Characteristics of back-arc regions

16
Tecfonophysics, 102 (1984) l-16 Elsevier Science Publishers B.V.. Amsterdam - Printed in The Netherlands CHARACTERISTICS OF BACK-ARC REGIONS * D.A. BROOKS, R.L. CARLSON, D.L. HARRY, P.J. MELIA, R.P. MOORE, J.E. RAYHORN and S.G. TUBB Department of Geophysics and Geodynamics Research Program, Texas A&M University, College Station, TX 77843 (U.S.A.) (Received April 28, 1982; accepted March 5, 1983) ABSTRACT Brooks, D.A., Carlson, R.L., Harry, D.L., Melia, P.J., Moore, R.P., Rayhorn, J.E. and Tubb, S.G., 1984. Characteristics of Back-arc Regions. In: R.L. Carlson and K. Kobayashi (Editors), Geodynamics of Back-arc Regions. Tectonophysics, 102: I-16. A compilation is given of the geophysical and geological characteristics of 21 back-arc regions published before April, 1982. INTRODUCTION Back-arc regions may be classified according to whether they were formed by active back-arc spreading, ocean-continent collision, or entrapment of oceanic crust (Karig, 1971a; Uyeda and Kanamori, 1979). Regions formed by active back-arc spreading may be further subdivided as presently active or inactive. It has been proposed that the evolution of back-arc regions is a direct conse- quence of the mode of subduction (Uyeda and Kanamori, 1979; Uyeda, 1982). The mode of subduction in any region can be recognized by the geophysical and geological character of the trench-arc-back-arc system. The criteria defining the mode of subduction are the state of stress and nature of coupling in the back-arc region, the subduction rate, and the dip of the Benioff zone. Uyeda defined two basic modes of subduction; Chilean-type with compressional stress in the back-arc region, and Mariana-type with tensional stress in the back-arc region. Chilean-type subduction has strong coupling, a slow subduction rate, and a shallow Benioff zone. Mariana-type has weak coupling, a fast subduction rate, and a steeply dipping Benioff zone. But are there other important characteristics that these regions might have, or not have that could help explain the geodynamics of back-arc regions? * Texas A&M Geodynamics Research Program, Texas A&M Geodynamics Research Program Contribu- tion No. 33. ~40-1951/84/$03.~ Q 1984 Etsevier Science Publishers B.V.

Transcript of Characteristics of back-arc regions

Tecfonophysics, 102 (1984) l-16

Elsevier Science Publishers B.V.. Amsterdam - Printed in The Netherlands

CHARACTERISTICS OF BACK-ARC REGIONS *

D.A. BROOKS, R.L. CARLSON, D.L. HARRY, P.J. MELIA, R.P. MOORE, J.E. RAYHORN and

S.G. TUBB

Department of Geophysics and Geodynamics Research Program, Texas A&M University, College Station, TX

77843 (U.S.A.)

(Received April 28, 1982; accepted March 5, 1983)

ABSTRACT

Brooks, D.A., Carlson, R.L., Harry, D.L., Melia, P.J., Moore, R.P., Rayhorn, J.E. and Tubb, S.G., 1984.

Characteristics of Back-arc Regions. In: R.L. Carlson and K. Kobayashi (Editors), Geodynamics of

Back-arc Regions. Tectonophysics, 102: I-16.

A compilation is given of the geophysical and geological characteristics of 21 back-arc regions published before April, 1982.

INTRODUCTION

Back-arc regions may be classified according to whether they were formed by

active back-arc spreading, ocean-continent collision, or entrapment of oceanic crust

(Karig, 1971a; Uyeda and Kanamori, 1979). Regions formed by active back-arc

spreading may be further subdivided as presently active or inactive.

It has been proposed that the evolution of back-arc regions is a direct conse-

quence of the mode of subduction (Uyeda and Kanamori, 1979; Uyeda, 1982). The

mode of subduction in any region can be recognized by the geophysical and

geological character of the trench-arc-back-arc system. The criteria defining the

mode of subduction are the state of stress and nature of coupling in the back-arc

region, the subduction rate, and the dip of the Benioff zone. Uyeda defined two

basic modes of subduction; Chilean-type with compressional stress in the back-arc

region, and Mariana-type with tensional stress in the back-arc region. Chilean-type

subduction has strong coupling, a slow subduction rate, and a shallow Benioff zone.

Mariana-type has weak coupling, a fast subduction rate, and a steeply dipping

Benioff zone. But are there other important characteristics that these regions might

have, or not have that could help explain the geodynamics of back-arc regions?

* Texas A&M Geodynamics Research Program, Texas A&M Geodynamics Research Program Contribu- tion No. 33.

~40-1951/84/$03.~ Q 1984 Etsevier Science Publishers B.V.

1 Columbia Basin

Grenada Trough hltiplano Platmcw Scotia Sea

Boring S-0 Soa of Okhotok Kvrilr Barin S-a of Japan Shikoku Bo~in

10 Okinawa Trough 11 Porrcr-V-la Booin 12 Mariona Trough

14 15

16 17

18 19 20 21 22

23 24 25

13 W-et Philippinr Basin 26

Sulu s.a C.lrbro %.a

S. Chino Sma Andaman S-s Sumdo S.o

Jaw S-a Bmda S-a Birmarck Sea Fiji Platomu Lou Booin N-w Habrider Basin S. Fiji Eaoin Havr., Trough

Fig. 1. Index map of back-arc regions.

3

Questions of this kind are difficult to answer partly because pertinent data on

back-arc regions are so widely scattered in the literature. Thus, this paper presents a

compilation of the geophysical and geological characteristics for various back-arc

regions. It was compiled to establish an initial summary of existing data.

