atomic energy - International Nuclear Information System (INIS)

67
- «O."W038 CA9200046 ATOMIC ENERGY WJSM ENERGIE ATOMIQUE OF CANADA LIMITED \ ^ j F DU CANADA LIMITEE Research Company ^^^^ Socie'te de Recherche RESIDUAL STRAIN, SCALE EFFECTS, AND TIME-DEPENDENT BEHAVIOUR AT THE 2 4 0 m LEVEL OF THE UNDERGROUND RESEARCH LABORATORY DEFORMATION RESiDUELLE, EFFETS D'ECHELLE ET COMPORTEMENT DEPENDANT DU TEMPS AU NIVEAU DE 240 m DU LABORATOIRE DE RECHERCHES SOUTERRAIN R. S. Read Whiteshell Nuclear Research Etablissement de recherches Establishment nucleaires de Whiteshell Pinawa, Manitoba ROE 1LO January 1990 Janvier

Transcript of atomic energy - International Nuclear Information System (INIS)

- «O . "W038 C A 9 2 0 0 0 4 6

ATOMIC ENERGY WJSM ENERGIE ATOMIQUE

OF CANADA LIMITED \ ^ j F DU CANADA LIMITEEResearch Company ^ ^ ^ ^ Socie'te de Recherche

RESIDUAL STRAIN, SCALE EFFECTS, AND TIME-DEPENDENT

BEHAVIOUR AT THE 2 4 0 m LEVEL

OF THE UNDERGROUND RESEARCH LABORATORY

DEFORMATION RESiDUELLE, EFFETS D'ECHELLE ET COMPORTEMENT

DEPENDANT DU TEMPS AU NIVEAU

DE 240 m DU LABORATOIRE DE RECHERCHES SOUTERRAIN

R. S. Read

Whiteshell Nuclear Research Etablissement de recherchesEstablishment nucleaires de Whiteshell

Pinawa, Manitoba ROE 1LOJanuary 1990 Janvier

Copyright © Atomic Energy of Canada Limited, 1990.

ATOMIC ENERGY OF CANADA LIMITED

RESIDUAL STRAIN, SCALE EFFECTS, AND TIME-DEPENDENT BEHAVIOURAT THE 240-m LEVEL OF THE UNDERGROUND RESEARCH LABORATORY

by

R. S. Read

Whiteshell Nuclear Research EstablishmentPinawa, Manitoba ROE 1L0

1990

AECL-10038

DÉFORMATION RÉSIDUELLE, EFFETS D'ÉCHELLE ET COMPORTEMENT DÉPENDANT DU

TEMPS AU NIVEAU DE 240 m DU LABORATOIRE DE RECHERCHES SOUTERRAIN

par

R.S. Read

RÉSUMÉ

On a surveillé continuellement deux trous de forage orthogonaux presquehorizontaux au cours du surcarottage concentrique au niveau de 240 m duLaboratoire de Recherches Souterrain (LRS). On a déterminé l'intensité etl'orientation des principaux éléments de déformation résiduelle du régimede contrainte en champ proche en supposant un comportement élastique liné-aire de la masse rocheuse et des conditions isotropiques; on a comparé lesrésultats avec ceux d'essais précédents au niveau de 240 m du point de vuede l'intensité. Toutefois, les résultats sur l'orientation ne sont pasconcluants. En outre, on a étudié les effets d'échelle et l'orientationdes trous de forage (par rapport à la direction de la contrainte princi-pale) sur les résultats d'un essai de surcarottage avec jauge modifiéetriaxiale CSIR; aucuns effets d'échelle n'ont été apparents lors de l'essaimais l'orientation des trous de forage a réellement influé sur les résul-tats. Enfin, on a détecté et surveillé le comportement dépendant du tempsdu granite de Lac du Bonnet entre des essais successifs de surcarottageexécutés dans l'un des trous de forage. On présente les résultats sur ladéformation résiduelle, les effets d'échelle, le comportement dépendant dutemps ainsi que les limites de la technique d'essai et les modificationspossibles à y apporter.

Énergie atomique du Canada limitéeÉtablissement de recherches nucléaires de Whiteshell

Pinawa, Manitoba ROE 1L01990

AECL-10038

RESIDUAL STRAIN, SCALE EFFECTS, AND TIME-DEPENDENT BEHAVIOURAT THE 240-m LEVEL OF THE UNDERGROUND RESEARCH LABORATORY

by

R. S. Read

ABSTRACT

Two subhoiizontal, orthogonal boreholes were monitored continuously during concentricovercoring at the 240-m level of the Underground Research Laboratory (URL). Themagnitude and orientation of principal residual strain components in the near-field stressregime were determined assuming linear elastic behaviour of the rock mass and isotropicconditions. In terms of magnitude, results compared favourably with those from previoustests at the 240-m level. However, orientation results were inconclusive. The effects of scaleand borehole orientation relative to the principal stress direction on the results from amodified CSIR triaxial cell overcore test were also investigated; no scale effects wereapparent in the experiment, but borehole orientation did affect results. Finally, time-dependent behaviour was detected in the Lac du Bonnet granite, and was monitored betweensuccessive overcore tests in one of the boreholes. Results on residual strain, scale effects,and time-dependent behaviour are presented, along with limitations and possiblemodifications to the testing procedure.

Atomic Energy of Canada LimitedWhiteshell Nuclear Research Establishment

Pinawa, Manitoba ROE 1L01990

AECL-10038

CONTENTS

Page

1. INTRODUCTION 1

2. SITE DESCRIPTION 2

2.1 GEOLOGY 22.2 IN SITU STRESS CONDITIONS 3

3. DETAILS OF THE INVESTIGATION 5

3.1 BACKGROUND 53.2 EQUIPMENT AND INSTRUMENTATION 63.3 TEST LAYOUT AND PROCEDURE 73.4 DATA MANAGEMENT 93.5 ANALYTIC APPROACH 9

4. RESULTS AND DISCUSSION 12

4.1 RESIDUAL STRAIN 124.2 SCALE EFFECTS 144.3 TIME-DEPENDENT BEHAVIOUR 16

4.4 SOURCES OF ERROR 17

5. CONCLUSIONS 17

6. RECOMMENDATIONS 18

ACKNOWLEDGEMENTS 18

REFERENCES 19

CONTENTS (concluded)

Page

APPENDIX A MONITORING RESULTS A.I

APPENDIX B FIELD WORK SUMMARY B.I

APPENDIX C CALCULATIONS AND RESULTS OF DATA ANALYSIS C. 1

1. INTRODUCTION

The in situ stresses acting on a body of rock fall into two main categories: applied stressessuch as gravitational and tectonic stresses, and residual stress caused by paleotopographic,paleotectonic, thermal and chemical effects locked into the grains and cementing matrix ofthe rock (Friedman 1972). Most in situ stress characterisation programs for the constructionof engineering structures, including the program at the Underground Research Laboratory(URL), are designed to measure the component of the in situ stress attributable to the appliedstresses. However, the superposition of residual stress can create a complicated response inovercoring strain measurements.

In much of the literature regarding residual stress, the terms strain and stress are usedinterchangeably: strain is measured directly as a change of length in a strain measuringdevice relative to its initial length, whereas stress is determined indirectly from assumedmaterial properties of the rock mass and the measured strains. In the simplest case, the rockmass is modelled as a continuous, homogeneous, isotropic, linear elastic medium, but muchmore complex cases may be explored assuming anisotropic or non-linear behaviour. In manycases, the choice of realistic material properties that adequately define the behaviour of therock mass is not straightforward; for this reason, the results of this investigation are discussedin terms of strain instead of stress wherever possible. In this paper, residual strain ispotentially recoverable elastic deformation of constituent crystals, satisfying internalequilibrium conditions, in a volume of rock with no external loads across its boundaries(Friedman 1972). Residual stress describes the value of stress calculated from the residualstrain measurements based on the assumed material behaviour.

Residual strain manifests itself when grain boundaries in the rock are freed, or new freesurfaces are created through such processes as drilling or excavation. As suggested byFriedman (1972), residual strain in certain rock masses may account for a significant part ofthe measured strain response, with values representing stresses of 30 to 40 MPa measured inquartzites, sandstones and granites. Other authors have suggested residual strain may belocked into the rock mass at different scales (Bielenstein and Barron 1971), and that only asthe scale of the excavation approaches the scale at which the residual strain is locked into therock mass will its full influence be measured. If these scales are comparable, thecorresponding residual stress is indistinguishable from other applied stresses. Because thereare reasons to suggest that residual strain exists on the rock-grain scale (Bielenstein andBarron 1971), its effect on strain measurements using the modified CSIR triaxial strain cell(Thompson and Lang 1987) may be significant, and must be considered.

If a volume of rock is isolated by diamond drilling from the in situ stress regime, part of theresidual strain stored in the rock mass can be measured by overcoring progressively smallerconcentric cylinders in the initial rock cylinder, and recording the corresponding strainresponse (Nichols 1975). Although the total residual strain is not relieved during overcoringbecause of limited liberation of grains, the use of the CSIR triaxial strain cell allowsdefinition of the complete tensor for the residual strain relieved. Other techniques forestimating the magnitude and direction of residual strain in rock include X-ray diffraction

- 2 -

(Friedman 1972), strain-relief using photoelastic gauges (Brown 1970), and ultrasonicattenuation (Bur et al. 1969), but each has its own limitations.

The residual strain experiment at the 240-m level of the URL was conducted between 1988March 17 and August 22. A series of integral in situ overcore tests, using drill bits rangingfrom 600- to 96-mm diameter, were completed in two subhorizontal, orthogonal boreholes toconfirm previous measurements of residual strain at the URL (Lang et al. 1986). The effectsof scale and borehole orientation on results from the modified CSIR overcore test, and time-dependent behaviour were also investigated. This paper presents the testing methodology,the test results, and describes the limitations of the method.

2. SITE DESCRIPTION

The selection of an appropriate site for theresidual strain experiment was influencedmainly by geological factors. Twoorthogonal boreholes were planned inhomogeneous, massive grey granite tocompare results from overcoring atdifferent directions relative to the mainprincipal stress direction without theinfluence of geological structure in therock. After review of geologic maps of the240-m level, boreholes 210-020-RST1 and209-054-RST2 were targeted in Rooms210 and 209, respectively (Figure 1), withrespective orientations of 300.887-02.35°and 030.037-02.06° (trend/plunge).

2.1 GEOLOGY

FIGURE 1: Location of Residual StrainBoreholes at the 240-m Levelof the URL

As discovered in previous overcore tests at the URL, heterogeneity in lithology near any ofthe three strain rosettes in the modified CSIR triaxial strain cell can adversely affect themeasured strain response. For example, if the host lithologic unit is very coarse-grained orpegmatitic, the individual strain gauges may be bonded to only one or two large mineralcrystals. Consequently, the measured strain response to overcoring may not represent theresponse of the rock mass as a whole, but only that of the individual crystals in contact withthe strain gauges.

Like lithology, structural components of the rock mass must also be considered. Forinstance, discontinuities in the rock can affect the performance of a strain rosette.Continuous and discontinuous fractures can cause local concentration and re-orientation ofthe stress field, or partial strain relief if displacement has occurred along the fracture plane(Herget 1973, Hudson and Cooling 1988). Similarly, microcracks with a preferential

- 3 -

Depth BOREHOLE 210-C20-RSTI

Fetdspir/Quartz Vetilsts

FeWspar/Ouartz Veintet

Granodicrite Stringer

BOREHOLE 209-054-RST2HMO tonh<

Quartz PegmatiteZone

orientation can affect strain measurements by opening during drilling (Norman 1970). Inboth cases, the measured response to overcoring is affected by the presence of thediscontinuity, and may not be representative of the rock mass response at a larger scale. Inaddition, foliations and rock fabric can form planes of anisotropy in the rock mass, andtherefore influence overcoring results (Brown et al. 1988). Investigations of bothunderground and surface exposures in the URL lease area have identified numerous sets offoliations and fabric elements in the Lac du Bonnet batholith (Brown and Soonawala 1982).

A summary of the geology of eachborehole is shown in Figure 2. Thegeology intersected in borehole 210-020-RST1 comprises mainly massive, medium-grained grey granite, with isolatedfeldspar/quartz veinlets within about thefirst 2 m of dr i l l ing . An isolatedgranodiorite stringer was intersected near3-m depth, and a granodiorite dyke with aleucocratic lower margin was presentbetween 6- and 6.8-m depth. No fracturesor pervasive microcracks were visible inthe core. Similar geology was intersectedin the second borehole, 209-054-RST2.However, the grey granite near thisborehole showed a weak gneissic foliation,and contained isolated porphyroblasts. Aquartz pegmatite zone was intersectedbetween 1- and 2-m depth , and afeldspar/quartz veinlet was discovered near4-m depth . Mic rocracks with anorientation of 255°(345°)/740 [strike (dipdirection)/dip] were noted in isolatedquartz grains.

Feldspar/Quartz Veinlet

Granodtorite Dykewith LeucocraticLower Margin

LEGEND

Grey Granite {massive 10 weakly gneissic)

Fefdspar/Quanz Veintet

Granodorite Dyke or Stringer

I Quartz Pegnatite Zone

FIGURE 2: Summary of IntersectedBorehole Geology

2.2 IN SITU STRESS CONDITIONS

The far-field in situ stress conditions at the 240-m level of the URL have been estimated frommany types of testing, including suites of overcore tests using both the USBM and CSIRmethod (Thompson and Lang 1987, Martin and Christiansson in preparation). Results fromovercore tests in one borehole near Room 209 and three near Room 210 are representative ofthe in situ stress conditions in the test area, and are shown in Figure 3 with 90% confidencelimits on the principal stresses generated by a Monte Carlo simulation (Dzik et al. 1989).

The near-field in situ stress conditions result from stress redistribution around the excavatedtunnel. The analytical solution for stresses around a circular opening in a biaxial stress field(Kirsch 1898) can be used to determine the state of stress at any point in a plane. However,in applying the solution to the actual conditions of the residual strain experiment, thefollowing simplifying assumptions are necessary:

-4-

/

/

//

\\\ ,

X

•—1 —^

• — - .

* % •

' • '

N

^ - ^

A \

+ v s\

V . 2D9-069-PH3

i

0 0.

ROOM 209+ o 2

\

s\

\

/

Confidence Limits on Stress Magnitude (MPa)-90%Mean+90%

27.2529.7032.30

10.0310.9912.80

Orientation of Principal Stresses <°)TrendPlunge

216.419.9

110.936.6

8.4810.0210.70

328.946.7

Data from 5 CSIR Overcore Tests in Borehole 209-069-PH3

/ *\ 210-060-OCI/+\ 210-059-OCI4B-

\ 210-003-OCl/3^

\ /1 1

y \ °og °!«y V-.^ ° i

LEGEND

Borehole •90% Confidence Limits

O3

X /'

O 0i

N

*• + ' A

A \ ^ \it.

&A AA. A

/<5 ( ,

/ +

ROOM 210+ o 2

Confidence Limits on Stress Magnitude (MPa)-90% 20.19Mean 24.35+90% 32.21

13.3317.4222.89

Orientation of Principal Stresses (")Trend 234.8Plunge 05.7

143.710.6

; \(* \

\ S\A ° ^ . \

1

- - - - /

A 0 3

6.5313.9316.30

352.678.0

Data from 33 CSIR Overcore Tests in Boreholes 210-060-OC1,210-003-OCl, and 210-059-OC1

FIGURE 3: Summary of Far-field Stresses from Boreholes Near the Test Site

1) plane strain conditions exist;

2) the borehole is parallel to one principal stress direction;

3) the minor principal stress is vertical;

4) the rock mass is continuous, homogeneous, isotropic and linear elastic; and

5) the tunnel has a circular cross section.

Although the tunnel geometry at the 240-m level of the URL is roughly horseshoe-shaped,use of a boundary element model demonstrated that a detailed representation of the actualgeometry is not warranted because of the uncertainty introduced by the other assumptions.The near-field in situ stress around a circular opening was calculated with the Kirschequations using the mean stress conditions for each tunnel derived in the Monte Carlosimulation of the far-field stresses. According to the assumptions, in a horizontal radialborehole the near-field principal stress axes coincide with those of the far-field. However,the stress magnitudes vary considerably in the near-field regime.

-5 -

For a horizontal radial borehole, the shearstress at each overcore test depth is zero,and the radial and tangential stresscomponents correspond to the near-fieldhorizontal and vertical stress components,respectively. As shown in Figure 4, thecalculated horizontal stress is zero at theexcavation wall, and increases withdistance to the far-field horizontal stress inthe cross-sectional plane of the excavationfor both Rooms 209 and 210. The trend ofthe vertical stress component away fromthe excavation wall differs for each roombecause of the different stress ratio actingin the cross-sect ional plane of theexcavation. However, the near-fieldvertical stress approaches the far-fieldvertical stress as the distance from theexcavation wall increases. The axial stressincreases away from the excavation in eachcase.

