Download - Large scale reflood test with cylindrical core test facility (CCTF ...

Transcript

JAERI-M

82-002

Japan Atomic Energy Research Institute

JAERI-Mv#-Hi . a

( =f319 -11 3c«!R»T.}iiier.SK«t-t 0 « . f-t W5£BrW) Ti«''f U I h %%\K\ <\i *• ti ZZ->X

n') it.

JAERI-M reports are issued irregularly.

Inquiries about availability of the reports should be addressed to Information Section, Division

of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun.

Ibaraki-ken 319-11, Japan.

©Japan Atomic Energy Research Institute, 1982

B * © f- 13 m i > a' f. £ fi] «']««

JAERI-M 82-002

i fciP'C.' • 5 A

1982

54 £FffiJ>d:LT?T->fc 19|alCDagj*SlRlcfcio^Tir ofc«HrrO*S5»ili:-o^T't'l!!]tfiffi-i L

(l)

i

(2)

C £

^U ) i

JAERI-M 82-002

Large Scale Reflood Test with Cylindrical Core Test

Facility (CCTF) • Core I • FY 1979 Tests

Analysis of Test Results

Yoshio MURAO, Hajime AKIM0T0, Tsutomu OKUBO

Takashi SUDOH and Kemmei HIRANO

Division of Reactor Safety,

Tokal Research Establishment, JAERI

(Received January 29, 1982)

This report presents the results of analysis of the data obtained

in the CCTF Core I test series (19 tests) in FY. 1979 as an interim

report.

The analysis of the test results showed that:

(1) The present safety evaluation model os the reflood phenomena

during LOCA conservatively represents the phenomena observed in

the tests except for the downcomer thertnohydrodynamic behavior.

(2) The downcomer liquid level rose slowly and it took long time for

the water to reach a terminal level or the spill-over level. It

was presume that such a results was due to an overly conservative

selection of the ECC flow rate. This presumption will be checked

against a future test result for an increased flow rate.

The loop-seal-water filling test was unsuccessful due to a prema¬

ture power shutdown by the coie protection circuit. The test will be

conducted again.

The tests to be performed in the future are summerized. Tests for

investigation of the refill phenomena were also proposed.

Keywords : Reactor Safety, Loss-of-coolant Accident, Hydrodynamics,

Reflood, ECCS, PWR, Downcomer

The work performed under contracts from Atomic Energy Bureau of Japan.

