Music and Brain Plasticity

16
Music and Brain Plasticity Page 1 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy ). Subscriber: OUP-Reference Gratis Access; date: 04 February 2015 Subject: Psychology, Cognitive Psychology Online Publication Date: Feb 2015 DOI: 10.1093/oxfordhb/9780198722946.013.23 Music and Brain Plasticity Simone Dalla Bella The Oxford Handbook of Music Psychology, Second Edition (Forthcoming) Edited by Susan Hallam, Ian Cross, and Michael Thaut Oxford Handbooks Online Abstract and Keywords Learning and making music are complex multimodal activities which put a high load on our brain functioning. They engage perceptual, cognitive, motor, and sensorimotor processes and the associated neuronal circuitries. Long- and short-term musical training and practice can shape brain structure and functions. In this chapter, evidence supporting the neuroplastic effects of music is reviewed, by examining the differences in musicians’ and nonmusicians’ brains, in terms of structure and function. In addition, the effects of musical training and early music experience on brain development are examined. Conclusions are drawn on the role played by music-driven neuroplasticity for the purposes of neuroprotection and rehabilitation. Keywords: music, brain plasticity, learning, perception, action, sensorimotor processes, development, neurorehabilitation Introduction Musical training and performance are an ideal human model for examining the brain effects of learning specialized sensorimotor skills. They are both examples of multisensory experiences that put a high load on our sensory, motor, and cognitive systems. Years of dedicated and constant practice are necessary to master the skills displayed by professional musicians. Playing a musical instrument is typically initiated early during development, and proficient performance in adults is grounded in extensive learning and practice of a variety of skills over the course of a musician’s lifetime. Acquiring and maintaining musical skills has important and quantifiable effects on brain networking and functioning, which are manifestations of brain plasticity. In cognitive neurosciences, the term “brain plasticity” generally refers to the malleability of the human brain, which in response to experience or training partly modifies its structure and/or functions. These changes are not confined to the developing brain, but, albeit less pervasive, they are also visible in adults (e.g., Wan and Schlaug, 2010). Brain plasticity is most important when the training task is meaningful to the subject (e.g., Jenkins, Merzenich, Ochs, Allard and Guic-Robles, 1990), a fact which is particularly relevant for targeted musical training, and is modulated by the degree of awareness of sensory information or action planning (e.g., Pascual-Leone, Grafman and Hallett, 1994). Moreover, brain plasticity is associated with behavioral effects and is underpinned by processes at the cellular and molecular level (e.g., Buonomano and Merzenich 1998). In this chapter the effects of musical training and practice on brain structure and functioning are reviewed. Particular attention is paid to the effects of musical training in the adult musician, and to the mechanisms underlying music learning during development. Where Musicians’ and Nonmusicians’ Brains Differ A first approach to identify the effects of musical training on brain plasticity is to compare adult musicians and

Transcript of Music and Brain Plasticity

Music and Brain Plasticity

Page 1 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

Subject: Psychology,CognitivePsychologyOnlinePublicationDate: Feb2015

DOI: 10.1093/oxfordhb/9780198722946.013.23

MusicandBrainPlasticity SimoneDallaBellaTheOxfordHandbookofMusicPsychology,SecondEdition(Forthcoming)EditedbySusanHallam,IanCross,andMichaelThaut

OxfordHandbooksOnline

AbstractandKeywords

Learningandmakingmusicarecomplexmultimodalactivitieswhichputahighloadonourbrainfunctioning.Theyengageperceptual,cognitive,motor,andsensorimotorprocessesandtheassociatedneuronalcircuitries.Long-andshort-termmusicaltrainingandpracticecanshapebrainstructureandfunctions.Inthischapter,evidencesupportingtheneuroplasticeffectsofmusicisreviewed,byexaminingthedifferencesinmusicians’andnonmusicians’brains,intermsofstructureandfunction.Inaddition,theeffectsofmusicaltrainingandearlymusicexperienceonbraindevelopmentareexamined.Conclusionsaredrawnontheroleplayedbymusic-drivenneuroplasticityforthepurposesofneuroprotectionandrehabilitation.

Keywords:music,brainplasticity,learning,perception,action,sensorimotorprocesses,development,neurorehabilitation

Introduction

Musicaltrainingandperformanceareanidealhumanmodelforexaminingthebraineffectsoflearningspecializedsensorimotorskills.Theyarebothexamplesofmultisensoryexperiencesthatputahighloadonoursensory,motor,andcognitivesystems.Yearsofdedicatedandconstantpracticearenecessarytomastertheskillsdisplayedbyprofessionalmusicians.Playingamusicalinstrumentistypicallyinitiatedearlyduringdevelopment,andproficientperformanceinadultsisgroundedinextensivelearningandpracticeofavarietyofskillsoverthecourseofamusician’slifetime.Acquiringandmaintainingmusicalskillshasimportantandquantifiableeffectsonbrainnetworkingandfunctioning,whicharemanifestationsofbrainplasticity.Incognitiveneurosciences,theterm“brainplasticity”generallyreferstothemalleabilityofthehumanbrain,whichinresponsetoexperienceortrainingpartlymodifiesitsstructureand/orfunctions.Thesechangesarenotconfinedtothedevelopingbrain,but,albeitlesspervasive,theyarealsovisibleinadults(e.g.,WanandSchlaug,2010).Brainplasticityismostimportantwhenthetrainingtaskismeaningfultothesubject(e.g.,Jenkins,Merzenich,Ochs,AllardandGuic-Robles,1990),afactwhichisparticularlyrelevantfortargetedmusicaltraining,andismodulatedbythedegreeofawarenessofsensoryinformationoractionplanning(e.g.,Pascual-Leone,GrafmanandHallett,1994).Moreover,brainplasticityisassociatedwithbehavioraleffectsandisunderpinnedbyprocessesatthecellularandmolecularlevel(e.g.,BuonomanoandMerzenich1998).

Inthischaptertheeffectsofmusicaltrainingandpracticeonbrainstructureandfunctioningarereviewed.Particularattentionispaidtotheeffectsofmusicaltrainingintheadultmusician,andtothemechanismsunderlyingmusiclearningduringdevelopment.

WhereMusicians’andNonmusicians’BrainsDiffer

Afirstapproachtoidentifytheeffectsofmusicaltrainingonbrainplasticityistocompareadultmusiciansand

Music and Brain Plasticity

Page 2 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

nonmusicians.Plasticchangesassociatedwithshort-termandlong-termmusicaltrainingencompassdifferentlevelsofbrainorganizationspanningprimaryperceptualandmotorregionstosensorimotorintegrationandcross-modalassociationareas(forreviews,seeBarrett,Ashley,StraitandKraus,2013;HabibandBesson,2009;HerholzandZatorre,2012;Jäncke,2009;Merrett,PeretzandWilson,2013;Münte,AltenmüllerandJäncke,2002;Rauschecker,2001;StraitandKraus,2014;WanandSchlaug,2010;ZatorreandMcGill,2005).

StructuralandFunctionalDifferencesintheBrainsofMusiciansandNonmusicians

Importantdifferencesbetweenmusiciansandnonmusiciansarevisibleatdifferentlevelsoftheauditorypathway,fromthebrainstem(KrausandChandrasekaran,2010;StraitandKraus,2014),throughprimaryandneighborauditoryregions(Bermudez,Lerch,EvansandZatorre,2009;GaserandSchlaug,2003;Schneideretal.,2002),uptohigh-levelauditoryprocessing(Jamesetal.,2014;Loui,ZammandSchlaug,2012).Structuraldifferencesemergeatthelevelofprimaryauditorycortexandauditoryassociationareas,suchastheplanumtemporale(Bermudezetal.,2009;GaserandSchlaug2003;Keenan,Thangaraj,HalpernandSchlaug,2001;Loui,Li,HohmannandSchlaug,2011;Schlaug,Jäncke,HuangandSteinmetz,1995;Schneideretal.,2002;Zatorre,Perry,Beckett,WestburyandEvans,1998).Aparticularlypronouncedasymmetryoftheright/leftplanumtemporaleisobservedinmusicianswhoarepossessorsofabsolutepitch.Ingeneral,trainedmusiciansexhibitgreatervolumeandcorticalthicknessinauditorycortex(Heschl’sgyrus).Theseregionsaremostlikelyresponsibleforfinepitchcategorizationanddiscrimination,aswellasfortemporalprocessing.

Differencesarealsofoundatafunctionallevel,asrevealedbyfunctionalneuroimagingandneurophysiologicaltechniques(e.g.,auditoryevokedpotentials).Yet,theregionsinvolvedarenotalwaysconsistentwiththeresultsofstructuralbrainimagingstudies.Whilestructuralstudiespointtowarddifferencesinprimaryauditoryareas(GaserandSchlaug2003;Schneideretal.,2002),functionalstudiesrevealstrongerresponsesinhigher-levelauditoryregionswhencomparingmusicianswithnonmusicians.Moreover,nonmusiciansappearasneedingmoreneuronalresourcesforprocessingauditoryinformation,asshownbystrongeractivationofprimaryauditoryregionsrelativetomusicians(Besson,FaïtaandRequin,1994;Bosnyak,EatonandRoberts,2004;GaabandSchlaug2003;Shahin,Bosnyak,TrainorandRoberts,2003;Shahin,RobertsandTrainor,2004;Trainor,DesjardinsandRockel,1999).Thus,itisnotalwaysobviouswhethertrainingisassociatedwithincreasedordecreasedactivationintheunderlyingbrainregions.