V)

I H

ROOM 209

1 2 3 4 5 6 7 8 9 10 II 12Distance from Excavation Wall (m)

ROOM 210

2 3 4 3 6 7 8 9 10 11

Distance from Excavation Wall (m)

LEGENDHorizoiUl Stren -Vertical Sttcii —Axial Stress -

FIGURE 4: Calculated Near-field In Situ Stressin a Radial Horizontal Borehole

3. DETAILS OF THE INVESTIGATION

3.1 BACKGROUND

A previous investigation of residual strain, using the concentric overcoring technique,showed calculated residual stress constitutes 1 to 2 MPa, or 1.5 to 2.5% of the total calculatedin situ stress near Room 206 at the 240-m level of the URL (Lang et al. 1986). Both theCouncil for Scientific and Industrial Reseaich (CSIR) triaxial strain cell and the United StatesBureau of Mines (USBM) borehole deformation gauge (Hooker and Bickel 1974) were usedfor the investigation; however, equipment limitations and technical difficulties wereencountered throughout the investigation. The residual strain experiment in Rooms 209 and210 used a broader range of bit sizes, a modified CSIR triaxial strain cell, and modified fieldprocedures to minimize experimental errors.

As part of the Room 206 study, the effects of bit size and borehole orientation on themeasured in situ stress obtained by overcoring were examined (Lang et al. 1986). If nosignificant differences in overcoring results are apparent, the use of smaller drill bitsminimizes the required borehole length and associated drilling costs. As discussed in Lang etal. (1986), investigators in the U.S.A., Canada, and the United Kingdom prefer to use thelarger 150-mm-diameter drill bit to minimize drill-breakage in weak rock, the effects of heatgeneration during drilling, and the effect of small-scale heterogeneity on the results. Swedishinvestigators prefer the more economical 88-mm-diameter bit. In the Canadian Shield, and inparticular at the URL, the 96-mm-diameter drill bit has been used extensively in overcoretests because of the excellent rock conditions and accurate control of drill-water temperature

- 6 -

(Herget 1973, Lang et al. 1986). Overcore tests using 150-mm-, 200-mm-, and 300-mm-diameter bits have also been carried out at the URL.

The principle behind the experiment was to install a modified CSIR triaxial strain cell in a37.7-mm-diameter (EWG-size) borehole in a volume of massive granite, then concentricallyovercore the cell initially with a 600- or 300-mm diameter and then with successively smallerboreholes. For each of the five successful tests conducted, the largest borehole relieved theapplied stresses acting on the volume of rock, and the smaller boreholes relieved a portion ofthe residual stress locked into the rock. As well, other effects such as dependence onborehole size and orientation, and long-term creep were assessed from monitoring results.The field investigation was designed to control such influencing factors as temperature andwater pressure. Furthermore, the six-month duration of the experiment and continuousmonitoring helped identify potential sources of error with the instrumentation that may havegone undetected in a shorter experiment.

3.2 EQUIPMENT AND INSTRUMENTATION

The experiment was carried out with equipment available at the URL, with the exception ofthe 600-mm- and 300-mm-diameter drill bits. Both boreholes were completed with anelectric-powered Longyear 38 drill. The overcoring bits used for the experiment ranged insize from 600-mm- to 96-mm-OD; drill-bit information is summarized in Table 1. Drillingwater was supplied from two sources: cold water (4° C) from cooled tanks, and warm water(14° C) from the settling pond at surface.

Nominal Size(mm)

6003002001509638

TABLE 1

DRILL-BIT INFORMATION

Borehole Diameter Core Diameter(mm)

607.9307.1204.5152.996.037.7

(mm)

596.0295.2195.1144.586.721.5

Bit Length(mm)

153515351030101062035

The drill was equipped with instruments to monitor thrust, torque, speed and penetrationdepth, and instrumentation was installed in the borehole to monitor water temperature andpressure. A modified CSIR triaxial cell was installed for each test to record the strainresponse on twelve strain gauges arranged in three rosettes. For all except the first test, thestrain gauge on channel 12 was replaced with a stable resistor to provide a baseline

- 7 -

measurement of resistance in the system to correct results for instrument drift. Allinstrumentation was connected to a Fluke 2280B portable datalogger and continuouslymonitored during the experiment. An extra thermistor was also installed in the datalogger tomonitor its operating temperature. In all, 22 separate channels of data were recorded on tapecartridges; these channels are described in Appendix A.

The tunnel air temperature was also continuously monitored with a separate system ofinstruments for the duration of the experiment.

3.3 TEST LAYOUT AND PROCEDURE

The actual test layout for each borehole was restricted by both equipment size and tunnelgeometry. For example, the length of the 600-mm-diameter drill bit was limited by the widthof the tunnel and drill size to approximately 1.5 m. This restriction reduced the maximumlength-to-diameter ratio for this size of bit to only 2.5:1. To completely relieve the appliedstresses and to avoid the influence of end effects, a minimum drilled length of two bit-diameters on each side of the CSIR triaxial strain cell, corresponding to a length-to-diameterratio of 4:1, was required. Only three tests were attempted with the 600-mm-diamet,er bitbecause of the restricted length and drilling problems associated with the bit design. Theremaining tests were started with the 300-mm-diameter bit, satisfying the length-to-diametercriteria with a ratio of 5:1.

Two designs were completed for the drilling sequence, based on the largest bit size to be usedin the test (Figure 5). For the first test involving the 600-mm-diameter bit, the strain cell waspositioned 0.90 m from the starting reference of the test. To minimize the end effects insubsequent overcore sizes, the 300-mm-, 200-mm-, 150-mm- and 96-mm-diameter drill runsended two bit-diameters past the strain cell. For the 200-mm-diameter and smaller bits, apreliminary starter hole was drilled to compensate for the available lengths of bits on site.For subsequent tests, the design was modified to place the CSIR cell 0.60 m from the startingreference of each test. This new configuration eliminated the need for a preliminary hole forthe 20C-mm diameter and smaller bit-sizes, and reduced the stress effects on the 600-mm-diameter core at the connected end of the rock cylinder. For tests starting at the 300-mm-diameter size, the 600-mm-diameter bit was eliminated from the configuration. Centralizingplates were designed to keep successively smaller drill runs concentric, and stabilizers wereused to minimize sag in the drill rods and to provide support at the borehole collar.

Following installation of the CSIR cell, the stability of the cable connecting the CSIR cell tothe datalogger was checked by changing the temperature of the water in contact with thecable and monitoring the strain readings. If noticeable fluctuations were recorded, the systemwas checked for possible malfunctions and repaired. If the strain readings were stable (i.e.,less than 10 ̂ .e over ten minutes), overcore tests were started.

The overcore tests in the first borehole, 210-020-RST1, were conducted with a stabilizationperiod of up to five days before and after each consecutive overcore to monitor any time-dependent behaviour. Overcoring was not started for the successive run until the strainresponse had stabilized to less than 10 jie/h on all channels. Owing to the excessive delays

- 8 -

DRILLING SEQUENCE

Start 300 mm

Start 200 mm

Start 150 mm

Drill 96 mm and flatten

Drill 38 mm

Install CSIR cell

Ovorcore 600 mm

Overcore 300 mm

Overcore 200 mm

Overcore 150 mm

Overcore 96 mm

DRILLED LENGTH (mm)

300

H N30380

1500

1470

870

420

a) Initial Test Configuration

Stan 300 mm

Start 200 mm

Start 150 mm

Drill 96 mm and flatten

Drill 38 mm

Install CSIR cell

Overcore 600 mm

Overcore 300 mm

Overcore 200 mm

Overcore 150 mm

Overcore 96 mm

1170

420

b) Modified Test Configuration

FIGURE 5: Residual Strain Test Configurations

- 9 -

imposed on the drilling schedule by the stabilization periods after each overcore test, tests inthe second borehole were carried out with only a minimum stabilization period between runs.

Following the overcore testing at each test depth, a pressure/temperature response test wascarried out. The strains were monitored under constant temperature while the water pressurewas stepped through various levels, then the pressure was held constant and the watertemperature was varied. In general, the pressure variation of up to 300 KPa had a very smalleffect (0.03 |ie/KPa) on the measured strains. However, the variation in temperatureproduced a marked response in the strains, ranging from about -15 to -3 (ie/°C for the variousgauges. Plots of strain response are contained in Appendix A. The results of the responsetest emphasize the importance of maintaining temperature control throughout the overcoringoperation.

As a final step, a measurement of the cell orientation was made, and the core was carefullybroken out of the borehole. At surface, a biaxial test of the H-size (86.5-mm-diameter) corewas performed to determine the material properties of the tested sample of rock. A summaryof the field work performed for the residual strain experiment is contained in Appendix B. Acomplete copy of the experimental procedures is maintained at the URL.

3.4 DATA MANAGEMENT

Data collected by the datalogger were transferred regularly to the VAX computer as each tapecartridge was brought to surface. Preliminary plots of the data were compiled daily to assessthe quality of the results and to plan modifications to the experimental procedures. Fromthese plots, it was evident that events such as rod changes, reaming and equipment break-down resulted in "noise" that obscured the actual strain response to overcoring.Consequently, each data file was edited to filter out the noise caused by these extraneousactivities, and replotted to show the actual response due to overcoring. Examples of anunfiltered and filtered plot of the same data are shown in Figures 6 and 7, respectively.

From the filtered data files, changes in strains due to overcoring were extracted for analysis.A representative stable portion of each strain response curve on each side of the CSIR cellwas selected, and the average strain change was calculated for each of the gauges. Thedifference in cell temperature was also recorded. As detailed in the next section, these datawere then analyzed using an isotropic analysis program and the material propertiesdetermined from the biaxial test. The orientation and magnitude of the principal stressesindicated by the strain response were calculated, and the associated principal strains wereback-calculated (Appendix C).

3.5 ANALYTIC APPROACH

Measurement of residual strain is theoretically independent of the location of a nearbyexcavation assuming no associated damage to the rock mass has occurred. However, incomparing calculated applied stresses, the proximity of the excavation must be considered.In both boreholes, strain measurements were taken between 1.50 and 7.05 m from the wall ofthe 3.5-m-wide tunnel. From elastic theory, the zone of influence around the openingextends approximately two tunnel-diameters, or in this case, 7.0 m into the rock mass.

-10-

CSIROVEHCORETEST

MfCROSTRAiNVS DEPTH

HOLE: 209-054-RST2

DEPTH: 2 .08

FIGURE 6: Example of an Unfiltered Data Plot

TC £ E"OWBCOB6 DEPTH • cm

DWINDLENCHTHM -EA9TH3CUVA1QN -

W1IUTM

I D . - M M

O.D. - mmU M O . SM

BOCK TtM*f PUO

flEADOUT 9EWAL NO.

OATEMTAUED-OVElCOftfD-

CSIHOVEHCORETEST

MICROSTRAIN VS DEPTH

HW.E 209-054-RST2DEPTH: 2.08 (600 mm)

FIGURE 7: Example of a Filtered Data Plot

-11 -

Therefore, all strain measurements, with the possible exception of the last overcore test in210-020-RST1, were completed in the near-field stress regime.

The elastic constants determined from the biaxial chamber varied considerably from onesample to the next. Therefore, to compare with other stress measurements, principal stresseswere standardized using a uniform secant Young's modulus (E=50 MPa) and Poisson's ratio(v=0.20); these elastic constants represent typical results from laboratory tests conducted atthe URL. Where applicable, the strain tensor was used instead of the stress tensor to simplifythe analysis. For a continuous, homogeneous, isotropic, linear elastic medium, the principalstrains (£j, £2, £3) are related to the principal stresses (Oj, a2, 03) by:

- v(c2 + a3)](1)

[o2 - v(Oi + a3)](2)

[a3 - v(aj + a2)]£3= (3)

Principal in situ and residual strains were back-calculated from the principal stress resultsobtained from the isotropic stress analysis, using the elastic constants from the biaxial test ofeach 86.5-mm-diameter overcore. The in situ strain tensor was expected to vary for differenttest locations because of the influence of the excavation. However, in a homogeneousvolume of rock, the principal residual strain components should be relatively consistent inboth direction and magnitude. In practice, the residual strain tensor also varied for eachovercore test due to inherent heterogeneity in the rock and instrumentation limitations.

In dealing with stress or strain tensors, care must be taken in determining the averagemagnitude and orientation of the principal stresses or strains. A second-order tensor, unlike ascalar or a vector, has six independent components. The correct approach involvestransforming each tensor to a common set of reference axes, averaging the six tensorcomponents separately, then calculating the principal stresses of the resultant mean tensor(Hudson and Cooling 1988). This approach was used in determining the 90% confidencelimits on the principal stresses and strains.

A means of comparing the relative magnitude of strain responses is the volumetric strain (A),or relative volume change, defined by:

A = ej + e2 + £3 (4)

This equation is analogous to that for the first stress invariant, and is useful for identifyingresidual strain and effects of scale on overcore results. If no residual strain exists at the URL,

- 1 2 -

once the applied stresses are relieved by the initial overcore test, volumetric strain due tosubsequent overcoring is theoretically zero. If, however, residual strain is present, then thevolumetric strain tends to some non-zero value, depending on the relative magnitudes of theprincipal strain components. In Barre granite, both compressional and extensional residualstrains were measured (Nichols 1975).

As noted by Nichols (1975), the magnitude of the residual strain relief depends partly on thedegree of grain liberation, which in turn may be related to the scale of the test performed.Furthermore, the equilibrium conditions at the surface of the overcored rock cylinder, andpossibly the state of residual strain, are altered by each successive overcore. Therefore, ifresidual strain relief is scale-dependent, the volumetric strain for the various overcore testsizes should vary.

The volumetric strain was predicted fromthe derived near-field stress conditions forvarious points away from the excavation(Appendix C). As shown in Figure 8, thepredicted volumetric strain increases awayfrom the excavation, approaching aconstant value at approximately two tunneldiameters from the wall of the excavation.The volumetric strain from measurementsof in situ stress in various boreholes inRooms 209 and 210 is plotted forcomparison. In general, the measuredvalues are scattered about the curve for thepredicted volumetric strain; the maximumdifference between predicted and measuredstrains is about 28% of the predicted value.

.5

0.100.090.080.07

CO 0 0 6

y 0.05

'jS 0.040.03

LEGENDPredicted Values Measured Values— Room 210 A-209-028-OC1

Room 209

0.02-0.01-0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Distance from Excavation Wall (m)

FIGURE 8: Comparison of Predicted andMeasured Near-field VolumetricStrains

4. RESULTS AND DISCUSSION

4.1 RESIDUAL STRAIN

The prime objective of the experiment was to determine the magnitude and orientation ofresidual strain at the 240-m level of the URL. As previously described, the magnitude andorientation of the principal stresses calculated from the measured strain response duringovercoring were converted to equivalent principal strains by Equations 1, 2 and 3. Stressresults were also standardized for comparison with previous results.

The effect of anisotropy in the rock mass on the measured strains is not clear. Asdemonstrated in several applications, the anisotropic stress analysis conducted at the URLtends to rotate the major principal strain component into the plane of anisotropy forconditions where strong anisotropy exists. This rotation generally results in a higher degreeof precision in the data, but is dependent on the magnitude of the anisotropy. Work is

- 1 3 -

currently ongoing at the URL to characterise the anisotropy at the 240-m level.Consequently, to avoid assumptions regarding the orientation and magnitude of anisotropy,and to compare with isotropic results from previous work, an isotropic analysis wascompleted in detail. The results of these calculations are summarized in Appendix C.

The calculated residual strain and corresponding residual stress in each of the boreholes areshown in Figure 9. The average magnitude of the principal residual strains (EJR, ?2R' and£3R) an£* l^ e r a n S e °f values within the 90% confidence limit are similar in both boreholes;mean magnitudes of major, intermediate and minor residual strain components were 10.32,0.44 and -9.11 fie, respectively, for borehole 209-054-RST2, and 17.24, -3.61 and -6.79 jxefor borehole 210-020-RST1. In terms of stress, the average magnitude of the major principalresidual stress component near Rooms 209 and 210 is only 1.5 and 3.3%, respectively, of thecalculated major principal far-field in situ stress component. These results comparefavourably with those of Lang et al. (1986).

In contrast to the residual strain magnitudes, the mean orientation of the three straincomponents is significantly different for each borehole, with EJR showing a dependency onborehole orientation in each case. Significant differences in mean orientations of the straincomponents in near-perpendicular boreholes have been noted in other isotropic analyses of

//

1 \\ /

V (\\\\\

N^ - *- * ^ ^

S 1 a• \ /

/ — \

\ A S\ ^

o

209-054-RST2^t « •,.

