Biostratigraphy and sedimentary evolution of Late Miocene and Pliocene continental deposits of the...

16
DOI 10.1111/j.1502-3931.2008.00097.x © 2008 The Authors, Journal compilation © 2008 The Lethaia Foundation LETHAIA Blackwell Publishing Ltd Biostratigraphy and sedimentary evolution of Late Miocene and Pliocene continental deposits of the Granada Basin (southern Spain) ANTONIO GARCÍA-ALIX, RAEF MINWER-BARAKAT, JOSÉ M. MARTÍN, ELVIRA MARTÍN SUÁREZ AND MATTHIJS FREUDENTHAL García-Alix, A., Minwer-Barakat, R., Martín, J.M., Martín Suárez, E. & Freudenthal, M. 2008: Biostratigraphy and sedimentary evolution of Late Miocene and Pliocene continental deposits of the Granada Basin (southern Spain). Lethaia, Vol. 41, pp. 431– 446 The Late Miocene and Pliocene continental sediments in the Granada Basin (southern Spain) have yielded large amounts of fossil small mammals in 37 localities from 11 sections. The aim of this paper is to integrate faunistic, stratigraphic, and sedimentary criteria to unravel the geological history of the continental infilling of the basin. The palaeontological study has led to a detailed biozonation on the basis of rodents, which helps to correlate in detail the different sedimentary units found in the basin, and to follow the changes of the different sedimentary systems and their palaeogeographical evolution through time. Combination of the proposed biostratigraphy and the reinter- pretation of the magnetostratigraphic analyses of the Barranco del Purcal section allows us to assign an absolute age slightly older than 5.23 Ma to the Turolian–Ruscinian boundary (MN13-MN14). Biostratigraphy, fossil small mammals, Granada Basin, Late Miocene, Pliocene, sedimentary evolution, Turolian–Ruscinian boundary. Antonio García-Alix [[email protected]], Raef Minwer-Barakat [[email protected]], José M. Martín [[email protected]] and Elvira Martín Suárez [[email protected]], Departamento de Estratigrafía y Paleontología, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain; Matthijs Freudenthal [[email protected]], Departamento de Estrati- grafía y Paleontología, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain and Nationaal Natuurhistorisch Museum, PO Box 9517, 2300 RA Leiden, The Netherlands; manuscript received on 2/03/07; and manuscript accepted on 10/01/08. The Granada Basin is located in the South of the Iberian Peninsula (Fig. 1). It is approximately 60 km in length (east–west) and 40 km wide (north–south). It is an exorreic depression with a maximum height over 1000 m above sea level. Its main drainage river is the Genil River. The basin infilling, of Neogene–Quaternary age, consists of marine and continental sediments (Dabrio et al. 1978; Martín et al. 1984; Fernández et al. 1996; Braga et al. 2003, among others). The Late Miocene and Pliocene continental sediments studied in detail in this paper have yielded large amounts of fossil small mammals in 37 localities situated in 11 sections. The correlations between the sections are complex, and faunistic, stratigraphic and sedimentary criterions have been taken into account. These data have allowed us to propose for the first time a detailed biozonation for the Granada Basin. Previous studies and references about small mammals in the continental sediments of the Granada Basin can be found in Boné et al. (1978), Dabrio et al. (1978), Dabrio & Ruiz Bustos (1979), and Padial (1986), among others. The selected sections range in age from the Middle Turolian (Late Miocene) to the Ruscinian (Early Pliocene) and seven zones have been formally defined. This detailed biostratigraphic framework has helped us to correlate the different Late Miocene and Pliocene Continental Unit outcrops in the Granada Basin. As a result, a general palaeogeographical evolutionary model for the Late Miocene and Pliocene of the Granada Basin is proposed. Geological setting The Granada Basin is a Neogene intramontane basin located in the central part of the Betic Cordillera, at the contact between the Internal and the External Zones (Fig. 1). Its Neogene–Quaternary infilling unconform- ably overlies an irregular basement palaeorelief. In this infilling some units can be differentiated (Martín et al. 1984) (Fig. 1). It begins with marine and continental materials of Burdigalian to Serravalian–earliest Torto- nian age that were deposited prior to the configuration of the Granada Basin as such, which occurred in the Early Tortonian (Braga et al. 2003). The Granada Basin itself was marine during the Tortonian, then desic- cated and finally its sedimentation became continental.

Transcript of Biostratigraphy and sedimentary evolution of Late Miocene and Pliocene continental deposits of the...

DOI 10.1111/j.1502-3931.2008.00097.x © 2008 The Authors, Journal compilation © 2008 The Lethaia Foundation

LETHAIA

Blackwell Publishing Ltd

Biostratigraphy and sedimentary evolution of Late Miocene and Pliocene continental deposits of the Granada Basin (southern Spain)

ANTONIO GARCÍA-ALIX, RAEF MINWER-BARAKAT, JOSÉ M. MARTÍN, ELVIRA MARTÍN SUÁREZ AND MATTHIJS FREUDENTHAL

García-Alix, A., Minwer-Barakat, R., Martín, J.M., Martín Suárez, E. & Freudenthal, M.2008: Biostratigraphy and sedimentary evolution of Late Miocene and Pliocenecontinental deposits of the Granada Basin (southern Spain).

Lethaia

, Vol. 41, pp. 431–446

The Late Miocene and Pliocene continental sediments in the Granada Basin (southernSpain) have yielded large amounts of fossil small mammals in 37 localities from 11sections. The aim of this paper is to integrate faunistic, stratigraphic, and sedimentarycriteria to unravel the geological history of the continental infilling of the basin. Thepalaeontological study has led to a detailed biozonation on the basis of rodents, whichhelps to correlate in detail the different sedimentary units found in the basin, and tofollow the changes of the different sedimentary systems and their palaeogeographicalevolution through time. Combination of the proposed biostratigraphy and the reinter-pretation of the magnetostratigraphic analyses of the Barranco del Purcal section allowsus to assign an absolute age slightly older than 5.23 Ma to the Turolian–Ruscinianboundary (MN13-MN14).

Biostratigraphy

,

fossil small mammals

,

Granada Basin

,

Late Miocene

,

Pliocene

,

sedimentary evolution

,

Turolian–Ruscinian boundary

.

Antonio García-Alix [[email protected]], Raef Minwer-Barakat [[email protected]], José M.Martín [[email protected]] and Elvira Martín Suárez [[email protected]], Departamentode Estratigrafía y Paleontología, Universidad de Granada, Avda. Fuentenueva s/n, 18002Granada, Spain; Matthijs Freudenthal [[email protected]], Departamento de Estrati-grafía y Paleontología, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada,Spain and Nationaal Natuurhistorisch Museum, PO Box 9517, 2300 RA Leiden, TheNetherlands; manuscript received on 2/03/07; and manuscript accepted on 10/01/08.

The Granada Basin is located in the South of theIberian Peninsula (Fig. 1). It is approximately 60 kmin length (east–west) and 40 km wide (north–south).It is an exorreic depression with a maximum heightover 1000 m above sea level. Its main drainage riveris the Genil River.

The basin infilling, of Neogene–Quaternary age,consists of marine and continental sediments(Dabrio

et al

. 1978; Martín

et al

. 1984; Fernández

et al

. 1996; Braga

et al

. 2003, among others). The LateMiocene and Pliocene continental sediments studiedin detail in this paper have yielded large amounts offossil small mammals in 37 localities situated in 11sections. The correlations between the sections arecomplex, and faunistic, stratigraphic and sedimentarycriterions have been taken into account. Thesedata have allowed us to propose for the first time adetailed biozonation for the Granada Basin. Previousstudies and references about small mammals in thecontinental sediments of the Granada Basin can befound in Boné

et al

. (1978), Dabrio

et al

. (1978), Dabrio& Ruiz Bustos (1979), and Padial (1986), among others.

