KINEMATIKA GERAK Kecepatan gerak suatu partikel yang bergerak lurus sepanjang sumbu-x dinyatakan...

download KINEMATIKA GERAK Kecepatan gerak suatu partikel yang bergerak lurus sepanjang sumbu-x dinyatakan dengan

If you can't read please download the document

  • date post

    02-Oct-2020
  • Category

    Documents

  • view

    3
  • download

    0

Embed Size (px)

Transcript of KINEMATIKA GERAK Kecepatan gerak suatu partikel yang bergerak lurus sepanjang sumbu-x dinyatakan...

  • Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

    226 future education, today

    SONY SUGEMA COLLEGE

    TKA - Saintek Fisika

    Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

    KINEMATIKA GERAK LURUS

    2.1. POSISI Posisi suatu partikel sepanjang garis lurus dapat diidentifikasi secara unik dari jaraknya terhadap titik asal (acuan) yang dipilih.

    Gambar 2.1. Posisi satu-dimensi

    Catatan: posisi dispesifikasi secara penuh oleh 1 koordinat (itulah sebabnya mengapa disebut permasalahan 1 dimensi). Perpindahan (displacement) Perpindahan merupakan besaran vektor. Perpindahan didefinisikan sebagai perubahan posisi atau kedudukan suatu partikel terhadap titik acuan. Misalkan partikel bergerak dari titik 1 (x1) ke titik 2 (x2), maka perpindahan partikel tersebut adalah:

    Jarak (distance) Jarak merupakan besaran skalar, dan didefinisikan sebagai panjang lintasan sesungguhnya yang ditempuh oleh suatu partikel. 2.2. KECEPATAN Setiap partikel yang mengalami perubahan posisi memiliki kecepatan yang tidak sama dengan nol. Kecepatan rata-rata (average velocity) Kecepatan rata-rata didefinisikan sebagai perubahan posisi (perpindahan) per selang waktu perpindahan tersebut.

    Jika partikel bergerak searah sumbu-x positif, kecepatan rata-ratanya positif dan jika partikel bergerak searah sumbu-x negatif, kecepatan rata-ratanya negatif. Kelajuan rata-rata (average speed) Kelajuan rata-rata didefinisikan sebagai panjang lintasan yang ditempuh (jarak tempuh) per selang waktu tempuh jarak tersebut.

    Kecepatan sesaat (instantaneous velocity) Kecepatan sesaat adalah kecepatan rata-rata untuk selang waktu mendekati nol.

    Kelajuan sesaat (instantaneous speed) Kelajuan sesaat merupakan nilai mutlak dari kecepatan sesaat.

  • Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

    227 future education, today

    SONY SUGEMA COLLEGE

    TKA - Saintek Fisika

    Menentukan Kecepatan Sesaat dari Grafik Posisi – Waktu Misalnya diketahui posisi suatu partikel berubah-ubah terhadap waktu mengikuti grafik sebagai berikut:

    Menentukan Posisi dari Grafik Kecepatan – Waktu Misalnya diketahui kecepatan suatu partikel berubah-ubah terhadap waktu mengikuti grafik sebagai berikut:

    Catatan: Bila daerah yang diarsir berada di bawah sumbu t, 0

    ( ) t

    v t dt bernilai negatif. 2.3. PERCEPATAN Percepatan rata-rata Percepatan rata-rata didefinisikan sebagai perubahan kecepatan per satuan waktu.

    Percepatan sesaat Percepatan sesaat adalah percepatan rata-rata untuk selang waktu mendekati nol.

    Menentukan Percepatan Sesaat dari Grafik Kecepatan – Waktu Misalnya diketahui kecepatan suatu partikel berubah-ubah terhadap waktu mengikuti grafik sebagai berikut:

    Menentukan Kecepatan dari Grafik Percepatan – Waktu Misalnya diketahui percepatan suatu partikel berubah-ubah terhadap waktu mengikuti grafik sebagai berikut:

  • Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

    228 future education, today

    SONY SUGEMA COLLEGE

    TKA - Saintek Fisika

    Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

  • Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

    229 future education, today

    SONY SUGEMA COLLEGE

    TKA - Saintek Fisika

    A. CONTOH SOAL 1. Posisi suatu partikel yang bergerak pada sumbu-x dapat dinyatakan dengan persamaan x 2 8 12t t    ,

    dengan x dalam meter dan t dalam sekon. (a) Tentukan posisi partikel pada t = 0 dan pada t = 3 sekon. (b) Tentukan kecepatan rata-rata partikel antara t = 0 s.d. t = 3 sekon. (c) Tentukan kecepatan partikel pada t = 0 dan pada t = 3 sekon. JAWAB: (a) Pada t = 0, xo = 12 m Pada t = 3, x3 = (3)2 + 8(3)  12 = 3 m (b) Kecepatan rata- rata: 3 3 ( 12) 5

    3 0 3 ox xxv

    t   

         

    m/s.

    (c) Kecepatan sesaat: dxv dt

     = 2t + 8 m/s

    Pada t = 0, vo = 8 m/s Pada t = 3, v3 = 2(3) + 8 = 2 m/s

    2. Sebuah partikel bergerak dengan kecepatan seperti yang ditunjukkan pada grafik. Bila pada t = 0 partikel

    berada pada posisi x = 4 m, tentukan (a) Percepatan rata-rata partikel untuk interval t = 2 s.d. t = 8 s (b) Percepatan partikel pada saat t = 2s, 5s, 8s. (c) Perpindahan partikel setelah bergerak selama 10 sekon. (d) Posisi partikel setelah 10 s tersebut (anggap bahwa arah kecepatan awal partikel searah dengan r)

    JAWAB: (a) Dari grafik terlihat bahwa: t = 2  v2 = 8 m/s t = 8 s  v8 = 5 m/s Percepatan rata-rata: 5 8 1

    8 2 2 a   

     m/s2

  • Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

    230 future education, today

    SONY SUGEMA COLLEGE

    TKA - Saintek Fisika

    Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

    (b) Percepatan sesaat = gradien garis singgung kurva v – t.