ROOM 209

° E1R (a1R) + ea, (o :

\

\

• ' * • " • • • \/+ ^

' / ++ 1'••r/7^ /\^/// LEGEND

Borehole •90% Confidence

E1R

E£4 E 3 R ( O 3 R )

Confidence Limits on Residual Strain Magnitude (JJE) *-90%Mean+90%

1.50 -9.6010.32(0.45) 0.44(0.04)28.99 10.72

Orientation of Principal Axes (°)TrendPlunge

008.0 100.607.9 18.6

-22.39-9.11 (-0.36)-3.95

256.069.7

A • \/ a >

V-—c<\fr'

Limits

\ + >

° EIR (OIR)

N•

j

V ^ "

\)VI

](/

ROOM 210

+ Ea< (O2R)

V \

V \

1 210-020-RSTl/

\ * ^\ f\y^/

* £3R (°3R)

Confidence Limits on Residual Strain Magnitude (ux) *-90% 6.45Mean 17.24 (0.81)+90% 39.36

-12.07-3.61 (-0.06)8.83

Orientation of Principal Axes (°)Trend 307.4Plunge 08.0

Residual stress magnitudes (MPa) shown in parentheses.

094.880.6

-2621-6.79 (-0.19)-3.18

216.705.0

FIGURE 9: Summary of Residual Strain and Stress for Each Borehole

-14 -

overcore results at the 240-m level of the URL (Martin and Christiansson, in preparation);these differences may be attributable to inherent anisotropy in the rock not accounted for bythe isotropic analysis. In addition, the orientations of the strain components within eachborehole show considerable variability as demonstrated by the size of the area encompassedby the 90% confidence limit. In comparison to the far-field in situ stress symmetries, theresidual strain symmetries are rotated anticlockwise for each borehole. Also, compared to thenear-field in situ stress symmetries, clockwise rotation of the residual stress symmetries isapparent in both cases. These symmetries suggest influence of geology or tunnel geometryon the strain measurements (Brown, pers. comm.).

4.2 SCALE EFFECTS

The second main goal of the investigation was to determine the effect of scale on overcoringresults, both for the total in situ and the residual strain measurements. The near-field in situstate of stress was calculated from the strain response from the initial overcore at each testlocation. The results from all the tests in each borehole were combined and compared withpredicted values calculated from the average in situ stress conditions.

ROOM 209

0 1 2 3 4 5 6 7 8 9 ID 11 12

Distance from Kxcavation Wall (m)

ROOMS 209 AND 210o o , <T3

Orientation of Principal Axes (°)Trend 262.1 166.6Plunge 23.2 12.7

90% Confidence Limitsrj, o 2 O3-

Borehole •

050.063.2

h to

TCL.600-

! J I 1 - 1 Ttt-mm I

Test 1-2300-mm

Test 13300-mnl

ROOM 210

2 3 4 5 6 7 8 9 10 11 12Distance from lixcavalion Wall (m)

LK3I-ND

Horizoiul StressVerticil S&eisAxul Stress

2IO-020RST1 209054RST2Test 1-1 @ 2.43 m Test 2-1 @ 2.08 mTest 1-2 @ 5.57 m Tesl 2-2(3) 3.95 mTe«[email protected]

FIGURE 10: Comparison of Predicted and Measured Near-field In Situ Stress

As shown in Figure 10, the measured near-field in situ stress components at each test locationdeviate from the predicted values, both in orientation and magnitude. Even considering the90% confidence limits shown in Figure 10, CT3 is not vertical, and consequently Gj and <5^ donot lie in a horizontal plane as assumed for the predicted values. Furthermore, the meantrend of a j is 262°, which differs significantly from the predicted value of 210°. Somedependence of the orientation of a* on borehole orientation is also apparent in the twoboreholes.

In Room 209, the magnitude of each stress component measured from the first test with the600-mm-diameter bit exceeded the predicted value. The second test, using a 300-mm-diameter bit, showed CTj and a^ below, and O"2 above, the predicted magnitudes. In Room210, the first test was started using a 600-mm-diameter bit, the second and third using a 300-mm-diameter bit. The third test experienced some equipment malfunction before the in situstress was fully relieved, so only part of the strain response was recorded. For the first twotests, the magnitudes of the three principal stress components exceeded the predicted values,although the measured value of a^ was close to the predicted value. Owing to the problemsin the third test, all the stress components measured were lower than predicted.

In terms of scale effects, no consistent trend was exhibited by the in situ principal stresscomponents measured for each test. In 209-054-RST2, the magnitudes measured with the600-mm-diameter test appear to be larger for all components than those measured with the300-mm-diameter bit. However, in 210-020-RST1, the major principal in situ stressmagnitude measured while using the 300-mm-diameter bit exceeds that from the 600-mm-diameter test; the other stress component magnitudes are comparable. In this case, axiallengthening due to opening of microcracks orthogonal to the core axis during overcoring maybe more prevalent at the smaller overcore size.

In a further attempt to identify the effectsof scale on the overcore results for in situstress, the measured volumetric strain foreach overcore test was calculated. Thesecalculated results were then compared tothe predicted values for the assumed in situstress conditions. As shown in Figure 11,there does appear to be a trend in themeasured in situ volumetric strain relatedto scale. In Room 210, the measuredvolumetric strain exceeds the predictedresponse in both of the successful tests.Tests in Room 209, in contrast, showmeasured volumetric strains close to or lessthan those predicted. This difference maybe at t r ibutable to the influence ofpreferentially oriented microcracks in 210-020-RST1 creating an exaggerated axialstrain response.

LEGENDPredicted Values

Room 210Room 209

Measured Values

I 210-020-RST1 A 209-054-RST2

Teal 1-1 @ 2.43 mTest l-2@ 5.57 [email protected]

Test 2-1 @> 208Ten 2-2C* 3.95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Distance from Excavation Wall (m)

FIGURE 11: Comparison of Predicted andMeasured In Situ VolumetricStrains

In both cases, the volumetric strain from the 600-mm-diameter test exceeded that from the300-mm-diameter test despite the fact that the predicted volumetric strain for the first test ineach borehole was less than that for the second test. However, larger volumetric strain forthe 600-mm-diameter bit may be partly due to larger temperature gradients across the rockcylinder and greater damage to the rock caused by difficulties in drilling with this bit size;similar difficulties were not encountered with the othc" bit sizes.

-16 -

Volumetric strain was also used as a meansof determining scale-related effects in themeasurements of residual strain. Themeasured volumetric strain was between0.0037% and -0.0028% for all the residualstrain determinations; this compares to anaverage of 0.07% for the far-field in situstress determinations in the area.

A summary of volumetric strains for eachovercore at each test depth is presented inAppendix C. As shown in Figure 12, nodefinite trend exists in the data; bothpositive and negative volumetric strainswere measured for each size of bit.

4.3 TIME-DEPENDENT BEHAVIOUR

LEGENDTEST DIAMETER

• 300-mm EJ150-mm• 200-mm D96-mm

210-020-RST11-1 Depth 2.43 m1-2 Depth 5.57 m1-3 Depth 7.05 m

209-054-RST22-1 Depth 2.08 m2-2 Depth 3.96 m

2-1 2-

209-054-BST2

FIGURE 12: Summary of ResidualVolumetric Strain

Between successive overcore tests, the strain rosette was monitored for up to five days toidentify any time-dependent behaviour in the granite. As shown in the plots in Appendix A,an increase in strain readings was apparent in all cases monitored. However, in cases where astable resistor was not used in place of strain gauge 12, or where the stable resistormalfunctioned, correction for instrument drift was impossible.

The average volumetric strain rate was calculated for three monitoring periods. This wasaccomplished by measuring the change on each strain gauge over a known time interval,converting the readings to equivalent principal strains, and calculating the volumetric strainfrom Equation 4 (p. 11). Results of the analysis are shown in Table 2.

TestDepth(m)

Borehole5.575.57

Borehole3.96

CoreSize(mm)

Aei

(ye)

210-020-RST1300200

100.236.6

209-054-RST2200 28.6

TABLE2

VOLUMETRIC STRAIN

Ae2

(ye)

-28.78.7

-2.3

Ae3

(ye)

-48.1-14.0

-15.0

RATES

TimeInterval(min)

5040960

897

VolumetricStrain Rate

(%/h)

2.79 x W5

1.96X10"4

7.55 x W5

-17 -

Because of time constraints, only short stabilization periods were carried out between mosttests in borehole 209-054-RST2. However, a small increase in strain was detected betweeneach successive test. In both boreholes, anomalous behaviour in some of the gauges,particularly the 135° strain gauges, was noticed between several of the tests. In these cases,the strain readings from the anomalous gauges were not included in the calculation ofprincipal strains and stresses. The exclusion of these readings was possible because ofredundancy in the strain rosettes.

Instrument calibration tests on the CSIR triaxial strain cell at the URL have shown a typicaldrift rate over a five-day period of about 1.5 x 10" ̂ %/h; therefore, only a small portion ofthe measured response can be attributed to instrument drift.

4.4 SOURCES OF ERROR

The principal source of error in the experiment was equipment malfunction. On twooccasions, the tape cartridge in the datalogger failed. On other occasions, power to thedatalogger was cut off, and the stable resistor in the CSIR cell malfunctioned for one test.For both boreholes, the 600-mm-diameter bit could only be used for the initial test; forsubsequent tests the bit deformed to produce an oval hole. Slow penetration rates with thelarger bits and the need to disrupt the overcoring process to break and add rods also impededthe tests, and affected the ability to maintain a constant temperature. Glue creep was notconsidered a problem because of extensive laboratory testing on the glue used in the test.However, on numerous occasions, the CSIR cell debonded from the borehole wall.

Temperature and water pressure were kept as constant as possible throughout the experiment,but fluctations in each were unavoidable. As observed in the temperature/pressure responsepart of the investigation, temperature changes can have a significant effect on the strainreadings; in terms of volumetric strain, the temperature effect averaged -1.2 x lO'-* %/°C.Tunnel temperature and humidity were not controlled throughout the experiment, and mayhave been contributing factors to debonding of the CSIR cell.

5. CONCLUSIONS

The conclusions that can be drawn from this investigation are as follows:

1) Residual strain is present at the 240-m level of the URL but represents aresidual stress of less than 1 MPa (3.3% of the major principal far-field insitu stress component). Furthermore, no unique orientation of the principalresidual strain components was discernable from the measured results; EJRwas closely aligned with the trend of the borehole in each case.

2) Scale effects did not significantly affect the measured in situ or residualstrains. No trend related to core size was apparent in the calculated principalin situ stress components; however, volumetric strain measured during relief

-18 -

of the in situ stress field was greater for the 600-mm-diameter tests. Notrend in principal residual stress components or volumetric strain was foundduring relief of residual strain. These results . uggest that the use of moreeconomical 96-mm-diameter overcoring is preferred over larger-sizeovercoring in situations where core discing is not a problem.

3) Time-dependent behaviour in the Lac du Bonnet granite, represented by anincrease in volumetric strain, was detected between successive overcore tests.In several cases it was possible to measure the volumetric strain rate over aperiod of up to five days.

4) Careful monitoring and control of test conditions, including instrumentationand equipment, is essential throughout the experiment. Variations in celltemperature can produce strains of similar magnitude to those recordedduring overcoring to relieve residual strain.

6. RECOMMENDATIONS

Possible improvements to the testing procedure and equipment were identified during theexperiment. These include

• increased clearance at the boreholes to permit the use of longer drill rods;this would eliminate stoppages to break the drill string and add rods.

• drill bits with a length to diameter ratio of at least 4:1 , and robustconstruction to prevent deformation during drilling.

• data link to allow experiment monitoring at surface; this would minimizeproblems with the datalogger caused by varying temperature and humidity.

• improved glue performance to ensure adhesion of the CSIR cell to theborehole wall for the duration of the experiment.

Further work using anisotropic analysis of the data is recommended once studies ofanisotropy at the 240-m level of the URL are complete. In addition, a study of microcrackingaround each overcored sample may lend some insight into the validity of assuming elasticityaround the triaxial strain cell. Without significant improvements in technology and analysistechniques, further testing of this kind at the 240-m level of the URL is not recommended.

ACKNOWLEDGEMENTS

I would like to thank J. Mitchell for her excellent effort in editing the data files and producingthe data plots, J. Martino and E. Dzik for their assistance in compiling the data, and D.Martin for his constructive input.

- 1 9 -

REFERENCES

Bielenstein, H.V. and K. Barron. 1971. In situ stresses. In Proceedings of the 7th CanadianRock Mechanics Symposium, Edmonton, (Alberta), 1971 March 25-27.Department of Energy, Mines and Resources, Mines Branch, Ottawa, RS120.

Brown, A. 1970. Measurement of recoverable strain in rocks from Llano, Texas, and Cody,Wyoming. Geol. Soc. Am. Abstr. 2, 273.

Brown, A., and N. Soonwala. 1982. Geology of the Underground Research Laboratory site,Lac du Bonnet batholith, southeastern Manitoba. Geological Association ofCanada field trip guidebook for 1982, Trip 15.

Brown, A., D.M. Kingston and R.A. Everitt. 1988. In situ strain recovery at the surface ofthe Underground Research Laboratory site. Atomic Energy of Canada LimitedTechnical Record, TR-442*.

Bur, T.R., R.E. Thill and K.E. Hjelmstad. 1969. An ultrasonic method for determining theattenuation symmetry of materials. U.S. Bureau of Mines, Report, Invest. 7335,U.S. Government Printing Office, Washington, D.C.

Dzik, E.J., J.R. Walker and C D . Martin. 1989. A computer program (COSTUM) tocalculate confidence intervals for in situ stress measurements, Volume 1. AtomicEnergy of Canada Limited Report, AECL-9575.

Friedman, M. 1972. Residual elastic strain in rocks. Tectonophysics .15(4), 297-330.

Herget, G. 1973. First experiences with the C.S.I.R. triaxial strain cell for stressdeterminations. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 10, 509-522.

Hooker, V.E. and D.L. Bickel. 1974. Overcoring equipment and techniques used in rockstress determination. U.S. Bureau of Mines, Information Circular 8618, U.S.Government Printing Office, Washington, D.C.

Hudson, J.A. and CM. Cooling. 1988. In situ rock stresses and their measurement in theU.K. - Part I. The current state of knowledge. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr. 25(6), 363-370.

Kirsch, G. 1898. Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Veit.Ver. Deut. Ing. 42(28), 797-807.

Lang, P. A., P.M. Thompson and L.K.W. Ng. 1986. The effect of residual stress and drillhole size on the in situ stress determined by overcoring. In Proceedings of theInternational Symposium on Rock Stress and Rock Stress Measurements,Stockholm, pp. 687-694.

- 2 0 -

Martin, CD. and R.C. Christiansson. In preparation. Overcoring in highly stressed granite.Part I - Comparison of USBM gauge and modified CSIR triaxial strain cell. Forsubmission to the Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1989 June.

Nichols, T.C. 1975. Deformations associated with relocation of residual stresses in a sampleof Barre Granite from Vermont. U.S. Geological Survey Professional Paper 875,U.S. Government Printing Office, Washington, D.C.

Norman, C.E. 1970. Geometric relationships between geologic structure and ground stressesnear Atlanta, Georgia. U.S. Bureau of Mines, Report, Invest. 7365, U.S.Government Printing Office, Washington, D.C.

Thompson, P.M. and P.A. Lang. 1987. Geomechanical instrumentation applications at theCanadian Underground Research Laboratory. In, Proceedings of the 2ndInternational Symposium on Field Measurements in Geomechanics, Kobe, Japan,pp. 963-983

Unrestricted, unpublished report, available from SDDO, Atomic Energy of CanadaLimited Research Company, Chalk River, Ontario KOJ 1 JO.

- A . I -

APPENDIX A

MON: I'ORING RESULTS

CONTENTS

Page

A.I. EXPLANATION OF DATA CHANNELS A.2

A.2. OVERCORE PLOTS A.3

A.3. STABILIZATION MONITORING PLOTS A.17

-A.2-

A.l. EXPLANATION OF DATA CHANNELS

The pin connections on the CSIR triaxial cell, their function, and corresponding channelnumber at the datalogger are shown in Figure A-l.

THERMISTOR

FIGURE A-l: View of Pins on CSIR Cell Looking Downhole

Cell Pin

ABCDEFGHIJKLMNO

0°0°0°0°

120°120°120°120°240°240°240°240°

90°135C

0°45°

90°135°0°45°90°135°0°45°

Channel Number

3 (Circumferential)4I (Axial)2Common Green7 (Circumferential)85 (Axial)6I1 (Circumferential)129 (Axial)10Thermistor (T)Thermistor (T)

a is the angle in degrees describing the position of the midpoint of the strain gauge on the circumference of (heborehole (looking into the hole, clockwise from North or up).

B is the angle in degrees between the direction of the strain gauge and the axis of the borehole passing throughthe midpoint of the gauge and directed away from the borehole mouth (clockwise from axis of borehole iflooking from outside of borehole).

