Introduction to computational plasticity using FORTRAN

Post on 05-May-2023

0 views 0 download

Transcript of Introduction to computational plasticity using FORTRAN

Introduction to computational

plasticity using

FORTRANYoungung Jeong

Changwon National Univ.

One dimensional elastic rod

β€’ π‘‘πœ€!" = #""

with #"#$= 𝑐

β€’ Elastic constitutive law:β€’ π”Όπœ€!" = 𝜎 (elastic stiffness 𝔼 = 200 [GPa] )β€’ Assuming 𝔼 is constant, the above constitutive

law can be expressed as:

β€’ π‘‘πœ€!" = %π”Όπ‘‘πœŽ

L vs 𝜎?

𝑣 = 𝑐 𝑑𝑣𝑑𝑑 = 0

𝑙 𝑑 = 0 = 𝑙!

One dimensional elastic rod

β€’ π‘‘πœ€!" = #""

with #"#$= 𝑐

β€’ π‘‘πœ€!" = %π”Όπ‘‘πœŽ

β€’ 𝑙 = 𝑙' + 𝑐𝑑

β€’ %π”Όπ‘‘πœŽ = #"

"β†’ ∫'

( %π”Όπ‘‘πœŽ = ∫"!

" #""β†’ %

π”ΌπœŽ = ln "

"!

𝜎 = 𝔼 ln𝑙𝑙!

𝜎 vs 𝑑 ?

𝑣 = 𝑐 𝑑𝑣𝑑𝑑 = 0

𝑙 𝑑 = 0 = 𝑙!

One dimensional elastic rodπ‘‘πœ€!" = #"

"with #"

#$= 𝑐

π‘‘πœ€!" = 𝔼 π‘‘πœŽβ€’ 𝑙 = 𝑙' + 𝑐𝑑

1π”Όπ‘‘πœŽ =

𝑐𝑑𝑑𝑙' + 𝑐𝑑

β†’ 6'

( 1π”Όπ‘‘πœŽ = 𝑐6

'

$ 𝑑𝑑𝑙' + 𝑐𝑑

β†’1π”ΌπœŽ = ln 𝑙' + 𝑐𝑑 βˆ’ ln 𝑙'

𝜎 = 𝔼 ln𝑙! + 𝑐𝑑𝑙!

Confirm following results:β€’ 𝑙' = 20 π‘šπ‘š

β€’ #"#$= 0.001 π‘šπ‘š

β€’ 𝔼 = 200 πΊπ‘ƒπ‘Ž (equivalently, 200000 π‘€π‘ƒπ‘Ž)β€’ Loading for 30 seconds

Now that you have stress, you could estimate the force as well.

β€’ Let’s say, the thickness is 1 [mm] and the width is 12.5 [mm]; The cross-sectional area amounts to 12.5 [mm^2]

𝐹 = 𝐴 β‹… 𝜎 = 𝐴 𝔼 ln𝑙! + 𝑐𝑑𝑙!

𝐴 β‹… 𝜎 = π‘šπ‘š(π‘€π‘ƒπ‘Ž = 10)*π‘š ( 10+π‘π‘š( = 𝑁

One dimensional Newtonian rod

β€’ π‘‘πœ€ = #""

with #"#$= 𝑐

β€’ Newtonian fluid’s constitutive law:

β€’ πœ‚ #)#$= 𝜎

β€’ Assuming πœ‚ is constant (Newtonian fluid), the above constitutive law can be expressed as:

β€’ πœ‚ #)#$= 𝜎 β†’ πœ‚

"###$= 𝜎 β†’ *

"#"#$= 𝜎

L vs 𝜎?

𝑣 = cmms

𝑑𝑣𝑑𝑑 = 0

𝑙 𝑑 = 0 = 𝑙!

The cross-sectional area amounts to 12.5 [mm^2]

One dimensional Newtonian rod

πœ‚π‘™π‘‘π‘™π‘‘π‘‘= 𝜎

πœ‚π‘™' + 𝑐𝑑

𝑐 = 𝜎

Water’sviscosityisknownasΞ· = 1.3Γ—10"# [Pa β‹… s] at 10Β°πΆπœ‚π‘™π‘‘π‘™π‘‘π‘‘ =

π‘ƒπ‘Ž β‹… π‘ π‘šπ‘š

π‘šπ‘šπ‘  = π‘ƒπ‘Ž

Newtonian fluid (water) under tension𝑙! = 5. π‘šπ‘šπ‘‘π‘™π‘‘π‘‘ = 0.1

π‘šπ‘šπ‘ π‘’π‘

πœ‚ = 1.3Γ—10"# π‘ƒπ‘Ž β‹… 𝑠

The cross-sectional area amounts to 12.5 [mm^2]

Newtonian fluid (water) under compression

𝑙! = 5. π‘šπ‘šπ‘‘π‘™π‘‘π‘‘ = βˆ’0.1

π‘šπ‘šπ‘ π‘’π‘

πœ‚ = 1.3Γ—10"# π‘ƒπ‘Ž β‹… 𝑠

Let’s compare two different speed of compression.

