1 Challenges in materials and devices for Resistive-Switching ...

43
1 Challenges in materials and devices for Resistive-Switching-based Neuromorphic Computing Javier del Valle 1 , Juan Gabriel Ramírez 2 , Marcelo J. Rozenberg 3 and Ivan K. Schuller 1 1 Department of Physics and Center for Advanced Nanoscience, University of California- San Diego, La Jolla, California 92093, USA 2 Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia 3 Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud, Orsay 91405, France Abstract This tutorial describes challenges and possible avenues for the implementation of the components of a solid-state system, which emulates a biological brain. The tutorial is devoted mostly to a charge-based (i.e. electric controlled) implementation using transition metal oxides materials, which exhibit unique properties that emulate key functionalities needed for this application. In the Introduction, we compare the main differences between a conventional computational machine, based on the Turing-von Neumann paradigm, to a Neuromorphic machine, which tries to emulate important functionalities of a biological brain. We also describe the main electrical properties of biological systems, which would be useful to implement in a charge-based system. In Chapter II, we describe the main components of a possible solid-state implementation. In Chapter III, we describe a variety of Resistive Switching phenomena, which may serve as the functional basis for the implementation of key devices for Neuromorphic computing. In Chapter IV we describe why transition metal oxides, are promising materials for future Neuromorphic machines. Theoretical models describing different resistive switching mechanisms are discussed in Chapter V while existing implementations are described in Chapter VI. Chapter VII presents applications to practical problems. We list in Chapter VIII important basic research challenges and open issues. We discuss issues related to specific implementations, novel materials, devices and phenomena. The development of reliable, fault tolerant, energy efficient devices, their scaling and integration into a Neuromorphic computer may bring us closer to the development of a machine that rivals the brain.

Transcript of 1 Challenges in materials and devices for Resistive-Switching ...

1

ChallengesinmaterialsanddevicesforResistive-Switching-basedNeuromorphicComputing

JavierdelValle1,JuanGabrielRamírez2,MarceloJ.Rozenberg3andIvanK.Schuller1

1DepartmentofPhysicsandCenterforAdvancedNanoscience,UniversityofCalifornia-

SanDiego,LaJolla,California92093,USA2DepartmentofPhysics,UniversidaddelosAndes,Bogotá111711,Colombia

3LaboratoiredePhysiquedesSolides,CNRS-UMR8502,UniversitéParis-Sud,Orsay91405,France

Abstract

Thistutorialdescribeschallengesandpossibleavenuesfortheimplementationofthecomponentsofasolid-statesystem,whichemulatesabiologicalbrain.Thetutorialisdevotedmostlytoacharge-based(i.e.electriccontrolled)implementationusingtransitionmetaloxidesmaterials,whichexhibituniquepropertiesthatemulatekeyfunctionalitiesneededforthisapplication.IntheIntroduction,wecomparethemaindifferencesbetweenaconventionalcomputationalmachine,basedontheTuring-vonNeumannparadigm,toaNeuromorphicmachine,whichtriestoemulateimportantfunctionalitiesofabiologicalbrain.Wealsodescribethemainelectricalpropertiesofbiologicalsystems,whichwouldbeusefultoimplementinacharge-basedsystem.InChapterII,wedescribethemaincomponentsofapossiblesolid-stateimplementation.InChapterIII,wedescribeavarietyofResistiveSwitchingphenomena,whichmayserveasthefunctionalbasisfortheimplementationofkeydevicesforNeuromorphiccomputing.InChapterIVwedescribewhytransitionmetaloxides,arepromisingmaterialsforfutureNeuromorphicmachines.TheoreticalmodelsdescribingdifferentresistiveswitchingmechanismsarediscussedinChapterVwhileexistingimplementationsaredescribedinChapterVI.ChapterVIIpresentsapplicationstopracticalproblems.WelistinChapterVIIIimportantbasicresearchchallengesandopenissues.Wediscussissuesrelatedtospecificimplementations,novelmaterials,devicesandphenomena.Thedevelopmentofreliable,faulttolerant,energyefficientdevices,theirscalingandintegrationintoaNeuromorphiccomputermaybringusclosertothedevelopmentofamachinethatrivalsthebrain.

2

I.INTRODUCTIONWearelivingintheinformationage.Wehavepowerfulcomputersthatareinterconnectedtoevenmorepowerfuldatabasesthatprovideseeminglyendlessinformationandenableactionsatadistance.Thistechnologicalrevolutionisbasedontwopillarsdevelopedduringthepastcentury:hardwarecomputersandsoftwarecodes.Thefirstoneissupportedbyimpressivetechnologicalprogressinelectronics,includingtransistors,microprocessors,memories,LEDs,etc.Thesecondoneissupportedbyequallyimpressiveadvancesincomputerscience,includingprogramminglanguages,communicationprotocolsandcryptography,justtonameafew.Thesetwoavenuesoftechnologicalprogressmergedintotheinformationsuperhighwaythatweuseandcontinuetodevelopeveryday.“Moore’slaw”,thedoublingoftransistorsindensecircuitseverytwoyears,hasfueledtheexplosionintheuseandmanipulationofdataineverydaylife.However,itiscommonlyagreedthatinthenext15-25yearsa“Moore’scrisis”willdevelop,inwhichthecontinuousimprovementincomputationalpowerandthedecreaseincostwillend.1Thevastmajorityoftoday’scommercialcomputersfollowthevonNeumannarchitecturemodel.ThisdigitalelectroniccomputerwasdescribedbyJohnvonNeumannin1945basedonworkfromEckertandMauchly.2IndependentlyTuringwasdevelopinglogicalandpracticalideasonhowtoimplementaUniversalComputingmachine.3Thisso-calledTuring-vonNeumann(TvN)paradigmfeaturesseveralunitsandtheirinterconnectionsasshowninthefigure1.Itischaracterizedasastore-programmachine,asitkeepsboththedataandtheprograminstructionsinacommonstoragespace.ThemaincomponentsareaCentralProcessingUnit(CPU),aMemoryUnitconnectedtotheoutsideworldbyinputandoutputdevices.Theycanbeeasilyrecognizedinthefamiliardesktopmachinestoday.TheCPUisfurthercomposedofacontrolunit,anarithmeticandlogicunitandregisters.TheCPUfetchesdataandprograminginstructionsfromthememoryunit.Theseinstructionsanddataarefurtheracteduponbythecontrolunit,andtheoperationsarethenexecutedbythearithmeticandlogicunit.Inputandoutputdevicesaretheinterfaceswiththeoperatorortheexternalworld.Somepioneerideasregardingartificialintelligence(AI)gobacktoseminalthoughtsofJohnvonNeumann4whofirstpointedoutthatbrainscognitivepowerdoesnotemergefromaccuratedigitalcalculationsbutratherfromacollectiveformofcomputationinvolvinglargenumberofslow,impreciseandunreliableanalogcomponents.5,6Ourbrainsareamazinglymoreefficientatrecognizingpatternsthanpowerfuldigitalcomputers.Todistinguishtheimageofacatfromatigerisahardtaskforacomputer,butnotforachild.AIismakingstridesthanksto“neuromorphic”inspiredconceptsdevelopeddecadesago,suchasneuralnetworks7andconvolutionfilters,usingthetremendouscalculationalpowerofcurrentconventionalcomputers.8TheseAIsystemsareachievingremarkablefeats,frombeatingthebestchessandgoplayerstorecognizefacesinacrowd.9However,thehardwarerequirementstorunartificialneuralnetworksareextremelyhigh,bothforcalculationspeedandpowerconsumption,whichrepresentsasignificantimpedimentforconventionalcomputertechnology.Whilethebrainofachessplayerusesoftheorderof20watts,a

3

supercomputerrequiresamilliontimesmoretofacethesamechallenge.Therefore,adifferentapproachtocomputing,probablyinspiredinneuromorphicconcepts,willundoubtedlyleadtomoreenergyefficientmachinesandanimprovementintheglobalpowerconsumption.10,11 Themassiveamountofinformationatourdisposalposesnewchallenges.Howtomakesenseofit?Howtorecognizepatterns?Howtomakedecisionsfromvastbutoftenconflicting,incompleteorimprecisedata?Thesechallengesopenanopportunityfortheemergenceofadisruptivetechnology.BreakingawayfromtheclassicalTuring-vonNeumannmachineparadigmtoimplementanewtypeofbio-inspired(“neuromorphic”)electronicdevicesorcognitivehardware6mayallowfortheimplementationofartificialneuralnetworks.Thesenewmachinesmaybebasedonnewtypesofdevices,suchasartificialsynapses,axons,dendritesandneurons,toenabletheconstructionof“neuromorphic”circuitswithAIcapabilities.Inaneuromorphiccomputer,contrarytoaTvNmachine,thereisnotaclear-cutseparationbetweentheunitexecutingtheoperations(calculationsorlogical)andthememory.Aneuromorphicsystemischaracterizedbysimpleunitswithahighdegreeofinterconnectivity(figure1),imitatingthebrain.TheunitsperformsimpleoperationsascomparedtothearithmeticandlogicunitofaTvNmachine.Theseconstituentunits,whichemulate“neurons”and“synapses”,areinterconnectedinaso-calledNeuralNetwork.AnotherkeydifferencebetweenTvNandneuromorphicmachinesisthattheformersoperateineminentlyserialmode,whilethelatterareintrinsicallyparallel.Thisfeaturehasmanyconsequences.PerhapsthemainoneisthattheoperationofTvNmachinesrequireahighdegreeofprecision.Sincetheiroperationisserial,theinitialdataundergoesalongsequenceofsuccessivemanipulations,whicharesusceptibletoerrorbuild-up.Hence,theyoftenrequirecalculationswith16significantfigures(“doubleprecision”)althoughtypicallytheprecisionneededfortheendresultisonlyonepartinathousand.Neuromorphicsystemsoperatinginparallelhaveunitsthatintegratetheinputofaratherlargenumberofinterconnectedunits.Thestatisticalnatureinherentintheiroperationmakesthesesystemslessvulnerabletoaccumulationoferrors.Inaddition,theoperationspeedofaserialsystemisgivenbythespeedofeachbasicoperationtimesthenumberofoperations.Thefirstisquitefastinmodernmachines(~10-9s)buttheformercanbequitelargeincomplexcalculations.Incontrast,parallelsystemsmayhaverelativelyslowoperatingunitsbutalargenumberofthemandsignificantlyshortercalculations,whichmayallowforfastercomputations.

4

Figure 1. Comparison between von-Neumann and neural network computingarchitectures.Thepurposeofaneuromorphichardware12istoemulateabiologicalsystembymimickingthemostrelevantelectricfunctionsofbiologicalneuronaldevices.Thepurposeisnottoreproduceexactlyabiologicalsystembuttoextractessentialfeatures,whichmayallowforthedevelopmentofafunctioningmachine.Thus,wewilloutlinebelowthemostimportantpropertiesofthemaincomponentsofabiological-neuralsystemNeuronsThecentralelementsofbiologicalneuralcircuitsaretheneurons,13activeelementswhosefunctionistoproduceelectricsignals(typicallyspikes)asaresponsetoanexcitation.Thisresponseisnon-linear,whichgeneratesaspikeonlyiftheexcitationvoltageexceedsathreshold.Theresponseisalsotimedependent:theneuronismorelikelytofireifexcitationsignalsarrivemorefrequently.Thisbehavioriscommonlyreferredtoas“leaky,integrateandfire”(LIF).Themembraneofneuronactsasaleakycapacitorwhosevoltagebuildsupasincomingpulsesarrive,butslowlydischarges(leaks)overtime.Ifthethresholdoftheexcitatoryvoltageisexceeded,theneuronactivatesandfires(figure2).14Inbiologicalneuronstheintegrationprocessisbelievedtooccurwithinaregionofthecellbodycalledthe“axonhillock”.AxonsanddendritesNeuronsspanoutconnections,likecables,calleddendritesandaxons(figure2),whichprovideinter-neuronalconnectionsandcarryelectricimpulsesfromneurontoneuron.Dendritesarethereceivingconnectionsoftheneuron,gatheringalltheinputsignals,whileaxonscarryawaytheoutputgeneratedbytheneuron.Eachneuronmayhavefromonetohundredsofdendrites,andtheymayfurtherbranchintospinesthatcanreachtensofthousandsofconnections.Ontheotherhand,neuronssolelyhaveasingleormaybefewaxons.Thisresultsonahighly-interconnectednetworkofneurons,throughwhichtheelectricpulsesgeneratedbyoneneuronaresenttomanyothers.Itisimportanttopointoutthedifferencesbetweenaxonsanddendrites.Usuallytheyareconsideredasmeretransmissionline

5

equivalents,however,(axonsinparticular)canalsoimplementinformationprocessingtasks.12,15Moreover,sincesynchronizationbetweenmultipleneuronsplayaroleinbrainactivity,long-rangeconnectivitythroughaxonsmayallowthecoordinatedbehaviorofremoteneurons.

Figure2:Schematicelectricallyrelevantstructurea)andvoltagespiking,b)ofaneuronshowingtheleaky-integrateandfireafterathresholdpotentialisreached.

