGBTs in TO-247 packages adopting a switchingfrequency of 20 kHz [7]. A year later, in 2015, the next generation of the IMMDwas introduced. In this concept, a six-phase induction motor with the power of1.2 kW is used. This motor is connected to two, three-phase full-bridge invertersthat are connected in series. This allows the dc-bus voltage for each inverter tobe reduced. Therefore, this structure permits the use of components of low volt-age rating. Twelve gallium-nitride (GaN) switches with the switching frequency100 kHz are used in this design [8]. Another advantage of this design is the use offilm or ceramic capacitors in the dc link, thanks to the lower dc-bus voltage andhigher switching frequency. Moreover, the combination of GaN switches and filmcapacitors creates a very compact electric drive. Figure 1.5 shows the design of thelatter topology but with different components.

It should be mentioned that the proposals for IMMD concepts applied in EVsor HEVs are not limited to those described above. Reference [9] describes a newconcept of a modular high-frequency (MHF) converter suitable for low-voltage field-effect transistors (FETs), see Figure 1.6. In [10], a parallel-connected polyphasebridges (PPB) converter is suggested, see Figure 1.7.

Although all these topologies are interesting for EVs or HEVs, at least accord-ing to the author’s knowledge, none of them has been designed and constructed in ascale (in the range of 30 to 85 kW) suitable for an electric drive for use in an automo-tive traction application. Therefore, this thesis considers another topology for thepower converter in an IMMD. It is capable to feed a 35-kW electric machine. The

1.2. PURPOSE OF THE THESIS AND CONTRIBUTIONS 7

Figure 1.5: (a) Electrical configuration of 1.2-kW drive using two three-phase full-bridge inverters in series; (b) Comparison of Si vs. GaN implementations of a 0.6-kWthree-phase inverter [5, 8] (Reproduced with permission from Jiyao Wang).

considered converter topology combines the advantages from the previous designsmentioned above. A similar topology has previously been proposed by Gjerde in hisdoctoral thesis [11]. There referred to as the modular series connected converter,it is applied to transformerless offshore wind turbines, see Figure 1.8.

1.2 Purpose of the Thesis and Contributions

This thesis, along with two other doctoral theses [10] and [12], analyzes a verycompact IMMD for EVs and HEVs. The main purpose of this thesis is to design,construct, and evaluate a new topology for a power converter that is suitable foran IMMD. The proposed converter is here called the stacked polyphase bridges(SPB) converter. The SPB converter is comprised of several submodules which areconnected in series. Each submodule consists of a two-level, three-phase converterwith low-voltage components, such as low-voltage metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high switching frequency (in the range upto 100 kHz). This allows the SPB converter to use very small, low-voltage film,or possibly ceramic, capacitors. The combination of the SPB converter and afractional-slot concentrated winding (FSCW) machine allows for a very compactintegrated electric drive, which is attractive for EVs and HEVs. An FSCW machinedesign, which is suitable for the SPB converter, is investigated in [12]. In [10], theSPB converter is compared to the other possible concepts, the MHF- and PPB-type converters, for an IMMD in terms of efficiency, cost, control, and systemperformance.

To the best of the author’s knowledge, the main contributions of this thesisare as follows:

8 CHAPTER 1. INTRODUCTION

Eb

Rb LbMultiphase

load

+

v2

-

T1 T2 T3

T4 T5 T6

ib

imsm

+

vmsm

-

T1 T2 T3

T4 T5 T6

imsm

i1

+

v1

-

T2 T3

T5 T6

ia

i2

ib

C

T1

T4

C

C

Figure 1.6: Schematic diagram of the MHF concept.

1. The main core in this thesis is the design and construction of the SPB con-verter. Three different hardware designs for the SPB converter have beendeveloped over time. The final version of the design, which is capable ofintegration to the machine, is presented in Publication IV.

2. Since several submodules of the SPB converter are connected in series to thevoltage source, the dc-side voltage should split among them equally. There-fore, a control algorithm is proposed to ensure the dc-link stability for theconverter. Publications I and III present the criteria for the stability as well

1.2. PURPOSE OF THE THESIS AND CONTRIBUTIONS 9

Eb

Rb LbMultiple-star

load

C

+

v2

-

T1 T2 T3

T4 T5 T6

ia,2ib,2ic,2

imsm

C

+

vmsm

-

T1 T2 T3

T4 T5 T6

ia,msm

ib,msm

ic,msm

i1

C

+

v1

-

T1 T2 T3

T4 T5 T6

ia,1

ib,1ic,1

i2

ib

Figure 1.7: Schematic diagram of the PPB concept.

as controller alternatives.

3. One of the important features of the SPB converter is its fault-tolerant ca-pability. This means that during a fault situation for one submodule, theother submodules should continue to operate. Therefore, a control algorithmis proposed for the SPB converter to survive during and after the fault. Thisalgorithm, along with criteria and conditions are reported in Publication II.

4. The study on the FSCW machine showed the presence of sixth-order harmon-

10 CHAPTER 1. INTRODUCTION

100 kV

Rb LbMultiple-star

machine

C

+

v2

-

T1 T2 T3

T4 T5 T6

ia,2ib,2ic,2

i9

C

+

v9

-

T1 T2 T3

T4 T5 T6

ia,9ib,9ic,9

i1

C

+

v1

-

T1 T2 T3

T4 T5 T6

ia,1

ib,1ic,1

i2

idc

Figure 1.8: The proposed modular system in [11].

ics in the stator windings. They result in torque ripple and increased eddy-current losses in the permanent magnets. In order to suppress the torqueripple and reduce the permanent-magnet eddy-current losses, two differentcontrol methods are proposed and analyzed in Publications V and VI.

1.3. STRUCTURE OF THE THESIS 11

1.3 Structure of the Thesis

This thesis is in the form of a so called “compilation thesis.” The main chaptersin the thesis are therefore kept brief and serve to introduce key concepts and providea background to the scientific contributions which are further presented in theincluded papers. The chapters are outlined below.

Chapter 1 describes the background information, motivation, and scientific con-tributions of the thesis.

Chapter 2 gives an overview of the SPB converter and introduces the three pro-totype designs developed during the course of this project.

Chapter 3 provides the current controller design for the SPB converter to ensurean equal sharing of the dc-link voltage on the converter submodules.

Chapter 4 investigates the SPB converter operation under fault occurrence.

Chapter 5 considers two different methods for the torque ripple minimization.

Chapter 6 concludes with a summary of the results achieved and plans for futurework.

1.4 List of Publications

The publications originating from the project are:

I. M. Nikouie, L. Jin, L. Harnefors, O. Wallmark, M. Leksell, and S. Norrga,“Analysis of the dc-link stability for the stacked polyphase bridges converter,”in Proc. of the 17th European Conference on Power Electronics and Applica-tions (EPE 2015), Sep. 2015.

II. M. Nikouie, O. Wallmark, L. Harnefors, and H.-P. Nee, “Operation underfault conditions of the stacked polyphase bridges converter,” in Proc. of the42nd Annual Conference of the IEEE Industrial Electronics Society (IECON2016), pp. 2207–2211, Oct. 2016.

III. M. Nikouie, O. Wallmark, L. Jin, L. Harnefors, and H.-P. Nee, “DC-linkstability analysis and controller design for the stacked polyphase bridges con-verter,” IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1666–1674, Feb. 2017.

IV. M. Nikouie, H. Zhang, O. Wallmark, and H.-P. Nee, “Highly integratedelectric drives system for tomorrow’s EVs and HEVs,” in Proc. of the 3rdSouthern Power Electronics Conference (SPEC 2017), Dec. 2017.

12 CHAPTER 1. INTRODUCTION

V. M. Nikouie, O. Wallmark, and L. Harnefors, “Torque-ripple minimizationfor permanent-magnet synchronous motors based on harmonic flux estima-tion,” in Proc. of the 20th European Conference on Power Electronics andApplications (EPE 2018), Sep. 2018.

VI. O. Wallmark and M. Nikouie, “DC-link and machine design considerationsfor resonant controllers adopted in automotive PMSM drives,” submitted toIET Electrical Systems in Transportation.The publications below are related in interest, but not included in this thesis:

VII. H. Zhang, O. Wallmark, M. Leksell, and S. Norrga, M. Nikouie, L. Jin, “Ma-chine design considerations for an MHF/SPB-converter based electric drive,”in Proc. of the 40th Annual Conference of the IEEE Industrial ElectronicsSociety (IECON 2014), pp. 3849–3854, Oct. 2014.

VIII. L. Jin, S. Norrga, O. Wallmark, and M. Nikouie, “Control and modulationof the stacked polyphase bridges inverter,” in Proc. IEEE Energy ConversionCongress and Exposition (ECCE 2014), pp. 3023–3029, Sep. 2014.

Chapter 2

Design and Construction of theStacked Polyphase BridgesConverter

2.1 Introduction

It is over a decade since that an IMD, and particularly an IMMD, was firstpresented for power train systems in EVs and HEVs. Adopting an IMD or an IMMDconfiguration with a machine integrated with a power electronic converter into thesame enclosure can be beneficial in several aspects. Some of these benefits include areduction in mass, in volume, in power cables, in EMI effects, and perhaps in cost.Other potential benefits are increase in efficiency as well as improvements in termsof manufacturability and in fault tolerance. Different topologies and approaches forthe construction of such drive systems have been introduced. Generally, there aretwo main categories for an IMD/IMMD integration; axial-end mount integrationand surface mount integration. In axial-end mount integration, the power convert-ers are connected to the drive-end of the machine, while in surface mount integra-tion, the power converters are mounted on the surface of the machine. Figure 2.1shows some of the IMD/IMMD designs within these two categories. Different con-cepts of IMD/IMMD for axial-end mount integration are shown in Figure 2.1(a),(b), and (d). Figure 2.1(c) shows the concept of surface-mount integration that hasbeen introduced for aircraft applications (see the associated references in the figurecaption).

13

14CHAPTER 2. DESIGN AND CONSTRUCTION OF THE STACKED

POLYPHASE BRIDGES CONVERTER

(a) (b)

(c) (d)

Figure 2.1: Different designs of IMD/IMMD: (a) IMMD concept with nine-phasemodular stator windings and nine half-bridge IGBT-based converters [6] (© [2007]IEEE); (b) IMMD concept with 18-phase machine and 18 half-bridge GaN-basedconverters [8] (Reproduced with permission from Jiyao Wang); (c) IMMD conceptwith six-phase machine and six full-bridge MOSFET-based converter [13] (© [2010]IEEE); (d) Siemens IMD technology for EV traction drives [14] (© Phys.org 2003 -2019, Science X network).

2.2 The SPB-Converter Concept

This thesis considers a recently proposed IMMD topology for use in EVs andHEVs applications. Figure 2.2 illustrates the topology. In this topology, the con-verter is comprised of an arbitrary number of submodules that are connected inseries to a dc-source voltage (e.g., an automotive traction battery). Due to thedesign, this converter is termed the stacked polyphase bridges (SPB). Each sub-module of the SPB topology comprises of a two-level three-phase converter. Thetotal dc-link voltage should be divided equally among the submodules. Therefore,each converter can be designed with low-voltage components, such as low-voltageMOSFETs with a high switching frequency (in the range of 100 kHz). The combina-

2.2. THE SPB-CONVERTER CONCEPT 15

tion of low-voltage components and high switching frequency allows the use of verysmall, low-voltage film, or possibly ceramic, capacitors. In this way, the capacitorswill occupy less space and will enable the possibility to introduce a very compactconverter–machine integration. As can be seen in the Figure 2.2, each submoduleis connected to a set of three-phase windings of the machine’s stator. The machinedesign for the proposed IMMD is a presented in [12]. There, an FSCW PMSM isdesigned.

Eb

Rb Lb Multiple-star

load

C

+

v2

-

T1 T2 T3

T4 T5 T6

ia,2ib,2ic,2

imsm

C

+

vmsm

-

T1 T2 T3

T4 T5 T6

ia,msm

ib,msm

ic,msm

i1

C

+

v1

-

T1 T2 T3

T4 T5 T6

ia,1

ib,1ic,1

i2

ib

Figure 2.2: Schematic diagram of the proposed IMMD topology (integration be-tween SPB converter and FSCW PMSM).

16CHAPTER 2. DESIGN AND CONSTRUCTION OF THE STACKED

POLYPHASE BRIDGES CONVERTER

Figure 2.3 shows the physical integration between the SPB converter andFSCW PMSM prototypes. Each part of this topology is explained explicitly asfollows in this chapter.

Figure 2.3: The proposed IMMD; 1: Electric motor, 2: Current sensors enclosure,3: Water cooling plates, 4: Power boards, 5: Control boards.

2.3 Electric Machine Design

For around two decades, FSCW PMSMs have been considered and been usedin automotive traction applications due to the several advantages that this type ofwinding design provides. Some of the advantages can be summarized as high powerdensity, high efficiency, short end turns, high slot fill factor (particularly whencoupled with segmented stator structures), low cogging torque, flux-weakening ca-pability, and fault tolerance [15]. Moreover, this winding design allows creating avery compact electric drive by reducing, or even eliminating, power cables with asuitable placement of the converter. In addition, a double-layer winding in each slotis preferred in this design due to more alternatives in the selection of the combi-nation phases/slots/poles. Inappropriate selection of number of phases/slots/polescan affect the machine performance significantly [15]. In [12] and in Publication VII,the fundamental theory for the FSCW is reviewed, allowing the determination ofthe appropriate winding configurations suitable for the SPB converter concept. Itis shown in [12] that a suitable configuration for the SPB converter is a three-phase/twelve-slots/eight-pole PMSM. Other specifications of the motor designedand analyzed in the PhD thesis [12] are summarized in Table 2.1 and shown inFigure 2.5.

2.3. ELECTRIC MACHINE DESIGN 17

A3

B4

A1

A2

A4

B1

C1

B2

B3

C2

C3

C4

Figure 2.4: FSCW configuration divided into four submodules.

Table 2.1: Machine data [12]

Machine parameters

P 35 kW Continuous powerT 85 Nm Continuous torqueωs 4000 rpm Base speedIs 97 A Rated rms current per submoduleRs 4.3 mΩ Stator resistance per submoduleLd 103 µH d-direction inductance per submoduleLq 188 µH q-direction inductance per submoduleψm 0.020 Vs Flux linkage per submoduleδ 0.75 mm Air-gap heighth 7.51 mm Magnet heightrr 69.3 mm Rotor radiusrs 110 mm Stator radiusl 200 mm Active length

18CHAPTER 2. DESIGN AND CONSTRUCTION OF THE STACKED

POLYPHASE BRIDGES CONVERTER

(a)

(b)

(c)

(d)

(e)

Figure 2.5: FSCW PMSM experimental prototype developed in [12]: (a) Double-layer FSCW of the stator (before winding impregnation); (b) Stator end windings;(c) Rotor lamination; (d) Stator core; (e) FSCW-PMSM prototype installed in thetest rig (without converter submodules mounted).

2.4. POWER CONVERTER DESIGN 19

2.4 Power Converter Design

Power BoardsAs mentioned in Section 2.3, an FSCW PMSM prototype has been designed

with twelve phases and eight poles that is suitable for the SPB converter withfour submodules. Therefore, the SPB converter which is presented in this thesis isdesigned with four submodules. It is also assumed that the dc-voltage source is 400V. Consequently, each submodule is designed using low-voltage components in therange of 100 V. Each submodule is designed as a printed circuit board (PCB). Sincethe rated machine current is 97 Arms, this six-layer PCB with the total thicknessof 3.1 mm is capable of handling 100 Arms. Figure 2.6 shows the power board ofthe SPB converter and Table 2.2 lists the components on the power board.

dc-in

dc-out

Figure 2.6: SPB converter with four submodules.

Table 2.2: Power board components

Components Part number Manufacturer

DC-link capcitor 100 µF, 160 V R60EW61605000K KemetMOSFET 130 A, 150 V IPB065N15N3 G InfineonGate drivers 3.3 V/ 17 V ADuM4135 Analog devicesTransformer 5 : 17 V TR750342879 Wurth electronics

In order to reduce the switching losses of the converter, two transistors act in

20CHAPTER 2. DESIGN AND CONSTRUCTION OF THE STACKED

POLYPHASE BRIDGES CONVERTER

parallel as the upper and lower switch in each phase leg, respectively. Although aprecise model for power loss calculation of power MOSFETs is presented in [10], aquick loss calculation according to the Infineon guidelines for MOSFET loss basedon the data sheet parameters [16] is reported here. In this guideline, the total lossis defined as the switching loss Psw and the conduction loss Pc. The calculation ofthe conduction loss is quite simple. It is defined as Pc =RDSonI

2Drms

, whereas theswitching losses are given as

Psw = (Eon + Eoff)fsw (2.1)

where fsw is the switching frequency, and Eon and Eoff are the loss energies duringthe switch-on and switch-off transients, respectively. They are defined as

Eon =∫ tri+tfu

0uDSiDdt (2.2)

Eoff =∫ tru+tfi

0uDSiDdt

where uDS is the drain–source voltage and iD is the drain current, while the integraltime boundaries are defined in Figure 2.7.

UDD

Doff

Don

Pon

Eon

Poff

Eoff

fu1 fu2 ru2 ru1

ri fu ru fi

Figure 2.7: Switching transients of the power MOSFET.

2.4. POWER CONVERTER DESIGN 21

The calculation results show that the total loss for one MOSFET—describedin Table 2.2—with fsw = 100 kHz at the rated current (i.e., 100 Arms) is 132 W.Considering four submodules with six switches on each, i.e., 24 MOSFETs in total,the total loss is 3.2 kW. If each switch is implemented by two paralleled MOSFETs,the total loss of each switch reduces to 55 W and the total loss for 48 MOSFETson the power board is around 2.6 kW.

To guarantee that the MOSFETs are not overheated during the experiments,a water cooling plate has been designed by the author in order to reduce the heatdissipation on the power board. The water cooling is designed with two aluminumplates with total height 20 mm. On each plate, there are two water channels withthe height of 7 mm. Figure 2.8-(b) shows the designed layout of the water cooling.

(a) (b)

Figure 2.8: Water cooling system: (a) Water cooler installed on the setup; (b)Designed layout of the bottom plate.

22CHAPTER 2. DESIGN AND CONSTRUCTION OF THE STACKED

POLYPHASE BRIDGES CONVERTER

Control BoardsA corresponding control board is designed for each power board on the SPB

converter. Figure 2.9 shows the control board and Table 2.3 lists the componentsof the control board.

Figure 2.9: Control boards of the SPB converter.

Table 2.3: Control board components

Components Part number Manufacturer

MCU 3.3 V TMS320F28069 Texas instrumentRDC 5 V AD2S1205 Analog devicesCurrent sensors 200 A, 5 V HC5FW200-S LemPower supply 43 : 5 V TEN-8-WI TracoResolver Singlesyn-4x Tamagawa

As can be seen in Figure 2.9, all control boards are identical to each other.They are designed in such a way they can work as master or as slave based on theconditions. The main part on the control board is the micro controller unit (MCU).The MCU is responsible for controlling the switching signals and for handling thecommunication.

2.5. POWER CONVERTER DESIGN (GENERATIONS I AND II) 23

For the switching signals, space vector modulation (SVM) is used. To imple-ment SVM, a reference space vector signal vref is sampled with a frequency fs. Thevector vref can be reconstructed in average by using the eight possible switchingstates of the converter. The reconstruction is done by sampling vref at a givenperiod Ts=1/fs and computing the periods of time that the eight possible states ofthe converter should be applied, so that, on average, vref is attained. This processis illustrated in Figure 2.10.

Figure 2.10: Space vector modulation.

For communication, the controller area network (CAN) bus is used. CAN isa serial communication protocol with a communication rate of up to 1 Mbps. TheCAN bus is ideal for applications operating in noisy and harsh environments, suchas in automotive applications. The CAN bus is made up by two wires, CAN high(CAN-H) and CAN low (CAN-L), which are connected to all nodes in the CANnetwork.

2.5 Power Converter Design (Generations I and II)

Figures 2.11 and 2.12 respectively show generations I and II of the powerconverter design for the SPB converter. In both generations, one submodule of theSPB converter is designed on a two-layer PCB where the power part is integratedwith the control part for each submodule. All submodules are identical and theyare designed to act as master or as slave depending on the situation (e.g., followinga submodule failure). The PCBs are intended to be installed in a standardized

24CHAPTER 2. DESIGN AND CONSTRUCTION OF THE STACKED

POLYPHASE BRIDGES CONVERTER

subrack and in a vertical orientation. The PCBs dimensions are 100 mm as theheight and 200 mm as the width. Figure 2.13 shows the second generation SPBdesign with four submodules when installed in a rack and connected to RL loads.The components (e.g., MOSFETs) are selected to handle 100 V, but the maximumcurrent of the board was limited to 20 A.

Thre

e-phas

e co

nnec

tor

Capacitors

(Ceramic type) Two-level three-phase converter

(MOSFETs & GDUs)

DC

sourc

e co

nnec

tor

SPI bus

MCU

Figure 2.11: One submodule of the SPB converter of generation I.

SPI bus

MCU

Capacitors

(Film type)

Thre

e-phas

e co

nnec

tor

DC

sourc

e co

nnec

tor

Two-level three-phase converter

(MOSFETs & GDUs)

Figure 2.12: One submodule of the SPB converter of generation II.

Apart from the types of components, the use of a serial peripheral interface(SPI) bus as communication bus is the only significant difference between thesegenerations and the final design. Unlike the CAN bus, the SPI bus uses a nonaddressable base protocol and may be faster than the CAN protocol. However, itrequires four signals (wires) for the communication between the master and oneslave board. In other words, the hardware design for the SPI bus is somewhat

2.5. POWER CONVERTER DESIGN (GENERATIONS I AND II) 25

Four submodules on the rack

Resistance load

Inductance load

(a)Figure 2.13: Four submodules of the SPB converter connected to an RL load.

more complicated and expensive. Figure 2.14 shows the SPI bus between foursubmodules, where one submodule acts as master and the other three act as slaves.The implementation of the SPI bus for the designs has been done by using galvanicisolator ISO–7241 and ISO–7240 from Texas Instruments.

Figure 2.14: SPI bus protocol between four submodules, MOSI: master output slaveinput; MISO: master input slave output; SCLK: signal clock; CS: chip select.

26CHAPTER 2. DESIGN AND CONSTRUCTION OF THE STACKED

POLYPHASE BRIDGES CONVERTER

2.6 Summary

This chapter introduces a new topology for an IMMD which is suitable forEV and HEV applications. The new IMMD topology is a combination of the SPBconverter and the FSCW PMSM that provides a very compact integrated electricdrive system. This converter–motor integration potentially benefits from severaladvantages, e.g., the reduction of power cables between converter and machine,which results in reduction of EMI, weight, and size. A presentation of the three dif-ferent designs for the SPB converter and the components is included. This chapteralso serves an introduction to Publication IV.