-A.3-

A.2. OVERCORE PLOTS

_ _ WTCIt INWATCH OUT

. OAT*. LOGGER

mTEff kP« , SPECO (WUTOflQOE NM _ R A T E n»Jml<THRUST kH

To To 3TOVERCOflE DEPTH - cm

OHIH HOLE COORDINATES"H0KTH1NC * 35704M 00EASTING » 1)3121 J4ELCVATIOM • 94 12D1P(+I«« DOW) • -2 1AZltftJTH i 300 0

OCFTH OF O/C START I SO i.

DEPTH Or CHO HOLE i.7% m

CORE D 1 I C H S I 0 N S ( M . )

T O . - 37 70OO. • •00-00LCNO - tt»

ROCK TCITERATUftE 10 4'C

CAUSE SCfllAk NO. 000

KEAOOUT SENTAL NO 000

TEST DONE SY iCS. CK

INSTALLEOOVEHCORCD:

DATE TItC6S-0J- - I I 23S0St-OJ-17 1700

CSIR OVERCORE TEST

UICROSTRAIN VS DEPTH

HOLE 210-020-RSTlDEPTH 2 . 43 (600 tmt)

DATE 7-APR-A9

FIGURE A-2: 600-mm-Diameter Overcore, Borehole 210-020-RSTl (2.43-m Depth)

«t*TCR IN»»TER OUT

. DATA LOGGER

__ MITT« hPo SPCCO KPUTOHQUC Mi- -RATE t»m/n«lnTHRUST fcH

OVERCORE DEPTH - em

M I L L HOLE COORDINATESWORTHING - 957041* .00EASTING - USBZt 14ELEVATION • 34.22OIP(-t iva 00»N) - - 2 . 3AZIUUTH - 3 0 0 *

DEPTH OF O/C START 1.4(1 *

DEPTH OF E*O HOLE 2 79 «

COKE OltCMSZtMSfnti}T O . - 37.70O D. - 300.00LENC - 9 t *

ROCK TEMPERATURE

GAUGE SERIAL NO.

READOUT SERIAL NO

TEST DONE Br

10 4'C

000

009

•CS.CK

INSTALLEDOVERCOffED

DATE TIUEBB-O3MB 2230B8-O3-23 1320

CSIR OVERCORE TEST

MICROSTRAIM VS OCPTH

HOLE : 210-020-RSTlDE'TH 2 . 4 3 (300 mm)

DATE 7-APR-89

FIGURE A-3: 300-mm-Diameter Overcore, Borehole 210-020-RSTl (2.43-m Depth)

-A.4-

W»TEH IN. . . WATfft OUT

DAlA IOCCEH

_ . WATER irPo SPECD RPU_ . TORQUE N» RATE mm/mtr„ . THRUST WN

• — \ .

I.

500

400.

300.

200.

100

\ \ \

.100 ( f

• 0 70OVERCORE DEPTH - cm

DfflLL HOLE COORDINATESNORTHING - 35704t9.<EASTING - 2«SB2» t'ELEVATION - 94 27D I P ( - t w i DO*N) - -3 J

A71UUTH - 300 9

DCPTfl Or 0/C STAKT l . 64 *

DEPTH Of f * C HOLE Z "S «

CORC D1tEN5]0N5(«f.)

ID - 37.70O.D. - IIS 10LCNC - • ! •

ROCK TEMPERATURE 10 4'C

CAUCE SERIAL NO 000

READOUT SERIAL NO 003

DATE TIKE

8 6 - 0 3 - 1 * OHO

CSIR OVERCORE TEST

MTCROSTRAIN VS DEPTH

HOLE 210-020-RST1DEPTH 2 . 4 3 (200 mm)

FIGURE A-4: 200-mm-Diameter Overcore, Borehole 210-020-RST1 (2.43-m Depth)

LEGEND

<-> IB.

' 11

» : ;

300.

1 ' 300

S •* looj1

! .o

- - • -

g sga

< i * < a

WATER IN. WTEft OUT _

DATA LOCG£N

„. . ~ . _ . ^ —

' G1_ G 2

. G3_ G4. - G 5

_ ae K

10 U 14 ia 1120 322431

. - . TMOUt N-. _ . THRUST kN

in h h i* i§ i**a iz *« «'• it iaOVERCOME DEPTH

1 ' 1

1

I

^ J v ^ —

0AUCKS

j2JiJt3»i0i:«n'«««707J717t;<

- cm

1

.it S

10 "*

2^ 7 * n

jf1

""""'jj0"

•- (?.

- " " \

IO12a'<UM9

200

" S

JO i f

100

UIC

RO

ST

z

DRILL HOLE COORDINATES

ELEVATION • 34 22D1P{-H<« DOt*.) - - 2 JAZIUUIH - JOO 9

DEPTH OF C*C H a E ^.72 «

CORE OltCNSIONS(m)T O - J7 700 D - 144.30LENC - BiO

HOCK T£liPERATUR£ 10 4'C

READOUT SERIAL NO 003

TEST DONE Of .(S. CK

DATEINSTALLEO 6 8 - 0 3 -OVERCORED Bf l -03-

3 30444 1420

AECL - URL

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE 2 10-020-RST1DEPTH 2 . 4 3 (150 ir.ni)

DATE 7-APR-89

FIGURE A-5: 150-mm-Diameter Overcore, Borehole 210-020-RST1 (2.43-m Depth)

-A.5-

^ _ _ _ _ WATER IN

. WATER OUT

_„ DATA LOOCCR

TOKQue N*

_ „ _ _ _ . . THRUST %N

OVEHCORE DEPTH - cm

JOJO.70.COJO

.-10

.-20

.-30

.-40

.-30

.-SO.-70. - • 0

M I L L HOLE COORDINATES:

NORTHINO - 3 3 T O « » . 00EASTING - 21312* .14

ELEVATION - 34.22D I P ( + U « 00*N) - - 2 . 3AZXUUTH - 300-9

DEPTH or a/c START

oe^TH or c w MOLE

COIte 01i£NSZ0H3(*m)

2.20

i.72

T.O. - 37 700.0- « I t 01LENC - 4*0

ROCK TChVERATuM iQ. **C

CAUGC SERIAL. NO- M2

READOUT SERIAL NO. 003

TCST QQNE 9Y Cf. OH

INSTALLED-OVERCORED-

OATE TlkCSI -03 -23 204*88-03-23 1035

ACCL - UAL

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE 210-020-RST1DEPTH 2 . 43 (H)

O A T E

FIGURE A-6: 96-mm-Diameter Overcore, Borehole 210-020-RSTl (2.43-m Depth)LEGEND

? «

1 "•

L

g g g

6AUCC ORIENTATION: 9ETA-

* « A L fO

133 DECREES 133

CIRCUIT ERCNTXAL 0

43 DECREES 49

\

s

o o o

v\s' \ - \

^ *\^

s sT T

Kosrrrc o*

G3S«

v

\ wVw

N

• -

\

\

\ \

\

X

v

S S S g7 T 7 T

UICROSTRAXh

_ " * Y1IG6G7

_ .„„„ GS

\

w\

" N ,

\

17 7 7

ROSETTE ! M *

ZL.—^ZZT G10G i l

, _ _ _ „ _ _ _ _ _ G12

|

IL

1

uII/̂/////

— w

II1I

7

t

PR

ES

SU

RE

.14 %Q

12

SECANT UODUCUS(CPa)( 0 - 2 3 1 * * ) E3 - 43 * •

E7 - • « . 13

POISSOHS RATIO

<0-23l#a} V, , -

47. 73

O.*3

0. 17

0. 14

0. 11

CALIBRATION fACTORS•ci - i.OOK3 - 1.00

CORE DIICMS1ONS<M>)

T.O - 3 1 . 100.0 • H .O ILENC - ZSZ

CHAIflER LENGTH {«») J*0

GAUGE SERIAL NO

READOUT SERIAL NO.

TEST OONE BV

DATE

JO*

5014

IK

TIVE TfUP

FINISH: »»-04-14 11*4 10.4%

AECL - URL

CSIR BIAXIAL TESTPRESSURE VS MICROSTRAIN

HOLE: 210-020-fiSTiDEPTH 02. 43

DATE 2B->*PR-69

FIGURE A-7: Biaxial Test Results, Borehole 210-020-RSTl (2.43-m Depth)

-A.6-

LEGEND

° 23

L ! i

5 «•

' * 300.

£ S 200H

£ •" >oa.

aoa.

7oa

z »oa.

< 3oa

(A 400.

£ 300.a 200.

100.

-100.

-aoa.

_CELL TEUPWtTER INWATCH 0U1

OATA LOGCER

G. '

GJG4G5G6G7

G9GtOGl 1G12

• • • ! ^ ^

* *

_ . THRUST k N

1

i

ii

i

! i

1 i ,Jj '

i /!/

/ . / / / ^ ' ^ . - ' ^ • • '

7,. r ~

OVERCORE DEPTH - cm

1 rpin

A i ia

1 n

J O

JO a

.15 g

J '

123

.JOO

-IJO ~*

.800

-700

.500

_500

.400

JOO

.200

.100

-100

-zoo

3D

S

f

C

o9T

RA

IN

DRILL HOLE COORDINATES

ELEVATION - 54 22D I P ( - * U . DOMM) - -2 3A2IOJTH - 100 »

DEPTH OF O/C 5TART a 00 •

DEPTH OF CWC HOLE b A3 •

CORE DlUENS10MS(i»)

I 0. - IT 700 0 - 300 00LENS - 99*

GAUGE: SERIAL NO 427

INSTALLED 81-03-1 S 1 U 0

OVEHCOREO Bt-aS-lQ 1100

AECL - URL

CSIR OVERCORE TEST

WICBOSTRAIM VS DEPTH

HOLE 210-020-RSTl

DEPTH. 5 . 5 7 (JOO mm)

DATC IO-APH-69 f

FIGURE A-8: 300-mm-Diameter Overcore, Borehole 210-020-RST1 (5.57-m Depth)

tMTER IN. . WATER OUT

DATA LOCCER

WATER kPo SPEEO flFUTOHQUt N« RATE mm/MTHRUST irN

STJL x: \ ,/7.=-.-,-v- r~

OVCRCORC DEPTH - cm

DRILL HOLE COORDINATESUOflTHJNC - S57D*I» 00

EASTING - 2KS2B 14E L E V A T I O N - 54.22D1P(-*W« DOVM) - - 3 . 3AI3UU1H * 300 ft

DEPTH Of O/C START i 00 m

DEPTH Of { M i HOLE 5 «» 1.

CMC DJiCMSIONSliMft)

ID - 37 700 0 - 1*5 10LENS - tS»

ROCK TChPEftATURE

CAUGC SERIAL NO

READOUT SERIAL NO

TEST DONE IY

12 I 'C

427

001

«j.L

3NS1ALLC0DATE TIME

t a - 0 3 - l B 2 1 4 0

CSIR OVERCORE TEST

MICROSTRA1N VS DEPTH

HOLE 210-020-RST1

DEPTH 5 . 5 7 (200 mm)

FIGURE A-9: 200-mm-Diameter Overcore, Borehole 210-020-RSTI (5.57-m Depth)

-A.7-

**icn I NW I E H our

_ DATA ideceit

_ . WATCH hP« SPECO RPli_ . TOftQUC tit* RATE mmJm.it_ . THRUST kN

0 2 4 1 1 1012l41Cia2022242(2a3032343C3a404Z444le48^053^4S65acaS2C4CSga?1O7l2747lfi7laaQa2a4i*a<atat2«4»i9aV 0OVERCCRE DEPTH - cm

DRILL HOLE COORDINATES•JORTMMC - 397O4tt. 00CASTING • 2>nit 14

OIP(+I<« DO*N> • - nAZIULJTH m JOO.t

OCPTH Or 0/C START -5 .40 *

OCPTH OF EWB HOLE i l ) w

C « f O2tCNS2ON5f*M) -1 .0 . - 37.700 . 0 . <• 144.30IENO - MO

ROCtr TEIFEKATURE I2.2*C

CAUCE SERIAL HO. 427

REAOOUT SERIAL NO 00*

TEST DONE • ¥ : ALL

INSTALLED'OVERCORED

DATE flUE• • - 0 5 - 1 1 1140

AECL - URL

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE : 210-020-RST1DEPTH: 5 . 5 7 (150 ir»)

OATE I2-APR-B9

FIGURE A-10: 150-mm-Diameter Overcore, Borehole 210-020-RST1 (5.57-m Depth)

WHTtR IN. mrcit OUT

DATA LOGGER

_ tiMTER kPd SPEED «PUTORQUE N* RATE mm/mitTMtUST kH

^ - - - ••• - . . . . - A . .

- i " •

1 20 21 20VERCOHE DEPTH - cm

12 44 4« 41 50

0JIUL HOLE C0W01NATESWORTHING - 337041* 00CASTING - I*S»2t • •

OlPf+W* DOW) • - 1 1

A2IUUTH - 300-9

DEPTH or 0/C START 5 J3 -

DEPTH OF rWD rfOLE i-13 *

CORE O2l£NSI0NS(«0

l.D. - 37.70o D. ' at aLENG - 910

HOCK TCIPERATURC • I 3 2 ' C

GAUGE SERIAL NO. : 427

RCAOOUT SERIAL HO. 0 0 *

TEST OONC Or • ALL

INSTALLS0OVERCOREO

DATE T1ICH-09-11 2140aa-oa-it u*o

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE 210 -020 -RST1

DEPTH 5. 57 (H)

DATE H-APW- l l

FIGURE A-l 1: 96-mm-Diameter Overcore, Borehole 210-020-RST1 (5.57-m Depth)

- A . 8 -

«.CC£NO

1 It.

1 * .

* 14

4.

O Q O

5 3 51 1

CAUCC ORIKHTATIOH-

133 DECREE?

45 KCffEES

^ _ _

. \\

\

\

\

-

3 § 2 S

KTA-

U3

43

\

R05OTT 0* •

\

\

o

\ \

\

I\

o a a

\\AV\

.

00

lilCKOSTRAir*

nosmt

-

1 \

\ \

•. I

• •

\\ \

V \

s \• ^

T T

no*S3

" oa

; \ \

VV1

s s

ROSCTTE 340*

/

/

1

l1iniila

(f

o o oo a

0

1

III

JOO

.

51« "

1 0

SECANT M00ULUS(C*a)(0-23l#«) £3 - 43. • *

E7 - 34 I I

P0IS3ON3 RATIO'(0-231*0) V, , -

V, ,, -

31 13

0. (30 230. 240.20

CALIBRATION FACTORS-<1 - 1.00

CORE aiUENSIOHSfHw)T.D- - 37 910.0. - 91 J l

CMAkMER LENOTH(nai> J30

GAUGE SERIAL NO. 42T

READOUT SERIAL HO. 3014

' W I S H a i - 0 9 - 3 7 1030 10.4-C

AECL - URL

CSIR BIAXIAL TESTPRESSURE VS MICROSTRAIN

HOLE 210-020-RSTlDEPTH- 05. 57

DATE ;a-Apw-e»

FIGURE A-12: Biaxial Test Results, Borehole 210-020-RST1 (5.57-m Depth)

**TER IN_ . _ HATER OUT

DATA uOCCCR

iajin

__ « T E R *f>a SPEED RPU_ . TORQUE *m _ . t A T E nWwtc

THRUST hN

I.16 r

OVERCORE DEPTH - -.m

DRILL HOLE COORDINATESWORTHING - 5370*t9 00EASTING - ;»9fi29 34ELEVATION - ** 12Dipr*w, aotwj - -t. JAZIUUTH - JOO 9

DEPTH OF 0/C START b *« i

DEPTH Of E«O HOLE T J3 it

CORE DH-CNSIONSfimi)T O . - 37 703.0 . - JOO 00

LENC - 9t»

ROCK TEI^ERATURE 9 1 *C

CAUCE SERIAL .10. 413

READOUT SERIAL NO J03

TEST DONE BT U L

DATE TTIC

aa-07-06 i4»o

AECL - UI»L

CSIR OVERCORE TEST

UICROSTRAIN VS DEPTH

HOLE 210-020-RSTlDEPTH 7 . 0 5 (JOO rrmi

I

FIGURE A-13: 3(K)-m:n-Diameter Overcore, Borehole 210-020-RSTl (7.05-m Depth)

-A.9-

Ii

i

•x.<X

(EU

a

LEGEND

20.3

3.0

-20.-23-30.

*00_

300.

200.

too.

20.

-10.

-2oJ

-JO.a 2 * * B

VMTCtt IN. WTCft 0U1

OATA LOCCCH

' 'e'i ' ' ' ' 'G2

_. S3G*

.. .05G6

_ G7

l-I^IWPT]

srrt,~;

GHUPJU

itwfm

. THRUST kN

i

i

, .^.JL. Jk. J.. / - * £

V'• i•

ii

J—«•

OVERCOHE DEPTH - cm

, „ , <r—.^..ri:r.L^

ii! n

i.i ! H1

TN or

1*

alia

i:i

if

20>5

J

!-2!