SynapsesAnotherkeyelementofbiologicalneuronalnetworksisthesynapse,theconnectionpointbetweenaxonsanddendrites(figure2).Thesesynapticconnectionsregulatethefractionoftheoutgoingsignaltravellingthroughtheaxonwhichistransferredtothedendrite.Inotherwords,theycontrolhowstronglyinterconnectedtwoneuronsare.Thisinterconnectionstrengthisknownas“synapticweight”andishowthememoryofthenetworkisstored.Theweightsalsodefinethenetwork’stopology,astheycontrolthepropagationofsignalsacrossthesynapses.Theseweightsarenotfixedbutcanchangeovertimedependingontheirprevioushistory.Thisproperty,knownas“synapticplasticity”,providesthelearningcapabilityofthenetwork.TheinitialstudyofthisfeatureinbiologicalsystemsisassociatedtoHebb,whosynthetizeditinthephrase“neuronsthatfiretogether,wiretogether.”16Therequirementforsynapticweightstomodifytheirvaluesaccordingtothecorrelationsintheelectricspikeactivityoftheirconnectedneuronsiscalled“spike-timing-dependentplasticity”(STDP).14,17Duetothismechanism,thesynapticweightofagivensynapseisreinforcedwhentheconnectedpre-neuronbecomesactivejustbeforethepost-neurondoes.Andconversely,theweightisdecreasedifthepost-neuronbecomesactivebeforethepre-neuron.Thefirsteffectiscalled“long-termpotentiation”(LTP)andthesecondoneis“long-termdepression”(LTD).14Theabovediscussionprovidesastartingpointfortheminimalfunctionalitiesexpectedfromelectronicneuromorphicdevices.Itseemsclearthatabio-inspiredsystemmaybecomposedoffourbasicartificialdevicesemulating:neurons,synapses,axonsanddendrites,wiredwithahighdegreeofinter-connectivity.AveryimportantissueisrelatedtotheenergyconsumptionofaTvNmachineascomparedtoabiologicalneuralsystem.TodevelopaTvNmachinethatisabletoperformsimilartasksasthehumanbrain,thenumberofdevicesmustbeincreasedbyseveralordersofmagnitudewithrespecttocurrentordinarycomputers.Whileitisnot

6

obvioushowtocomparetheenergyconsumptionofsuchaTvNmachinewithabiologicalbrain,itiscommonlyacceptedthattheenergyconsumptionoftheformerisconsiderablelargerbymanyordersofmagnitude.Fromtheenergeticpointofviewtheincreasednumberofdevicesposestwomainchallenges:i)thelocalenergyconsumptionproducesdeleteriousthermalinteractionsbetweenthedevices,andii)theglobalenergyconsumptionbecomesprohibitive.Manyestimatesindicatethatafewofthesehigh-performanceTvNmachineswouldrequireaseriousfractionoftheworldenergyproduction.Thus,todevelopevermorepowerfulmachines,itisimperativetobreakawayfromtheTvNparadigm.ArtificialIntelligencemachinesthatattempttoemulatethecomputationalbehaviorofneuralsystemsareknownasNeuromorphicComputers.Severalimplementationshavebeenadvancedandappliedtothesolutionsofdifferentcomputationalproblems.Themostobviousoneistouseconventionalsiliconbasedtechnology(CMOS)toimplementselectedneuralfunctionalities.18Unfortunately,inordertoobtaineventhemostrudimentaryonesmanyclassicalCMOSdevicesareneeded,12whichgreatlyincreasesenergyconsumption.However,thesekindsofsystems,eveninareducedimplementation,allowprovingconceptualideasofneuromorphicmachines.Alternatively,completelynewredesignsofcomputationalmachineshavebeendevelopedinavarietyofconfigurations.Spintorqueoscillator-basedmachineshavebeendevelopedrecently,whichrelyonthetemporalevolutionofthosedevicesandhavebeenapplied,forinstance,tospeechrecognition.19Energyefficienthybridsuperconducting-magneticdevicesarebeingdevelopedtosimulatesynapses.20Andsemiconductor-superconductingdevices,usingfewphotonlight-emittingdiodesconnectedwithsuperconductingwires,havebeenproposedtoemulatespikingneurons.21Inthiscontext,aparticularlypromisingapproach,thatweshalldescribebelow,attemptstoemulateall-importantneuro-biologicalfunctionalitiesinasingleplatform,whichreliesontheelectricalresponseofcertaincarefullychosencompoundsbelongingtothefamilyofquantummaterials.22Inthisreviewarticle,weshalldiscussanddescribehowneuromorphicfunctionalitiesmayberealizedusingResistiveSwitching(RS),aphysicalphenomenoninwhichtheresistanceofadevicedependsontheappliedvoltageor/anditsprevioushistory.23–25Althoughthisphenomenonhasalreadybeenobservedinmanymaterials,26,27inthisreviewwewillfocusonthepromisingtransitionmetaloxides(TMO).28–34TMOsareattractiveastheyfeaturethetwomaintypesofresistiveswitching:volatileandnon-volatile.Involatileswitching,theresistanceofthematerialchangeswhenahighenoughvoltageorcurrentisapplied,returningtoitsoriginalvalueafterwards.Innon-volatileswitching,theresistanceofthematerialdoesnotgobacktoitsoriginalvalue,butitispermanentlymodified.Thesetwotypesofresistiveswitchingallowimplementingthebasichardwareelementsofneuromorphicsystemsthatweshalldenote:neuristors(whichemulatetheleaky,integrateandfirebehaviorofspikingneurons)andsynaptors(whichemulatethememorybehaviorofsynapses).35

7

II.DEVICESANDFUNCTIONALITIESTheterminologyusedinthefieldofNeuromorphicComputingissomewhatconfusing.BecauseofthiswewilldefinethetermsfortheartificialingredientsofachargebasedNeuromorphicMachineandthecontextinwhichwewillusethemasfollows:Neuristorsareactiveelementsofthenetworkwhichemulatethecomputationfunctionalityofneurons.Theymustfeatureanon-linearactivationfunction,withanallornothingresponseintheformofanelectricspike.Volatileresistiveswitchingenablesthisfeaturethankstoitsthresholdbehavior:thematerialremainsnon-conductiveuntilathresholdvoltage(moreprecisely,anelectricfield)issurpassedandprovokesthecollapseoftheresistance.Oncethevoltageisremovedthedevicereturnstoitsinitial(non-conductive)restingstate,perhapswithacontrollabletimeconstantthatmaybeassociatedwiththerefractiveperiodofneurons.AkeyfunctionalitytheymustmimicistheLeaky,IntegrateandFire(LIF)behavior,whichimpliesthattheneuristormustkeepsomesortofshorttermmemorythatallowsittosumallinputs.35,36Suchmemorymightcome,forinstance,fromtherelaxationtimeoftheinsulator-metalphasetransition,asshownrecently.37Theneuristormusthaveoneorseveralinputandoutputtransmissionlines,correspondingtothedendritesandaxons,respectively.Theseaxonsanddendritescouldbeinprincipleimplementedbysimplemetallicinterconnects,whichseemstobetheapproachtakeninmostrealimplementations.However,weshouldnotdiscardthepossibilitytoincreasetheircomplexitybyaddingadditionalaxonicordendriticfunctionalitiestothem(suchassignalgainneededtokeeptheamplitudeofthepulseconstantalongtheaxon).Synaptorsplaytheroleofsynapses,controllingtheconnectivitybetweentheneuristors.Non-volatileRSisanidealeffecttoimplementsynapticfunctionalities:theconductivityofthesynaptorplaystheroleofthesynapticweightwhileitsnon-volatilitymimicssynapticmemoryandplasticity.Athin(<100nm)TMOlayersandwichedbetweentwometallicelectrodesistheeasiestwaytorealizeasynaptoralthoughwithrecentlithographytechniquesplanarsynaptorshavealsobeenimplemented.38Architectureisachallengingissuethatreferstothewayinwhichneuristorsandsynaptorsarewired.Currentfabricationtechniqueslimithardwarefabricationto2D,makingitcomplicatedtoachievethehuge3Dconnectivityofbiologicalsystems.Apartialsolutiontothisistheimplementationofcross-bararraygeometries,suchasshowninfigure3.Inthisgeometry,neuristorsaregroupedin“layers”,arowandacolumn,forinputandoutputintoasynaptormatrix.Thisarchitectureoflayersisquitesimilartothatofsoftwareimplementedneuralnetworksand,tosomeextent,torealbiologicalsystems.Eachneuristorhastwoterminalscorrespondingtothedendriteandtheaxon.Thegeometryisarrangedsoevery“axon”ofthepre-neuronlayerintersectsevery“dendrite”ofthepost-neuronlayer.Eachintersectionconsistsofasynaptor:AMetal/TMO/Metalnon-volatileRSelementplayingtheroleofasynapticconnection.Multilayer,“deep”,networkscouldbefabricatedbyconnectinginseriesseveralofthesearrays.

8

Figure3:Cross-bararrayarchitecturetoimplementhardware-basedneuralnetworks.It consists of a synaptor-matrix device in between a pre-neuristor layer and a post-neuristorlayer.Thevariousneededneuromorphicfunctionalitiesmaybeimplementedbyacombinationofresistiveswitchingdevicesandmetallicconnections.39Resistiveswitchingallowsforimplementationofbasicneuronalandsynapticfunctionalitieswhereastheconnectivityisprovidedbythemetallicwiresandpads.MoredetaileddescriptionsofsuccessfulneuromorphicdevicesimplementedwithresistiveswitchingwillbegiveninsectionVI.III.PHENOMENAIII.1BasicsofResistiveSwitching(RS)NeuromorphicfunctionalitiescanberealizedinpracticebyusingandcontrollingtheResistiveSwitchingphenomenon.TheRSeffectconsistsofasuddenchangeoftheresistanceofasystemundertheapplicationofelectricstress,suchasapplicationsoftimedependentvoltage,currentand/ortemperature.Themicroscopicoriginandmechanismoftheresistancechangemaybeverydifferentand,accordingly,qualitativelydifferentfordifferenttypematerials.Asafirstclassification,therearetwotypesofRSswitching:volatileandnon-volatile.Intheformercasethephenomenonisasuddencollapseoftheresistanceundertheactionofanelectricstimulus,whichspontaneouslyreturnstotheinitialstate.40Thisrelaxationtakesplacegradually,acertaintimeaftertheelectricactiononthesystemisterminated.Ontheotherhand,thenon-volatileRSisasuddenchangeinresistancethatissemi-permanent.Itdoesnotreturntotheinitialstateaftertheelectricpulseisterminated,however,thechangemaybereversedbyapplicationofanewpulse.Thesenon-volatileresistiveswitchingbehaviorsmaybefurtherclassifiedintwosub-categories:unipolar(alsocallednon-polar)andbi-polar.31Theformeraresystemswheretheresistivechangecanbereversedbytheapplicationofasecondelectricpulseofeitherthesameoroppositepolarity.Incontrast,thebi-polarsystemsrequirethatthesecondpulsebeoftheoppositepolaritytothefirstone.Ithasbecomecustomarytocallthepulsethatproducetheresistancechangefromhightolowvalueasthe“set”process,andtheonethatreturnsittohighresistance,the“reset”one.Thecurrentstateofthesystemmaybereadwitha“read”pulse,whichisoftenasmallbiascurrentorvoltagethatshouldnotaffectthegivenresistivestate.

9

Volatileresistiveswitchingisgenerallyobservedinsystemswhereametal-insulatortransitionisobserved(suchasMottinsulators).41Theresistancecollapseoccurswhenpartofthematerialchangesfromtheinsulatingtothemetallicphaseasaresultofanappliedvoltage.Ontheotherhand,non-volatileswitchingarisesfromtheredistributionofintrinsicdefectsorions,mainlyoxygenvacancies,whichbecomemobileinthepresenceofstrongelectricfields.Theirlocaldensitydistributionchangesandthusmodifiesthetotal(i.e.two-terminal)resistanceofthematerial.Inthissection,wewilldescribethemainmicroscopicmechanismsgoverningthedifferenttypesofswitching,whichareshownschematicallyinfigure4.

Figure 4: Schematic representation of the three main types of resistive switching:unipolar, bipolar and volatile (threshold) switching. Top panels show the current vsvoltage characteristics of each resistive switching type. The grey regions denotemetallicelectrodesandthecentralregiontheRSmaterial.III.2Originofnon-volatileresistiveswitching(NVRS)Thetwoqualitativelydifferenttypes(unipolarandbipolar)ofnon-volatileRSsystems,arisefromdifferenttypesofmicroscopicstructuralchanges.Theformeremergesfromfilamentarystructuresthatresultsfromasoftdielectricbreakdownorinitialelectro-formingprocess.31Incontrast,thelatterisobservedinmaterialsthatareconductorsandformhighlyresistive(Schottky)interfaceswiththeelectrodes.

10

Theunipolarsystemstypicallyarebinaryoxides(withsomeexceptions)thatareinitiallyhighlyinsulating.Ontheotherhand,thebipolarsystemsoftenarecomplexoxidesandbadconductors,anddonotrequirethesoftdielectricbreakdown.42,43Amongthesesystemsthecupratesandparticularlythemanganiteshavereceivedsignificantattention.43,44Thisdistinctionisneverthelessnotstrictandhighlyoxygendeficientbinaryoxidesarealsooftenbipolar.Forinstance,TiO2-xhasbeenshowntobelongtothetwocategories,unipolarandbipolar,dependingonfabricationdetailsandtheoxygencontent.45–47III.2.1UnipolarRSUnipolar(sometimescallednon-polar)RSistypicallyobservedinsimplebinaryTMOssuchasTiO2,NiO,CuO,HfO2,Ta2O5,etc.26,32,33,48,49Thesematerialsintheirstoichiometricformareverygoodinsulators.Typicaldevicesarecapacitor-like,wherethedielectricisathinfilmoftheTMO.RSintheseinsulatorsisproducedbyelectroforming,aprocesswhichproducesasoftelectricbreakdownonthedielectric.Typically,MV/cmelectricfieldsareneeded,easilyachievablewithafewvoltsacross~100nmthinfilms.Topreventsampledamage,onemayusealoadresistorinseries,orimposeacurrentcompliance.Electroformingproducesamassivemigrationofions(suchasoxygenvacancies50),thatleavebehindfilamentarystructuresofpureconductivetransitionmetal.Thesefilamentsextendfromoneelectrodetotheother,havethicknessoftheorderofnanometers38andconductancequantizationhasbeenreported.51Thefilamentsmayalsoresultfromastablemetallicphaseofdifferentstoichiometry.OneexampleisfilamentsofmetallicTi4O7inamatrixofinsulatingTiO2,bothmembersoftheMagnelliseriesoftitaniumoxides.52Oncethinfilamentsareformed,theRSfollowsfromthesuccessiveinterruptionandreconnectionbyelectricfieldpulses.Thesetwoprocessesare,however,physicallyverydifferent.Jouleheatinginducesinterruptionofthefilament,i.e.resistivechangefromthelow-tohigh-resistancestate(reset).Whenacurrentflowthroughthefilament,thehighestheatingpointislocatedatitsthinnestpart.TypicalcurrentsinthemArange,dramaticallyincreasethelocaltemperature(~900K)renderingoxygenverymobilewhichproduceslocalre-oxidation.38Theconductivepathisbrokenjustatthelocalspotwhereithadaconstriction.Thereconnectionprocessisalsoeasytounderstand.Jouleheatingisnotimportantinthiscase,becausethecurrentisordersofmagnitudelowerinthehigh-resistancestate.However,thelocalelectricfieldacrossthetwotipsofthedisconnectedfilamentisverylarge.Thisstrongelectricfieldproducesanewdielectricbreakdownoftheoxidizedspotthathadbrokenthefilament.Oxygenvacanciesmigratetothespot,theoxideisreducedandthefilamentreconnects.Thisproducesthechangefromthehigh-tolow-resistancestate(set).Thus,theresetisdrivenbycurrent(Jouleheating),whilethesetisdrivenbyvoltage(electricbreakdown).Thetypicaltimescalesofthesetwophenomenaaredifferent,withtheformerbeingslower.Nevertheless,dependingonthegeometryofthe