Structuraldifferencesduetomusicaltrainingextendtomotorandsensorimotorcortices,topremotorandsupplementarymotorregions,andinvolvesubcorticalstructuressuchasthebasalgangliaandthecerebellum(Amunts,SchlaugandJäncke,1997;BangertandSchlaug,2006;Bermudezetal.,2009;Elbert,Pantev,Wienbruch,RockstrohandTaub,1995;GaserandSchlaug2003;Hutchinson,Lee,GaabandSchlaug,2003).Thisneuronalcircuitryisengagedinmotorcontrolandfinemotorplanning(e.g.,fingermotions)duringmusicperformanceaswellasinmotorlearning(SchmidtandLee2011).Differencesarealsoobservedintermsofbrainconnectivity(i.e.,whitematter).Forexample,musiciansexhibitgreatermidsagittalsizeofthecorpuscallosum(Lee,ChenandSchlaug,2003;Oztürk,Tasçioglu,Aktekin,KurtogluandErden,2002;Schlaug,Jäncke,Huang,StaigerandSteinmetz,1995).Thisstructure,supportingtheinteractionbetweenthetwohemispheres,maybethesubstrateofcoordinatedmovementofrightandlefthand(e.g.,fortheperformanceofcomplexbimanualmotorsequences;forinstance,seeWiesendangerandSerrien2004).Finally,theamountofmusicalpracticeisassociatedwithgreaterintegrityofthecorticospinalpathway(Bengtssonetal.,2005).

Morerecently,thereareindicationsthattrainingisnotsystematicallyassociatedwithincreasedbrainvolume.Forexample,adecreaseinstriatalvolumeisobservedinballetdancers(Hänggi,Koeneke,BezzolaandJäncke,2010)andskilledpianists(Granertetal.,2011)asafunctionofefficiencyinmotorperformance(seealsoJamesetal.,2014).Similarmixedeffectsofmusicaltrainingarefoundinfunctionalneuroimagingstudies,andarenotalwayscoherentwiththeobservedanatomicaldifferences.Musiciansexhibiteitherlowerormorelocalizedactivationintheprimarymotorcortexthannonmusiciansandmorevariablelevelsofactivationinmotorassociationregionssuchasthepremotorandsupplementarymotorareas(Haslingeretal.,2004;Hund-GeorgiadisandvonCramon,1999;Jäncke,ShahandPeters,2000;Kringsetal.,2000;Meisteretal.,2005).Theseinconsistenciesinfunctionalchangesmayreflectdifferentialrecruitmentofresourcesandmechanismsinskilledmusicians.Musicaltrainingandperformancerequiregreaterinvolvementofhigher-ordercognitiveprocesses(e.g.,tonalprocessing,workingmemory,syntax),thustheymayfavorincreaseddensityintheassociatedbrainregions.Yet,otherprocesses,

Music and Brain Plasticity

Page 3 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

likelytobeautomatizedandrequiringlessresourcestobeexecuted(e.g.,sensorimotorfunctionsandbasicmotorcontrol),mightrecruitlessbrainvolume(Jamesetal.,2014).Asimilarexplanationmayshedlightoninconsistenciesbetweenvisiblestructuralchangesandvariablefunctionalcorrelates(i.e.,increasedordecreasedactivationinmusicians)inprimaryauditoryandmotorregions.Thisproblemisinherentinthecomplexrelationbetweenstructuraldifferencesandfunctionalchangesassociatedwithmusicaltraining(seeZatorre,FieldsandJohansen-Berg,2012).Asystem(perceptualormotor)extendingitsrepresentationinthebrainasaresultofmusicaltrainingmayprocessinformationmoreefficientlyusingfewerneuronalresourcesthanaless-specializedsystem.Enhancedefficiencymightmanifestinlowerbloodflowdemandsinskilledmusiciansascomparedtononmusicianswhenperformingacomplexmotorsequence(Hund-GeorgiadisandvonCramon,1999;Jänckeetal.,2000;Koeneke,Lutz,WüstenbergandJäncke,2004;Kringsetal.,2000;Meisteretal.,2005).

Structuraldifferencesinthebrainofmusiciansandnonmusiciansarenotconfinedtotheauditorypathwayortomotorcircuitries.Theyextendtoparietalregions(e.g.,tothesuperiorparietallobe,includingtheintraparietalsulcusandtheinferiorlateraltemporallobe)andtotheinferiorfrontalgyrus.Althoughthefunctionalroleofthesedifferencesisstillunclear,itislikelythattheyareinvolvedinmultisensoryencodingandintegration.Sincemusicaltrainingandperformancearerichandintensemultimodalexperiencesitisexpectedthattheseactivitieswillhavebraineffectsontheinteractionbetweenmodalities(i.e.,oncross-modalintegration)(Zatorre,ChenandPenhune,2007).Notably,structuraldifferencesinfrontallobehavebeenconsistentlyreportedintheinferiorfrontalgyrus(BermudezandZatorre2005;Bermudezetal.,2009;GaserandSchlaug2003;Hanetal.,2009;Slumingetal.,2002).Ingeneral,frontalstructuresareassociatedwithavarietyofprocessesspanningfromintegrationofindividualauditoryeventsintolargerunits,mappingactionstosounds,tomusicaltonalsyntax(BangertandAltenmüller2003;Bangertetal.,2006;Koelschetal.,2002;Lahav,SaltzmanandSchlaug,2007;LevitinandMenon2003;Lotze,Scheler,Tan,BraunandBirbaumer,2003;Tillmannetal.,2006;Zatorre,ChenandPenhune,2007).Inparticulartheleftinferiorfrontalgyrusseemstoplayarelevantroleintheauditory-motornetwork.ThisregionhasbeenreferredtointhepastasBroca’sareaduetoitsfunctionsupportingaudio-motorinteractioninspeechproduction.

Functionalneuroimaginginmusiciansandnonmusiciansrevealmajordifferencesinbrainactivationslinkedtomusicaltraining,includingparietalandfrontalregions.Itisintriguingthatthesedifferencesemergealsowhenpeoplemerelylistentomusic.Forexample,priorinstrumentalpracticeisassociatedwithincreasedactivityintheauditoryandvisualsensorimotornetworkswhenperformingaperceptualtask(BangertandAltenmüller2003;Bangertetal.,2006).Thereexiststrongfunctionalconnectionslinkingauditoryperceptionandmotorprocessingduringbothmusicperceptionandperformance.Mereexposuretosoundsofwell-learnedactionstriggersaneuralnetworkextendingwellbeyondauditoryregions(BangertandAltenmüller2003;Bangertetal.,2006;D’Ausilio,Altenmüller,OlivettiBelardinelliandLotze,2006;Hasegawaetal.,2004;Haslingeretal.,2005;HaueisenandKnösche2001;Keysersetal.,2003;Kohleretal.,2002;Lahavetal.,2007;Zatorreetal.,2007).AregionwhichhasattractedparticularattentionwithinthisneuronalcircuitryisBroca’sarea,correspondingtotheposteriorinferiorfrontalgyrus.Theinferiorfrontalgyrusispartofanetworkreferredtoas“mirrorneuronsystem”(RizzolattiandCraighero2004;Rizzolatti,FadigaGalleseandFogassi,1996).MirrorneuronswereinitiallydiscoveredinregionF5inmonkeybrain,whichistreatedasthehomologofhumanBroca’sarea(RizzolattiandArbib,1998).Theinferiorfrontalgyrusisinvolvedwhenactionsareperformedbutalsowhenweseemeaningfulandgoal-directedmovements,orwhenwearepresentedwithsoundslinkedtowell-knownactions(e.g.,hearingactionwords,graspingfoodorplayingamusicalinstrument;Aziz-Zadehetal.,2006;Buccino,BinkofskiandRiggio,2004;Buccino,Vogt,etal.,2004;Lahavetal.,2007;Pulvermüller,ShtyrovandIlmoniemi,2005;Rizzolattietal.,1996).Therearesomeindicationsthatmusiciansexhibitincreasedgraymattervolumeintheinferiorfrontalgyruswhencomparedtononmusicians(Slumingetal.,2002;GaserandSchlaug2003;foraconfirmationoffunctionalinvolvementofBroca’sarea,seeSluming,Brooks,Howard,DownesandRoberts,2007),inassociationwithparietalanddorsalpremotoractivation.Thusmusicalexpertisemaybeassociatedwithgreaterinvolvementofamultimodalsensorimotor-integrationsystem,whenmusicianslistento,readthescoreof,orwatchperformancesofwell-knownmusic.

Instrument-Specific,Training-InducedPlasticity

Theevidencereviewedabovefromcross-sectionalstudiesshowsthatbrainplasticitycandifferentiatemusiciansfromnonmusicians.Notably,additionaldifferencesarefoundwhencomparingmusicianswhohavereceived

Music and Brain Plasticity

Page 4 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

differenttypesofinstrumentalpractice.Changesinthecorticalrepresentationswithinthemotorcortexdependontheplayedinstrument(i.e.,instrument-specificplasticity).Forexample,corticalrepresentationofthehandisdependentonthesidewhichismostinvolvedinfinemotorcontrolduringmusictrainingandperformance.Greatercorticalrepresentationsoffingersinviolinists’lefthand,ascomparedwithrighthand,havebeenfoundwithmagnetoencephalograpy(MEG)(Elbertetal.,1995).Use-specificfunctionalreorganizationofthemotorcortexisobservedwhencomparingtheshapeoftheregionscontaininghandrepresentationsinpianistsandviolinists,showinggrossanatomicaldifferencesintheprecentralgyrus(BangertandSchlaug2006).Stringplayersrequirehighlydevelopedfinemotorskillsinparticularintheirlefthand.Incontrast,inkeyboardplayers,bothhandsareassociatedwithhighlytrainedfinemotorskillswithapreferencefortherighthandasittypicallysupportsmelodyandmorearticulatedtechnicalpassageswhereasthelefthandrealizestheaccompaniment.Moreover,mostkeyboardperformersexhibitaparticularconfigurationreferredtoas“Omegasign”ontheleftmorethanontherighthemisphere,whilstmoststringplayersshowthissignonlyontheright.Theprominenceofthissigniscorrelatedwiththeageatwhichmusiciansstartedmusicalpracticeandtothecumulativeamountofpracticetime.Theobservationofthisconfigurationinrelationtothetypeofperformerarguesinfavorofastructuralplasticitymechanismdrivenbyspecificinstrumentalpractice.