200

.130

.too

JO

J O

10

0

-10

-ao

-30

j

TOftO

UC

-

THR

US

T

-

I fM

ICR

OS

>Z

tORTHINC

ELEVATION -DIF(-+i«* 0 0 * ) -

DEPTH Of O/C START

DEPTH or I W HOLE

T O . -0 0 -LENC -

ROCK TElTERATURE

CAUCC SERIAL NO

READOUT SERIAL NO

TEST DOME BY

DATE

337Q4«« JO

34 12-1 i300. 4

* 4« •

7 Ji *

) • 10200 OQ4»]

« J *C

001

•U.L

A £ C - URL

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE 210-020-RST1DEPTH 7 . 0 5 (200 mm)

DATE ^-*JAY-e9

FIGURE A-14: 200-mm-Diameter Overcore, Borehole 210-020-RST1 (7.05-m Depth)

' 2 * $ B 1012UiB»B20222*262B30323*363B«n*2***e»fl50323*5BSB60Sa8*«S6a?07a74T67880B2ai«saa«0«21OVERCORE DEPTH - cm

DRK.L HOLE COORDINATESMCMTHlNC * 55704ft

EICVAIIOH - 34 it01P(+ lv . DOW) - -2.3AilUUTH - J O O *

DEPTH Or 0/C S»ART <j * • •

DEPTH Of EW HOLE 1 33 m

CORe DlhCNSIONSfvWT O - Jt tO0.0. - 150 00LEMC - *t2

ROCK TEITCRATURC

CAUCC SERIAL NO

READOUT SERIAL NO

TEST OOX 6V

i. 3 'C

DATE 1I IC0»-O7- ) l OOJtB8-0T-M 2046

CSIR OVERCORE TEST

UICBOSTRAIN VS DEPTH

HOLE 210-020-RST1DEPTH 7 . 0 5 (150 mmj

FIGURE A-15: 150-mm-Diameter Overcore, Borehole 210-020-RST1 (7.05-m Depth)

- A . 1 0 -

mit* IN

mil* our

. OATA LOGGER

__ U*TCR kPo SPCEQ RPU_ . TORQUE NM RATE mm/nir_ . THRUST WM DRILL HOLE COORDINATES

SORTHT.N9 - 3S70*»t 00

EASTING - 2I9<2I I*

ELEVATION - 34. 22

OXPf-ti'a DOM) - -2 3AZIUJTH - 30Q 9

DEPTH Of O/C START 4 §1 m

DEPTH Or iaC HOLC 7 J3 *

CQHt OIl*HSIOMS(—)

T O - 3*. 10

0 0 - 14 13

LENC - 412

ROCK TChPERATURE 10 * 'C

GAUCC SERIAL MO «»3

READOUT SERIAL HO. iJOJ

TEST D 0 « » r *k /5P

DftTC

• •-07-ii

28 ia 32

OVtBCOffC DCPTH - cm

A£CL - URL

CSIR OVERCORtl TEST

MICR0S7RAIN vS DEPTH

HOLC 210 -020 -RST1

DEPTH 7. 05 (H)

FIGURE A-16: 96-mm-Diameter Overcore, Borehole 210-020-RST1 (7.05-m Depth)

LEGEND

i n

1 L

22.

2a

4 1(L

Sa.

12.

10.

4

V

\ \

g § g— — "

&AUCC MTCHTAT1ON

139 DCCIICCS

ClKCUhTtRCNTIAL

45 DCCRCCS

kV

\

V

S a o

Z ° T

• SETA i«

133

0

49

\

•<>

00.

T 7

OSETTt 0*

. G2

GJ

at

\ k\ \

\

BOSCTTC i »

VV

A\

\W\\\

x\.

g S g

T 7 T

MICBOSTRAIN

N,\\

w\ Vi

d oo a

7 7

_ G«

_ G7

. . 08

\

\ ^

%

s7

HOSETTE 2*0*

GIO

C l l

111/1

li(1Irj;i<i

jl/

g g g

PR

ES

SU

RE

j

o

• 13

10

SECANI UODULUS(CPa)

E7 * 3* 2*

C«v« * 99 O

(0-23k#a) V, , . 0 19V , , - 0 21

V f ,, » 0 33V«v« . 0 JO

CALIBRATION f * C T W SKl - 1.00K* - 1 00

CORE 0TlCN51ONS(«i«1I D - 31 10

O.D. - • • I I

LCNC - 4t2

CHAhBER LENCTM(fM) i*t

C*U<X 5CRTAL MO 415

HEAOOUT SERIAL NO. 90t4

TEST D0»« tt OM

DATE Tt iC TC*F

CSIR BIAXIAL TESTPRESSURE VS MICROSTPAIN

HOLE 210-020-RSTT

DEPTH 07. 05

DATE- J8-APR-49

FIGURE A-17: Biaxial Test Results, Borehole 210-020-RST1 (7.05-m Depth)

-A . l l -

LEGENO.CELL I t *aKTEJt IN>«re« our

. OAT* IOCGEH

TOAQUC N*SPtEO «PMRATE « • / • ! <

OVCRCOftE DEPTH - cm

DRILL HOLE COORDINATESNORTHING * SiTOSti 00

CLtVATIGN - 54 42

- -a i

* 10.0AZIMUTH

DEPTH Of Q/C START .1 .31 •

DEPTH Of C M HO.C . l . M •

COM OlNCNSXONSfM) :

1.0. - I I 00

0 0 - 100 00

LENS - 300

ROCK TEMPERATURE . 11.0*C

GAUGC SERIAL NO. ] « •

READOUT SERIAL MO 00J

K I T OONC iy . on is. ft

1NSTM.LCO.OVCKCOAEO.

OATC TIMEI I -OT-H 1S3D• • - O T - 2 I l i a r

CSIR OVERCORE TEST

MICROSTRAIM VS DEPTH

HOLE :209-054-RST2DEPTH: 2 . 0 8 (600 nn)

FIGURE A-18: 600-mm-Diameter Overcore, Borehole 209-054-RST2 (2.08-m Depth)

C£LL TCUP

-mtcn JNmiEU OUT

WTEH WPa Sl-etD ttPit

TOROUC Nm ff*Tt iWmlr

^ THRUST ItH

JO ^

"I•"I

30 BO 70 flO

OVERCORE DEPTH - cm

W i l t . HOLt COOftOlHATCS

•tCRIHINC - 9970511. OO

£ASTTNQ • I f914 I . | Ttt.CV*TlCM m 34. 4fD1P(-»W« OOM4) • - 2 . 1AZIMUTH - 30.0

DEPTH Of O/C START I S« m

DEPTH Or EWB HOLE | . 1 » •

CORE D 1 I C N 5 I O M S ( < M )

ID. - 31.00O-D. - 300 00LfNO * J0O

ROCK TCUPERATUff£ • I 1 O*C

GAUGE SCRtAL NO. J««

REAOOUT SERIAL NO. 00]

TEST DONE BY - *K. DM

DATE TIUC

8t-07-J5 1004

AECL - URL

CSIR OVERCORE TEST

M1CR0STRAIN VS DEPTH

HOLE 209-054-RST2DEPTH 2 . 0 8 (300 mm)

DATE' 18-APR-B»

FIGURE A-19: 300-mm-Diameter Overcore, Borehole 209-054-RST2 (2.08-m Depth)

-A.12-

I

z

a.

a<r

MIC

L C C E N 0

31u so.

I"i ^

500.

S »a

0_

5 0 .

-Si.

-9i

-153.

L • 'L

-J—1—1—L.

. MUR 001

Gi. . . GJ_ G4

(1 M R U S T h N

. . . • 1 . . 1 1 1 | . , . ,

i

If. . . . .

i

OvERCOC DCTH - en.

r J

J—i—i—i—i—i—i i i—J—i—i i i_

\ :

»

J5 5

JO 5

15 S

.10 '

J 0 0

.IOO"1

JO x i

- 1 0

UIC

RO

ST

-70 >

-80 Z

-1 10

- U 0

-150

DRILL HOtt COO«D1N»IE5

ELEVATION - i» 420TP(-rw« D0*N) * -2 iA21UUTH - JO 0

DtPTh O<- t*C HOtE 2. J6 i

TO - Jt i)O0 0 - 3DO 00

ROCK TEtf>ERATUR£

GAUGE SERIAL NO

O»Tt

11 0*C

Jt6

T1UC

* £ C t - I/KL

C5IR OVERCORE TEbT

WICROSTRAIN VS DEPTH

HOLE 209-054-RST2

DEPTH 2 . 0 8 (200 rr-i.)

FIGURE A-20: 200-mm-Diameter Overcore, Borehole 209-054-RST2 (2.08-m Depth)

£<

i

<s&a

30.

^ ZO

( «5L

! io.

LEGEND

^nn

*0O_

300.

; 200.

100,

sa

40.

30.

za

10.

a

-10.

-20.

-30.

. , 1.

Err;:;

0 Z 4' 1

OATA

1 GI 'G2

. . G3_ G4. - G 5_ G6_ G7

GS. . G9

• 10 13

TEMPINOUT

LOGGER

mm

14 I f

, 1 !i ,

Tr 1 -

i t SO 22

n

24 28

. TMRUST kN

r

4f

21 30 32 34. 31 38 40 ll *4 4'* 4S 50 52 34 56

OVERCOHE DEPTH - cm

« orIS

. 1 .

' 1

>

- ' • • 4 y -

20

.10

no

20a

.ISO

30

-50

40

JO

-20

10

Ji

-20

-JO

31 *0 12 I * St Cl 7

*

ft

UIC

RO

ST

>

•x.

AZIUU1H - 30 d

DEPTH Of 0/C START 1 34 *

DEPTH 0 / EttC HOLE I , J « •»

COKE 0IhCHSI0HS(«w)I D * 11 000 D ' 111 00LENC - 300

ROCK TEl*CR*TUK£ 11 O'C

GAUCC SCRIW. NO J<*

READOUT SERIAL NO 003

TEST DONE *f

DATEINSTALLED • • - 0 7 - 2OVCRCOREO 1 1 - 0 7 - 2

1 13307 1131

*£CL - URL

CSIR OVERCORE TE5T

MICROSTRMN VS DEPTH

HOLE 209-054-RST2DEPTH 2 . O S ( 1 5 0 fwn,

DATE J?-APR-I«

FIGURE A-21: 150-mm-Diameter Overcore, Borehole 209-054-RST2 (2.08-m Depth)

- A . 1 3 -

HATE* kM „ . . 9TCE0. IMOUC N» RATE

IHKUST kH

^>^^^'^V^^^<^»^^^

DftlLl HOLE COORDINATES:NORTHING - 3370311 OD

- S t .«3- - 2 . 1- 3 0 . 0

ELEVATION

A2IMUTH

DEf TH Or O/C START : i . 16 -

DEfTH Or EVA HOLE 2.3t •

CORE DlkCNSIONS<M>>1.0 - 31.000.0. - »*.00LENC * 500

ROCK TEIPERATURE - 11.O'C

QAUCE SERIAL NO- J*S

READOUT SERIAL NO 003

TEST OONE I V ' KS, 0 *

INSTALLED'OVERCOftEO•

DATE T2t£8A-O7-Z1 l»30ea -07 -3? 1441

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE : 209-054-RST2DEPTH: 2 . 08 <H)

FIGURE A-22: 96-mm-Diameter Overcore, Borehole 209-054-RST2 (2.08-m Depth)

LEGEND:

QtG2ca

zt_

2L.

24

22.

20.

* 111

Uior if.

s i*.CL-

IO.

4.

0. 00

1

z

/// ,

y

I i

7/

s

y

S

/

/

y'

y f

/

/// ,/•' y

;

j

/

77y

//

/ ' •

7

CANTILEVER STRAIN X 10"

f

•/

/

u

It

20-•

>• S

.» si

.4 *

12

10

I - -9* M **

StCAMt HOOULUS(GPB).( 0 - I 5 l * o | Cl - 41.34

ea - js i«El - 21 11C*v -

CALIIftATlON f ACTORSiCI -K2 -Hi •

CMC fiIl£MSIGNS(«)

34. 74

2* 1313 4425.10

I D - 31 00O.O. - 100.DO

CHAMIER LEHCTH ( M ) : 121

CMJCC SERIAL NO fl«3

REAOOUT SERIAL HO

TEST OOHC IV

DATEITAUt ; 1 1 - 1 0 -

1014

KM

TIME T C *0 134S (It O'C0 IJ55 C» O'C

AECL - URL

USBM BIAXIAL TESTPRESSURE VS MICROSTRAIN

HOLE :209-054-RST2DEPTH: 0 2 . OS RA:00O*

OAIE 5-KAV-et

FIGURE A-23: Biaxial Test Results, Borehole 209-054-RST2 (2.08-m Depth)

- A.14-

LCCCHO:

. WATER OUT„ . _ _ . _ DATA LOGGER

MATCH kp« . . . SPC£O I_ . TpROUE Hi. RATE m_ . THRUST UH

_ O 21J 03

04G5G6G7oa

I G9

OVERCORE DEPTH - cm

DRILL HOLC COORDINATE5

•JORTH1NS - 3370311 >

ClCVMIOH - 34. 43

AZIUUTH - JO 0

DEPTH OT 0/C START i it m

OEPTH Or EWO HOLE 4 . 1 2 M

COM 0ItCNSIONS{aw)

io. • 3a oo0 0 - 300 00LEHO - 300

ROCK TEiTERATURE lO.fl'C

GAUGE SERIAL NO 4I«

READOUT SERIAL NO 003

INSTA1.LC0OUERCOKEO

DATE TI tCifl-07-2» il»Ott-OI-03 20M

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE 209-054-RST2DEPTH 3 . 96 (300 fim)

FIGURE A-24: 300-mm-Diameter Overcore, Borehole 209-054-RST2 (3.96-m Depth)

WATCH I N. . WAtCK OUT

DATA LOGGER

_ . VttkTER hPa SPEED KfU_ . XOItQUC Ntn RATE irmJm%t_ . THdUST liN

OVERCORE DEPTH - cm

DRILL HOtC COORDINATES10RTH1NC - 3 3 7 0 3 1 * 00

ELEVATION0 1 P f - * w * DA2IuUtH

* 34.*2

- - 2 t- JO 0

DCPTH Of a/C ST*«T

DEPTH OF CMC HOLE 4 . 2 3 <•

CORE OIlCNSIOMS(m-)T O - 3» 000 0 - 200 00LCHG - 300

ROCK TEkFEftATURE

GAUGE SERIAL NO

READOUT SEAIAt MO

TEST DOME 6V

INSTALLEDOVERCORED

• 0 «*C

TIlC1130

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE 209-054-RST2DEPTH 3 9 6 (200 mm;

DATE J7-*M-*t

FIGURE A-25: 200-mm-Diameter Overcore, Borehole 209-054-RST2 (3.96-m Depth)

- A . 1 5 -

. mitt hfo - 5PCCO RPU_ . TOBOUC No RATE t„ . THHUST kN

O 3 4 < | 101214 l» l l3023242«2l3O32343»3J«042444f4aS032345t3a«OI2f4S»«a7O72747«7l«ai2 l4««SI«OOVERCORE OEPTH - cm

MILL HOLE COORDINATES

ELEVATION - S4 41D l P ( * i ' « OOUH) - - 2 1

A2IJUIH - JO &

DCPIH Of 0/C START J Jl •

OEPTH OT E M HOLE 4 . 3 2 •

CMC O I X N S I Q N S ( M )

r.o ' it oa0.0 - 130 JO

LCHC - 300

ROCIT TClTCRAiURE 10 I'C

CAUU SERIAL NO *•«

REAOOUT SERIAL NO 003

TEST PONE IY VS K3

2NSTALLE0OUCflCORfO

OATC I I *M-07-It 1303Sl-Ot-tt 0100

CSIR OVERCORE TEST

MICROSTRAIN VS OEPTH

HOLE 209-054-RST2DEPTH 3 - 9 6 (150 rrm;

DATE 2?-*FR-tt

FIGURE A-26: 150-mm-Diameter Overcore, Borehole 209-054-RST2 (3.96-m Depth)

I—ar»TM or

ao as it za 2a Jo 32" ?4~OVERCOflE OEPTH - em

DBTLL MOLE C0OHDIMATC5•JMTH1NC - 3 S 7 0 3 I * 00EASTING - 2»5««t.47CLEVATIOM - 54.430!P( * lv * OOW) • -2- IAZIUUTH - 30.0

DEPTH Of 0/C START

DEPTH Or E M HOLE 4 21

cone D]ICNSIMS(M>)1.0- - 3D 000.0. - 100 00LtNC - SOO

ROCK TElPEffATUre IO.**C

OAUCE SERIAL HO 4»

READOUT sr t lAL MO 003

TCST DONE BY VS. KS

INSTALLEDOVCRCOftED

OATt TIUE8 8 - 0 7 - I t tBiOBi-oe-ii in*

CSIR OVERCORE TEST

MICROSTRAIN VS DEPTH

HOLE 209-054-RST2DEPTH 3 . 96 (H)

OATE• a-MAY-Bt

FIGURE A-27: 96-mm-Diameter Overcore, Borehole 209-054-RST2 (3.96-m Depth)

-A.16-

3a

21.