JAERI-M82-002

a <k

1. f? m j

2. mm^mtumyj-a 5 2.1 •F^isfciO'rtgRfiliaf!) 5

2.2 fg&^JESft 6

2.3 —8c^Ji/-r*>J;cJtECCS 7

2.4 ,!tillv/XT A 7

2. 5 tt.W~M 8

2 6 ®.Wk1\- 9

3. ttm.W&V>$tlb 50

4. MKISiKKHftW 100

A. 1 WMB!fc<fcaWflM:.riC«! 100

4.2 ' < • ? ^ - y ^ i a i 115

4.3 &&&& 129

4.4 ftmtimmm 134

4.5 *tJ6t^Jt i^o^SS 141

5. *S i 144

m s? 144

12- S- 145

JAERI-M 82-002

Contents

1. Introduction 1

2. Test facility and test procedures 5

2.1 Presure vessel and internals 5

2.2 Heated rod assembly 6

2.3 Primary loops and ECCS 7

2.4 Instrumentation system 7

2.5 Test procedures 8

2.6 Test conditions 9

3. Summary of test results , 50

4. Discussion of test results 100

4.1 Base case test and reproducability test 100

4.2 Parameter effect tests 115

4.3 Coupling tests 129

4.4 Special effect tests 134

4.5 Summary and subjects for a future study 141

5. Conclusions • 144

Acknowledgement > 144

Nomenclature 145

iv

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

^.1

2.2

2.3

3.1

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.2.7

3.2.8

3.2.9

3.2.10

3.2.11

3.2.12

3.2.13

3.2.14

3.2.15

3.2.16

3.2.17

3.2.18

3.2.19

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

3.3.8

3.3.9

3.3.10

3.3.11

3.3.12

3.3.13

JAERI-M82-002

Table list

Component scaled dimensions

Test conditions of the base

Parameter ranges of 1

Summary of CCTF test

Summary of CCTF test

u

rr

it

II

II

it

il

M

II *

II

II

It

II

II

It

It

11

11

tests

of Cylindrical Core Test Facility

case test and their data bases

conditions

C1-SH3

C1-SH4

C1-SH5

Cl-1

Cl-2

Cl-3

Cl-4

Cl-5

Cl-6

Cl-7

Cl-8

Cl-9

Cl-10

Cl-11

Cl-12

Cl-13

Cl-14

Cl-15

Cl-16

Test conditions of CCTF Test

it

it

ii

it

it

it

it

ti

ii

ii

ii

ii

C1-SH3

C1-SH4

C1-SH5

Cl-1

Cl-2

Cl-3

Cl-4

Cl-5

Cl-6

Cl-7

Cl-8

Cl-9

Cl-10

JAERI-M82-002

Table 3.3.14 Test conditions of CCTF Test Cl-11

Table 3.3.15 « Cl-12

Table 3.3.16 « Cl-13

Table 3.3.17 .. Cl-14

Table 3.3.18 • • Cl-15

Table 3.3.19 .. Cl-16

Table A.1.1 Comparison of test conditions between Test Cl-2 and

Test Cl-11

Table 4.2.1 Test conditions of flow rate effect tests

Table 4.3.1 Comparison of test conditions between FLECHT 31O5B and

CCTF Test Cl-16

Table 4.3.2 Comparison of test conditions between PKL K7A and CCTF

Test C1-SH5

Table 4.4.1 Test conditions of "Refill simulation tests"

Table 4.5.1 Summary of the system behaviors

Figure list

Fig. 1.1 Mass and momentum balance in PWR system

Fig. 2.1 Schematic diagram of cylindrical core test facility

Fig. 2.2 Dimensions of pressure vessel

Fig. 2.3 Cross section of pressure vessel

Fig. 2.4 Schematic of internals

Fig. 2.5 Baffle plates in control rod guide tubes

Fig. 2.6 Upper plenum control rod guide tube

Fig. 2.7 Arrangement of internals

Fig. 2.8 Arrangement of rods in core

Fig. 2.9 8x8 heater rod bundle

Fig. 2.10 Bundle arrangement

Fig. 2.11 Heater rod

Fig. 2.12 Power profile and thermocouple elevations of heater rods

Fig. 2.13 Primary loop piping

Fig. 2.14 Vertical view of primary loop

Fig. 2.15 Steam generator simulator

Fig. 2.16 Pump simulator

vi

Fig. i.

Fig. 2.

Fig. 2,

Fig. 2.

Fig. 2.

Fig. 2.

Fig. 2.

Fig. 2.

Fig. 2.

Fig. 2.

Fig. 2.

Fig. 2.

Fig. 2.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 3.

Fig. 4.

.17

.18

.19

,20

.21

,22

,23

,24

,25

26

27

28

29

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1.1

JAERt-M 82-002

Data acquisition system-I

Data acquisition system-II

Data acquisition system-Ill

Locations of liquid level dstectors

Pressure, differential pressure and liquid level

instrumentation locations in pressure vessel

Location of instrumented rods

Elevation of each sensor of liquid level detectors

Thermocouple locations except pressure vessel and steam

generator simulators

Pressure, differential pressure and liquid level

instrumentation locations except pressure vessel

Thermocouple locations in pressure vessel

Location of thermocouples installed on instrumented rods

Thermocouple locations in steam generator slmulator-I

and -II

Diagram of sequence of test

Clad surface temperature (C1-SH3)

vCl-SH4)

.. (C1-SH5)

Cl-1)

(Cl-2)

.. (Cl-3)

.. (Cl-4)

«. (Cl-5)

.. (Cl-6) '

(Cl-7)

(Cl-8)

.. (Cl-9)

(Cl-10)

» (Cl-11)

.. (Cl-12)

(Cl-13)

it (Cl-14)

(Cl-15)

» (Cl-16)

Rod surface temperature just below the control rod guide

tubes (bundle 4 and bundle 5)