11

system,nanosecondswitchingmaybeachieved.Clearly,thephysicalprocessinvolvedintheswitchingareindependentoftheappliedpolarity,henceitsunipolarcharacter.III.2.2BipolarRSBipolarresistiveswitchingistypicallyobservedincomplexoxides,suchasPa0.7Ca0.3MnO3(PCMO),YBa2Cu3O7-x(YBCO) ,SrTiO3(STO),Zn-dopedamorphousSiOx(SZO),etc.,26,31,41,53–55butalsoinoff-stoichiometrybinaryoxides,suchasTiO2-x,HfO2-x,Ta2O5-x,etc.33,46,48Theselattersystemsmayalsoberealizedbydepositingacappinglayerofthetransitionmetalontopofitsoxide.AqualitativedifferencewithunipolarRSisthatsomebipolarsystemsmaynotneedanyelectroforming56,althoughstillrequireafewinitialelectriccyclesuntiltheydisplayreproducibleswitching.Unfortunatelythisadvantageisnotfoundinpristinehighlyinsulatingmaterials,whichrequireasoftelectricbreakdownbeforebecomingoperational.Thisisaclearpracticalinconvenientandovercomingitremainsanopenchallenge.Thebipolarbinaryoxidesaretypicallysmalldevices,madeofafewnmthickthin-film.Incontrast,complexoxidescanbesynthesizedinthin-filmformusingmodernsynthesistechniquesormaybestudiedinbulkform.AswewilldiscussbelowintheselattersystemstheRSactuallyoccursattheirSchottkyinterfaceswiththemetallicelectrodes.17,42,44,57ThephysicalphenomenabehindtheRSareperhapslessclearthanintheunipolarcase.Thesystemsaremorecomplexandatheoreticaldescriptionisabiggerchallenge.Nevertheless,theunquestionablemaincommonfeatureofallsystemsisthattheRSinvolvesthedriftofionicspeciesunderanelectricfield.26Unlikethepreviouscase,bipolarityrequiresreversingtheresistivestatewhichimpliesbackandforthmigrationofionswithinthematerial.However,tworelevantquestionsstillstand:1)Howcanionicmigrationchangesignificantlytheresistance?2)Howcantheswitchingspeedbesofast?53,26Theanswerstothesetwoquestionsarisefromgeneralconstraintsimposedonthephysicalmechanism.Therelevantionicdriftiscausedbytheelectricfieldacrossthedielectricmaterialproducedbytheexternalvoltageappliedtotheelectrodes.Thefieldisproportionaltothelocalvoltagedropsacrossthesystem.Ohm’slaw,impliesthatthefieldsisproportionaltothelocalresistivityρ(x),wherexdenotesaspatialcoordinateacrossthedielectricbetweentheelectrodes.Thus,thehighestfieldsappearatthehighestresistivityregions.Sincethebi-polardielectricsarepoorconductorstheyareexpectedtoformSchottkyinterfaceswithordinarymetalelectrodes.17,42,57ThisSchottkyinterfaceischaracterizedbyanelectrostaticbarrierthatarisesduetobandbendingtoequilibratethechemicalpotentialsandtheelectrostaticforces.58Theseinterfacesbecomedepletedofcarriersandthusthelocalresistivityofthedielectricisdramaticallyincreased,althoughwithoutastructuralchange.Thus,theRSeffectinthesetwo-terminalcapacitor-likedevicesisdominatedthehighlyresistive(Schottky)interfacesinanotherwiseconductivematerial.31Thisobservationisthekeytotheanswersofthetwoquestionsposedabove.Aswejustdescribed,upontheapplicationofanexternalvoltagethehighestelectricfieldsdevelopatthehighresistanceinterfaces.Asaconsequence,themostsignificantionicmigrationprocesstakesplacethere.Moreover,theionicdriftinduceslocal

12

structuralchanges,leadingtosignificantmodulationinthe(two-terminal)resistanceofthedevices,andhence,theRS59(figure5).ThishelpsunderstandingthefastswitchingspeedofRSasthewidthoftheSchottkybarriersistypicallyafewnanometersandtheionicdriftspeedmaybeashighas~m/s.60Infact,thosehighspeedsmaybeeasiertoreachunderstrongelectricfieldsalonggrainboundariesandbythermaleffects.53Thus,atdriftvelocityofm/sittakesonlynanosecondstomigrateacrossaSchottkybarrier,whichaccountsforthefast-observedRScommutationspeeds.

Figure5.Toppanels:Kelvinprobemeasurements (Adaptedfromreference59)of thelocal resistance for a) an un-switched device, b) when the right electrode has beenswitchedandc)when the leftelectrodehasbeen switched.ThebrownareaswithintheblackinterfacesindicatearegionwheretheSchottkybarrierhasbeenlowereddueto resistive switching. Bottom panels: Schematic representation of bipolar resistiveswitching.

Toexplainthephysicalchangethattakesplaceattheinterfacetwopossiblephenomenahavebeeninvoked.Electrostaticmodulationofthebarrierheightbyinandoutflowofionsintheinterfacialtraps.31,61Anotherpossibility,consistentwiththerobustuniversalityofthephenomenon,isthemigrationofoxygenvacancieswhichproducethepositivelychargeddefectsinallTMOs.Forinstance,inducingalargenumberofvacanciesmayintroducecarriersandturnaninsulatingbinaryoxideintoabipolarRSsystem.46,47Or,inmorecomplexandconductiveoxides,oxygenvacanciesaffecttheelectrictransport,sincetheyperturbtheO-M-ObondsformingtheconductionbandofTMOs.42Theelectrodechoicehasproventobeofcriticalimportance.Metal/InsulatorinterfacesgenerallyformSchottkybarriers,whileheavilydopedinsulatorsorsemiconductorstendtoformOhmiccontacts62.Inertelectrodes,suchasPt,PdorAu,donotchangethestoichiometryoftheoxide,creatingaSchottkybarrierinterfacesthatcanbetunedwithresistiveswitching.Ontheotherhand,reactivemetalssuchasTiorTainduceoxygenvacanciesintheunderlyingoxide,dopingthefilmandcollapsingthebarrier.ThisrendersOhmicinterfacesthatdonoteasilychangetheirresistancewhenavoltageisapplied63.WeshouldpointoutthatRSduetomotionoftheTMionshasalsobeenreportedinverythinfilmsofthebinarysystemsTaOx,HfOx

13

andTiOx(seealsosectionIV.2.1).64,65III.3Originofvolatileresistiveswitching(VRS)Thevolatileresistiveswitchingisadifferentphysicalphenomenonfromthenon-volatileone.Itisobservedinmaterialsthatfeatureametal-insulatortransition(MIT)asthetemperatureislowered.41Theyevolvefromahightemperaturemetallicphasetoalowtemperatureinsulatingphase,withseveralordersofmagnituderesistivitychange.figure6ashowstheresistanceasafunctionofthetemperatureforaVO2thinfilm,withtheMITclearlyvisiblearound340K.

Figure 6: a) Metal insulator transition of a VO2 thin film. b) Structural transitionrevealedbyXRD.Adaptedfrom66.Differentmechanismshavebeenadvancedtoexplaintheoriginofthistransition.ThemostwidelyacceptedisbasedonthemechanismproposedbyN.Mottinthe40’s.Hearguedthatelectron-electronrepulsionduetoCoulombinteractionwouldfavorchargelocalizationoftheelectronsinapartiallyfilledband,renderinginsulatinganapriorimetallicmaterial.Thisinsulatingphaseiscommonlyknownas“Mottinsulator”.Repulsionenergybetweenelectronsbecomeslargeenoughtomakedoubleoccupationenergeticallycostly,limitingtheirhoppingbetweenneighboringsites.Astemperatureisincreased,thestabilityoftheMottinsulatorelectronicstatemay,however,becomeunfavorableascomparedtotheexpectedmetallicstate.Theensuingthermallydrivenmetal-insulatortransitioniscalledaMotttransition.Hence,keytothisphenomenonistheenergydifferencebetweentwoelectroniccompetingstates,whichcanbeaverysmallenergyscale.67,68SomematerialsareconsideredpureMottinsulatorssuchasGaTa4Se8,69andCr-dopedV2O3,70,71sincetheir1stordermetal-insulatortransitionoccursintheabsenceofanysymmetrybreaking(eitherstructuralormagnetic).However,quiteoftentheMITisaccompaniedbyaconcomitantstructuralphasetransition,andoccasionallybylowtemperaturemagneticordering.ExamplesofthesematerialsareVO2(structuraltransitionshowninfigure6b),V2O3,NbO2orthenickelatefamily(RENiO3).41SincethereisasymmetrychangethepreciseMITmechanismmaybemoreelusive.Thissymmetrychangeimpliestwopossibleadditionalmechanisms:thePeierlsandtheSlatertransitions.InaPeierlstransition,thelatticestructurechangeopensagapattheFermilevel,creatingandinsulatingphase.InaSlatertransition,themagneticorderingchangestheinteractionpotentialseenbytheelectrons,modifyingtheeffectivesymmetryofthelatticeandopeningthegapattheFermilevel.Inanumberofoxides(NbO2,VO2andV2O341)thedominantmechanismfortheMITisstillcontroversialandbeyondthescopeofthistutorial.

14

IndependentlyofthephysicalmechanismbehindtheMIT,thereisasurprisinguniversalityintheelectricaltransportobservedinthesecorrelatedoxides.Themostnotableoneisthepossibilitytoinducethemetallicphasebyapplyingavoltageoracurrentinthematerial.Figure7showstheI-VcharacteristicsoffourdifferentMottinsulators.Thereisaremarkablesimilaritybetweenallofthem:theresistancesuddenlydropswhenathresholdvoltageisapplied,returningtoitsoriginalvalueoncethevoltageisremoved,yieldingareversible,volatileswitching.ThisresistiveswitchingcorrespondstopartofthesampleundergoingaMITintothemetallicstate,whichproducesasharpresistancedrop.Thereasonforthiselectricallytriggeredtransitiontotakeplaceisstillcontroversial.72ThesimplestexplanationisthatcurrentgeneratedJouleheatinglocallyraisesthetemperatureabovetheMITtransition,inducingtheresistiveswitching.ThereissomeexperimentalevidencethatthismightplayaroleintheI-VcharacteristicofVO2andV2O3smalldevices73–75dependingofthegapsizeratio76.However,suchandexplanationdoesnotholdforthecaseofCr-dopedV2O3thatdoesnothaveatemperature-drivenMIT.Thus,anotherexplanationisthatstrongelectricfieldsmightdestabilizetheinsulatingphase,makingthemetallicstateenergeticallymorefavorable.Thismayberevealedindifferentsystemsdependingonthegapsizeofthedevice.76,77BothmechanismsareverydifficulttodifferentiatefromtheI-Vpropertiesofthematerial,asbothwouldcreateathreshold-like,volatileresistiveswitching.72,76

Fig 7. I-V characteristics of three differentMott insulators: a) V2-XCrXO3 (X=0.3)78, b)V2O374c)NbO279andd)VO2

80AnothermechanismofelectricallytriggeredMITisbyfilamentarypercolationproducedbyelectro-thermaldomains(ETDs)74,similarlytonon-volatileresistiveswitching.Thisisexpectedindependentlyofthetriggeringmechanism:Jouleheating

15

orelectricfield.Self-heatinginsuchadevicecanbestrongenoughtocauseanelectro-thermalbreakdown,i.e.,acurrentandtemperatureredistribution.Inanyofthosecases,thefirstpartofthesamplethatbecomesmetallicwilldragmorecurrentthroughitandlocallycreateamoreintenseelectricfield.Thiswill,forbothmechanisms,promotelongitudinalgrowthandeventuallyleadtotheformationoffilaments,asseeninfigure8forVO2andV2O3.

Figure8.ExperimentalobservationofametallicfilamentinthecurrentinducedMITina) V2O3, obtainedwith low-T SEM imagewidth corresponds to 10µm, from74 andb)VO2,obtainedwithnear-fieldscanningmicrowavemicroscopy,from81.Thecharacteristictimesofthevolatileswitching,potentiallycouldbeseveralordersfasterthanthenon-volatileswitching.Indeed,pump-probeexperimentshaveshownthatthetransitionfrominsulatortometalcantakeplaceinthepsrange.However,theimplementationofthesematerialsinrealdeviceswillimposeaconstraintinhowfastthetransitioncanbeinduced.TheparasiticcapacitanceandthelargeresistanceofthesematerialsintheirinsulatingstateleadstoRCconstantsoftheorderofthens.82Moreover,dependingonthedevicesize,itwilltakeacertainamountoftimeforheattobuildupacrosstheelectrodes.Thiseffectcanbeobservedinfigure9thatshowsresultsofavoltagepulseappliedacrossa100nmMetal/VO2/Metalstructure.Thetransitiondoesnottakeplaceimmediately,butittakesaround10nsforthemetallicphasetobeinduced.

16

Figure9.Current (leftaxis,blacksquareddata)asa functionof timewhenavoltagepulseisapplied(rightaxis,dashedredline)toaVO2nanodevice(Inset).80IV.MATERIALSIV.1WhyTransitionMetalOxides?Resistiveswitchinghasbeenobservedinabroadrangeofsystems,rangingfromphasechangematerialstosolidsolutions.Wefocusthisreviewononeofthemostpromisingmaterialssystems,thetransitionmetaloxides.Thisgroupofoxideshasshownthehighestversatilityofallsystemswherethisphenomenonisobserved,astheymaycombinealmostuniversalresistiveswitchingwithotherunusualtransportpropertiesarisingfromelectron-electroncorrelations.TMOsdisplayahostofremarkablephenomenaandassociatedfunctionalitiesthatinclude:superconductivity,colossalmagnetoresistance,thermoelectricity,ferromagnetism,ferroelectricity,multi-ferroicity,metal-insulatortransitions,etc.Onemaywonderwhythisbewilderingvarietyofphenomena?Whatisspecialaboutthesecompounds?Afewoutstandingbasicfeaturesarise.Chemically,thetransitionmetalsoftenpresentmultiplevalencestates.Theseallowdifferentcoordinationwithoxygenwhichmayleadtoavarietyoflatticestructures.Inaddition,italsoallowsthemtochangetheelectronicoccupationintheactiveshell(orband).ThesemostrelevantaspectsleadtotheunusualelectrictransportpropertieskeytotheunderstandingoftheRSphenomena.OneofthemoststrikingaspectsofRSisitsubiquity.Infigure10weshowaperiodictablewherethetransitionmetalswhoseoxidesdisplaynon-volatileresistiveswitchingareindicated.