DATA COMPILATION

The published data on twenty-six back-arc regions (Fig. 1) are compiled and

presented in Table I. An arbitrary cutoff date of April, 1982, was imposed on the

data collection; therefore, no data published since that date are included in this

compilation. The back-arc regions of the world were divided among the authors. All

compilations began with computer literature searches and each author independently

supplemented the computer literature search for their regions. No claims are made

for uniformity of data coverage. Both the amount of published information and its

accessibility vary from region to region. We do not claim that this compilation is

complete.

DISCUSSION

The data in Table I agree with Uyeda’s hypothesis. It is generally possible to

correlate the mode of subduction with the origin of the back-arc region. Our

correlations are based on information from twenty-four of the twenty-six regions.

No data were found on the nature of coupling and the direction of the overriding

plate for the South China Sea and the Sea of Okhotsk, and these areas were not used

in our correlations.

The strongest correlation observed is between regions with weak coupling and

active or inactive back-arc spreading. All areas of weak coupling are spreading, or

have a history of spreading. The direction of the overriding plate in these areas may

be retreating, stationary, or advancing. Weak coupling seems to imply active or

inactive spreading. However, spreading, or a history of spreading, does not neces-

sarily imply weak coupling. Areas exist with strong coupling and either active or

inactive back-arc spreading. All of these areas, however, are believed to have an

advancing overriding plate. Areas with no history of back-arc spreading have strong

coupling and advancing overriding plates. The range of subduction rates and Benioff

zone dips indicate that the definitions of Chilean-type and Mariana-type subduction

are end members in a continuum of subduction types. No other correlations were

observed that might modify or expand the commonly used classification systems.

TABLE I

Characteristics of back-arc regions (references in parantheses)

P

Characteristic

Columbia Basin

Grenada Trough

Altiplano Plateau

Associated trench

Subducted plate

Overriding plate

Type

Origin

Age (Ma)

Magnetic lineations

Heat flow (hfu)

range/mean

Free air gravity (mgal)

Seismicity

Seismic attenuation

Mean depth (km)

Depth to Moho (km)

Maximum depth at trench (km)

Petrology

Back-arc spreading rate (mm/a)

Age of subducted plate

at trench (Ma)

Dip of Benioff zone

Maximum depth of the

Benioff zone (km)

~~

Middle America (1)

Lesser Antilles (1)

Peru/Chile (1)

cocos (1)

North America (1)

Nazca (1)

North America/Caribbean (1)

Caribbean (1)

South America (1)

inactive (71)

inactive (71)

inactive (40); continental (71)

trapped (68). (71)

spreading (?) (71)

early Tertiary (68)

late Mesozoic (40)

-

E - W, irregular (9)

NE - SW (9)

_~__~

0.8 - 1.7 (9)

1.2 - 2.111.6 (9)

-120 to +llO (9), (72)

-25 to +25 (9)

-200 to +50 (54)

shallow focus (9), (19)

aseismic (9)

shallow to deep focus (40). (57)

____

pP norm1

(3)

pP normal (3)

Sn high (3), (40)

_____.~_____

3.5 (68)

3 (25)

3.8 (66)

11 (68)

12 (25)

70 (40)

6.6 (27)

9.2 (27)

8.1 (27)

oceanic crust (9)

oceanic crust (68)

elastic sediment (40)

70 (55)

80 - 95 (27)

41 (27)

___

60" (19), (36)

50" (67); 65" (64)

8" - 30" (57), (71)

200 (19), (36)

230 (64)

150 - 290 (71); 650 (Si)

_s_--__

Direction of absolute motion

of the overriding plate

Subduction rate (mm/a)

(absolute motion)

Convergence rate (@m/a)

Nature of coupling

advancing (12)

50 - 80 (1)

53 (48); 90 (71)

strong (71)

stationary (?) (12)

advancing (12). (71)

-l_l..

10 (1)

60 (1)

22 (1)

52 - 60 (48); 90 - 110 (71)

weak (71)

strong (71)

____ _ ..-. _ --- . ..-_

TABLE I (continued)

Characteristic

Scotia Sea

Bering Sea

Associated trench

South Sandwich (1)

Aleutian (1)

Subducted plate

South America (1)

Pacific-(L)

Overriding plate

Sandwich/Scotia (1)

North America (1)

Type

active (66), (71)

inactive (15). (43), (71)

OriKiIl

spreading (71)

trapped (15), (71)

Age (Ma)

30 (34); late Miocene (66)

Oligocene (15)

Magnetic lineations

ENE - WSW (17); sub-parallel Antarctica (34) N - S (15)

Sea of Okhotsk

Kurile (1)

Pacific (1)

North America (1)

inactive (43). (66)

trapped (7)

mid-Tertiary (66)

Heat flow (hfu)

rangelmean

1.9/1.9 (82)

0.9 - 1.3/1.1 (66)

1.5 - 3.0/2.3 (66); 1.9 (74)

Free air gravity (mgal)

+200 (17)

0 to + 20 (15), (76)

+4O (76)

Seismicity

shallow to intermediate focus (17), (36)

intermediate to deep focus (2)

intermediate to deep focus (2)

Seismic attenuation

PP normal (3)

pP, Sn nozmal (66)

pP high (3)‘ (66)

Mean depth (km)

3.2 (66); 4 (17)

4.7 (66)

4.2 (66)

Depth to Moho (km)

10 (4)

11 - 15 (15)

Maximum depth at trench (km)

8.3 (17)

7.7 (27)

10.5 (27)

Petrology

basalt/andesite (4)

tholeiitic basalt/andesite (15)

andesite/granite (7)

Back-arc spreading rate (mm/a) 60 (4)

Age of subducted plate

50 - 70 (17)

50 (27)

110 (55)

at trench (Ma)

Dip of Benioff zone

71° (71)

65' (22)

4o" (37)

Max0num depth of the

Benioff zone (km)

170 (66), (71)