VII'

JAERI-M 82-002

Fig. 4.1.2 Rod surface temperature just below the control rod guide

tubes (bundle 29 and bundle 31)

Fig. 4.1.3 Downcomer head and core head

Fig. 4.1.4 Upper plenum water head

Fig. 4.1.5 Total pressure drop acros loop

Fig. 4.1.6 ECC water injection rate into lower plenum

Fig. 4.1.7 ECC water injection rate into each cold leg

Fig. 4.1.8 Total power supplied to the core

Fig. 4.1.9 Measured mass balance in system

Fig. 4.1.10 Symmetry of core head

Fig. 4.1.11 Symmetry of clad surface temperature histories to the

center axis

Fig. 4.1.12 Symmetry of downcomer head

Fig. 4.1.13 Symmetry of upper plenum water head

Fig. 4.1.14 Total pressure drop across loop

Fig. 4.1.15 Steam mass flow rate at loop seal

Fig. 4.1.16 Temperature in steam generator

Fig. 4.1.17 Flow behavior around ECC port of intact 1

Fig. 4.2.1 Effect of system pressure on clad surface temperature

Fig. 4.2.2 Effect of system pressure on mass flow rate at core inlet

Fig. 4.2.3 Effect of system pressure on pressure loss across loop

Fig. 4.2.4 Effect of flow rate on clad surface temperature

Fig. 4.2.5 Effect of ACC flow rate on water head and pressure loss

Fig. 4.2.6 Effect of LPCI flow rate on water head and pressure loss

Fig. 4.2.7 Effect of initial clad temperature on clad

temperature history

Fig. 4.2.8 Effect of initial clad temperature on pressure loss

across loop

Fig. 4.2.9 Effect of initial downcomer wall temperature on clad

temperature history

Fig. 4.2.10 Effect of initial downcomer wall temperature on fluid

temperature at core inlet

Fig. 4.2.11 Effect of initial downcomer wall temperature on downcomer

water head

Fig. 4.2.12 Pressure losses across loop in cold downcomer wall test

Fig. 3.2.13 Pressure losses across loop in base case

Fig. 4.2.14 Effect of loop flow resistance on clad surface temperature

viii

JAERI-MB2-002

Fig. 4.2.15 Effect of loop flow resistance on pressure loss across

loop

Fig. 4.2.16 Effect of loop flow resistance OK steam mass velocity

in loop

Fig. 4.2.17 Effect of loop flow resistance on clad surface temperature

at highest thermocouple elevation

Fig. 4.2.18 Effect of loop flow resistance on water accumulation on

UVSP

Fig. 4.2.19 Effect of ECC water temperature on clad surface temperature

Fig. 4.3.1 Axial power profile

Fig. 4.3.2 Core inlet velocity-

Fig. 4.3.3 Clad surface temperature

Fig. 4.3.4 Comparison of quench envelope between FLECHT 31O5B and

CCTF Cl-16

Fig. 4.4.1 Schematic diagram of primary loop

Fig. 4.4.2 Results of loop seal water filling test

Fig. 4.4.3 Differential pressure and liquid level transient in loop

seal water filling test

Fig. 4.4.4 Collapsed level of core and downcomer

Fig. 4.4.5 Clad surface temperature history

Fig. 4.4.6 Clad surface temperature history

Fig. 4.4.7 Fluid temperature at core inlet

Fig. 4.4.8 Collapsed water level in downcomer and core

Fig. 4.4.9 Water level in upper plenum

IX

JAERI-M82-002

1.

j K ? P W R ) o - ^ i

ECCS

a)

jitter, * i a N R c - e r a ^ © © ^ ^ ® ^ - K R E F L A , TRAC )omi:.nir-

KI£ L t , lI]f,?j*'<i>..>W}'<ii''i < Cylindrical Core Test

Facility, CCTF i»f.5i )/j<{B,i'i,J' \ imtfii

i, PWR » ->x r / . | ' j -c

Z&Zo ~ch!&, NW'&MWMlu. PWR «f|-.j-5 l.^Wffi,

Cl i i L/-;,, •Jj rOJilUridiMJr C100 JjKWW PWRcO I

21.4 , MUjWlzirk'tk, 4 * - • / » ^ ^ ^ ( i

a) (2)

(3)

(4)

(5) CCTFSSi^^', (i®a:gSSsSoSt|$ii@3ii^E-(D^^fe©Aii'-pA^'s:oA;J6, FLECHT

(6) •?•©«!!,

(7)

#(C, *l|-eff*3nfcPWR-FLECHTflK, FLECHT SET t i t ICfc^Tli .