Chapter 3

Controller Design and StabilityAnalysis of the SPB Converter

3.1 Introduction

As mentioned in Chapter 2, the SPB converter is comprised of several sub-modules which are connected in series. Each submodule is a two-level, three-phaseconverter with low-voltage components that are connected to a set of three-phasewindings of an FSCW PMSM. It is also discussed that SVM is selected to modu-late the aforementioned VSI. To supply the voltage reference vector to the SVM, avector current control is implemented for each submodule. In vector current con-trol, the stator current of the motor is resolved as two orthogonal components thatcompose a vector. The direct-axis component id is aligned with the magnetic fluxof the rotor and the quadrature-axis component iq gives the electrical torque. Thecontrol system of the drive calculates the corresponding current references fromthe desired flux and torque. These are in some applications given by a speed con-troller. The desired flux is generally kept constant except in the field-weakeningregion. Typically, a proportional–integral (PI) controller is used to keep the currentcomponents at their references, see Figure 3.1.

iabcidq

+-

e

abc

dq

kp +kis

vdq αβ

dq

PMSMConverter

SVMPI

ref ref

Figure 3.1: Vector current control system using a PI controller.

For one-degree-of-freedom controller design, the controller parameters kp and

27

28CHAPTER 3. CONTROLLER DESIGN AND STABILITY ANALYSIS OF

THE SPB CONVERTER

ki as described in [17] can be selected based on the motor parameters. For thesimplicity, let us for now assume that the motor is non-salient, meaning that Ld =Lq = Ls. Then

kp = αcLs ki = αcRs αc = ln 9tr

(3.1)

where “hats” denote model motor parameters, which should be as close estimatesof the true motor parameters (stator inductance and stator resistance) as possible,ideally so that Ls = Ls and Rs = Rs, αc is the closed-loop system bandwidth(expressed in rad/s), and tr is the rise time of the closed-loop system. The latteris usually selected around some milliseconds, giving a bandwidth in the range ofthousands of radians per second. However, the problem with one-degree-of-freedomcontroller design is the poor control of the load disturbance which is caused by theback electromotive force (EMF) of the motor. This is because ki is small, sinceRs is relatively small. If one decides to increase the value of ki by a factor, let ussay 10, then an unwanted overshoot appears on the current response to a referencechange. To avoid this, a two-degree-of-freedom current controller is suggested [18].In this controller an active resistance Ra = αcLs − Rs is introduced as the gainin an inner feedback loop. The active resistance has the effect of increasing Rsto Rs + Ra, which equals αcL if Rs = Rs. Consequently, in (3.1), Rs should bereplaced by αcLs, which is typically much larger than Rs. We then obtain

kp = αcLs ki = α2cLs. (3.2)

To evaluate the closed-loop response of the current controller, the dynamic modelof the system in the rotating dq reference frame is analyzed. The dynamic modelis illustrated in Figure 3.2 and can be described as

=

~~

Rs Ls

i

dq Evdq

dq

++

- -

Figure 3.2: Converter connected to a motor winding that is consisting of a resistive-inductive impedance and a back EMF.

Lsdidqdt

= vdq −Rsidq − jωeLsidq −Edq (3.3)

where idq= id + jiq is the stator current vector, vdq=vd + jvq is the stator voltagevector, Edq = Ed + jEq is the back EMF vector, and ωe is the electrical angular

3.1. INTRODUCTION 29

frequency of the rotor. Equation (3.3) expresses the complex form of the dynamicmodel [19]. The dynamic model in component form is described as

Lsdiddt

= vd −Rsid + ωeLsiq − Ed (3.4)

Lsdiqdt

= vq −Rsiq − ωeLsid − Eq. (3.5)

In (3.4), there are two cross-coupled first-order subsystems, where the cross couplingcomes from the terms ωeLsiq and ωeLsid. Similarly in (3.3), the term jωeLsidqshows the cross coupling that the motor has inherently. This cross coupling willdegrade the overall performance of the motor [20]. To overcome this problem, adecoupler jωeLsi =jωeLs(id + jiq) is added to the inner feedback loop.

Although the vector current controller offers a high bandwidth and goodsteady-state performance, during large transients the demanded reference voltage ofthe controller may exceed the VSI voltage capability, which causes over modulation.To avoid this, a saturation scheme must be used [21]. In any case that vref

dq does notexceed the SVM pattern, then the vector vref

dq is equal to vrefdq , see Figure 3.3. On

the other hand, if vrefdq exceeds the SVM pattern, then the saturation (sat) block

limits the vector vrefdq to the boundary of the SVM pattern. This saturation results

in reduced performance of the current controller due to integrator windup. Refer-ence [22] introduces the back-calculation method as a suitable anti-windup scheme.As shown in Figure 3.3, when the saturation block is activated, the difference signalvrefdq −vref

dq is not equal to zero and this modifies the integrator input so that windupcan be avoided.

idq

+-

ref

dqkp vdq

PI

sat vdq

- +

kp

1

abcdq

Ra -

ki

s

+

+ -

j eLs

ref ref

+ +

SVM

iabc

PMSMConverter

idq

edq

Figure 3.3: Vector current control system with using PI controller including activeresistance and anti-windup.

Considering the calculation of vrefdq from Figure 3.3—while the saturation block

is not active and the SVM is disregarded—and substituting in (3.3) gives

idq = Gc(s)irefdq − Y (s)Edq (3.6)

30CHAPTER 3. CONTROLLER DESIGN AND STABILITY ANALYSIS OF

THE SPB CONVERTER

where Gc(s) is the closed-loop transfer function and Y (s) is the admittance of theclosed-loop system, which are given as

Gc(s) = αcs+ αc

Y (s) = s

(s+ αc)2Ls. (3.7)

Remember that we assumed a non-salient motor for the above current controllerdesign. Now if we consider a salient motor, which means that Ld 6= Lq, then thedynamic model (3.4) is rewritten as

Lddiddt

= vd −Rsid + ωeLqiq − Ed (3.8)

Lqdiqdt

= vq −Rsiq − ωeLdid − Eq. (3.9)

As explained before, there is a corresponding relationship between the complex form(3.3) and component form (3.4). However, (3.8) does not have correspondence tothe complex form due to the different values of Ld and Lq. Therefore, Figure 3.3needs to be modified as shown in Figure 3.4, where the controller parameters and

idq

+-

ref

dqkp vdq

PI

sat vdq

- +

kp

abcdq

Ra -

ki

s

+

+ -

J eLs

ref ref

+ +

SVM

iabc

PMSMConverter

idq

-1

edq

Figure 3.4: Vector current control system with using PI controller including activeresistance and anti-windup for non-salient machine.

the inductance are not scalars any longer, but are expressed in matrix form

kp =[kpd 00 kpq

]ki =

[kid 00 kiq

](3.10)

Ra =[kad 00 kaq

]Ls =

[Ld 00 Lq

].

The imaginary unit j in matrix form is defined as

J =[

0 −11 0

](3.11)

3.2. STABILITY ANALYSIS OF THE DC-LINK VOLTAGE 31

Finally, the complex vectors are described as real vectors instead, e.g. as

idq =[id

iq

]. (3.12)

The controller parameters are different in the d and q axes and they are selected as

kpd = αcLd kid = α2cLd Rad = αcLd − Rs (3.13)

kpq = αcLq kiq = α2cLq Raq = αcLq − Rs. (3.14)

3.2 Stability Analysis of the DC-Link Voltage

The first severe problem that arises with the configuration of the SPB con-verter is the voltage balancing on the dc side. Problems with voltage balancing typ-ically occur for series-connected capacitors. Therefore, this problem is not only lim-ited to the SPB converter but also has been studied for different converter topologieswith similar structure. Examples include the input-series–output-parallel (ISOP)converter, the input-series–output-series (ISOS) converter, and the modular multi-level converter (MMC), where researchers have introduced several different controlmethods for voltage sharing among the capacitors [23–25]. Similarly, in this thesis,a stability analysis and a voltage balancing control method are studied for the SPBconverter, to be described shortly.

As mentioned previously and also shown in Figure 2.2, the SPB converterconsists of number of submodules that are connected in series to a dc-side voltagesource. All submodules of the converter are designed basically with low voltagecomponents. This means that each individual submodule is incapable of handlingthe total source voltage. Therefore, the source voltage should be divided equallyamong the submodules that are connected in series. Since the voltage sharingamong the submodules does not occur inherently, designing a stabilizing algorithmfor each submodule is necessary.

The necessity of having a stabilization algorithm is shown by analyzing theopen- and closed-loop SPB dynamics.

The open-loop stability analysis is started by defining the SPB converter dy-namics as a state-space model, whose characteristic polynomial is derived. Thestability of the system can be studied by applying the Routh–Hurwitz stabilitycriterion, where asymptotic stability is obtained when all coefficients are positive.For the open-loop system, the characteristic polynomial is derived as explained inPublication III

c(s) =(s− P ?

Cv?2

)msm−1× (3.15)[

s2 +(RbLb− P ?

Cv?2

)s+ 1

LbC

(msm −

P ?Rbv?2

)]. (3.16)

32CHAPTER 3. CONTROLLER DESIGN AND STABILITY ANALYSIS OF

THE SPB CONVERTER

where Lb and Rb are the inductance and resistance of the voltage source, respec-tively, P ? is the active-power operating point for each submodule, v? is the voltageacross each submodule capacitor, C is the dc-link capacitance, and msm is thenumber of submodules.

If msm =1, the total dc-link voltage stability is always achieved when P ?<0.This means that in the generating mode of operation, the system is always stable.However, in the motoring mode when P ?>0, problems with instability may occur.This means that the stability criterion may not always be fulfilled. For msm > 1,the system is always unstable in the motoring mode and closed-loop stabilization isnecessary. In the generating mode, the open-loop system is asymptotically stable.

Following from the closed-loop stability analysis, an active stabilization al-gorithm is added to the current controller. In this algorithm, an increment, alsoknown as stabilization term, is added to the current-component references iref

dq foreach converter submodule. The stabilization term for each submodule is madeproportional to the individual voltage deviation from the reference voltage vref.

irefd,k = id0 + gid0 (vk − vref) (3.17)irefq,k = iq0 + giq0 (vk − vref) (3.18)

where id0 and iq0 are set respectively by the flux (field weakening) and torquecontrollers, vk is the dc-link voltage of the kth submodule (which is measured locallyon the board). Based on the choice of vref, three alternatives for the balancingcontroller (Figure 3.5) have been analyzed, namely

vref =

vΣ/msm for controller alternative IEb/msm for controller alternative IIvΣf/msm for controller alternative III

(3.19)

where vΣ is the sum of the dc-link voltage of all msm submodules, Eb is the dcsource voltage, and vΣf is a low-pass filtered variant of vΣ.

The drawback of controller alternative I is its requirement of a minimumdc-link capacitance. In controller alternative I, the stability of the system holds if

C >P ?Lbv?2Rb

. (3.20)

It may happen that a smaller capacitance than (3.20) will be sufficient from otheraspects, such as dc-link current harmonics, but the value given in (3.20) is stillrequired in order to obtain a stable system. Controller alternative II does not needthis minimum required capacitance.

These three control alternatives have been evaluated in a Matlab/Simulinkmodel and also experimentally with the prototype. Some of the results are shownin Figures 3.6 and 3.7. The experimental setup is shown in Figure 2.13.

3.3. SUMMARY 33

+-

x

g

++

refid

refiq

vref

v

iq0

id0F

rom

to

rque

and

flu

x c

ontr

oll

ers

To

sub

mo

dule

curr

ent

contr

oll

er

x ++

g

Figure 3.5: Block diagram of the balancing controller. !"# $%%%&'()*(+&$,)*,)-,.%'%/%+&',)$+*01,/23#0),2#04%5'6('7#8 "

49:2;2 %<=>?9@>ABCD?>EFDBEGH?BI>JHAB?HDD>?CDB>?ACB9K>$0EFL@HMFD>MJND9AOEBCL9D9BP2QCR*FL@HMFD>JC=CJ9BH?KHDBC:>E2QLR1C?9CB9HAHGS2QJR,A>=ICE>JF??>ABQTUVWRHG>CJIEFL@HMFD>29AGH?@CB9HAL>BX>>ABI>GHF?EFL@HMFD>EQ>2:20MJND9AOKHDBNC:>ER9EB?CAE@9BB>MBI?HF:IBI>*-$LFEBICB9EJHF=D>MBHBI>Y*-2,A>EFL@HMFD>H=>?CB>ECE@CEB>?CAMBI>HBI>?EH=N>?CB>CEEDCK>E2$ACMM9B9HA0BI>EX9BJI>EC?>Z,*4%&EX9BIC[\NO] EX9BJI9A:G?>_F>AJP249ACDDP0BI>?>C?>BI?>>JF??>ABE>ANEH?EHA>CJI-+5BH@>CEF?>BI>=ICE>JF??>ABECAMBI>MJND9AOJF??>AB2(DDBI>EFL@HMFD>EC?>M>E9:A>MEHBICBBI>PJCAH=>?CB>CELHBI@CEB>?CAMEDCK>2$ABI>JCE>HGCGCFDBHABI>@CEB>?EFL@HMFD>0HA>HGBI>EDCK>EJCAEX9BJIBHH=>?CB>CE@CEB>?2$ABI>HBI>?XH?ME0BI>JHAB?HDEPEB>@ICEBI>=HB>AB9CDBHL>GCFDBBHD>?CAB2abcdefg$ABI>JCE>HGCGCFDBHAHA>EFL@HMFD>0BICBEFLN@HMFD>@FEBL>EIH?BJ9?JF9B>ML>JCFE>HGBI>E>?9>EJHAA>JB9HA2Q&I>EFL@HMFD>EBIFE@FEBICK>CKHDBC:>?CB9A:EFGhJ9>ABBHX9BIEBCAMBI>9AJ?>CE>MKHDBC:>XI>AJICA:9A:G?H@ijk BHijklmE>?9>ENJHAA>JB>MEFL@HMFD>E2R&HECG>DPJ?>CB>BI9EEIH?BJ9?JF9B9EM9GhJFDBCAMX9DDL>EBFM9>MGF?BI>?9AGFBF?>?>E>C?JI2ngopqbrsptauvwxyzeocqyty|&HEBC?BX9BI0BI>EFL@HMFD>MJND9AOEBCL9D9BP9E><C@9A>M?>N:C?M9A:BI>J?9B>?9HAQ3R2(E><=DC9A>M9A*>JB9HA$$N4 ~E9AJ>BI>?>9ECADHCM~GH?S\0EFL@HMFD>MJND9AOEBCL9D9BP9EDHEB0XI>?>CEGH?S\CEP@=BHB9JEBCLD>9EHLBC9A>M2&I9E9EK>?9h>MLP?C@=9A:SF=CAMMHXAL>BX>>ABI>><B?>@>KCDF>E\[CAMm2&I>?>EFDBEIHXA9A49:2;C:?>>EX>DDX9BIBI>BI>H?P2

49:2!2 %<=>?9@>ABCD?>EFDBEGH?BI>JHAB?HDD>?CDB>?ACB9K>$0BHBCDMJND9AOEBCNL9D9BP2QCR*FL@HMFD>=ICE>JF??>ABE2QLR*FL@HMFD>JC=CJ9BH?KHDBC:>E2grctuvwxyzeocqyty|$AH?M>?BHK9HDCB>BI>EBCL9D9BPJHAM9B9HAQ33RGH?BI>JHANB?HDD>?CDB>?ACB9K>$0B>EB9A:9BE=?CJB9JCDKCD9M9BP0C?>DCB9K>DPDC?:>C9?NJH?>9AMFJBH?0X9BIC#N@]9AMFJBCAJ>CAMC82N9ANA>??>E9EBCAJ>09E9AEBCDD>M9AE>?9>EX9BIBI>9AI>?>AB9AMFJBCAJ>HGBI>EHF?J>0:9K9A:[@]CAMmm2&H:>BI>?X9BIm\\.CAM[10Q33R:9K>EC@9A9@F@JC=CJN9BCAJ>HG[4GH?EBCL9D9BP2*9AJ>m\\40CAFAEBCLD>EPEB>@XHFDML>><=>JB>M2%<=>?9@>ABCD?>EFDBEX9BIBI>JHAB?HDD>?CDB>?ACB9K>$C?>EIHXA9A49:2!24H?\mE0BI>EBCL9D9BPJHAM9B9HAQ33RIHDME2(B\mE0BI>JF??>AB9E9AJ?>CE>MCAMQ33R9EK9HDCB>M2&IFE09AEBCL9D9BPXHFDML>><=>JB>MGH?\mE0LFBCEJCAL>E>>A0BI>EPEB>@P>B?>@C9AEEBCLD>2Q&I>EB>CMPNEBCB>M>K9CB9HAEBICBJCAL>E>>A9A49:2!QLRC?>MF>BHED9:IB9AM9K9MFCDM9GG>?>AJ>EL>BX>>ABI>EFL@HMFD>JH@=HA>ABE2R&I>?>CEHAGH?BI>L>BB>??>EFDBBICA><=>JB>MHGBI>JHAB?HDD>?CDB>?ACB9K>$@CPL>EH@>XICBEF?=?9E9A:2&I>?>9EC?>DCB9K>DPDC?:>B9@>M>DCP\@E9ABI>*-$JH@@FA9JCB9HAL>BX>>ABI>EFL@HMFD>E2&I9EB9@>M>DCPJCAL>@HM>D>MCEBI>JHAB?HDD>?CDB>?ACB9K>$$$X9BIl2*9@9DC?DPBHBI>E9BFCB9HAXI>A9EJIHE>ACECDHXN=CEEhDB>?0BI>B9@>M>DCP9@=?HK>EBI>BHBCDMJND9AOEBCL9D9BP=?H=>?B9>E2&I9EJDC9@X9DDAHXL>K>?9h>M2&I>EPEB>@9EE9@FDCB>MX9BIBI>EC@>=C?C@>B>?ECE9ABI>><=>?9@>AB2$ACMM9B9HA0EX9BJINHK>?BHJHAB?HDD>?CDB>?ACB9K>$$$X9BI0\\?CME09E@CM>CB\mE2&I>?>EFDBEC?>EIHXA9A49:E2"CAM0X9BIHFBCAMX9BIB9@>M>DCP0?>E=>JB9K>DP2(EJCAL>E>>A0BI>EPEB>@X9BIHFBB9@>M>DCPBF?AEFAEBCLD>CB\mEQ:?HX9A:HEJ9DDCB9HAEHGBI>ACBF?CD?>EHACABG?>_F>AJPC==>C?R0LFB9B?>:C9AEEBCL9D9BPXI>ABI>JHAB?HDD>?CDB>?ACB9K>$$$9EEX9BJI>M9A2&I>EPEB>@X9BIB9@>M>DCP9EEBCLD>GH?CDDBI>H=>?CB9A:JHAM9B9HAE2$ACMM9B9HA0K>?9hJCB9HAJCAL>@CM>LPC==DP9A:BI>)P_F9EBJ?9B>?9HABHQ ¡RGH?0?>E=>JB9K>DP0lCAMm2(E49:2¡EIHXE0BI>)P_F9EBJF?K>9ABI>EPEB>@X9BIB9@>M>DCPMH>EAHB>AJ9?JD>lm249ACDDP049:2 8EIHXEBI>JH??>E=HAM>AJ>BH49:2!GH?BI>JHAB?HDD>?CDB>?ACB9K>$$24H?FA?>DCB>M?>CEHAE0BI>=HX>?EF==DP

Figure 3.6: Experimental results for controller alternative I, total dc-link stability.(a) Submodule phase currents. (b) Submodule capacitor voltages.