Instrument-specificneuroplasticityinterestinglyextendstoperception.Musiciansshowgreaterevokedpotentialsinthepresenceofauditorystimuliascomparedtononmusicians(Pantevetal.,1998).Thiseffectismodulatedbythespecificmusicaltraining,asindicatedbytimbre-specificneuronalresponsesobservableindifferentgroupsofinstrumentalists.Forexample,stringandtrumpetplayersrevealstrongerevokedcorticalresponseswhenpresentedtothesoundoftheirrespectiveinstrument(Pantev,Roberts,Schulz,EngelienandRoss,2001),aneffectparticularlyvisibleintherightauditorycortex(Shahinetal.,2003).Inaddition,musiciansdisplayincreasedgamma-bandactivityinducedbythesoundoftheirowninstrumentascomparedtoothers(Shahin,Roberts,Chau,TrainorandMiller,2008).Thesefindingsaresupportedbyfunctionalimagingevidenceinviolinistsandflutists(Margulis,Mlsna,Uppunda,ParrishandWong,2009)indicatingthatinstrument-specificplasticityisnotrestrictedtotheprimaryauditorycortexbutratherspansacrossanetworkincludingassociationandauditory-motorintegrationareas.Recentstudiesprovideadditionalevidencethatexperience-specificplasticitymaybevisibleatthelevelofthebrainstem(Strait,Chan,AshleyandKraus,2012;forareview,Barrettetal.,2013).Insum,thereiscompellingevidenceofimportantandmeasurabledifferencesinbrainstructureandfunctionassociatedwithmusicaltrainingandlisteningexperienceinaheterogeneousgroupofmusicians.Eventhoughthesestudiesarecross-sectional,thusmakingitdifficulttoconcludeaboutacausalroleoftrainingonbraindifferences,instrument-ortimbre-specificplasticitystillsupportsthenotionofdedicatedbrainadaptations.

BeyondaCross-SectionalApproach:Short-TermEffectsofTraininginAdults

Cross-sectionalstudiesaresupportiveofstructuralandfunctionaldiscrepanciesbetweenthebrainsofmusiciansandnonmusicians.Inaddition,factorssuchasageofcommencement,intensity,ordurationofmusicaltraining/practicecanaccountfortheamountofbraindifferences(e.g.,Amuntsetal.,1997;BangertandSchlaug,2006;Elbertetal.,1995;GaserandSchlaug,2003;Schneideretal.,2002;Slumingetal.,2002).Thesefindingsandrelationspointtowardacausalrelationbetweenmusicaltraining/practiceandtheirstructuralandfunctionalbraincorrelates.Yet,themainproblemofthiscross-sectionalapproachisthatpreexistingfactorssuchaspredispositionsorgeneticcausesmayberesponsibleforsomeoftheobserveddifferencesbetweenmusiciansandnonmusicians.Longitudinalstudiesonshort-termorlong-termeffectsoftrainingareaviablealternativewhichcanallowdrawingcausalinferences.Inadults,effectsofshort-termtrainingatthebrainstemlevelarefoundinlinguisticandmusicalpitchdiscrimination(CarcagnoandPlack2011;Song,Skoe,WongandKraus,2008).Electroencephalography(EEG)andMEGstudiesrevealcorticalchanges(e.g.,increasedevokedpotentialsandincreasedsynchronizationinsecondaryauditorycortex)duetopitchdiscriminationtraining,associatedwithenhanceddetectionofpitchdiscrepancies(Bosnyaketal.,2004;Menning,RobertsandPantev,2000;Schulte,Knief,Seither-PreislerandPantev,2002),orinresponsetoimprobablesoundsfollowingrapidlearningofanovelmusicalsystem(Loui,Wu,WesselandKnight,2009).Transcranialmagneticstimulation(TMS)alsorevealschangesinhandcorticalrepresentationresultingfromshort-termtrainingofnovelfinemotorskills(e.g.,learningfive-fingerexercisesonthepiano)(Pascual-Leoneetal.,1995).However,functionalneuroimagingyieldsresultswhicharelessconsistentandmoredifficulttointerpret.Pitch-relatedlearningtasksareassociatedwitheitherdecreased(Jäncke,Gaab,Wüstenberg,ScheichandHeinze,2001;Zatorre,DelhommeauandZarate,2012)orincreasedactivation(Gaab,Gaser,andSchlaug,2006)oftheauditoryregions.Similardiscrepanciesareobserved

Music and Brain Plasticity

Page 5 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

followingshort-termsensorimotortraining(e.g.,piano-likeinstrumentallearning).Inthiscase,listeningtomelodiesbeforeandafterthetrainingisassociatedwitheitherincreasedactivationofregionsassociatedwithactionobservation(e.g.,thepremotorregion,Broca’sarea,andtheinferiorparietalregion)(Lahavetal.,2007),orwithdecreasedactivationofthedorsalauditoryactionpathway(Chen,RaeandWatkins,2012).Thesefindingsarereminiscentofthesituationencounteredincross-sectionalstudies,wheremusicaltrainingmanifesteditselfinincreasedordecreasedactivation.Similarly,itispossiblethatundercertaincircumstances,learningimprovesefficiencyinencodingorprocessinginformation(foranexampleinvision,seeYotsumotoetal.,2008),thusrequiringlessneuronalresources.

Traininginanexperimentalsettingcanbringaboutshort-termbrainchanges(e.g.,Chenetal.,2012;Lahavetal.,2007).Recentstudiesshowthatthenatureofthetrainingplaysarelevantroleinfosteringplasticchanges.Comparingauditoryexposurepersetoauditory-motortrainingisparticularlyinsightful.Lappeandcollaborators(Lappe,Herholz,TrainorandPantev,2008;Lappe,Trainor,HerholzandPantev,2011)submittednonmusiciansto2weeksofmusicaltraining.Inonegroup,thesensorimotortrainingconsistedoflearningtoplayamusicalsequenceonthepiano.Intheothergroup,nonmusiciansdetectederrorsinperformancesafterlisteningtothestimuliplayedbyotherparticipants.Followingthesensorimotortraining,participantsshowedenhanceddetectionofincorrectpitchortiming,ascomparedtomerelistening.Thisdifferencewasaccompaniedbylargerbrainresponse(i.e.,increasedauditorymismatchnegativity)topitchanddurationdeviations,indicatinggreaterenhancementofmusicalrepresentationintheauditorycortexfosteredbysensorimotortraining.Similarresultsshowinggreaterbenefitsofauditory-visualmultimodaltrainingascomparedtounimodaltrainingarereported(Paraskevopoulos,Kuchenbuch,HerholzandPantev,2012).Tosummarize,short-termchangesinbehaviorandbrainactivitycanbeobservedinadultsasaresultofabriefperiodofmusically-relatedtraining.Sensorimotorandmultimodaltraining,typicaloflearningamusicalinstrument,ismoreefficientindrivingneuroplasticchangesthanunimodaltraining.Thiseffectislikelytobeunderpinnedbybrainchangesoccurringbetweenauditory,motor,andsensorimotorintegrationsregions,andinvolvingbothfeedforwardmechanismscapableofpredictingtheoutcomeofmotoractivityaswellasfeedbackmechanismsformonitoringtheperformance(HerholzandZatorre2012;forexamplesinspeech,seeHickokandPoeppel2007;RauscheckerandScott2009).

MusicShapingChildBrainDevelopment

Thereisasignificantbodyofevidenceshowingstructuralandfunctionaldifferencesintheadultbrainsofmusiciansandnonmusicians.However,whetherthesedifferencesaretheresultofnatureorofnurtureisstillsubjecttodebate.Theymaybetheoutcomeoffactorswhichexistedpriortotraining(i.e.,brainpredispositionsoraptitude)orresultfrombrainadaptationsduetomusicaltrainingorexperience(e.g.,mereexposurefosteringimplicitlearning)duringsensitiveperiodsofbraindevelopment.Thereareindicationsfromcross-sectionalstudiesinadultsinfavorofexperience-dependentfactorsdrivingbrainadaptation.Earlyonsetofmusicaltraining(before7yearsofage),withinasensitiveperiod,isparticularlyefficientinstimulatingbrainchanges(forreviews,seeBarrettetal.,2013;Penhune2011;Zatorre2013;forotherdomains,suchasspeech,seeKuhl2010).Asensitiveperiodindicatesatimeframewhenearlyexperience(e.g.,musicaltraining)hasthegreatesteffectonbrainandbehaviorrelatedtotraininglaterinlife(Knudsen2004).Structuraldifferencesinthecorpuscallosumbetweenmusiciansandnonmusiciansandtheextentofhandrepresentationsinmotorcortexaregreaterformusicianswhobegantrainingbefore7years(Amuntsetal.,1997;Elbertetal.,1995;Schlaug,Jäncke,Huang,StaigerandSteinmetz,1995).Moreover,earlytrainingisassociatedwithgreaterauditorycortexandbrainstemresponsestotones(Pantevetal.,1998;Wong,Skoe,Russo,DeesandKraus,2007).Thedependenceofstructuralchangesontheageofcommencementisconfirmedwhencontrollingfortheamountoftraining(BaileyandPenhune,2010;Watanabe,Savion-LemieuxandPenhune,2007).Forexample,early-trainedmusicians(<7years)displaybettersensorimotorsynchronizationskillsascomparedtolate-trainingmusicians(>7years).Thisdifferenceisunderpinnedbybrainconnectivity(intermsofwhitematter)andstructuraldiscrepancies(intermsofgraymatter)(BaileyandPenhune,2012;Bailey,ZatorreandPenhune,2014;Steele,Bailey,ZatorreandPenhune,2013).Finally,inarecentcross-sectionalfunctionalmagneticresonanceimaging(fMRI)study,alinearregressionapproachisusedtoteaseapartage-relatedmaturationeffects,linkedmostlytofrontal(e.g.,premotor)andparietalregions,andtraining-relatedeffects,involvingmostlythesuperiortemporalgyrus(Ellisetal.,2012).