The selected sections range in age from the MiddleTurolian (Late Miocene) to the Ruscinian (Early

Pliocene) and seven zones have been formally defined.This detailed biostratigraphic framework hashelped us to correlate the different Late Miocene andPliocene Continental Unit outcrops in the GranadaBasin. As a result, a general palaeogeographicalevolutionary model for the Late Miocene and Plioceneof the Granada Basin is proposed.

Geological setting

The Granada Basin is a Neogene intramontane basinlocated in the central part of the Betic Cordillera, atthe contact between the Internal and the External Zones(Fig. 1). Its Neogene–Quaternary infilling unconform-ably overlies an irregular basement palaeorelief. In thisinfilling some units can be differentiated (Martín

et al

.1984) (Fig. 1). It begins with marine and continentalmaterials of Burdigalian to Serravalian–earliest Torto-nian age that were deposited prior to the configurationof the Granada Basin as such, which occurred in theEarly Tortonian (Braga

et al

. 2003). The Granada Basinitself was marine during the Tortonian, then desic-cated and finally its sedimentation became continental.

432

García-Alix

et al. LETHAIA 41 (2008)

In the latest Tortonian there was a major regressionin connection with an important eustatic sea-levelfall (Haq

et al

. 1987). This event, in association withlocal tectonics, favoured the isolation of the basinand its final desiccation (Martín

et al

. 1984). At thistime, alluvial fans developed at the eastern part of thebasin. They pass laterally into stromatolites, formedat the margin of the marine desiccating basin. In theshallow areas of this basin selenite gypsum formed,while halite deposited in its center (Fig. 1). This unit(‘Lower Evaporite Unit’) marks the marine-continentaltransition (Dabrio

et al

. 1982; Martín

et al

. 1984).Since the latest Tortonian (Middle Turolian) the

Granada Basin was emerged. Continental alluvial fans,

fluvial and lacustrine sediments deposited in thebasin (Martín

et al

. 1984; Fernández

et al

. 1996) (Fig. 1).

Late Miocene–Pliocene continental units of the Granada Basin

This paper deals with the Late Miocene and Pliocenecontinental sediments of the Granada Basin. We willfollow the stratigraphic scheme of Martín

et al

. (1984),which considers five informal continental ‘units’,corresponding to the successive stages of developmentof the Late Miocene and Pliocene fluvio-lacustrinesystems. Some of these sediments have yielded fossil

Fig. 1. Geographical and geological location of the Granada Basin, and synthetic column of its Neogene infilling (modified from Martínet al. 1984), with indications of the location of the studied sections: 1–2, Canteras de Jun-Víznar; 3, Otura; 4, Cantera de Pulianas; 5 Arenasdel Rey; 6, Brácana; 7, Cerro del Águila; 8, Cacín; 9, Barranco del Purcal; 10, Calicasas; 11, Barranco de Blas.

LETHAIA 41 (2008)

Contintental biostratigraphy of the Granada Basin

433

small mammals, studied comprehensively by García-Alix (2006) and García-Alix

et al

. (2007a, b).

Unit A (Lutites and sands)

This unit is subdivided into three subunits. TheSubunit A1 (‘Lutites and Sands of Cenes-Jun’) crops outin the eastern part of the basin. In this subunit chan-nelized micaceous sands (conglomerates) intercalatewith lutites (Dabrio

et al

. 1978; Ruiz Bustos

et al

. 1992a).The Subunit A2 (‘Turbidites of La Malahá’) consistsof interbedded turbiditic sandstones and lutites inter-preted as turbidites (Dabrio

et al

. 1972). The SubunitA3 (‘Lutites of Cacín’) constitutes an extensive bodyof laminated lutites deposited at the westernmostside of the basin (Martín

et al

. 1984) (Fig. 2).The sediments of the Subunit A1 are related to a

braided fluvial system with its origin in the easternreliefs, which flowed into a lake, located at the west-ern side of the basin, where sediments of Subunits A2and A3 were deposited. The sedimentary palaeoenvi-ronment distribution in Unit A is shown in Figure 3.

Fossil mammals appear only in the Subunit A1,attributed by Padial (1986) to the Middle Turolian(MN12) in the locality Canteras de Jun. Small mammalremains abound in the lutites (Dabrio

et al

. 1978; Padial1986). Aguirre (1974) and Dabrio & Ruiz Bustos (1979)identified

Hipparion

cf.

concudense

in the basal lagof some sand (conglomerate) fluvial-channel deposits.

Studied sections in Unit A. –

The studied sectionsare located in the proximal area of Unit A (SubunitA1): Canteras de Jun, Víznar and Otura (Fig. 2).

The Canteras de Jun and Víznar sections havethree main fossil localities: JUN-2B (30SVG479199),JUN-2C (30SVG479199) and VIZ-1 (30SVG501198).They are located in lutite beds with gastropods andintercalated coal seams, which correspond to flood-plain deposits. The small mammal remains accumu-lated specifically in a shallow-water palustrine zoneof variable lateral extension. The fossil assemblage(Table 1) suggests a Middle Turolian age.

The Otura section includes three levels with fossilsmall mammals: OTU-1 (30SVG425052), OTU-3(30SVG425052) and OTU-4 (30SVG424051). Thepredominant sediments in this section are fine sandsintercalating some lutites, frequently with lignites. Thefossil sites are found in lignitiferous lutites, accumulatedin the floodplain area. The fossil assemblage (Table 1)suggests a Middle–Late Turolian age.

Unit B (evaporites)

This lacustrine-evaporite unit (‘Upper Evaporite Unit’of Dabrio

et al

. 1982) consists of sandy-gypsum beds

Fig. 2. Unit A. �A. Sediment distribution (lithofacies) andposition of the studied sections (data from Dabrio et al. 1972;1978; Dabrio & Ruiz Bustos 1979; Martín et al. 1984; and thisstudy). �B. Detailed stratigraphic columns of the studied sectionswith location of the small mammal sites.

434

García-Alix

et al. LETHAIA 41 (2008)

Table 1. Faunistic catalogues.

LETHAIA 41 (2008)

Contintental biostratigraphy of the Granada Basin

435

with thin lutite intercalations, interpreted as gypsumturbidites. Coarse-grained sandy turbidites andgypsum microconglomerates occur at the westernside of the basin. The central and easternmost out-crops are fine-grained turbidites (Fig. 4). This unit isrelated with the uplifting of the western and south-western reliefs limiting the basin (Sierra Tejeda andSierra Gorda), and the subsequent erosion andresedimentation of the gypsum beds of the ‘LowerEvaporite Unit’, the marine-continental transitionunit (Dabrio

et al

. 1982). The palaeogeographicaldistribution of Unit B is shown in Figure 3. No smallmammal remains have been found in this unit.

Unit C (Sands, lutites, limestones and lignites)

This unit can be subdivided into three subunits. Sub-unit C1 consists of lutites and sands (conglomerates),which crops out in the eastern sector. Subunit C2crops out in the southwestern part of the basin. It isformed by large bodies of sands (and less abundantconglomerates), intercalated with lutites and lignites.Subunit C3 crops out in the western part of the basin.It is composed of lutites, marls and limestones,intercalating with some lignites (Fig. 5).

Sediments of Subunit C1 correspond to a deltathat developed in the eastern part of the basin. Thedelta sequence shows three main bodies of sediments(Fig. 5B, Cantera de Pulianas section): (1) Lutitic

sediments with thin sandy intercalations, at the bottom(prodelta: bottomset deposits). (2) Cross-laminatedsands (conglomerates) with lutite intercalations, in themiddle. Some of the sand (conglomerate) bodies arelobe-shaped; others exhibit erosive (channelized) bases(delta front: lobes and feeding channels). (3) Lutites(lignites) intercalated with sands/conglomerates,often of red color, on top (delta top-set: delta flood-plain). This sequence resulted from delta progradation.

Fig. 3. Sedimentary environment distribution and palaeogeographical evolution of the Granada Basin during the Late Miocene and Pliocene.

Fig. 4. Unit B. Sediment distribution (lithofacies) (data from Bonéet al. 1978; Dabrio et al. 1982; Lupiani & Soria 1985b; and this study).