* + •

- 1 -

JAERI-M82-002

(l)

, asses we A*?, ECCS ©*£>££ L.

- ' < — 7 D —

(2)

(3)

(4)

ECCS O/Ki (li

ic *t L r,

C t

x A $4* £ ©Mil HS"< 5 i i i f 5

, Fig. 1.

# 5 ,

m F = m c + m u + m i,

iii L " n>- B + 3 x m [

APD-APC-APU = A

AP,= ( K j / 2 PiSj

APB= ( K B / Z

m,2

>'*-f 5 £ t

( FLECHT

L Tuik/K LfcD

* I S O P W R - F L E C H T

L.T, S E ^ ' , STki&

ig. 1.1

, A P i i S E , K &'*-

BCN

(1)

(2)

(3)

(4)

(5)

(6)

5", m (±B:lBStBXlil8fi2£'fti£lt

&, S ( i

"5ic

- : / { 1 *•

- 2 -

JAERI-M 82-0C2

i r P = m c + m u + ( / ( 1 + A P B C N / A P J ) 2 P B / K , , + 3<J2PJ/K , )S

x /AP» - A P C - APu (7)

: « , m, -" 0, APU CN-0. APL- 0, APB<;\ - 0 iftOil L,

, 351 ^.C>» 19 fiUoagK tSfjtagj 3 Igjs

2ig

- 3 -

Containment vessel

Steam generator Steam generator

B

Broken loop

Upper plenum I .mi I T

mecc> rr |Pump

,m0

Lower plenum

rh 0 L (liquid) rilov (steam)

-m ECC/LP

Intact loop ( x3 )

Downcomer

I i

s CO CO I

Fig. 1.1 Mass and momentum balance in PWR system

JAERI-M 82-002

2.

S ( CCTF ) (t

(1) PWR©

(1) gMtiHt, JliLf ® Trojan *Pli =t !)•' H * © ^cfifitf5 i t 5 «

(2) •> x -7- A © ,r;i $ /,• in'ffl -J?.fc fc J; O>'(#. ifi It, "Jf i t t

(3) ->x r

(4) M

(5) a - ^ K i x

(6) ECCSii,

(7) gfiaoia^C

IT

(9) t

ttl) ±g|37"ui-i.t|l|ig-Kl©iip:i(i, 17 x

Fig. 2.1 ic, §fflS©^!*ffi'M±5- Table 2.1

2.1 af

lil±, Fig. 2.

, Fig. , Fig. 2.'H ic^-TJ; TIC 61.5 mm©4-> y 7°

- 5 -

JAERI-M82-002

x 17

Fig. 2.4 IC^-nt .*S.^$nT^5o ^ © n S f r t f i a ^ O ^ - S l i , ^ © t l © 8/15 lt*S'h

7*S l t , Fig. 2.5

, Fig. 2.

Fig. 2.7

2.2

li, Fig. ZSICj^nSckT'i 32

Fig. 2.8 d ^

cfc-j tt 3 o©fi®IC^>/!)>n?>0 **ffi^li 4 -3lO'<-/ Kn,*»£ERf) ( M5 ) , ^niHiBWli 12 ©'-'

y K^A^Bjij (M6, M7, M8, M9), JH>SJI#I± 16 ©'<V K^A» i n t o T l 1 S(M 1. M2,

M3, M4)o§ffii^^Si|^lcSljaDt5CtfepI^T;*2)o S ' O ' K / u r t t : © ^ * ^ © ^ ^ t"- +

