Crystalline Phase Modulates the Potency of Nanometric TiO 2 to Adhere to and Perturb the Stratum...

37
This is an author version of the contribution published on: Questa è la versione dell’autore dell’opera: Turci et al., Chem. Res. Toxicol., 2013, 26 (10), pp 15791590 The definitive version is available at: La versione definitiva è disponibile alla URL: http://pubs.acs.org/doi/abs/10.1021/tx400285j

Transcript of Crystalline Phase Modulates the Potency of Nanometric TiO 2 to Adhere to and Perturb the Stratum...

This is an author version of the contribution published on:

Questa è la versione dell’autore dell’opera:

Turci et al., Chem. Res. Toxicol., 2013,

26 (10), pp 1579–1590

The definitive version is available at:

La versione definitiva è disponibile alla URL:

http://pubs.acs.org/doi/abs/10.1021/tx400285j

Crystalline phase modulates the potency of nanometric

TiO2 to adhere and perturb the stratum corneum of

porcine skin under indoor light.

×

ca.

ζ potential was evaluated by means of electrophoretic light scattering (ELS) (Zetasizer Nano–ZS,

Malvern Instruments, Worcestershire, U.K.). In this technique the velocity of particle in an oscillating

electric field, which is proportional to its ζ potential, is measured by light scattering. The ζ potential was

measured suspending the nano-TiO2 in the delivery medium without altering the pH, in order to gather

indications on the real surface charge exhibited by the three powders during the skin-interaction

experiments. The ζ potential was measured also at several pH values, adjusting the pH of the dust

suspension with 0.1 M HCl or 0.1 M NaOH and a plot of ζ potential values versus pH was obtained. The

set of experimental points was fitted with a sigmoidal curve (Boltzmann equation) with OriginPro8.0

software suite (

dxxx

e

AAAy

)0(

1

212 ,

where A1 and A2 are the lower and upper horizontal respectively, x0 the

and dx the curve rate, i.e.

were carried out under controlled indoor

illumination with a very low content of UV light. The light irradiance was measured by a portable

photoradiometer (Deltahom, Caselle di Selvazzano, Padova, Italy) equipped with two detectors

operating in the Vis−NIR range (400–1050 nm) and in the UVA range (315–400 nm). An irradiance of

ca. 750 mW/m2 (Vis-NIR range) and < 1 mW/m

2 (UVA) was measured during all experiments. It is

worth noting that experiments of TiO2-induced photodegradation of skin are commonly carried out with

an UVA irradiance >10 outdoor summer sunlight)

×

100)1(%blank

sample

H

HH

under controlled indoor

illumination

50 nm

a)

100 nm

b)

100

101

102

103

104

*

DL

S in

ten

sity (

%)

Size (nm)

c)

100

101

102

103

104

*

DL

S in

ten

sity (

%)

Size (nm)

101

102

103

104

DLS

inte

nsity (

%)

*

Size (nm)

0 1 10 100 10000

20

40

60

80

100

120

140

160

180

Par

ticl

e n

um

be

r

Average diameter ( m)

0

25

50

75

100

Cu

mu

lati

ve d

istr

ibu

tio

n,

%

0 1 10 100 10000

100

200

300

400

500

600

700

Par

ticl

e n

um

be

r

Average diameter ( m)

0

25

50

75

100

Cu

mu

lati

ve d

istr

ibu

tio

n,

%

0 1 10 100 10000

20

40

60

80

100

120

140

160

180

Par

ticl

e n

um

be

r

Average diameter ( m)

0

25

50

75

100

Cu

mu

lati

ve d

istr

ibu

tio

n,

%

Anatase Hombikat UV100

Sachtleben, DE

Rutile MT500 B

LCM Trading, IT

Anatase / Rutile Aeroxide P25

Evonik, DE

2 3 4 5 6 7 8 9 10

-30

-20

-10

0

10

20

30

- p

ote

nti

al, m

V

pH

2 3 4 5 6 7 8 9 10

-30

-20

-10

0

10

20

30

pH

2 3 4 5 6 7 8 9 10

-30

-20

-10

0

10

20

30

rutileanatase anatase/rutile

pH

100 µm 100 µm

100 µm 100 µm

100 µm 100 µm

A A’

B’ B

C C’

c)

b)

a

A

B

2700 2800 2900 3000 3100

No

rma

lize

d R

am

an

in

ten

sity, A

U

a,b

c,d

Raman Shift (cm-1)