260 (22). (65)

610 (66)

Direction of absolute motion

of the overriding plate

retreating (12)

advancing (12). (71)

Subduction rate (mm/a)

(absolute motion)

Convergence rate (mm/a)

Nature of coupling

55 (4)

00 (1)

27 (48); 30 (66)

52 - 80 (71); 53 - 63 (48): 60 (66) a0

(66); 93 (71)

weak (71)

StFOnR (71)

vt

TABLE I (continued)

Characteristic

Kurile Basin

Sea of Japan

Shikoku Basin

Associated trench

Subducted plate

Overriding plate

Type

Origin

&82 (Ma)

Magnetic lineations

Heat flow (hfu)

range/mean

Free air gravity (mgal)

Seismicity

Seismic attenuation

Mean depth (km)

Depth to Moho (km)

Maximum depth at trench (km)

Petrology

Back-arc spreading rate (mm/a)

Age of subducted plate

at trench (Ma)

Dip of Benioff zone

Maximum depth of the

Benioff zone (km)

Kurile (1)

.Japan/Nankai Trough (1)

Iru-Benin (1)

Pacific (1)

Pacific/Philippine

(1)

Pacific (1)

North America (1)

Eurasia (1)

Philippine (1)

inactive (71)

inactive (66), (71)

inactive (43), (71)

spreading (71)

spreading (71)

spreading (71), (75), (81)

14 - 25 (74)

14 - 25 (66), (74); late Cretaceous (33) 3 (68); 19 - 24 (75)

E - NE (49)

--__~

NNw (75)

2.2 (74)

2.2 (49), (66), (74)

0.1 - 5.0/2.4 (74)

+lO (61); +I0 to +20 (49)

+15 (76)

shallow focus, strike-slip (71) shallow focus, strike-slip (26). (71)

shallow focus (63)

high from 50 - 250 km (37)

pP, Sn high (61). (63). (66); Pn low 13) pP high (61)

3 (1)

4.2 (66)

G (76); 4.5 (61)

20 (23)

6.2 (49)

6.1 - 6.3 (75); 13.i (61: _

10.5 (27)

4.9 (27)

9.8 (27)

basalt/rhyolite (49)

tholeiitic basalt (42)

102 - 118 (27)

22 - 42 (b9), (75)

102 - 118 (27)

40" (37)

140 (27)

--

65" (62)

30" (37)

45" (37), (41)

advancing (8), (12)

400 (37); 610 (66)

500 (37), (41)

Direction of absolute motion

of the overriding plate

Subduction rate (mm/a)

(absolute motion)

Convergence rate (mm/a)

Nature of coupling

80 (66); 79 - 85 (48)

strong (71)

advancing (12). (71)

retreating (12)

-----

--.-_

80 (61)

80 (61). (71)

88 - 90 (48). 90 (66)

50 (71)

strong (71)

____~

TABLE I (continued)

ci-L

ara

cter

isti

c Okinawa Trough

Associated trench

Ryukyu (43)

Subducted plate

Philippine (1)

Overriding plate

Eurasia (1)

Type

inactive (43)

Origin

spreading (El)

Age (Ma)

Pliocene (El)

Magnetic lineations

none observed (81)

Parece-Vela Basin

Mariana Trough

Mariana/yap (1)

Mariana (1)

Pacific (1)

Pacific (1)

Philippine (1)

Mariana (1)

inactive (43), (44), (66). (71)

active (43), (66), (71)

spreading (53). (71)

spreading (71)

25 - 26 (44), (53), (66)

Pliocene (66); late Miocene (44)

N - S poor (53)

questionable (81)

Heat flow (hfu)

range/mean

6.2 - 9.0/4.4 (74)

0.1 - 5.0/2.1 (53), (69); 2.0 (74)O.l - 8.0/1.5 (74); 0.1 - 8.312.5 (66)

Free air gravity (mgal)

+5 (61)

0 to +25 (531, (76)

+40 (76)

Seismicity

shallow focus, normal faulting (81) aseismic (41)

shallov focus, normal faulting (71)

Seismic attenuation

Sn high (66)

pP, Sn high (66)

Mea" depth (km)

2.7 (58)

5 (441, (53), (69)

4 (44), (66)

Depth to Moho (km)

4.2 - 5.3 (74)

Maximum depth at trench (km)

7.5 (27)

8.5 - 11 (27)

11 (27)

Petrology

basalt/diorite (81)

tholeiitic basalt (53), (69)

tholeiitic basalt (44), (45)

Back-arc spreading rate (mm/a)

100 (44)

Age of subducted plate

53 (27)

50 (27)

140 (27)

at trench (Ma)

Dip of Benioff zone

45"(41)

90"(41)

90" (41)

Maximum depth of the

Benioff zone (km)

280 (41)

700 (41)

680 (41). (66)

Direction of absolute motion

of the overriding plate

advancing (12)

retreating (12)

retreating (12). (71)

Subduction rate (mm/a)

(absolute motion)

71 (71)

73 (71)

73 (71)

Convergence rate (m/a)

84 (71)

90 (48)

90 (66)

Nature of coupling

weak (71)

weak (71)

.J

__

_

TABLE I (continued)

2

Characteristic

West Philippine Basin

Sulu Sea

Celebes Sea

Associated trench

Subducted plate

Overriding plate

Type

Origin

Age (Ma)

Magnetic lineations

Heat flow (hfu)

range/mean

Free air gravity (mgal)

Seismicity

Seismic attenuation

Mean depth (km)

Depth to Moho (km)

Maximum depth at trench (km)

Petrology

Back-arc spreading rate (mm/a)

Age of subducted plate

Mariana/Yap/Palau

(1)

Sulu (1)

North Sulawesi (80)

Pacific (?), (1)

Philippine (?)/Eurasia (?) (28) Eurasia (80)

