Vektor , Skalar,dan Bidang Rata

61
Vektor , Skalar,dan Bidang Rata

description

Vektor , Skalar,dan Bidang Rata. Vektor adalah Besaran yang mempunyai besar dan arah . Contoh : Kecepatan , momentum, berat , percepatan , gaya dan lain-lain Skalar adalah besaran yang mempunyai besar tapi tanpa arah . Contoh : - PowerPoint PPT Presentation

Transcript of Vektor , Skalar,dan Bidang Rata

Page 1: Vektor  ,  Skalar,dan Bidang  Rata

Vektor , Skalar,dan Bidang Rata

Page 2: Vektor  ,  Skalar,dan Bidang  Rata

Vektor adalah Besaran yang mempunyai besar dan arah.Contoh : Kecepatan, momentum, berat, percepatan,

gaya dan lain-lain

Skalar adalah besaran yang mempunyai besar tapi tanpa arah.Contoh : Volume, massa, panjang, waktu dan lain-lain

Vektor dan Skalar

Page 3: Vektor  ,  Skalar,dan Bidang  Rata

Ekor panah disebut ttk pangkal Arah panah menentukan

arah vektor Panjang panah menentukan

arah vektor Ujung panah disebut

ttk ujung Maka vektor v =

V = AB

Page 4: Vektor  ,  Skalar,dan Bidang  Rata

1. Vektor-vektor yang panjang dan arahnya sama

v = w = z

4

Page 5: Vektor  ,  Skalar,dan Bidang  Rata

2. Vektor negatif Adalah vektor yang besarnya sama tetapi arahnya terbalik/berlawanan

Page 6: Vektor  ,  Skalar,dan Bidang  Rata

3. Vektor Nol Vektor yang panjangnya nol Dinyatakan dengan O

4. Penjumlahan Vektor

+

Page 7: Vektor  ,  Skalar,dan Bidang  Rata

5. Jika v adalah suatu vektor tak nol dan k adalah suatu bilangan real tak nol (skalar), maka hasil kali kv didefinisikan sebagai vektor yang panjangnya (k*panjang v)dan yang arahnya sama dengan arah v jika k>0 dan berlawanan arah dengan v jika k< 0

Page 8: Vektor  ,  Skalar,dan Bidang  Rata

Jika a, b dan c adalah vektor-vektor serta m dan n adalah skalar, maka :1. a + b = b + a ; Hukum Komutatif untuk penjumlahan2. a + (b+c) = (a+b)+c ; Hukum Assosiatif

untuk penjumlahan3. ma = am ; Hukum Komutatif

untuk perkalian 4. m(na) = (mn)a ; Hukum Asosiatif untuk perkalian5. (m+n) a = ma + na ; Hukum Distributif6. m (a + b) = ma + mb ; Hukum Distributif

Hukum Aljabar Vektor

Page 9: Vektor  ,  Skalar,dan Bidang  Rata

1. Vektor dalam bidang OP = a (sepanjang OX) + b (sepanjang OY)

Jika i sebagai vektor satuan dalam arah ox j sebagai vektor satuan dalam arah OY maka : a = ai dan b = bj Dengan demikian vektor OP = dapat ditulis

sebagai : R = ai + bj

y

xo

rp

Ѳa

b

Komponen-Komponen Vektor

Page 10: Vektor  ,  Skalar,dan Bidang  Rata

2. Vektor dalam ruang Vektor OP dalam ruang atau dalam sistem koordinat OX, OY,

OZ dapat dilihat pada gambar berikut:

Misal : OP = ai + bj + ck, maka : |r | = panjang vektor OP =OP = a² + b² + c²

x

y

p

z

o

b

c

a

r

Page 11: Vektor  ,  Skalar,dan Bidang  Rata

HASIL KALI TITIK DAN SILANG

1. Hasil kali titik Hasil kali titik (skalar) dua vektor A dan B didefinisikan : A B = A B cos dengan : A dan B masing-masing panjang

vektor A dan B adalah sudut antara vektor A dan B ( 0 )

Page 12: Vektor  ,  Skalar,dan Bidang  Rata

Hukum-hukum yang berlaku pada perkalian skalar

1. A B = B A2. A (B+C) = A B + A C3. m (A B) = (mA) B = A (mB) , m adalah

skalar4. i i = j j = k k = 1 , i j = j k = k i = 05. Jika A = a1 i + a2 j + a3 k dan B = b1 i +

b2 j + b3 k maka A B = a1 b1 +a2 b2 + a3 b36. Jika A B = 0 dan A , B bukan vektor nol,

maka A dan B tegak lurus.