436

García-Alix

et al. LETHAIA 41 (2008)

Sediments of Subunit C2 are linked to a deltaicsystem with its source area located in the South(Sierra Tejeda and Sierra Almijara; Bandel

et al

. 2000).We favour in this case a shallow delta with gentlyinclined, extensive lobes. The fine sediments of the

lower part of the delta sequence (Fig. 5B: Arenas delRey section) accumulated at the prodelta bottomsetand/or in the interdistributary bays. The thick sandbeds in the middle are associated to the lobes of thedelta front. Some of them exhibit oblique beddingreflecting the progradation of the delta-front foresets.Coarse-grained sediments of the upper part of thesequence accumulated inside channels migrating andcutting through the lutites of the delta topset plain.

The fine sediments of Subunit C3 (Fig. 5B: Brácanasection) were deposited in a lake (Fig. 3).

Padial (1986) dated the localities of Pulianas fromSubunit C1 as Upper Turolian and Boné

et al

. (1978)did the same for those of Arenas del Rey fromSubunit C2.

Studied sections in Unit C. –

In Unit C three sectionshave been studied: the Canteras de Pulianas section(Subunit C1), the Arenas del Rey section (SubunitC2) and the Brácana section (Subunit C3) (Fig. 5).

The Canteras de Pulianas section includes thelocalities PUR-23 (30SVG462218), PUR-24A(30SVG462219), PUR-25 (30SVG462219) and PUR-25A (30SVG462219), which are located in the lutites(lignites) representing the floodplain deposits of thedelta topset. The fossil assemblage (Table 1) suggestsa Late Turolian age.

The sequence of Arenas del Rey consists of three,partly superimposed sections (Fig. 5): the section ofCalerico, the section of La Mina and the section ofLa Dehesa. The small mammal sites are CLR-1(30SVF214909), CLR-3 (30SVF216910), MNA-2(30SVF211901), MNA-4 (30SVF211902), DHS-15B(30SVF189903), DHS-14 (now disappeared), DHS-16(30SVF190904), DHS-1 (30SVF188903) and DHS-4(30SVF188902). These sites are located in fine-grainedsediments of interdistributary bays and/or the flood-plain of the delta topset. The fossil assemblage (Table 1)suggests a Late Turolian age.

The section of Brácana has yielded the fossil local-ity BRA-5B (30SVG155200). The small mammal siteis located at the base of the section, in a dark lutitelevel. The fossil assemblage (Table 1) suggests a LateTurolian age.

Unit D (Limestones)

This unit crops out only in the western part of thebasin (Fig. 6). Sediments from this unit (‘Calizas dePáramo’ unit) are mainly micritic limestones andmarly-limestones intercalated with lutites and minorlignites. The limestones may have a nodular aspectand exhibit fenestral porosity. Gastropods are abun-dant and plant remains may also appear. They weredeposited in a small lake (Fig. 3). Padial (1986) and

Fig. 5. Unit C. �A. Sediment distribution (lithofacies) and posi-tion of the studied sections (data from Boné et al. 1978; Elorzaet al. 1978; Lupiani & Soria 1985b; Padial 1986; and this study).�B. Detailed stratigraphic columns of the studied sections withindication of the location of the small mammal sites. Stratigraphiccolumn symbols as in Figure 2.

LETHAIA 41 (2008)

Contintental biostratigraphy of the Granada Basin

437

Ruiz Bustos

et al

. (1992b) suggested a Late Turolianage for these limestones.

Studied sections in Unit D. –

Two sections have beenstudied in this Unit: the Cacín and the Cerro delÁguila sections (Fig. 6).

The section of Cacín includes the localities CAC-5(30SVG194032), CAC-9 (30SVG194031) and CAC-11 (30SVG194031). Localities CAC-5 and CAC-9are from the same lutite (lignite) level. The fossilassemblage (Table 1) suggests a latest Turolian age.

In the section of Cerro del Águila the only studiedlocality is AGU-1C (30SVG201165), which is in a grey

lutite level with plant remains. The fossil assemblage(Table 1) suggests a latest Turolian age.

Unit E (Conglomerates, sands, lutites and limestones)

At the time of deposition of Unit E two independent,alluvial-lacustrine systems developed in the easternand western part of the basin respectively (Figs 3 and7). These are the ‘Alhambra’ system (Subunit E1) andthe ‘palaeo-Cacín’ system (Subunit E2). In bothsystems, conglomerates, sands and lutites, mostlyred coloured, together with some limestones, weredeposited. As seismic and gravimetric profilesshow, a major swell (positive tectonic relief), runningroughly from north to south, existed in the middle ofthe basin (Ruano

et al

. 2000; Rodríguez Fernández &Sanz de Galdeano, 2006), separating both systems.

The palaeoenvironmental model for Subunit E1(‘Alhambra system’) is that of coalescent alluvial fans,placed at the base of the palaeo-Sierra Nevada andpalaeo-Sierra Arana reliefs at the eastern side of thebasin (Martín 2000), passing laterally to the North toa fluvial system and this, in turn, to a lake (Fig. 3).

In Subunit E2 (‘palaeo-Cacín system’) alluvial-fanconglomerates (the ‘Játar-Fornes Conglomerates’)were deposited at the foot of the southwestern reliefslimiting the basin (the palaeo-Sierra Tejeda). Tothe North they pass laterally into conglomerates (the‘Moraleda Conglomerates’), sands and lutites of thepalaeo-Cacín river, a braided river running S-N atthe western side of the basin (Fig. 3). This fluvialsystem had a wide floodplain with a subaquatic,or palustrine/ephimeral lacustrine zone to theNorth, and at times it exited to the West (Dabrio &Fernández 1986; Fernández & Soria 1987).

Martín Suárez

et al

. (1998) attributed part of thePurcal section (Subunit E1) to the Mio-Pliocenetransition or to the Early Ruscinian.

Studied sections in Unit E. –

Three sections have beenstudied in Unit E (Fig. 7): two of them, the Barrancodel Purcal and the Calicasas sections belong to Sub-unit E1; the other one, the Barranco de Blas section,to Subunit E2.

The sequence of Barranco del Purcal includesthe localities PUR-3 (30SVG453217), PUR-4(30SVG455217), PUR-7 (30SVG457217) and PUR-13(30SVG439224). The sequence consists of a successionof lutites, sandstones (conglomerates) and limestones,deposited in a marginal fluviatile environment and/or fluvio-lacustrine environment. The small mammalsites are located in the lutites (fluviatile floodplaindeposits). The fossil assemblage (Table 1) suggest alatest Turolian and earliest Ruscinian age.

Fig. 6. Unit D. �A. Sediment distribution (lithofacies) and positionof the studied sections (data from Boné et al. 1978; Elorza et al. 1978;Padial 1986; Ruiz Bustos et al. 1992a, b; and this study). �B. Detailedstratigraphic columns of the studied sections with location of thesmall mammal sites. Stratigraphic column symbols as in Figure 2.

438

García-Alix

et al. LETHAIA 41 (2008)

The Calicasas section contains the fossil localitiesof CLC-3 (30SVG444256), CLC-3B (30SVG444256),CLC-4A (30SVG444256), CLC-4B (30SVG444256)and CLC-5A (30SVG445256). The sequence is madeup of fine-grained sediments (lutites, sometimes withlignite, marly-limestones and fine sands) of distal-fluviatile/lacustrine origin. Localities CLC-3 andCLC-3B are from the same lignite level. CLC-4Aand CLC-4B are located at the bottom and top

respectively of the same of dark lutite level. The fossilassemblage (Table 1) suggests an earliest Ruscinian age.

The Barranco de Blas section has yielded the smallmammal localities BLS-1 (30SVG083140), BLS-5A(30SVG083139) and BLS-6 (30SVG083139). They arefound in lutite floodplain deposits intercalated withlimestones, cut by a conglomeratic channel. The fossilassemblage (Table 1) suggests a Late Ruscinian age.