Philippine (?), (1)

Philippine (?)/Eurasia (7) (28) Philippine (?) (80)

inactive (43), (66), (71)

inactive (28). (43)

inactive (43)

spreading (81)

trapped (33); spre&ing

(81)

trapped (33); spreading (81)

early Tertiarv (66), (69)

early Miocene (28); 14 - 25 (74) mid-Oligocene (80); 40 - 50 (74)

NW - SE (81)

none observed (69) ___

N650E (80)

_~-_ ____-

1.45 (69), (74)

1.8 (74)

1.6 (74). (80)

-

+lO (69)

+50 to +75 (78)

+30 to +60 (78)

aseismic (1)

aseismic (28); shallow (?) (69) shallow to deep focus (24), (311, (36j

Sn normal (66)

-._--

5.5 (69), 5.8 (66)

4 (58), (69)

4.5 (80)

________~_.

9.5 - 11.5 (69)

6.0 - 7.0 (80)

8.0 - 11.0 (27)

10.5 (27)

10.5 (27)

tholeiitic basalt (45)

oceanic crust (69)

oceanic crust (69), (80)

44 (81)

-.

50 (27)

100 - 125 (27)

100 - 125 (27)

Dip of Benioff zone

Maximum depth of the

Benioff zone (km)

90" (41)

___

_____I_

_~______.

700 (41)

600 (24), (28)

Direction of absolute motion

of the overriding plate

Subduction rate (mm/a)

(absolute motion)

Convergence rate (mm/a)

Nature of coupling

retreating (12)

73 - 77 (71)

90 (48)

weak (71)

advancing (12)

advancing (12)

TABLE I (continued)

Characteristic

Associated trench

Subducted plate

Overriding plate

Type

Origin

Age (Ma)

Magnetic lineations

South China Sea

Palavan (I), (65)

Eurasia (1)

Philippine (?), (I)

inactive (28). (43)

14 - 25 (69). (74): 14 - 36 (65)

E - W (33), (69); N80aE (81)

Sunda Sea

Sunda (1)

Australia (1)

Eurasia (1)

inactive, continental (71)

Triassic (28)

none observed (35)

Banda Sea

TimorlCeram (1)

Eurasia (28): Australia (39), (69). (7

3)

Australia (28); Eurasia (39). (69), (73)

active (?) (69)

trapped (?)/spreadina (?) (5) .(6),(33),(69)

60 (69)

N60" to N70'E (5): NNE - SSW (69)

Heat flow (hfu)

range/mean

1.0 - 3.512.0 (69). (74)

2.5 (18)

0.5 - 1.8 (38); 1.5 (5); 1.8 (6)

Free air gravity (mgal)

+30 (78)

+45 (78)

50 (6). (10)

SeiSUIiCiCy

aseismic (31): shallow focus (?) (69)

asei

smic

(l

a),

(71)

intermediate to deep focus (2). (68)

Seismic attenuation

PP low (3)

pP low (3)

3 Mean de th (km)

4.0 65)

(69

Depth to Moko (km)

10 - 12 (65), (69)

9 - 10 (56), (69)

Maximum depth at trench (km)

2 - 3 (65)

6 (28); 7.4 (27)

3.6 (39): 7 (6). (28)

Petrology

oceanic crust (69)

continental crust (71); melange (28) oceanic crust (51% (lo), (39)

Back-arc spreading rate (mm/a)

50 - 58 (65)

Age of subducted plate

40 (27)

at ttench (Ma)

Dip of Benioff zone

60" (24)

55" (24)

Maximum depth of the

Benfoff zone (km)

200 (28). (35); 300 (31)

100 (24), (38)

Direction of absolute motion

of the overriding plate

Subduction rate (mm/a)

(absolute motion)

Convergence rate (mm/a)

Nature of coupling

advancing (12)

60 (31)

42 - 56 (52); 60 (48)

strong (71)

advancing (12)

107 (31)

50 - 90 (6)

strong (71)

iD

TABL

E I

(continued)

C

Characteristic

Bismarck Sea

Fiji Plateau

New Hebrides Basin

-..

Associated trench

New Britian (1)

New Hebrides (I)

New Hebrides (1)

Subducted plate

Solamon (1)

Australia (1)

Australia (1)

-_..

Overriding plate

Bismarck (If

Pacific (?) (1)

Pacific (?) (1)

---

Type

active (71)

inactive

(43).

(66); active (71)

active (71)

----...

Origin

spreading (14); leaky transform (71)

spreading (81); leaky transform (71)

spreading (?) (51)

-.-..

Age (Ma)

2.5 (16)

late Tertiary (42)‘ (65)

3 (13)

-~___.,_-_~_...

Magnetic linearions

E - W (14)

NW - SE (29)

---.-~_

______

Heat flow (hfu)

0.0 - 5.6/2.4 159); 1.4 - 10.0/2.9(66);

range/mean

2.5 (60); 2.9 (74)

1.3 - 2.8 (50)

~____~_

Free air gravity fmgal)

+60 (14)

+40 (11)

~_.__.

Seismicity

strike-slip faulting (14)

shallow focus (21)

shallow to intermediate fccus (36; ..-_-.

Seismic attenuation

pP, Sn high (3), (ZG), (66)

pP high (201

.-

-^

.-..

Mean depcb (km)

2.0 (14)

2 - 3 (111, (66)

3 (1) __r-~_l-~--___

Depth to Maho (km)

18.0 (14)

_._~__

Maximum depth at trench (km)

8.3 (27)

7.1

(27)

9.2 (27)

~___

__-_..

Petrology

basalt/andesite (131, (14)

tholeiieic basalt (29)

tholeiitic basalt/andesite 113)

Back-arc spreading ra

te (

m/a

) 80

asy

mm

etric

(14)

15 (29): 30 - 39 (:I)

-I_____-

___._".__

Age of subducted plate

50 - 65 (27)

35 - 42 (27)

70 - 82 (27)

at trench (Ma)

..~-.--.