3.3 Summary

This chapter presents the controller design and stability analysis of the SPBconverter. As mentioned in Chapter 3, the SPB converter consists of several sub-modules that all are connected in series to a voltage source. The total dc-link volt-age should split in a balanced way among the submodules. This does not alwaysoccur inherently. Publication III presents an analysis of the capacitor voltagestability for the SPB converter. From the analysis, criteria for stability are derivedand three alternatives of a suitable balancing controller are designed. The proposedcontroller alternatives and their associated stability properties are verified on an

34CHAPTER 3. CONTROLLER DESIGN AND STABILITY ANALYSIS OF

THE SPB CONVERTER

!"#$!%&'()*+,-./! "0123!/!142 2/40!02 ,-# 15#//%5,%0!6 7#518%012-"%,9#/49820%35!,6%0-# :%51%5 ;<=>

7?@A=A 0?BCDEF?GHIJKCDFKLGIFMJNGHFIGDDJIEDFJIHEF?OJK!PQRSTUVKWEHX!!!PQYSTUVKWZ?FMGCFF?BJXJDE[\FGFEDXN.D?H]KFE?D?F[APEW0CBGXCDJ_MEKJNCIIJHFKAPW0CBGXCDJNE_EN?FGIOGDFE@JKA

7?@AA 0?BCDEF?GHIJKCDFKLGIFMJNGHFIGDDJIEDFJIHEF?OJK!PQRSTUVKWEHX!!!PQYSTUVKWZ?FMF?BJXJDE[\FGFEDXN.D?H]KFE?D?F[APEW0CBGXCDJ_MEKJNCIIJHFKAPW0CBGXCDJNE_EN?FGIOGDFE@JKA7?@AaA [bC?KFNCIOJKLGIFMJNGHFIGDDJIEDFJIHEF?OJ!PKGD?XWZ?FMEHXPXEKMJXWZ?FMGCFF?BJXJDE[A?K?HFM?KNEKJEK?c._CDKJX?GXJIJNF?dJIA,CJFG?FKNGBBCFEF?GHOGDFE@JXIG_\EDDKCBGXCDJOGDFE@JKIJXCNJLGDDGZ?H@FMJ_GZJI?HNIJEKJFMEFGNNCIKEFQeSTUKA#FMJIZ?KJ\FMJIJKCDFKEIJOJI[K?B?DEIFG7?@A<A1MJK[KFJB?KKFEDJ\EK_IJX?NFJX[FMJFMJGI[A

7?@A;fA %c_JI?BJHFEDIJKCDFKLGIFMJNGHFIGDDJIEDFJIHEF?OJ!!\FGFEDXN.D?H]KFE?D?F[APEW0CBGXCDJ_MEKJNCIIJHFKAPW0CBGXCDJNE_EN?FGIOGDFE@JKA!:A-# -/$0!# 1M?K_E_JI_IJKJHFJXXN.D?H]KFE?D?F[EHED[[email protected]?@HGLFMJ093NGHOJIFJIA1MJNGHFIGDDJIEDFJIHEF?OJ!\ZM?NMZEK_IJO?GCKD[_IG_GKJX?Hg;=h\ZEKKMGZHFGMEOJFMJXIEZEN]GLEB?H?BCBNE_EN?.FEHNJIJbC?IJBJHFLGIKFE?D?F[A1M?KXIEZEN]ZEKJD?B?HEFJX?HFMJNGHFIGDDJIEDFJIHEF?OJ!!\ZM?NMGHFMJGFMJIMEHXIJbC?IJKKGCINJ.OGDFE@JBJEKCIJBJHFA3GFMXIEZEN]KZJIJJD?B?HEFJX?HFMJNGHFIGDDJIEDFJIHEF?OJ!!!A!HFJIJKF?H@D[\FMJ_IJKJHNJGLENGBBCH?NEF?GHF?BJXJDE[ZEK?HFMJJc_JI?BJHFEDJOEDCEF?GHKMGZHFG?B_IGOJFMJKFE?D.?F[_IG_JIF?JKGLFMJNGHFIGDDJIEDFJIHEF?OJ!\EDDGZ?H@EKBEDDJINE_EN?FEHNJFMEHFMJFMJGIJF?NEDB?H?BCBA!FZEKKMGZHMGZFMJKFE?D?F[?B_ENFGLEF?BJXJDE[?HFMJNGHFIGDDJIEDFJIHEF?OJ!NEHJEHED[iJXCK?H@FMJ [bC?KFNI?FJI?GHA5%7%5% -%0g;hjA5GXI?@CJi\0A3JIHJF\3AkC\jA9GHFF\EHX0A"GCIG\[email protected]_GDG@?JKLGI?HXCKFI?EDBJX?CB.OGDFE@JXI?OJK\nopppqr(st*osu*p)&v'rws*\OGDAxy\HGA<\__Aza>fzayx\,JNAzff=AgzhmA!KDEB\4A6CG\EHXjA|MC\[email protected][D?H]BCDF?DJOJDNEKNEXJXBJX?CB.OGDFE@JNGHOJIFJILGIX?IJNF@I?X?HFJ@IEF?GHGLIJHJZEDJJHJI@[K[KFJBK\nopppqr(st*w~&rp)&v'rws*\OGDAza\HGA\__Ay;<=y;z\2C@Azf;yAg>h|A|MJH@\"AkEH@\/AC\EHX4A/?\l2M[I?XNEKNEXJXBCDF?DJOJDNGHOJIFJILGIEFFJI[JHJI@[BEHE@JBJHFE__D?JX?HJDJNFI?NOJM?NDJK\nopppqr(st*w~&rp)&v'rws*\OGDAza\HGA=\__A>x>=>xy<\jCDAzf;yAgyh9A3IGN]JIMGLL\4A3CI]MEIXF\"A%@@JI\EHX8A5ECM\l8?@MD[?HFJ@IEFJXXI?OJFIE?HKGDCF?GH+!HFJ@IEF?GHGLBGFGI\?HOJIFJIEHX@JEI?H@\n?Hrwv*'os'*p)&v'*r&trwu*ws*\0J_Azf;y\__A;<Agxh0A GII@E\/Aj?H\#AkEDDBEI]\2AmE[JI\EHX"A!DOJK\l2HGOJD?HOJIFJIFG_GDG@[LGINGB_ENF%:EHX8%:XI?OJK[KFJBK\n?Hrwv*oppp'ss*ws*osu*p)&v'rws*wv*\ GOAzf;>\__A<xaf<xaxAg<h4A8EH\l,JK?@H\BGXJD?H@\EHXNGHFIGDGLBCDF?DJOJDNGHOJIFJIBGFGIXI?OJZ?FMBGXCDEIXJK?@HEHXK_D?FZ?HX?H@BENM?HJ\n?Hrwv*oppp'wrtwws'rw)wu&)*w~&rp)&v'rws*\jCHAzf;y\__A;;fAg=h0A6JIXJEHX1A$HXJDEHX\l9GZJINGHOJIK?GHK[KFJBLGIFIEHKLGIBJI.DJKKGLLKMGIJZ?HXFCI?HJ\n?Hrwv*'pr*ws*w~&rp)&v'rws*)*\2C@Azf;;\__A;;fAgh0A6JIXJ\9A#DKJH\"A/G]JDKG[\EHX1A$HXJDEHX\l-GHFIGDEHXLECDFMEHXD?H@?HEBGXCDEIKJI?JK.NGHHJNFJXNGHOJIFJILGIEFIEHKLGIBJIDJKK;ff]:DGZ.ZJ?@MFGLLKMGIJZ?HXFCI?HJ\nopppqr(st*osu*)*\OGDAxf\HGAz\__A;fay;;fx\mEIAzf;yA

Figure 3.7: Experimental results for controller alternative II, total dc-link stability.(a) Submodule phase currents. (b) Submodule capacitor voltages.

experimental setup and by simulations.

Chapter 4

Fault Handling

4.1 Introduction

A stability analysis of the SPB converter is presented in Chapter 3. There,it is mentioned that due to the modular structure of the SPB converter, as well asthe series connection of submodules to the dc source, active voltage balancing isnecessary. Although the dc-link stabilization method is quite promising for voltagesharing and balancing among the submodules, it does not guarantee the continuousoperation under any fault occurrence. Even though, the modular structure of theSPB converter offers the feasibility of fault-tolerant operation, it is still necessaryto ensure the continuous operation of the converter under fault occurrence. Thismeans that, an algorithm is needed which should be capable of identifying thefault and also bypassing the faulty submodule and finally sharing the total dc-linkvoltage among the remaining healthy submodules equally.

In [26], a fault handling method for a similar converter in wind turbine appli-cations is studied. The authors recommend using a crowbar across each submoduleto bypass the fault. With this method, fault reasons diagnosis is not important.Using this method in EVs and HEVs applications is not applicable, however. Thereason is that it not only increases the number of components in the converter de-sign but also it takes more space and increases the cost. In [8], where an IMMDconverter similar to the SPB converter is presented for EVs and HEVs, any uniquemethod of fault handling for the mentioned modular converter is not proposed andthe discussion about fault handling is limited to the chapter on future work. There-fore, there is the need for further research in this topic. In this chapter, a faulthandling strategy for the SPB converter is presented.

4.2 Fault Handling Strategy

Let us study Figure 2.2 one more time. Among the components in the con-verter, the dc-link capacitors (film type), the switches (MOSFETs), and the drivers

35

36 CHAPTER 4. FAULT HANDLING

are the most risky components concerning fault occurrence. Over the years, severalstudies have considered the reliability of film capacitors [27, 28] as well as MOS-FETs [29], showing high reliability of these components. Still, during the life timeof the SPB converter, the risk of fault of any of them cannot be ruled out. Forthe SPB converter, there are at least six times more MOSFETs than capacitors(there are multiple-of-six MOSFETs if parallel connection in each switch is used).This indicates a higher, perhaps much higher, fault risk of the MOSFETs than thefault risk of the dc-link capacitor. Consequently, in this thesis, the fault handlingstrategy considers the situation that one MOSFET of the SPB converter is faulty.A faulty MOSFET means that the MOSFET is either short-circuited or open-circuited. Publication II studies the fault handling of a short-circuited MOSFETof the SPB converter using a simplified Matlab model of the converter. In contrast,in this chapter a similar study is done with a detailed Matlab/Simulink model.

4.3 Short-Circuited MOSFET Fault

In this situation, it is assumed that a single switch in one phase leg is shortcircuited, e.g., MOSFET T1 in submodule msm in Figure 2.2. In order to avoid ashort circuit across the capacitor, it is necessary to make sure that MOSFET T4 isopen. Otherwise, a very large current passing through the phase leg can damagethe healthy MOSFET. The second step is to create a balanced short circuit acrossthe motor windings. This can happen by closing the switches T2 and T3. In thiscase, the battery current cannot go through the faulty submodule and instead itpasses through the capacitor, see Figure 4.1. This means that (in the motoringmode of operation) the capacitor voltage across the faulty submodule increases andmay cause an even more severe fault on either the capacitor or the other switches.Therefore, it is important to change the operation mode from the motoring modeto the generating mode to discharge the capacitor voltage safely, see Figure 4.2. Inthe final step, when the capacitor voltage across the faulty submodule reaches zero,it is safe to short circuit the faulty submodule by turning on all the switches in thefaulty submodule, see Figure 4.3.

Simulation results based on this strategy and using a detailed Matlab/Simulinkmodel of the SPB converter are presented in Figure 4.4. The parameters that areselected for the detailed Matlab/Simulink model are according to Table 2.1, exceptthat the results in Figure 4.4 are obtained at half of the motor speed, i.e., 2000 rpm.

At t= 0, the moment of fault occurrence, the motor windings are balancedshort-circuited, see Figure 4.4(a). At the same time (t=0), the capacitor voltage ofthe faulty submodule starts to increase, because the battery current starts flowingthrough the capacitor instead of the faulty converter. Simultaneously, the capacitorvoltages start to decrease in the healthy submodules, see Figure 4.4(c). A short timeafter, when the submodule-to-submodule communication time delay has passed,all submodule controllers recognize that one submodule is faulty and the numberof submodules in the balancing controller is changed from msm to msm − 1. In

4.3. SHORT-CIRCUITED MOSFET FAULT 37

Rb Lb Multiple-star

loadi1

Eb

Rb Lb Multiple-star

load

C

+

v2

-

T1 T2 T3

T4 T5 T6

ia,2ib,2ic,2

imsm

C

+

vmsm

-

T1 T2 T3

T4 T5 T6

ia,msm

ib,msm

ic,msm

i1

C

+

v1

-

T1 T2 T3

T4 T5 T6

ia,1

ib,1ic,1

i2

ib

Figure 4.1: The second step in the short-circuit fault handling strategy.

order to discharge the capacitor of the faulty submodule safely, the submodulecontrollers put the machine in the generating mode. This makes ib and iq of thehealthy submodules negative, see Figure 4.4(d). After the capacitor of the faultysubmodule is discharged completely, all the MOSFETs in the faulty submodule areturned on to create a short circuit across the capacitor. Current components iq ofthe healthy submodules converge again to their reference. As a result, the batterycurrent increases, but settles at a value lower than before the fault occurrence dueto the loss of one submodule and the resulting reduction in active power to themachine.

38 CHAPTER 4. FAULT HANDLING

Eb

Rb Lb Multiple-star

load

C

+

v2

-

T1 T2 T3

T4 T5 T6

ia,2ib,2ic,2

imsm

C

+

vmsm

-

T1 T2 T3

T4 T5 T6

ia,msm

ib,msm

ic,msm

i1

C

+

v1

-

T1 T2 T3

T4 T5 T6

ia,1

ib,1ic,1

i2

ib

Figure 4.2: The third step in the short-circuit fault handling strategy.

Figure 4.5 shows a longer time period of the same situation. As can beseen, the current components id and iq of the faulty submodule oscillate during thetransient due to the motor rotation and converge exponentially to their steady-statevalues with the d and q time constants.

4.4. OPEN-CIRCUITED MOSFET FAULT 39

Eb

Rb LbMultiple-star

load

C

+

v2

-

T1 T2 T3

T4 T5 T6

ia,2ib,2ic,2

imsm

C

+

vmsm

-

T1 T2 T3

T4 T5 T6

ia,msm

ib,msm

ic,msm

i1

C

+

v1

-

T1 T2 T3

T4 T5 T6

ia,1

ib,1ic,1

i2

ib

Figure 4.3: The final step in the short-circuit fault handling strategy.

4.4 Open-Circuited MOSFET Fault

Now, let us assume instead that MOSFET T1 of submodule msm is open-circuited.

Therefore, the fastest and safest way to avoid additional damage is to makethe windings balanced short-circuited by turning on switches T4, T5, and T6. Inthis way, current imsm reaches zero and the battery current ib goes though the dc-link capacitor. Again, in order to protect the capacitor it is necessary to change

40 CHAPTER 4. FAULT HANDLING

-1 0 1 2 3 4 5 6 7 8 9

10 -3

-600

-400

-200

0

200i d

[A

](a)

-1 0 1 2 3 4 5 6 7 8 9

10 -3

-100

0

100

i q [

A]

(b)

-1 0 1 2 3 4 5 6 7 8 9

10 -3

0

100

200

udc

[A

]

(c)

-1 0 1 2 3 4 5 6 7 8 9

10 -3

-60

-40

-20

0

20

i b [

A]

(d)

-1 0 1 2 3 4 5 6 7 8 9

t [s] 10 -3

-100

0

100

Te [

Nm

]

(e)

Figure 4.4: A short-circuit fault on T1 of submodule 4: (a) Current component, id(faulty submodule in red). (b) Current component, iq (faulty submodule in red).(c) DC-link voltage,(faulty submodule in red). (d) Current drawn from the voltagesource (e.g., battery). (e) Torque.

the operation mode from motoring to generating mode in order to discharge thecapacitor completely. In the last step, the submodule can be short circuited byturning on the switches in the two healthy phases, see Figure 4.6.

4.5. DETECTION OF THE FAULTY SWITCHES 41

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1-600

-400

-200

0

200i d

[A

](a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-100

0

100

i q [

A]

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

100

200

udc

[A

]

(c)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-60

-40

-20

0

20

i b [

A]

(d)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t [s]

-100

0

100

Te [

Nm

]

(e)

Figure 4.5: A short-circuit fault on T1 of submodule 4, longer time period shown:(a) Current component, id (faulty submodule in red). (b) Current component, iq(faulty submodule in red). (c) DC-link voltage (faulty submodule in red). (d)Current drawn from the voltage source (e.g., battery). (e) Torque.

4.5 Detection of the Faulty Switches

The solutions for the continuous operation of the SPB converter during thefault occurrence of one MOSFET in one phase leg are described in Sections 4.3 and4.4.

Now, the questions are; how is it possible to diagnose a faulty switch and how

42 CHAPTER 4. FAULT HANDLING

Eb

Rb LbMultiple-star

load

C

+

v2

-

T1 T2 T3

T4 T5 T6

ia,2ib,2ic,2

imsm

C

+

vmsm

-

T1 T2 T3

T4 T5 T6

ia,msm

ib,msm

ic,msm

i1

C

+

v1

-

T1 T2 T3

T4 T5 T6

ia,1

ib,1ic,1

i2

ib

Figure 4.6: The final step in the open-circuit fault handling strategy.

can one identify the type of fault in the switch? Let us try to give a few answersto these questions. In designing the hardware/software of the SPB converter, someprotections are considered to make sure having a fault-tolerant converter. Forexample, to detect and protect the switch from a short-circuit fault, a special typeof gate driver (ADuM4135–Analog Devices) [30] is used. It can provide protectionagainst high voltage short-circuit IGBT/MOSFET operation. This gate driver hasa pin, called “GATE SENSE,” which measures the gate voltage on the MOSFET

4.6. SUMMARY 43

and compares it with the supply voltage. If voltage saturation has occurred, anotherpin, called “DESAT,” can detect it. A fault on this pin asserts a fault on the FAULTpin on the primary side. Until the fault is cleared on the primary side, the gatedrive is inhibited. These gate drivers in combination with the hardware logic—see Appendix I, Control board, page 5—offers a fault handling in the case when aMOSFET is being short-circuited.

On the other hand, if a switch faces an open circuit fault, the current sensorswhich are measuring the phase currents can be a good alternative to recognizethis type of the fault. In this fault situation, the resulting phase currents have adistinct characteristic which can be identified. Therefore, this fault can potentiallybe handled as well. Although these preparations for fault handling have beenconsidered, unfortunately the author was not able to test them experimentally dueto the time limitations.

4.6 Summary

This chapter describes a method for fault handling for the SPB converter. Itis mentioned that despite of the reliability of all components in the SPB converter,there is no guarantee for the components operation during the fault occurrenceand they may be damaged in a case of fault occurrence. Among the components,MOSFETs are the most risky ones due to their quantity in the design. Therefore,this chapter of thesis is dedicated to study the fault handling of a MOSFET inone bridge of one submodule. It is also mentioned that a fault in a MOSFET canbe open- or short-circuited, and both types of fault are discussed in this chapter.The proposed fault handling strategy is implemented in a Matlab/Simulink modeland the results are presented here. This chapter also serves as an introduction toPublication II.

Chapter 5

Torque Ripple Minimization

5.1 Introduction

Torque pulsations or torque ripple are terms referring to periodic variationsof the shaft torque of the machine during a complete revolution. This results invibrations. The vibrations are considered as a disadvantage for the machine sincethey lead to premature wear on various drive train components, decreasing their lifetime in the long term, and in the short term they create acoustic noise. Therefore,it is desirable to suppress these phenomena.

Torque pulsations arise due to a combination of cogging torque and ripple dueto harmonics present in the air gap. Cogging torque is based on the interactionbetween the magnets on the rotor and the stator slots and occurs also when thephase currents are zero. This effect can be reduced by careful design of the machine,such as selecting a good combination of slot per pole per phase [31,32], or skewingthe rotor [33,34].

5.2 Torque Ripple Originating from Non-Sinusoidal FluxLinkage

Torque ripple that is created by harmonics in the air gap is due to a non-sinusoidal back EMF. This phenomenon exists in all electric machines, but it canbe reduced by careful design [35]. For the FSCW PMSM in particular, the measuredno-load open-circuit voltage contains significant harmonics of orders 5 and 7, seeFigure 5.1.

The electrical torque is given by

Te = 3p2 (ψdiq − ψqid) . (5.1)

where ψd and ψq respectively are the flux linkages in d and q directions and p isthe number of pole pairs. The back EMF is the time derivative of the flux linkage.

45

46 CHAPTER 5. TORQUE RIPPLE MINIMIZATION

0 1 2 3 4 5 6

[erad]

-50

0

50

van

[V

]

(a)

(b)

0 5 10 15 20

Harmonics order [-]

0

10

20

30

40

50

Mag

nitu

de [

V]

Figure 5.1: Harmonic analysis of the no-load voltage of the FSCW PMSM: (a)Measured phase voltage. (b) Corresponding harmonic orders.

Therefore, if the back EMF contains harmonics that are multiples of six (in the dqreference frame), then the flux linkage contains that as well. Thus, the electricaltorque also contains harmonics that are multiples of six, according to (5.1). Often,although not always, id is controlled to be zero. Then, (5.1) simplifies to

Te = 3p2 ψdiq (5.2)

showing that ψd is the critical flux-linkage component concerning the torque ripple.All the proposals in the literatures that are cited in the introduction to this

chapter are based on the adequate design of the machine in order to reduce thetorque ripple. Another example is a technique that is presented in [36], which isbased on modifying the shape of the rotor to modify the air-gap flux density andreduce the torque ripple. A careful design can be costly, but may still not givethe desired suppression of the torque ripple. Instead, control techniques can be themost reliable, more effective, and cheaper solution in this matter.

5.3 Methods for Torque Ripple Minimization via Control

In various research studies, different proposals for torque ripple minimizationare presented. Equation (5.2) shows that they all must have the effect that iq

5.4. PIR CONTROLLER 47

is controlled to be inversely proportional to ψd, because then, ψdiq is constant.This can be accomplished in various ways. The different proposals can roughly beclassified into two categories: feedforward and feedback.

Feedforward control computes the reference for the torque-producing currentcomponent (iq) by using pre-acquired information of the torque ripple. This way,a ripple-reducing term is added to the nominal torque-producing current compo-nent. The performance of this scheme depends on the accuracy of the pre-acquiredinformation [37]. It also requires an appropriately selected current controller. Ref-erence [38] proposes a repetitive current control strategy to realize zero static errortracking of the periodic components in the reference current.

In contrast, feedback control establishes feedback laws using state variablessuch as speed, current, and/or torque for the purpose of ripple reduction [39]. Forexample in [40], a speed feedback law is established, and a time-varying model of therotor flux is embedded into the speed controller. By estimating model parametersonline, the torque ripple is effectively suppressed. Using mathematical modelsis also considered in many publications. For example, in [41], the period of thespeed ripple is analyzed, and ripple components of various frequencies are effectivelysuppressed by using iterative learning together with a PI speed controller.

Feedforward and feedback methods can be combined. In this chapter, wepropose to add a ripple-reducing term to the nominal torque-producing currentcomponent. But unlike [38], pre-acquired information is not used. Instead, themain flux harmonics which cause torque ripple are estimated online using dq-framevoltage and current components. The details are described in Publication V.

5.4 PIR Controller

As mentioned above, iq should be controlled to be inversely proportional toψd. Assuming isd=0, then from Publication V we have

ψd = ψm + ψmd6cos(6θe + ϕd6) + ψmd12cos(12θe + ϕd12) + · · · (5.3)

so1ψd

= 1ψm + ψmd6cos(6θe + ϕd6) + ψmd12cos(12θe + ϕd12) + · · ·

= 1ψm[1 + ψmd6

ψmcos(6θe + ϕd6) + ψmd12

ψmcos(12θe + ϕd12) + · · · ]

. (5.4)

From Figure 5.1, it is obvious that the terms ψmd6ψm

, ψmd12ψm

, . . . are much smaller thanone, i.e., the flux harmonics have much smaller amplitude than the fundamentalflux. Therefore, (5.4) can be rewritten by using a first-order MacLaurin expansion[1/(1 + x) ≈ 1− x] as

1ψd≈ 1ψm

[1− ψmd6

ψmcos(6θe + ϕd6)− ψmd12

ψmcos(12θe + ϕd12) + · · ·

]. (5.5)

48 CHAPTER 5. TORQUE RIPPLE MINIMIZATION

idq

+-

ref

dqkp vdq

PIR

sat vdq

- +

kp

1

dq

Ra -

ki

s

+

+ -

j eLs

ref ref

+ +

SVM

iabc

PMSMConverter

idq

edq

kr ss 2 (6 e)2+

+

+

Figure 5.2: Schematic diagram of the PIR current controller (decoupling elementassuming a non-salient machine, i.e., Ld≈Lq= Ls).

From (5.5) it is understood that iq must contain harmonics of multiple six in orderfor removing the ripple of the torque.

The PI controller that is designed in Chapter 3 is not able to accuratelyfollow the mentioned harmonics. This means that the current will have differentamplitude and phase compared to its reference. The problem can be resolved byadding resonators at the known harmonic frequencies to the PI controller. Thismakes the controller a proportional–integral–resonant (PIR) controller.

The transfer function for a resonator is described askrs

s2 + ω2r

(5.6)

where kr is the resonator gain and ωr is the resonator angular frequency. Observethat s=jωr gives an infinite gain to the transfer function. Therefore, the resonatoracts as an integrator at ωr. Thus, it is also called a generalized integrator. Itbecomes a standard integrator for ωr=0.

Figure 5.2 shows the schematic diagram for the PIR controller. Only oneresonator, for the sixth harmonic, is added. This is because, as can be seen inFigure 5.1, the sixth-order harmonic dominates over the higher-order harmonics.

Figure 5.3 shows the difference in the currents and the torques amplitudes byusing two current controllers PI and PIR. The results are from the Matlab/Simulinkmodel of the SPB converter with four submodules and and the corresponding ma-chine for which the (varying) parameters have been obtained using FEM simula-tions.