Biostratigraphy

The proposed local biozonation is constituted byseven zones ranging from the Middle Turolian tothe Upper Ruscinian. We define Interval and TaxonRange zones for the Middle Turolian to LowerRuscinian, and an Assemblage Zone for the UpperRuscinian localities, disconnected from the underly-ing sequences (Fig. 8). Taxa with wide geographicaldistribution are used, and type sections and localitieshave been established. Figure 9 shows main fossilrodents used to stablish the biozonation of the GranadaBasin. The local biozonation and the small mammallocalities are correlated with the main European smallmammal sites, MN Units, ‘Rodent Zones’ (Fejfar

et al

.1998), and other local biozonations of the IberianPeninsula: Guadix (Minwer-Barakat 2005), Crevillente(Martín Suárez & Freudenthal 1998) and Teruel (Mein

et al

. 1990) (Fig. 10). The correlation between thelocal biozonation and the continental sedimentaryunits from Granada Basin is shown in Figure 11.

The

Castromys littoralis

Zone

Definition. –

Taxon-range Zone that corresponds tothe total range of

C

.

littoralis.

Lower boundary. –

First Appearance Datum (FAD)of

C

.

littoralis

.

Upper boundary. –

Last Appearance Datum (LAD)of

C

.

littoralis,

which coincides with the FAD of

Occitanomys alcalai

and

Castromys inflatus.

Reference section and locality. –

Sequence of Canterasde Jun (UTM: 30SVG479199–30SVG481198) andlocality JUN-2B. The localities JUN-2C, VIZ-1 andOTU-4 belong to this biozone too.

Biostratigraphical correlations. –

The presence of

C

.

littoralis

is characteristic for localities from theMiddle-Upper Turolian transition, like CR-17 andCR-22 in the Crevillente Basin (Martín Suárez &Freudenthal 1998). In Crevillente the

Apodemusmeini

Zone (Middle Turolian) has in its upper part

Fig. 7. Unit E. �A. Sediment distribution (lithofacies) and posi-tion of the studied sections (data from Elorza et al. 1978; Dabrio& Fernández 1986; Fernandez & Soria 1987; Lupiani & Soria1985a, b; Martín Suárez et al. 1998; Martín 2000; and this study).�B. Detailed stratigraphic columns of the studied sections withlocation of the small mammal sites. Stratigraphic column symbolsas in Figure 2. *BLS-1 stands for BLS-1, BLS-5A and BLS-6.

LETHAIA 41 (2008)

Contintental biostratigraphy of the Granada Basin

439

a biohorizon defined by the LAD of

A

.

meini

and theFAD of

C

.

littoralis

(Martín Suárez & Freudenthal1998). The first locality of the next zone,

Castromysinflatus

Zone (Upper Turolian), contains

C

.

littoralis

,the FAD of

O

.

alcalai

, and the FAD of

Stephanomysramblensis. These two last species are not present inJUN-2B, JUN-2C, VIZ-1 and OTU-4, but they occurin younger localities of the Granada Basin. Thisevidence allows us to correlate our localities of theCastromys littoralis Zone with the upper part of theApodemus meini Zone in the Crevillente Basin (endof Middle Turolian, MN12).

The locality Canteras de Jun (Dabrio et al. 1978)belongs to this biozone. JUN-2B, JUN-2C, VIZ-1 andOTU-4 are similar in age to CR-17 (Martín Suárez &Freudenthal 1998) and they are younger than otherMiddle Turolian localities, such as Aljezar-B (Adrover1986), Los Mansuetos (van de Weerd 1976; Adrover1986), Casa del Acero (Agustí et al. 1985) and CR-15(Martín Suárez & Freudenthal 1998), where Apodemusbarbarae is present and C. littoralis is still absent.

The Occitanomys adroveri–Occitanomys alcalai Zone

Definition. – Concurrent-range Zone defined by thesimultaneous occurrence of O. adroveri and O. alcalai.

Lower boundary. – Upper boundary of the formerbiozone (LAD of C. littoralis, FAD of O. alcalai andFAD of C. inflatus).

Upper boundary. – LAD of O. adroveri.

Reference section and locality. – Part of the sequenceof Otura between the localities OTU-1 and OTU-3(UTM: 30SVG425052). The reference locality is OTU-1.

Remarks. – The record of C. inflatus in the GranadaBasin is restricted to this biozone.

Biostratigraphical correlations. – Occitanomys alcalaiand C. inflatus (descendant of C. littoralis) appear in

Fig. 8. Distribution range of the groups of rodents with biostratigraphical relevance in the Granada Basin: Murinae, Cricetinae, Criceto-dontinae, Trilophomyinae and Arvicolinae, and proposed local biozonation. The localities are chronologically arranged. Localitiesfrom the same stratigraphic level (laterally equivalent) PUR-25(25 + 25A), DHS-4(A + B), CAC-5(5 + 9), CLC-3(3 + 3B), CLC-4(A + B),and BLS-1(1 + 5A + 6) have been lumped together.

440 García-Alix et al. LETHAIA 41 (2008)

localities from the base of the Upper Turolian (MN13)(Mein, 1990, 1999; Adrover et al. 1993; Martín Suárez& Freudenthal 1998). The FAD of O. alcalai andC. inflatus in the Occitanomys adroveri–Occitanomysalcalai Zone of the Granada Basin and the absence ofother Upper Turolian taxa, like S. ramblensis, Apodemusgudrunae and Apocricetus alberti, lead us to correlatethis biozone with the base of the Upper Turolian(MN13) and with the lower part of the Castromys infla-tus Zone in Crevillente (Martín Suárez & Freudenthal

1998). The Middle–Upper Turolian boundary coincideswith the boundary between the Apodemus meiniZone and the Castromys inflatus Zone in Crevillente(Martín Suárez & Freudenthal 1998), and with theboundary between the Castromys littoralis Zoneand the Occitanomys adroveri– Occitanomys alcalaiZone.

Stephanomys ramblensis is present in contem-poraneous localities from Crevillente and in thenext biozone in the Granada Basin. A specimen of

Fig. 9. �A–D. Castromys littoralis: �A. Left M1 (JUN-2B 1); �B. Right M2 (JUN-2B 9); �C. Right M1 (JUN-2B 18); �D. Right M2 (JUN-2B 22). �E–H. Occitanomys adroveri: �E. Left M1 (OTU-1 12); �F. Left M2 (OTU-1 18); �G. Left M1 (OTU-1 44); �H. Left M2 (OTU-129). �I–L. Occitanomys alcalai: �I. Left M1 (BRA-5B 9); �J. Left M2 (PUR-4 27); �K. Left M1 (PUR-4 39); �L. Left M2 (PUR-4 43); �M.Castromys inflatus: �M. Left M2 (OTU-3 10); �N–Q. Paraethomys meini: �N. Left M1 (PUR-4 320); �O. Left M2 (PUR-4 356); �P.Left M1 (PUR-3 25); �Q. Left M2 (PUR-7 18). �R–U. Paraethomys aff. abaigari: �R. Left M1 (PUR-13 27); �S. Right M2 (PUR-13 72);�T. Right M1 (PUR-13 41); �U. Left M2 (PUR-13 56). �V–X. Stephanomys donnezani: �V. Left M2 (BLS-5A 4); �W. Left M2 (BLS-114); �X. Right M1 (BLS-1 13). �Y–Z. Castillomys cf. crusafonti: �Y. Right M1 (BLS-6 10); �Z. Right M2 (BLS-6 16). �AA. Trilophomys sp.(BLS-1 22). �AB. Arvicolinae indet. (BLS-6 17). �AC–AD. Apocricetus alberti: �AC. Right M1 (PUR-25A 81); �AD. Right M2 (PUR-25A84). �AE–AF. Apocricetus barrierei: �AE. Left M1 (PUR-4 1); �AF. Right M2 (PUR-4 5). Scale bar equals 1 mm. All in occlusal view.