Dip of Benioff zone

45" (36)

70" (20), (71)

YO" (201, (361, (71)

--_l--.---__

Maximum depth

of the

Benioff tone (km)

200 - 600 (14), (34)

300 - 660 (la), (66), (71)

300 - 5317 ,:

!o! I, I

<::j

Direction of absolute motion

of the overriding plate

advancing (12)

unclear ('1); adYaxing

:i:.;

Subduction rate (mm/a)

~~-~_._"__"_~~I-~._

__-.

(absolute motion)

100 (1)

SO -60 (1) --..-_

._ .---_.-.

Convergence rate (mm/a)

90 (66)

_-.--..

.~

-#ature of coupling

weak (71)

weak 171)

weak (71)

~.

TABLE I (continued)

Characteristic

South Fiji Basin

Java Sea

Associated trench

Kemadec

(?) (1)

Sunda (1)

Subducted plate

Pacific (?) (1)

Australia (1)

gp

Overridin

late

Type

inactive (43), (66), (71)

inactive, continental (71)

origin

trapped (71)

Age (Ma)

early to mid-Tertiary (13), (66), (74)

Cretaceous (28)

Magnetic lineations

RRR triple junction = N - S. NE - SW.

none observed (35)

E - W (77). (81)

Heat flow (hfu)

range/mean

Free air gravity (mgal)

Seismicity

0.5 - 1.7/1.1 (601, (66)

intermediate to deep focus (2)

1.9 - 2.5 (18)

+35 (78)

deep focus (2). (35)

Mean depth (km)

Depth to Moho (km)

Maximum depth at trench (km)

Petrology

4.6 (66)

10.8 (74)

10 (27)

andesitic basalt (42)

0.3 (69). (71)

5 - 7 (27). (28). (52)

continental crust, granite (28); metamorphic

rocks (18)

Age of subducted plate

at trench (Ma)

Dip of Benioff zone

Maximum depth of the

Benioff zone (km)

Direction of absolute motion

of the overriding plate

Subduction rate (m/a)

(absolute motion)

Convergence rate (m/a)

Nature of coupling

105 - 121 (27)

53' - 65' (71)

550 - 650 (71)

retreating (12); advancing (51)

50 - 100 (1)

47 (48)

40 (27)

60" - 65" (24), (27), (28), (35)

500 - 600 (24), (28). (31)

advancing (12)

49 (31)

49 (48); 57 - 75 (52)

strong (71)

TABLE i ~continuedl

L

-~_~___-__._.

_

Characteristic

Havre Trough

Andaman Sea

Lau Basin

__II-

Associated trench

Kemadec (1)

Andaman (I)

Tonga (1)

__l_l_

Subducted plate

Pacific (I)

Australia (1)

Pacific (I)

-

Overriding plate

Australia (ij

Emma/Eurasia (1). (16)

Australia (1) -~-~_I--_________

Type

active 143), (661, (71)

active (69j, (71)

-____

-

active (43f, (66). (71)

_

Origin

spreading. (Bi)

spreading (12). (32), (35j, (47):

spreading. (71), (8!j

leaky transform (20)

---

A@ (aa)

Pliocene (42). (

66)

3 (46)

0 - 3 (30); Pliocene (66)

~._~

--_

-_..

Mamatic lineations

N - S (79)

NW - SE (46), (81)

?I - S (79); NW - SE (30!__ ___

___

----_

Heat flow Chfuj

0.5 - 3.8/2.: (66)

0.9 - 5.313.5 ie;, (69)

0.3 - 6.7/2.ij (30); ;I,: I_ '_.j.

i, I'm ,

rang&em

2.: (60)

_~--

--

-~..-_.

l.--

.___.

Free air gravity (ragal)

-25 (78)

.-I____-.._._~

shallow focus. normai faulting (7!), (iV1

shallow focus, serike-slip (16), (2!), (46);

sha:lov focus, nowai innit:ne !7:i

Seismicity

shallow focus, normal faulting (6Vj, (71);

intermediate focus (Zj, (21)

--

_~___

..__

Seismic attenuation

PP. Sn hi& (66)

normal (2)

__dP, Sn high '3Laz!

,__,_~~

Hean depth (km)

2.4 (65)

___1___~

2 (16)

_____

2 - 3 (3

0)

A

_il?

,_._

x _.

___.

--

- Depth to Moho (km)

--

Maximum depth at trench fkm)

10 (27)

3.0 - 3.: (52)

10.9 (27)

-_-..- ~_....__._

__,

Iwxo

logY

tholeiicic basalt (42)

_basalt (16)

tholeiicic basllc (30)

-

~__

.~

“.._

_~

Back-arc spreading rate (m/a)

19 (16), (461, (69)

38 (79)

-

_._____".I__

Age of subducted plait@

105 - 121 (2i)

55 - 70 (55)

105 - 121 (27)

at trench Maa)

--____~.

".____. .

_

Dip of Benioff zone

65' (71)

50" (ilj

45" (301, (71)

-..

_ ._____."

.,.

maximum depth of the

Benioff zone fkmj

660 (66)

LOO (?I)

b6G (66)‘ (:i)

--_"_l__

~.

~___^___.___

__l~_ll^_---.~----_-__-__-

_.

Direction of absolute notiOn

retreating (i2j; advancing (5i)

recreating (71)

of the overriding plate

rerrearing

;ij

it.

*. :

.,< ,.