Insum,previouscross-sectionalstudiespointtowardexperience-dependentfactorsinshapingmusicians’brains.However,todeterminetherelativecontributionofnatureandnurtureinthedevelopmentofmusicalskills,

Music and Brain Plasticity

Page 6 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

longitudinalstudiesareneeded.Longitudinalstudiesshowbeneficialeffectsofmusicallessonsonmusicalabilitiesaswellasbehavioraleffectsonanumberofextramusicalareas.Thisphenomenonisreferredtoas“transfer”(BangerterandHeath,2004;forareview,seeKrausandChandrasekaran,2010).Neartransferisobservedwhenthetrainingdomainandthetransferdomainarehighlysimilar(e.g.,whenlearningamusicalinstrumentaffordsfinemotorskillswhichsubserveotheractivitiesbeyondmusic,suchastyping).Fartransferoccurswhenthereisrelativelylittleresemblancebetweenthetrainedabilityandthetransferdomain(e.g.,whenmusicaltrainingisassociatedwithenhancedmathematicalthinking).Fartransferofmusicaltraining,typicallymoredifficulttoachievethanneartransfer,isfoundinverbal,spatial,mathematicalthinkingandonintelligencequotient(IQ)(e.g.,Chan,Ho,andCheung,1998;Ho,CheungandChan,2003;Rauscher,ShawandKy,1993;Schellenberg2004;TierneyandKraus2013;Vaughn2000;forreviews,Schellenberg2001,2011;SchellenbergandWeiss2013).Someofthesefindings,inparticularthoserelatedtoshort-termeffectsoflimitedmusicalexposure(e.g.,theso-calledMozarteffect),arecontroversialanddifficulttoreplicate(Chabris1999;Steeleetal.,1999).Forexample,Schellenberg(2004)tested6-year-oldchildrenwhounderwentkeyboardorvoicelessonsfor36weeks.Controlgroupsofchildrenreceiveddramalessonsornolessons.Afterthetraining,childrenwhoreceivedmusiclessonsshowedasmall,albeitconsistent,increaseinfull-scaleIQandhigherperformanceinstandardizededucationalachievementtests,ascomparedtothecontrolgroups.ConsideringthatsimpleattendancetoschoolraisesIQ(CeciandWilliams1997),musicallessonsmayprovideanadditionalboostinIQbyprovidingaricheducationaloptionwhichishighlymotivatingandinvolvesawiderangeofmultimodalandsensorimotoractivities.Ataneurallevel,fartransferofmusicaltrainingmightbefosteredbysustainedinvolvementofthemultimodalsensorimotorintegrationnetworkduringrepeatedmusicallessons,drivingbrainplasticitychanges.Cross-modalplasticityinducedbymusicaltrainingislikelytoaffectregionswhicharerelevantforothertaskssuchasmathematics(parietal;Chochon,Cohen,vandeMoorteleandDehaene,1999),workingmemory(parietal;GaabandSchlaug,2003;Gaabetal.,2006),sequentialmentaloperations(frontal;Slumingetal.,2007),speech/language,auditory-motormapping,auditoryintegrationorprediction(frontal;Koelschetal.,2002;Koelsch,Fritz,Schulze,AlsopandSchlaug,2005;Lahavetal.,2007;Patel,2003;TettamantiandWeniger,2006).

Agrowingbodyofstudiesfocusesonthestructuralandfunctionalchangesoccurringinchildren’sbrainsasaresultofmusicaltraining.Insomestudies,theeffectofchildrentakingspecificinstrumentallessonswiththeSuzukimethodisexamined.Thismethod,basedontrainingtolistenbyearandlearningbyimitation,isstandardized,andthusparticularlyappropriateforsystematicstudies.Inastudy,4–6-year-oldchildrentrainedwiththeSuzukimethod(traininggroup)revealedchangesinauditoryevokedresponsestoaviolinandanoisestimulus.Inparticular,thetraininggroupshowedfasterresponsestoviolinsoundsthanthecontrolgroup(Fujioka,Ross,Kakigi,PantevandTrainor,2006;seealsoShahinetal.,2008).Notably,thesechangeswereaccompaniedbyenhancedperformanceinabehavioralmusicaltaskandimprovedworkingmemoryinanonmusicaltask.EffectsofmusicaltrainingonelectrophysiologicalbrainresponsesarenotconfinedtochildrenlearningwithSuzukimethod.Standardmusicaltrainingislinkedtogreatermismatchnegativity(MMN)responsestomelodicandrhythmicmodulationsinchildrenbetween11and13yearsofage(Putkinen,Tervaniemi,Saarikivi,deVentandHuotilainen,2014),andlargerinducedgamma-bandresponsesin5-year-oldchildren(Trainor,ShahinandRoberts,2009).Notably,enhancedbrainresponsetomusicalsoundsdoesnotrequireextensivetraining.Four-month-oldinfantsexposedtomelodiesineitherguitarormarimbatimbreforabout2.5hoursoverthecourseofaweekexhibitedMMNselectivelytothetimbreatwhichtheywereexposed(Trainor,LeeandBosnyak,2011).Furthermore,theeffectsofmusicaltrainingduringdevelopmentarenotlimitedtocorticalfunctionalitybutextendtobrainstemresponseswhenprocessingspeechinnoise(Strait,Parbery-Clark,O’ConnellandKraus,2013).Electrophysiologicalchangesareaccompaniedbyfunctionalchanges,asrevealedbyfMRI,suggestingleftwardasymmetryintask-relatedactivityduringmusicprocessing(same/differentdiscrimination),withpeaksintheauditorycortexandsupramarginalgyrus(Ellis,Bruijn,Norton,WinnerandSchlaug,2013).

Finally,musicaltrainingcanbringaboutchangesinbrainanatomy.Afterabout2.5yearsofmusicaltraining,5–7-year-old,high-practicingchildrenshowedincreasedsizeoftheanteriorpartofthecorpuscallosum,agroupoffibersconnectingmotorrelated-areasofthetwohemispheres(Schlaugetal.,2009).Thenumberofweeksofmusicalexposurewasassociatedwithchangesinthisregion,aswellaswiththeperformanceinamotor-sequencingtask.Structuralbrainchangesarealsofoundattheleveloftemporo-occipitalandinsularcortex,regionsrelatedtomusicalreading(BergmanNutley,DarkiandKlingberg,2014).Notably,braindeformationchangesinmotorandauditoryareascriticalforinstrumentalmusictrainingarevisibleassoonasafter15monthsoftrainingin6-year-oldchildren(Hydeetal.,2009).Someofthesechangesareassociatedwiththeperformance

Music and Brain Plasticity

Page 7 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

inbehavioraltesting.Forexample,thedeformationchangesinrightauditoryareaunderlieimprovedmelodic/rhythmicdiscrimination.Tosummarize,musicaltrainingandpracticingamusicalinstrumentareassociatedwithcognitivebenefitswhichmanifestintermsofnearorfartransfereffects.Thereisincreasingevidencepointingtothefunctionalmechanismsandstructuralchangesunderpinningthesetransfereffectsduringdevelopmentbasedonlongitudinalapproaches.Thesefindingsbegintouncovertheprocesseswhichallowmusicaltrainingtoshapefunctionalandstructuralbraindevelopment.Theeffectwouldbemostevidentwhenthetrainingisdeliveredwithinagivensensitiveperiod,whoseboundarieshavestilltobeclearlyidentified.

Conclusions

Thehumanbrainhastheremarkableabilitytochangeasafunctionoftrainingandenvironmentaldemands.Musicaltrainingandpracticearerichsensorimotorandmultimodalexperienceswhichcanshapeboththestructureandthefunctionsofhumanbrainandwhichareassociatedwithcognitivebenefits.Learningandrepeatedpracticeofaninstrumentbyprofessionalmusiciansimpliestheassociationbetweenfinemotormovementswithmeaningfulsoundpatterns,whilereceivingreal-timemultisensoryfeedback.Brainchangesaremanifestwhencomparingmusicianstononmusicians(e.g.,training-andinstrument-specificbrainplasticity),andcanbemeasuredinchildrenafterafewmonthsofmusicallyrelatedtraininginlongitudinalstudies.Behavioraleffectsandbenefitsofmusicaltrainingareundergirdedbyplasticchangesinprimaryandsecondaryauditoryandmotorcortices,aswellasinsensorimotorandmultimodalintegrationareas.