Page 13: Vektor  ,  Skalar,dan Bidang  Rata

Hasil kali silang (vektor) dari A dan B adalah vektor C yang arahnya tegak lurus vektor A dan B dengan mengikuti kaidah tangan kanan yang didefinisikan sebagai berikut :

A x B = AB sin u dengan : - adalah sudut antara A dan B ( 0

) - u adalah vektor satuan yang

menunjukkan arah dari C

2. Hasil Kali Silang

Page 14: Vektor  ,  Skalar,dan Bidang  Rata

Hukum-hukum yang berlaku pada perkalian

silang (vektor) :1. A x B = - B x A

2. A x (B+C) = A x B + A x C

3. m (A x B) = (mA) x B = A x (mB) = (A x B)m, m adalah skalar

4. i x i = j x j = k x k = 0 , i x j = k , j x k = i , k x i = j

5. jika A = a1 i + a2 j + a3 k dan B = b1 i + b2 j + b3 k , maka :

= (a2b3 - b2a3) i - (a1b3 - b1a3) j + (a1b2 - b1a2) k

6. Besarnya A x B = luas jajaran genjang dengan sisinya vektor A dan B

7. Jika A x B = 0 dan A = B 0 maka A dan B sejajar.

321

321

bbb

aaa

kji

BA x

Page 15: Vektor  ,  Skalar,dan Bidang  Rata

Diketahui Vektor A = 2i – 3j + k B = – i + 4j + 5kMaka :1. A + B = (2 – 1) i + (–3 + 4) j + (1 + 5) k = i + j + 6k

2. A – B = (2 + 1) i + (–3 – 4) j + (1 – 5) k = 3i – 7j – 4k

3. A . B = (2)(-1)i + (-3)(4)j + (1)(5)k = -2i – 12j + 5k

Page 16: Vektor  ,  Skalar,dan Bidang  Rata

4.

= { (-3)(5) – (1)(4) }i – { (2)(5) – (1)(-

1) }j + { (2)(4) – (-1)(-3) }k = (-15 – 4)i – (10 + 1)j + (8 – 3)k = -19i – 11j + 5k

541-

13-2

kji

BA x

Page 17: Vektor  ,  Skalar,dan Bidang  Rata

Jarak dua titik yang berada pada dua ujung vektor

Maka jarak antara titik A ke titik B adalah d, dengan:

)a,a,a(A321

2

3a

3b

2

2a

2b

2

1a

1bd

)b,b,b(B321

x

y

z

d

Page 18: Vektor  ,  Skalar,dan Bidang  Rata
Page 19: Vektor  ,  Skalar,dan Bidang  Rata

Terlihat pada gambar bahwa :

OX = OP + PX

......(1)

dimana Merupakan persamaan vektoris bidang rata

yang melalui satu titik P( x1 , y1, z1 ) dan diketahui kedua vektor arahnya a = [ x a ,y a, z

a] dan b = [xb ,y b, z b] .