2719

28832974

3060

2937

2852

-100

-80

-60

-40

-20

0Negativ

e Ctrl

A R A/R H 2O 2

b

bc

c

bc

%H

of

lipid

tra

nsi

tio

n

a

carboxyl radical

Such radical can be detected via the spin trapping technique and EPR spectroscopy, provided that

concentrated HCO2– and neutral buffered solutions are employed. Despite its slower kinetics, due to the

low molar concentration of

330 331 332 333 334 335 336 337

A/R

A

R

field, mT

A

A R A/R0

50

100

150

200

250

300

350

400

450

500

sign

al in

ten

sity

, A.U

.

B

blank A R A/R0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

*

*#

Absorb

ance

= 5

35 n

m,

A.U

.

*

Absorbance ( 535 nm) recorded on

the supernatant after incubation of the suspended in a 1

mM suspension of linoleic acid in 5 mM phosphate buffer (pH 7.4) for 72 h under indoor illumination.

A linoleic acid suspension without dust was employed as blank. The data are expressed as the mean

value of three separate determinations ± SD. Vs blank: *p < 0.05; R vs. A and R vs. A/R: # p < 0.05.

(1) European Commission. (2012) Types and uses of nanomaterials, including safety aspects.

SWD(2012) 288 final, In Accompanying the Communication from the Commission to the

European Parliament, the Council and the European Economic and Social Committee on the

Second Regulatory Review on Nanomaterials (Commission Staff, Ed.) p 111, European Union,

Brussels.

(2) Serpone, N., Dondi, D., and Albini, A. (2007) Inorganic and organic UV filters: Their role and

efficacy in sunscreens and suncare product. Inorg. Chim. Acta 360, 794-802.

(3) Winkler, J. (2003) Titanium Dioxide. Vincentz Network, Hannover.

(4) Nohynek, G. J., and Dufour, E. K. (2012) Nano-sized cosmetic formulations or solid

nanoparticles in sunscreens: A risk to human health? Arch. Toxicol. 86, 1063-1075.

(5) Baroli, B. (2010) Penetration of Nanoplarticles and Nanomaterials in the Skin: Fiction or

Reality? J. Pharm. Sci. 99, 21-50.

(6) Monteiro-Riviere, N. A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A. O., and Riviere, J.

E. (2011) Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc

Oxide Nanoparticles in UVB Sunburned Skin: An In Vitro and In Vivo Study. Toxicol. Sci. 123,

264-280.

(7) Zhang, L. W., and Monteiro-Riviere, N. A. (2008) Assessment of quantum dot penetration into

intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol. Physiol. 21, 166-180.

(8) Wu, J. H., Liu, W., Xue, C. B., Zhou, S. C., Lan, F. L., Bi, L., Xu, H. B., Yang, X. L., and Zeng,

F. D. (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin

after subchronic dermal exposure. Toxicol. Lett. 191, 1-8.

(9) Senzui, M., Tamura, T., Miura, K., Ikarashi, Y., Watanabe, Y., and Fujii, M. (2010) Study on

penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. J.

Toxicol. Sci. 35, 107-113.

(10) Gilbert, E., Pirot, F., Bertholle, V., Roussel, L., Falson, F., and Padois, K. (2013) Commonly

used UV filter toxicity on biological functions: review of last decade studies. Int. J. Cosmetic

Sci. 35, 208-219.

(11) Warheit, D. B. (2013) How to measure hazards/risks following exposures to nanoscale or

pigment-grade titanium dioxide particles. Toxicol. Lett. 220, 193-204.

(12) Wlaschek, M., Tantcheva-Poor, I., Naderi, L., Ma, W. J., Schneider, A., Razi-Wolf, Z., Schuller,

J., and Scharffetter-Kochanek, K. (2001) Solar UV irradiation and dermal photoaging. J.

Photochem. Photobiol. B 63, 41-51.

(13) Liu, K., Lin, X. L., and Zhao, J. S. (2013) Toxic effects of the interaction of titanium dioxide

nanoparticles with chemicals or physical factors. Int. J. Nanomed. 8, 2509-2520.

(14) Nohynek, G. J., Lademann, J., Ribaud, C., and Roberts, M. S. (2007) Grey goo on the skin?

Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37, 251-277.