Eventhoughbrainchangesaregenerallydrivenbydedicatedmusicaltrainingasshowningroupstudies,thereareimportantindividualdifferencesinpeople’slearningofmusicalskills.Atoneendofthecontinuumthereareindividualssufferingfromlifelongdisordersofmusicallearning(i.e.,congenitalamusiaortone-deafness;forreviews,seeDallaBella,BerkowskaandSowiński,2011;PeretzandHyde2003;WilliamsonandStewart,2013).Attheotherendwefindmusicalprodigiesshowingprecociousmusicalabilities(e.g.,afinesenseofrhythmorexceptionalmotorcontrolinplayinganinstrument),whichallowthemtoachievelevelsofmusicalexpertiseunattainablefortheaveragemusician(e.g.,Kirnarskaya,2009).Indeed,thepresenceofexperience-relatedplasticitydoesnotruleoutthecontributionofpredispositionalfactors.Practiceandexperiencetypicallyoperateonnaturalabilitieswithageneticsubstrate.Thus,individualanatomicalandfunctionalpropertiesoftheneuralarchitecture(i.e.,geneticpredispositionsforlearning)mightbemoreorlessconducivetolearningmusicalskills(Zatorre,2013).Accordingly,individualdifferencesareanimportantfactorinexplainingdiscrepantresultsinneuroplasticityduetomusicaltraining(Merrettetal.,2013).Inparticular,geneticdifferenceswhichmaypavethegroundtomusicallearningaredevotedincreasingattention(Parketal.,2012;Ukkola-Vuotietal.,2013).Thereisrecentevidencethatexperience-relatedneuroplasticitycannotaccountforallobservedvariabilityinexpertbrains(FosterandZatorre,2010;Golestani,PriceandScott,2011),thusopeningthedoortogenetic/maturationalfactors.

Finally,alterationofbrainfunctionsandstructureasafunctionoftrainingorexperienceisnotconfinedtothedevelopmentalbrain,duringaparticularsensitiveperiod.Acertaindegreeofbrainplasticityisalsopossibleinadulthoodandintheelderly(e.g.,followingajugglingtraining;Boyke,Driemeyer,Gaser,BüchelandMay,2008;Draganskietal.,2004;Draganskietal.,2006).Thereareindicationsthatneuroplasticityispossibleintheadultbrainfollowingrelativelyshort-termmusicaltraining(e.g.,Herdeneretal.,2010;Lappeetal.,2008,2011).Thisfacthasmajorconsequenceswhichmotivatetheuseofmusicasatooltolimitordelaycognitivedeclineintheelderlyortoactasaneuroprotector(forareview,seeWanandSchlaug2010).Forexample,trainingprogramsrequiringintensivemultisensory,cognitive,andmotoractivities(e.g.,halfanhourofpianolessonsperweek,for6months)aresuccessfulinimprovingworkingmemory,perceptual,andmotorskills(Bugos,Perlstein,McCrae,BrophyandBedenbaugh,2007),andindelayingage-relateddeclineinspeechperception(Parbery-Clark,Anderson,HittnerandKraus,2012;Parbery-Clark,Strait,Anderson,HittnerandKraus,2011),nonverbalmemory,andexecutiveprocesses(Hanna-PladdyandMacKay,2011).Inaddition,beneficialeffectsofmusic-relatedactivitiesarefoundinstrokepatients(e.g.,Särkämöetal.,2008),andinpatientswithneurodegenerativedisorders,suchasParkinson’sdiseaseanddementia(e.g.,Limetal.,2005;Spauldingetal.,2013;VanWegen,Hirsch,HuiskampandKwakkel,2014;Vergheseetal.,2003).Understandingthemechanismsoftraining-relatedplasticityunderlyingthesebeneficialeffectsofmusicisacriticalstepfordevelopingsuccessfultheory-drivenrehabilitationstrategiesandpreventionprograms.

Acknowledgments

Music and Brain Plasticity

Page 8 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

ThewritingofthischapterwassupportedbyagrantfromtheEuropeanCommission(FrameworkProgramme7,ITNEBRAMUS,n.238157).

References

Amunts,K.,Schlaug,G.,Jäncke,L.,Steinmetz,H.,Schleicher,A.,Dabringhaus,A.,andZilles,K.(1997).Motorcortexandhandmotorskills:structuralcomplianceinthehumanbrain.HumanBrainMapping,5(3),206–215.

Bailey,J.A.andPenhune,V.B.(2010).Rhythmsynchronizationperformanceandauditoryworkingmemoryinearly-andlate-trainedmusicians.ExperimentalBrainResearch,204(1),91–101.

Bailey,J.andPenhune,V.B.(2012).Asensitiveperiodformusicaltraining:contributionsofageofonsetandcognitiveabilities.AnnalsoftheNewYorkAcademyofSciences,1252,163–170.

Bailey,J.A.,Zatorre,R.J.,andPenhune,V.B.(2014).Earlymusicaltrainingislinkedtograymatterstructureintheventralpremotorcortexandauditory-motorrhythmsynchronizationperformance.JournalofCognitiveNeuroscience,26(4),755–767.

Bangert,M.andAltenmüller,E.O.(2003).Mappingperceptiontoactioninpianopractice:alongitudinalDC-EEGstudy.BMCNeuroscience,4,26.

Bangert,M.,Peschel,T.,Schlaug,G.,Rotte,M.,Drescher,D.,Hinrichs,H.,…Altenmüller,E.(2006).Sharednetworksforauditoryandmotorprocessinginprofessionalpianists:evidencefromfMRIconjunction.NeuroImage,30(3),917–926.

Bangert,M.andSchlaug,G.(2006).Specializationofthespecializedinfeaturesofexternalhumanbrainmorphology.TheEuropeanJournalofNeuroscience,24(6),1832–1834.

Bangerter,A.andHeath,C.(2004).TheMozarteffect:trackingtheevolutionofascientificlegend.TheBritishJournalofSocialPsychology/theBritishPsychologicalSociety,43(4),605–623.

Barrett,K.C.,Ashley,R.,Strait,D.L.,andKraus,N.(2013).Artandscience:howmusicaltrainingshapesthebrain.FrontiersinPsychology,4,713.

Bengtsson,S.L.,Nagy,Z.,Skare,S.,Forsman,L.,Forssberg,H.,andUllén,F.(2005).Extensivepianopracticinghasregionallyspecificeffectsonwhitematterdevelopment.NatureNeuroscience,8(9),1148–1150.

BergmanNutley,S.,Darki,F.,andKlingberg,T.(2014).Musicpracticeisassociatedwithdevelopmentofworkingmemoryduringchildhoodandadolescence.FrontiersinHumanNeuroscience,7,926.

Bermudez,P.,Lerch,J.P.,Evans,A.C.,andZatorre,R.J.(2009).Neuroanatomicalcorrelatesofmusicianshipasrevealedbycorticalthicknessandvoxel-basedmorphometry.CerebralCortex,19(7),1583–1596.

Bermudez,P.andZatorre,R.J.(2005).Differencesingraymatterbetweenmusiciansandnonmusicians.AnnalsoftheNewYorkAcademyofSciences,1060,395–399.

Besson,M.,Faïta,F.,andRequin,J.(1994).Brainwavesassociatedwithmusicalincongruitiesdifferformusiciansandnon-musicians.NeuroscienceLetters,168(1–2),101–105.

Bosnyak,D.J.,Eaton,R.A.,andRoberts,L.E.(2004).Distributedauditorycorticalrepresentationsaremodifiedwhennon-musiciansaretrainedatpitchdiscriminationwith40Hzamplitudemodulatedtones.CerebralCortex,14(10),1088–1099.

Boyke,J.,Driemeyer,J.,Gaser,C.,Büchel,C.,andMay,A.(2008).Training-inducedbrainstructurechangesintheelderly.TheJournalofNeuroscience,28(28),7031–7035.

Buccino,G.,Binkofski,F.,andRiggio,L.(2004).Themirrorneuronsystemandactionrecognition.BrainandLanguage,89(2),370–376.

Music and Brain Plasticity

Page 9 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

Buccino,G.,Vogt,S.,Ritzl,A.,Fink,G.R.,Zilles,K.,Freund,H.J.,andRizzolatti,G.(2004).Neuralcircuitsunderlyingimitationlearningofhandactions:anevent-relatedfMRIstudy.Neuron,42(2),323–334.

Bugos,J.A.,Perlstein,W.M.,McCrae,C.S.,Brophy,T.S.,andBedenbaugh,P.H.(2007).Individualizedpianoinstructionenhancesexecutivefunctioningandworkingmemoryinolderadults.Aging&MentalHealth,11(4),464–471.

Buonomano,D.V.andMerzenich,M.M.(1998).Corticalplasticity:fromsynapsestomaps.AnnualReviewofNeuroscience,21,149–186.

Carcagno,S.andPlack,C.J.(2011).Subcorticalplasticityfollowingperceptuallearninginapitchdiscriminationtask.JournaloftheAssociationforResearchinOtolaryngology,12(1),89–100.

Ceci,S.J.andWilliams,W.M.(1997).Schooling,intelligence,andincome.AmericanPsychologist,52,1051–1058.

Chabris,C.F.(1999).Preludeorrequiemforthe“Mozarteffect”?Nature,400(6747),826–827.

Chan,A.S.,Ho,Y.C.,andCheung,M.C.(1998).Musictrainingimprovesverbalmemory.Nature,396(6707),128.

Chen,J.L.,Rae,C.,andWatkins,K.E.(2012).Learningtoplayamelody:AnfMRIstudyexaminingtheformationofauditory-motorassociations.Neuroimage,59(2),1200–1208.

Chochon,F.,Cohen,L.,vandeMoortele,P.F.,andDehaene,S.(1999).Differentialcontributionsoftheleftandrightinferiorparietallobulestonumberprocessing.JournalofCognitiveNeuroscience,11(6),617–630.

DallaBella,S.,Berkowska,M.,andSowiński,J.(2011).Disordersofpitchproductionintonedeafness.FrontiersinPsychology,2,164.

D’Ausilio,A.,Altenmüller,E.,OlivettiBelardinelli,M.,andLotze,M.(2006).Cross-modalplasticityofthemotorcortexwhilelisteningtoarehearsedmusicalpiece.TheEuropeanJournalofNeuroscience,24(3),955–958.