LETHAIA 41 (2008) Contintental biostratigraphy of the Granada Basin 441

Stephanomys sp. appears in OTU-1, but we cannotattribute it to S. ramblensis. So, the Occitanomysadroveri–Occitanomys alcalai Zone is older thanthe Teruel localities from the Upper Turolian withS. ramblensis, like Rambla de Valdecebro-3, Ramblade Valdecebro-6 or Villastar, of the Stephanomysramblensis Zone (van de Weerd 1976; Mein et al.1990; Adrover et al. 1993). The localities Gloria-6 inTeruel, with Stephanomys cf. ramblensis, O. alcalai,C. inflatus and Apodemus sp. (Mein et al. 1990),and CR-14 and CR-31 in Crevillente (Martín Suárez& Freudenthal 1998) may be correlated with theGranada Basin localities of this biozone.

The Barren Interval 1

Definition. – Barren Interval between the Occitanomysadroveri–Occitanomys alcalai Zone and the Apocricetusalberti Zone.

Lower boundary. – Upper boundary of the Occitan-omys adroveri–Occitanomys alcalai Zone (LAD ofO. adroveri).

Upper boundary. – Lower boundary of the Apocricetusalberti Zone (FAD of A. alberti).

Remarks. – It is linked to the sediments of the UnitB, turbiditic gypsums without small mammal fauna.

The Apocricetus alberti Zone

Definition. – Interval Zone corresponding to theinterval between the appearance of A. alberti belowand the Paraethomys above.

Lower boundary. – FAD of A. alberti.

Upper Boundary. – FAD of Paraethomys.

Fig. 10. Proposed correlation between local biozones in the Granada, Crevillente, Guadix and Teruel basins, the ‘Rodent Zones’, and othercontemporaneous Spanish and European localities (according to Mein 1990; Mein et al. 1990; Fejfar et al. 1998; Martín Suárez& Freudenthal 1998; Minwer-Barakat 2005). The barren intervals are marked by oblique lines. Abbreviations: TCH, Tollo de Chiclana;ESC, Escorihuela; GA, Galera; GOR, Gorafe; ARQ, Arquillo; YEG, Yeguas; CEL, Celadas; LG, La Gloria; ZOR, Zorreras; NGR, Negratín;CR, Crevillente; VIL, Villastar; VDC, Valdecebro; LM, Los Mansuetos; ACREO, Casa del Acero; LIS, Lissieu; POL, Polgardi.

442 García-Alix et al. LETHAIA 41 (2008)

Reference section and locality. – Sequence of Canterade Pulianas (UTM: 30SVG462218–30SVG462219) andlocality PUR-24A. The localities PUR-23, PUR-25,PUR-25A, CLR-1 and MNA-2 belong to this biozone.

Remarks. – The first record of Apodemus gorafensisand the whole range of S. ramblensis are located inthis biozone.

Biostratigraphical correlations. – Stephanomys ispresent in all the localities of this biozone (exceptin CLR-1): S. ramblensis in the older localities and itsdescendant, S. dubari, in the youngest one, MNA-2.According to Freudenthal et al. (1998) and Kälin (1999),A. alberti is a good guide-fossil for the Upper Turolian.In all these localities Paraethomys, typical of the upperpart of the Upper Turolian in Spain, is not present; so,our localities belong to the lower part of the UpperTurolian (MN13). They are previous to the FAD ofParaethomys in the Iberian Peninsula. The absenceof Paraethomys meini in the locality MNA-2, theyoungest one of this biozone, is not due to a bias inthe sampling, as 2000 kg of sediments were taken.

The localities of this biozone show an associationof Apodemus, Stephanomys and O. alcalai. A similarfaunistic assemblage is found in the Teruel localities

Rambla de Valdecebro-3, Rambla de Valdecebro-6,Villastar, La Gloria-5 and Arquillo-1 (van de Weerd1976; Mein et al. 1990; Adrover et al. 1993). The maindifference between these localities of Granada andthose of Teruel is the type of Apodemus speciespresent: our localities have Apodemus aff. gorafensis(PUR-23) and A. gorafensis, but in the Teruel localitiesit is A. gudrunae. Apodemus gudrunae only appearsin the Granada Basin in the localities PUL-1, PUL-2and PUL-3 (Padial, 1986), which are lower thanours in the same section (Cantera de Pulianas). Weattribute these three localities to the lower part ofthe Apocricetus alberti Zone.

The Granada localities La Mina M5 (in the same levelas MNA-2) and Calerico F.1 (Boné et al. 1978; Padial1986) do not contain Paraethomys, but Stephanomys,O. alcalai and Apodemus gorafensis are present. Theyare attributed to the Apocricetus alberti Zone.

There are no equivalent localities in the Crevillentebasin as the sediments deposited there at this timewere fully marine (Martín Suárez & Freudenthal1998).

The contemporaneous localities from Teruelmentioned above belong to the Stephanomys ramblensisZone (Mein et al. 1990); contemporaneous localitiesin Europe are Lissieu and Polgardi (Mein 1990).

Fig. 11. Correlation between the proposed local biozonation, the continental sedimentary units in the Granada basin, and the magneto-stratigraphic analyses for the Barranco del Purcal section (after Martín Suárez et al. 1998) updated with our new biostratigraphic data.Absolute ages of the marine stages according to GTS2004 (Gradstein et al. 2004). The age of the Middle-Upper Turolian limit (MN12-MN13) is that of Berger et al. (2005), which is in agreement with Garcés et al. (1998) and Agustí et al. (2001). The age of the Lower–UpperRuscinian limit (MN14-MN15) is that of Opdyke et al. (1997), Agustí et al. (2001) and Berger et al. (2005). Locality PUL-1 from Padial(1986). Symbols as in Figure 1.

LETHAIA 41 (2008) Contintental biostratigraphy of the Granada Basin 443

The Paraethomys meini Zone

Definition. – Interval Zone corresponding to theinterval between the appearance of Paraethomysbelow and Apocricetus barrierei above.

Lower boundary. – Upper boundary of the formerbiozone (FAD of Paraethomys).

Upper Boundary. – FAD of A. barrierei.

Reference section and locality. – Sequence of LaDehesa (UTM: 30SVF189903 – 30SVF- 30SVF189902),in the sector of Arenas del Rey, and the localityDHS-16. The localities MNA-4, CLR-3, DHS-14,DHS-15B, DHS-1, DHS-4A, DHS-4B, BRA-5B, CAC-5,CAC-9, CAC-11, AGU-1C and PUR-3 belong tothis biozone too.

Biostratigraphical correlations. – Locality MNA-4records the FAD of P. meini in the Granada Basin.According to Mein et al. (1990) P. meini appears inlocalities of the Upper Turolian, and its record isolder in the Betic area than in the Iberian Chain.The FAD of Paraethomys in the Iberian Peninsula isdated around 6.1–6.2 Ma (Garcés et al. 1998; Agustíet al. 2006). Our Paraethomys meini Zone extendsfrom the uppermost Turolian (MN13) to theTurolian–Ruscinian boundary.

Localities of the Granada Basin like La Dehesa D4and La Dehesa D5 (Boné et al. 1978; Padial 1986),Cacín (Ruiz Bustos et al. 1992b), Águila-1 andÁguila-2 (Padial 1986) belong to this biozone. Thelocality M12 (Boné et al. 1978; Padial 1986) shouldalso be attributed to this biozone.

These localities may be partly correlated with Ramblade Chimeneas-3 and NGR-1 (Apodemus gudrunaeZone) in the Guadix basin (Minwer-Barakat 2005), andwith CR-6 (Paraethomys Zone) in Crevillente (MartínSuárez & Freudenthal 1998). However, the Guadix andCrevillente localities show Apodemus gudrunae but thoseof the Granada Basin contain Apodemus gorafensis.Contemporaneous localities in Teruel are Arquillo-4and Celadas-2 from the upper part of Stephanomysramblensis Zone (Mein et al. 1990); contemporaneousEuropean localities are Cassino, Brisighella (Mein1990) and Castelnou-3 (Aguilar et al. 1991).