2*.

24.

* "i

ia

A.

a

I.CGCNO

\

\

I I I

4AUGE ORIENTATION• X1AL133 OCCflCESC1RCUUTEREN1IAL43 OECftEE?

A

\ ;

\\ \

1(T'10

'350

«5

\

\ \

, \

-

\ \

. \\

T

nosei

li!

\ l

\

\

\\

TC 0 J

G;G .

k\

1l \

•1\ \

\ \

s ^

" N

T T

\

\

\ \

v V\ \\ \

\

fU1CROSTRA1N

- • -

\ \

I\\{•

w%

s

TC 13

" -

1

\

\

i '

\ V.

\ \

A

o

0*- - G 3_ GS_ G7— G8

\

\

v\

ffOSCTTE 3*0*

/

1 /\!>

i fLiI/,

l ' /

1 !i

1

a a o7 "" "*

_ GG

.. G

1/ /

/

Ti

012

I i

J O

1*

J3P

fiES

ii *"*

12

10

*

0

<0-33t*«} E3 -n •»e r t -c . . . -

(0-33(V«) V, , *

V f ,, -

CALIIRAIION fACIOM«(l - 1Kl - 1

COtC attCN5I0MS(M}1 0 - 30 . 0 - t

• ft1 327 837 73

0»31

. 3023

0000

1 0000 00

CHA40CR LENOlHlm) J«0

GAUGE SCKlAL NO «<•

HEAOOUT SERIAL NO >01*

TEST 0ONC IY K3

DATE TIlC TEkT

'1NISH I I - O I - 2 3 1)S» 10 »'C

CSIR BIAXIAL TEST

PRESSURE VS UICffOSTRAlN

HOLE 209-054-RST2

DEPTH 0 3 . 9 6

DATE :a-*pR-fl*

FIGURE A-28: Biaxial Test Results, Borehole 209-054-RST2 (3.96-m Depth)

- A.17-

A.3. STABILIZATION MONITORING PLOTS

W It H |N

«UTCR OUTDAT* LOCMR

_ . TOtlOl* MB_ . IHRUJT hH

0^"' *"*" •—'—•---.- ^ .^^crrr^r^r^.

S*0 *IO TIB HO 1100 1««0 UtO iflO 2110 2400 I«*0 1880 3130 3j«0 ]«0O 3t«O 40t0 *3J0 *3*0 4100 !

SKILL HOLE COOROIK&tCI

CLCVATIOH . s* ii

Olf( + l-« OOWt) - -t.3AHIUTH - 100 I

OEPTH OF O/C SlART 1.90 M

H M H or CM HOLC X.Tt •

CORE 01lCH91ON3tm)1ft m 31.000.* . - •00-00tfNt - sat

HOCK 1[WI*MMC

«AUCC setiAi NO

READOUT SCRIM. MO.

TC3T OOP* I T

It •T

tit

001

MS. U.C

IN3TM.LC0OVERCWCO-

OAtC T I NM-Ol-li 1109M-O)-tT 1119

CSIF OVERCORE TEST

MICROSTRAIN V5 TTfcC

H«.t 210-020-RST,OCPTH 2 . 43 (600 m)

FIGURE A-29: Post- 600-mm-Diameter Overcore, Borehole 210-020-RST1(2.43-m Depth), 88-03-17 22:37:11 to 88-03-21 09:08:46

_ _ _ « U T C R IN. _ . _ . _ . VMTCR OUT

OAl* (.06CCR

m m u*m_ . . . . . TORQUE Ha_ _ . _ _ , _ _ . TMRUFT km

Gfl- . . _ . Cfi

HO. . „ — _ . G10Gi l

*I?S3i:*MC£31

300 i«0

TXUt - mi.

M I L L HOLC COOROIIUTCl•iORIHIHO - »»»*••C*STIN« - itin* iCLCVAIJM - J*. 11stf>(«i*« oom) - - a . j

AXlMUtM • JOO.I

KPtM fiT O/C tTMT 1.90 >

OCPXH V I K MOLC <• 71 •

CORC OltCHlKMSfaa)I B , * at ooO.P. - 100.06LINC - 3M

NOCK TCITCRAlURC

CMIGC scmu. MO

WAD0U1 UR1AL NO.

TCST DOHC «Y

oto

003

OftlC TliC• • - O J - J T 110091-03-17 2143

CSIR OVERCORE TEST

UICROSTRAIN VS TJhC

HOLE 210HD20-RST1DEPTH 2. 43 (600 m)

±L.

FIGURE A-30: Post- 600-mm-Diameter Overcore, Borehole 210-020-RST1(2.43-m Depth), 88-03-21 20:21:20 to 88-03-22 08:13:23

- A . 1 8 -

UECCNO_ _ ^ _ _ CELL f Ct^_ _ • _ mnn IN_ . _ . _ . MkTCB OUT

_ _ » _ „ DATA LQCCCII

— . _ . _ . — . _ TORQUE N«DRILL HOLE COORDINATES-

NORTHIMe - » 7 D < M . 0 DCAST1NC - |«9*3t.t4ELEVATION > s«. l lDIP(*W« OOW) • - l . J

AZ1WU1H - 30D I

PCMH Or 0/C ST*H1 - 1 4 * •

K f T H Or t *C MOLt 1.71 m

cane 0 f t r N 5 H » s < * W

l .D . • J I .00O.P. - 300.00IKwe - seo

ROCK TCl^eilATIifte ' >0 **C

C*UCt SERIAL HO. 000

MAPOUl SCR1A). MO 003

TtSl DQ*C IV «S. CX. C

INSTALLED-

OVCKCOHCD'

D«1C 11IC(•-OJ-15 1*00• • - 0 3 - 1 1 1*00

C5IR OVERCORE TEST

UICROSTRAIN VS TIME

HOLE 210-020-RST1

DEPTH 2. 4 3 (JOO «»)

FIGURE A-31: Post- 300-mm-Diameter Overcore, Borehole 210-020-RST1(2.43-m Depth), 88-03-22 16:31:40 to 88-03-23 08:44:25

9R1LL HOLE C00M01NATCI•KWTN1NS - 5 )70* *1

CLCVAT1QH - 34.130 1 » ( « I * B OOWt> - -2 3AriUUfH - JOO •

DEPTH 0/ 0/C START I «• •

DCPtM Of [«O HOLE 1 ~l *

CMC DIUCMSlONS(w)1.0 - 3» 000 0 - 100 00LEMC - 300

NOCK TElVENATuftE

t*uCt ItMlAL NO

READOUT SERIAL NO

U S ! OQftf «Y

10 4*C

DATE

• • - 0 3 - 1 1 t

CSIR OVERCORE TEST

UICROSTRMN VS TIME

HOLE 2 1 0 - 0 2 0 - K S T t

DEPTH' 2. 43 (200 rm)

FIGURE A-32: Post- 200-mm-Diameter Overcore, Borehole 210-020-RSTl(2.43-m Depth), 88-03-23 23:47:32 to 88-03-24 09:02:48

- A . 1 9 -

LCCCNO

— " » IN_ „ _ . _ . m i c a OUT_ _ _ _ _ _ 0A»* kOQCC*

400.

J• 300.

I 1ML

» 0 .

°-

——•—

02

ri03OS

570» ,09

mien ̂ «.r̂ "i^J

S

^ — • — -

^ " ^ ~

i -J • - • • > - T — — * ^ , — - " T - a t a £ _ _

.190

30

1*0

- »

a

498 «OC

TIlC - Ki

WILL NOLI COM0IIUTC1-•fORiMlKI • })!•*••.MtW\U$ m 1*9*1* • •• ( . IMI IM • »« JlBIP<*t'« IOWI - -».JA11MJIM • 1H.I

perm or «/c ITMT I.«T •

oc^m or C M MOLC J . T I •

CORE ei_tl(IIWS[-»)

i t . - ja.«tO.t. * !»• 0»LCHO * « •

•oat TrtruunMC - • • **c

l-liCC ItNlM. NO- «M

RCAOOVr UR1M. MO. M l

TCST oa« I T «j , at.c

O*TC meIHSTU.LCD- l i -03-«T l | | «oviffcono it-03-u uof

CSIR OVERCORE TEST

MICROSTRA1N V5 TIME

HOLE 210-020-RST1DEPTH 2. 43 (130 m)

FIGURE A-33: Post- 150-mm-Diameter Overcore, Borehole 210-020-RSTl(2.43-m Depth), 88-03-24 15:39:36 to 88-03-25 09:09:24

M I L L M«LC COOMIMATCS•tOHTHlHa _ »7««tfl MCASTIlM - X«»ttt •«ILCV-tlON - 9 * 1 *O I P ( - * < * « oom) - -2j

A2IWUIH - ) • • •

K # T M or o/e S T _ T j . i * •

oc*TM of i n wac J7 i •

CMC •liCHSI_f(_)

1.0 - 31 1*0.0 - Mil

LCHO - M l

•OCX TCWWUTtrtC i» ••€

U M I KKtAL NO. J31

M-BOUT UHIAL NO. 003

TCST OONt IV • V . DH.ff

DAir TIiC•• -OJ*]3 10*4

CSIR OVERCORE TEST

UICROSTIUIN VS TIlUE

HOL£ 210-020-RST1

DEPTH: 2. 43 (H)

FIGURE A-34: Post- 96-mm-Diameter Overcore Pressure/Temperature Test,Borehole 210-020-RSTl (2.43-m Depth), 88-03-25 11:16 to 88-03-25 14:25

- A.20 -

L £ C E W -

., _ OAlA LOCCtK

« ^ - - - - - - p L - - — L ^ _.-.__

s «. ± __

* T 1 ] 1Sflrt

_ *oo. _ _ _. - - - - - - - - - -

' " 100. ± -.M I T

i s »«. I _ _ _ _ _

0. pd k. .•win

G I

^ too. _ f i l _ _

-•oo, . ' :" ( i ( 1^.n,«, , . 7 .B

TIUC

,. jjj

. La . ,„ ! S

_ . L O J O I ?

-« ; £ i • " _ JBO

«--*-'""s'""- 3 " 3

o

-r- _ , J . J p_ _ , _ .-100

DRILL HIXC COOtplNATtl

DJ-( + . ^ . 00-*) - - t . JA2IHUTH * 300 t

OCPTK Of CIW MOtt J.5J •

I D - S» >0

LCNC - 391

10 *"C

CAUCC SCRtAi. HO JS2

WA00UT SCRIM. MO 00)

TCST fiOC RV

DATE

CP.DM *

Ttyr

OVERCMCO • • - 0 3 - 1 3 m l

AfCl - U"L

CSIR OVERCORE TEST

UlCftOSTRAlN VS TIM.

HOLE 2i0-020-RST)

DEPTH 2 . 4 3 (H)

FIGURE A-35: Post- 96-mm-Diameter Overcoie, Borehole 210-020-RST1(2.43-m Depth), 88-03-25 16:58:18 to 88-03-25 18:35:53

, *»TEi IN4 * T [ | OUT

„_ ^. 0 * 1 * LOCCCR

•20 1*00 2110 33tO 3BI0 *JJO 4*00 33IS 97*0 «a*0 «7I0 T200

OtP(-*ln« 00«M) - - I J

AiltAlTM - 103 •

OCflM of 0/c STAR! 1 i)9 •

OCPTM Of C«B NOLC 1 1 3 •

COW I 1 0 - 310.0 - iOOLCNC • 309

00

ROCK TCt#CfUTuAC fl K

Q U t O C S E R I A L N O * X 7

R E A D O U T S E R I A L M Q O 0 «

T C 5 T O O H C * V O t . O H . K

OATC TtlCMS7M.LC0 M-03-»» J)DO0VCRC0M0 IS-O5-I0 MSI

CSIR OVERCORE TEST

MtCROSTRAlN VS TIM£

HOLE 210-020-RST1

DEPTH: 5 - 57 (300 mm)

FIGURE A-36: Post- 300-mm-Diameter Overcore, Borehole 210-020-RST1(5.57-in Depth), 88-05-20 14:19:47 to 88-05-25 08:20:58

-A.21 -

mxtn IN_ . WTCR OUT

DATA IOCCCR

. . . . . . WITCH **•TORQUC W*TMIIU1T UN

II

M I L L HOLC COORDIIUTCS•KMTHtMC • 337C««t C3CA3TINS - Iflllt «*CLCVATIW • 3J I IOJP<+i,. QOW) - - t lA1IUJTH - 304 I

OC#TH or o/c sr**T s ao ••

OCfTH or CM MOLE ) IS •

COM DItCN31ONS(—.)

TO - it JO0.0. - 100 09

LCNQ - 90S

ROCK TCtFCRATUMC IJ.1T

«AUCC 3CR1A1. MO. *17

RtAOOUT SCtllM. NO. dOfl

T t l T OOMC *V H.L

CSIR OVERCOME TEST

MICWOSTFAIN VS TIME

HOLE 2 1 0 - 0 2 0 - R S T 1DEPTH 5. 57 (200 i-w)

FIGURE A-37: Post- 200-mm-Diameter Overcore, Borehole 210-020-RST1(5.57-m Depth), 88-05-25 14:25:33 to 88-05-26 08:27:47

CSIR OVERCORE TEST

UXCROSTRAIN VS TZUC

HOLE : 2 1 0 - 0 2 0 - f t S T lOEFTH; 5 . 57 (130 «•)

FIGURE A-38: Post- 150-mm-Diameter Overcore, Borehole 210-020-RST1(5.57-m Depth), 88-05-26 12:56:00 to 88-05-26 13:45:20

- A.22 -

M I C * IN_ _ . _ _ . _ . MICH OUT

OAF* LOCCf*

*00

500

too.

ioa

n

• 00.

a.

nn

— —

1117.

JzZ-

02_ . 03

Oi.. -OS. _ 08

0700G9010CM

\ . ~ . -~

V

t

v :

32'*-X

w^^«=w^g^>»* ̂ y^H** *" * * f *' *"tji ""p'w

JOS

.130

J I

JOO

100

.a

ELCVAI10M - 1 * 21

A2IIWTH • 3 « 0 . t

C^TM Of O/C 9TAJIT - 3 . 0 0 •

•CTTH OF C M HOLE 4 « » •

1.0. « J ' * •0.0 . - • • J*Lena - «oi

KAOOVT SERIAL. MO- OOt

TEST OONE I T - M.L

INSTM.LCO-OVHCORCO-

CSIR OVERCORE TEST

MICROSTRAIN VS TIME

HOLE 2 1 0 - 0 2 0 - R S T 1

DEPTH 5. 57 (H)

FIGURE A-39: Post- 96-mm-Diameter Overcore Pressure/Temperature Test,Borehole 210-020-RST1 (5.57-m Depth), 88-05-26 15:27:53 to 88-05-26 21:29:32

i

u£E£»

Z

oS5

LECCNO-

ttto.

14

10

400

300.

100.

10L

10.

a.

~ -

J

'l

0 2 « »

_ C t l L T t »

. . MTtft OUTOATA LOCGtl*

. .^_.^rr

C2. . OJ

G4. . 0 5

06_ 07

— °' .*,

\J'f \\ffl

TH—JST hM

T1UC

_ _ . . _ ircco

; ,

- mm

'" ,

t

. . . I . . " -

i xa

VW

«s

••Ii*-

if.too, ,50 s f

<0

ES

* sI

-10

WILL HOLE eOOmlNATCI•ftMTHINO - 9970«l*. 00CASTINC - J t S I I f • •

OJF(+I*« ODIN] * ->-3ATIKJTH - 380- *

OCFTH Of O/C START » *« *

COME OXICNSIMSIm}-1.0- - 3fl iO0.0. • 300 00LCMC - 4*1

ROCK TEtKtUTURC t . • T

cAuac icffiAL m «i»

HfAOOtn SERIAL NO 065

Tt iT OOM » r - «IL

DATC TIlCINSTALLED' i l -OT-Oi 0031OVtNCOKED I I - 4 T - 0 I 1733

tfCw - U«L

CSIR OVERCORE TEST

MICROSTRAIN VS TIME

HOLE 210-020-RST1

DEPTH 7 . 0 5 (300 mm)

DATE 2-4UT-4*

FIGURE A-40: Post- 300-mm-Diameter Overcore, Borehole 210-020-RST1(7.05-m Depth), 88-07-08 16:27:27 to 88-07-08 17:33:06

- A.23 -

DRILL MOLC COORDINATES•IORTHTNC - 9970411. 00CASTXMO - ZtUZt «*ELEVATION • 34.1ZOIPf+i*« DO1H) - -1 .3aZIUUTM m 300 1

DEPTM or O/e STARI • • *9 •

oepTM or C M w a r 7. J J -

l .D. -O . D . •

LEM9 -

MOCK TZkPCR*TU*t

CMIGE SERIAL MO.