5.5 Summary

This chapter presents a method to minimize the torque ripple of PMSM ma-chines. It is discussed that torque ripple in PMSM machines is caused by cogging

5.5. SUMMARY 49

0 0.05 0.1 0.15 0.2

t [s]

-60

-40

-20

0

20

[A]

(bI)

id

iq

0 0.05 0.1 0.15 0.2

t [s]

-40

-35

-30

-25

-20

-15

-10

[Nm

]

(bII)

Te

0 0.05 0.1 0.15 0.2-60

-40

-20

0

20[A

]

(aI)

id

iq

0 0.05 0.1 0.15 0.2-40

-35

-30

-25

-20

-15

-10

[Nm

]

(aII)

Te

Figure 5.3: Simulation results for (a) PI control. (b) PIR control.

torque and/or the presence of the flux harmonics in the air gap. It is also de-scribed that there are two general solutions for overcoming the torque ripple. First,to design a machine with minimized torque ripple. Second, to use control meth-ods. It turns out that the latter solution is more popular among researchers, sincedesigning a machine with minimized torque ripple can result in a costly machinedesign but also since this may affect other important aspects such as torque den-sity and/or efficiency. In this chapter, a method for compensating flux harmonics ispresented. Publication V describes the controller in detail along with simulationsand experimental results.

Chapter 6

Conclusions and Future Work

This thesis along with the two doctoral theses [10, 12] present a new conceptfor integration of the electric drive system for EV and HEV applications. The topol-ogy introduces an integration between the SPB converter and an FSCW PMSM,which creates a very compact integrated electric drive system. This concept poten-tially benefits from several advantages, e.g., the reduction of power cables betweenconverter and machine, reduction in terms of EMI, weight, and size.

This thesis is mainly focusing on the design, construction, and control of theSPB converter. It is described that the SPB converter is comprised of an arbitrarynumber of submodules that are connected in series to a dc-source voltage. Threedifferent designs of the SPB converter with four submodules have been developed.The first two generations are designed using Euro standard two-layer PCBs. EachPCB constitutes one submodule and it is designed in a way that it contains bothpower and control circuits. The power circuit is a conventional two-level three-phase converter. The control part contains a processor and the communication part.Each PCB can handle 15 A and 20 V. They are connected to RL loads. The thirdgeneration is designed to be installed at the non-driven end of the FSCW PMSM.Four PCBs are designed for the power circuit. Each one has its corresponding PCBas control board. The power PCBs can handle an rms current of 100 A and adc-link voltage of 100 V.

Along with the design of the converter, control algorithms have also beendeveloped. A conventional PI current controller is implemented on the DSP ofeach control board. The first control contribution for the SPB converter in thisthesis is dedicated to stability analysis. Since the submodules are series-connectedto the dc-source voltage, it is essential to make sure the total voltage is sharedequally among the submodules.

Secondly, a study of the SPB converter under fault is performed. It is assumedthat one submodule is facing a short- or open-circuited MOSFET and the behaviorof the converter is studied. The proposal suggests a safe way of short-circuiting thefaulty submodule.

51

52 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Finally, torque ripple minimization is discussed. It is shown that using anestimator for the flux linkage harmonics in the machine along with a PIR controllercan be an efficient method to suppress the ripple.

6.1 Future Work

Although plenty of research and investigations have been done during thisproject focusing on the SPB converter, there is still room for more work that islisted as follows.

• CAN communication for four submodules is missing. In this thesis commu-nication via the CAN bus between two submodules has been used, but thisshould be developed to four submodules.

• A method for fault handling is proposed in the thesis. However, the proposalis not evaluated experimentally. Therefore, it is worth to do so.

• The control and power boards of the third generation SPB converter are ondifferent PCBs. Maybe, it will be possible to integrate the two boards on asingle board to form an even more compact drive system.

Bibliography

[1] R. Matulka, “History of the electric car [online],” Available:http://www.energy.gov/articles/history-electric-car, Sep. 2014.

[2] P. Cazzola, M. Gorner, L. Munuera, R. Schuitmaker, andE. Maroney, “Global EV outlook in 2017 [online],” Available:http:www.iea.org/publications/GlobalEVOutlook 2017.pdf, Jan. 2017.

[3] J.-S. Lai, H. Kouns, and J. Bond, “A low-inductance DC bus capacitor forhigh power traction motor drive inverters,” in Proc. of the 37th IEEE IndustryApplications Conference. (IAS 2002), Oct. 2002.

[4] T. Efford, Y. Shibata, and A. Kanezaki, “Development of aluminum elec-trolytic capacitors for EV inverter applications,” in Proc. of the 32nd IEEEIndustry Applications Conference. (IAS 97), Oct. 1997.

[5] T. M. Jahns and H. Dai, “The past, present, and future of power electronicsintegration technology in motor drives,” IEEE Transactions on Power Elec-tronics and Applications, vol. 2, pp. 197–216, Sep. 2017.

[6] N. R. Brown, T. M. Jahns, and R. D. Lorenz, “Power converter design foran integrated modular motor drive,” in Proc. of IEEE Industry ApplicationsAnnual Meeting, Sep. 2007.

[7] A. Shea and T. M. Jahns, “Hardware integration for an integrated modularmotor drive including distributed control,” in Proc. IEEE Energy ConversionCongress and Exposition (ECCE 2014 ), Sep. 2014.

[8] J. Wang, “Design of multilevel integrated modular motor drive with gallium ni-tride power devices,” PhD dissertation, The University of Wisconsin-Madison,Madison, US, 2015.

[9] L. Lambertz, R. Marquardt, and A. Mayer, “Modular converter systems forvehicle applications,” in Proc. of IEEE Emobility–Electrical Power Train, Nov.2010.

53

54 BIBLIOGRAPHY

[10] L. Jin, “Integrated compact drives for electric and hybrid electric vehicles,”PhD dissertation, KTH Royal Institute of Technology, Stockholm, Sweden,2016.

[11] S. Gjerde, “Analysis and control of a modular series connected converter for atransformerless offshore wind turbine,” PhD dissertation, Norwegian Univer-sity of Science and Tecnology, Trondheim, Norway, 2013.

[12] H. Zhang, “On electric machinery for integrated motor drives in automotiveapplications,” PhD dissertation, KTH Royal Institute of Technology, Stock-holm, Sweden, 2017.

[13] J. J. Wolmarans, J. A. Ferreira, H. Polinder, I. Josifovic, and D. Clarenbach,“Design for fault tolerance and predictive failures,” in Proc. of the 6th Inter-national Conference on Integrated Power Electronics Systems, Mar. 2010.

[14] N. Aschenbrenner, “Drive system saves space and weight in elec-tric cars,” Available: https://phys.org/news/2014-10-space-weight-electric-cars.html Charged Electric Vehicles Magazine, Oct. 17, 2014.

[15] A. M. EL-Refaie, “Fractional–slot concentrated–windings synchronous perma-nent magnet machines: Opportunities and challenges,” IEEE Transactions onIndustrial Electronics, vol. 57, pp. 107–121, Jan. 2010.

[16] D. Graovac, M. Pürschel, and A. Kiep, “MOSFET power losses calculationusing the datasheet parameters [online],” Available: http:www.application-notes.digchip.com/070/70-41484.pdf, Jul. 2006.

[17] L. Harnefors and H.-P. Nee, “Model-based current control of AC machinesusing the internal model control method,” IEEE Transactions on IndustryApplications, vol. 34, pp. 133–141, Jan. 1998.

[18] L. Harnefors, K. Pietiläinen, and L. Gertmar, “Torque-maximizing field-weakening control: design, analysis, and parameter selection,” IEEE Trans-actions on Industrial Electronics, vol. 48, pp. 161–168, Feb. 2001.

[19] J. Holtz, J. Quan, J. Pontt, J.and Rodrìguez, P. Newman, and H. Miranda,“Design of fast and robust current regulators for high-power drives based oncomplex state variables,” IEEE Transactions on Industry Applications, vol. 40,no. 5, pp. 1388–1397, 2004.

[20] H. Zhu, X. Xiao, and Y. Li, “PI type dynamic decoupling control scheme forPMSM high speed operation,” in Proc. of the 25th Annual IEEE Applied PowerElectronics Conference and Exposition (APEC 2010), Feb. 2010.

[21] R. Ottersten and J. Svensson, “Vector current controlled voltage sourceconverter-deadbeat control and saturation strategies,” IEEE Transactions onPower Electronics, vol. 17, pp. 279–285, Mar. 2002.

BIBLIOGRAPHY 55

[22] K. J. Åström and T. Hägglund, “PID controllers: theory, design, and tuning,”vol. 2, 1995.

[23] X. Ruan, W. Chen, L. Cheng, C. K. Tse, H. Yan, and T. Zhang, “Controlstrategy for input-series, output-parallel converters,” IEEE Transactions onIndustrial Electronics, vol. 56, pp. 1174–1185, Apr. 2009.

[24] W. Chen, X. Ruan, H. Yan, and C. K. Tse, “DC/DC conversion systemsconsisting of multiple converter modules: Stability, control, and experimentalverifications,” IEEE Transactions on Power Electronics, vol. 24, pp. 1463–1474, Jun. 2009.

[25] R. Giri, V. Choudhary, R. Ayyanar, and N. Mohan, “Common-duty-ratio con-trol of input-series connected modular DC-DC converters with active inputvoltage and load-current sharing,” IEEE Transactions on Industry Applica-tions, vol. 42, pp. 1101–1111, Jul. 2006.

[26] S. Gjerde, P. Olsen, K. Ljokelsoy, and T. Undeland, “Control and fault han-dling in a modular series-connected converter for a transformerless 100 kV low-weight offshore wind turbine,” IEEE Transactions on Industry Applications,vol. 50, pp. 1094–1105, Mar. 2014.

[27] H. Wang and F. Blaabjerg, “Reliability of capacitors for DC-link applicationsin power electronic converters: An overview,” IEEE Transactions on IndustryApplications, vol. 50, pp. 3569–3578, Sep. 2014.

[28] H. Soliman, H. Wang, and F. Blaabjerg, “A review of the condition monitoringof capacitors in power electronic converters,” IEEE Transactions on IndustryApplications, vol. 52, pp. 4976–4989, Nov. 2016.

[29] N. Moultif, M. Masmoudi, E. Joubert, and O. Latry, “Reliability and qualifi-cation tests for high-power MOSFET transistors,” 2017.

[30] A. Devices, “Single–/dual–supply, high voltage isolated IGBT gate driver withmiller clamp [online],” Available: http:www.analog.com/media/en/technical-documentation/data-sheets/ADuM4135.pdf.

[31] S. Han, T. M. Jahns, W. L. Soong, M. K. Güven, and M. S. Illindala, “Torqueripple reduction in interior permanent magnet synchronous machines usingstators with odd number of slots per pole pair,” IEEE Transactions on EnergyConversion, vol. 25, pp. 118–127, Mar. 2010.

[32] J. K. Tangudu, T. M. Jahns, and A. EL-Refaie, “Unsaturated and satu-rated saliency trends in fractional-slot concentrated-winding interior perma-nent magnet machines,” in Proc. IEEE Energy Conversion Congress and Ex-position (ECCE2010), pp. 1082–1089, Sep. 2010.

56 BIBLIOGRAPHY

[33] T. M. Jahns and W. L. Soong, “Pulsating torque minimization techniques forpermanent magnet AC motor drives-a review,” IEEE Transactions on Indus-trial Electronics, vol. 43, pp. 321–330, Apr. 1996.

[34] A. Wang, H. Li, W. Lu, and H. Zhao, “Influence of skewed and segmentedmagnet rotor on IPM machine performance and ripple torque for electric trac-tion,” in Proc. of IEEE International Electric Machines and Drives Conference(IEMDC 2009), May 2009.

[35] C. Ruoff, “A closer look at torque ripple minimizing its effects on electricmachines [online],” Available: https://chargedevs.com/features.

[36] U. Seo, Y. Chun, J. Choi, P. Han, D. Koo, and J. Lee, “A technique oftorque ripple reduction in interior permanent magnet synchronous motor,”IEEE Transactions on Magnetics, vol. 47, pp. 3240–3243, Oct. 2011.

[37] G. Ferretti, G. Magnani, and P. Rocco, “Modeling, identification, and com-pensation of pulsating torque in permanent magnet AC motors,” IEEE Trans-actions on Industrial Electronics, vol. 45, pp. 912–920, Dec. 1998.

[38] P. Mattavelli, L. Tubiana, and M. Zigliotto, “Torque-ripple reduction in PMsynchronous motor drives using repetitive current control,” IEEE Transactionson Power Electronics, vol. 20, pp. 1423–1431, Nov. 2005.

[39] W. Gan and L. Qiu, “Torque and velocity ripple elimination of AC per-manent magnet motor control systems using the internal model principle,”IEEE/ASME Transactions on Mechatronics, vol. 9, pp. 436–447, Jun. 2004.

[40] V. Petrovic, R. Ortega, A. M. Stankovic, and G. Tadmor, “Design and imple-mentation of an adaptive controller for torque ripple minimization in PM syn-chronous motors,” IEEE Transactions on Power Electronics, vol. 15, pp. 871–880, Sep. 2000.

[41] W. Qian, S. K. Panda, and J.-X. Xu, “Torque ripple minimization in PMsynchronous motors using iterative learning control,” IEEE Transactions onPower Electronics, vol. 19, pp. 272–279, Mar. 2004.

Appendix I

To include a more complete sys-tem description for the reader, de-tails of the prototype electric ma-chine and corresponding prototypeSPB-type converter are included. Theprototype electric machine has beenmanufactured by Bevi AB. The pro-totype SPB-type converter has been manufactured by Eskilstuna ElektronikpartnerAB by specifications from the author of this thesis.

57

58

A-A

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

AA

BB

CC

DD

EE

FF

PM-M

otor

911-

1-07

9-0

KTH

LEÅN

Oska

r Wal

mar

k2015

-12-

1020

15-1

1-04

0

Rita

d.Ko

ntr.

Godk

änd

1 / 2

Ut

gåva

Blad

Datu

m

Blomsterm

åla

+46 499-27100

R

Sweden

Datu

m

A2Form

atSk

ala 1

: 2

Stat

usRe

leas

ed

A

A

Styc

k Li

sta

Besk

rivni

ngM

ater

ial /

Typ

Benä

mni

ng.

Anta

l.De

t.nr

TS 2

225N

1114

E102

NO.

Y272

65Ta

mag

awa

Sing

slyn

Reso

lver

S21

11

Br

ass,

Sof

t Yel

low

Slan

gnip

pel_

G1_4

tum

-22

2O-

Ring

Rubb

erDI

N 37

71 -

85 x

3,5

5 - N

- NB

R 70

13

Co

pper

Kabe

lsko

KRD_

16-8

364

Ac

etal

Res

in,

Whi

teBe

rörin

gssk

ydd

25

Cylin

der H

ead

Cap

Scre

wSt

eel,

Mild

DIN

912

- M4

x 40

126

M

12x1

,5ca

ble-

glan

d-15

1_15

07-b

oxco

27

C4

5EAx

el-p

mrs

m-2

18

Deep

gro

ove

ball

bear

ings

sin

gle

row

with

two

RZ

shie

lds

SKF

Stee

l, M

ildSK

F 62

09-2

RZTN

9/HC

5C3W

T2

9

Br

ass,

Sof

t Yel

low

Gäng

stån

g M

8-ND

E flä

ns12

10

Copp

erKa

belsk

o KR

F 16

-8-9

0gr

1211

285

42

110

120 Ø

4

248 Ø

320

30

8346

Reso

lver

kab

el Utgå

ng fö

r tem

p.gi

vare

8

10

2

64

11

5

7

9

31

Yd=

10m

m id

=6,

7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

AA

BB

CC

DD

EE

FF

PM-M

otor

911-

1-07

9-0

KTH

LEÅN

Oska

r Wal

mar

k2015

-12-

1020

15-1

1-04

0

Rita

d.Ko

ntr.

Godk

änd

2 / 2

Ut

gåva

Blad

Datu

m

Blomsterm

åla

+46 499-27100

R

Sweden

Datu

m

A2Form

atSk

ala 1

: 2

Stat

usRe

leas

ed

176

83

152,

5

59,5

1 1

2 2

3 3

4 4

5 5

6 6

AA

BB

CC

DD

Roto

r pl

ate

911-

1-07

9-2

KTH

LELE

2015

-10-

1220

15-1

0-02

0

Rita

d.Ko

ntr.

God

känd

1 /

1 U

tgåv

aBl

ad

Dat

um

Blomsterm

åla

+46 499-27100

R

Sweden

Dat

um

A3Form

atSk

ala 1

: 1

Stat

usRe

leas

ed

0,35

10-0

,08

0,00

+

1,53

2,76

15,2

8

5,06

0,73

3,19

145°

54,1

6

18,8

5

21,0

7

7,51

R0,1

in a

ll co

rner

s

54

0,04

X T

oler

ance

if n

ot in

dica

ted,

aco

rdin

g to

S

S-IS

O 2

768-

1 F

ine

Med

ium

Rou

gh

Mat

eria

l M25

0-35

A41

0 pc

s.

13

9,1

(Mac

hine

d to

Ø13

8,5)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

AA

BB

CC

DD

EE

FF

Stat

or p

late

12

slot

s (L

aser

cut

)

911-

1-07

9-1

KTH

LELE

2015

-10-

1220

15-1

0-02

0

Rita

d.Ko

ntr.

God

känd

1 /

1 U

tgåv

aBl

ad

Dat

um

Blomsterm

åla

+46 499-27100

R

Sweden

Dat

um

A2Form

atSk

ala 1

: 1

Stat

usRe

leas

ed

0,35

R3

R131

,2

20,3

3,65

20,3

23,6

R70

2

Mat

eria

l M25

0-35

A41

0 pc

s.

X T

oler

ance

if n

ot in

dica

ted,

aco

rdin

g to

S

S-IS

O 2

768-

1 F

ine

Med

ium

Roug

h

187,2

21

1,5

(Mac

hine

d to

Ø21

1)