The locality Zorreras-2B (Sorbas basin, MartínSuárez et al. 2000), with S. dubari, P. meini, O. alcalaiand Apodemus cf. gorafensis, may be correlated withthis biozone.

Species like Apodemus atavus, Castillomys gracilisand Ruscinomys lasallei are present in the youngestlocalities of this biozone, and they persist in thePliocene.

The Apocricetus barrierei Zone

Definition. – Interval Zone corresponding to theinterval between the appearance of A. barrierei belowand a large Paraethomys, P. aff. abaigari above.

Lower boundary. – Upper boundary of the formerbiozone (FAD of A. barrierei).

Upper Boundary. – Defined by the FAD of P. aff.abaigari.

Reference section and locality. – Lower part of thesequence of Barranco del Purcal, between thelocalities PUR-4 and PUR-7 (UTM: 30SVG455217–30SVG457217). The reference locality is PUR-4.The localities PUR-7, CLC-3, CLC-3B, CLC-4A andCLC-4B belong to this biozone.

Biostratigraphical correlations. – Mein et al. (1990),Kälin (1999), and Freudenthal et al. (1998) proposethat Apocricetus barrierei is characteristic for localitiesof the Lower Ruscinian (MN14). The stratigraphicalposition, the presence of typical Early Ruscinian taxa(Apocricetus barrierei, Castillomys gracilis, Apodemusatavus, Stephanomys dubari and Ruscinomys lasallei),and the absence of taxa characteristic for the endof the Early Ruscinian (Trilophomys, Stephanomyscordii) correlate this biozone with the beginning ofthe Ruscinian (MN14).

The locality Purcal (Ruiz Bustos et al. 1992a) in theGranada Basin belongs to this biozone. We cannotattribute the locality of Calicasas (Dabrio et al. 1978;Padial 1986; Ruiz Bustos et al. 1992a) to a preciseLower Ruscinian biozone, due to the scarceness ofspecimens and the presence of Paraethomys cf. jaegeri.

Lower Ruscinian localities of the Guadix Basin, likeYeguas (Soria & Ruiz Bustos 1991; Minwer-Barakat2005) and Gorafe-A (Ruiz Bustos et al. 1984), areyounger (Trilophomys Zone, Minwer-Barakat 2005),because of the presence of Stephanomys cordii(descendant of S. dubari) and Trilophomys.

The Apocricetus barrierei Zone may be correlatedwith the Celadensia Zone in Teruel (Mein et al.1990), where Peralejos-E is the reference locality.The Stephanomys from Peralejos-E, La Gloria-4 andCeladas-9 was previously considered to be S. cordii(Adrover et al. 1988 and 1993), but in our opinion itis S. dubari, as in our localities.

This biozone cannot correlate with the Promimomysinsuliferus Zone and with the Promimomys cor Zone(MN14), based on Promimomys (Fejfar et al. 1998), dueto the absence of that genus in the South of the IberianPeninsula. Contemporaneous European localitiesmay be Podlesice and Celleneuve (Mein 1990).

444 García-Alix et al. LETHAIA 41 (2008)

The Paraethomys aff. abaigari Zone

Definition. – Taxon-range Zone that coincides withthe range of P. aff. abaigari.

Lower boundary. – Upper boundary of the formerbiozone (FAD of P. aff. abaigari).

Upper Boundary. – LAD of P. aff. abaigari.

Reference section and locality. – The upper part ofthe sequence of Barranco del Purcal (UTM:30SVG439224). The reference locality is PUR-13.The locality CLC-5A belongs to this biozone too.

Biostratigraphical correlations. – Stephanomys dubariis present in the Granada Basin localities and so theyare older than the localities Yeguas, Gorafe-A andGorafe-1 in the Guadix Basin, with S. cordii. Thisbiozone belong to the Lower Ruscinian (MN14).

The localities La Gloria-4 and Celadas-9 (Teruel),as well as CLC-5A and PUR-13, contain two Parae-thomys species: P. meini and P. cf./aff. abaigari (Meinet al. 1990; P. Mein, personal communication, 2004).They belong to the two-Paraethomys + PromimomysZone (Mein et al. 1990), which may be correlatedwith our biozone.

The locality of Calicasas in the Granada Basin(Dabrio et al. 1978; Padial 1986; Ruiz Bustos et al.1992a), as mentioned above, may belong to thisbiozone. The Trilophomys Zone in the Guadix Basin(Minwer-Barakat 2005) or Teruel (Mein et al. 1990)has no equivalents in the Granada Basin. TheParaethomys aff. abaigari Zone cannot correlateeither with the Rodent Zones (Fejfar et al. 1998) fromMN14. Contemporaneous European localities maybe Ptolemais-1 and Hautimagne (Mein 1990).

The Barren Interval 2

Definition. – Barren Interval between the Parae-thomys aff. abaigari Zone and the Stephanomysdonnezani Zone.

Lower boundary. – Upper boundary of the Parae-thomys aff. abaigari Zone (LAD of P. aff. abaigari).

Upper boundary. – Lower boundary of the Steph-anomys donnezani Zone (FAD of S. donnezani).

Remarks. – There is not faunistic data between theParaethomys aff. abaigari Zone and the Stephanomysdonnezani Zone. These two biozones are disconnecteddue to the scarceness of sediments with favorablefeatures to obtain fossil small mammals.

The Stephanomys donnezani Zone

Definition. – Assemblage Zone characterized by theassociation of the taxa S. donnezani, Trilophomys sp.,Arvicolinae indet., and Castillomys cf. crusafonti.

Lower boundary. – FAD of S. donnezani.

Upper Boundary. – LAD of S. donnezani.

Reference section and locality. – Sequence of Barrancode Blas (UTM: 30SVG083140–30SVG831139) andlocality BLS-1. The localities BLS-5A and BLS-6belong to this biozone too.

Biostratigraphical correlations. – The faunistic asso-ciation is characteristic of the Late Ruscinian due tothe presence of S. donnezani, Arvicolinae indet. andTrilophomys sp. The presence of the small form ofCastillomys cf. crusafonti places it specifically at thebase of the Upper Ruscinian (MN15).

Minwer-Barakat (2005) differentiates two biozonesin the Upper Ruscinian: the Dolomys adroveri Zoneand the Mimomys hassiacus–Stephanomys donnezaniZone. Stephanomys donnezani is present in both, andthe distinguishing criterion used is the Arvicolinaefound. The Arvicolinae of our localities could not beidentified; the specimens show medium-sized, veryscarce cement and relatively low linea sinuosa; so wecannot establish a reliable correlation with thesebiozones. The same problem appears when trying tocorrelate with the Teruel zones (Mein et al. 1990)and with the Rodent Zones of Fejfar et al. (1998).Our localities are probably older than TCH-1B(Minwer-Barakat 2005) and Wölfersheim (Mein1990), and close to Galera-C (Garcés et al. 1997),Arquillo-3, La Gloria-2 (Mein et al. 1990) and Serratd’en Vacquer (Mein 1990).

In summary, the Castromys littoralis Zone iscorrelated with the Upper Tortonian, the Occitanomysadroveri–Occitanomys alcalai, Apocricetus alberti andParaethomys meini Zones correspond to the Messinianand the Apocricetus barrierei, Paraethomys aff. abaigariand Stephanomys donnezani Zones are Lower Pliocene(Figs 10 and 11).

Remarks about the Turolian–Ruscinian (MN13-MN14) boundary

There is a controversy about the age of the Turolian–Ruscinian limit (MN13-MN14). Opdyke et al. (1997),Steininger (1999) and Berger et al. (2005) situatedit around 4.9 Ma, between the chrons C3n.4n andC3n.3n. Opdyke et al. (1997) took as reference the

LETHAIA 41 (2008) Contintental biostratigraphy of the Granada Basin 445

locality of Fuente del Viso attributed to the LateTurolian, but its small mammal fauna (Stephanomyscordii and Apocricetus barrierei, as most significanttaxa) belongs to the Early Ruscinian; therefore thislimit must be older than 4.9 Ma (Agustí et al. 2001).