17

Figure 10. Periodic table showing the elements whose corresponding binary oxidefeaturesnon-volatileresistiveswitching.33ThisubiquitypointstoarathergeneralcommonoriginfortheRSphenomenaandnotsomespecificmaterial-dependenteffect.Thecommonphysicaloriginofnon-volatileresistiveswitchingreliesonthefactthationscandriftintheseoxidesand,duetothemulti-valencestatesofthetransitionmetal,theresultingstructuresaremetastable.Oneimportantfeatureofthisphenomenonisthatitreliesoncreatingdefectsandinducingtheirmigration.Thus,anothercommonfeatureofallthesesystemsisthattheRScommutationbetweenahighandalowresistivestatedisplaysacertaindegreeofvariability.Therefore,non-volatileRSisnotinducedbyabonafidethermodynamicphasetransitionbutratherduetodifferentmetastablestructuralstates.WhilenotbelongingtothefamilyofTMOs,itisalsoworthtomentiontheimportantfamilyofsiliconoxides,whichhavedisplayedsimilarNVRSphenomenaasdescribedhereand.Fromapracticalpointofview,thesematerialshavetheadvantageofexcellentCMOScompatibility.83–86RegardingthevolatileRSeffect,transitionmetalsalsoplayaprominentroleandwemayconsiderthephenomenonuniversal,butinadifferentsense.VolatileswitchingisgenerallyobservedinMottsystems,whichexhibitametaltoinsulatortransition.Conventionalbandtheorypredictsthatahalf-filledbandshouldbeametal.However,theMottinsulatorstatemayariseduetothelocalizationofelectronsduetostrongon-siteCoulombrepulsion.Qualitatively,inamonovalentsystemwithnarroworbitals,theenergeticcostofdoublyoccupyingasitemaybesohighthatthesystemchoosestominimizeitsenergybykeepingoneelectronlocalizedateachatomicsite.Thepossibilityofeitherdelocalizingorlocalizinganoutershellelectronseemstobeaqualityoftransitionmetals.Theideaisthatd-orbitalsareneithertoobig,assandp’sthatyieldbands,nortoosmall,asf’sthatyieldlocalmagneticmoments.Insteadd-electrons“hesitate”betweenthesetwopossibilitiesandmayadopteitheronedependingonthedetailedsurroundingenvironment.

18

Acomprehensivetablewithvariousmetaloxidesinwhichdifferenttypesofresistiveswitchinginobservedispresentedbelow(table1).Thistableisintendedasillustrationandguidanceforthereaderratherthananexhaustivelist.

Oxide ElectrodeTop/Bottom

Polarity ESet(kV/cm)

EReset(kV/cm)

Reference

MgO Pt/Pt Bipolar ∼1000 ∼400 87 Pt/Pt Unipolar ∼1000 ∼400 87

Al2O3 Ti/Ti Bipolar ∼250 ∼250 88SiOX Poly-Si/Poly-Si Unipolar ∼1000 ∼1000 83TiO2 Al/Ru Bipolar ∼300 ∼150 45 Al/Ru Unipolar ∼300 ∼150 45 Ni/Cu Bipolar ∼100 ∼80 89 Ni/Cu Unipolar ∼100 ∼80 89 Pt/Pt Unipolar ∼200 ∼400 52

VO2 Ti/Ti Irreversible ∼800 - 90 TiN/TiN Volatile ∼50(300K) - 82

V2O3 Ti/Ti Irreversible ∼1200 - 90 Ti/Ti Volatile ∼300(10K) - 75

CrO Pt/TiN Bipolar ∼460 ∼400 91MnO Ti/Pt Bipolar ∼90 ∼100 92Fe3O4 Pt/Pt Bipolar ∼400 ∼500 93CoO Pt/Pt Unipolar ∼130 - 94NiO Pt/Pt Unipolar ∼120 - 94NiO Pt/Pt Bipolar ∼200 ∼100 95Cu2O Pt/TiN Bipolar ∼80 ∼80 96

Pt/Pt Bipolar ∼50 ∼30 96 Pt/STO Bipolar ∼100 ∼100 96

ZnO TiN/Pt Bipolar ∼300 ∼400 97GaOX Pt/Pt Bipolar ∼200 ∼100 98

Pt/Pt Unipolar ∼200 ∼100 98GeOX Cu/W Bipolar ∼400 ∼200 99ZrOx Pt/p+-Si Unipolar ∼400 ∼300 100NbO2 TiN/TiN Voltatile ∼1000(300K) 101Nb2O5 Pt/p+-Si Unipolar ∼1000 ∼500 102MoOx Pt-Ir/Pt Bipolar ∼150 ∼100 103

Pt-Ir/Pt Unipolar ∼150 ∼50 103HfO2 Ti/Pt Bipolar ∼250 ∼250 104 Ti/Pt Unipolar ∼500 ∼250 104 Pt/TiN Bipolar ∼3000 ∼400 105 Pt/TiN Unipolar ∼3000 ∼200 105

TaOx Ti/Pt Bipolar ∼400 ∼120 104 Ti/Pt Unipolar ∼400 ∼150 104

19

Ta/Pt Bipolar ∼1000 ∼200 106 Ta/Pt Bipolar ∼300 ∼300 107

ZnOx ZnS/ZnOx Bipolar ∼22 ∼22 108WOx TiN/W Unipolar ∼300 ∼600 109CeOX Al/Pt Bipolar ∼100 ∼500 110Gd2O3 Pt/Pt Unipolar ∼200 ∼100 111Yb2O3 Pt/TiN Bipolar ∼500 ∼500 112Lu2O3 Pt/Pt Unipolar ∼300 ∼150 113STO Au/Au Bipolar ∼0.1 ∼0.1 53PCMO - Volatile ∼10(20K) - 61PLCMO Ag/Ag Bipolar - - 56BFO Cu/Pt Bipolar ∼150 ∼150 114YBCO Au/Au Bipolar - - 115SZO Au/SRO Bipolar ∼15 ∼15 54

Table1.Examplesofoxidesinwhichresistiveswitchingisobserved.Thetypeofswitchingandsetandresetfieldsareindicated.

IV.2OthersystemsdisplayingresistiveswitchingAlthoughthisreviewismainlyfocusedinTMO,othermaterialsystemsshowresistiveswitching.Herewewillgiveabriefintroductiontotwoofsuchsystems:conductivebridgememoriesandphase-changematerials.IV.2.1CationDriftsystemsConductiveBridgememory(CBRAM)alsoknownaselectrochemicalmetallizationmemory(ECM),or“cation”systemsareproducedbythedriftofpositivemetallicanions(asopposedtooxygenvacancycationsinthecaseofTMO)23,32,116–118.Thesedevicesaregenerallycomposedbytwodifferentelectrodes:anelectrochemicallyactive(generallyCuorAg)andaninert(suchasPt,Au,CrorW)electrode.Thesetwoelectrodesareseparatedbyaninsulatorsuchasasolidelectrolytewithgoodionicconductivity(AgorCudopedsulfidesorchalcogenides:Ag2S119,120,GeSX121,GeSeX121,122orpuredielectrics(a-Si123,124,ZrO2125,HfOX126,SiO2123,127orAl2O3.

128)Apositivevoltageappliedtotheactiveelectrodeoxidizesthemetal(AgorCu),producingpositivemetallicionsthatdriftthroughtheinsulatorpushedbytheelectricfield(Figure11,pointB).Whentheanionsreachtheinertelectrode,theyarereduced,formingametallicdepositwhichgrowsfromtheinertelectrodetowardstheactiveelectrode,asshowninpointCofFigure11.Whenitreachestheoppositeelectrode,asuddenresistancedroptakesplace(PointD).Reversingthepolarityreversestheeffect:AgorCuwillbeoxidizedattheinertelectrodeinterfaceandpushedintheoppositedirection,breakingtheconductivepathbetweenelectrodes(PointE).ThisprocesscreatesabipolarNVRS.23,32,116–118

20

Figure 11. Schematic representation of filament formation and bipolar resistiveswitchinginCBRAM.Adaptedfromreference117.

TheRSpropertiesofthesesystemsarestronglydependentonthemorphologicalpropertiesoftheinsulatingfilm.23,117,123Goodionicconductorsandgranularfilmsfacilitateionmotion,leadingtolongfilamentary/dendriticstructuresandlowformingvoltages.123,125Onthecontrary,denselypackedfilms(suchasSi)limitcationsupplyandinducetheformationofmetallicnanoclustersinsidetheinsulatingmatrix.125,126Theseclustersdeformorsplitwhenanexternalvoltageisapplied,modifyingtheresistanceofthedevice.123,126Volatileresistiveswitchinghasbeenrecentlyobservedinthistypeofsystems.Wangetal.126fabricatedcationdevicesconsistingonAgnanoparticlesembeddedindifferentoxidematrixesandsandwichedbetweentwoinertelectrodes.Thesedevicesspontaneouslyrecovertheirhighresistanceoncetheappliedvoltageisremoved,typicallyinamstimescale(Figure12a).UsingTEM,itwasarguedthatinterfacialtensionmightcausethiseffect:thenanoparticlesmergeintolargerclustersoncetheelectricfieldisremoved,breakingtheconductivepath(Figure12b).ThisshowsthatCBRAMdynamicsisacomplexphenomenonandseveralmechanisms(electrochemical,thermalandmechanical)mightbeatplay.126

21

Figure12.Volatility in aCBRAMdevice. a) Current as a functionof time: thedevicereturnstoitsinsulatingresistancevalueafterafewms.b)HRTEMobservationoftherelaxation process: smaller Ag nanoparticles coalesce into larger ones when theexternalvoltageisremovedatt=5.0s.Adaptedfromreference126.IV.2.2Phase-ChangeMaterials(PCM)ThebasicfeaturethatenablesRSinthistypeofmaterialsisthattheycanexistintwovery different states: low resistance crystalline phase, or high resistance amorphousphase. Switching between both is possible by heating the sample and carefullycontrolling the cooling rate.129–133 This can be done either optically131,134–137 orelectrically,129–133,138–142 making phase change materials versatile for applications inphotonicsaswellasinelectronics.Theamorphousphasecanbeinducedbyapplyingashort, high voltage pulse to the sample: intense enough to drive it over itsmeltingpointandsharpenoughtoallowthermalquenchingintotheamorphousstate(RESETpulseinFigure13).Thecrystallinephasecanberecoveredbyapplyingalonger,lowervoltagepulsethatallowsrecrystallizationbyannealing(SETpulseinFigure13).

Figure13.a)TypicalstructureofPCMdevices.b)SchematicrepresentationoftheSET,RESETandreadpulsesusedinPCM.Adaptedfromreference132.Materials used for this type of memory should in general meet two requirements:large crystalline/amorphous resistivity ratios and fast re-crystallization times. 129–133Semiconducting alloys in pseudo-binary line between GeTe and Sb2Te3 (such asGe2Sb2Te5) show crystallization times in the 10-8 s range and up to 5 orders ofmagnituderesistivitychange.133,135Theirdiscoveryin1987135allowedthedevelopmentofcommercialtechnologiesbasedonPCM,suchasrewritableopticalstorage(CD-RW).131,133Threeothersystemswithfastcrystallizationtimeswerelaterdiscovered:Sb2Tedopedwith Ag, In or Ge136; GeSb137 and GeTeX alloys.138,139 The typical RS currents,voltagesandcharacteristic timescalesarecomparable to thoseobserved inTMO140,makingPCMadirectcompetitorforneuromorphiccomputingimplementations.141,142

22

V.MODELSSofar,wehavepresentedthedifferentwaysthatresistiveswitchingmayappearandthematerialswherethephenomenaareobserved.Inthissection,wewillbrieflyreviewsomeofthetheoreticalmodelsthathavebeenproposedtoexplaintheexperiments.Table2showsthedifferenttypesofresistiveswitching,togetherwiththeiroriginandthemostnotablemodelsthatexplaintheirphenomenology(Pleasenotethatconductivebridgememoriesandphasechangematerialsarenotincludedinthetable).

Table2.Characteristicsofthedifferenttypesofresistiveswitching.VEnhancedstands

forVoltageEnhanced,ODriftstandsforOxygenDriftandRNetworkstandsforResistorNetwork.Notethatconductivebridgememoriesandphase-changematerials

arenotincludedinthetable.V.1Non-volatileresistiveswitching(NVRS)Belowwedescribebrieflysomeofthetheoreticalmodelsproposedtoexplainthenon-volatileRSeffectwhichprovidenumericalsupporttothequalitativedescriptionsdiscussedabove.Asdoneintheprevioussections,weshallmakethedistinctionbetweenunipolarandbipolarsystems.V.1.1UnipolarNVRSTheRandomCircuitBreaker(RCB)modelconsistsofaresistornetwork143(figure14)inwhicheachunittakesoneoftworesistancestates(high)rhor(low)rl,withrh>>rl.Themodelassumesthateachunitcanundergoatransition,followingtherulerh->rlifV>

Non-VolatileResistiveSwitching VolatileResistiveSwitching Unipolar BipolarOriginofSwitchingMechanism

Oxygenvacancygeneration

byelectroforming

Oxygenvacancydriftinduced

byanelectricfieldMetal-insulatorphasetransition

Materials Binaryoxides(mainly)

Complexoxides,off-stoichiometrybinary

oxides.Mottinsulators Mottinsulators

SetMechanism

Metalormetal-phasefilament

formationinducedbyelectricfield

Oxygenvacancy

driftinthebulk

Defectdriftin/out

interface

E-fieldinducedtransition

Heatinginducedtransition

ResetMechanism

Jouleheatinginducedreoxidation

offilamentaryweaklink

Oxygenvacancy

driftinthebulk

Defectdriftin/out

interface

Relaxationintoinsulatingphase

Relaxationintoinsulatingphase

Models RandomCircuitBreaker Memristor VEnhanced

ODriftRNetwork

E-FieldInducedRNetwork

HeatingInduced

23

Vonandrl->rhifV>Voff.ThevalueVisthelocalvoltagedropateachelementandVonandVoffarethresholdvoltagevalues,withtheconditionthatVon>>Voff.

Figure 14. Random circuit breaker model, adapted from 143. Top panel shows thesimulated I-V characteristics of the model. Bottom panels show the distribution ofmetallicdomainswithintheoxidematrix.Theappliedvoltageisinitiallyrampedup,andeventuallyanavalancheoftransitionstakesplace(figure14).Atthispointthesystemhasbeen“electroformed”aslowresistancelinkshavepercolated.TheunipolarRSeffectisproducedastheappliedvoltageisrampedupagainfromzero.Thelocalvoltage-dropincreasesuntilalowresistiveelementreachesthelowerthresholdV>Voff(>>Von)andswitchesbacktotherhstate.Eventually,percolationislostatalast“critical”link(figure14panelsBtoC).Then,thetotalresistanceofthenetworkjumpstoahighresistanceRhigh.Forasufficientlylargedifferencebetweenrhandrlmostoftheappliedvoltagedropsacrossthefinallink.Thisthenswitchestothelowvaluerlwhentheexternalvoltageisincreasedagain.Thus,aftertheinitialelectroformingevent,thesuccessivehi-loresistiveswitchingisconcentratedontheon/offswitchingofacriticallink.TheRSeffectcanalsobemodeledbysolvingthedifferentialequationsthatdescribetheelectricandthermaltransportofaconductivefilamentsurroundedbyaninsulatingmatrix48.Themodelfurtherassumesthatthefilamentdissolvesbyoutdiffusionofitsconductiveelementsintotheinsulator.ThediffusionprocessisassumedtobeactivatedwhichleadstoadiffusionvelocitywithanArrheniusdependenceVD=VD0exp(-Ea/kBT),whereEaisanactivationenergy.Theelectrodesareassumedtobetheheatsinks.Asthetemperatureincreasesinthecenterofthefilamentthefilamentdissolves,whichfurtherincreasesthetemperaturebythelocalJouleheatinguntilthefilamentbreaks.V.1.2BipolarNVRS

24

Anearlyqualitativemodelofbipolarsystems144anticipatedseveralfeatures,whichprovidedusefulguidance.Themodelassumedarelevantroleplayedbytheelectrode-materialinterfacesandtheionicmigrationwhichappearsinmanyofthelatermodels.Thememristormodel,46,145capturedagreatdealofattention(figure15).Itwasintroducedasthe“missingelement”,arisingfromsymmetryconsiderationsofelectriccircuittheory.Thissimplemodelwasformulatedtorationalizebi-polarRSexperimentsinTiO2-xdevices.