63

64

PAA01

COA

PAB01

COB

PAC01

COC

PAC102

PAC101

COC1

PAC202

PAC201

COC2

PAC302

PAC3

01

COC3

PAC402

PAC401

COC4 PAC502

PAC501 COC5

PAC802

PAC801

COC8

PAC10002 PAC10

001 COC1

00 PAC10102

PAC10

101 COC10

1

PAC10202 PAC1

0201

COC102 PAC1

0302

PAC10301

COC10

3 PAC10402

PAC10401 COC1

04 PAC10501

PAC1

0502

COC105

PAC10601 PAC10

602 COC

106 PAC10

702 PAC10

701 COC107 PAC108

02 PAC108

01 COC108

PAC10902

PAC10901

COC109

PAC11001

PAC11

002 COC110

PAC11102

PAC11101 COC111

PAC11202

PAC11201 COC1

12

PAC11501

PAC11502

COC11

5 PAC11

601 PAC11602

COC116

PAC11702

PAC11701 COC

117 PAC11

802 PAC11

801 COC118

PAC11902

PAC11901 COC11

9

PAC12001

PAC1

2002

COC120

PAC20002

PAC20001

COC200 PAC2

0102

PAC201

01 COC201

PAC202

02

PAC202

01 COC202 PAC20302

PAC20301

COC2

03

PAC204

01

PAC204

02 COC204

PAC20501 PA

C20502 CO

C205

PAC20602 PAC2060

1 COC206

PAC20702

PAC20701 CO

C207

PAC20802

PAC20801

COC208

PAC20901

PAC209

02 COC209

PAC210

01

PAC210

02 COC210

PAC21101 PAC2110

2 CO

C211

PAC21202

PAC21201 COC2

12 PAC213

02 PAC213

01 COC21

3

PAC21402

PAC21401

COC214

PAC215

01

PAC215

02 COC215 PAC2

1602

PAC21601

COC216

PAC21702

PAC21701

COC217

PAC21802

PAC21801

COC218

PAC30002

PAC30001

COC300 PAC3

0102

PAC30101

COC3

01

PAC30202

PAC30201

COC30

2 PAC30

302 PAC30

301 COC303

PAC30401 PAC30402

COC304

PAC30501 PAC305

02 COC

305

PAC30602

PAC30601 COC306 PAC30

702 PAC30

701 COC307

PAC30802 PAC30

801 COC308

PAC30901

PAC30902

COC30

9

PAC31001

PAC3

1002

COC310

PAC31101 PAC31

102 COC

311

PAC31202

PAC31201 COC3

12

PAC31302

PAC31301 COC3

13

PAC31402 PAC3

1401

COC314

PAC31501

PAC31502 COC315

PAC31602

PAC31601

COC316

PAC31702

PAC31701 COC3

17

PAC31802

PAC31801 COC3

18

PAD101

PAD102 COD1

PAD201

PAD202 COD2

PAD10001

PAD10002

COD100

PAD10101

PAD10102

COD101

PAD10202 PAD10

201 COD1

02

PAD10502 PAD10

501 COD10

5

PAD20001

PAD20002 COD200

PAD20101

PAD20102 COD201

PAD20202

PAD20201 COD202

PAD20302

PAD20301 COD203

PAD30001 PAD30

002 COD300

PAD30101

PAD30102 COD30

1

PAD30202

PAD30201 COD30

2

PAD30302

PAD30301 COD30

3

PADC0IN010

PADC0IN09

PADC0IN08

PADC0IN07

PADC0IN06

PADC0IN05 PADC0

IN04 PADC0IN03 PADC0

IN02 PADC0IN01

CODC

0IN

PADC0OUT010 PADC0O

UT09 PADC0OUT08 PADC0

OUT07 PADC0O

UT06

PADC0OUT05

PADC0OUT04

PADC0OUT03

PADC0OUT02

PADC0OUT01 CODC0OUT

PAFM1A01

COFM1A

PAFM1B01

COFM1B

PAFM1C01

COFM1C

PAFM2A01

COFM2A

PAFM2B01

COFM2B

PAFM2C01

COFM2C

PAR100

02 PAR10001

COR100 PAR10101

PAR10

102 COR1

01

PAR10201

PAR10202

COR102

PAR10301 PAR1

0302

COR103

PAR104

01 PAR10402

COR104

PAR10501 PAR105

02 COR105

PAR1

0601

PAR10602

COR106

PAR10701 PAR10

702 COR10

7

PAR10902

PAR10

901 COR10

9 PAR11001 PAR1

1002

COR110

PAR11301

PAR1

1302

COR113

PAR114

01 PAR11402

COR114

PAR115

01 PAR11502

COR115

PAR11601

PAR11602 COR11

6 PAR2

0002

PAR20001

COR200 PAR20101

PAR20102

COR201

PAR20201

PAR20202

COR202 PAR20

301

PAR20302

COR203

PAR204

01

PAR204

02 COR204 PAR

20501

PAR205

02 COR205 PAR

20601

PAR206

02 COR206

PAR20701

PAR20702

COR207

PAR20902

PAR20901

COR209 PAR21001

PAR21002

COR210 PAR

21301

PAR213

02 COR213 PAR

21401

PAR214

02 COR214 PAR2

1501

PAR21502

COR215

PAR21601

PAR21602

COR216

PAR30002

PAR30

001 COR300

PAR301

01

PAR30102

COR30

1

PAR30201 PAR30202

COR3

02 PAR30

301 PAR30

302 COR30

3

PAR30401

PAR30402

COR3

04 PAR3

0501

PAR30502

COR305

PAR30601

PAR30602

COR30

6

PAR30701

PAR30702

COR307

PAR30902

PAR30901

COR309

PAR3

1001

PAR31002 COR31

0

PAR31301

PAR3

1302

COR313

PAR31401

PAR31402

COR31

4

PAR31501

PAR31502

COR31

5

PAR31601 PAR31

602 COR3

16

PASNUB R10

1 COSNUB R1

PASNUB R20

1 COSNUB R2

PASNUB S10

1 COSNUB S1

PASNUB S20

1 COSNUB S2

PASNUB T101 COSNUB

T1

PASNUB T201

COSNUB T2

PAT10004

PAT10007

PAT1

0006

PAT10005

PAT10

003 PAT1

0002

PAT10001

CO

T100

PAT10104 PAT10107 PAT10106 PAT10105

PAT10103 PAT10102 PAT10101 COT101 PAT10204

PAT10207

PAT1

0206

PAT10205

PAT1

0203

PAT10202

PAT10

201 CO

T102

PAT10304

PAT10307

PAT1

0306

PAT10305

PAT10303

PAT1

0302

PAT10301

COT1

03

PAT20004

PAT20007

PAT20006

PAT20005

PAT20003

PAT20002

PAT20001

COT2

00

PAT20104

PAT20107 PAT20106 PAT20105 PAT20103 PAT20102 PAT20101 COT201

PAT20204

PAT20207

PAT20206

PAT20205

PAT20203

PAT20202

PAT20201

COT2

02

PAT20304 PAT20307 PAT20306 PAT20305

PAT20303 PAT20302 PAT20301 COT2

03

PAT30004

PAT30007

PAT3

0006

PAT30005

PAT3

0003

PAT30002 PAT30001

COT3

00

PAT30104 PAT30

107 PAT3

0106

PAT30105

PAT3

0103

PAT30102

PAT30101

COT3

01

PAT30204

PAT30207

PAT30206

PAT30205

PAT30203

PAT30202

PAT30201

COT3

02

PAT30304

PAT30307

PAT3

0306

PAT30305

PAT3

0303

PAT30302 PAT30301

COT303

PATP10001 COTP100

PATP10101 COTP101

PATP10201

COTP102

PATP10301

COTP103

PATP10401 COTP104

PATP10501

COTP105

PATP20001 COTP200

PATP20101

COTP201

PATP20201 COTP202

PATP20301 COTP203

PATP20401 COTP204

PATP20501

COTP205

PATP30001 COTP300

PATP30101 COTP301

PATP30201

COTP302

PATP30301 COTP303

PATP30401

COTP304

PATP30501

COTP305 PATR101

PATR102

PATR103

PATR106 PATR105

PATR104

COTR

1

PATR10001

PATR10002

PATR10003

PATR10006

PATR10005

PATR10004

COTR10

0

PATR20001

PATR20002

PATR20003

PATR20006 PATR20005

PATR20004 COTR200

PATR30001

PATR30002

PATR30003 PATR300

06 PATR300

05 PATR300

04

COTR30

0

PAU106 PAU105

PAU104 PAU103

PAU102

PAU101 COU

1

PAU10006 PAU10

005 PAU10004 PAU10

003 PAU100

02 PAU100

01

COU100

PAU101016

PAU101015

PAU101014

PAU101013

PAU101012

PAU101011

PAU101010

PAU10109

PAU10108 PAU1010

7 PAU10106 PAU1010

5 PAU10104 PAU1010

3 PAU10102 PAU101

01

COU101

PAU103016

PAU103015

PAU103014

PAU103013

PAU103012

PAU103011

PAU103010

PAU10309

PAU10308 PAU103

07 PAU10306 PAU103

05 PAU10304 PAU10303

PAU10302 PAU10301

COU103

PAU20006 PAU20005

PAU20004 PAU20003

PAU20002

PAU20001

COU2

00

PAU201016 PAU201015 PAU201014

PAU201013 PAU201012

PAU201011 PAU201010 PAU20109 PAU20108

PAU20107 PAU20106

PAU20105 PAU20104

PAU20103 PAU20102

PAU20101

COU201

PAU202016 PAU202015

PAU202014 PAU202013

PAU202012 PAU202011 PAU202010

PAU20209 PAU20208 PAU20207

PAU20206 PAU20205

PAU20204 PAU20203

PAU20202 PAU20201

COU202

PAU30006 PAU30

005 PAU30004

PAU30003

PAU30002

PAU30001 COU

300

PAU301016

PAU301015

PAU301014

PAU301013

PAU301012

PAU301011

PAU301010

PAU30109

PAU30108 PAU301

07 PAU30106 PAU30105

PAU30104 PAU30103

PAU30102 PAU30101

COU

301

PAU302016

PAU302015

PAU302014

PAU302013

PAU302012

PAU302011

PAU302010

PAU30209

PAU30208 PAU302

07 PAU30206 PAU302

05 PAU30204 PAU3020

3 PAU30202 PAU3020

1 COU

302

PAX100011

PAX100012

PAX10001

PAX10002

PAX100010 PAX100

09 PAX100

08 PAX10007

PAX10006 PAX100

05 PAX100

04 PAX10003

COX100

PAX200011 PAX200012

PAX20001 PAX20002 PAX200010 PAX20009

PAX20008 PAX20007 PAX20006 PAX20005 PAX20004 PAX20003

COX200

PAX300011 PAX300012

PAX30001 PAX30002

PAX300010

PAX30009 PAX300

08 PAX300

07 PAX30006

PAX30005 PAX30

004

PAX30003

COX3

00

PAC10901

PAC11101

PAC11201 PAC11

901

PAR10202

PAR10302

PAU10107

PAU10307

PAX10003

PAC20801

PAC21401

PAC21701

PAC21801

PAR20202

PAR20302

PAU20107 PAU20207

PAX20003

PAC30801

PAC31401

PAC31701

PAC31801

PAR30202

PAR30

302

PAU30107

PAU30207

PAX30003

PAC10001 PAC10

101 PATR10

002 PAU100

02

PAU10005

PAX10001

PAC201

PAC3

01

PAC20001

PAC201

01

PATR102

PATR20002

PAU102 PAU105

PAU20002 PAU20005

PAX20001

PAC30001 PAC3

0101 PATR300

02 PAU30002 PAU30

005 PAX300

01

PAC401

PAC501

PAC801

PAC11501

PAC11601 PAC11701 PAC11

801

PAC210

01

PAC21101 PAC21201

PAC21301

PAC31001

PAC31101

PAC31201

PAC31301

PAD101

PAD201

PAR10902

PAR20902

PAR30902

PAU103013

PAU202013

PAU302013

PAC10201

PAC10301

PAC10401 PAC1

0501

PAC10601 PAC10701 PAC108

01 PAD10

001

PAD10101

PAR100

02

PAU101013

PAC202

01

PAC20301

PAC204

01

PAC20501

PAC20601

PAC20701

PAC21601

PAD20

001 PAD20

101

PAR20002

PAU201013

PAC30201

PAC30

301

PAC30401

PAC30501

PAC30601 PAC30

701

PAC31601

PAD30001

PAD30101

PAR30002

PAU301013

PAR10702

PAU10102

PAX10005

PAR11602

PAU10302

PAX100011

PAR10301

PAU10105

PAU10305

PAX10008

PAU10106

PAU10306

PAX10009

PAR10201

PAU10104

PAU10304

PAX10007

PAR20702 PAU20102

PAX20005

PAR21602

PAU20202

PAX200011 PAR20

301

PAU20105 PAU20205

PAX20008

PAU20106 PAU20206

PAX20009

PAR20201 PAU20104

PAU20204

PAX20007

PAR30702

PAU30102

PAX30005

PAR31602

PAU30202

PAX300011

PAR30301

PAU30105

PAU30205

PAX30008

PAU30106

PAU30206

PAX30009

PAR30201

PAU30104

PAU30204

PAX30007

PAC101

PAD10201

PAD20201

PAD30201

PADC0IN01

PADC0IN02

PADC0IN03

PADC0IN04

PADC0IN05

PADC0IN06 PADC0

IN07 PADC0IN08 PADC0

IN09 PADC0IN010

PAT10004 PAT10

104 PAT20

004 PAT2

0104

PAT30004

PAT30104

PAC102

PAC402

PAC502

PAC802

PAC11502

PAC11602 PAC11

702 PAC11802

PAC12002

PAC210

02

PAC21102 PAC2120

2 PAC213

02

PAC215

02

PAC31002

PAC31102

PAC31202

PAC31302

PAC31502

PADC0OUT01 PADC0O

UT02 PADC0OUT03 PADC0O

UT04 PADC0OUT05

PADC0OUT06

PADC0OUT07

PADC0O

UT08 PADC0O

UT09 PADC0O

UT010

PASNUB R20

1

PASNUB S20

1

PASNUB T201

PAT10202

PAT1

0203

PAT10205

PAT1

0206

PAT10207

PAT10302

PAT1

0303

PAT10305 PAT10306

PAT1

0307

PAT20202

PAT20203

PAT20205

PAT20206

PAT20207

PAT20302 PAT20303 PAT20305 PAT20306

PAT20307 PAT30

202 PAT30203 PAT30

205 PAT30206 PAT30

207 PAT30

302 PAT3

0303

PAT30305

PAT3

0306

PAT30307

PATP10301

PATP10501

PATP20301

PATP20501

PATP30301

PATP30501

PATR105

PAU10309 PAU103

011 PAU1030

16

PAU20209 PAU202011

PAU202016

PAU30209

PAU302011

PAU302016

PAC202

PAC302

PAC10002 PAC1

0102

PAC10902 PAC11102

PAC11202

PAC11902

PAC20002

PAC20102

PAC20802

PAC21402

PAC21702

PAC21802

PAC30002 PAC3

0102

PAC30802

PAC31402

PAC31702

PAC31802

PAR10701

PAR11601

PAR20701

PAR21601

PAR30701

PAR31601

PAU104 PAU106

PAU10004

PAU10006

PAU10101

PAU10103

PAU10108

PAU10301

PAU10303

PAU10308

PAU20004 PAU20006

PAU20101 PAU20103

PAU20108 PAU20201

PAU20203 PAU20208

PAU30004

PAU30006

PAU30101

PAU30103

PAU30108

PAU30201

PAU30203

PAU30208

PAX10002

PAX10004

PAX10006

PAX100010

PAX100012

PAX20002 PAX20004

PAX20006 PAX200010

PAX200012

PAX30002

PAX30004

PAX30006

PAX300010

PAX300012

PAA01

PAC10202 PAC1

0302 PAC10

402

PAC10502

PAC10

602 PAC10702 PAC108

02 PAC11

002

PAD10501

PASNUB R10

1

PAT10002

PAT10

003 PAT10005

PAT1

0006

PAT10007

PAT10102 PAT10103 PAT10105 PAT10106 PA

T10107

PAT10204

PAT10304

PATP10201

PATP10401

PATR10005

PAU10109

PAU101011

PAU101016

PAB01

PAC202

02

PAC20302

PAC204

02

PAC20502 PAC20602 PAC20702

PAC209

02

PAC21602

PAD20301

PASNUB S10

1

PAT20002

PAT20003

PAT20005

PAT20006

PAT20007

PAT20102 PAT20103 PAT20105 PAT20106

PAT20107 PAT20

204 PAT20

304

PATP20201

PATP20401

PATR20005 PAU20109

PAU201011 PAU201016

PAC30202

PAC30302

PAC30402

PAC30502

PAC30602 PAC30

702

PAC30902

PAC31602

PAC01

PAD30301

PASNUB T101 PAT30

002 PAT3

0003

PAT30005

PAT3

0006

PAT30007

PAT30102 PAT30103

PAT3

0105

PAT30106

PAT3

0107

PAT30204

PAT30304

PATP30201

PATP30401

PATR30005

PAU30109 PAU301011

PAU301016

PAC11001

PAR10

001 PAR10101

PAU101010

PAC12001

PAR10

901 PAR11001 PAU10301

0

PAC20901

PAR2

0001

PAR20101

PAU201010

PAC215

01 PAR2

0901

PAR21001

PAU202010

PAC30901

PAR30001

PAR301

01

PAU301010

PAC31501

PAR30901

PAR3

1001

PAU302010

PAD102

PATR106 PAD2

02 PATR104

PAD10002

PATR10006

PAD10102 PATR10004

PAD10202

PAR10102

PAD10502

PAR11002

PAD20002

PATR20006 PAD20

102 PATR20004

PAD20202

PAR20102

PAD20302

PAR21002

PAD30002 PATR300

06 PAD30

102 PATR30004

PAD30202 PAR30102

PAD30302 PAR31

002 PAR

10401

PAU101015

PAR10402

PAR105

02

PAR10602

PAT10001

PAT10101

PATP10001

PAR10501

PAU101014

PAR10601

PAU101012

PAR11301

PAU103015

PAR11302

PAR11

402

PAR11502

PAT10201

PAT10301

PATP10101

PAR114

01

PAU103014

PAR115

01 PAU103012

PAR204

01

PAU201015

PAR204

02 PAR

20502

PAR206

02

PAT20001

PAT20101

PATP20001

PAR205

01

PAU201014

PAR206

01

PAU201012

PAR213

01

PAU202015

PAR213

02 PAR

21402

PAR21502

PAT20201 PAT20301

PATP20101

PAR214

01

PAU202014

PAR21501

PAU202012

PAR30401

PAU301015

PAR30402

PAR3

0502

PAR30602

PAT30001

PAT3

0101

PATP30001

PAR30501

PAU301014

PAR30601

PAU301012

PAR31301

PAU302015

PAR31302

PAR3

1402

PAR31502

PAT30201 PAT3

0301

PATP30101

PAR31401

PAU302014

PAR31501

PAU302012

PATR101

PAU103

PATR103

PAU101

PATR10001

PAU10003

PATR10003 PAU100

01

PATR20001

PAU20003

PATR20003

PAU20001

PATR30001

PAU30003

PATR30003

PAU30001

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f1

4

Rita

d av

Dat

um

Mat

eria

l

God

känd

enl

. kon

st. g

rans

knin

g

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

Urb

and

4901

-014

5A

2016

-09-

2320

16-1

1-11

4301

-054

7A

Sch

emat

icSP

B Po

wer

boar

dK

TH

Dok

umen

tnam

n

4301

-054

7A.S

chD

oc

129

U_1

_Pha

se A

U_2

_Pha

se B

U_3

_Pha

se C

D1

1

Vcc2

D2

3

GND 4

EN

5

CLK

6

U1

SN65

05B

1 2 3456

7503

4287

960

mA

TR1

MB

R05

40T1

G40

V0,

5A

D1

10u

10V

C3

MB

R05

40T1

G40

V0,

5A

D2

100n

50V

C2

GN

D

DC

-OU

T

GN

D

GN

D

+5V

_B

+17V

_2

GN

D

DC

-IN

DC

-OU

T100u

F16

0VD

c

C1

1D

C-IN

2D

C-IN

3D

C-IN

4D

C-IN

5D

C-IN

6D

C-IN

7D

C-IN

8D

C-IN

9D

C-IN

10D

C-IN

1D

C-O

UT

2D

C-O

UT

3D

C-O

UT

4D

C-O

UT

5D

C-O

UT

6D

C-O

UT

7D

C-O

UT

8D

C-O

UT

9D

C-O

UT

10D

C-O

UT

4u7

50V

C4

4u7

50V

C8

100n

100V

C5

PIC101 PIC102

COC1

PIC201 PIC202

COC2

PIC301 PIC302

COC3

PIC401 PIC402

COC4

PIC501 PIC502

COC5

PIC801 PIC802

COC8

PID1

01

PID1

02 COD1 PI

D201

PI

D202

COD2

PIDC0IN01

CODC0INA

PIDC0IN02

CODC0INB

PIDC0IN03

CODC0INC

PIDC0IN04

CODC0IND

PIDC0IN05

CODC0INE

PIDC0IN06

CODC0INF

PIDC0IN07

CODC0ING

PIDC0IN08

CODC0INH

PIDC0IN09

CODC0INI

PIDC0IN010

CODC0INJ

PIDC0OUT01

CODC0OUTA

PIDC0OUT02

CODC0OUTB

PIDC0OUT03

CODC0OUTC

PIDC0OUT04

CODC0OUTD

PIDC0OUT05

CODC0OUTE

PIDC0OUT06

CODC0OUTF

PIDC0OUT07

CODC0OUTG

PIDC0OUT08

CODC0OUTH

PIDC0OUT09

CODC0OUTI

PIDC0OUT010

CODC0OUTJ

PITR101

PITR102

PITR103

PITR104

PITR105

PITR106

COTR1

PIU101

PIU102 PIU103

PIU104

PIU105

PIU106

COU1

PIC201 PIC301

PITR102

PIU102

PIU105

PIC401

PIC501

PIC801

PID1

01

PID2

01

PIC101

PIDC0IN01

PIDC0IN02

PIDC0IN03

PIDC0IN04

PIDC0IN05

PIDC0IN06

PIDC0IN07

PIDC0IN08

PIDC0IN09

PIDC0IN010

PIC102

PIC402 PIC502

PIC802

PIDC0OUT01

PIDC0OUT02

PIDC0OUT03

PIDC0OUT04

PIDC0OUT05

PIDC0OUT06

PIDC0OUT07

PIDC0OUT08

PIDC0OUT09

PIDC0OUT010

PITR105

PIC202 PIC302

PIU104

PIU106

PID1

02

PITR106

PID2

02

PITR104

PITR101

PIU103

PITR103

PIU101

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f2

4

Rita

d av

Dat

um

Mat

eria

l

God

känd

enl

. kon

st. g

rans

knin

g

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

Urb

and

4901

-014

5A

2016

-09-

2320

16-1

1-11

4301

-054

7A

Sch

emat

icSP

B Po

wer

boar

dK

TH

Dok

umen

tnam

n

1_Ph

ase

A.Sc

hDoc

148

A

D1

1

Vcc2

D2

3

GND 4

EN

5

CLK

6

U10

0

SN65

05B

1 2 3456

7503

4287

960

mA

TR10

0

MB

R05

40T1

G40

V0,

5A

D10

0

10u

10V

C10

1

MB

R05

40T1

G40

V0,

5A

D10

1

100n

50V

C10

0

GN

D

GN

D_R

GN

D

GN

D

+5V

_A

+17V

_R

0R1%

R10

4

ES1J

600V

1A

D10

2

1k1%

R10

1

220p

50V

C11

0

GN

D_R

R10

0

+17V

_R

100n

100V

C10

5

GN

D_R

100n

100V

C10

6

GN

D_R

GN

D_R

4u7

50V

C10

7

GN

D_R

+17V

_R

Vss1 1

Vi+

2

Vi-

3

RE

AD

Y4

FAU

LT5

RE

SE

T6

Vdd17 Vss1 8

Vss2 9DE

SA

T10

GND2 11

Vou

t Off

12

Vdd213

Vou

t On

14

Gat

e S

ense

15

Vss2 16

Isolated

U10

1

AD

UM

4135

4u7

50V

C10

8

GN

D_R

0R1%

R11

3

ES1J

600V

1A

D10

5

1k1%

R11

0

220p

50V

C12

0

DC

-OU

TR10

9

+17V

_2

100n

100V

C11

5

DC

-OU

T10

0n10

0V

C11

6

DC

-OU

T

4u7

50V

C11

7

DC

-OU

T

+17V

_2Vss1 1

Vi+

2

Vi-

3

RE

AD

Y4

FAU

LT5

RE

SE

T6

Vdd17 Vss1 8

Vss2 9DE

SA

T10

GND2 11

Vou

t Off

12

Vdd213

Vou

t On

14

Gat

e S

ense

15

Vss2 16

Isolated

U10

3

AD

UM

4135

4u7

50V

C11

8

DC

-OU

T

DC

-IN

DC

-OU

T

GN

D

10k

1%R10

7

GN

D

100n

50V

C10

9

GN

D

10k

1%R10

310

k1%R

102

+3.3

V_A

+3.3

V_A

10k

1%R11

6

GN

D

100n

50V

C11

9

GN

D

+3.3

V_A

GN

D

GN

DD

C-O

UT

+5V

_A

GN

D

GN

D_R

4R7

1%

R10

5

4R7

1%

R10

6

4R7

1%

R11

4

4R7

1%

R11

5

4u7

50V

C10

24u

750

V

C10

310

0n10

0V

C10

4

GN

D

GN

D

+3.3

V_A

A_H

IGH

A_L

OW

A_R

EAD

Y

A_n

FAU

LT

A_n

RES

ET

1

1330-0060Micro-Match 12p 8-188275-2

X10

0

2X

100

3X

100

4X

100

5X

100

6X

100

7X

100

8X

100

9X

100

10X

100

11X

100

12X

100

10u

10V

C11

2

GN

D

GN

D

+3.3

V_A

10u

10V

C11

1

SNU

B R

1

SNU

B R

2

Testög

la S

MD

501

9

TP10

0

Testög

la S

MD

501

9

TP10

1

Testög

la S

MD

501

9

TP10

2

Testög

la S

MD

501

9

TP10

3

Testög

la S

MD

501

9TP

104

Testög

la S

MD

501

9TP

105

5

1

4

23

67IP

B06

5N15

N3

G

T100

5

1

4

23

67IP

B06

5N15

N3

G

T101

5

1

4

23

67IP

B06

5N15

N3

G

T102

5

1

4

23

67IP

B06

5N15

N3

G

T103

PIA01 COA

PIC10001 PIC10002

COC100

PIC10101 PIC10102

COC101

PIC10201 PIC10202

COC102

PIC10301 PIC10302

COC103

PIC10401 PIC10402

COC104

PIC10501 PIC10502

COC105

PIC10601 PIC10602

COC106