In the lower part of the section of Barranco delPurcal, the latest Turolian locality PUR-3 and the earliestRuscinian locality PUR-4 (with Apocricetus barriereiand Ruscinomys lasallei, among others) belong to chronC3r (Martín Suárez et al. 1998). The locality PUR-7,that is situated 25 m above PUR-4, belongs to thischron too. The limit between the chrons C3r andC3n4n is estimated at 5.23 Ma, which means that thelimit Turolian–Ruscinian is older than 5.23 Ma. The twoPurcal localities are in the upper part of the chronC3r (Martín Suárez et al. 1998), therefore, thementioned limit is slightly older than 5.23 Ma, and maywell coincide with the Mio-Pliocene limit, which isestimated at 5.33 Ma (Gradstein et al. 2004) (Fig. 11).

Conclusions

In the Late Miocene–Pliocene of the Granada Basinfive fluvio-lacustrine systems (units A to E) hadbeen differentiated. The study of small mammals hasallowed us to detail their age which, combined withlithofacies distribution, has helped us to unravel thepalaeogeographical evolution of the basin (Figs 3and 11).

Unit A deposits relate to a braided fluvial systemflowing into a lake and were accumulated during theMiddle-Late Turolian transition. The overlying UnitB consists of gypsum turbidites of lacustrine originof Late Turolian age. At the time of deposition ofUnit C (Late Turolian), coarse terrigenous sedimentsformed two deltas at the northeastern and south-western margins of a lake that covered most of thebasin. Deposition of the lacustrine Unit D wasrestricted to the western area during the latestTurolian. Finally, during the latest Turolian–EarlyRuscinian, two independent alluvial-lacustrinesystems (sediments of Unit E) developed in theeastern and western part of the basin respectively.

We have studied 11 fluvio-lacustrine sections and37 fossil localities. The yielded fossil small mammalshave allowed us to distinguish seven biozones:Castromys littoralis Taxon-range Zone (Middle Turo-lian; uppermost Tortonian), Occitanomys adroveri–Occitanomys alcalai Concurrent-range Zone (UpperTurolian; Messinian), Apocricetus alberti Interval Zone(Upper Turolian; Messinian), Paraethomys meiniInterval Zone (Upper Turolian; Messinian), Apocri-cetus barrierei Interval Zone (Lower Ruscinian;Zanclean), Paraethomys aff. abaigari Taxon-range

Zone (Lower Ruscinian; Zanclean), and Stephanomysdonnezani Assemblage Zone (Upper Ruscinian;Zanclean). This local biozonation, as well as thesmall mammal localities, have been correlated withwell-known small mammal sites outside the GranadaBasin, MN Units and other local small mammalbiozonations of the Iberian Peninsula.

We propose an age slightly older than 5.23 Mafor the Turolian–Ruscinian boundary (MN13-MN14boundary), based on the correlation of the continentalbiostratigraphy and the magnetostratigraphic analysesof the Barranco del Purcal section in the GranadaBasin. It practically coincides with the age of theMio-Pliocene boundary at 5.33 Ma.

Acknowledgements. – This study was supported by the program‘Consolider Ingenio 2010’ (CSD 2006-00041), and the researchgroup RNM0190 of the ‘Junta de Andalucía’. We want to thankP. Mein for his valuables comments. Comments and suggestions bythree anonymous reviewers and by the editor are much appreciated.

ReferencesAdrover, R. 1986: Nuevas faunas de roedores en el Mio-Plioceno

continental de la región de Teruel (España). Interés Bio-estratigráfico y Paleoecológico. 423 pp. Instituto de EstudiosTurolenses, Teruel, Aragon, Spain.

Adrover, R., Mein, P. & Moissenet E. 1988: Contribución alconocimiento de la fauna de roedores del Plioceno de la regiónde Teruel. Instituto de Estudios Turolenses 79(1) , 91–151.

Adrover, R., Mein, P. & Moissenet E. 1993: Roedores de la tran-sición Mio-Pliocena de la región de Teruel. Paleontología iEvolució 26–27, 47–84.

Aguilar, J.P., Michaux, J., Bachelet, B., Calvet, M. & Faillat, J.P.1991: Les nouvelles faunes de rongeurs proches de la limiteMio-Pliocene en Rousillon. Implications biostratigraphiqueset biogeographiques. Paleovertebrata 20, 147–174.

Aguirre, E. 1974: La Depresión de Granada. In Aguirre, E. &Morales, J. (eds): 1 Coloquio Internacional Sobre Biostrati-grafía Continental del Neógeno Superior y Cuaternario Inferior,175–211. Libro Guía, Madrid, Spain.

Agustí, J., Cabrera, L., Garcés, M., Krijgsman, W., Oms, O. &Parés, J.M. 2001: A calibrated mammal scale for the Neogeneof Western Europe. State of the art. Earth-Science Reviews 52,247–260.

Agustí, J., Garcés, M. & Krijgsman, W. 2006: Evidence forAfrican–Iberian exchanges during the Messinian in the Spanishmammalian record. Palaeogeography, Palaeoclimatology,Palaeoecology 238, 5–14.

Agustí, J., Moyà-Solà, S., Gibert, J., Guillén, J. & Labrador, M.1985: Nuevos datos sobre la bioestratigrafía del Neógenocontinental de Murcia. Paleontologia i Evolució 18, 83–94.

Bandel, K., Reicherter, K., Dyrssen, U. & Reiss, S. 2000: LateNeogene lacustrine sedimentary facies and gastropod assem-blages (Granada Basin, southern Spain). Mitteilung Geologisch-Paläontologisches Institut Universitat Hamburg 84, 11–130.

Berger J.P., Reichenbacher, B., Becker, D., Grimm M., Grimm K.,Picot L., Storni, A., Pirkenseer, C. & Schaefer, A. 2005:Eocene-Pliocene time scale and stratigraphy of the UpperRhine Graben (URG) and the Swiss Molasse Basin (SMB).International Journal of Earth Sciences (Geologische Rund-schau) 94, 711–731.

Boné, E., Dabrio, C.J., Michaux, J., Peña, J.A. & Ruíz Bustos, A.1978: Stratigraphie et paléontologie du Miocène supérieurd’Arenas del Rey, bassin de Granada (Andalousie, Espagne).Bulletin de la Société Belge de Géologie 87(2), 87–99.

446 García-Alix et al. LETHAIA 41 (2008)

Braga, J.C., Martín, J.M. & Quesada, C. 2003: Patterns and aver-age rates of late Neogene-Recent uplift of the Betic Cordillera,SE Spain. Geomorphology 50, 3–26.

Dabrio, C.J. & Fernández, J. 1986: Depósitos de ríos trenzadosconglomeráticos plio-pleistocenos de la depresión de Granada.Cuadernos de Geología Ibérica 10, 31–53.

Dabrio, C.J. & Ruiz Bustos, A. 1979: Les conglomérats de la‘Blockformation’ et leur signification dans l´evolution néogènedu bassin de Grenade (Cordillères Bétiques, Espagne). ComptesRendus Sommaires de la Société Géologique de France 2, 53–55.

Dabrio, C.J. Martín, J.M. & Megías, A.G. 1982: Significationsédimentaire des évaporites de la dépression de Grenade(Espagne). Bulletin de la Société Géologique de France 4, 705–710.

Dabrio, C.J., Fernández, J., Peña, J.A., Ruiz Bustos, A. & Sanz deGaldeano, C.M. 1978: Rasgos sedimentarios de los conglomer-ados Miocénicos del borde NE de la Depresión de Granada.Estudios Geológicos 34, 89–97.

Dabrio, C.J., García-Yebra, R., González Donoso, J.M. & Vera,J.A. 1972: Turbiditas asociadas a evaporitas (Mioceno, LaMalá, Depresión de Granada). Cuadernos de Geología 3, 139–164.