Figure 15. Top panel: Simulated I-V characteristic of the memristor model at twodifferentacfrequencies.Bottompanels:Schematicrepresentationofoxygenvacanciesdistribution for the ON and OFF states. w and w’ denote the size of the oxygendepletedlayer,whileDisthedistancebetweenelectrodes.Adaptedfrom46.

Itassumesthatthedielectricpartofthedevicehastworegions:alowconductivity,dopedTiO2-xoflengthw,andaninsulatingpureTiO2oflengthD-w,whereDisthedistancebetweentheelectrodes.Thus,themodelassumestwoseriesresistorsofhighandlowresistivitiesρoffandρon.ThisleadstoadeviceresistanceR=Roffw/D+Ron(1-w/D),whereRoffandRonaretheresistancesofthepristineandoxygendepletedfilms,respectively.Thecrucialmodelassumptionisthattheappliedvoltageacrossthedeviceproducesionic(oxygenvacancies)drift,whichleadstotheshiftofthelocationofthetwo-regioninterface.Thus,thedeviceisnolongerOhmicandtheI-Vcharacteristicsbecomesnon-linear.Thistypeofmemristivemodelappliestosmallnano-sizesystems,wheretheinsulatingpartissmallenoughandtheelectricfieldsthatcandeveloparelargeenoughtopromoteionicdriftofdefects.Thissimplemodel

25

producesthegenericallyobservedpinchedhysteresisloopintheI-Vcharacteristics(figure15).Thistypeofmemristivemodelcanbeextendedtoincorporatethetemporalevolutionofwwiththeappliedvoltage.Thisleadstoafulldynamicalmodelwhich,inprinciple,maydescribethebehaviorofthememristoruponapplicationofarbitrarypulseandrampvoltageshapes.Thedrawbackofthismodelistheneedtomeasureandfitanextensivesetofdatawithad-hocmathematicalexpressionscontainingvariousfreeparameters.146Anotherbipolarmodelistheso-calledvoltageenhancedoxygenvacancydrift(VEOD)model42(figure16)formulatedtodescribeanunusualRSeffectinPt/PCMO/Ptdevices.147Thisbehaviordemonstratedthekey-roleplayedbythehighlyresistiveSchottkyinterfacesandtheircomplementarybehaviorinsymmetricdevices.

Figure 16. RS experimental data in manganite a) and cuprate b) devices driven bycurrentandvoltage,respectively.RSsimulationusingtheVEODmodelinacurrentc)andvoltage(d)controlledsimulation.Adaptedfrom42.Itshouldbementioned,thatmodelsofvoltage-enhanceddrift42,46naturallyleadtothepossibilityofshockwavepropagationoftheionicmotionduringresistivetransition.148,149V.2Volatileresistiveswitching(VRS)ThevolatileresistiveswitchingoriginatingfromadestabilizationofaMottinsulatorunderastrongelectricfieldpossessagreattheoreticalchallenge77,150withlimitedcontactwithexperiments.AnintriguingconsequencefromthetheoreticalstudiesisthattheelectricbreakdownofaMottinsulatorispredictedtooccuratMV/cmelectricfields,whileexperimentallyisobservedforfieldsofonlykV/cm.37,151Clearlymodelingthesesystemsrequiresconsideringrealisticsituationswhichincludeinevitableextrinsicandintrinsicdisorder.FurtherinsightmaybeobtainedfromphenomenologicalmodelstodescribethevolatileRSeffect.Themainproposed

26

modelsareeitherbasedonresistornetworksoronsystemsofdifferentialequationsthatcouplethethermalbalancewiththeelectrictransport.V.2.1ResistornetworkTheresistornetworkmodelshowninfigure17wasintroducedtodescribetheuniversalvolatileRSobservedinVO2,152V2O3,74,153Cr-dopedV2O3,NiSe2-xSxandGaTa4Se8.37Inthismodel,eachresistorofthenetworkcanbeinoneoftworesistancestates:metalorinsulator.Theprobabilitytobeinthemetallicorinsulatingstatesisgivenbyafreeenergythatschematicallyrepresentsthefirstordernatureofthephasetransition.71Therearetwobasicvariationsofthismodel,dependingonthetriggeringmechanismoftheMIT:E-field37orJouleheating.74InthecaseofE-fielddriventransitions,anextratermisaddedtothefreeenergytotakeintoaccountthefieldinduceddestabilizationoftheinsulatingphase.71,77

Figure 17. a) Typical resistor network configuration used for simulations of resistiveswitching inMottmaterials. Each cell canbeeithermetallic or insulating (black andwhite).Bottompanelsshowtwosimulations inwhichfilamentformationisobservedfor: b) a Joule heating induced transition (adapted from74), and c) an E-field driventransition(adaptedfrom37).Themodelassumesthattheinsulatorismorestableatzerofieldthanthemetalandthattheyareseparatedbyanenergybarrier.TheresistivecellsofthenetworkmaychangetheirstatefollowinganArrheniustypethermalactivationwiththefurthercrucialassumptionthattheenergyoftheinsulatorisaffectedbythelocalelectricfieldactingontheresistivecell.ThismodelcapturesqualitativelytheexperimentalI-Vcharacteristicsandtherapiddecreasewithappliedfieldofthedelaytimeτdoftheresistancecollapse.VI.IMPLEMENTATIONS

27

Resistiveswitchingintransitionmetaloxides,stronglycorrelated,andphase-changesystemsmayenablenovelneuromorphicelectronicfunctionalities.Asdiscussedabove,thenon-volatileRSenables“synaptic”functionalities,whilethevolatileRSenables“neuronal”functionalities.Thesetwofunctionalitiesaretheessentialcomponentsofanyneuralnetwork.ThisChapterdescribesomeoftherecentprogressintheimplementationofsuchphenomenaintorealdeviceswithcomputingcapabilities.VI.1SynapticfunctionalitiesThesimplestimplementationofanon-volatilesynapticfunctionistocontrolthesynapticweighti.e.theelectriccouplingbetweentwoelectronicneurons.Thisisachievedbyusingnon-volatileRStotunetheresistance(orconductance)ofthedevice.Asinbiologicalsystemsthatmodifythebrainsynapticconnectionswhenanewmemoryisacquired,thisismaybeaccomplishedinaneuromorphicsystembychangingtheresistanceoftheRSdevice.Inpractice,thiscanbeachievedusingelectricpulsesthatselectivelytargetdifferentsynapsesintheneuralcircuit.Besidesthesimplemodulationofasynapticintensity,othermoreelaboratesynapticfunctionalitiesarealsobeingcurrentlyproposedandinvestigated.STDPfunctionalityisattherootoflearningalgorithmsforspikingneuralnetworks.Figure18showsaconcreterealizationinadiffuse(SiOX:Ag)electrodeandadriftTiO2memristor-basedsynapse.126.STDPisobtainedbycarefuldesignoftheelectricpulsesemittedbytheneuristors(seefigure18a).Thisway,thevoltageacrossthememristorcontrolsthesynapticweightchange,bytherelativetimingbetweenpulses.

Figure18.a)SchematicofthepulsesappliedtothecombineddeviceforSTDPdemonstration.Thelonglow-voltagepulseineachspiketurnsthediffusivememristorON,andtheshorthigh-voltagepulseswitchesthedriftmemristor.Whenthepost-spikeprecedesthepre-spike,thedeviceisreset(depressed),andwhenthepre-spikeprecedesthepost-spike,thedeviceisset(potentiated).Thetiming(!t)betweenthetwospikesdeterminesthevoltagedropacrossthedriftmemristor.b)DemonstrationofSTDP.Synapticweightchangeofamemristorasafunctionofthetimedifferencebetween(preandpost)spikesofthesystem.Theinsetshowsthequalitativeagreementwithabiologicalsystem.Figureadaptedfrom126.

28

VI.2NeuronalfunctionalitiesAswedescribedabove,theneuron-likefunctionalitiesenabledbyvolatileRScanberealizedusingMottinsulatormaterials.Hereweshallbrieflydescribesomeoftheserecentimplementations.VI.2.1GenerationofelectricalspikesOneofthegoalsofaneuristorimplementationistoemulatethegenerationofanactionpotential.Thiscouldbemimicked35usingthenegativedifferentialresistanceofNbO2(figure19a),asitundergoesaninsulatortometaltransitionuponheating.ThiswasaccomplishedbyusingtwoNbO2volatilememristorscoupledtotwocapacitors(figure19b)followingtheconceptualmodelofHodgkinandHuxley(HH).ThisbiologicalmodeldescribestheresponseofNaandKchannelsintheneuronmembrane.TheRSthresholdbehavioroftheRSintheNbO2memristor,togetherwiththeRCconstantofthecapacitorsmimicsmanykeyfeaturesofbiologicalneuronssuchasspiking,signalgainandtherefractoryperiod(figure19c).

Fig.19NeuristorimplementationbasedonNbO2memristors.a)SEMofatypicalmemristorb)circuitimplementationoftheneuristortosimulateatwo-channelmodel.ThedeviceusestwonominallyidenticalNbO2Mottmemristorsbasedc)inputandoutputoftheneuristorbased-device.Topcurveshowsthedccurrentinput.BottomcurvesshowsthedeviceresponsefordifferentC1/C2(seeb)configurationswhichemulatedifferentfrequencyneuronresponses.35Thebasicfeatureofthecircuitisan“all-or-nothing”behavior,namely,asmalloutputsignaluntiltheinputovercomesagiventhresholdvaluethatproducestheoutputvoltagetodevelopalargespike(seefigure19c).Inaddition,thisdevicemayalsoproduceregulartrainsofvoltagespikesuponapplicationofaconstantdccurrentinput(seefigure19c).Interestingly,thenumber,frequencyandshapeofthespikescanbetailoredthroughtuningoftheassociatedcapacitors.Thispropertymaybeappealingforimplementationofsystemswithdifferenttypesofneuralcodingschemes.

29

VI.2.2Leaky-integrate-and-fireAnotherwell-knownpropertyofneuronsistheleaky-integrate-and-fire(LIF).Inthismodel,theneuronactsasanaslossyintegratoroftheelectricsignalthatarrivestoitsbody(viaitsdendrites).Atacertainintegrationthreshold,theneuronfiresaspikethattravelsdownitsaxontoactonother“downstream”connectedneurons.Quiteremarkably,thisfunctionalitycanalsobeimplementedwithMottRSdevices.Inthiscase,thevolatileRSbehaviorisusedasdescribedinsectionIII.2.A3DMottinsulatorwithsmallenergygapundergoesaresistivetransitionwithinashortdelaytimeτduponapplicationofanabove-thresholdvoltageV>Vth.ThetimedelaydependsonthestrengthoftheappliedV.Whentheinputvoltageisterminated,theresistanceofthesystemsspontaneouslyrecoversitsoriginalvaluewithinacharacteristictimeτr.ThekeyfeaturethatleadstotheLIFbehavioristheresponseoftheMottRSuponapplicationofatrainofvoltagepulses.78,154Asingleabove-thresholdpulseappliedforτon<τd,doesnotproducetheresistivecollapse.Asubsequentpulseappliedafteratimeτoff,leadstotwopossibilities.Ifτoff>τrthesystemrelaxesanychangeinducedbytheinitialpulse,sothesecondpulsewillalsofailtoinducearesistivecollapse.However,ifτoff<τrtheeffectinducedbythefirstpulsewillnotbetotallyerasedbythetimethesecondpulsearrives.Furtherpulsesproduceacumulative(leaky-integration)effect,eventuallyproducingaresistivecollapseandanensuingcurrentspike(fire).37Theevolutionoftheresistornetworkmodel(sectionV.2)uponaninputofatrainofpulsescanbedescribedbyasetofdifferentialequationsanalogoustothebiologicalLIFmodel.37Moreover,giventhestrengthandfrequencyofanincomingtrainofpulses(spikes),amathematicalformulahasbeenderivedwhichpredictsthenumberofinputspikesthatwillproducethefireevent(i.e.resistivecollapse).37Thisprovidesaremarkablefunctionalitysimilartobiologicalneurons;theresponseofthesystemisfasterwhentheincomingtrainofspikesiseithermorefrequentand/orofstrongerintensity(seefigure20)

Figure20.Experimentallyobserveddecreaseofthenumberofincomingspikestosetafireevent(resistancecollapse)uponincreasingpulsefrequencyorwidth,inagreementwiththeLIFmodel.Adaptedfromreference35.

VI.3CrossbararchitectureHighconnectivityamongneuronsandselectiveaccesscanbeachievedpartiallybytheregularcrossbararchitectures.Thememristorcrossbararraysofferadvantages155in

30

machinelearningimplementationsduetotwokeyfeatures156.First,thepossibilitytoimplementmatrixoperationsbasedonthesynapticweightinatwo-terminaldevice.Second,theoptionofonlinelearningbyusingasequenceofpulses155Typicalmemristorcrossbararraysarchitecturesareshowninfigure21.Eachnodeisatwoterminalmemristivedevice.Inputsareconnectedtothenetworkrowsandoutputstothecolumns.Theelectricpulsesattheinputcontrolthememristors(synaptic)weights.Thesedesignsareusedinseveralimplementationsfordataclusteringtechniqueslikeprincipalcomponentanalysisinlarge-scaledatasets155andpatternrecognition.157Animportantdisadvantageofthecrossbarimplementationsisthe“sneak-path”problemduetoanexcessofcurrent(“leakage”)whenoneofthenodesisinthehigh-resistancestate.Whenreadingsuchastate,thecurrentcanflowthroughanunintendedpaththatincludeslowresistancenodesgivinganincorrectreadout.Suchpossibilityisdepictedinfigure21.Severalwaystoovercometheseproblemshavebeenproposedwithmarginalsuccess.Forexample,groundingthefloatingterminalstodivertthecurrenttotheground,158amultistagereadingprotocol,159anunfoldedarchitectureusingareadlaneforindividualmemristors(figure21),diodeortransistorgating160andusingthenon-linearitycurrent-voltagecharacteristicofmetal-oxidememristors161,162havenotfullysolvedtheproblem.