Page 20: Vektor  ,  Skalar,dan Bidang  Rata

Persamaan (1) dapat ditulis menjadi 3 persamaan :

……….(2)

yang disebut persamaan parameter bidang rata. Dengan mengeliminasi λ dan μ pada persamaan

diatas diperoleh : V = Ax + By + Cz + D = 0 ………. (3) yang disebut persamaan linier bidang rata yang

mempunyai vektor normal bidang ( vektor yang tegak lurus bidang rata ) :

[ A, B, C ]

Page 21: Vektor  ,  Skalar,dan Bidang  Rata

= a x b dimana :

Dari persamaan (3) di atas, suatu bidang rata yang di ketahui melalui satu titik ( x1 , y 1, z 1 ) dengan vektor normalnya ( A , B , C ) berbentuk:

A ( x — x1) + B ( y — y 1) + C ( z — z 1) = 0

Page 22: Vektor  ,  Skalar,dan Bidang  Rata

1. Bila D = 0 maka bidang rata akan melalui titik asal O (0,0,0) dan sebaliknya, setiap bidang rata yang melalui titik asal

persamaannya akan mempunyai harga D = 0.

2. Apabila D ≠ 0 persamaan Ax + By + Cz + D = 0 dapat ditulis menjadi Ax/ -D + By/ -D + Cz/ -D = 1 dan sebut berturut-turut A/ -D = 1/p, B/ -D=1/ q, C/-D =1/ r, didapat persamaan :

x/p + y/q + z/r = 1 yang mana memotong sumbu X di (p, 0, 0 ) sumbu Y di ( 0, q ,0 ) sumbu Z di ( 0, 0, r ).

3. Bila A = 0, bidang rata sejajar sumbu X bila B = 0, bidang rata sejajar sumbu Y, dan bila C = 0, bidang rata sejajar sumbu Z

4. Bila A = B = 0, bidang rata sejajar bidang XOY bila B = C = 0, bidang rata sejajar bidang YOZ bila A = C = 0, bidang rata sejajar bidang XOZ

Page 23: Vektor  ,  Skalar,dan Bidang  Rata

Contoh :1.

Untuk mengubah kepersamaan linier dapat kita lakukan dgn mencari vektor normal sebagai hasil cross product

( 1, 2, 3 ) x ( 0, 2, 5) = ( 4, —5, 2 )

4x – 5y + 2z – 13 = 0

Page 24: Vektor  ,  Skalar,dan Bidang  Rata

2. Bidang 2x + 3y + 4z = 12 dapat ditulis menjadi : x/6 + y/4 + z/3 = 1 akan memotong sumbu-sumbu di (6,0,0), (0,4,0)

& (0,0,3).

Page 25: Vektor  ,  Skalar,dan Bidang  Rata

Catatan :1. Jika n = a x b . di mana a dan b adalah vektor-

vektor pada bidang, maka persamaan bidang rata dapat ditulis dalam bentuk :

2. Jika vektor a bertitik awal di p (x1, y1, z1) dan titik ujungnya q (x2, y2, z2), serta b titik awalnya p (x1, y1, z1) dan titik ujungnya r (x3, y3, z3), maka persamaan bidang rata dapat ditulis dalam bentuk :

Page 26: Vektor  ,  Skalar,dan Bidang  Rata

4. Jadi empat buah titik ( x1, y1, z1 ), ( x2, y2, z2 ), ( x3, y3, z3 ), dan ( x4, y4, z4 ) akan sebidang jika dan hanya jika :

Contoh :1. Tentukan persamaan bidang yang melalui ketiga

titik ( 2, -1, 1 ), ( 3, 2, 1 ), dan ( -1, 3, 2 )

2. Apakah empat titik berikut sebidang, jika sebidang , tentukan persamaan liniernya : ( 2, 1, 3 ), ( 4, 2, 1 ), ( -1, -2, 4 ) dan ( 0, 0, 5 )

Page 27: Vektor  ,  Skalar,dan Bidang  Rata

Sudut antara dua bidang rata merupakan sudut antara

vektor-vektor normalnya. Misanya, sudut antara bidang :

maka sudutnya adalah sudut antara normal-normal

, yaitu :

Page 28: Vektor  ,  Skalar,dan Bidang  Rata

Contoh :

Jawab :

Page 29: Vektor  ,  Skalar,dan Bidang  Rata

1. Kedudukan sejajar : Bila V1 dan V2 sejajar maka n1 dan n2 sama

(atau berkelipatan), berarti [A1, B1, C1] = λ [A2, B2, C2] adalah syarat bidang V1 dan V2 sejajar (λ sebarang ≠ 0 )