KA0OUT SERIAL NO.

TEST DOW *r

OATE

••-07-1)

I 44 41 90 SI S* 9* SI •• M •«

ACCL - URL

CSIR OVERCORE TEST

UICROSTRAIN VS TIME

HOLE 210-020-RSTlDEPTH 7 . 0 5 (200 rnn)

0* TE

FIGURE A-41: Post- 200-mm-Diameter Overcore, Borehole 210-020-RSTl(7.05-m Depth), 88-07-11 13:37:25 to 88-07-11 14:39:24

VHTCR INW»TER OUT

. OAT* L0CCCR

. » . WtJt* kp«_ . . TW0UC Hm- . THRUST kU

900.

too.I

'• 300.

! loo.

100.

DRILL HOLE COOROIMATCSNORTMTNC • S3T04C*.a0

CLCVATIOM • S* I Ioir(•*!*• aowii - - i 3AIIUUTH . 3 0 0 . •

DEPTH or a/c START • 4» «

DEPTH Of [«C HOLE 7 J i •

CORE O 1 I C N S 3 O N S ( M )

to. • JI. id

0 0 - ISO. 00

MOOC TCl#ERATUfl£ % }

QUICK SCRIM. MO. 419

READOUT SERIM. MO 003

TC3T DOK I f «j.L

BiTt TIiC1I-O7-M 0031•t-OT-ll 104*

CSIR OVERCORE TEST

UICROSTflAlN VS TIME

HOt£ : 2 1 0 - 0 2 0 - R S T l

O£PTH 7. Q5 (ISO mm)

FIGURE A-42: Post- 150-mm-Diameter Overcore, Borehole 210-020-RSTl(7.05-m Depth), 88-07-11 19:37:12 to 88-07-12 08:30:16

- A.24 -

0*lLL "01.t COOROINAiCSSOUTHING - 137OIM 90CAITIHB - itstiti*CLCVAriON - 9«. I I0IP[*l*« COIN) - - * . SAZItftJTH * 300 t

DCPTH Or 0/C STAUT » *3 >•

XfTM Of CM «OLC T. J3 .

CMC 0H*NSTWJ<—>

1.0 - JW 10O.D - • • UtCNO - *»I

ROCK TCmitAIUKt )0 I*C

«*U« SfflZM. fO *13

«AO0UT tt»lAL HO. OOJ

TCHT OOHC tT * *K/SP

OATC T1UCM-07-01 00]»• • - 0 7 - 1 1 1200

CSIR OVERCORE TEST

UICROSTRAIN VS TIME

HOLE 2T0-02O-RST7DEPTH- 7 . 0 5 {H)

DATE- J-M»Y-M

FIGURE A-43: Post- 96-mm-Diameter Overcore Pressure/Temperature Test,Borehole 210-020-RST1 (7.05-m Depth), 88-07-12 16:44:59 to 88-07-12 20:01:34

— . _ . _ _ . «rr« OUT3 A T A LOCCCft

9W3LL M a c CQO*OIN*Tt3-•KWTH1H0 « JS703I* . 30

C A S T I N G - i»s««i *7CLtVATION - 34 4]

- - J . 1ZIUJTH . 3 0 . 0

ROCK TEt*Cft«TURC

CAWSC S M I At. NO. J l l

READOUT SERIAL NO. 003

TEST 0ONC I V DW.KS.

"u sio" * 4 S i i

L C12

-.ooJ v-—"-"r""-""^;^-""I"Il*17^171"I71"rj-lTC" .->00

.-200

CSIR OVERCORE TEST

MICSOSTRAIN VS TIME

HOLE 209-054-RST2OEPTH' 2 . 0 6 C600 mm)

FIGURE A-44: Post- 60()-mm-Diameter Overcore, Borehole 209-054-RST2(2.08-m Depth), 88-07-22 19:39:00 to 88-07-25 16:57:00

- A.25 -

. _ M U R IM _ . — . _ . _ . _ . IOROUE M»_ . WMTCft OUT _ _ . „ „ . THRUST bN— 0 * 1 * LOCCCft

I « • a 10 I t H I I IS 20 23 24 21 21 30 32 >« 31 3B 40 42 U 41 U SO 92 9* SI SI «0 12 14 «• • • 70

CUCV4H0N - » • - • •oi^(4i*t torn) m -itAZIUJtH - 30.4

DCPIH Of 0/C STMT l.»4 i

KPTH Of CIC MOLE !.|t *

cone oi icmiONi<a«i

t.O - 11.000.0- • JOPMLCMO - SOD

K M.Ot

SWGC SCKXAL NO Jl»

RCKOOUT SC1I1U. HO 003

TEST DDK »r « . Cm

DATE TliCJHS1ALLC0- a i - 0 7 - t t 1939OVMCOWe- J I - 07 -19 200*

CSIR OVERCORE TESTMICROSTRAIN VS TI^C

HOLE 209-054-RST2DEPTH: 2 . 0 8 (300 rm>)

OAie • 4 - *wr -« t

FIGURE A-45: Post- 300-mm-Diameter Overcore, Borehole 209-054-RST2(2.08-m Depth), 88-07-25 20:04:47 to 88-07-25 21:10:06

MTCN TMVMTCR OUTDAT* LOCCtR

_ . . l i iTW kP*_ . - . _ TttOUC Hm

_ . THKUST bN MILL MAE COOtDlMTCS•HHTHIHC - 5JT0SH. ft

KLCVJITXON - »*.•!DIP(•***• OOW) - - 2 . 1A31UUIH - 30.0

XPIM Or O/C 3TAR1 1.54 H

K P I H or t i e HOiE - 3 . * « i»

COM 0»CNSI0NS(«a)

1.0. - 31.000.0. - 200.00

LC*C • 500

ROCK TCIPCflAllME ' H.flt

CAUOC S H I M . NO. J M

KADOUT SCRIM. NO- 003

teST DOHC IV - «3.DW

1HSTM.LCSOVCtCOKO-

OATC TliC•1-07-11 1SJD

CSIR OVERCORE TEST

MICROSTRAIN VS TIME

HOLE 209-054-RST2DEPTH- 2 . 08 (200 m)

D*Tt • *^*>Y-*t

FIGURE A-46: Post- 200-mm-Diameter Overcore, Borehole 209-054-RST2(2.08-m Depth), 88-07-25 22:06:16 to 88-07-26 09:22:35

- A.26 -

i ui« iaS n

s ':& a

LCCCNO

* r t f l . . .

j *

IS Ml

<

104^

13a.

J 101•C

o

a.

-90.

__

. DATA kOCCZt

\

GiCJGt

G6G7GBGtG10Gi l . . y '

- MIA

JO j

:«iJ n

*aS

I 30.

1 ia

1 0 01 i

ISO

""• s

aJO 1

z

j>

-at

OKILL HOLE C00R01NA•iOHTHlNG

CLCVAT10N01P(-M«* OCNN) •

OEFTH OF O/C S1ART

DCfTH DT two MOLC

TtS1S7011I.00

54.(1

-1.110 0

1 34 *

l . S < -

T.o. - i « oo

0 D - 100-00UHC - 300

ROCK T C W C R A T U M M ft*C

SAUCC SERIAL NO. J t t

READOUT SERIAL NO. 003

DATE T!hCINSTALLED a t - 0 7 - n is JOOVCRCOREO • • - 0 7 - I « 1133

ACCL - W(l.

CSIR OVERCORE TEST

UICROS7RA1N VS TIME

HOLE 2 0 9 - 0 5 4 - R S T 2

DEPTH 2 . 08 (200 mr.)

DAIC 2 7 - A M - H

FIGURE A-47: Post- 200-mm-Diameter Overcore, Borehole 209-054-RST2(2.08-m Depth), 88-07-26 11:52:00 to 88-07-26 18:34:02

•latiHTHOtASIIMC

- 13709t* 00- 1*914* IT- 3*. 11

ocmt) » -i. i- JO O

»4 >.DCPTH Of O/C 3TART

MftH or CM HOLE X.Ji

COJIX OlUENtlONSfasI

T.D. - 31 000.0. - M 00LCMO - 300

•oar ie«»en»iu«t;

OAUCC SERIAL NO.

HCAOOUT SCRIM. MO.

TCJT 0OHC »T •

OATCti-07-tl

t.o*c

C5IR OVERCORE TEST

MICROSTRAIN VS TIME

HOLE 209-054-RST2

DEPTH 2 . 0 8 (H)

PATE

FIGURE A-48: Post- 150-mm-Diameter Overcore, Borehole 209-054-RST2(2.08-m Depth), 88-07-27 13:18:23 to 88-07-27 13:50:04

- A.27 -

OZ^(«lv« 0O*N> - - 1 . t

AZIKJfH - 30.0

DCFIH or o/e j t w t i i.»« *

K f l H or CM NB.C ).J« •

COffr eZtCMS3CN9|aa> -1.0 - J* OB0.0. • •• 00

LCHC - 900

HOCK TEireHAluftt n.0*C

CMfGC m i A l NO- i l l

NtAOOUT SCHlAL HO. 003

TEST DONE tY - ftl. 3 *

DATE TItft••-07-11 1330••-07-17 ••«*

CSIR OVCRCORE TEST

MICROSTRAIN VS TIME

HOLE 209-054-RST2OEPTH- 2 . 0 8 (H)

FIGURE A-49: Post- 96-mm-Diameter Overcore Pressure/Temperature Test,Borehole 209-054-RST2 (2.08-m Depth), 88-07-27 14:41:12 to 88-07-27 19:47:07

mil* JM• * « " OUTp«1* IOCGCR

is

MC

101

C2G30'S50«07OBe»

ioa ctoCtiCIJ

M I L L MOLE COOR01HA1ESUOTTNtHC - 9370911

ILCMT30N • 3**1DIP(•*!•• DOW) - - S . tAZIIVtM - 30.0

KF1H or O/C START J .4 I •

DCMH OT CM MCCC : « , j j -

CORE DllCNnONS(PM) -1,0. - 31-000.0- - 100.00ICHO - 900

PlOCtf TEtPEHAIUKC : 10 f C

•MJOC KR1AL NO. 411

REAOOtn KR1AL NO. 009

TCIT DOME «f • VS. SIT

3NSTW.IEP

ovcircano-

DA1E HUEM^I7-ia i>90<«-a#-i* t in

CSIR OVERCORE TEST

MXCROSTRMN VS TIfcC

HOLC -209-054-RST2OEPTH 3 . 9 6 (200 m)

FIGURE A-50: Post- 200-mm-Diameter Overcore, Borehole 209-054-RST2(3.96-m Depth), 88-08-18 16:22:02 to 88-08-19 08:15:26

- A.28 -

!i

ui

z

1O

ga

LtGCHO-

49,409»iau.t j .

»0

«nn

400.

300.

200.

100.

SO.

4 a

30.

20.

>CL

a

-10.

. i r t i i JN»1tR OUTDAI* 10CCCR

Gl 'C2

asat

ceG7G9G9CIO

. \ _ . :

ys:-~

THRUST kN

V*

TI1C - min

^ /*'

4a

R

33Q-

z

i za

- ^ ^

.40 EJ5 SJO *

• " s

| C n

JOO

••"II.100

JO ? !

.40

JO

r E

s-»• s

?• 0 Z

0

- t o

D*)LL HOLE COORDINATES1ORTMINC • SS7DSII.S0

ELCVATlfM0!»( -» l -« OOW) -AZIMUTH -

t>£»TM Or c«C HOLE

l .D -O.D -LEHC -

ROOT TElPEIUUfRC

OAUCC SERIAL MO

READOUT SERIAL HO

DATE

OVEHCORfO• k l -OS-1

94 41- 2 . 1JO 0

«.n -

130 00

300

IC.fC

* • •

003

• 0«00

AECL - URL

CSIR OVERCORE TEST

MICROSTRAIN VS TIME

HOLE : 209-054-RST2DEPTH: 3 . 9 6 (150 iwn)

DATE • J 7 - A M - B )

FIGURE A-51: Post- 150-mm-Diameter Overcore, Borehole 209-054-RST2(3.96-m Depth), 88-08-19 10:18:27 to 88-08-19 10:51:24

CHILL HOLE COORDINATES-HORTHlNC - 3 3 7 0 9 H . JO

ELEUAUCM - 34. *a01* (+ (« • * oenn} - - a . iAZIMUTH . 30 .J

oerTH or o /e STANT JH •

acpiH or c u HOLE * ii •

COUC OI ICNSIONS(B)

1 0 - 31 000.0. - .00.00LENS - 300

ROCK TCtfEKATURC - 10 IX

6AUGC SCRIW. NO. * •<

UA00UT SEKIAL NO 00J

TEST DONC • * A . K l

OAtC TI1Kai-07-It 111

ia-o«-ia iti

CSIR OVERCORE TEST

UXCROSTftAlN VS TIME

HOLE 209-O54-RST2OEPTH- 3 . 9 6 (H)

FIGURE A-52: Post- 96-mm-Diameter Overcore, Borehole 209-054-RST2(3.96-m Depth), 88-08-19 12:43:44 to 88-08-19 13:25:10

- A.29 -

. „» . . » WTH **•_ . _ . _ . _ . _ Tonoue M *

. _ „ THRUST hU

. . _„ . .__ arcm i

-10.

-to.

- J t .

czGJ

jo. atC7

so. as

S.S1Z1Z. cio

«Ql2OO

I « 1 . I M *

DRILL HOLE COORDINATES•IMTHIH6 - S57OS1I.00CASTIMC - 2191*1.1?CLCV*rj0N m 34. it

Oll*(+I>* DOW) - -IIAZIMUTH - 30 0

•CPTH Or 0/C S1ART :t Jt •

ofpm or ew Mac *-» •

CORC KlCHSIONtla*)1.0 - 3 *000.0- - 100 DOLEHI - 900

ROCK TCtTEMTUK 10 t*C

•AUOE SERIAL HO. * • •

RCA0OUT SERIAL NO. SOS

TtJT OOM I f - rt. K«

INSTALLEOt

OVCMCCMCD

OATE Tl tCjg-07-lt 1*10••-O«-tt I I t l

CSIR OVERCORE TEST

MICROSTRAIN VS TIME

HOLE -209-054-RST2DEPTH Z. 9 6 (H)

FIGURE A-53: Post- 96-mm-Diameter Overcore Temperature Test, Borehole209-054-RST2 (3.96-m Depth), 88-08-19 13:41:50 to 88-08-19 14:24:44

_ ^ . _ _ WTCR 1H . . . TONOUC Urn_ _ . _ . _ . . «MTCR OUT - . _ . _ _ . THRUST kU

DATA LOGGER

t ao 22 24 at at so si i t 4« » «o «i * i it «• io0 1 1 > I

BRILL HOLC COONOIfUTCIWORTHING - 9S7031A.O0CASnNC - 2131* 1 « 7CLCVA1I0M - 94. 42

0JH*lv COW) - - > . IAZSIUTH • 30-0

DtrTH OT 0/C STAST :J.T1 •

K9TH Of CM HOLC 4.22 *

CORE OIMMSIOMlfw)

1.0- - 31 000.0. • 100.M

UKQ - 900

ROCK TClVnATUK ' 10. f*C

CM1CC SEMAi. HO. • • *

RCAOOUT SERIAL NO- 003

TEST DOME I T : tfl. KS

OATC T I K1MSTALLC0: M-0T -2 I U10OVCRCORCO M - Q » - H )2I4

CSIR OVERCORE TESTU1CR05TRA1N VS TIME

HOLE . 209-054-RST2DEPTH: 3 . 9 6 (H)

FIGURE A-54: Post- 96-mm-Diameter Overcore Pressure Test, Borehole209-054-RST2 (3.96-m Depth), 88-08-19 14:30:21 to 88-08-19 15:21:27

- B . l -

APPENDIX B

FIELD WORK SUMMARY

CONTENTS

Page

B.I. FIELD WORK SUMMARY B.2

-B.2-

B.l. FIELD WORK SUMMARY

Borehole

1)

2)

3)

4)

5)

TABLE B-l

FIELD ACTIVITIES

Activity Description

210-020-RST1

Drill set-up and removal of initial rock plug

Testing at 2.43-m depth

a)b)c)d)e)0g)h)

Hole preparation and CSIR cell installation600-mm -diameter overcore300-mm-diameter overcore200-mm-diameter overcore150-mm-diameter overcore96-mm-diameter overcorePressure/temperature response testBiaxial test

Testing at 4.17-m depth

a)b)

Hole preparation and CSIR cell installationUnsuccessful overcore tests

Testing at 5.57-m depth

a)b)c)d)e)0g)

Hole preparation and CSIR cell installation300-mm-diameter overcore200-mm-diameter overcore150-mm-diameter overcore96-mm-diameter overcorePressure/temperature response testBiaxial test

Testing at 7.05-m depth

a)b)c)d)e)0g)

Hole preparation and CSIR cell installation300-mm-diameter overcore200-mm-diameter overcore150-mm-diameter overcore96-mm-diameter overcorePressure/temperature response testBiaxial test

Start Date

1988-03-01

1988-03-11

1988-03-111988-03-171988-03-221988-03-231988-03-241988-03-251988-03-251988-04-14

1988-05-01

1988-05-011988-05-13

1988-05-19

1988-05-191988-05-201988-05-251988-05-261988-05-261988-05-261988-05-27

1988-07-07

1988-07-071988-07-081988-07-081988-07-111988-07-121988-07-121988-07-13

End Date

1988-03-10

1988-04-14

1988-03-171988-03-171988-03-221988-03-241988-03-241988-03-251988-03-251988-04-14

1988-05-19

1988-05-101988-05-19

1988-05-27

1988-05-191988-05-201988-05-251988-05-261988-05-261988-05-261988-05-27

1988-07-13

1988-07-071988-07-081988-07-111988-07-111988-07-121988-07-121988-07-13

- B . 3 -

TABLE B-l (cont.)