PIC10701 PIC10702

COC107

PIC10801 PIC10802

COC108

PIC10901 PIC10902

COC109

PIC11001

PIC11002

COC110

PIC11101 PIC11102

COC111

PIC11201 PIC11202

COC112

PIC11501 PIC11502

COC115

PIC11601 PIC11602

COC116

PIC11701 PIC11702

COC117

PIC11801 PIC11802

COC118

PIC11901 PIC11902

COC119

PIC12001 PIC12002

COC120

PID1

0001

PI

D100

02

COD100

PID1

0101

PI

D101

02 COD101

PID1

0201

PI

D102

02

COD102

PID1

0501

PI

D105

02

COD105

PIR10001

PIR10002

COR100

PIR101

01 PIR

10102

COR101

PIR10201

PIR10202

COR102

PIR10301

PIR10302

COR103

PIR104

01 PIR

10402

COR104

PIR105

01 PIR

10502

COR105

PIR106

01 PIR

10602

COR106

PIR10701

PIR10702

COR107

PIR10901

PIR10902

COR109

PIR110

01 PIR

11002

COR110

PIR113

01 PIR

11302

COR113

PIR114

01 PIR

11402

COR114

PIR115

01 PIR

11502

COR115

PIR11601

PIR11602

COR116

PISNUB R101 COSNUB R1

PISNUB R201 COSNUB R2

PIT1

0001

PIT10002 PIT10003 PIT10004 PIT10005 PIT10

006 PIT10007 COT100

PIT1

0101

PIT10102 PIT10103 PIT10104 PIT10105 PIT10

106 PIT10107 COT101

PIT1

0201

PIT10202 PIT10203 PIT10204 PIT10205 PIT10

206 PIT10207 COT102

PIT1

0301

PIT10302 PIT10303 PIT10304 PIT10305 PIT10

306 PIT10307 COT103

PITP10001

COTP

100

PITP10101 COTP

101

PITP1020

1 COTP

102

PITP1030

1 COTP

103

PITP10401 COTP

104

PITP10501 COTP

105

PITR10001

PITR10002

PITR10003

PITR10004

PITR10005

PITR10006

COTR

100

PIU1

0001

PIU10002 PI

U100

03

PIU10004

PIU1

0005

PIU1

0006

COU100

PIU10101

PIU1

0102

PIU1

0103

PIU1

0104

PIU1

0105

PIU1

0106

PIU10107 PIU10108 PIU10109

PIU101010

PIU101011

PIU101012

PIU101013

PIU101014

PIU101015

PIU101016

COU101 PIU10301

PIU1

0302

PIU1

0303

PIU1

0304

PIU1

0305

PIU1

0306

PIU10307 PIU10308 PIU10309

PIU103010

PIU103011

PIU103012

PIU103013

PIU103014

PIU103015

PIU103016

COU103

PIX1

0001

COX1

00A

PIX1

0002

COX1

00B

PIX1

0003

COX1

00C

PIX1

0004

COX1

00D

PIX1

0005

COX1

00E

PIX1

0006

COX1

00F

PIX1

0007

COX1

00G

PIX1

0008

COX1

00H

PIX1

0009

COX1

00I

PIX100010

COX1

00J

PIX100011

COX1

00K

PIX100012

COX1

00L

PIC10901

PIC11101 PIC11201

PIC11901

PIR10202

PIR10302

PIU10107 PIU10307

PIX1

0003

PIC10001 PIC10101

PITR10002

PIU10002

PIU1

0005

PIX1

0001

PIC11501

PIC11601 PIC11701

PIC11801

PIR10902

PIU103013

PIC10201 PIC10301

PIC10401

PIC10501

PIC10601 PIC10701

PIC10801

PID1

0001

PID1

0101

PIR10002

PIU101013

PIR10702

PIU1

0102

PIX1

0005

NL

A0HI

GH

PIR11602

PIU1

0302

PIX100011

NLA0

LOW

PIR10301

PIU1

0105

PIU1

0305

PIX1

0008

NL

A0nF

AULT

PIU1

0106

PIU1

0306

PIX1

0009

NL

A0nR

ESET

PIR10201

PIU1

0104

PIU1

0304

PIX1

0007

NLA0READY

PID1

0201

PIT10004

PIT10104

PIC11502

PIC11602

PIC11702

PIC11802

PIC12002

PISNUB R201

PIT10202 PIT10203 PIT102

05 PIT10206 PIT10207

PIT10302 PIT10303 PIT103

05 PIT10306 PIT10307

PITP1030

1 PITP1050

1 PIU10309

PIU103011 PIU103016

PIC10002

PIC10102

PIC10902 PIC11102 PIC1120

2 PIC1190

2

PIR10701

PIR11601

PIU10004

PIU1

0006

PIU10101

PIU1

0103

PIU10108

PIU10301

PIU1

0303

PIU10308

PIX1

0002

PIX1

0004

PIX1

0006

PIX100010

PIX100012

PIA01

PIC10202 PIC10302

PIC10402

PIC10502

PIC10602 PIC10702

PIC10802

PIC11002

PID1

0501

PISNUB R101

PIT10002 PIT10003 PIT100

05 PIT10006 PIT10007

PIT10102 PIT10103 PIT101

05 PIT10106 PIT10107

PIT10204

PIT10304

PITP1020

1

PITP10401

PITR10005

PIU10109 PIU101011

PIU101016

PIC11001

PIR10001

PIR101

01

PIU101010

PIC12001 PIR10901

PIR110

01

PIU103010

PID1

0002

PITR10006

PID1

0102

PITR10004

PID1

0202

PIR

10102

PID1

0502

PIR

11002

PIR104

01 PIU101015

PIR104

02

PIR105

02

PIR106

02

PIT1

0001

PIT1

0101

PITP10001

PIR105

01 PIU101014

PIR106

01 PIU101012

PIR113

01 PIU103015

PIR113

02

PIR114

02

PIR115

02

PIT1

0201

PIT1

0301

PITP10101

PIR114

01 PIU103014

PIR115

01 PIU103012

PITR10001

PIU1

0003

PITR10003

PIU1

0001

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f3

4

Rita

d av

Dat

um

Mat

eria

l

God

känd

enl

. kon

st. g

rans

knin

g

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

Urb

and

4901

-014

5A

2016

-09-

2320

16-1

1-11

4301

-054

7A

Sch

emat

icSP

B Po

wer

boar

dK

TH

Dok

umen

tnam

n

2_Ph

ase

B.Sc

hDoc

148

B

D1

1

Vcc2

D2

3

GND 4

EN

5

CLK

6

U20

0

SN65

05B

1 2 3456

7503

4287

960

mA

TR20

0

MB

R05

40T1

G40

V0,

5A

D20

0

10u

10V

C20

1

MB

R05

40T1

G40

V0,

5A

D20

1

100n

50V

C20

0

GN

D

GN

D_S

GN

D

GN

D

+5V

_B

+17V

_S

0R1%

R20

4

ES1J

600V

1A

D20

2

1k1%

R20

1

220p

50V

C20

9

GN

D_S

R20

0

+17V

_S

100n

100V

C20

4

GN

D_S

100n

100V

C20

5

GN

D_S

GN

D_S

4u7

50V

C20

6

GN

D_S

+17V

_S

Vss1 1

Vi+

2

Vi-

3

RE

AD

Y4

FAU

LT5

RE

SE

T6

Vdd17 Vss1 8

Vss2 9DE

SA

T10

GND2 11

Vou

t Off

12

Vdd213

Vou

t On

14

Gat

e S

ense

15

Vss2 16

Isolated

U20

1

AD

UM

4135

4u7

50V

C20

7

GN

D_S

0R1%

R21

3

ES1J

600V

1A

D20

3

1k1%

R21

0

220p

50V

C21

5

DC

-OU

TR20

9

+17V

_2

100n

100V

C21

0

DC

-OU

T10

0n10

0V

C21

1

DC

-OU

T

4u7

50V

C21

2

DC

-OU

T

+17V

_2Vss1 1

Vi+

2

Vi-

3

RE

AD

Y4

FAU

LT5

RE

SE

T6

Vdd17 Vss1 8

Vss2 9DE

SA

T10

GND2 11

Vou

t Off

12

Vdd213

Vou

t On

14

Gat

e S

ense

15

Vss2 16

Isolated

U20

2

AD

UM

4135

4u7

50V

C21

3

DC

-OU

T

DC

-IN

DC

-OU

T

GN

D

10k

1%R20

7

100n

50V

C20

8

GN

D

10k

1%R20

310

k1%R

202

10k

1%R21

6

100n

50V

C21

4

GN

D

GN

D

GN

DD

C-O

UT

GN

D_S

4R7

1%

R20

5

4R7

1%

R20

6

4R7

1%

R21

4

4R7

1%

R21

5

4u7

50V

C20

24u

750

V

C21

610

0n10

0V

C20

3

GN

D

+3.3

V_B

+3.3

V_B

GN

D

+5V

_B

GN

D

GN

D

GN

D

+3.3

V_B

B_H

IGH

B_L

OW

B_R

EAD

Y

B_n

FAU

LT

B_n

RES

ET

1

1330-0060Micro-Match 12p 8-188275-2

X20

0

2X

200

3X

200

4X

200

5X

200

6X

200

7X

200

8X

200

9X

200

10X

200

11X

200

12X

200

GN

D

+3.3

V_B

10u

10V

C21

7

GN

D

+3.3

V_B

10u

10V

C21

8

SNU

B S

1

SNU

B S

2

Testög

la S

MD

501

9

TP20

0

Testög

la S

MD

501

9

TP20

1

Testög

la S

MD

501

9

TP20

2

Testög

la S

MD

501

9

TP20

3

Testög

la S

MD

501

9TP

204

Testög

la S

MD

501

9TP

205

5

1

4

23

67IP

B06

5N15

N3

G

T200

5

1

4

23

67IP

B06

5N15

N3

G

T201

5

1

4

23

67IP

B06

5N15

N3

G

T202

5

1

4

23

67IP

B06

5N15

N3

G

T203

PIB01 COB

PIC20001 PIC20002

COC200

PIC20101 PIC20102

COC201

PIC20201 PIC20202

COC202

PIC20301 PIC20302

COC203

PIC20401 PIC20402

COC204

PIC20501 PIC20502

COC205

PIC20601 PIC20602

COC206

PIC20701 PIC20702

COC207

PIC20801 PIC20802

COC208

PIC20901

PIC20902

COC209

PIC21001 PIC21002

COC210

PIC21101 PIC21102

COC211

PIC21201 PIC21202

COC212

PIC21301 PIC21302

COC213

PIC21401 PIC21402

COC214

PIC21501 PIC21502

COC215

PIC21601 PIC21602

COC216

PIC21701 PIC21702

COC217

PIC21801 PIC21802

COC218

PID2

0001

PI

D200

02

COD200

PID2

0101

PI

D201

02 COD201

PID2

0201

PI

D202

02

COD202

PID2

0301

PI

D203

02

COD203

PIR20001

PIR20002

COR200

PIR201

01 PIR

20102

COR201

PIR20201

PIR20202

COR202

PIR20301

PIR20302

COR203

PIR204

01 PIR

20402

COR204

PIR205

01 PIR

20502

COR205

PIR206

01 PIR

20602

COR206

PIR20701

PIR20702

COR207

PIR20901

PIR20902

COR209

PIR210

01 PIR

21002

COR210

PIR213

01 PIR

21302

COR213

PIR214

01 PIR

21402

COR214

PIR215

01 PIR

21502

COR215

PIR21601

PIR21602

COR216

PISNUB S101 COSNUB S1

PISNUB S201 COSNUB S2

PIT2

0001

PIT20002 PIT20003 PIT20004 PIT20005 PIT20

006 PIT20007 COT200

PIT2

0101

PIT20102 PIT20103 PIT20104 PIT20105 PIT20

106 PIT20107 COT201

PIT2

0201

PIT20202 PIT20203 PIT20204 PIT20205 PIT20

206 PIT20207 COT202

PIT2

0301

PIT20302 PIT20303 PIT20304 PIT20305 PIT20

306 PIT20307 COT203

PITP20001

COTP

200

PITP20101 COTP

201

PITP2020

1 COTP

202

PITP2030

1 COTP

203

PITP20401 COTP

204

PITP20501 COTP

205

PITR20001

PITR20002

PITR20003

PITR20004

PITR20005

PITR20006

COTR

200

PIU2

0001

PIU20002 PI

U200

03

PIU20004

PIU2

0005

PIU2

0006

COU200

PIU20101

PIU2

0102

PIU2

0103

PIU2

0104

PIU2

0105

PIU2

0106

PIU20107 PIU20108 PIU20109

PIU201010

PIU201011

PIU201012

PIU201013

PIU201014

PIU201015

PIU201016

COU201 PIU20201

PIU2

0202

PIU2

0203

PIU2

0204

PIU2

0205

PIU2

0206

PIU20207 PIU20208 PIU20209

PIU202010

PIU202011

PIU202012

PIU202013

PIU202014

PIU202015

PIU202016

COU202

PIX2

0001

COX2

00A

PIX2

0002

COX2

00B

PIX2

0003

COX2

00C

PIX2

0004

COX2

00D

PIX2

0005

COX2

00E

PIX2

0006

COX2

00F

PIX2

0007

COX2

00G

PIX2

0008

COX2

00H

PIX2

0009

COX2

00I

PIX200010

COX2

00J

PIX200011

COX2

00K

PIX200012

COX2

00L

PIC20801 PIC21401

PIC21701 PIC21801

PIR20202

PIR20302

PIU20107 PIU20207

PIX2

0003

PIC20001 PIC20101

PITR20002

PIU20002

PIU2

0005

PIX2

0001

PIC21001

PIC21101 PIC21201

PIC21301

PIR20902

PIU202013

PIC20201 PIC20301

PIC20401

PIC20501 PIC20601

PIC20701

PIC21601

PID2

0001

PID2

0101

PIR20002

PIU201013

PIR20702

PIU2

0102

PIX2

0005

NL

B0HI

GH

PIR21602

PIU2

0202

PIX200011

NLB0

LOW

PIR20301

PIU2

0105

PIU2

0205

PIX2

0008

NL

B0nF

AULT

PIU2

0106

PIU2

0206

PIX2

0009

NL

B0nR

ESET

PIR20201

PIU2

0104

PIU2

0204

PIX2

0007

NLB0READY

PID2

0201

PIT20004

PIT20104

PIC21002

PIC21102

PIC21202

PIC21302

PIC21502

PISNUB S201

PIT20202 PIT20203 PIT202

05 PIT20206 PIT20207

PIT20302 PIT20303 PIT203

05 PIT20306 PIT20307

PITP2030

1 PITP2050

1 PIU20209

PIU202011 PIU202016

PIC20002

PIC20102

PIC20802 PIC21402

PIC21702 PIC21802

PIR20701

PIR21601

PIU20004

PIU2

0006

PIU20101

PIU2

0103

PIU20108

PIU20201

PIU2

0203

PIU20208

PIX2

0002

PIX2

0004

PIX2

0006

PIX200010

PIX200012

PIB01

PIC20202 PIC20302

PIC20402

PIC20502 PIC20602

PIC20702

PIC20902

PIC21602

PID2

0301

PISNUB S101

PIT20002 PIT20003 PIT200

05 PIT20006 PIT20007

PIT20102 PIT20103 PIT201

05 PIT20106 PIT20107

PIT20204

PIT20304

PITP2020

1

PITP20401

PITR20005

PIU20109 PIU201011

PIU201016

PIC20901

PIR20001

PIR201

01

PIU201010

PIC21501 PIR20901

PIR210

01

PIU202010

PID2

0002

PITR20006

PID2

0102

PITR20004

PID2

0202

PIR

20102

PID2

0302

PIR

21002

PIR204

01 PIU201015

PIR204

02

PIR205

02

PIR206

02

PIT2

0001

PIT2

0101

PITP20001

PIR205

01 PIU201014

PIR206

01 PIU201012

PIR213

01 PIU202015

PIR213

02

PIR214

02

PIR215

02

PIT2

0201

PIT2

0301

PITP20101

PIR214

01 PIU202014

PIR215

01 PIU202012

PITR20001

PIU2

0003

PITR20003

PIU2

0001

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f4

4

Rita

d av

Dat

um

Mat

eria

l

God

känd

enl

. kon

st. g

rans

knin

g

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

Urb

and

4901

-014

5A

2016

-09-

2320

16-1

1-11

4301

-054

7A

Sch

emat

icSP

B Po

wer

boar

dK

TH

Dok

umen

tnam

n

3_Ph

ase

C.S

chD

oc

148

C

D1

1

Vcc2

D2

3

GND 4

EN

5

CLK

6

U30

0

SN65

05B

1 2 3456

7503

4287

960

mA

TR30

0

MB

R05

40T1

G40

V0,

5A

D30

0

10u

10V

C30

1

MB

R05

40T1

G40

V0,

5A

D30

1

100n

50V

C30

0

GN

D

GN

D_T

GN

D

GN

D

+5V

_C

+17V

_T

0R1%

R30

4

ES1J

600V

1A

D30

2

1k1%

R30

1

220p

50V

C30

9

GN

D_T

R30

0

+17V

_T

100n

100V

C30

4

GN

D_T

100n

100V

C30

5

GN

D_T

GN

D_T

4u7

50V

C30

6

GN

D_T

+17V

_T

Vss1 1

Vi+

2

Vi-

3

RE

AD

Y4

FAU

LT5

RE

SE

T6

Vdd17 Vss1 8

Vss2 9DE

SA

T10

GND2 11

Vou

t Off

12

Vdd213

Vou

t On

14

Gat

e S

ense

15

Vss2 16

Isolated

U30

1

AD

UM

4135

4u7

50V

C30

7

GN

D_T

0R1%

R31

3

ES1J

600V

1A

D30

3

1k1%

R31

0

220p

50V

C31

5

DC

-OU

TR30

9

+17V

_2

100n

100V

C31

0

DC

-OU

T10

0n10

0V

C31

1

DC

-OU

T

4u7

50V

C31

2

DC

-OU

T

+17V

_2Vss1 1

Vi+

2

Vi-

3

RE

AD

Y4

FAU

LT5

RE

SE

T6

Vdd17 Vss1 8

Vss2 9DE

SA

T10

GND2 11

Vou

t Off

12

Vdd213

Vou

t On

14

Gat

e S

ense

15

Vss2 16

Isolated

U30

2

AD

UM

4135

4u7

50V

C31

3

DC

-OU

T

DC

-IN

DC

-OU

T

GN

D

10k

1%R30

7

100n

50V

C30

8

GN

D

10k

1%R30

310

k1%R

302

10k

1%R31

6

100n

50V

C31

4

GN

D

GN

D

GN

DD

C-O

UT

GN

D_T

4R7

1%

R30

5

4R7

1%

R30

6

4R7

1%

R31

4

4R7

1%

R31

5

4u7

50V

C30

24u

750

V

C31

610

0n10

0V

C30

3

GN

D

+3.3

V_C

+3.3

V_C

GN

D

+5V

_C

GN

D

GN

D

GN

D

+3.3

V_C

C_H

IGH

C_L

OW

C_R

EAD

Y

C_n

FAU

LT

C_n

RES

ET

1

1330-0060Micro-Match 12p 8-188275-2

X30

0

2X

300

3X

300

4X

300

5X

300

6X

300

7X

300

8X

300

9X

300

10X

300

11X

300

12X

300

GN

D

+3.3

V_C

10u

10V

C31

7

GN

D

+3.3

V_C

10u

10V

C31

8

SNU

B T

1

SNU

B T

2

Testög

la S

MD

501

9

TP30

0

Testög

la S

MD

501

9

TP30

1

Testög

la S

MD

501

9

TP30

2

Testög

la S

MD

501

9

TP30

3

Testög

la S

MD

501

9TP

304

Testög

la S

MD

501

9TP

305

5

1

4

23

67IP

B06

5N15

N3

G

T300

5

1

4

23

67IP

B06

5N15

N3

G

T301

5

1

4

23

67IP

B06

5N15

N3

G

T302

5

1

4

23

67IP

B06

5N15

N3

G

T303

PIC01 COC

PIC30001 PIC30002

COC300

PIC30101 PIC30102

COC301

PIC30201 PIC30202

COC302

PIC30301 PIC30302

COC303

PIC30401 PIC30402

COC304

PIC30501 PIC30502

COC305

PIC30601 PIC30602

COC306

PIC30701 PIC30702

COC307

PIC30801 PIC30802

COC308

PIC30901

PIC30902

COC309

PIC31001 PIC31002

COC310

PIC31101 PIC31102

COC311

PIC31201 PIC31202

COC312

PIC31301 PIC31302

COC313

PIC31401 PIC31402

COC314

PIC31501 PIC31502

COC315

PIC31601 PIC31602

COC316

PIC31701 PIC31702

COC317

PIC31801 PIC31802

COC318

PID3

0001

PI

D300

02

COD300

PID3

0101

PI

D301

02 COD301

PID3

0201

PI

D302

02

COD302

PID3

0301

PI

D303

02

COD303

PIR30001

PIR30002

COR300

PIR301

01 PIR

30102

COR301

PIR30201

PIR30202

COR302

PIR30301

PIR30302

COR303

PIR304

01 PIR

30402

COR304

PIR305

01 PIR

30502

COR305

PIR306

01 PIR

30602

COR306

PIR30701

PIR30702

COR307

PIR30901

PIR30902

COR309

PIR310

01 PIR

31002

COR310

PIR313

01 PIR

31302

COR313

PIR314

01 PIR

31402

COR314

PIR315

01 PIR

31502

COR315

PIR31601

PIR31602

COR316

PISNUB T101 COSNUB T1

PISNUB T201 COSNUB T2

PIT3

0001

PIT30002 PIT30003 PIT30004 PIT30005 PIT30

006 PIT30007 COT300

PIT3

0101

PIT30102 PIT30103 PIT30104 PIT30105 PIT30

106 PIT30107 COT301

PIT3

0201

PIT30202 PIT30203 PIT30204 PIT30205 PIT30

206 PIT30207 COT302

PIT3

0301

PIT30302 PIT30303 PIT30304 PIT30305 PIT30

306 PIT30307 COT303

PITP30001

COTP

300

PITP30101 COTP

301

PITP3020

1 COTP

302

PITP3030

1 COTP

303

PITP30401 COTP

304

PITP30501 COTP

305

PITR30001

PITR30002

PITR30003

PITR30004

PITR30005

PITR30006

COTR

300

PIU3

0001

PIU30002 PI

U300

03

PIU30004

PIU3

0005

PIU3

0006

COU300

PIU30101

PIU3

0102

PIU3

0103

PIU3

0104

PIU3

0105

PIU3

0106

PIU30107 PIU30108 PIU30109

PIU301010

PIU301011

PIU301012

PIU301013

PIU301014

PIU301015

PIU301016

COU301 PIU30201

PIU3

0202

PIU3

0203

PIU3

0204

PIU3

0205

PIU3

0206

PIU30207 PIU30208 PIU30209

PIU302010

PIU302011

PIU302012

PIU302013

PIU302014

PIU302015

PIU302016

COU302

PIX3

0001

COX3

00A

PIX3

0002

COX3

00B

PIX3

0003

COX3

00C

PIX3

0004

COX3

00D

PIX3

0005

COX3

00E

PIX3

0006

COX3

00F

PIX3

0007

COX3

00G

PIX3

0008

COX3

00H

PIX3

0009

COX3

00I

PIX300010

COX3

00J

PIX300011

COX3

00K

PIX300012

COX3

00L

PIC30801 PIC31401

PIC31701 PIC31801

PIR30202

PIR30302

PIU30107 PIU30207

PIX3

0003

PIC30001 PIC30101

PITR30002

PIU30002

PIU3

0005

PIX3

0001

PIC31001

PIC31101 PIC31201

PIC31301

PIR30902

PIU302013

PIC30201 PIC30301

PIC30401

PIC30501 PIC30601

PIC30701

PIC31601

PID3

0001

PID3

0101

PIR30002

PIU301013

PIR30702

PIU3

0102

PIX3

0005

NL

C0HI

GH

PIR31602

PIU3

0202

PIX300011

NLC0

LOW

PIR30301

PIU3

0105

PIU3

0205

PIX3

0008

NL

C0nF

AULT

PIU3

0106

PIU3

0206

PIX3

0009

NL

C0nR

ESET

PIR30201

PIU3

0104

PIU3

0204

PIX3

0007

NLC0READY

PID3

0201

PIT30004

PIT30104

PIC31002

PIC31102

PIC31202

PIC31302

PIC31502

PISNUB T201

PIT30202 PIT30203 PIT302

05 PIT30206 PIT30207

PIT30302 PIT30303 PIT303

05 PIT30306 PIT30307

PITP3030

1 PITP3050

1 PIU30209

PIU302011 PIU302016

PIC30002

PIC30102

PIC30802 PIC31402

PIC31702 PIC31802

PIR30701

PIR31601

PIU30004

PIU3

0006

PIU30101

PIU3

0103

PIU30108

PIU30201

PIU3

0203

PIU30208

PIX3

0002

PIX3

0004

PIX3

0006

PIX300010

PIX300012

PIC30202 PIC30302

PIC30402

PIC30502 PIC30602

PIC30702

PIC30902

PIC31602

PIC01

PID3

0301

PISNUB T101

PIT30002 PIT30003 PIT300

05 PIT30006 PIT30007

PIT30102 PIT30103 PIT301

05 PIT30106 PIT30107

PIT30204

PIT30304

PITP3020

1

PITP30401

PITR30005

PIU30109 PIU301011

PIU301016

PIC30901

PIR30001

PIR301

01

PIU301010

PIC31501 PIR30901

PIR310

01

PIU302010

PID3

0002

PITR30006

PID3

0102

PITR30004

PID3

0202

PIR

30102

PID3

0302

PIR

31002

PIR304

01 PIU301015

PIR304

02

PIR305

02

PIR306

02

PIT3

0001

PIT3

0101

PITP30001

PIR305

01 PIU301014

PIR306

01 PIU301012

PIR313

01 PIU302015

PIR313

02

PIR314

02

PIR315

02

PIT3

0201

PIT3

0301

PITP30101

PIR314

01 PIU302014

PIR315

01 PIU302012

PITR30001

PIU3

0003

PITR30003

PIU3

0001

70

71

72

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f1

6

Rita

dav

Dat

um

Mat

eria

l

God

känd

enl.

kons

t.gr

ansk

ning

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

JH/U

rban

d49

01-0

145A

2016

-09-

2920

16-1

1-11

4301

-055

1A

Sch

emat

icSP

BC

PUB

oard

KTH

Dok

umen

tnam

n

1_43

01-0

551.