-~

_--

..--_

_ _

- Subduction rate (mm/a)

(absolute motion)

iO0 - 105 (ij

_~

-

-_____.-_~--___

Con

verg

ence

ra

te h

da)

80 (66)

7 - 20 (711

80 (66). 91 (48) __~_

__

xatute of coupling

weak (71)

weak (71)

weak (7:)

13

ACKNOWLEDGEMENTS

This paper was prepared as a class project at Texas A&M University. The

authors are listed alphabetically. We wish to thank the Geophysics Department For

providing funds for the initial computer literature searches. We also wish to thank

Jane Denoux for typing the compilation. A preliminary version of this paper was

presented as a poster at the 1982 Texas A&M Geodynamics Symposium; this is

contribution No. 33 of the Texas A&M Geodynamics Research Program.

REFERENCES

(1) American Association of Petroleum Geologists, 1981. Plate tectonic maps of the circum-Pacific

re8ion. Am. Assoc. Pet. Geol., Tulsa, Okla., 5 pp.

(2) Barazangi, M. and Dorman, J., 1969. World seismicity maps compiled from ESSA, Coast and

Geodetic Survey, epicenter data, 1961-1967. Bull. Seismol. Sot. Am., 59: 369-380.

(3) Barazangi, M., Pennington, W. and Isacks, B., 1975. Global study of seismic wave attenuation in the

upper mantle behind island arcs using pP waves. J. Geophys. Res., 80: 1079-1092.

(4) Barker, P. and Griffiths, D.H.. 1972. The evolution of the Scotia Ridge and Scotia Sea. Philos. Trans.

R. Sot. London, Ser. A, 271: 151-183.

(5) Bowin, CO., Purdy, G.M., Shor, G., Jr., Lawver, L., Hartono, H.M.S., Johnston, C., Chamalaun, F.

and Sunderland, J., 1977. Geophysical study of the Banda Arc, Indonesia (abstract). EOS, Trans.

Am. Geophys. Union, 58: 509.

(6) Bowin, C., Purdy, G.M., Johnston, C., Shor, G., Lawver, L., Hartono, H.M.S. and Jezek, P., 1980.

Arc-continent collision in Banda Sea region. Am. ASSOC. Pet. Geol. Bull., 64: 868-915.

(7) Burk, C.A. and Gnibidenko, H.S., 1977. The structure and age of acoustic basement in the Okhotsk

Sea. In: M. Talwani and W.C. Pitman, III (Editors), Island Arcs, Deep Sea Trenches and Back-Arc

Basins. Am. Geophys. Union, Washington, D.C., pp. 451-461.

(8) Bums, R.E., 1964, Sea bottom heat flow measurements in the Andaman Sea. J. Geophys. Res., 69:

4918-4919.

(9) Case, J.E., 1975. Geophysical studies in the Caribbean Sea. In: A.E.M. Nairn and F.G. Stehli

(Editors), Tbe Ocean Basins and Margins, v. 3. Plenum Press, New York, pp. 107-180.

(10) Chamalaun, FM., Lockwood, K. and White, A., 1976. The Bouguer gravity field and crustal

structures of eastern Timor. Tectonophysics, 30: 241-259.

(11) Chase, C.G., 1971. Tectonic history of the Fiji Plateau. Geol. Sot. Am. Bull., 82: 3087-3110.

(12) Chase, C.G., 1978. Extension behind island arcs and motions relative to hot spots. J. Geophys. Res.,

83: 5385-5387.

(13) Coleman, J.B. and Packham, G.H., 1976. The Melanesian borderlands and India-Pacific plates’

boundary. Earth Sci. Rev., 12: 197-233.

(14) Connely, J.B., 1976. Tectonic development of the Bismark Sea based on gravity and magnetic

modeling. Geophys. J. R. Astron. Sot., 46: 23-40.

(15) Cooper, A.K., Marlow, MS. and Scholl, D.W., 1977. The Bering Sea-A multifarious marginal

basin. In: M. Talwani and W.C. Pitman, III (Editors), Island Arcs, Deep Sea Trenches and Back-Arc

Basins. Am. Geophys. Union, Was~ngton, DC., pp. 437-450.

(16) Curray, J.R., Moore, D.G., Lawver, L.A., Emmel, F.J., Raitt, R.W., Henry, M. and Keickhefer, R.,

1979. Tectonics of the Andaman Sea and Burma. Am. Assoc. Pet. Geol., Mem., 29: 189-198.

(17) Dalziel, I.W.D. and Elliot, D.H., 1973. The Scotia arc and Antarctic margin. In: A.E.M. Nairn and

F.G. Stehli (Editors), The Ocean Basins and Margins, v. 3. Plenum Press, New York, pp. 171-246.

14

(18) da Silva Carvalho, H., Punvoko. Siswoyo, Thamrtn. N. and Vacquter. V.. 1979. Terrestrtal heat flow

in the Tertiary basin of central Sumatra (abstract). (&physics, 44: 398.

(19) Dewey, J.W. and Aigermissen, S.T.. 1974. Seismicity of the Middle America arc-trench system near

Managua, Nicaragua. Bull. Seismol. Sot. Am.. 64: 1033- 1048.

(20) Dubois, J., 1971. Propagation of P waves and Rayleigh waves in Melanesia: Structural implications.

(21)

(22)

(23

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

J. Geophys. Res., 76: 7217-7240.

Pguchi, T.. Uyeda. S. and Maki. T.. 1979. Seismotectonics and tectonic history of the An&man Sea.

Tectonophysics, 57: 35-5 1.

Engdahl. E.R., Sleep, N.H. and Lin. M.T., 1977. Plate effects in north Pacific subduction zones.

Tectonophysi~. 37: 95 - 116. Fedotov, S.A., 1965. Upper mantle properties of the southern part of the Kuril island arc according

to detailed seismological investigation data. Tectonophysics. 2: 219.-225.

Fitch, T.. 1970. Earthquake mechanisms and island arc tectonics in the Indonesian-Philippine

region. Bull. Seismol. Sot. Am., 60: 565-591.