Draganski,B.,Gaser,C.,Busch,V.,Schuierer,G.,Bogdahn,U.,andMay,A.(2004).Neuroplasticity:changesingreymatterinducedbytraining.Nature,427(6972),311–312.

Draganski,B.,Gaser,C.,Kempermann,G.,Kuhn,H.G.,Winkler,J.,Büchel,C.,andMay,A.(2006).Temporalandspatialdynamicsofbrainstructurechangesduringextensivelearning.TheJournalofNeuroscience,26(23),6314–6317.

Elbert,T.,Pantev,C.,Wienbruch,C.,Rockstroh,B.,andTaub,E.(1995).Increasedcorticalrepresentationofthefingersofthelefthandinstringplayers.Science,270,305–307.

Ellis,R.J.,Bruijn,B.,Norton,A.C.,Winner,E.,andSchlaug,G.(2013).Training-mediatedleftwardasymmetriesduringmusicprocessing:across-sectionalandlongitudinalfMRIanalysis.NeuroImage,75,97–107.

Ellis,R.J.,Norton,A.C.,Overy,K.,Winner,E.,Alsop,D.C.,andSchlaug,G.(2012).DifferentiatingmaturationalandtraininginfluencesonfMRIactivationduringmusicprocessing.NeuroImage,60(3),1902–1912.

Foster,N.E.V.andZatorre,R.J.(2010).Corticalstructurepredictssuccessinperformingmusicaltransformationjudgments.NeuroImage,53(1),26–36.

Fujioka,T.,Ross,B.,Kakigi,R.,Pantev,C.andTrainor,L.J.(2006).Oneyearofmusicaltrainingaffectsdevelopmentofauditorycortical-evokedfieldsinyoungchildren.Brain,129(10),2593–2608.

Gaab,N.,Gaser,C.andSchlaug,G.(2006).Improvement-relatedfunctionalplasticityfollowingpitchmemorytraining.NeuroImage,31(1),255–263.

Gaab,N.andSchlaug,G.(2003).Theeffectofmusicianshiponpitchmemoryinperformancematchedgroups.Neuroreport,14(18),2291–2295.

Gaser,C.andSchlaug,G.(2003).Brainstructuresdifferbetweenmusiciansandnon-musicians.TheJournalofNeuroscience,23(27),9240–9245.

Music and Brain Plasticity

Page 10 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

Golestani,N.,Price,C.J.andScott,S.K.(2011).Bornwithanearfordialects?Structuralplasticityintheexpertphoneticianbrain.TheJournalofNeuroscience,31(11),4213–4220.

Granert,O.,Peller,M.,Gaser,C.,Groppa,S.,Hallett,M.,Knutzen,A.,…Siebner,H.R.(2011).Manualactivityshapesstructureandfunctionincontralateralhumanmotorhandarea.NeuroImage,54(1),32–41.

Habib,M.andBesson,M.(2009).Whatdomusicexperienceandmusicalexperienceteachusaboutbrainplasticity?MusicPerception,26(3),279–285.

Han,Y.,Yang,H.,Lv,Y.-T.,Zhu,C.-Z.,He,Y.,Tang,H.H.,…Dong,Q.(2009).Graymatterdensityandwhitematterintegrityinpianists’brain:acombinedstructuralanddiffusiontensorMRIstudy.NeuroscienceLetters,459(1),3–6.

Hänggi,J.,Koeneke,S.,Bezzola,L.,andJäncke,L.(2010).Structuralneuroplasticityinthesensorimotornetworkofprofessionalfemaleballetdancers.HumanBrainMapping,31(8),1196–1206.

Hanna-Pladdy,B.andMacKay,A.(2011).Therelationbetweeninstrumentalmusicalactivityandcognitiveaging.Neuropsychology,25(3),378–386.

Hasegawa,T.,Matsuki,K.-I.,Ueno,T.,Maeda,Y.,Matsue,Y.,Konishi,Y.,andSadato,N.(2004).Learnedaudio-visualcross-modalassociationsinobservedpianoplayingactivatetheleftplanumtemporale.AnfMRIstudy.BrainResearch(CognitiveBrainResearch),20(3),510–518.

Haslinger,B.,Erhard,P.,Altenmüller,E.,Hennenlotter,A.,Schwaiger,M.,GräfinvonEinsiedel,H.,…Ceballos-Baumann,A.O.(2004).Reducedrecruitmentofmotorassociationareasduringbimanualcoordinationinconcertpianists.HumanBrainMapping,22(3),206–215.

Haslinger,B.,Erhard,P.,Altenmüller,E.,Schroeder,U.,Boecker,H.,andCeballos-Baumann,A.O.(2005).Transmodalsensorimotornetworksduringactionobservationinprofessionalpianists.JournalofCognitiveNeuroscience,17(2),282–293.

Haueisen,J.andKnösche,T.R.(2001).Involuntarymotoractivityinpianistsevokedbymusicperception.JournalofCognitiveNeuroscience,13(6),786–792.

Herdener,M.,Esposito,F.,diSalle,F.,Boller,C.,Hilti,C.C.,Habermeyer,B.,…Cattapan-Ludewig,K.(2010).Musicaltraininginducesfunctionalplasticityinhumanhippocampus.TheJournalofNeuroscience,30(4),1377–1384.

Herholz,S.C.andZatorre,R.J.(2012).Musicaltrainingasaframeworkforbrainplasticity:behavior,function,andstructure.Neuron,76(3),486–502.

Hickok,G.andPoeppel,D.(2007).Thecorticalorganizationofspeechprocessing.NatureReviewsNeuroscience,8,393–402.

Ho,Y.-C.,Cheung,M.-C.,andChan,A.S.(2003).Musictrainingimprovesverbalbutnotvisualmemory:cross-sectionalandlongitudinalexplorationsinchildren.Neuropsychology,17(3),439–450.

Hund-Georgiadis,M.andvonCramon,D.Y.(1999).Motor-learning-relatedchangesinpianoplayersandnon-musiciansrevealedbyfunctionalmagnetic-resonancesignals.ExperimentalBrainResearch,125(4),417–425.

Hutchinson,S.,Lee,L.H.-L.,Gaab,N.,andSchlaug,G.(2003).Cerebellarvolumeofmusicians.CerebralCortex,13(9),943–949.

Hyde,K.L.,Lerch,J.,Norton,A.,Forgeard,M.,Winner,E.,Evans,A.C.,andSchlaug,G.(2009).Musicaltrainingshapesstructuralbraindevelopment.TheJournalofNeuroscience,29(10),3019–3025.

James,C.E.,Oechslin,M.S.,VanDeVille,D.,Hauert,C.-A.,Descloux,C.,andLazeyras,F.(2014).Musicaltrainingintensityyieldsoppositeeffectsongreymatterdensityincognitiveversussensorimotornetworks.BrainStructure&Function,219(1),353–366.

Jäncke,L.(2009).Theplastichumanbrain.RestorativeNeurologyandNeuroscience,27(5),521–538.

Music and Brain Plasticity

Page 11 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

Jäncke,L.,Gaab,N.,Wüstenberg,T.,Scheich,H.,andHeinze,H.J.(2001).Short-termfunctionalplasticityinthehumanauditorycortex:anfMRIstudy.BrainResearch(CognitiveBrainResearch),12(3),479–485.

Jäncke,L.,Shah,N.J.,andPeters,M.(2000).Corticalactivationsinprimaryandsecondarymotorareasforcomplexbimanualmovementsinprofessionalpianists.BrainResearch(CognitiveBrainResearch),10(1–2),177–183.

Jenkins,W.M.,Merzenich,M.M.,Ochs,M.T.,Allard,T.,andGuic-Robles,E.(1990).Functionalreorganizationofprimarysomatosensorycortexinadultowlmonkeysafterbehaviorallycontrolledtactilestimulation.JournalofNeurophysiology,63,82–104.

Keenan,J.P.,Thangaraj,V.,Halpern,A.R.,andSchlaug,G.(2001).Absolutepitchandplanumtemporale.NeuroImage,14(6),1402–1408.

Keysers,C.,Kohler,E.,Umiltà,M.A.,Nanetti,L.,Fogassi,L.,andGallese,V.(2003).Audiovisualmirrorneuronsandactionrecognition.ExperimentalBrainResearch,153(4),628–636.

Kirnarskaya,D.(2009).Thenaturalmusician:Onabilities,giftedness,andtalent.Oxford:OxfordUniversityPress.

Knudsen,E.I.(2004).Sensitiveperiodsinthedevelopmentofthebrainandbehavior.JournalofCognitiveNeuroscience,16(8),1412–1425.

Koelsch,S.,Fritz,T.,Schulze,K.,Alsop,D.,andSchlaug,G.(2005).Adultsandchildrenprocessingmusic:anfMRIstudy.NeuroImage,25(4),1068–1076.

Koelsch,S.,Gunter,T.C.,vonCramon,D.Y.,Zysset,S.,Lohmann,G.,andFriederici,A.D.(2002).Bachspeaks:acortical“language-network”servestheprocessingofmusic.NeuroImage,17(2),956–966.

Koeneke,S.,Lutz,K.,Wüstenberg,T.,andJäncke,L.(2004).Long-termtrainingaffectscerebellarprocessinginskilledkeyboardplayers.Neuroreport,15(8),1279–1282.

Kohler,E.,Keysers,C.,Umiltà,M.A.,Fogassi,L.,Gallese,V.,andRizzolatti,G.(2002).Hearingsounds,understandingactions:actionrepresentationinmirrorneurons.Science,297(5582),846–848.

Kraus,N.andChandrasekaran,B.(2010).Musictrainingforthedevelopmentofauditoryskills.NatureReviewsNeuroscience,11(8),599–605.