SchD

oc

128

GP

IO23

/EQ

EP

1I/M

FSX

A/S

CIR

XD

B1

Vdd2Vss 3

VddI/O4

GP

IO20

/EQ

EP

1A/M

DX

A/C

OM

P1O

UT

5

GP

IO21

/EQ

EP

1B/M

DR

A/C

OM

P2O

UT

6

GP

IO4/

EP

WM

3A7

GP

IO5/

EP

WM

3B/S

PIS

IMO

A/E

CA

P1

8

XR

S9

TRS

T10

Vdd12Vss 13

VddI/O11

AD

CIN

A6/

CO

MP

3A/A

IO6

14A

DC

INA

515

AD

CIN

A4/

CO

MP

2A/A

IO4

16A

DC

INA

2/C

OM

P1A

/AIO

217

AD

CIN

A1

18A

DC

INA

0, V

refH

I19

VddA20

VssA 21

AD

CIN

B0

22

AD

CIN

B1

23

AD

CIN

B2/

CO

MP

1B/A

IO10

24

AD

CIN

B4/

CO

MP

2B/A

IO12

25

AD

CIN

B5

26

AD

CIN

B6/

CO

MP

3B/A

IO14

27

Vdd29Vss 28

VddI/O30

Vdd51Vss 50

VddI/O49

Vdd65Vss 64

VddI/O63

Vdd72Vss 73

VddI/O74

Vdd3VFL37

Vss 38

GP

IO25

/EC

AP

2/S

PIS

OM

IB31

GP

IO31

/CA

NTX

A/E

PW

M8A

32G

PIO

30/C

AN

RX

A/E

PW

M7A

33

GP

IO29

/SC

ITX

DA

/SC

LA/T

Z334

GP

IO12

/TZ1

/SC

ITX

DA

/SP

ISIM

OB

35

TES

T236

GP

IO9/

EP

WM

5B/S

CIT

XD

B/E

CA

P3

39

GP

IO28

/SC

IRX

DA

/SD

AA

/TZ2

40

GP

IO18

/SP

ICLK

A/S

CIT

XD

B/X

CLK

OU

T41

GP

IO17

/SP

ISO

MIA

/TZ3

42

GP

IO8/

EP

WM

5A/A

DC

SO

CA

O43

GP

IO16

/SP

ISIM

OA

/TZ2

44

GP

IO7/

EP

WM

4B/S

CIR

XD

A/E

CA

P2

45G

PIO

6/E

PW

M4A

/EP

WM

SY

NC

I/EP

WM

SY

NC

O46

X2

47

X1

48

GP

IO19

/XC

LKIN

/SP

ISTE

A/S

CIR

XD

B/E

CA

P1

52

GP

IO39

53

GP

IO38

/XC

LKIN

/TC

K54

GP

IO34

/CO

MP

2OU

T/C

OM

P3O

UT

55

GP

IO37

/TD

O56

GP

IO35

/TD

I57

GP

IO36

/TM

S58

GP

IO11

/EP

WM

6B/S

CIR

XD

B/E

CA

P1

59G

PIO

10/E

PW

M6A

/AD

CS

OC

BO

60

GP

IO27

/HR

CA

P2/

SP

ISTE

B/U

SB

0DM

61G

PIO

26/E

CA

P3/

SP

ICLK

B/U

SB

0DM

62

GP

IO3/

EP

WM

2B/S

PIS

OM

IA/C

OM

P2O

UT

66G

PIO

2/E

PW

M2A

67G

PIO

1/E

PW

M1B

/CO

MP

1OU

T68

GP

IO0/

EP

WM

1A69

GP

IO15

/EC

AP

2/S

CIR

XD

B/S

PIS

TEB

70

VR

EG

EN

Z71

GP

IO13

/TZ2

75

GP

IO14

/TZ3

/SC

ITX

DB

/SP

ICLK

B76

GP

IO24

/EC

AP

1/S

PIS

IMO

B77

GP

IO22

/EQ

EP

1S/M

CLK

XA

/SC

ITX

DB

78

GP

IO32

/SD

AA

/EP

WM

SY

NC

I/AD

CS

OC

AO

79

GP

IO33

/SC

LA/E

PW

MS

YN

CO

/AD

CS

OC

BO

80

GP

IO23

/EQ

EP

1I/M

FSX

A/S

CIR

XD

B

VddVss

VddI/O

GP

IO20

/EQ

EP

1A/M

DX

A/C

OM

P1O

UT

GP

IO21

/EQ

EP

1B/M

DR

A/C

OM

P2O

UT

GP

IO4/

EP

WM

3A

GP

IO5/

EP

WM

3B/S

PIS

IMO

A/E

CA

P1

XR

S

TRS

T

Vdd

Vss

VddI/O

AD

CIN

A6/

CO

MP

3A/A

IO6

AD

CIN

A5

AD

CIN

A4/

CO

MP

2A/A

IO4

AD

CIN

A2/

CO

MP

1A/A

IO2

AD

CIN

A1

AD

CIN

A0,

Vre

fHI

VddA

VssA

AD

CIN

B0

AD

CIN

B1

AD

CIN

B2/

CO

MP

1B/A

IO10

AD

CIN

B4/

CO

MP

2B/A

IO12

AD

CIN

B5

AD

CIN

B6/

CO

MP

3B/A

IO14

Vdd

Vss

VddI/O

Vdd

Vss

VddI/O

Vdd

Vss

VddI/O

VddVss

VddI/O

Vdd3VFL

Vss

GP

IO25

/EC

AP

2/S

PIS

OM

IB

GP

IO31

/CA

NTX

A/E

PW

M8A

GP

IO30

/CA

NR

XA

/EP

WM

7A

GP

IO29

/SC

ITX

DA

/SC

LA/T

Z3

GP

IO12

/TZ1

/SC

ITX

DA

/SP

ISIM

OB

TES

T2

GP

IO9/

EP

WM

5B/S

CIT

XD

B/E

CA

P3

GP

IO28

/SC

IRX

DA

/SD

AA

/TZ2

GP

IO18

/SP

ICLK

A/S

CIT

XD

B/X

CLK

OU

T

GP

IO17

/SP

ISO

MIA

/TZ3

GP

IO8/

EP

WM

5A/A

DC

SO

CA

O

GP

IO16

/SP

ISIM

OA

/TZ2

GP

IO7/

EP

WM

4B/S

CIR

XD

A/E

CA

P2

GP

IO6/

EP

WM

4A/E

PW

MS

YN

CI/E

PW

MS

YN

CO

X2

X1

GP

IO19

/XC

LKIN

/SP

ISTE

A/S

CIR

XD

B/E

CA

P1

GP

IO39

GP

IO38

/XC

LKIN

/TC

K

GP

IO34

/CO

MP

2OU

T/C

OM

P3O

UT

GP

IO37

/TD

O

GP

IO35

/TD

I

GP

IO36

/TM

S

GP

IO11

/EP

WM

6B/S

CIR

XD

B/E

CA

P1

GP

IO10

/EP

WM

6A/A

DC

SO

CB

O

GP

IO27

/HR

CA

P2/

SP

ISTE

B/U

SB

0DM

GP

IO26

/EC

AP

3/S

PIC

LKB

/US

B0D

M

GP

IO3/

EP

WM

2B/S

PIS

OM

IA/C

OM

P2O

UT

GP

IO2/

EP

WM

2A

GP

IO1/

EP

WM

1B/C

OM

P1O

UT

GP

IO0/

EP

WM

1A

GP

IO15

/EC

AP

2/S

CIR

XD

B/S

PIS

TEB

VR

EG

EN

Z

GP

IO13

/TZ2

GP

IO14

/TZ3

/SC

ITX

DB

/SP

ICLK

B

GP

IO24

/EC

AP

1/S

PIS

IMO

B

GP

IO22

/EQ

EP

1S/M

CLK

XA

/SC

ITX

DB

GP

IO32

/SD

AA

/EP

WM

SY

NC

I/AD

CS

OC

AO

GP

IO33

/SC

LA/E

PW

MS

YN

CO

/AD

CS

OC

BO

U10

0

TMS3

20F2

8069

PNT

GN

DG

ND

BLM

31PG

500S

N1L

3A 50R

E100

GN

D

2u2

10V

C10

0

2u2

10V

C10

1

2u2

10V

C10

2

2u2

10V

C10

3

2u2

10V

C10

4

2u2

10V

C10

5

2u2

10V

C10

6

2u2

10V

C10

7

2u2

10V

C10

8

2u2

10V

C10

9

2u2

10V

C11

0

2u2

10V

C11

1

GN

D

BLM

18EG

221S

N1D

2A22

0RE101

2u2

10V

C11

4

GN

D

GN

DG

ND

GN

DG

ND

GN

D

GN

D

+3.3

V

100n

50V

C11

2

GN

D

100n

50V

C11

5

GN

D

+3.3

V

100n

50V

C11

3

GN

D

+3.3

V

100n

50V

C11

6

GN

D

VD

DIO

VD

DIO

12,0

MH

zY

100

27p

50V

C11

8

27p

50V

C11

7

GN

D

TMD

SEM

U10

0V2U

-14T

XI1

00 -

JTA

G

+3.3

VN

C

4k7

1%R10

0

+3.3

V

EMU

0

EMU

1

GN

D

4k7

1%R10

1

+3.3

V

NC

GPI

O30

_CA

NR

X

GPI

O31

_CA

NTX

GPI

O30

_CA

NR

X

GPI

O31

_CA

NTX

GPI

O28

_RX

DA

GPI

O29

_TX

DA

GPI

O33

_EPW

MSY

NC

O

GPI

O32

_EPW

MSY

NC

I

RS2

32, C

AN

, PW

M_S

YN

C

3_C

omm

unic

atio

n.Sc

hDoc

19-2

1UY

CY

ello

wD

103

GPI

O22

_LED

G

GPI

O23

_LED

Y

3

5

4

PUM

H11

T100

B

3

5

4

PUM

H11

T101

B

GN

DG

ND

+3.3

V+3

.3V

180R

1%R10

318

0R1%R

104

RES

_GPI

O

Res

olve

r

2_R

esol

ver.S

chD

oc

16_n

SAM

PLE

17_S

PIA

_MIS

O

18_S

PIA

_SC

KL

19_S

PIA

_CS

15_n

RD

VEL

RES

_GPI

O

EPW

M.4

A_A

_HIG

H

EPW

M.4

B_A

_LO

W

EPW

M.1

A_B

_HIG

H

EPW

M.1

B_B

_LO

W

EPW

M.2

A_C

_HIG

HEP

WM

.2B

_C_L

OW

GPI

O32

_EPW

MSY

NC

IG

PIO

33_E

PWM

SYN

CO

GPI

O28

_RX

DA

GPI

O29

_TX

DA

AD

CIN

Pow

er

4_Po

wer

.Sch

Doc

Vre

f=2.

5V Vou

t1

GN

D2

Vin

3V

ref=

2.5V Vou

tG

ND

Vin

U10

1

AD

1582

2u2

10V

C11

9

2u2

10V

C12

0

GN

DG

ND

GN

D

+3.3

V

Vre

f_2V

5

EPW

M

EPW

M_G

PIO

Gat

e dr

iver

5_G

ate

driv

er.S

chD

oc

EPW

M_G

PIO

.4_A

LL_H

IGH

_ON

EPW

M_G

PIO

.5_A

LL_L

OW

_ON

1B_B

_LO

W

1A_B

_HIG

H

2A_C

_HIG

H

4B_A

_LO

W

2B_C

_LO

W

4A_A

_HIG

H

EPW

M

9_R

EAD

Y

5_A

LL_L

OW

_ON

10_n

FAU

LT

4_A

LL_H

IGH

_ON

11_n

RES

ET

39_n

PWR

_ON

EPW

M_G

PIO

EPW

M_G

PIO

.9_R

EAD

YEP

WM

_GPI

O.1

0_nF

AU

LT

EPW

M_G

PIO

.11_

nRES

ET

2k49

1%R10

2

RES

_GPI

O

EPW

M

EPW

M_G

PIO

1X

I100

2X

I100

3X

I100

4X

I100

5X

I100

6X

I100

7X

I100

8X

I100

9X

I100

10X

I100

11X

I100

12X

I100

13X

I100

14X

I100

A2_

Vin

A1_

LEM

B_V

out

B1_

LEM

C_V

out

A4_

LEM

B_V

ref

B4_

LEM

C_V

ref

B5_

Tem

p

A6_

VIN

1

B6_

VIN

2

AD

CIN

AD

CIN

nTR

ST

TDI

TMS

TDO

TCK

JTA

G

nTR

ST TDI

TMS

TDO

TCK

JTA

G

JTA

G

EPW

M_G

PIO

.39_

nPW

R_O

N

19-2

1SU

RC

Red

D10

1

+3.3

V 180R

1%R10

5

19-2

1VG

CG

reen

D10

2

6

2

1

PUM

H11

T101

A

6

2

1

PUM

H11

T100

A

GN

DG

ND

GPI

O21

_LED

R

19-2

1UB

CB

lue

D10

0

GPI

O20

_LED

B

+3.3

V 120R

1%R10

6

GN

D

GN

D

+3.3

V+3

.3V

CA

N ID

(2-b

it)

1k 1%

R10

9

BA

V99

D10

4

GN

D

22k

1%R10

722

k1%R

108

+3.3

V

1k 1%

R11

0

BA

V99

D10

5

GN

D

+3.3

V

GPI

O24

_ID

_BIT

0

GPI

O25

_ID

_BIT

1

AD

CIN

LEM

6_LE

M.S

chD

oc

TP11

7

TP11

8

TP10

3TP

104

TP10

6

TP10

7

TP10

9

TP10

5

TP10

8

TP11

4

TP11

2

TP11

0

TP11

1

TP11

3

TP11

9

TP12

0

TP11

6TP

115

TP10

2

TP10

1TP

100

1J1

00

2J1

00

1J1

01

2J1

01

IOG

PS

GR

ERRR

SSGG

PPIO

_

GTA

GJTTT

GG

NC

INID

CA

DDA

DCC

NN

OG

PIO

GW

MPWEPPP

WWM

GGP

OO___

WM

PWEPPPWW

M

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f2

6

Rita

dav

Dat

um

Mat

eria

l

God

känd

enl.

kons

t.gr

ansk

ning

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

JH/U

rban

d49

01-0

145A

2016

-09-

2920

16-1

1-11

4301

-055

1A

Sch

emat

icSP

BC

PUB

oard

KTH

Dok

umen

tnam

n

2_R

esol

ver.S

chD

oc

128

GN

DG

ND

10u

16V

C20

4

+5V

GN

D

10u

16V

C20

7

GN

D

+5V

10u

16V

C20

1

GN

D

10n

50V

C20

6

10n

50V

C20

0

10n

50V

C20

5

GN

D

Vcca1

GND 2

A3

B4

DIR

5

Vccb6

Vcca

GND

AB

DIR

Vccb

U20

174

LVC

1T45

GN

D

+5V

+3.3

V

100n

50V

C20

3

GN

D

100n

50V

C20

2

GN

D

Vcca1

GND 2

A3

B4

DIR

5

Vccb6

Vcca

GND

AB

DIR

Vccb

U20

274

LVC

1T45

GN

D

+5V

+3.3

V

100n

50V

C20

9

GN

D

100n

50V

C20

8

GN

D

GN

D

+5V

+3.3

V

100n

50V

C21

1

GN

D

100n

50V

C21

0

GN

D

GN

D

Vcca1

GND 2

A3

B4

DIR

5

Vccb6

Vcca

GND

AB

DIR

Vccb

U20

374

LVC

1T45

GN

D

8,19

2MH

z12

pF30

ppm

Y20

020

p50

VC

212

20p

50V

C21

3

RE

S_G

PIO

DVDD

1

/RD

2

DVDD

17

AVDD

39

/CS

3

/SA

MP

LE4

/RD

VE

L5

/SO

E6

DB

11/S

O7

DB

10/S

CLK

8D

B9

9D

B8

10D

B7

11D

B6

12D

B5

13D

B4

14D

B3

15

DGND

16

DGND

23

DB

218

DB

119

DB

020

XTA

LOU

T21

CLK

IN22

CP

O24

A25

B26

NM

27

DIR

28

DO

S29

LOT

30

FS1

31

FS2

32

/RE

SE

T33

EX

C34

/EX

C35

AGND

36

AGND

42

Sin

37

Sin

LO38

Cos

LO40

Cos

41

REFBYP

43

RE

FOU

T44

AD

2S12

05

U20

0

CO

MP

-2

+3

+1

CO

MP

- ++

U20

4A

LM73

32 CO

MP

-6

+5

+7

CO

MP

- ++

U20

4B

LM73

32

+8

-4

+-

U20

4C

LM73

32

+12V

GN

D

100n

50V

C21

4

+12V

GN

D15

K1%

R20

4

15K

1%

R20

6

120p

50V

C21

7

120p

50V

C21

8

10k

1%

R20

5

10k

1%

R20

7

4u7

50V

C21

522

k1%R

200

10k

1%R20

310

0n50

V

C21

6

GN

D

Vre

f=3.