Fox, P.J. and Heezen, B.C., 1975. Geology of the Caribbean crust. In: A.E.M. Nairn and F.G. Stehli

(Editors), The Ocean Basins and Margins, v. 3. Plenum Press; New York. pp. 421-466.

Fukao, Y. and Furumoto. M., 1975. Mechanisms of large earthquakes along the eastern margin of

the Japan Sea. Tectonophysics, 26: 247-266.

Grellet, C. and Dubois, J., 1982. The depth of trenches as a function of subduction rate and age of

the lithosphere. Tectonophysics, 82: 45-56.

Hamilton, W., 1977. Subduction in the Indonesian region. In: M. Talwani and W.C. Pitman, 111

(Editors), Island Arcs, Deep Sea Trenches and Back-Arc Basins. Am. Geophys. Union, Washington,

D.C., pp. 15-31.

HartzelI. SW., 1975. Geophysical study of the Fiji Plateau near 15”3O’S 173”30’E (abstract). EOS,

Trans. Am. Geophys. Union, 56: 1063.

Hawkins. J.W., Jr., 1974. Geology of the Lau Basin, a marginal sea behind the Tonga arc. In: C.A.

Burk and C.L. Drake (Editors). The Geology of Continental Margins. Springer, New York, pp.

505-520.

Hedervari, P. and Papp, 2.. 1981. Seismicity maps of the Indonesian region. Tectonophysics, 76:

131-148.

Henry, M., Raitt. R.W., Curray, J.R. and Moore, D.G., 1975. Delay-time function analysis of

multiple sonobouy refraction lines in the Andaman Sea (abstract). EOS. Trans. Am. Geophys.

Union, 56: 1063-1064.

Hilde, T.W.C., Uyeda, S. and Kroenke, L.. 1977. Evoiution of the western Pacific and its margin.

Tectonophysics, 38: 145- 165.

Hill, LA. and Barker, P.F., 1980. Evidence for Miocene back-arc spreading in the central Scotia Sea.

Geophys. J.R. Astron. Sot., 63: 4277440.

Holocombe, C.J., 1977. Earthquake foci distribution in the Sunda Arc and the rotation of the

back-arc area. Tectonophysics, 43: 1699180.

Isacks, B. and Molnar, P., 1971. Distribution of stresses in the descending lithosphere from a global

survey of focal mechanism solutions of mantle earthquakes. Rev. Geophys. Space Phys., 9: 103-174.

Ishida, M., 1970. Seismicity and travel-time anomaly in and around Japan. Bull. Earthquake Res.

inst. Tokyo Univ.. 48: 1023-1051.

Jacobsen, R.S., Lawyer, L.A., Becker, K. and Shor, G.G., Jr., 1977. Anomalously uniform heat flow

in the Banda Sea (abstract). EOS, Trans. Am. Geophys. Union, 58: 515.

Jacobson, R.S., Shor, G.G.. Jr., Kieckhefer, R.M. and Purdy, G.M., 1979. Seismic refraction and

reflection studies in the Timor-Aru trough system and Australian continental shelf. Am. Assoc. Pet.

Geol. Mem., 29: 209-222.

James, D.E., 1971. Plate tectonic model for the evolution of the central Andes. Geol. Sot. Am. Bull..

82: 33253346.

15

(41) Katsumata. M. and Sykes, L.R., 1969. Seismicity and tectonics of the western Pacific:

Izu-Mariana-Carohne and Ryukyu-Taiwan regions. J. Geophys. Res.. 74: 5923-5948.

(42) Karig, D.E., 1970. Ridges and basins of the Tonga-Kemadec island-arc system. J. Geophys. Res.,

15: 239-254.

(43) Kari8, D.E., 1971a. Origin and development of marginal basins in the western Pacific. J. Geophys.

Res., 16: 2542-2561.

(44) Karig, D.E., 1971b. Structural history of the Mariana island arc system. Geol. SOC. Am. Bull.. 82:

323-344.

(45) Karig, D.E., 1975. Basin genesis in the Philippine Sea. Initial reports of the Deep Sea Drilling

Project, 31: 857-880.

(46) Lawver, L.A., Curray, J.R. and Moore, D.G., 1975. Magnetics in the Andaman Sea and the effect of

high sedimentation rates (abstract). EOS, Trans. Am. Geophys. Union, 56: 1064.

(47) Lawver, L.A., Curray, J.R. and Moore, D.G., 1976. Tectonic evolution of the Andaman Sea

(abstract). EOS, Trans. Am. Geophys. Union, 57: 333-334.

(48) Le Pichon, X., 1968. Sea-floor spreading and continentai drift. J. geophys. Res., 73: 3661-3705.

(49) Ludwig, W.J., Murauchi, S. and Houtz, R.E., 1975. Sediments and structure of the Japan Sea. Geol.

Sot. Am, Bull., 86: 651-664.

(50) MacDonald, K.C., Luyendyk, B.P. and Von Herzen, R.P., 1973. Heat flow and plate boundaries in

Melanesia. J. Geophys. Res., 78: 2537-2546.

(51) Minster, J.B. and Jordan, T.H., 1978. Present-day plate motions. J. Geophys. Res., 83: 5331-5354.

(52) Moore, G.F., Curray, J.R., Moore, D.G. and Karig, D.E., 1980. Variations in geologic structure

along the Sunda fore arc, northeastern Indian Ocean. Geophys. Monogr., Am. Geophys. Union, 23:

145-160.

(53) Mrozowski, C.L. and Hayes, D.E., 1979. The evolution of the Parece-Vela Basin, eastern Philippine

Sea. Earth Planet. Sci. Lett., 46: 49-67.

(54) Ocola, L. and Aleman, H., 1976. Regional gravity in Peru (abstract). Geophys. Monogr., Am.