2. Kedudukan tegak lurus : Bila V1 tegak lurus V2, maka vektor normalnya

akan saling tegak lurus,

Page 30: Vektor  ,  Skalar,dan Bidang  Rata

1. Tentukan persamaan bidang rata V2 yang sejajar dengan bidang rata V1 = x + y + 5z = 9

dan bidang rata V2 melalui titik (0,2,1) ! Jawab :

Page 31: Vektor  ,  Skalar,dan Bidang  Rata

2. Tentukan persamaan bidang rata V2 yang tegak lurus pada bidang rata V1 = x + y + z = 1 serta melalui titik (0,0,0) dan (1,1,0) !

Jawab :

Page 32: Vektor  ,  Skalar,dan Bidang  Rata

Jarak Antara Sebuah Titik dan Sebuah Bidang Rata Dan

Jarak Antara Dua Bidang Sejajar.

Jarak dari titik ( x1, y1, z1 ) ke bidang V : Ax + By + Cz + D = 0

adalah :

Untuk mencari jarak dua bidang sejajar V2, kita ambil

sembarang titik pada V2, lalu menghitung jarak titik tsb V1

Page 33: Vektor  ,  Skalar,dan Bidang  Rata

Contoh :1. Tentukan jarak titik (4,7,3) ke bidang 2x + 6y – 3z =

13 . Jawab :

2. Diketahui V1 = x + y + z – 2 = 0 dan V2 = x + y + z – 5 = 0.

jika R pada V2, hitunglah jarak tersebut ke V1 .

jawab :

Page 34: Vektor  ,  Skalar,dan Bidang  Rata
Page 35: Vektor  ,  Skalar,dan Bidang  Rata

Contoh :Tentukan persamaan bidang rata V yang melalui

titik( 0,0,0) serta melalui garis potong bidang-bidang : V1 = 2x + 3y +24 = 0 dan V2 = x – y + 2z = 12

Jawab : V dapat dimisalkan berbentuk :

------ (*) Karena V melalui ( 0,0,0 ) terpenuhi :

Yang kita subtitusikan ke (*) diperoleh : V = 4x + y + 4z = 0

Page 36: Vektor  ,  Skalar,dan Bidang  Rata

Pandang bidang rata V 1 = 0 , V 2 = 0 dan V 3 = 0 yang tidak

melalui satu garis lurus yg sama (bukan dalam satu berkas ).

Bentuk : menyatakan kumpulan bidang-bidang yang melalui titik potong ketiga bidang V 1 = 0 , V 2 =

0 dan V 3 = 0 itu ( dalam gambar melalui titik T ).

Dan himpunan bidang-bidang rata itu disebut jaringan bidang.

Page 37: Vektor  ,  Skalar,dan Bidang  Rata

Contoh :Tentukan persamaan bidang rata V yang sejajar bidang U : x + y + z =1 serta melalui titik potong bidang :

Jawab :

……(*)Karena sejajar dengan U, maka ( 1, 1, 1 ) adalah

normal dari V atau ( 1, , μ ) kelipatan dari ( 1, 1, 1 ) Jadi subtitusikan ke (*) menghasilkan persamaan

yang diminta, yaitu : V = x + y + z – 7 = 0

Page 38: Vektor  ,  Skalar,dan Bidang  Rata

Sebuah garis lurus akan tertentu bila diketahui dua titik pada garis tersebut.

Mis, titik P ( x1, y1, z1 ) dan R ( x2, y2, z2 ), maka

OP=[x1, y1, z1], OR =[x2, y2, z2 ] dan PR=[ x2-x1, y2-y1, z2-z1 ]

Untuk sembarang titik Q(x,y,z) pada garis g berlaku PQ= PRJelas bahwa : OQ = OP + PQ ……(*)Adalah persamaan vektoris garis lurus melalui titik P ( x1, y1, z1 )

dan R ( x2, y2, z2 )