Krings,T.,Töpper,R.,Foltys,H.,Erberich,S.,Sparing,R.,Willmes,K.,andThron,A.(2000).Corticalactivationpatternsduringcomplexmotortasksinpianoplayersandcontrolsubjects.Afunctionalmagneticresonanceimagingstudy.NeuroscienceLetters,278(3),189–193.

Kuhl,P.K.(2010).Brainmechanismsinearlylanguageacquisition.Neuron,67(5),713–727.

Lahav,A.,Saltzman,E.,andSchlaug,G.(2007).Actionrepresentationofsound:audiomotorrecognitionnetworkwhilelisteningtonewlyacquiredactions.TheJournalofNeuroscience,27(2),308–314.

Lappe,C.,Herholz,S.C.,Trainor,L.J.,andPantev,C.(2008).Corticalplasticityinducedbyshort-termunimodalandmultimodalmusicaltraining.TheJournalofNeuroscience,28(39),9632–9639.

Lappe,C.,Trainor,L.J.,Herholz,S.C.,andPantev,C.(2011).Corticalplasticityinducedbyshort-termmultimodalmusicalrhythmtraining.PloSOne,6(6),e21493.

Lee,D.J.,Chen,Y.,andSchlaug,G.(2003).Corpuscallosum:musicianandgendereffects.Neuroreport,14(2),205–209.

Levitin,D.J.andMenon,V.(2003).Musicalstructureisprocessedin“language”areasofthebrain:apossibleroleforBrodmannArea47intemporalcoherence.NeuroImage,20(4),2142–2152.

Lim,I.,vanWegen,E.,deGoede,C.,Deutekom,M.,Nieuwboer,A.,Willems,A.,…Kwakkel,G.(2005).EffectsofexternalrhythmicalcueingongaitinpatientswithParkinson’sdisease:asystematicreview.ClinicalRehabilitation,19(7),695–713.

Music and Brain Plasticity

Page 12 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

Lotze,M.,Scheler,G.,Tan,H.-R.M.,Braun,C.,andBirbaumer,N.(2003).Themusician’sbrain:functionalimagingofamateursandprofessionalsduringperformanceandimagery.NeuroImage,20(3),1817–1829.

Loui,P.,Li,H.C.,Hohmann,A.,andSchlaug,G.(2011).Enhancedcorticalconnectivityinabsolutepitchmusicians:amodelforlocalhyperconnectivity.JournalofCognitiveNeuroscience,23(4),1015–1026.

Loui,P.,Wu,E.H.,Wessel,D.L.,andKnight,R.T.(2009).Ageneralizedmechanismforperceptionofpitchpatterns.JournalofNeuroscience,29(2),454–459.

Loui,P.,Zamm,A.andSchlaug,G.(2012).Enhancedfunctionalnetworksinabsolutepitch.Neuroimage,63(2),632–640.

Margulis,E.H.,Mlsna,L.M.,Uppunda,A.K.,Parrish,T.B.,andWong,P.C.M.(2009).Selectiveneurophysiologicresponsestomusicininstrumentalistswithdifferentlisteningbiographies.HumanBrainMapping,30(1),267–275.

Meister,I.,Krings,T.,Foltys,H.,Boroojerdi,B.,Müller,M.,Töpper,R.,andThron,A.(2005).Effectsoflong-termpracticeandtaskcomplexityinmusiciansandnonmusiciansperformingsimpleandcomplexmotortasks:implicationsforcorticalmotororganization.HumanBrainMapping,25(3),345–352.

Menning,H.,Roberts,L.E.,andPantev,C.(2000).Plasticchangesintheauditorycortexinducedbyintensivefrequencydiscriminationtraining.Neuroreport,11(4),817–822.

Merrett,D.L.,Peretz,I.,andWilson,S.J.(2013).Moderatingvariablesofmusictraining-inducedneuroplasticity:areviewanddiscussion.FrontiersinPsychology,4,606.

Münte,T.F.,Altenmüller,E.,andJäncke,L.(2002).Themusician’sbrainasamodelofneuroplasticity.NatureReviewsNeuroscience,3(6),473–478.

Oztürk,A.H.,Tasçioglu,B.,Aktekin,M.,Kurtoglu,Z.,andErden,I.(2002).Morphometriccomparisonofthehumancorpuscallosuminprofessionalmusiciansandnon-musiciansbyusinginvivomagneticresonanceimaging.JournalofNeuroradiology,29(1),29–34.

Pantev,C.,Oostenveld,R.,Engelien,A.,Ross,B.,Roberts,L.andHoke,M.(1998).Increasedauditorycorticalrepresentationsinmusicians.Nature,392,811–814.

Pantev,C.,Roberts,L.E.,Schulz,M.,Engelien,A.,andRoss,B.(2001).Timbre-specificenhancementofauditorycorticalrepresentationsinmusicians.Neuroreport,12(1),169–174.

Paraskevopoulos,E.,Kuchenbuch,A.,Herholz,S.C.,andPantev,C.(2012).Evidencefortraining-inducedplasticityinmultisensorybrainstructures:anMEGstudy.PloSOne,7(5),e36534.

Parbery-Clark,A.,Anderson,S.,Hittner,E.,andKraus,N.(2012).Musicalexperienceoffsetsage-relateddelaysinneuraltiming.NeurobiologyofAging,33(7),1483(e1–e4).

Parbery-Clark,A.,Strait,D.L.,Anderson,S.,Hittner,E.,andKraus,N.(2011).Musicalexperienceandtheagingauditorysystem:implicationsforcognitiveabilitiesandhearingspeechinnoise.PloSOne,6(5),e18082.

Park,H.,Lee,S.,Kim,H.-J.,Ju,Y.S.,Shin,J.Y.,Hong,D.,…Seo,J.S.(2012).ComprehensivegenomicanalysesassociateUGT8variantswithmusicalabilityinaMongolianpopulation.JournalofMedicalGenetics,49(12),747–752.

Pascual-Leone,A.,Grafman,J.,andHallett,M.(1994).Modulationofcorticalmotoroutputmapsduringdevelopmentofimplicitandexplicitknowledge.Science,263(5151),1287–1289.

Pascual-Leone,A.,Nguyet,D.,Cohen,L.G.,Brasil-Neto,J.P.,Cammarota,A.,andHallett,M.(1995).Modulationofmuscleresponsesevokedbytranscranialmagneticstimulationduringtheacquisitionofnewfinemotorskills.JournalofNeurophysiology,74(3),1037–1045.

Patel,A.D.(2003).Language,music,syntaxandthebrain.NatureNeuroscience,6(7),674–681.

Music and Brain Plasticity

Page 13 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

Penhune,V.B.(2011).Sensitiveperiodsinhumandevelopment:evidencefrommusicaltraining.Cortex,47(9),1126–1137.

Peretz,I.andHyde,K.L.(2003).Whatisspecifictomusicprocessing?Insightsfromcongenitalamusia.TrendsinCognitiveSciences,7(8),362–367.

Pulvermüller,F.,Shtyrov,Y.,andIlmoniemi,R.(2005).Brainsignaturesofmeaningaccessinactionwordrecognition.JournalofCognitiveNeuroscience,17(6),884–892.

Putkinen,V.,Tervaniemi,M.,Saarikivi,K.,deVent,N.,andHuotilainen,M.(2014).InvestigatingtheeffectsofmusicaltrainingonfunctionalbraindevelopmentwithanovelMelodicMMNparadigm.NeurobiologyofLearningandMemory,110C,8–15.

Rauschecker,J.P.(2001).Corticalplasticityandmusic.AnnalsoftheNewYorkAcademyofSciences,930,330–336.

Rauschecker,J.P.andScott,S.K.(2009).Mapsandstreamsintheauditorycortex:nonhumanprimatesilluminatehumanspeechprocessing.NatureNeuroscience,12(6),718–724.

Rauscher,F.H.,Shaw,G.L.,andKy,K.N.(1993).Musicandspatialtaskperformance.Nature,365(6447),611.

Rizzolatti,G.andArbib,M.A.(1998).Languagewithinourgrasp.TrendsinNeurosciences,21(5),188–194.

Rizzolatti,G.andCraighero,L.(2004).Themirror-neuronsystem.AnnualReviewofNeuroscience,27,169–192.

Rizzolatti,G.,Fadiga,L.,Gallese,V.andFogassi,L.(1996).Premotorcortexandtherecognitionofmotoractions.BrainResearch(CognitiveBrainResearch),3(2),131–141.

Särkämö,T.,Tervaniemi,M.,Laitinen,S.,Forsblom,A.,Soinila,S.,Mikkonen,M.,…Hietanen,M.(2008).Musiclisteningenhancescognitiverecoveryandmoodaftermiddlecerebralarterystroke.Brain,131(3),866–876.

Schellenberg,E.G.(2001).Musicandnonmusicalabilities.AnnalsoftheNewYorkAcademyofSciences,930,355–371.

Schellenberg,E.G.(2004).MusiclessonsenhanceIQ.PsychologicalScience,15(8),511–514.

Schellenberg,E.G.(2011).Examiningtheassociationbetweenmusiclessonsandintelligence.BritishJournalofPsychology,102(3),282–302.

Schellenberg,E.G.andWeiss,M.W.(2013).Musicandcognitiveabilities.InD.Deutsch(Ed.),Thepsychologyofmusic(3rdEd.)(pp.499–550).Amsterdam:Elsevier.

Schlaug,G.,Forgeard,M.,Zhu,L.,Norton,A.,Norton,A.,andWinner,E.(2009).Training-inducedneuroplasticityinyoungchildren.AnnalsoftheNewYorkAcademyofSciences,1169,205–208.