Figure21a)TypicalCrossbararraygeometryforvariousimplementationsforneuromorphiccomputing.b)schematicofthesneak-pathproblemadaptedfrom155.Greenpathisthroughahighresistancestateandredisthroughthreelowresistancestates.VII.APPLICATIONSInthefollowingweprovideasummaryofcurrentapplicationsofneuromorphicarchitectures.Theseapplicationsarebasedincrossbargeometriesthatcombinedifferenttypesoffunctionalmemristors(includingphasechangeandmetalcationdevices).Theapproachistoemulateallpossibleexistingalgorithmsinneuralnetworksintoarraysofmemristor-basecellsthatallowsforvectoroperations.163–167VII.1Patternrecognitionanddatamining

31

Patternrecognitionisatthecoreofneuromorphicapplicationsusingmemristorcrossbarsarrays.Forinstance,3x3matrixcrossbarrealizationhavebeentestedusingTiO2-xmemristiveelements,anduptoa12x12matrixhasalsobeenproposed,161seefigure22b.The3x3implementationdemonstratedafullyoperationalneuralnetwork,basedonanintegrated,transistor-freecrossbarwithTiO2-xmemristorwherethevariabilitywasreducedbyusingaAl2O3/TiO2-xheterostructure.Inthisapproach,asingle-layerneuralnetworkwasimplementedwithteninputsandthreeoutputs,fullyconnectedwith10x3=30synapticweights.Thegoalwastodetectapatternimagecomposedofa3x3pixelmatrixwithblackandwhiteelementsreproducingtheletters“z”,“v”and“n”(figure22c).Noisydatasetsfortrainingwerefabricatedbyflippingapixelrandomlyandusedastrainingandtesting(seefigure22a).Highfidelityconvergenceofnetworkoutputsduringthetrainingwasachievedaftersixiterationsfromdifferentinitialstatesasshowninfigure22d.

Figure22.Implementationofpatternrecognitionusingamemristorcrossbararray.a)Initialdatasetusedfortrainingthenetwork.b)Deviceusedtoimplementthecrossbararchitecture.c)threeoutputcategoriesinwhichtheinputdatawascategorizedandd)Performanceoftheneuralnetworkasafunctionofthenumberoftrainingsets.Adaptedfrom161.Memristors-basedcrossbararrayswereusedtoperformmatrixoperationsinanarrayofnineinputsandtwooutputs.Theinputswerefedwithadatasetcorrespondingtoabreastcancerstudyandthegoalwastosearchforprincipalcomponentsinthedatasets.Thiswasimplementedusingamemristor-basedneuromorphicchipusingTaOx/Ta2O5:Siheterostructure,wheretheSidopingisusedtotailorfilamentformation.Itcontrolstheion-hoppingdistanceanddriftvelocity,thusallowingimprovedtuningoftheRSprocessattheatomiclevel.

32

Figure23.ResultsoftheprincipalcomponentanalysisimplementedinainTaOx/Ta2O5:Simemristorcrossbargeometryshowinganalmost-perfectclusteringofabreast-cancerdataset.155,168Thisworkshowsthatunsupervisedlearningrulescanbesuccessfullyimplementedinactualdevicesasdepictedinfigure23.Thememristorbasedresultsarealmostidenticaltostandardcovariancematrixapproaches.Thisopensnewroadsforfurtherimplementationsofneuromorphiccomputingchips.VII.2AnaloguecomputingandotherimplementationsMemristor-basedcrossbararchitectureshavebeenproposedandrecentlyusedtoperformsparsecodingandimageprocessing169,170.Sparsecodingrepresentationisalearningmethodthataimstofindasparserepresentationofaninputdatasetandthereforeconstructingadictionarythatallowsforidentificationofpatternsinnewdatasets.Thebasicelementsarenotorthogonal,meaningthattheymaycontainsimilarinformationandthereforeareoversampled.Thisisdevelopedtoemulatethefunctionalityofbiologicalsystemswhichprovidesthemeanstoanalyzecomplexdatasetsfrominputneurons.Someapplicationsofsparsecodingarecompressedsensingandsignalrecovery.171,172Animplementationofthis,usingWOX-basedanalogmemristorsisshowninfigure24(a).A32x32crossbararraywasusedtoimplementasparsecodingalgorithm169.Theoperationalprincipleconsistsoffindingthebasicrepresentationofanelementasschematicallyrepresentedinfigure24(b).Themaintaskisusinganimageinputtodecomposeitandrepresentitwithaminimalnumberof“dictionary”elements.Theexperimentalrealizationofsuchalgorithmisdepictedinfigure24(c-d).Infigure24(c)theinputimageisa5x5inputmatrixwherethecolorcodecorrespondtodifferentconductancestates(weighs)thatarerepresentedingreyscale.Thereare20dictionaryelements,eachcontaining25weighs.Thereconstructedimageisshowninfigure24(c)afterthestabilizationofthesparse-codingnetworkisreached(figure24(d)).Morecompleximageswerereconstructedprovingtheconceptofsparsecodingimplementationusingmemristor-basedcrossbararchitectures.

33

Otherrecentimplementationsofcrossbararraysbasedonhafniumoxide170areasbigas128x64cells.Theimplementationsdescribedaboverelaysonfeatureextractionfromreal-spacedatasets,suchasimages.Anotherimportantapplicationistheprocessingoftemporalinformation.Inthiscase,thealgorithmsarebasedinaneuralnetwork-basedcomputingparadigmcalledreservoircomputing.ThesetypeofsystemshavebeenrecentlyimplementedwithWOxmemristorshavingshort-termmemorythatallowstoimplementthedynamicreservoir.Applicationsofsuchsystemshavebeendemonstratedforhand-writtendigitrecognition.173

Figure24.a)A32x32crossbararrayofWOX-basedanalogmemristors.Eachconductancestateiscontrolledbyionredistribution,b)Insparsecoding,adictionaryofoversampledelementsisconstructedwhichallowforidentificationofelementsinadataset.Asanexampletheimageofaclockisused.c)Originalandreconstructedimageusedtoprovethesparsecodingconcept.d)Membranepotential(voltageoutputofaneuron)of20neuronsaftereachiteration.Thedashedlineindicatedthethreshold.After10iterationstheneuronsreachequilibrium.Adaptedfrom169.VIII.CONCLUSIONSANDPERSPECTIVEWeconcludethistutorialdiscussingsomeopenquestionsandissuesrelatedtothephysicalimplementationofRSforneuromorphicsystems.Ofcourse,therearealsomanychallengesrelatedtosoftwareimplementation,whicharebeyondthescopeofthisarticle.Itisimportanttoemphasizethatenergy-efficientNeuromorphicComputationalsystemshavealreadybeenimplementedforsomelimitedapplications.Thus,thereisaclearproofofconcept,whichshowsthatthisapproachshouldbeabletoproduceaviablecomputationalmachine.However,thereareseveralbasicresearchissuesineachconstituentofsuchasystem,whichimplythatmuchresearchisneeded

34

beforeageneralpurpose,energy-efficient,computationalmachinewhichrivalsthehumanbraincanbeimplemented.VIII.1ImmediateChallengesImmediatedevelopmentofresistivememoriesfacestwomajorproblems:variabilityandintegrationwithcurrenttechnologicalplatforms.CurrentRSdevicesshowagreatdegreeofvariability,bothbetweendifferentdevicesanddifferentcycles174–177.Thefundamentalreasonistheirsmallsize,inthenanometerscale,comparabletoimportantstructurallengthssuchasthegrainsizeorthedomainlengthinMottinsulators.NVRSishighlydependentondefectsastheyenhancevacancyformationandionmobility,facilitatingthefilamentformation.Similarly,imperfectionsinthefilmactasnucleationcenters,reducingthethresholdvoltageneededtotriggertheMIT.Slightlydifferentconfigurationsineachdevicewillresultinagreatvariabilitybetweenthem.Thecycle-to-cyclevariabilityiscausedbytheirreproducibilityoftheRSprocessinthesamedevice,i.e.thedevicewillnotswitchatthesamevoltages,orwillnothavethesameresistanceeverytimeitiscycled175–177.Thatisalsocausedbythesmallsizesinvolved:filamentstendtogrowinanextremelythinfashion,typicallyafewnanometersacross.SetandResetprocessescommonlytakeplaceinadestructivefashion:partofthefilamentmeltsanddisconnectsanditisveryunlikelythattheexactsameconfigurationwillberepeatedwhenthefilamentisreformed.AmongtheTMO,HfOXandTaOXhavebeendemonstratedtobeparticularlyreliable,showinglessvariabilitybetweencycles65,170,177,178.Itisuncleartowhatextentthisdevice-to-deviceandcycle-to-cyclevariabilitycanaffecttheperformanceofRSforNeuromorphicComputing.Somefeaturesofbiologicalneuralsystemsarefaulttolerantanddonotrequireextremeprecisiontooperateprecisely.Querliozetal.179showedthatdevicevariationscanbeovercomebyadjustingtheneuronfiringrate.Ontheotherhand,functionalitiessuchasspikefiringareveryrepeatablebetweendifferentcells.Whetherthisvariabilityposesagreatproblemtorealimplementationsisstillnotclear.ShorttermapplicationsofRSwillcertainlybeintegratedtogetherwithexisting,maturetechnologiessuchasCMOS.Nanofabricationproceduresmightnotbecompatiblewithexistingtechnologiesmightbeacomplicatedtask,assomematerialsmightnotbesuitedforthat.NVRScommonlyusestwoelectrodesofdifferentmetals:oneactiveandoneinert,generallyPtorPd.ThesematerialsareincompatiblewithCMOStechnology,sootherelectrodes,suchasTiNorRumustbeused180.ForVRS,thechallengeisevenbigger:materialssuchasNbO2,VO2orV2O3aregrownathightemperature(ashighas700C)inordertodisplayusefulMITproperties181.SuchhightemperaturesproducedeleteriousdopantredistributionintheCMOStransistors.NewfabricationroutesforMottinsulatorsclosetoroomtemperatureareneededtoovercomethisproblem.VIII.2Longtermchallenges

35

Apartfromtheseimmediatechallenges,longtermimplementationofneuromorphicdeviceswillrequiretoaddressotherissues.AselectionofthesearelistedbelowGeneral:

1. ShouldcurrentNeuromorphicsoftwareparadigmsguidethedevelopmentofNeuromorphichardware?

2. Canageneralpurpose,realistic,energyefficientNeuromorphicmachinebedesigned?

3. WhichisthemostpromisingapproachfortheimplementationofNeuromorphicfunctionalities:charge,spin-torque,superconductingorhybridsystems?

4. Canthecharge-basedapproacheventuallyscaletoproduceacomputationalmachinewithsufficientelements,flexibilityandfunctionalitytorivalthehumanbrain?

Materials:

1. Candifferentneuromorphicfunctionsbeimplementedinthesameorsimilarcompatiblematerialssystems?

2. Arestronglycorrelatedsystemsthebestcandidatestosearchfornon-linearphenomenaandnovelpropertiesusefulfortheimplementationofneuromorphicfunctionalities?

3. Withinthecharge-basedsystemsinwhichmaterialsisitpossibletointegratethewidestrangeofrelevantfunctionalities?

4. Whichmaterialssystemsarethemostpromisingfortheimplementationofresistiveswitching,volatileandnon-volatile?

5. Whatistheroleofdisorderandhowfaulttolerantshouldasystembe?6. Whatistheroleofdisorderandheatdissipationasasystemisdownscaled?

Phenomenaanddevices:

1. Whichisthemostusefulswitchingmechanismforincorporationintoaneuromorphicsystem?

2. Canionicmotionbecontrolledpreciselyenoughtoproducestatisticallyreproducibleresultsaftermanycycles?

3. Whatistheroleofthermodynamicsatthesmallscale?4. Howfastcanthedynamicsofswitchingbeandisthisanimportantissue?5. Canpureelectricswitchingbeimplementedorathermalcomponentwill

alwaysbepresent?6. Canthermalswitchingbemorepracticalandeasiertocontrolthanelectric

switching?7. Candirectimagingofchangesinneuromorphicdevicesbeimplementedand

studiedin-operandoinrealtime?8. Isthereaminimumnumberofinterconnecteddevicesthatproduceemergent

functionalities,whichdonotarisefromthesimplesumofindividualcomponents?

36

Architecture

1. Whatistheroleofarchitecture?2. Arethereanycleverartificialarchitectureswhichcanaddressand/orilluminate

importantissuesrelatedtointerconnectivity?3. Howshouldthedifferentcomponentsofaneuromorphicsystembe

interconnected?4. Can3Dstacksofcrossbararraysbeimplemented?5. Willthermaldissipationbeanissue?

Thistutorialdescribedthebasisandimportantissueswhicharisetowardstheimplementationofenergyefficient,general-purpose,neuromorphiccomputer.ThepapershowsevidencethatResistiveSwitchingisafeasiblemechanismandaseriouscompetitortowardstheimplementationofaneuromorphicmachine.TheexamplesdescribedaboveillustratesthatneuromorphicfunctionalitiesusingResistiveSwitchinghavealreadybeendevelopedalthoughforverylimitedapplications.Themainaimandultimategoalofscalingandincorporatingsufficientnumberofdevicesintoanenergyefficientneuromorphicmachinewhichrivalsthebrainremainsanopenproblem.ACKNOWLEDGEMENTSThismultidisciplinaryreviewpaperintegratesandincludesmajorcomponentsinthefieldsof;quantummaterials,bio-inspiredelectronicsandneuromorphiccomputation.Thedevelopmentofbio-inspiredhybrids(IKS)wassupportedbytheVannevarBushFacultyFellowshipprogramsponsoredbytheBasicResearchOfficeoftheAssistantSecretaryofDefenseforResearchandEngineeringandfundedbytheOfficeofNavalResearchthroughgrantN00014-15-1-2848.TheinternationalcollaborationbetweenUCSDandCNRS(IKS,MJR)andamajorefforttodevelopanenergy-efficientneuromorphiccomputerisfundedthroughanEnergyFrontierResearchCenterfundedbytheU.S.DepartmentofEnergy,OfficeofScience,BasicEnergySciencesunderAward#DE-SC0019273. MJRacknowledgesfruitfulcollaborationsanddiscussionswithC.Acha,L.Cario,B.Corraze,I.H.Inoue,E.Janod,P.Levy,M.J.Sanchez,P.StoliarandF.Tesler,andthesupportfromtheLIACNRS-UCSD.JGRacknowledgesupportfromFAPAprogramthroughFacultaddeCienciasandVicerrectoriadeInvestigacionesofUniversidaddelosAndes,BogotáColombiaandColcienciasNo.120471250659andNo.120424054303.JdVthanksFundaciónRamónArecesfortheirfunding.