Elorza, J., García Dueñas, V. & González Donoso, J.M. 1978:Mapa Geológico de España 1:50.000, hoja 1040 (Zafarraya).Instituto Geológico y Minero de España, Madrid, Spain.

Fejfar, O., Heinrich, W.D. & Lindsay, E.H. 1998: Updating theNeogene Rodent biochronology in Europe. MededelingenNederlands Instituut voor Toegepaste Geowetenschappen TNO60, 533–554.

Fernández, J. & Soria, J. 1987: Evolución sedimentaria en elborde norte de la Depresión de Granada a partir del Turo-liense terminal. Acta Geológica Hispánica 21–22, 73–81.

Fernández, J., Soria J. & Viseras, C. 1996: Stratigraphic architec-ture of the Neogene basins in the central sector of the BeticCordillera (Spain); tectonic control and base level changes.In Friend, P.F. & Dabrio, C.J. (eds): Tertiary Basins of Spain:The Stratigraphic Record of Crustal Kinematics, 353–365.Cambridge University Press, Cambridge, UK.

Freudenthal, M., Mein, P. & Martín Suárez, E. 1998: Revision ofLate Miocene and Pliocene Cricetinae from Spain and France.Treballs del Museu de Geologia de Barcelona 7, 11–93.

Garcés, M., Agustí, J. & Parés, J.M. 1997: Late Pliocene continentalmagnetochronology from the Guadix-Baza Basin (Betic Ranges,Spain). Earth and Planetary Science Letters 146(3–4) , 677–688.

Garcés, M., Krijgsman, W. & Agustí, J. 1998: Chronology of thelate Turolian deposits of the Fortuna basin (SE Spain): impli-cations for the Messinian evolution of the eastern Betics. Earthand Planetary Science Letters 163, 69–81.

García-Alix, A. 2006: Bioestratigrafía de los depósitos de la tran-sición Mio-Plioceno de la cuenca de Granada, 418 pp. PhDdissertation, University of Granada, Granada, Spain (PDFavailable on demand).

García-Alix, A., Minwer-Barakat, R., Martín Suárez, E. &Freudenthal, M. 2007a: New data on Mio-Pliocene Sciuridae(Rodentia, Mammalia) from Southern Spain. Comptes RendusPalevol 6(4), 269–279.

García-Alix, A., Minwer-Barakat, R., Martín Suárez, E. &Freudenthal, M. 2007b: A late Ruscinian (Pliocene) Rodentfauna from the Granada Basin (SE Spain). Journal of VertebratePaleontology 27, 1066–1070.

Gradstein, F., Ogg, J. & Smith, A. 2004: A Geologic Time Scale,589 pp. Cambridge University Press, Cambridge, UK.

Haq, B.U., Hardenbol, J. & Vail, P.R. 1987: Chronology of fluc-tuating sea levels since the Triassic. Science 235, 1156–1167.

Kälin, D. 1999: Tribe Cricetini. In Rössner, G.E. & Heissig, K.(eds): The Miocene Land Mammals of Europe, 373–388. VerlagDr. Friedrich Pfeil, München, Germany.

Lupiani, E. & Soria, J. 1985a: Mapa Geológico de España 1:50.000,hoja 1024 (Loja). Instituto Geológico y Minero de España,Madrid, Spain.

Lupiani, E. & Soria, J. 1985b: Mapa Geológico de España 1:50.000,

hoja 1008 (Montefrío). Instituto Geológico y Minero deEspaña, Madrid, Spain.

Martín Suárez, E. & Freudenthal, M. 1998: Biostratigraphy of thecontinental Upper Miocene of Crevillente (Alicante, SESpain). Geobios 31(6), 839–847.

Martín Suárez, E., Freudenthal, M., Krijgsman, W. & RutgerFortuin, A. 2000: On the age of the continental deposits of theZorreras Member (Sorbas Basin, SE Spain). Geobios 33(4) ,505–512.

Martín Suárez, E., Oms, O., Freudenthal, M., Agustí, J. &Parés, J.M. 1998: Continental Mio-Pliocene transition in theGranada Basin. Lethaia 31, 161–166.

Martín, J.M. 2000: Geología e historia del oro de Granada.Boletín Geológico y Minero 111(2–3) , 47–60.

Martín, J.M., Ortega-Huertas, M. & Torres-Ruiz, J. 1984: Genesisand evolution of strontium deposits of the Granada Basin(southeastern Spain): Evidence of diagenetic replacement of astromatolite belt. Sedimentary Geology 39, 281–298.

Mein, P. 1990: Updating of MN Zones. In Lindsay, E.H.,Fahlbusch, V. & Mein, P. (eds): European Neogene MammalChronology, 73–90. Plenum Press, New York.

Mein, P. 1999: European miocene mammal biochronology.In Rössner, G.E. & Heissig, K. (eds): The Miocene LandMammals of Europe, 25–38. Verlag Dr. Friedrich Pfeil,München, Germany.

Mein, P., Moissenet, E. & Adrover, R. 1990: Biostratigraphiedu Néogène Supérieur du bassin de Teruel. Paleontologia iEvolució 23, 121–139.

Minwer-Barakat, R. 2005: Roedores e insectívoros del Turoliensesuperior y el Plioceno del sector central de la cuenca de Guadix,548 pp. PhD dissertation, University of Granada, Granada,Spain (PDF available on demand).

Opdyke, N., Mein, P., Lindsay, E., Pérez-González, A., Moissenet,E. & Norton, V.L. 1997: Continental deposits, magnetostrati-graphy and vertebrate paleontology, late Neogene of EasternSpain. Palaeogeography, Palaeoclimatology, Palaeoecology 133,129–148.

Padial, J. 1986: Estudios de los Roedores y Lagomorfos del Miocenocontinental de la Depresión de Granada, 350 pp. PhD disserta-tion, University of Granada, Granada, Spain (PDF available ondemand).

Rodríguez Fernández, J. & Sanz de Galdeano, C. 2006: Lateorogenic intramontane basin development: the GranadaBasin, Betics (southern Spain). Basin research 18(1) , 85–102.

Ruano, P., Galindo Zaldívar, J. & Jabaloy, A. 2000: Evolucióngeológica desde el Mioceno del sector noroccidental de ladepresión de Granada (Cordilleras Béticas). Revista de laSociedad Geológica de España 13(1) , 143–155.

Ruiz Bustos, A., Fernández, J. & López Garrido, A.C. 1992b:Consideraciones sobre la bioestratigrafía del Ventiense finalen las Cordilleras Béticas. El yacimiento Cacín-1. Geogaceta11, 101–105.

Ruiz Bustos, A., Martín Martín, M. & Martín Algarra, A. 1992a:Nuevos datos sobre el neógeno continental en el sector NE dela Cuenca de Granada, Cordillera Bética. Geogaceta 12, 52–56.

Ruiz Bustos, A., Sesé, C., Dabrio, C., Peña, J.A. & Padial, J. 1984:Geología y fauna de micromamíferos del nuevo yacimiento delPlioceno inferior de Gorafe-A (Depresión de Guadix-Baza,Granada). Estudios Geológicos 40, 231–241.

Soria, J.M. & Ruiz Bustos, A. 1991: Bioestratigrafía de los sedi-mentos continentales del sector septentrional de la Cuenca deGuadix, Cordilleras Béticas. Geogaceta 9, 94–96.

Steininger, F.F. 1999: Chronostratigraphy, Geochronology andBiochronology of the Miocene ‘European Land MammalMega-Zones’ (ELMMZ) and the Miocene ‘Mammal-Zones(MN-Zones)’. In Rössner, G.E. & Heissig, K. (eds): TheMiocene Land Mammals of Europe, 9–24. Verlag Dr. FriedrichPfeil, München, Germany.

van de Weerd, A. 1976: Rodents faunas of the Mio-Pliocenesediments of the Teruel-Alfambra Region, Spain. UtrechtMicropaleontological Bulletins Special Publication 2, 1–185.