Schlaug,G.,Jäncke,L.,Huang,Y.,andSteinmetz,H.(1995).Invivoevidenceofstructuralbrainasymmetryinmusicians.Science,267(5198),699–701.

Schlaug,G.,Jäncke,L.,Huang,Y.,Staiger,J.F.,andSteinmetz,H.(1995).Increasedcorpuscallosumsizeinmusicians.Neuropsychologia,33(8),1047–1055.

Schmidt,R.andLee,T.(2011).Motorcontrolandlearning—5thedition:Abehavioralemphasis.Champaign,IL:HumanKinetics.

Schneider,P.,Scherg,M.,Dosch,H.G.,Specht,H.J.,Gutschalk,A.,andRupp,A.(2002).MorphologyofHeschl’sgyrusreflectsenhancedactivationintheauditorycortexofmusicians.NatureNeuroscience,5(7),688–694.

Schulte,M.,Knief,A.,Seither-Preisler,A.,andPantev,C.(2002).Differentmodesofpitchperceptionandlearning-inducedneuronalplasticityofthehumanauditorycortex.NeuralPlasticity,9(3),161–175.

Shahin,A.,Bosnyak,D.J.,Trainor,L.J.andRoberts,L.E.(2003).EnhancementofneuroplasticP2andN1cauditory

Music and Brain Plasticity

Page 14 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

evokedpotentialsinmusicians.TheJournalofNeuroscience,23(13),5545–5552.

Shahin,A.J.,Roberts,L.E.,Chau,W.,Trainor,L.J.,andMiller,L.M.(2008).Musictrainingleadstothedevelopmentoftimbre-specificgammabandactivity.NeuroImage,41(1),113–122.

Shahin,A.,Roberts,L.E.,andTrainor,L.J.(2004).Enhancementofauditorycorticaldevelopmentbymusicalexperienceinchildren.Neuroreport,15(12),1917–1921.

Sluming,V.,Barrick,T.,Howard,M.,Cezayirli,E.,Mayes,A.,andRoberts,N.(2002).Voxel-basedmorphometryrevealsincreasedgraymatterdensityinBroca’sareainmalesymphonyorchestramusicians.NeuroImage,17(3),1613–1622.

Sluming,V.,Brooks,J.,Howard,M.,Downes,J.J.,andRoberts,N.(2007).Broca’sareasupportsenhancedvisuospatialcognitioninorchestralmusicians.TheJournalofNeuroscience,27(14),3799–3806.

Song,J.H.,Skoe,E.,Wong,P.C.M.,andKraus,N.(2008).Plasticityintheadulthumanauditorybrainstemfollowingshort-termlinguistictraining.JournalofCognitiveNeuroscience,20(10),1892–1902.

Spaulding,S.J.,Barber,B.,Colby,M.,Cormack,B.,Mick,T.,andJenkins,M.E.(2013).CueingandgaitimprovementamongpeoplewithParkinson’sdisease:ameta-analysis.ArchivesofPhysicalMedicineandRehabilitation,4(3),562–570.

Steele,C.J.,Bailey,J.A.,Zatorre,R.J.,andPenhune,V.B.(2013).Earlymusicaltrainingandwhite-matterplasticityinthecorpuscallosum:evidenceforasensitiveperiod.TheJournalofNeuroscience,33(3),1282–1290.

Steele,K.M.,DallaBella,S.,Peretz,I.,Dunlop,T.,Dawe,L.A.,Humphrey,G.K.,…Olmstead,C.G.(1999).Preludeorrequiemforthe“Mozarteffect”?Nature,400(6747),827–828.

Strait,D.L.,Chan,K.,Ashley,R.,andKraus,N.(2012).Specializationamongthespecialized:auditorybrainstemfunctionistunedintotimbre.Cortex,48(3),360–362.

Strait,D.L.andKraus,N.(2014).Biologicalimpactofauditoryexpertiseacrossthelifespan:musiciansasamodelofauditorylearning.HearingResearch,308,109–121.

Strait,D.L.,Parbery-Clark,A.,O’Connell,S.,andKraus,N.(2013).Biologicalimpactofpreschoolmusicclassesonprocessingspeechinnoise.DevelopmentalCognitiveNeuroscience,6,51–60.

Tettamanti,M.andWeniger,D.(2006).Broca’sarea:asupramodalhierarchicalprocessor?Cortex,42(4),491–494.

Tierney,A.andKraus,N.(2013).Musictrainingforthedevelopmentofreadingskills.ProgressinBrainResearch,207,209–241.

Tillmann,B.,Koelsch,S.,Escoffier,N.,Bigand,E.,Lalitte,P.,Friederici,A.D.andvonCramon,D.Y.(2006).Cognitivepriminginsungandinstrumentalmusic:activationofinferiorfrontalcortex.NeuroImage,31(4),1771–1782.

Trainor,L.J.,Desjardins,R.N.,andRockel,C.(1999).Acomparisonofcontourandintervalprocessinginmusiciansandnonmusiciansusingevent-relatedpotentials.AustralianJournalofPsychology,51(3),147–153.

Trainor,L.J.,Lee,K.,andBosnyak,D.J.(2011).Corticalplasticityin4-month-oldinfants:specificeffectsofexperiencewithmusicaltimbres.BrainTopography,24(3–4),192–203.

Trainor,L.J.,Shahin,A.J.,andRoberts,L.E.(2009).Understandingthebenefitsofmusicaltraining:effectsonoscillatorybrainactivity.AnnalsoftheNewYorkAcademyofSciences,1169,133–142.

Ukkola-Vuoti,L.,Kanduri,C.,Oikkonen,J.,Buck,G.,Blancher,C.,Raijas,P.,…Järvelä,I.(2013).Genome-widecopynumbervariationanalysisinextendedfamiliesandunrelatedindividualscharacterizedformusicalaptitudeandcreativityinmusic.PloSOne,8(2),e56356.

VanWegen,E.E.H.,Hirsch,M.A.,Huiskamp,M.andKwakkel,G.(2014).Harnessingcueingtrainingfor

Music and Brain Plasticity

Page 15 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015

neuroplasticityinParkinsondisease.TopicsinGeriatricRehabilitation,30(1),46–57.

Vaughn,K.(2000).Musicandmathematics:modestsupportfortheoft-claimedrelationship.JournalofAestheticEducation,34,149–166.

Verghese,J.,Lipton,R.B.,Katz,M.J.,Hall,C.B.,Derby,C.A.,Kuslansky,G.,…Buschke,H.(2003).Leisureactivitiesandtheriskofdementiaintheelderly.TheNewEnglandJournalofMedicine,348(25),2508–2516.

Wan,C.Y.,andSchlaug,G.(2010).Musicmakingasatoolforpromotingbrainplasticityacrossthelifespan.TheNeuroscientist,16(5),566–577.

Watanabe,D.,Savion-Lemieux,T.,andPenhune,V.B.(2007).Theeffectofearlymusicaltrainingonadultmotorperformance:evidenceforasensitiveperiodinmotorlearning.ExperimentalBrainResearch,176(2),332–340.

Wiesendanger,M.andSerrien,D.J.(2004).Thequesttounderstandbimanualcoordination.ProgressinBrainResearch,143,491–505.

Williamson,V.J.andStewart,L.(2013).Congenitalamusia.HandbookofClinicalNeurology,111,237–239.

Wong,P.C.M.,Skoe,E.,Russo,N.M.,Dees,T.,andKraus,N.(2007).Musicalexperienceshapeshumanbrainstemencodingoflinguisticpitchpatterns.NatureNeuroscience,10(4),420–422.

Yotsumoto,Y.,Watanabe,T.andSasaki,Y.(2008).Differentdynamicsofperformanceandbrainactivationinthetimecourseofperceptuallearning.Neuron,57(6),827–833.

Zadeh,L.,Wilson,S.M.,Rizzolatti,G.,andIacoboni,M.(2006).Congruentembodiedrepresentationsforvisuallypresentedactionsandlinguisticphrasesdescribingactions.CurrentBiology,16(18),1818–1823.

Zatorre,R.J.(2013).Predispositionsandplasticityinmusicandspeechlearning:neuralcorrelatesandimplications.Science,342(6158),585–589.

Zatorre,R.J.,Chen,J.L.,andPenhune,V.B.(2007).Whenthebrainplaysmusic:auditory-motorinteractionsinmusicperceptionandproduction.NatureReviews.Neuroscience,8(7),547–558.

Zatorre,R.J.,Delhommeau,K.,andZarate,J.M.(2012).Modulationofauditorycortexresponsetopitchvariationfollowingtrainingwithmicrotonalmelodies.FrontiersinPsychology,3,544.

Zatorre,R.J.,Fields,R.D.,andJohansen-Berg,H.(2012).Plasticityingrayandwhite:neuroimagingchangesinbrainstructureduringlearning.NatureNeuroscience,15(4),528–536.

Zatorre,R.andMcGill,J.(2005).Music,thefoodofneuroscience?Nature,434(7031),312–315.

Zatorre,R.J.,Perry,D.W.,Beckett,C.A.,Westbury,C.F.,andEvans,A.C.(1998).Functionalanatomyofmusicalprocessinginlistenerswithabsolutepitchandrelativepitch.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,95(6),3172–3177.

SimoneDallaBellaSimoneDallaBella,EuroMov,MovementtoHealthLaboratory,UniversityofMontpellier-1,France;InstitutUniversitairedeFrance,Paris,France;DepartmentofCognitivePsychology,WSFiZ,Warsaw,Poland;InternationalLaboratoryforBrain,Music,andSoundResearch(BRAMS),Montreal,Canada.

Music and Brain Plasticity

Page 16 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All RightsReserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a title in OxfordHandbooks Online for personal use (for details see Privacy Policy).Subscriber: OUP-Reference Gratis Access; date: 04 February 2015