Geophys. Union, 19: 67.

(55) Pitman, WC., III, Larson, R.L. and Herron, E.M., 1974. Magnetic linearions of the oceans. Geol.

Sot. Am., Boulder, Colorado, 1 p.

(56) Purdy, G.M., Detrick, R. and Shor, G.G., 1977. Crustal structure of the Banda Sea and Weber Deep

(abstract). EOS, Trans. Am. Geophys. Union, 58: 509.

(57) Rene Rodriguez, E., Ramon Cabre, S.J. and Mercado, A., 1976. Geometry of the Nazca plate and its

geodynamic implications. Geophys. Monogr., Am. Geophys. Union, 19: 87-103.

(58) Sclater, J.G., 1972. Heat Row and elevation of the marginal basins of the western Pacific. J.

Geophys. Res., 77: 57055720.

(59) Sclater, J.G. and Menard, H.W., 1967. Topography and heat flow of the Fiji Plateau. Nature, 216:

991-993.

(60) Sclater, J.F., Ritter, U.G. and Dixon, F.S.. 1972. Heat flow in the southwestern Pacific. J. Geophys.

Res., 77: 5697-5704.

(61) Segawa, J. and Tomoda, Y., 1976. Gravity measurements near Japan and study of the upper mantle

beneath the oceanic trench-marginal sea transition zones. Geophys. Monogr., Am. Geophys. Union,

19: 35-52.

(62) Stauder, W. and Mualchin, L., 1976. Fault motion in the larger earthquakes of the Kurile-Kamchatka

arc and the Kurile-Hokkaido comer. J. Geophys. Res., 81: 297-308.

(63) Sugimura, A. and Uyeda, S., 1973. Island arcs, Japan and its Environs. Elsevier, Amsterdam, 247 pp.

(64) Sykes, L.R., 1965. The seismicity of the Caribbean region. J. Geophys. Res., 70: 5065-5074.

(65) Taylor, B. and Hayes, D.E., 1980. Tectonic evolution of the South China Basin. Geophys. Monogr.,

Am. Geophys. Union, 23: 89-104.

(66) Toksoz, M.N. and Bird, P., 1979. Formation and evolution of marginal basins and continental

plateaus. In: M. Talwani and W.C. Pitman, 111 (Editors), Island Arcs, Deep Sea Trenches and

Back-Arc Basins. Am. Geophys. Union, Washington, D.C., pp. 379-393.

(67) Tomblin, J.F., 1975. The lesser Antilles and Aves Ridge. In: A.E.M. Nalrn and I-.<;. Stehll (t:ditot-\).

The Ocean Basins and Margins. v. 3. Plenum Press. New York, pp. 467 -500.

(68) Uchupi, E.. 1975. Physiography of the Gulf of Mexico and Caribbean Sea. In: A.E.M. Nairn and

F.G. Stehli (Editors), The Ocean Basins and MargIn\, I. 3. Plenum Pre\s. New York, pp I -64.

(69) United Nations ESCAP, 1980. The Philippine-Mariana transect (Transect V). <‘COP Tech. Puhl. 7:

93- 122.

(70) Uyeda, S., 1982. Subduction zones: an introduction to comparative subductology. Tectonophyslca,

81: 133-159.

(71) Uyeda, S. and Kanamori, H.. 1979. Back-arc opening and the mode of subduction. J. Geophys. Res.,

84: 1049- 1061.

(72) Victor, L.S. and Couch, R.W.. 1975. Structure of the continental margin of Nicaraqua and Costa

Rica (abstract). EOS, Trans. Am. Geophys. Union, 56: 1065.

(73) Von der Borch, C.C.. 1979. Continent-island arc collision in the Banda Arc. Tectonophysics, 54:

169-193.

(74) Watanabe, T., Langseth, M.G. and Anderson, R.N.. 1977. Heat flow in hack-arc basins of the

western Pacific. In: M. Talwani and W.C. Pitman, III (Editors), Island Arcs. Deep Sea Trenches and

Back-arc Basins. Am. Geophys. Union, Washington.D.C.. pp. 137- 161.

(75) Watts, A.B. and Weissel, J.K.. 1975. Tectonic history of the Shikoku marginal basm. Earth Planet.

Sci. Lett., 25: 239-250.

(76) Watts, A.B.. Talwani, M. and Cochran, J.R., 1976. Gravity field of the northwest Pacific ocean basin

and its margin. Geophys. Monogr., Am. Geophys. Union. 19: 17-34.

(77) Watts, A.B.. Weissel, J.K. and Davey, F.J., 1976. Mid-Cenozoic evolution of the South FiJi marginal

basin (abstract). EOS. Trans. Am. Geophys. Umon, 57: 333.

(78) Watts, A.B., Bodine, J.H. and Bowin. C.O.. 1978. A geophysical atlas of the east and southeast Asian

seas. Geol. Sot. Am., Boulder. Cola.

(79) Weissel, J.K., 1977. Evolution of the Lau basin by the growth of small plates. In: M. ‘TaIwani and

W.C. Pitman, III (Editors), Island Arcs. Deep Sea Trenches and Back-Arc Basins. Am. Geophys.

Union. Washington, D.C., pp. 429-436.

(80) Weissel, J.K., 1980. Evidence for Eocene oceanic crust in the Celebes Basin. Geophya. Monogr.. Am.

Geophys. Union 23: 37-48.

(81) Weissel, J.K.. 1981. Magnetic lineations in marginal basins of the western Pacific. Philoa. Tram. K.

Sot. London, Ser. A. 300: 223-247.

(82) Zlotniki. V., Sclater, J.G., Norton, 1.0. and Von Herzen. R.P.. 1980:Heat flow through the floor of

the Scotia, far South Atlantic. and Weddell seas. Geophys. Res. Lett.. 7: 421-424.