𝑙! = 50 π‘šπ‘šπœ‚ = 1.3Γ—10"# π‘ƒπ‘Ž β‹… 𝑠

𝑑𝑙𝑑𝑑 = βˆ’0.1

π‘šπ‘šπ‘ π‘’π‘

𝑑𝑙𝑑𝑑 = βˆ’1.0

π‘šπ‘šπ‘ π‘’π‘

My Python cheat sheet

Corn starch

https://youtu.be/Vx2DjGwnd44

A reasonable consideration (*VERY* phenomenological constitutive model)

Newtonian fluid’s constitutive law:πœ‚ "#"$= 𝜎

non-Newtonian fluid

πœ‚(𝜎)π‘‘πœ€π‘‘π‘‘= 𝜎

withπœ‚ 𝝈 = πœ‚! + π›Όπˆ

Continuedβ€’ π‘‘πœ€ = #"

"with #"

#$= 𝑐

πœ‚π‘‘πœ€π‘‘π‘‘= 𝜎 β†’ πœ‚' + π›ΌπœŽ

𝑑𝑙𝑙𝑑𝑑

= 𝜎

β†’πœ‚!𝑙𝑑𝑙𝑑𝑑+π›ΌπœŽπ‘™π‘‘π‘™π‘‘π‘‘= 𝜎 β†’

πœ‚!𝑐𝑙+π›ΌπœŽπ‘π‘™= 𝜎

β†’πœ‚!𝑐𝑙+π›Όπ‘πœŽπ‘™= 𝜎 β†’

πœ‚!𝑐𝑙= 𝜎 1 βˆ’

𝛼𝑐𝑙

β†’πœ‚!𝑐𝑙 βˆ’ 𝛼𝑐

= 𝜎Okay, analytical solution was easily found.

A reasonable consideration (*quite* demanding phenomenological

constitutive model)

Newtonian fluid’s constitutive law:

πœ‚π‘‘πœ€π‘‘π‘‘= 𝜎

non-Newtonian fluid

πœ‚(𝜎)π‘‘πœ€π‘‘π‘‘= 𝜎

with a viscosity that is exponentially related with stress?

πœ‚ 𝝈 = πœ‚! expπˆπ›Ό

Continuedβ€’ π‘‘πœ€ = #"

"with #"

#$= 𝑐

πœ‚ πœŽπ‘‘πœ€π‘‘π‘‘= 𝜎 β†’ πœ‚' exp

πˆπ›Ό

𝑑𝑙𝑙𝑑𝑑

= 𝜎

I gave up looking for the analytical solution of 𝝈(𝑙)…

Numerical approach?

πœ‚! exp𝝈#

$%$&= 𝜎

π‘‘πœ€ = $''

$'$&= 𝑐

Newton-Raphson method

Howtosolve?

πœ‚P expQR

STSU = 𝜎

Ourgoalistofindacertain𝜎 thatgives𝑓 𝜎 = 0

Example NRβ€’ 𝑓 π‘₯ = 𝑦 = cos π‘₯ + 3 sin π‘₯ + 3 exp(βˆ’2π‘₯) = 0의 ν•΄(즉, y=0 μΌλ•Œμ˜ xκ°’)λ₯Ό μ°Ύμ•„λ³΄μž.

ν•΄: y=0 λ§Œμ‘±ν•˜λŠ”μ μ—μ„œμ˜ x μ’Œν‘œ

Visual illustration of NR (ex 1)

Visual illustration of NR (ex 2)

Newton Raphson Method - Algorithmβ€’ 1. Guess x value and let’s name it as π‘₯! where the subscript 0 means β€˜initial’.

β€’ 2. Obtain new guess π‘₯$ by following the below tasks.

β€’ Estimate 𝑓 π‘₯! and "#"$

. In case "#"$

is a function of π‘₯. For the first attempt, use π‘₯!.

β€’ Obtain the next guess π‘₯% by drawing a tangent line at the point of (π‘₯!, 𝑓 π‘₯! ) and obtain its intercept with x-axis. You can do it by defining the line function derived from the tangent line, i.e.,

π’š =πœ•π‘“πœ•π‘₯ π‘₯! Γ— 𝒙 βˆ’ π‘₯! + 𝑓(π‘₯!)

Find the intercept of the line with x-axis, i.e., 𝑦 = 0, which gives π‘₯$:

0 =πœ•π‘“πœ•π‘₯ π‘₯! Γ— π‘₯$ βˆ’ π‘₯! + 𝑓 π‘₯! β†’ π‘₯$ βˆ’ π‘₯! = βˆ’

𝑓 π‘₯!πœ•π‘“πœ•π‘₯ π‘₯!

β†’ π‘₯$ = π‘₯! βˆ’π‘“ π‘₯!πœ•π‘“πœ•π‘₯ π‘₯!

β€’ 3. We are using this intercept as the new π‘₯.

And repeat 2-1/2-2 steps until 𝑓 π‘₯% β‰ˆ 0.

μ΄νŽ˜μ΄μ§€λ₯Όν™•μΈν•˜μ„Έμš”:https://youngung.github.io/nr_example/

NR summary

β€’ π‘₯%&' = π‘₯% βˆ’( )!"#"$ )!