     2

    10 4 2 3 0

    a   

    m/s2

     5 0a  (kurva mendatar  gradien = 0)

     8 10 0 2,5 10 6

    a     

    m/s2

    (c) 10

    10 0 0

    _ _ _x x x vdt luas di bawah kurva    

    = 21 + 30 + 20 = 61 m

    (d) 10

    10 0 0

    4 _ _ _x x vdt luas di bawah kurva    x10 = 4 + 21 + 30 + 20 = 75 m

    3. Seorang mengendarai mobil dengan kecepatan 90 km/jam, tiba-tiba melihat seorang anak kecil di tengah jalan

    pada jarak 200 m di mukanya. Jika mobil direm dengan perlambatan maksimum sebesar 1,25 m/s2, maka terjadi peristiwa: (A) mobil tepat akan berhenti di muka anak itu (B) mobil langsung berhenti (C) mobil berhenti jauh di muka anak itu (D) mobil berhenti sewaktu menabrak anak itu (E) mobil baru berhenti setelah menabrak anak itu JAWAB: (E) vo = 90 km/jam = (90/3,6) m/s = 25 m/s a = 1,25 m/s2 Sejak mulai direm sampai berhenti mobil akan bergerak sejauh x, maka: vt2 = vo2 + 2a x 0 = (25)2 + 2.(1,25). x 2,5.x = 625 x = 250 m Karena x lebih besar dari jarak mobil – anak mula-mula, maka mobil baru berhenti setelah menabrak anak itu

    4. Dua buah mobil yang berjarak 750 m satu sama lain bergerak saling mendekati. Mobil pertama mempunyai

    kelajuan tetap 20 m/s dan mobil kedua dengan kecepatan awal nol dan percepatan tetap 4 m/s2. Kedua mobil akan bertem u setelah ... (A) 5 sekon (D)20 sekon (B) 10 sekon (E) 25 sekon (C) 15 sekon JAWAB: (C)

     A dan B berangkat pada waktu yang bersamaan: tA = tB = t;  A dan B bertemu: posisi A = posisi B

    xA = xB xoA + vA t = xoB + voB t + ½ aB t2 0 + 20 t = 750 + 0.t + ½ (4) t2 2t2 + 20 t  750 = 0 t2 + 10t  375 = 0 (t + 25) (t  15) = 0 t = 15 sekon

  • Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni Step By Step “SIAP UTBK” | kelas XII dan AlumniStep By Step “SIAP UTBK” | kelas XII dan Alumni

    231 future education, today

    SONY SUGEMA COLLEGE

    TKA - Saintek Fisika

    5. Sebuah bola dilempar vertikal ke atas dan memerlukan waktu 16 sekon untuk kembali ke tempat semula (g = 10 m/s2). Tentukan: (a) kecepatan awal bola, (b) tinggi maksimum yang dicapai bola, (c) waktu yang diperlukan bola untuk mencapai

    ketinggian 240 m JAWAB: (a) Karena bola kembali ke posisi semula, maka

    perpindahan bola sama dengan nol. y = voy t + ½ ay t2 0 = vo.16 + ½ (10) (16)2 vo = 80 m/s

    (ay = g = 10 m/s2 karena arah g ke bawah, sedangkan vo ke atas)

    (b) Pada saat ketinggian bola maksimum, kecepatannya sama dengan nol.

    vty2 = voy2 + 2ay (y) 0 = (80)2 + 2 (10) hmax hmax = 320 m (c) yt = yo + voy t + ½ ay t2 240 = 0 + 80t + ½ (10) t2 5t2  80t + 240 = 0 t2  16t + 48 = 0 (t  4) (t  12) = 0 t = 4 sekon atau t = 12 sekon

    B. KAJI LATIH STANDAR Data berikut ini digunakan untuk menjawab soal nomor 1 dan 2.

    Alex mengadakan suatu perjalanan dengan sepeda motornya dari kota A ke kota E. Mula-mula ia berangkat dari kota A ke arah Timur sejauh 40 km dan sampai di kota B. Dari kota B Alex bergerak sejauh 100 km ke arah Utara dan sampai di kota C. Sesampainya di kota C ia bergerak lagi 20 km ke arah Timur menuju kota D. Setelah sampai di kota D ia masih bergerak lagi ke Selatan sejauh 20 km dan akhirnya sampai di kota tujuan, yaitu kota E. Seluruh perjalanan tersebut memerlukan waktu 3 jam.

    1. Besar perpindahan yang dialami Alex dari kota A ke kota E sama dengan .... (A) 100 km (D) 160 km (B) 120 km (E) 180 km (C) 140 km

    2. Kelajuan rata-rata sepeda motor tersebut selama perjalanan dari kota A ke kota E sama dengan .... (A) 33,33 km/jam (D) 53,33 km/jam (B) 40,00 km/jam (E) 60,00 km/jam (C) 46,67 km/jam

    3. Seorang anak berlari lurus 150 km ke utara selama 3 jam. Kemudian ia berjalan lurus 50 km ke