37

References

1GordonE.Moore,IEDMTech.Dig.11(1975).2J.W.Mauchly,IEEESpectr.12,70(1975).3A.M.Turing,Proc.LondonMath.Soc.s2-42,230(1937).4J.VonNeumann,TheComputerandtheBrain(YaleUniversityPress,1976).5J.TrastoyandI.K.Schuller,ACSChem.Neurosci.9,1254(2018).6C.Mead,Proc.IEEE78,1629(1990).7F.Rosenblatt,ThePerceptron-APerceivingandRecognizingAutomaton(CornellAeronauticalLaboratory,Buffalo,NY,1957).8A.Krizhevsky,I.Sutskever,G.E.G.E.Hinton,Ii.Sulskever,andG.E.G.E.Hinton,Adv.NeuralInf.Process.Syst.60,1(2012).9Y.Lecun,Y.Bengio,andG.Hinton,Nature521,436(2015).10M.Dastbaz,C.Pattinson,andB.Akhgar,GreenInformationTechnology:ASustainableApproach,1sted.(MorganKaufmannPublishersInc.,SanFrancisco,CA,USA,2015).11SIA,RebootingtheITRevolution:ACalltoAction(2015).12G.Indiveri,B.Linares-Barranco,T.J.Hamilton,A.vanSchaik,R.Etienne-Cummings,T.Delbruck,S.-C.Liu,P.Dudek,P.Häfliger,S.Renaud,J.Schemmel,G.Cauwenberghs,J.Arthur,K.Hynna,F.Folowosele,S.Saighi,T.Serrano-Gotarredona,J.Wijekoon,Y.Wang,andK.Boahen,Front.Neurosci.5,73(2011).13M.F.Bear,B.W.Connors,andM.A.Paradiso,Neuroscience :ExploringtheBrain(LippincottWilliams&Wilkins,2007).14W.Gerstner,W.M.Kistler,R.Naud,andL.Paninski,NeuronalDynamics(CambridgeUniversityPress,Cambridge,2014).15C.Koch,TheBrain&NeuralNetworks11,157_2(2004).16D.O.Hebb,TheOrganizationofBehaviorANeuropsychologicalTheory.(WileyandSons,NewYork,NY,NY,1949).17J.SjöströmandW.Gerstner,Scholarpedia5,1362(2010).18M.MahowaldandR.Douglas,Nature354,515(1991).19J.Torrejon,M.Riou,F.A.Araujo,S.Tsunegi,G.Khalsa,D.Querlioz,P.Bortolotti,V.Cros,K.Yakushiji,A.Fukushima,H.Kubota,S.Yuasa,M.D.Stiles,andJ.Grollier,Nature547,428(2017).20M.L.Schneider,C.A.Donnelly,S.E.Russek,B.Baek,M.R.Pufall,P.F.Hopkins,P.D.Dresselhaus,S.P.Benz,andW.H.Rippard,Sci.Adv.4,e1701329(2018).21J.M.Shainline,S.M.Buckley,R.P.Mirin,andS.W.Nam,Phys.Rev.Appl.7,034013(2017).22SeeeditorialatNat.Phys.12,105(2016).23J.J.Yang,D.B.Strukov,andD.R.Stewart,Nat.Nanotechnol.8,13(2013).24Y.V.PershinandM.DiVentra,Adv.Phys.60,145(2011).25S.D.HaandS.Ramanathan,J.Appl.Phys.110,(2011).26R.Waser,R.Dittmann,C.Staikov,andK.Szot,Adv.Mater.21,2632(2009).27Y.VanDeBurgt,E.Lubberman,E.J.Fuller,S.T.Keene,G.C.Faria,S.Agarwal,M.J.Marinella,A.AlecTalin,andA.Salleo,Nat.Mater.16,414(2017).28K.M.Kim,D.S.Jeong,andC.S.Hwang,Nanotechnology22,(2011).29D.Ielmini,R.Bruchhaus,andR.Waser,PhaseTransitions84,570(2011).30K.Szot,M.Rogala,W.Speier,Z.Klusek,A.Besmehn,andR.Waser,Nanotechnology

38

22,(2011).31A.Sawa,Mater.Today11,28(2008).32R.WaserandM.Aono,Nat.Mater.6,833(2007).33H.-S.S.P.Wong,H.Y.Lee,S.Yu,Y.S.Chen,Y.Wu,P.S.Chen,B.Lee,F.T.Chen,andM.J.Tsai,inProc.IEEE(2012),pp.1951–1970.34H.AkinagaandH.Shima,IEICEElectron.Express9,795(2012).35M.D.Pickett,G.Medeiros-Ribeiro,andR.S.Williams,Nat.Mater.12,114(2013).36H.D.Crane,IEEETrans.Electron.Comput.EC-9,370(1960).37P.Stoliar,J.Tranchant,B.Corraze,E.Janod,M.P.Besland,F.Tesler,M.Rozenberg,andL.Cario,Adv.Funct.Mater.27,1604740(2017).38K.Fujiwara,T.Nemoto,M.J.Rozenberg,Y.Nakamura,andH.Takagi,JapaneseJ.Appl.Physics,Part1Regul.Pap.ShortNotesRev.Pap.47,6266(2008).39D.IelminiandH.-S.P.Wong,Nat.Electron.1,333(2018).40E.Janod,J.Tranchant,B.Corraze,M.Querré,P.Stoliar,M.Rozenberg,T.Cren,D.Roditchev,V.T.Phuoc,M.P.Besland,andL.Cario,Adv.Funct.Mater.25,6287(2015).41M.Imada,A.Fujimori,andY.Tokura,Rev.Mod.Phys.70,1039(1998).42M.J.Rozenberg,M.J.Sánchez,R.Weht,C.Acha,F.Gomez-Marlasca,andP.Levy,Phys.Rev.B81,115101(2010).43F.Gomez-Marlasca,N.Ghenzi,M.J.Rozenberg,andP.Levy,Appl.Phys.Lett.98,042901(2011).44Y.B.Nian,J.Strozier,N.J.Wu,X.Chen,andA.Ignatiev,Phys.Rev.Lett.98,146403(2007).45B.J.Choi,D.S.Jeong,S.K.Kim,C.Rohde,S.Choi,J.H.Oh,H.J.Kim,C.S.Hwang,K.Szot,R.Waser,B.Reichenberg,andS.Tiedke,J.Appl.Phys.98,033715(2005).46D.B.Strukov,G.S.Snider,D.R.Stewart,andR.S.Williams,Nature453,80(2008).47N.Ghenzi,M.J.Rozenberg,R.Llopis,P.Levy,L.E.Hueso,andP.Stoliar,Appl.Phys.Lett.106,123509(2015).48D.Ielmini,Semicond.Sci.Technol.31,063002(2016).49I.H.Inoue,S.Yasuda,H.Akinaga,andH.Takagi,Phys.Rev.B77,035105(2008).50M.T.Greiner,L.Chai,M.G.Helander,W.M.Tang,andZ.H.Lu,Adv.Funct.Mater.22,4557(2012).51S.Long,X.Lian,C.Cagli,X.Cartoixà,R.Rurali,E.Miranda,D.Jiménez,L.Perniola,M.Liu,andJ.Suñé,Appl.Phys.Lett.102,183505(2013).52D.-H.Kwon,K.M.Kim,J.H.Jang,J.M.Jeon,M.H.Lee,G.H.Kim,X.-S.Li,G.-S.Park,B.Lee,S.Han,M.Kim,andC.S.Hwang,Nat.Nanotechnol.5,148(2010).53K.Szot,W.Speier,G.Bihlmayer,andR.Waser,Nat.Mater.5,312(2006).54A.Beck,J.G.Bednorz,C.Gerber,C.Rossel,andD.Widmer,Appl.Phys.Lett.77,139(2000).55S.Q.Liu,N.J.Wu,andA.Ignatiev,Appl.Phys.Lett.76,2749(2000).56M.Quintero,P.Levy,A.G.Leyva,andM.J.Rozenberg,Phys.Rev.Lett.98,2(2007).57T.Fujii,M.Kawasaki,A.Sawa,Y.Kawazoe,H.Akoh,andY.Tokura,Phys.Rev.B75,165101(2007).58M.Glicksman,Science(80-.).166,1135(1969).59X.Chen,N.J.Wu,J.Strozier,andA.Ignatiev,Appl.Phys.Lett.87,233506(2005).60J.Garcia-Barriocanal,A.Rivera-Calzada,M.Varela,Z.Sefrioui,E.Iborra,C.Leon,S.J.Pennycook,andJ.Santamaria,Science(80-.).321,676(2008).61A.Asamitsu,Y.Tomioka,H.Kuwahara,andY.Tokura,Nature388,50(1997).

39

62E.H.RhoderickandR.H.Williams,Metal-SemiconductorContacts(ClarendonPress,1988).63J.J.Yang,M.D.Pickett,X.Li,D.A.A.Ohlberg,D.R.Stewart,andR.S.Williams,Nat.Nanotechnol.3,429(2008).64A.Wedig,M.Luebben,D.-Y.Cho,M.Moors,K.Skaja,V.Rana,T.Hasegawa,K.K.Adepalli,B.Yildiz,R.Waser,andI.Valov,Nat.Nanotechnol.11,67(2016).65H.Jiang,L.Han,P.Lin,Z.Wang,M.H.Jang,Q.Wu,M.Barnell,J.J.Yang,H.L.Xin,andQ.Xia,Sci.Rep.6,28525(2016).66J.G.Ramirez,T.Saerbeck,S.Wang,J.Trastoy,M.Malnou,J.Lesueur,J.-P.Crocombette,J.E.Villegas,andI.K.Schuller,Phys.Rev.B91,205123(2015).67S.Biermann,A.Poteryaev,A.I.Lichtenstein,andA.Georges,Phys.Rev.Lett.94,026404(2005).68O.Nájera,M.Civelli,V.Dobrosavljević,andM.J.Rozenberg,Phys.Rev.B95,035113(2017).69A.Camjayi,C.Acha,R.Weht,M.G.Rodríguez,B.Corraze,E.Janod,L.Cario,andM.J.Rozenberg,Phys.Rev.Lett.113,086404(2014).70D.B.McWhan,A.Menth,J.P.Remeika,W.F.Brinkman,andT.M.Rice,Phys.Rev.B7,1920(1973).71A.Georges,G.Kotliar,W.Krauth,andM.J.Rozenberg,Rev.Mod.Phys.68,13(1996).72P.Stoliar,M.Rozenberg,E.Janod,B.Corraze,J.Tranchant,andL.Cario,Phys.Rev.B90,045146(2014).73A.Zimmers,L.Aigouy,M.Mortier,A.Sharoni,S.Wang,K.G.G.West,J.G.G.Ramirez,andI.K.Schuller,Phys.Rev.Lett.110,056601(2013).74S.Guénon,S.Scharinger,S.Wang,J.G.Ramírez,D.Koelle,R.Kleiner,andI.K.Schuller,EPL(EurophysicsLett.101,57003(2013).75J.S.Brockman,L.Gao,B.Hughes,C.T.Rettner,M.G.Samant,K.P.Roche,andS.S.P.Parkin,Nat.Nanotechnol.9,453(2014).76I.Valmianski,P.Y.Wang,S.Wang,J.G.Ramirez,S.Guénon,andI.K.Schuller,Submitted(2018).77H.Aoki,N.Tsuji,M.Eckstein,M.Kollar,T.Oka,andP.Werner,Rev.Mod.Phys.86,779(2014).78P.Stoliar,L.Cario,E.Janod,B.Corraze,C.Guillot-Deudon,S.Salmon-Bourmand,V.Guiot,J.Tranchant,andM.Rozenberg,Adv.Mater.25,3222(2013).79X.Liu,S.Li,S.K.Nandi,D.K.Venkatachalam,andR.G.Elliman,J.Appl.Phys.120,124102(2016).80J.delValle,F.T.PavelSalev,Y.Kalcheim,P.Wang,J.Trastoy,J.G.Ramírez,G.Kassabian,M.J.Rozenberg,andI.K.Schuller,Submitted(2018).81H.Madan,M.Jerry,A.Pogrebnyakov,T.Mayer,andS.Datta,ACSNano9,2009(2015).82Y.Zhou,X.Chen,C.Ko,Z.Yang,C.Mouli,andS.Ramanathan,IEEEElectronDeviceLett.34,220(2013).83J.Yao,Z.Sun,L.Zhong,D.Natelson,andJ.M.Tour,NanoLett.10,4105(2010).84Y.F.Chang,P.Y.Chen,B.Fowler,Y.T.Chen,F.Xue,Y.Wang,F.Zhou,andJ.C.Lee,J.Appl.Phys.112,123702(2012).85A.Mehonic,A.L.Shluger,D.Gao,I.Valov,E.Miranda,D.Ielmini,A.Bricalli,E.Ambrosi,C.Li,J.J.Yang,Q.Xia,andA.J.Kenyon,Adv.Mater.1801187(2018).86A.Mehonic,S.Cueff,M.Wojdak,S.Hudziak,C.Labbé,R.Rizk,andA.J.Kenyon,