(15) Lewicka, Z. A., Yu, W. W., Oliva, B. L., Contreras, E. Q., and Colvin, V. L. (2013)

Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J. Photochem.

Photobiol. A 263, 24-33.

(16) Carlotti, M. E., Sapino, S., Vione, D., Minero, C., Peira, E., and Trotta, M. (2007) Study on the

photodegradation of salicylic in the absence and in the presence of TiO2. J. Dispersion Sci.

Technol. 28, 805-818.

(17) Pelizzetti, E., and Minero, C. (1993) Mechanism of the Photooxidative Degradation of Organic

Pollutants over TiO2 Particles. Electrochim. Acta 38, 47-55.

(18) Buchalska, M., Kras, G., Oszajca, M., Lasocha, W., and Macyk, W. (2010) Singlet oxygen

generation in the presence of titanium dioxide materials used as sunscreens in suntan lotions. J.

Photochem. Photobiol. A 213, 158-163.

(19) Daimon, T., Hirakawa, T., Kitazawa, M., Suetake, J., and Nosaka, Y. (2008) Formation of

singlet molecular oxygen associated with the formation of superoxide radicals in aqueous

suspensions of TiO2 photocatalysts. Appl. Catal., A 340, 169-175.

(20) Addamo, M., Augugliaro, V., Bellardita, M., Di Paola, A., Loddo, V., Palmisano, G., Palmisano,

L., and Yurdakal, S. (2008) Environmentally Friendly Photocatalytic Oxidation of Aromatic

Alcohol to Aldehyde in Aqueous Suspension of Brookite TiO(2). Catal. Lett. 126, 58-62.

(21) Yurdakal, S., Palmisano, G., Loddo, V., Augugliaro, V., and Palmisano, L. (2008)

Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to

aldehydes in water. J. Am. Chem. Soc. 130, 1568-1569.

(22) Palmisano, G., Yurdakal, S., Augugliaro, V., Loddo, V., and Palmisano, L. (2007) Photocatalytic

selective oxidation of 4-methoxybenzyl alcohol to aldehyde in aqueous suspension of home-

prepared titanium dioxide catalyst. Adv. Synth. Catal. 349, 964-970.

(23) Fubini, B., and Hubbard, A. (2003) Reactive oxygen species (ROS) and reactive nitrogen species

(RNS) generation by silica in inflammation and fibrosis. Free Radical Biol. Med. 34, 1507-1516.

(24) Zhang, H. Y., Ji, Z. X., Xia, T., Meng, H., Low-Kam, C., Liu, R., Pokhrel, S., Lin, S. J., Wang,

X., Liao, Y. P., Wang, M. Y., Li, L. J., Rallo, R., Damoiseaux, R., Telesca, D., Madler, L.,

Cohen, Y., Zink, J. I., and Nel, A. E. (2012) Use of Metal Oxide Nanoparticle Band Gap To

Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation. Acs

Nano 6, 4349-4368.

(25) Fubini, B., Fenoglio, I., Tomatis, M., and Turci, F. (2011) Effect of chemical composition and

state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine 6,

899-920.

(26) Fenoglio, I., Ponti, J., Alloa, E., Ghiazza, M., Corazzari, I., Capomaccio, R., Rembges, D.,

Oliaro-Bosso, S., and Rossi, F. (2013) Singlet oxygen plays a key role in the toxicity and DNA

damage caused by nanometric TiO2 in human keratinocytes. Nanoscale 5, 6567-6576.

(27) Xue, C. B., Wu, J. H., Lan, F. L., Liu, W., Yang, X. L., Zeng, F. D., and Xu, H. B. (2010) Nano

Titanium Dioxide Induces the Generation of ROS and Potential Damage in HaCaT Cells Under

UVA Irradiation. J. Nanosci. Nanotechnol. 10, 8500-8507.

(28) Jaeger, A., Weiss, D. G., Jonas, L., and Kriehuber, R. (2012) Oxidative stress-induced cytotoxic

and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes.

Toxicology 296, 27-36.

(29) Tiano, L., Armeni, T., Venditti, E., Barucca, G., Mincarelli, L., and Damiani, E. (2010)

Modified TiO2 particles differentially affect human skin fibroblasts exposed to UVA light. Free

Radical Biol. Med. 49, 408-415.