Activity Description Start Date End Date

Borehole 209-054-RST2

1)

2)

3)

Drill set-up and removal of initial rock plug

Testing at 2.08-m depth

a)b)c)d)e)0g)h)

Hole preparation and CSIR cell installation600-mm-diameter overcore300-mm-diameter overcore200-mm-diameter overcore150-mm-diameter overcore96-mm-diameter overcorePressure/temperature response testBiaxial test

Testing at 3.96-m depth

a)b)c)d)e)0g)

Hole preparation and CSIR cell installation300-mm-diameter overcore200-mm-diameter overcore150-mm-diameter overcore96-mm-diameter overcorePressure/temperature response testBiaxial test

1988-07-13

1988-07-19

1988-07-191988-07-221988-07-251988-07-261988-07-271988-07-271988-07-271988-07-27

1988-07-28

1988-07-281988-08-031988-08-181988-08-191988-08-191988-08-191988-08-22

1988-07-19

1988-07-27

1988-07-221988-07-221988-07-251988-07-261988-07-271988-07-271988-07-271988-07-27

1988-08-22

1988-08-031988-08-181988-08-181988-08-191988-08-191988-08-191988-08-22

-C . l -

APPENDIX C

CALCULATIONS AND RESULTS OF DATA ANALYSIS

CONTENTS

Page

C. 1. PRELIMINARY INPUT DATA C.2

C.2. CALCULATED PRINCIPAL AND VOLUMETRIC STRAINS C.2

-C.2-

C. 1. PRELIMINARY INPUT DATA

The strain data used in the isotropic analysis, and their associated standard deviation, aresummarized in Tables C-l and C-2, respectively.

C.2. CALCULATED PRINCIPAL AND VOLUMETRIC STRAINS

The results of the isotropic analysis in terms of principal and volumetric strains aresummarized in Tables C-3 through 5. Comparative results from other boreholes are shown inTable C-6.

TABLE C-1

SUMMARY OF MEAN CHANGES IN GAUGE READINGS

Depth(m)

2.43

5.57

7.05

2.08

3.96

Cor* SB*

(mm)

596.0296 2

105.1

144.566.7

295.2

105.1

144.586.7

295.2195.1144.586.7

596.0295 2195.1144.586.7

295 2

195.1144.586.7

AxialGauge 1

4754

19

34

14

543

• 3

41

3

17875

19

40924

10

10

38

2264

16

•10

Strain Rosette 145

Gauge 2

632

209

12

•13

579

104214

226

35

22

49027

-21

•234

62257S

CireumGauges

944

•8-8

•to

•34856

•20

•13

•32

417

-5-1

3

29847

8

-77

660

•2-1

16

135Gauge 4

697-4

7

•a

9

790

•18

7

-30

37301

0

29949•9

2132

273

S100

Anal

Gauge 5

26t5517

2627

390-4

27

-3

188

10

3

13

27514

9

8

12

95

8

11

10

Strain Rosette 245

Gauge 6

90517

51

2904

3157

26

40955

0

26625-4

284

53

00

• 3

CircumGauge 7

1018-15

-8

-30

-28

836

28

20•35358

-241

675-2

-32-11

-34

3268

•20-22

135Gu«S

AxialGauge 9

Strain Rosette 345

Gauge 10

BOREHOLE 210-020-RST1

524-11

41

-7

41313

12-67

1301-1

0

3938

1829

38475

•234-It

16897

23

354

- l»18

9Z7

264

22

35-3»

1114

523

BOREHOLE 209-054-RSTi

-60

-39•63

0•IT

443

12•14

-12

27114

-11

30

185

5187

546

1

-38-1819

27«

-28

19

CircumGauge 11

567

-18•3

-30-16

449

20

23-34

195• 1

4

4

576

10-43-22

-8

423

•8-18

30

135

Gauge 12

68911

64

3

0

0

00

00

00

•52•31

-640

- I *

0

00

0

CelTemperature

0.62-0.090.06

•0.01-0.51

0.26

0.92

-0.56-0.3S0.880.81-0.221.18

4.040.51

1.600.430.980.130.64

0.40•0.09

AllAxial

(Mean)

434

6

18

30

26

489-3

34

0177

95

18

318

17

-107

17169

6152

All

45 Sheaf(Mean)

630

19

10

7

5

582•?1

3820

249

4

515

434

18

•21

-49

2821

47

All

Circum(Mean)

843-13

-6-3326

714

9

10•34

324

•3

23

51619

-28•13

-12470

• I

•13

8

All

135 Shear(Mean)

637

•1

62

2

602-2

9-43

25201

0

29949

-92132

3589

• 2

• «

All

Shear(Mean)

1

633

7

8

53

590

1224

•12

25034

11

400

25•18

2

15

312

4

22

Axial andCircum(Mean)

680-56

20

5S13

22-20260

34

11

1

417

18-19-32

31921

&

o

Note: Gauge readings not uted In calculation! shown in bold italics.

TABLE C-2

SUMMARY OF STANDARD DEVIATION FOR GAUGE READING CHANGES

Depth(m)

2.43

5.57

7.05

2.08

3.96

Cora Size(mm)

596.0295.2195.1144.586.7

295.2195.1

144.586 7

295.2195.1

144.5S6.7

596.0295.2

195.1144.586.7

295.2195.1

144.588.7

AxialGauge 1

447

6g

a57

e44

84

84

57

5

847

5

Strain Roselte 1

45Gauge 2

56667

6

613

64

5

94

64

55

S7

56

5

CircumGauge 3

458

11

B54

63

5595

844

6

564

54

135Gauge 4

536

17

96

4

6

544

84

544

55757

5

Anal

Gauge &

75

66

S6

577

4

594

73

56

6

54

54

Strain Rosette 2

45Gauge 6

547

674

7

11

«

4

594

84

4

654

47A

CircumGauge?

557

784

57

4

54

84

155e6

554

64

135

G»uge8Axial

Gauge 9

Strain Rosette 345

Gauge 10

BOREHOLE 210.020.RST1

557

9

86

3

6a5444

4477

87

5

811

54

84

44

667

6

6

1213

3494

BOREHOLE 2O9-054-RST2

2610

105

IS64

64

64

56

695

85

64

5

55

54

74

CircumGauge 11

456

6844

54

34

95

115

5

654

4

54

135

Gauge 12

4

4

667

0

00

0

000

0

271010

0

1500

00

Cell

Temperature

0.040.010.090.14

0.180.07

0.220.30

0.110.17

0.180.140.13

0.19

0.100.210.120.10

0.01

0.130.10

006

AllAnal

(Mean)

3344

54

34

5

2353

423

4

3534

3

All45 Shear

(Mean)

334

4

4

3

4

7

S2

353

4

33

33

334

3

AllCircum(Mean)

334

5

52

24

2

33

S

3

7

33

33

323

2

All135 Shear

(Mean)

324

7

55

344

33

53

135

54

85353

AllShear(Mean)

2234

3

32

54

224

2

633

243

23

2

Anal artCircum(Mean)

22

33

32

233

2

242

42

22

2

32

32

o

-C.5-

TestDepth

(m)

* 2.432.432.432.432.43

* 5.575.575.575.57

* 7.057.057.057.05

TestDepth

(m)

* 2.082.082.082.082.08

* 3.963.963.963.96

SUMMARY

CoreSize

(mm)

600300195.1144.586.1

300195.1144.586.4

300195.1144.586.1

(He)

490.2514.0518.9932.3328.67

530.4315.1637.8327.77

225.748.895.45

2103

SUMMARY

CoreSize

(mm)

600300195.1144.586.1

300195.1144.586.5

e1

G*e)

389.0422.620.15

17.9922.06

290.186.71

15.4912.46

OF PRINCIPAL

Plunge

(°)

24.819.405.703.206.318.175.604.132.821.702.702.517.3

Trend

(°)

284.4314.8119.3124.2112.2285.8301.1308.5316.4274.0302.8128.1131.3

OF PRINCIPAL

Plunge

(°)

28.411.022.520.805.709.920.400.239.2

Trend

<°)

221.4002.6333.7001.8189.2259.5222.4023.4110.8

TABLE C-3

STRAINS FOR BOREHOLE 210-020-RSTl

E2

ftie)

326.84-2.27-2.77

-13.90-8.67

259.933.125.67

-11.34109.92

-1.301.43

-0.49

TABLE

Plunge

(°)

18.422.050.578.366.415.013.277.819.100.277.287.442.2

C-4

Trend

(°)

185.6216.6022.3018.5007.6190.8144.5057.8213.5183.9045.0323.9024.9

e3

(M«)

175.29-13.39-5.49

-17.36-17.3299.34-6.13-6.36

-38.6439.95-2.90-0.71-3.98

Plunge

(°)

58.360.039.011.222.666.205.511.450.768.312.500.742.7

Trend

(°)

063.0082.3213.9214.8204.8063.4053.2217.7098.4093.5212.2218.1238.0

STRAINS FOR BOREHOLE 209-054-RST2

e2

(fie)

145.4412.82-7.20-7.50-0.97

145.340.83

-2.652.17

Plunge

(°)

61.615.329.235.319.740.734.708.701.4

Trend

(°)

040.7095.777.0

107.4097.2160.8327.3113.5201.9

(He)

68.24-9.73

-20.92-15.34-14.21

0.01-4.32

-11.23-7.63

Plunge

(°)

00.371.051.747.369.547.648.181.350.8

Trend

(°)

131.2238.1212.1247.4294.6000.5107.9291.9293.6

*Near-field in situ strain measurement. All others near-field residual strain.

-C.6-

TABLE C-5

CALCULATION OF PRINCIPAL STRAINS FROM RESIDUAL STRAIN TESTS

TestRef.

R11600R21600R12300R13300R22300R11300R21300R11200R12200R13200R21200R22200R11150R12150R13150R21150R22150R11100R12100R131OOR21100R22100

(MPa)

31.1226.3535.7413.0919.410.551.370.890.830.39

-0.480.331.322.170.280.650.661.190.881.041.020.63

CT2(MPa)

24.5116.4124.05

8.7713.50-0.110.970.010.310.01

-0.780.09

-0.550.780.13

-0.39-0.08-0.32-0.810.200.080.21

CT3(MPa)

18.3813.2617.116.167.57

-0.560.05

-0.10-0.09-0.05-1.34-0.12-0.690.260.05

-0.71-0.43-0.67-1.990.07

-0.46-0.19

E(GPa)

47.7350.1951.8644.7650.1947.7350.1947.7351.8644.7650.1950.1947.7351.8644.7650.1950.1947.7351.8644.7650.1950.19

V

0.180.230.200.200.230.180.230.180.200.200.230.230.180.200.200.230.230.180.200.200.230.23

El(Me)

490.25389.04530.43225.74290.18

14.0522.6218.9915.168.890.156.71

32.3337.83

5.4517.9915.4928.6727.7722.0322.0612.46

E2(Me)

326.84145.44259.93109.92145.34

-2.2712.82-2.773.12

-1.30-7.200.83

-13.905.671.43

-7.50-2.65-8.67

-11.34-0.49-0.972.17

e3

175.2968.2499.3439.950.01

-13.39-9.73-5.49-6.13-2.90

-20.92-4.32

-17.36-6.36-0.71

-15.34-11.23-17.32-38.64-3.98

-14.21-7.63

VolumetricStrain, A

(%)

0.09920.06030.08900.03760.0436

-0.00020.00260.00110.00120.0005

-0.00280.00030.00010.00370.0006

-0.00050.00020.0003

-0.00220.00180.00070.0007

%ofA

In Situ

100.0100.0100.0100.0100.0

0.24.31.11.41.24.60.70.14.21.60.80.40.32.54.71.11.6

Note: Test reference describes borehole #, test #, and borehole diameter. For example, Rl 1300 refers toborehole RSTl (Rl), Test 1 (1), and 300-mm borehole size (300).

-C.7-

TestDepth(m)

Borehole8.279.239.84

10.3510.8511.3413.17

(MPa)

TABLE C-6

CALCULATION OF FAR-FIELD PRINCIPAL STRAINS

(MPa)

210-060-OC134.0942.5144.1630.6331.3133.7532.97

23.1024.8925.6417.3822.3420.8120.60

Borehole 210-003-OCl12.6013.0914.1714.6815.2315.7316.2616.8117.36

42.3028.2518.0331.8124.4030.9635.0737.0039.43

16.1917.0912.0519.9215.1619.7620.6920.9322.77

Borehole 209-069-PH310.8311.3911.9712.5013.05

28.8531.1332.4130.4927.50

14.3016.9515.1716.6012.75

Borehole 210-059-OCl9.05

10.0710.5811.0911.6312.1613.1713.6714.2914.7016.2116.71

34.7534.0634.8734.1934.8730.2230.3330.0930.2032.5033.9538.22

23.3120.9020.2522.3721.5820.2616.8417.5918.4919.4821.3523.40

(MPa)

11.5817.4014.397.31

13.1611.2213.99

5.126.504.66

16.679.70

16.2416.3214.7316.56

11.9212.1412.1911.2911.71

12.4613.6713.0314.4612.8511.5512.137.59

10.8211.7712.7512.46

E(GPa)

58.2551.4548.9154.0755.5954.1450.19

60.2060.5160.5060.5160.5060.5055.1050.9154.52

53.5258.5159.6954.2548.38

54.8750.5853.1254.8152.9450.1655.7358.1255.6558.6550.8951.59

V

0.160.210.180.210.200.170.23

0.200.200.200.200.200.200.170.200.16

0.200.130.170.160.14

0.220.190.180.160.210.190.170.170.140.140.120.12

e l(M«0

489.98653.63755.56470.60435.51522.81498.39

631.86388.89242.78404.76321.12392.73522.29586.68607.80

441.07467.41465.05479.77497.64

489.90543.53543.67516.28522.09481.98455.86444.07468.94479.54586.72657.43

e2(H£)

271.12239.24308.75174.08241.88243.17195.24

111.40167.58124.17168.96137.85170.58216.95207.90253.33

114.84193.55127.12182.77150.07

235.53233.91218.90266.12218.34245.69172.65192.44229.06226.47309.41335.69

e3(He)

41.7163.0937.33

-51.2743.7135.9233.25

Mean

-109.27-42.44-22.41104.5129.55

100.76124.1561.76

121.20Mean

61.47100.6668.7169.23

125.57Mean

-5.7163.8158.5298.7118.8039.0573.77-8.8771.9476.60

120.1498.19

Mean

VolumetricStrain, A

(%)

0.08030.09560.11020.05930.07210.08020.07270.0815

0.06340.05140.03450.06780.04890.06640.08630.08560.09820.0669

0.06170.07620.06610.07320.07730.0709

0.07200.08410.08210.08810.07590.07670.07020.06280.07700.07830.10160.10910.0815

ISSN 0067-0367

To identify individual documents in the series

we have assiancd an AECL—number 10 each.

Please refer to the AECL— number when

requesting additional copies of (his document

from

Scientific Document Distribution Office

Atomic Energy of Canada Limited

Chalk River, Ontario, Canada

K0.I I JO

Price: B

ISSN 0067-0367

Pour identifier les rapports individuels

faisant partie de cette serie, nous avons

affect e un numero AECL—a ehacun J'eux.

Veuille/ indiquer le nunieiu AECL— lorsque

vous demande/ d'autres exemplaires de ce rapport

au

Service de Distribution des Documents Officiels

Energie Atomique du Canada Limitec

Chalk River, Ontario, Canada

K0.I 1.10

Prix: B