Page 39: Vektor  ,  Skalar,dan Bidang  Rata

Jadi bila garis lurus melalui titik P ( x1, y1, z1 ) dan mempunyai

vektor arah a = [a,b,c], maka persamaannya adalah : ……….(**) Dari persamaan (**) diperoleh 3 persamaan, yaitu : x = x1 + a

y = y1 + b ………(***)

z = z1 + c

yang disebut persamaan parameter garis lurus.Kemudian bila a 0, b 0, c 0, kita eliminasikan

dari persamaan (***), diperoleh :   = = =

yang disebut persamaan linier garis lurus

a

xx )(1

c

zz )(1

b

yy )(1

Page 40: Vektor  ,  Skalar,dan Bidang  Rata

Contoh :Tentukan persamaan garis lurus melalui (3, 2 ,-2) dan

(4, -2,-1)Jawab :

yang merupakan persamaan liniernya.

Page 41: Vektor  ,  Skalar,dan Bidang  Rata

1.

2. Bila a = 0 vektor [0, b, c] terletak pada bidang rata yang sejajar bidang yoz

Bila b = 0 , garis lurus sejajar bidang xoz Bila c = 0 , garis lurus sejajar bidang xoy Dalam hal ini, bila salah satu bilangan arah (mis a =

0) maka, persamaan garis lurusnya menjadi : [x, y, z]= [ x1, y1, z1 ] + [0, b, c]

Sedangkan persamaan liniernya :

Page 42: Vektor  ,  Skalar,dan Bidang  Rata

3. Bila a = 0, b = 0, vektor [ 0,0, c] sejajar dengan arah sumbu Z

Bila a = c = 0, garis lurus sejajar sumbu Y Bila b = c = 0, garis lurus sejajar sumbu X

Contoh :1.

2. Garis lurus [x,y,z] = [2,3,-2] + λ[0,4,2] bersifat sejajar sumbu Y ( a=c=0) dan dapat dtulis sebagai :

x = 2 , z = - 2 ( dimana berlaku untuk setiap y )

Page 43: Vektor  ,  Skalar,dan Bidang  Rata

Garis lurus dapat dinyatakan sebagai perpotongan sembarang dua bidang rata yang melalui garis

lurus tersebut. Misalnya, garis lurus g adalah perpotongan bidang

rata. V 1 = A1 x + B1 y + C1 z + D1 = 0 dan

V 2 = A2 x + B2 y + C2z + D2 = 0 , maka persamaan

garis lurus g dapat ditulis :

Page 44: Vektor  ,  Skalar,dan Bidang  Rata

Untuk mencari persamaan linier garis lurus tsb sbb :1. Menentukan vektor arah dari garis lurus : [ a, b, c ]

Jelas [a, b, c] = n1 x n2

2. Menentukan sembarang titik (x1, y1, z1) pada garis lurus,

biasanya diambil titik potong dengan bidang koordinat,

mis. bidang xoy z = 0 sehingga diperoleh : A1x + By1 + D1 = 0

A2x + By2 + D2 = 0

Page 45: Vektor  ,  Skalar,dan Bidang  Rata

Contoh :Tentukan persamaan garis lurus akibat perpotongan dua

buah bidang : V1 : x - 2y + z = 1

V2 : 3x - y + 5z = 8

Jawab :n1 = [ 1, -2, 1 ] dan n2 = [ 3, -1, 5 ]

vektor arah garis : [ 1, -2, 1 ] x [ 3, -1, 5 ] = [ -9, -2, 5 ] titik potong bidang dengan bidang xoy : z = 0 x – 2y = 1 x = 3

3x – y = 8 y = 1Jadi persamaan liniernya :

[x, y, z]= [ 3, 1, 0 ] + [ -9, -2, 5 ]

Page 46: Vektor  ,  Skalar,dan Bidang  Rata

Didalam ruang berdimensi tiga, 2 garis lurus mungkin sejajar,

berimpit, berpotongan, atau bersilangan. Diketahui garis lurus

1. g1 sejajar g2 bila arah mereka berkelipatan. Jadi bila

, μ ≠ 0 atau bila

Jika berlaku , maka :

g1 dan g2 berimpit.

contoh :

Page 47: Vektor  ,  Skalar,dan Bidang  Rata

2. Kalau arah g1 yaitu [ a1, b1 ,c1 ] dan arah g2 yaitu [a2, b2,c2 ] tidak berkelipatan, maka g1 dan g2 berpotongan di satu titik atau bersilangan.