(30) Auffan, M., Pedeutour, M., Rose, J., Masion, A., Ziarelli, F., Borschneck, D., Chaneac, C.,

Botta, C., Chaurand, P., Labille, J., and Bottero, J. Y. (2010) Structural Degradation at the

Surface of a TiO2-Based Nanomaterial Used in Cosmetics. Environ. Sci. Technol. 44, 2689-

2694.

(31) Carlotti, M. E., Ugazio, E., Sapino, S., Fenoglio, I., Greco, G., and Fubini, B. (2009) Role of

particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radical

Res. 43, 312-322.

(32) Bolis, V., Busco, C., Ciarletta, M., Distasi, C., Erriquez, J., Fenoglio, I., Livraghi, S., and Morel,

S. (2012) Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase,

surface area and coating, in relation to their potential toxicity in peripheral nervous system. J.

Colloid Interface Sci. 369, 28-39.

(33) Diebold, U. (2003) The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53-229.

(34) Johnston, H. J., Hutchison, G. R., Christensen, F. M., Peters, S., Hankin, S., and Stone, V.

(2009) Identification of the mechanisms that drive the toxicity of TiO2 particulates: the

contribution of physicochemical characteristics. Part. Fibre Toxicol. 6.

(35) Silva, C. G., and Faria, J. L. (2009) Anatase vs. rutile efficiency on the photocatalytic

degradation of clofibric acid under near UV to visible irradiation. Photoch. Photobio. Sci. 8,

705-711.

(36) Fenoglio, I., Greco, G., Livraghi, S., and Fubini, B. (2009) Non-UV-Induced Radical Reactions

at the Surface of TiO2 Nanoparticles That May Trigger Toxic Responses. Chem. Eur. J. 15,

4614-4621.

(37) Livraghi, S., Corazzari, I., Paganini, M. C., Ceccone, G., Giamello, E., Fubini, B., and Fenoglio,

I. (2010) Decreasing the oxidative potential of TiO2 nanoparticles through modification of the

surface with carbon: a new strategy for the production of safe UV filters. Chem. Commun. 46,

8478-8480.

(38) Corazzari, I., Livraghi, S., Ferrero, S., Giamello, E., Fubini, B., and Fenoglio, I. (2012)

Inactivation of TiO2 nano-powders for the preparation of photo-stable sunscreens via carbon-

based surface modification. J. Mater. Chem. 22, 19105-19112.

(39) Sverjensky, D. A., and Sahai, N. (1996) Theoretical prediction of single-site surface-protonation

equilibrium constants for oxides and silicates in water. Geochim. Cosmochim. Acta 60, 3773-

3797.

(40) Franz, T. J. (1975) Percutaneous absorption on the relevance of in vitro data. J. Invest. Dermatol.

64, 190-195.

(41) Yamane, M. A., Williams, A. C., and Barry, B. W. (1995) Effects of Terpenes and Oleic-Acid as

Skin Penetration Enhancers Towards 5-Fluorouracil as Assessed with Time - Permeation,

Partitioning and Differential Scanning Calorimetry. Int. J. Pharm. 116, 237-251.

(42) Peira, E., Scolari, P., and Gasco, M. R. (2001) Transdermal permeation of apomorphine through

hairless mouse skin from microemulsions. Int. J. Pharm. 226, 47-51.

(43) Fubini, B., Mollo, L., and Giamello, E. (1995) Free-Radical Generation at the Solid/Liquid

Interface in Iron-Containing Minerals. Free Radical Res. 23, 593-614.

(44) Napierska, D., Rabolli, V., Thomassen, L. C. J., Dinsdale, D., Princen, C., Gonzalez, L., Poels,

K. L. C., Kirsch-Voders, M., Lison, D., Martens, J. A., and Hoet, P. H. (2012) Oxidative Stress

Induced by Pure and Iron-Doped Amorphous Silica Nanoparticles in Subtoxic Conditions.

Chem. Res. Toxicol. 25, 828-837.

(45) Gerloff, K., Fenoglio, I., Carella, E., Kolling, J., Albrecht, C., Boots, A. W., Forster, I., and

Schins, R. P. F. (2012) Distinctive Toxicity of TiO2 Rutile/Anatase Mixed Phase Nanoparticles

on Caco-2 Cells. Chem. Res. Toxicol. 25, 646-655.

(46) Lutterotti, L. (2010) Total pattern fitting for the combined size-strain-stress-texture

determination in thin film diffraction. Nuclear Instruments & Methods in Physics Research

Section B-Beam Interactions with Materials and Atoms 268, 334-340.