75V

GN

D

GN

D

+5V

+3.3

V

100n

50V

C22

0

GN

D

100n

50V

C21

9

GN

D

Vcca1

GND 2

A3

B4

DIR

5

Vccb6

Vcca

GND

AB

DIR

Vccb

U20

574

LVC

1T45

+5V

GN

D

GN

D1

/RE

SE

T2

VC

C3

GN

D/RE

SE

TV

CC

U20

6

AD

M80

9LA

RT

BLM

18A

G60

1SN

1D20

0mA

600RE2

00

BLM

18A

G60

1SN

1D20

0mA

600RE2

01

BLM

18A

G60

1SN

1D20

0mA

600RE2

02

BLM

18A

G60

1SN

1D20

0mA

600RE2

03

BLM

18A

G60

1SN

1D20

0mA

600RE2

04

BLM

18A

G60

1SN

1D20

0mA

600RE2

05

68k

1%R20

1

68k

1%R20

2

RES

_GPI

O

FS1FS2Freq

out[kH

z]0

020

01

151

012

11

10

J200

-FS1

J201

-FS2

GN

D

GN

D

16_n

SAM

PLE

17_S

PIA

_MIS

O

18_S

PIA

_SC

KL

19_S

PIA

_CS

15_n

RD

VEL

RES

_GPI

O

GN

D

+5V

+3.3

V

100n

50V

C23

4

GN

D

100n

50V

C23

3

GN

D

Vcca1

GND 2

A3

B4

DIR

5

Vccb6

Vcca

GND

AB

DIR

Vccb

U21

174

LVC

1T45

INPU

TDIR

OPERA

TION

LBdatato

Abu

sH

Adatato

Bbu

s

1 1330

-006

7C

onn

Mic

ro-fi

t6po

l.St

raig

ht

X20

0

2X

200

3X

200

4X

200

5X

200

6X

200

Res

olve

r

EXC

/EX

C

Sin

SinL

O

Cos

Cos

LO1

PIN

HEA

DS-

RO

W6

2.54

X20

1

2X

201

3X

201

4X

201

5X

201

6X

201

1J2

00

2J2

00

1J2

01

2J2

01

EXC_P EXC_N

EXCEXT_P EXCEXT_N

SIN

_P

SIN

_N

CO

S_N

CO

S_P

TP20

0

IOG

PIS

GR

ESRRR

SSGG

II__

TP20

1

TP20

2

TP20

3

TP20

4

TP20

5

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f3

6

Rita

dav

Dat

um

Mat

eria

l

God

känd

enl.

kons

t.gr

ansk

ning

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

JH/U

rban

d49

01-0

145A

2016

-09-

2920

16-1

1-11

4301

-055

1A

Sch

emat

icSP

BC

PUB

oard

KTH

Dok

umen

tnam

n

3_C

omm

unic

atio

n.Sc

hDoc

128

STB

8

CA

NH

7

CA

NL

6

SP

LIT

5

TxD

1

RxD

4

Vcc3 GN

D

2

U30

1 SN65

HV

D10

40D

9K1

1%R30

4

4k7

1%R30

3

+5V

CA

N_N

CA

N_P

GN

D

GN

D

GN

D

GN

D

GP

IO31

_CA

NTX

GP

IO30

_CA

NR

X

GN

D

J300

-Ter

min

atio

nju

mpe

rs

100n

50V

C30

7

GN

D

120R

1%R30

5

[RS2

32]

+ - + -

CX CX

U+ U-

1 3 4 5 10 11 9 12138147

62

[RS2

32]

+ - + -

CX CX

U+ U-

U30

0A

AD

M32

02A

RN

1n 200V

C30

5

1k 1%R30

2

47R

1%R30

147

R1%R30

0

100n

50V

C30

4

100n

50V

C30

1

100n

50V

C30

3

+3.3

V

(+)

(-)

1615

(+)

(-)

U30

0B AD

M32

02A

RN

+3.3

V

GN

D

100n

50V

C30

2

100n

50V

C30

0

GN

D

GN

DG

ND

GN

D

1n 200V

C30

6

GN

D

GP

IO28

_RX

DA

GP

IO29

_TX

DA

GN

D

1X

300

2X

300

3X

300

4X

300

5X

300

6X

300

1X

301

2X

301

3X

301

4X

301

5X

301

6X

301

Jum

perb

etw

een

4-4

and

5-5

tous

eR

S232

TTL-

232R

-3V

3

SMA

J18C

AD

302

SMA

J18C

AD

303

BLM

18A

G60

1SN

1D20

0mA

600R

E300

BLM

18A

G60

1SN

1D20

0mA

600R

E301

BLM

18A

G60

1SN

1D20

0mA

600R

E302

BLM

18A

G60

1SN

1D20

0mA

600R

E303

GP

IO32

_EP

WM

SY

NC

I

GP

IO33

_EP

WM

SY

NC

O

BLM

18A

G60

1SN

1D20

0mA

600R

E304

BLM

18A

G60

1SN

1D20

0mA

600R

E305

GN

D

+5V

+3.3

V

100n

50V

C31

1

GN

D

100n

50V

C31

0

GN

D

Vcca1

GND 2

A3

B4

DIR

5

Vccb6

Vcca

GND

AB

DIR

Vccb

U30

374

LVC

1T45Vcca1

GND 2

A3

B4

DIR

5

Vccb6

Vcca

GND

AB

DIR

Vccb

U30

274

LVC

1T45

GN

D

+5V

+3.3

V

100n

50V

C30

9

GN

D

100n

50V

C30

8

GN

DG

ND

1k 1%

R30

6

1k 1%

R30

7

BA

V99

D30

4

BA

V99

D30

5

+5V

+5V

GN

D

GN

D

1

1330

-008

6C

onn

Mic

ro-fi

t4po

l.St

raig

ht

X30

2

2X

302

3X

302

4X

302

GN

D

RxD

<=

TxD

=>

GN

D

N.C

RS2

32

1

1330

-009

2M

icro

-Mat

ch4p

7-18

8275

-4

X30

3

2X

303

3X

303

4X

303

GN

D

1

1330

-009

2M

icro

-Mat

ch4p

7-18

8275

-4

X30

4

2X

304

3X

304

4X

304

GN

D

CA

N_H

CA

N_L

GN

DSY

NC

IN <

=

CA

N_H

CA

N_L

GN

DSY

NC

OU

T =>

INPU

TDIR

OPERA

TION

LBdatato

Abu

sH

Adatato

Bbu

s

SMA

J18C

AD

300

SMA

J18C

AD

301

1

J300

2

J300

BLM

18A

G60

1SN

1D20

0mA

600R

E306

BLM

18A

G60

1SN

1D20

0mA

600R

E307

1n 200V

C31

2

GN

D

1n 200V

C31

3

GN

D

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f4

6

Rita

dav

Dat

um

Mat

eria

l

God

känd

enl.

kons

t. gr

ansk

ning

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

JH/U

rban

d49

01-0

145A

2016

-09-

2920

16-1

1-11

4301

-055

1A

Sch

emat

icSP

BC

PUB

oard

KTH

Dok

umen

tnam

n

4_P

ower

.Sch

Doc

128

nSH

DN

4

SS

5

GN

D

2

Vin

6

SW

1 FB3

nSH

DN

SS

GN

D

Vin

SW

FB

U40

0

LT34

67

GN

D

2u2

10VC40

14u

750

VC40

24u

750

VC40

3

115k

1%R40

0

13k3

1%R40

3

PMEG

6010

CEJ

60V

1A

D40

0

4u7

2.32

A

L400

47n

50VC41

4

+12V

+5V

+5V

GN

D

47uF

400V

dc

C40

71u 20

0V

C40

6

1n2k

V

C40

0

1n2k

V

C41

5

+Vin

-Vin

47u

10V

C41

047

u10

V

C41

147

u10

V

C41

247

u10

V

C41

3

10k

1%R40

9

390k

1%R40

5

390k

1%R40

7

-Vin

-Vin

(GN

D)

2

Rem

ote

On/

Off

1

+Vin

(Vcc

)22

-Vou

t16

+Vou

t14

-Vin

(GN

D)

3

+Vin

(Vcc

)23

TEN

8-72

11W

I

U40

1

47uF

400V

dc

C40

71u 20

0V

C40

6

1n 1n

+Vin

-Vin

10k

1%R40

9

390k

1%R40

5

390k

1%R40

7

-Vin

-Vin

(GN

D)

2

Rem

ote

On/

Off

1

+Vin

(Vcc

)22

-Vin

(GN

D)

3

+Vin

(Vcc

)23

TEN

8-72

11W

IEU40

1

GN

D

GN

D

100n

50V

C42

3

GN

D

+5V

+3.3

V

100n

50V

C42

6

GN

D

GN

D

AD

CIN

.A2_

Vin

15K

1%R40

6

12k

1%R40

8

12k

1%R41

0

15K

1%R41

1

A =

1

A =

1.2

5V

in=1

58V

=>

2V

Vin

5

EN

4

GND 2

FB3

SW

6

BO

OS

T1

Vin

EN

GND

FBSW

BO

OS

T

U40

2

LM27

34Y

BA

S16

D40

1

10n

50V

C40

510

u2A

L401

47u

10V

C40

97k

871%R

401

2k49

1%R40

4

+3.3

V

115k

1%R40

210

u16

V

C40

8

+5V

GN

D

PMEG

3020

EPD

402

VD

D1

1

VIN

2

SH

DN

3

GN

D1

4

VD

D1

VIN

SH

DN

GN

D1

GN

D2

5

VO

UT-

6V

OU

T+7

VD

D2

8

AC

PL-C

87A

U40

5

D1

1

Vcc2

D2

3

GND 4

EN

5

D1

Vcc

D2

GND

EN

CLK

6

U40

4

+3.3

V

GN

D

100n

50V

C41

6

GN

D

GN

D

GN

D

1 2 3456

TRA

FO_7

6039

0015

TR40

0

PMEG

2005

EJ20

V0,

5A

D40

3

PMEG

2005

EJ20

V0,

5A

D40

4-V

in

IN1

GND 2

EN

3

NC

/FB

4

OU

T5

IN

GND

EN

NC

/FB

OU

T

TPS7

6350

DB

VR

U40

3

100n

50V

C41

9

-Vin

-Vin

-Vin

-Vin

+5V

_ISO

+5V

_ISO

100n

50V

C42

2

-Vin

GN

D

1

2330

-009

8M

INI-F

IT 2

POL

AN

G 3

9301

020

X40

0

2X

400

BO

OT

1

CO

MP

8

PW

RG

D6

EN

3

PH

10

RT/

CLK

5S

S/T

R4

Vin

2

Vse

nse

7

GND 9

GND PP 11

BO

OT

CO

MP

PW

RG

D

EN

PH

RT/

CLK

SS

/TR

Vin

Vse

nse

GND

GND PP

U40

7

TPS5

4260

4u7

50V

C43

04u

750

V

C43

1

4n7

50V

C43

8

100n 50

V

C42

7

30k

1%

R41

530

1K1%R

416

XA

L505

0-22

3ME

22uH

3.4A

L403

53k6

1%R41

3

47k

1%R41

4

B36

0A-F

DIC

T60

V3AD

405

221K

1%R41

2

47n

50V

C43

6

GN

D

GN

D

10k

1%R41

7

20p

50V

C43

7

10u

16V

C41

7

10u

16V

C41

810

u16

V

C42

0

20p

50V

C40

4

47u

10V

C43

247

u10

V

C43

347

u10

V

C43

447

u10

V

C43

5

MPZ

2012 2A

600RE4

00

GN

DG

ND

4 31

U40

6A

MC

P602

1

(+)

(-)

52

(+)

(-)

U40

6B

MC

P602

1

1 432

2x20

mH

0,5A

L402

AD

CIN

A2_

Vin

A1_

LEM

B_V

out

B1_

LEM

C_V

out

A4_

LEM

B_V

ref

B4_

LEM

C_V

ref

B5_

Tem

p

A6_

VIN

1

B6_

VIN

2

AD

CIN

10k

1%R42

0

-Vin

GN

D

GN

D

100n

50V

C44

4

GN

D

+5V

+3.3

V

100n

50V

C44

1

GN

D

GN

D

15K

1%R41

8

12k

1%R41

9

12k

1%R42

1

15K

1%R42

2

A =

1

A =

1.2

5

VD

D1

1

VIN

2

SH

DN

3

GN

D1

4

VD

D1

VIN

SH

DN

GN

D1

GN

D2

5

VO

UT-

6

VO

UT+

7

VD

D2

8

AC

PL-C

87A

U41

0

+5V

_ISO

100n

50V

C44

3

-Vin

4 31

U40

9A

MC

P602

1

(+)

(-)

52

(+)

(-)

U40

9B

MC

P602

1

100n

50V

C43

9

+1.8

V

Vin

4

NC

3G

ND

2

PG

1

Vou

t5

Vin

NC

GN

DP

G

Vou

t

1V8

10m

A

U40

8

TPS7

9718

-Vin

-Vin

-Vin

+5V

_ISO

2u2

10VC44

0

1X

401

2X

401

+1.8

V

+Vin

NTC

10k

AD

CIN

.B5_

Tem

p

2.54

mm

TH

T A

ngle

d Pi

n H

eade

r

+5V

100n 50

V

C44

5

120p

50V

C42

4

10n

50V

C44

6

10n

50V

C44

2

2u2

1.3A

20%

100

8

L404

4u7

50V

C44

8

GN

D

100n

50V

C42

810

0n50

V

C42

9

2u2

1.3A

20%

100

8

L405

47u

10V

C44

7

GN

D

10n

50V

C42

1

10n

50V

C42

5

TP40

0

TP40

1

TP40

2

TP40

4TP

403

TP40

6TP

405

TP40

8

TP40

7

1

J402

2

J402

1J4

00

2J4

00

1J4

01

2J4

01

X40

2

X40

2

iH

P1i

HP1

iH

P1

iH

P2i

HP2

iH

PM

2u2

1.3A

20%

100

8

L406

47u

10V

C44

9

GN

D

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f5

6

Rita

dav

Dat

um

Mat

eria

l

God

känd

enl.

kons

t.gr

ansk

ning

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

JH/U

rban

d49

01-0

145A

2016

-09-

2920

16-1

1-11

4301

-055

1A

Sch

emat

icSP

BC

PUB

oard

KTH

Dok

umen

tnam

n

5_G

ate

driv

er.S

chD

oc

128

Phas

e A

Phas

e B

Phas

e C

A.H

IGH

A.L

OW

A.R

EAD

Y

A.n

FAU

LT

B.H

IGH

B.L

OW

B.R

EAD

Y

B.n

FAU

LT

C.H

IGH

C.L

OW

C.R

EAD

Y

C.n

FAU

LT

100n

50V

C50

2

+3.3

V

GN

D

14

21

U50

5A

TC7S

04F

(+)

(-)

53

(+)

(-)

U50

5B

TC7S

04F

100n

50V

C50

0

+3.3

V

GN

D

14

21

U50

6A

TC7S

04F

(+)

(-)

53

(+)

(-)

U50

6B

TC7S

04F

100n

50V

C50

4

+3.3

V

GN

D

EPW

M.4

A_A

_HIG

H

EPW

M.4

B_A

_LO

W

100n

50V

C50

5

+3.3

V

GN

D

100n

50V

C50

1

+3.3

V

GN

D

100n

50V

C50

6

+3.3

V

GN

D

EPW

M.1

A_B

_HIG

H

EPW

M.1

B_B

_LO

W

EPW

M.2

A_C

_HIG

H

EPW

M.2

B_C

_LO

W

EPW

M_G

PIO

.4_A

LL_H

IGH

_ON

EPW

M_G

PIO

.5_A

LL_L

OW

_ON

14 5

61

U50

2B

74H

C32

D 19 10

81

U50

2C

74H

C32

D

11 2

31

U50

2A

74H

C32

D 112 13

111

U50

2D

74H

C32

D

(+)

(-)

147

(+)

(-)

U50

0E

74H

C32

D

112 13

111

U50

0D

74H

C32

D 11 2

31

U50

0A

74H

C32

D 19 10

81

U50

0C

74H

C32

D 14 5

61

U50

0B

74H

C32

D

(+)

(-)

147

(+)

(-)

U50

2E

74H

C32

D

+3.3

V

GN

D

GN

D

GN

D

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

&9 10

8&

U50

1C

74H

C08 &

1 23

&U

501A

74H

C08 &

4 56

&U

501B

74H

C08 &

12 1311

&U

501D

74H

C08

(+)

(-)

147

(+)

(-)

U50

1E

74H

C08

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

1B_B

_LO

W

1A_B

_HIG

H

2A_C

_HIG

H

4B_A

_LO

W

2B_C

_LO

W

4A_A

_HIG

H

EPW

M 9_R

EAD

Y

5_A

LL_L

OW

_ON

10_n

FAU

LT

4_A

LL_H

IGH

_ON

11_n

RES

ET

39_n

PWR

_ON

EPW

M_G

PIO

100n

50V

C50

3

+3.3

V

EP

WM

EP

WM

_GP

IO

BLM

18A

G60

1SN

1DE500

BLM

18A

G60

1SN

1DE501

BLM

18A

G60

1SN

1DE502

BLM

18A

G60

1SN

1DE503

BLM

18A

G60

1SN

1DE504

BLM

18A

G60

1SN

1DE505

BLM

18A

G60

1SN

1DE506

BLM

18A

G60

1SN

1DE507

BLM

18A

G60

1SN

1DE508

BLM

18A

G60

1SN

1DE509

BLM

18A

G60

1SN

1DE510

BLM

18A

G60

1SN

1DE511

BLM

18A

G60

1SN

1DE512

BLM

18A

G60

1SN

1DE513

BLM

18A

G60

1SN

1DE514

&12 13

11&

U50

3D

74H

C08 &

9 108

&U

503C

74H

C08 &

1 23

&U

503A

74H

C08

&4 5

6&

U50

3B

74H

C08

(+)

(-)

147

(+)

(-)

U50

4E

74H

C08

&1 2

3&

U50

4A

74H

C08

&4 5

6&

U50

4B

74H

C08

&12 13

11&

U50

4D

74H

C08

&910

8&

U50

4C

74H

C08

(+)

(-)

147

(+)

(-)

U50

3E

74H

C08

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

A

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

HIG

H

LOW

REA

DY

nFA

ULT

nRES

ET

DR

IVER

B C

nRES

ET

nRES

ET

nRES

ET

nRES

ET

EPW

M

EPW

M_G

PIO

.9_R

EAD

Y

EPW

M_G

PIO

.10_

nFA

ULT

EPW

M_G

PIO

.11_

nRES

ET

GN

D

1 1330

-006

0M

icro

-Mat

ch12

p8-

1882

75-2

X50

0

2X

500

3X

500

4X

500

5X

500

6X

500

7X

500

8X

500

9X

500

10X

500

11X

500

12X

500

1 1330

-006

0M

icro

-Mat

ch12

p8-

1882

75-2

X50

1

2X

501

3X

501

4X

501

5X

501

6X

501

7X

501

8X

501

9X

501

10X

501

11X

501

12X

501

1 1330

-006

0M

icro

-Mat

ch12

p8-

1882

75-2

X50

2

2X

502

3X

502

4X

502

5X

502

6X

502

7X

502

8X

502

9X

502

10X

502

11X

502

12X

502

MPZ

2012 2A

600RE5

16

GN

DG

ND

100n

50V

C51

210

0n50

V

C51

110

u16

V

C51

0

GN

D

+3.3

V

MPZ

2012 2A

600RE5

18

GN

DG

ND

100n

50V

C51

810

0n50

V

C51

710

u16

V

C51

6

GN

D

+3.3

V

MPZ

2012 2A

600RE5

20

GN

DG

ND

100n

50V

C52

410

0n50

V

C52

310

u16

V

C52

2

GN

D

MPZ

2012 2A

600RE5

15

GN

DG

ND

100n

50V

C50

910

0n50

V

C50

810

u16

V

C50

7

GN

D

MPZ

2012 2A

600RE5

17

GN

DG

ND

100n

50V

C51

510

0n50

V

C51

410

u16

V

C51

3

GN

D

MPZ

2012 2A

600RE5

19

GN

DG

ND

100n

50V

C52

110

0n50

V

C52

010

u16

V

C51

9

GN

D

+3.3

V_A

+3.3

V_B

+3.3

V_C

+5V

_A

+5V

_B

+5V

_C

2

1

3

SI23

23D

S12

V7.

1A39

mR

T500

10k

1%R50

0

+5V

PUM

D3

T501

APU

MD

3

T501

B

GN

D

+3.3

V

+5V

_1

+5V

_1

+5V

_1

EPW

M_G

PIO

.39_

nPW

R_O

N

R50

1

+3.3

V

TP50

0

TP50

1

TP50

2

TP50

3

TP51

0

TP51

1

TP50

4

TP50

5

TP50

6

TP50

7

TP50

8

TP50

9

TP51

2

TP51

3

TP51

4

GN

D

MW

MEP

WEEE

WWMM

CCCC

11

22

33

44

55

66

77

88

99

1010

HH

GG

FF

EE

DD

CC

BB

AA

Shee

t

o

f6

6

Rita

dav

Dat

um

Mat

eria

l

God

känd

enl.

kons

t.gr

ansk

ning

Dat

um

Ritn

.nr

Filn

amn

Ersät

ter

Sub

vers

ion

rev. To

lera

ns

Yta

.

Ska

la

Ritn

.nr.

Rev

.

A3

Vik

t

Vol

ym

Benäm

ning

Ant

alD

etal

j.nr.

1.5:

1

JH/U

rban

d49

01-0

145A

2016

-09-

2920

16-1

1-11

4301

-055

1A

Sch

emat

icSP

BC

PUB

oard

KTH

Dok

umen

tnam

n

6_LE

M.S

chD

oc

128

1

1330

-009

2M

icro

-Mat

ch4p

7-18

8275

-4

X60

0

2X

600

3X

600

4X

600

BLM

18A

G60

1SN

1D

E600

BLM

18A

G60

1SN

1D

E601

GN

D

+5V

10u

16V

C60

010

0n50

V

C60

1

GN

DG

ND

VC

C

OU

T

VR

EF

1

1330

-009

2M

icro

-Mat

ch4p

7-18

8275

-4

X60

1

2X

601

3X

601

4X

601

BLM

18A

G60

1SN

1D

E603

BLM

18A

G60

1SN

1DE6

04

GN

D

+5V

10u

16V

C60

410

0n50

V

C60

5

GN

DG

ND

VC

C

OU

T

VR

EF

BA

V99

D60

0

+5V

GN

D

Phas

e B

Cur

rent

Phas

e C

Cur

rent

AD

CIN

AD

CIN

A2_

Vin

A1_

LEM

B_V

out

B1_

LEM

C_V

out

A4_

LEM

B_V

ref

B4_

LEM

C_V

ref

B5_

Tem

p

A6_

VIN

1

B6_

VIN

2

AD

CIN

GN

DG

ND

BA

V99

D60

1

+5V

GN

DG

ND

GN

D

BA

V99

D60

2

+5V

GN

D

GN

DG

ND

BA

V99

D60

3

+5V

GN

D

GN

DG

ND

GN

D

GN

D

100n

50V

C61

2

GN

D

4 31

U60

0A

MC

P602

1

(+)

(-)

52

(+)

(-)

U60

0B

MC

P602

1

100n

50V

C61

3

GN

D

4 31

U60

1A

MC

P602

1

(+)

(-)

52

(+)

(-)

U60

1B

MC

P602

1

100n

50V

C61

5

GN

D

4 31

U60

2A

MC

P602

1

(+)

(-)

52

(+)

(-)

U60

3B

MC

P602

1

100n

50V

C61

6

GN

D

4 31

U60

3A

MC

P602

1

(+)

(-)

52

(+)

(-)

U60

4B

MC

P602

1

+5V

+5V

+5V

+5V

1

1330

-009

2M

icro

-Mat

ch4p

7-18

8275

-4

X60

2

2X

602

3X

602

4X

602

BLM

18A

G60

1SN

1D

E606

BLM

18A

G60

1SN

1DE6

07

GN

D

+5V

10u

16V

C60

810

0n50

V

C60

9

GN

DG

ND

VC

C

VIN

1

VIN

2

BA

V99

D60

4

+5V

GN

D

Extra

Ana

log

GN

DG

ND

BA

V99

D60

5

+5V

GN

D

GN

DG

ND

GN

D

4 31

U60

4A

MC

P602

1

4 31

U60

5A

MC

P602

1

100n

50V

C61

4

GN

D

(+)

(-)

52

(+)

(-)

U60

2B

MC

P602

1

100n

50V

C61

7

GN

D

(+)

(-)

52

(+)

(-)

U60

5B

MC

P602

1

+5V

+5V

BLM

18A

G60

1SN

1D

E602

BLM

18A

G60

1SN

1D

E605

BLM

18A

G60

1SN

1D

E608

30k

1%

R60

0

30k

1%

R60

4

30k

1%

R60

8

30k

1%R60

1

30k

1%R60

5

30k

1%R60

9

120p

50V

C60

2

AD

CINI

DA

DCC

NN

120p

50V

C60

6

120p

50V

C61

0

30k

1%

R60

2

30k

1%

R60

6

30k

1%

R61

0

30k

1%

R603 30k

1%R60

7

30k

1%

R611

120p

50V

C60

3

120p

50V

C60

7

120p

50V

C61

1

80