Jika , maka kedua garis tsb berpotongan

pada satu titik dan persamaan bidang yang memuat kedua

garis g1 dan g2 tsb adalah :

Jika tidak demikian, maka kedua garis tsb bersilangan.

0

121

121

121

zzcc

yybb

xxaa

Page 48: Vektor  ,  Skalar,dan Bidang  Rata

Contoh : Tunjukan bahwa

berpotongan

Dan tentukan titik potongnya serta bidang rata yang memuat

garis g1 dan g2 tsb.

Jawab :Arah mereka tidak berkelipatan, jadi tidak sejajar ataupun berimpit. Sedangkan determinan :

, jadi g1 dan g2

berpotongan.

Titik potongnya dicari dari persamaan g1= g2 , diperoleh :

1 = 1 kemudian di subt. ke g 1 ( 5, -7, 6 )

2 = 2 kemudian di subt. ke g 2 ( 5, -7, 6 )

Page 49: Vektor  ,  Skalar,dan Bidang  Rata

Persamaan bidang rata yang memuat garis g1 dan g2 adalah :

11x – 6y – 5z -67 = 0

Sudut antara garis g1 dan g2 adalah sudut antara vektor-vektor

arah [ a1, b1 ,c1 ] dan [ a2, b2 ,c2 ] , yaitu :

0

187

334

421

z

y

x

Page 50: Vektor  ,  Skalar,dan Bidang  Rata

Pandang garis lurus g dengan vektor arah a =[ a , b , c] dan bidang rata V dengan vektor normal n = [ A , B , C], maka :

g 1 sejajar denga bidang V g3 tegak lurus bidang V

g 2 terletak pada bidang V

1. Garis lurus g sejajar bidang rata V jikka vektor arah garis tegak lurus normal bidang. a . n = 0 atau aA + bB + cC = 0

Page 51: Vektor  ,  Skalar,dan Bidang  Rata

2. Garis g tegak lurus bidang rata V jikka vektor arah garis lurus = vektor normal bidang rata (atau kelipatanya) atau

3. Bila garis g terletak seluruhnya pada bidang rata, terpenuhi vektor a tegak lurus n atau a.n = 0 sehingga

aA + bB+cC = 0 dan sembarang titik P pada garis g harus terletak pula

pada bidang V.

Page 52: Vektor  ,  Skalar,dan Bidang  Rata
Page 53: Vektor  ,  Skalar,dan Bidang  Rata

1. Bila g1 dan g2 sejajar , untuk menghitung jaraknya dapat dilakukan sebagai berikut:

- Pilihlah sembarang titik p pada g1

- Buatlah bidang rata W melalui P dan tegak lurus g1, yang dengan sendirinya juga tegak

lurus 2

- Tentukan Q titik tembus g2 pada W

- Panjang PQ adalah jarak g1 dan g2

Page 54: Vektor  ,  Skalar,dan Bidang  Rata
Page 55: Vektor  ,  Skalar,dan Bidang  Rata

2. Bila g1 dan g2 bersilangan, dapat dilakukan sebagai berikut :

- Buat bidang rata W yang melalui g1 dan sejajar g2

- Pilih sembarang titik P pada g 2

- Tentukan jarak P ke bidang W, merupakan jarak

g1 dan g2.

Page 56: Vektor  ,  Skalar,dan Bidang  Rata

Contoh :

Page 57: Vektor  ,  Skalar,dan Bidang  Rata
Page 58: Vektor  ,  Skalar,dan Bidang  Rata
Page 59: Vektor  ,  Skalar,dan Bidang  Rata
Page 60: Vektor  ,  Skalar,dan Bidang  Rata
Page 61: Vektor  ,  Skalar,dan Bidang  Rata