(47) Fenoglio, I., Fubini, B., Ghibaudi, E. M., and Turci, F. (2011) Multiple aspects of the interaction

of biomacromolecules with inorganic surfaces. Adv. Drug Deliver. Rev. 63, 1186-1209.

(48) Kosmulski, M. (2002) The pH-dependent surface charging and the points of zero charge. J.

Colloid Interface Sci. 253, 77-87.

(49) Cheng, J., and Sprik, M. (2010) Acidity of the Aqueous Rutile TiO2(110) Surface from Density

Functional Theory Based Molecular Dynamics. J. Chem. Theory Comput. 6, 880-889.

(50) Lademann, J., Weigmann, H. J., Rickmeyer, C., Barthelmes, H., Schaefer, H., Mueller, G., and

Sterry, W. (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into

the horny layer and the follicular orifice. Skin Pharmacol. Appl. 12, 247-256.

(51) Krafft, C., Dietzek, B., and Popp, J. (2009) Raman and CARS microspectroscopy of cells and

tissues. Analyst 134, 1046-1057.

(52) Lyng, F. M., Faolain, E. O., Conroy, J., Meade, A. D., Knief, P., Duffy, B., Hunter, M. B.,

Byrne, J. M., Kelehan, P., and Byrne, H. J. (2007) Vibrational spectroscopy for cervical cancer

pathology, from biochemical analysis to diagnostic tool. Exp. Mol. Pathol. 82, 121-129.

(53) Zhang, G. J., Moore, D. J., Flach, C. R., and Mendelsohn, R. (2007) Vibrational microscopy and

imaging of skin: from single cells to intact tissue. Anal. Bioanal. Chem. 387, 1591-1599.

(54) Osada, M., Gniadecka, M., and Wulf, H. C. (2004) Near-infrared Fourier transform Raman

spectroscopic analysis of proteins, water and lipids in intact normal stratum corneum and

psoriasis scales. Exp. Dermatol. 13, 391-395.

(55) Bernard, G., Auger, M., Soucy, J., and Pouliot, R. (2007) Physical characterization of the

stratum corneum of an in vitro psoriatic skin model by ATR-FTIR and Raman spectroscopies.

Biochim. Biophys. Acta 1770, 1317-1323.

(56) Anigbogu, A. N. C., Williams, A. C., Barry, B. W., and Edwards, H. G. M. (1995) Fourier-

Transform Raman-Spectroscopy of Interactions between the Penetration Enhancer Dimethyl-

Sulfoxide and Human Stratum-Corneum. Int. J. Pharm. 125, 265-282.

(57) Ahmed, S., and Wunder, S. L. (2009) Effect of High Surface Curvature on the Main Phase

Transition of Supported Phospholipid Bilayers on SiO2 Nanoparticles. Langmuir 25, 3682-3691.

(58) Gaber, B. P., and Peticolas, W. L. (1977) On the quantitative interpretation of biomembrane

structure by Raman spectroscopy. Biochim Biophys Acta 465, 260-274.

(59) Wegener, M., Neubert, R., Rettig, W., and Wartewig, S. (1996) Structure of stratum corneum

lipids characterized by FT-Raman spectroscopy and DSC .1. Ceramides. Int. J. Pharm. 128, 203-

213.

(60) Gniadecka, M., Nielsen, O. F., Christensen, D. H., and Wulf, H. C. (1998) Structure of water,

proteins, and lipids in intact human skin, hair, and nail. J. Invest. Dermatol. 110, 393-398.

(61) Kimura, E., Kawano, Y., Todo, H., Ikarashi, Y., and Sugibayashi, K. (2012) Measurement of

Skin Permeation/Penetration of Nanoparticles for Their Safety Evaluation. Biol. Pharm. Bull. 35,

1476-1486.

(62) Rojanasakul, Y., Wang, L. Y., Bhat, M., Glover, D. D., Malanga, C. J., and Ma, J. K. H. (1992)

The Transport Barrier of Epithelia - a Comparative-Study on Membrane-Permeability and

Charge Selectivity in the Rabbit. Pharm. Res. 9, 1029-1034.

(63) Baspinar, Y., and Borchert, H. H. (2012) Penetration and release studies of positively and

negatively charged nanoemulsions-Is there a benefit of the positive charge? Int. J. Pharm. 430,

247-252.