β€’ Repeat the above until 𝑓 π‘₯% < tolerance

β€’Of course, you can do it manually, step-by-step. Usually, people make computer do the repetitive and tedious tasks.

Howtosolve?

πœ‚P expQR

STSU = 𝜎

𝑓 𝜎 = 𝜎 βˆ’ πœ‚! Μ‡πœ€ expπˆπ›Ό

πœ•π‘“ πœŽπœ•πœŽ = 1 βˆ’

πœ‚! Μ‡πœ€π›Ό exp

πˆπ›Ό

Let’sconsiderSTSU is given as Μ‡πœ€

Now, if you have a reasonable guess on 𝜎 (say, 𝜎!), let’s estimate next guess 𝜎$ and so on.

𝜎%&$ = 𝜎% βˆ’π‘“ 𝜎%πœ•π‘“πœ•π‘₯ 𝜎%

Cheat sheet

Continuedβ€’ π‘‘πœ€ = #"

"with #"

#$= 𝑐

πœ‚ πœŽπ‘‘πœ€π‘‘π‘‘= 𝜎 β†’ πœ‚' exp

πˆπ›Ό

𝑑𝑙𝑙𝑑𝑑

= 𝜎

I gave up looking for the analytical solution of 𝝈(𝑙)…

We might be able to use NR method to solve the above in combination with Euler method!

Euler + Newton-Raphson

πœ‚P expπˆπ›Ό

𝑑𝑙𝑙𝑑𝑑

= 𝜎 β†’ πœ‚P expπˆπ›Ό

Δ𝑙𝑙Δ𝑑

= 𝜎 β†’ 0 = 𝜎 βˆ’ πœ‚P expπˆπ›Ό

Δ𝑙𝑙Δ𝑑

𝑙(ijk) = 𝑙(i) + Δ𝑙

𝑑(ijk) = 𝑑(i) + Δ𝑑

𝑑P = 0𝑙P = 0

Δ𝑑 is, as usual, fixed as constant

Note that &'&( = 𝑐. If we apply Euler approximation,

Δ𝑙Δ𝑑 = 𝑐 β†’ Δ𝑙 = 𝑐Δ𝑑

β†’ 0 = 𝜎 βˆ’ πœ‚P expπˆπ›Ό

cΔ𝑑𝑙Δ𝑑

β†’ 0 = 𝜎 βˆ’ πœ‚P expπœŽπ›Όπ‘π‘™

We apply the Newton-Raphson method to as below function:

β†’ 𝑓 𝜎(%) = 𝜎(%) βˆ’ πœ‚! exp𝜎(%)𝛼

𝑐𝑙(%)

β†’πœ•π‘“ πœŽπœ•πœŽ = 1 βˆ’

πœ‚!𝛼 exp

𝜎(%)𝛼

𝑐𝑙(%)

β€’ Outer loop over timeβ€’ Inner loop over NR search

Euler + Newton-Raphson (Cheat sheet)

Euler + Newton-Raphson

𝑣 =𝑑𝑙𝑑𝑑 = cos(𝑑) βˆ’ 0.5

𝑑𝑣𝑑𝑑

= sin 𝑑

𝑙 𝑑 = 0 = 𝑙!

The cross-sectional area amounts to 12.5 [mm^2]

Euler + Newton-Raphson

πœ‚P expπˆπ›Ό

𝑑𝑙𝑙𝑑𝑑

= 𝜎 β†’ πœ‚P expπˆπ›Ό

Δ𝑙𝑙Δ𝑑

= 𝜎 β†’ 0 = 𝜎 βˆ’ πœ‚P expπˆπ›Ό

Δ𝑙𝑙Δ𝑑

𝑙(ijk) = 𝑙(i) + Δ𝑙

𝑑(ijk) = 𝑑(i) + Δ𝑑

𝑑P = 0𝑙P = 0

Δ𝑑 is, as usual, fixed as constant

Note that &'&( = cos(𝑑) βˆ’ 0.5. If we apply Euler approximation,Δ𝑙Δ𝑑 = cos(𝑑) βˆ’ 0.5 β†’ Δ𝑙 = cos(𝑑) βˆ’ 0.5 Δ𝑑

β†’ 0 = 𝜎 βˆ’ πœ‚! expπˆπ›Ό

cos(𝑑) βˆ’ 0.5 Δ𝑑𝑙Δ𝑑

β†’ 0 = 𝜎 βˆ’ πœ‚! expπœŽπ›Όcos(𝑑) βˆ’ 0.5

𝑙

We apply the Newton-Raphson method to as below function:

β†’ 𝑓 𝜎(%) = 𝜎(%) βˆ’ πœ‚! exp𝜎(%)𝛼

cos 𝑑(%) βˆ’ 0.5𝑙(%)

β†’πœ•π‘“ πœŽπœ•πœŽ = 1 βˆ’

πœ‚!𝛼 exp

𝜎(%)𝛼

cos 𝑑(%) βˆ’ 0.5𝑙(%)

Results

Euler + Newton-Raphson (Cheat sheet)