40

Nanotechnology23,455201(2012).87H.H.Huang,W.C.Shih,andC.H.Lai,Appl.Phys.Lett.96,2008(2010).88C.Lin,C.Wu,C.Wu,C.Hu,andT.Tseng,J.Electrochem.Soc.154,G198(2007).89H.Wang,Y.Zhu,andD.Fu,J.AlloysCompd.695,2669(2017).90J.DelValle,Y.Kalcheim,J.Trastoy,A.Charnukha,D.N.Basov,andI.K.Schuller,Phys.Rev.Appl.8,1(2017).91S.Y.C.C.Chen,T.C.Chang,S.Y.C.C.Chen,C.W.Chen,S.Y.C.C.Chen,S.M.Sze,M.J.Tsai,M.J.Kao,andF.S.Yeh,Solid.State.Electron.62,40(2011).92M.K.Yang,J.-W.Park,T.K.Ko,andJ.-K.Lee,Appl.Phys.Lett.95,042105(2009).93A.Odagawa,Y.Katoh,Y.Kanzawa,Z.Wei,T.Mikawa,S.Muraoka,andT.Takagi,Appl.Phys.Lett.91,2005(2007).94H.Shima,F.Takano,H.Akinaga,Y.Tamai,I.H.Inoue,andH.Takagi,Appl.Phys.Lett.91,89(2007).95S.Seo,M.J.Lee,D.H.Seo,E.J.Jeoung,D.S.Suh,Y.S.Joung,I.K.Yoo,I.R.Hwang,S.H.Kim,I.S.Byun,J.S.Kim,J.S.Choi,andB.H.Park,Appl.Phys.Lett.85,5655(2004).96W.YangandS.Rhee,Appl.Phys.Lett.91,232907(2007).97N.Xu,L.Liu,X.Sun,X.Liu,D.Han,Y.Wang,R.Han,J.Kang,B.Yu,N.Xu,L.Liu,X.Sun,X.Liu,D.Han,Y.Wang,andR.Han,Appl.Phys.Lett.92,232112(2008).98D.Y.Guo,Z.P.Wu,Y.H.An,P.G.Li,P.C.Wang,X.L.Chu,X.C.Guo,Y.S.Zhi,M.Lei,L.H.Li,andW.H.Tang,Appl.Phys.Lett.106,042105(2015).99S.MaikapandS.Z.Rahaman,ECSTrans.45,257(2012).100I.K.Yoo,IEEEElectronDeviceLett.26,719(2005).101S.Kumar,J.P.Strachan,andR.S.Williams,Nature548,318(2017).102H.Sim,D.Choi,D.Lee,M.Hasan,B.Chandan,andH.Hwang,Microelectron.Eng.80,260(2005).103M.Arita,H.Kaji,T.Fujii,andY.Takahashi,ThinSolidFilms520,4762(2012).104M.R.Park,Y.Abbas,H.Abbas,Q.Hu,T.S.Lee,Y.J.Choi,T.S.Yoon,H.H.Lee,C.J.Kang,M.Ra,Y.Abbas,H.Abbas,Q.Hu,T.Sung,Y.Jin,T.S.Yoon,H.H.Lee,andC.Jung,Microelectron.Eng.159,190(2016).105L.Goux,P.Czarnecki,Y.Y.Chen,L.Pantisano,X.P.Wang,R.Degraeve,B.Govoreanu,M.Jurczak,D.J.Wouters,andL.Altimime,Appl.Phys.Lett.97,(2010).106J.J.Yang,M.Zhang,J.P.Strachan,F.Miao,andM.D.Pickett,Appl.Phys.Lett.97,232102(2010).107M.KyuYang,H.Ju,G.HwanKim,J.K.Lee,andH.C.Ryu,Sci.Rep.5,14053(2015).108L.Hu,S.Fu,Y.Chen,H.Cao,L.Liang,H.Zhang,J.Gao,J.Wang,andF.Zhuge,Adv.Mater.29,1606927(2017).109W.C.Chien,Y.C.Chen,E.K.Lai,Y.D.Yao,P.Lin,S.F.Horng,J.Gong,T.H.Chou,H.M.Lin,M.N.Chang,Y.H.Shih,K.Y.Hsieh,R.Liu,S.Member,andC.Lu,IEEEElectronDeviceLett.31,126(2010).110X.Sun,B.Sun,L.Liu,N.Xu,X.Liu,R.Han,J.Kang,G.Xiong,andT.P.Ma,IEEEElectronDeviceLett.30,334(2009).111X.Cao,X.Li,X.Gao,W.Yu,X.Liu,Y.Zhang,L.Chen,andX.Cheng,J.Appl.Phys.106,073723(2009).112D.P.,Phys.Rev.Lett.Inpress,(2018).113X.Gao,Y.Xia,B.Xu,J.Kong,H.Guo,K.Li,H.Li,H.Xu,K.Chen,J.Yin,andZ.Liu,J.Appl.Phys.108,074506(2010).114K.Yin,M.Li,Y.Liu,C.He,F.Zhuge,B.Chen,W.Lu,X.Pan,andR.-W.Li,Appl.Phys.

41

Lett.97,042101(2010).115C.AchaandM.J.Rozenberg,J.Phys.Condens.Matter21,2(2009).116I.Valov,R.Waser,J.R.Jameson,andM.N.Kozicki,Nanotechnology22,254003(2011).117W.Lu,D.S.Jeong,M.Kozicki,andR.Waser,MRSBull.37,124(2012).118M.N.KozickiandH.J.Barnaby,Semicond.Sci.Technol.31,113001(2016).119Z.Xu,Y.Bando,W.Wang,X.Bai,andD.Golberg,ACSNano4,2515(2010).120T.Ohno,T.Hasegawa,T.Tsuruoka,K.Terabe,J.K.Gimzewski,andM.Aono,Nat.Mater.10,591(2011).121R.Bruchhaus,M.Honal,R.Symanczyk,andM.Kund,J.Electrochem.Soc.156,H729(2009).122R.Soni,P.Meuffels,G.Staikov,R.Weng,C.Kügeler,A.Petraru,M.Hambe,R.Waser,andH.Kohlstedt,J.Appl.Phys.110,054509(2011).123Y.Yang,P.Gao,S.Gaba,T.Chang,X.Pan,andW.Lu,Nat.Commun.3,732(2012).124S.H.Jo,T.Chang,I.Ebong,B.B.Bhadviya,P.Mazumder,andW.Lu,NanoLett.10,1297(2010).125Q.Liu,J.Sun,H.Lv,S.Long,K.Yin,N.Wan,Y.Li,L.Sun,andM.Liu,Adv.Mater.24,1844(2012).126Z.Wang,S.Joshi,S.E.Savel’ev,H.Jiang,R.Midya,P.Lin,M.Hu,N.Ge,J.P.Strachan,Z.Li,Q.Wu,M.Barnell,G.-L.Li,H.L.Xin,R.S.Williams,Q.Xia,andJ.J.Yang,Nat.Mater.16,101(2017).127Y.Yang,P.Gao,L.Li,X.Pan,S.Tappertzhofen,S.Choi,R.Waser,I.Valov,andW.D.Lu,Nat.Commun.5,4232(2014).128W.A.Hubbard,A.Kerelsky,G.Jasmin,E.R.White,J.Lodico,M.Mecklenburg,andB.C.Regan,NanoLett.15,3983(2015).129A.Redaelli,A.Pirovano,F.Pellizzer,A.L.Lacaita,D.Ielmini,andR.Bez,IEEEElectronDeviceLett.25,684(2004).130S.Lai,inIEEEInt.ElectronDevicesMeet.2003(IEEE,n.d.),p.10.1.1-10.1.4.131M.WuttigandN.Yamada,Nat.Mater.6,824(2007).132H.-S.P.Wong,S.Raoux,S.Kim,J.Liang,J.P.Reifenberg,B.Rajendran,M.Asheghi,andK.E.Goodson,Proc.IEEE98,2201(2010).133S.Raoux,W.Wełnic,andD.Ielmini,Chem.Rev.110,240(2010).134M.Wuttig,H.Bhaskaran,andT.Taubner,Nat.Photonics11,465(2017).135N.Yamada,E.Ohno,N.Akahira,K.Nishiuchi,K.Nagata,andM.Takao,Jpn.J.Appl.Phys.26,61(1987).136H.Iwasaki,Y.Ide,M.Harigaya,Y.Kageyama,andI.Fujimura,Jpn.J.Appl.Phys.31,461(1992).137C.N.Afonso,J.Solis,F.Catalina,andC.Kalpouzos,Appl.Phys.Lett.60,3123(1992).138M.Anbarasu,M.Wimmer,G.Bruns,M.Salinga,andM.Wuttig,Appl.Phys.Lett.100,143505(2012).139G.Bruns,P.Merkelbach,C.Schlockermann,M.Salinga,M.Wuttig,T.D.Happ,J.B.Philipp,andM.Kund,Appl.Phys.Lett.95,043108(2009).140R.E.Simpson,P.Fons,A.V.Kolobov,T.Fukaya,M.Krbal,T.Yagi,andJ.Tominaga,Nat.Nanotechnol.6,501(2011).141Y.Shi,S.Fong,H.-S.P.Wong,andD.Kuzum,inNeuro-InspiredComput.UsingResist.SynapticDevices(SpringerInternationalPublishing,Cham,2017),pp.19–51.142T.Tuma,A.Pantazi,M.LeGallo,A.Sebastian,andE.Eleftheriou,Nat.Nanotechnol.

42

11,693(2016).143S.C.Chae,J.S.Lee,S.Kim,S.B.Lee,S.H.Chang,C.Liu,B.Kahng,H.Shin,D.-W.Kim,C.U.Jung,S.Seo,M.-J.Lee,andT.W.Noh,Adv.Mater.20,1154(2008).144M.J.Rozenberg,I.H.Inoue,andM.J.Sánchez,Phys.Rev.Lett.92,178302(2004).145T.Prodromakis,C.Toumazou,andL.Chua,Nat.Mater.11,478(2012).146J.P.Strachan,A.C.Torrezan,F.Miao,M.D.Pickett,J.J.Yang,W.Yi,G.Medeiros-Ribeiro,andR.S.Williams,IEEETrans.ElectronDevices60,2194(2013).147A.Ignatiev,N.J.Wu,X.Chen,Y.B.Nian,C.Papagianni,S.Q.Liu,andJ.Strozier,PhaseTransitions81,791(2008).148S.Tang,F.Tesler,F.G.Marlasca,P.Levy,V.Dobrosavljevic,andM.Rozenberg,Phys.Rev.X6,011028(2016).149F.Tesler,S.Tang,V.Dobrosavljevic,andM.Rozenberg,inSpintron.X,editedbyH.Jaffrès,H.-J.Drouhin,J.-E.Wegrowe,andM.Razeghi(SPIE,2017),p.92.150J.Li,C.Aron,G.Kotliar,andJ.E.Han,Phys.Rev.Lett.114,226403(2015).151Y.Taguchi,T.Matsumoto,andY.Tokura,Phys.Rev.B62,7015(2000).152A.Sharoni,J.G.Ramírez,andI.K.Schuller,Phys.Rev.Lett.101,(2008).153S.Wang,J.G.Ramírez,andI.K.Schuller,Phys.Rev.B92,085150(2015).154C.Adda,L.Cario,J.Tranchant,E.Janod,M.-P.Besland,M.Rozenberg,P.Stoliar,andB.Corraze,MRSCommun.(inPress.(n.d.).155S.Choi,P.Sheridan,andW.D.Lu,Sci.Rep.5,10492(2015).156C.Li,L.Han,H.Jiang,M.-H.Jang,P.Lin,Q.Wu,M.Barnell,J.J.Yang,H.L.Xin,andQ.Xia,Nat.Commun.8,15666(2017).157P.Sheridan,W.Ma,andW.Lu,in2014IEEEInt.Symp.CircuitsSyst.(IEEE,2014),pp.1078–1081.158A.Dozortsev,I.Goldshtein,andS.Kvatinsky,Int.J.CircuitTheoryAppl.46,122(2018).159P.O.Vontobel,W.Robinett,P.J.Kuekes,D.R.Stewart,J.Straznicky,andR.StanleyWilliams,Nanotechnology20,425204(2009).160K.-H.Kim,S.Gaba,D.Wheeler,J.M.Cruz-Albrecht,T.Hussain,N.Srinivasa,andW.Lu,NanoLett.12,389(2012).161M.Prezioso,F.Merrikh-Bayat,B.D.Hoskins,G.C.Adam,K.K.Likharev,andD.B.Strukov,Nature521,61(2015).162H.S.Lee,H.H.Park,andM.J.Rozenberg,Nanoscale7,6444(2015).163Z.Wang,S.Joshi,S.Savel’ev,W.Song,R.Midya,Y.Li,M.Rao,P.Yan,S.Asapu,Y.Zhuo,H.Jiang,P.Lin,C.Li,J.H.Yoon,N.K.Upadhyay,J.Zhang,M.Hu,J.P.Strachan,M.Barnell,Q.Wu,H.Wu,R.S.Williams,Q.Xia,andJ.J.Yang,Nat.Electron.1,137(2018).164C.Li,D.Belkin,Y.Li,P.Yan,M.Hu,N.Ge,H.Jiang,E.Montgomery,P.Lin,Z.Wang,W.Song,J.P.Strachan,M.Barnell,Q.Wu,R.S.Williams,J.J.Yang,andQ.Xia,Nat.Commun.9,2385(2018).165F.M.Bayat,M.Prezioso,B.Chakrabarti,H.Nili,I.Kataeva,andD.Strukov,Nat.Commun.9,2331(2018).166S.Ambrogio,P.Narayanan,H.Tsai,R.M.Shelby,I.Boybat,C.diNolfo,S.Sidler,M.Giordano,M.Bodini,N.C.P.Farinha,B.Killeen,C.Cheng,Y.Jaoudi,andG.W.Burr,Nature558,60(2018).167S.Choi,S.H.Tan,Z.Li,Y.Kim,C.Choi,P.-Y.Chen,H.Yeon,S.Yu,andJ.Kim,Nat.Mater.17,335(2018).168S.Kim,S.Choi,J.Lee,andW.D.Lu,ACSNano8,10262(2014).

43

169P.M.Sheridan,F.Cai,C.Du,W.Ma,Z.Zhang,andW.D.Lu,Nat.Nanotechnol.12,784(2017).170C.Li,M.Hu,Y.Li,H.Jiang,N.Ge,E.Montgomery,J.Zhang,W.Song,N.Dávila,C.E.Graves,Z.Li,J.P.Strachan,P.Lin,Z.Wang,M.Barnell,Q.Wu,R.S.Williams,J.J.Yang,andQ.Xia,Nat.Electron.1,52(2017).171S.Liu,A.Ren,Y.Wang,andP.K.Varshney,inICASSP,IEEEInt.Conf.Acoust.SpeechSignalProcess.-Proc.(IEEE,2017),pp.1133–1137.172F.Qian,Y.Gong,G.Huang,M.Anwar,andL.Wang,IEEETrans.VeryLargeScaleIntegr.Syst.1(2018).173C.Du,F.Cai,M.A.Zidan,W.Ma,S.H.Lee,andW.D.Lu,Nat.Commun.8,2204(2017).174A.ChenandM.-R.Lin,in2011Int.Reliab.Phys.Symp.(IEEE,2011),p.MY.7.1-MY.7.4.175R.Naous,M.Al-Shedivat,andK.N.Salama,IEEETrans.Nanotechnol.15,15(2016).176S.Ambrogio,S.Balatti,A.Cubeta,A.Calderoni,N.Ramaswamy,andD.Ielmini,inTech.Dig.-Int.ElectronDevicesMeet.IEDM(IEEE,2013),p.31.5.1-31.5.4.177A.Schönhals,R.Waser,andD.J.Wouters,Nanotechnology28,465203(2017).178A.Prakash,D.Deleruyelle,J.Song,M.Bocquet,andH.Hwang,Appl.Phys.Lett.106,233104(2015).179D.Querlioz,O.Bichler,andC.Gamrat,in2011Int.Jt.Conf.NeuralNetworks(IEEE,2011),pp.1775–1781.180V.Y.-Q.Zhuo,M.Li,Y.Guo,W.Wang,Y.Yang,Y.Jiang,andJ.Robertson,J.Appl.Phys.120,024504(2016).181J.Trastoy,Y.Kalcheim,J.delValle,I.Valmianski,andI.K.Schuller,J.Mater.Sci.53,9131(2018).