y 7%WLW Fig. 2.9 ic, f ti><v K^©^-[S]^ Fig. 2.10 I t ^ ^ n r ^ S o

; ? D A f f l » , Mt^f^-ytiU (MgO) i ^ { t * ^ * ( B N ) ffl»f.«iW. -f

600 ©${!#> bfig oTf'So Fig. 2.11 ICip^tlXi^ =fc ^ IC, BN It, ^ «

flli, 3.66mfciO* 10.7mm-e*!9, RWR ©IKSlsHfil^—T'*SO tSSli, 1.0 Fig.2.12

, 'J •. K * ^ - * ic £

f , f l t l « n i m T , PWR

'* *>-Xl$ 8.6 mm ic

- 6 -

JAERI- M82-002

2.3 -'XWl-fts

—&%••!'-fit, 3

, — &!iVf-7cDS2iH(±, Fig. 2.13 fc<fct>* 2.14

J -> x ^ ?•> o

li. U-r-ff -Vx ^ l o ^ f Fig. 2.15

2,9mint, *J!M PWR ffl 1.7 mm (Clt

->v /fcj;c>'/* K{SM{*i*'J 7 ^ xEA^fflfiK^n, Fig.

lJ, K 7 r ^ ?-2.'i©fe©*i95mmil'iiii, 10mm J£« >t tf* i t V1

0 ( K 7 7 9 9- 35

ECCS li, -^1/ K u- / S A P S ECC -t--

2.4

, Fig. 2. 17, 2.18, 2 . 1 9 K ^ * n r i ' 5 o Fig. 2.17 , Fig 2.18, 2.19 IC*$ Fig. 2.17 fflJS&icti, f-

Fig.2.l

Fig. 2.19 ICS5 USNRCffi$fflftftfta»t>ffir'-*li, T -f n / » i LTfiSSiT-

(1) -a m 0.5mmt?.

- 7 -

JAERI-M82-002

(2) E ts

± 0.3

(3) 1 E

SEffliJ^li, gEsi'Srffit^Tn-^tm, f-©.g«Mli-t 0.3 «

(4) * fe . Fig. 2.20 , 2. 21 ICTv-T J: ? IC. %&($&&flw©&ffiijg© 7

i e . 2.21

Fig. 2.20, 2. 21 IC^ f «t -5 It, * p g g i t D 6

. S * i 7 . 5 , 17, 17, 17

Fig. 2.20. 2.22ic,Tx$nTfco, r o - ^ r o

W.f«« Fig. 2.23IC/K*ftT0>3o

KjWj'^s^iifi* ^ ^ - 1 oftficimisgii, ^ -.^-=- / ^ - *-eif - . r*sn,

2 I /min-tTi&So (5) ?i(i a

. f h -

(6) .-fflBTt

, Fig. 2.24, 2.25IC

i, FiR. 2 21.

f S o •)p. ffl!tffli](f©fi!Sli. Fig. 2.22 IC^SnTfcf), f l i i , Fig. 2.27 K S J f t T ^ S , -«#?(C, S*©Itffl!ia.«l)*(Fig. 2. 27 CD type A) ^ i t

fciJ)1 5

2. 27 © type B ) „ BUS, Fig. 2. 27 ©£<»]©<£ -5 IC, ±© 5

i . Fig.

2.5

- 8 -

JAERI-M 62-002

(1) S

L,

(2)

(3)

( Fig. 2. 29 )„ JK~FKi£^& •>- T v * 14, •>x

(4)

(6) •ip.

ic, Tffl57V t A « t t * l l / ) 'b ACC »?|;;K£|5HW;t

(7) * ^

0 It

(8) l £ ^ 8 $ p B ^ i c A C C t t * « § f £ •£ . Nb,V(C LPCI ai/K^-liate^

(9) Mkfc8tfim& tc, ft" * n «• TSB 7• u- - A *> t. 3 - ^ K u ?**c WfiS x.

Q9

2.6

"5 ic, S

, SUf

ANSx 1.2+ r ^ - f - K )©•>+• v h ?"'?y

, FLECHT-fco ACCSEfili. SS7kM*&»»t. ACCa*i!5rt TIC 378 ~ 287 m3 'h ICgitl

L/:o LPCISEHIi, S^ffllllciSfcto, #BB(iO 3 /

- 9 -

JAERI-M 82-002

t i ECC

700°C, 80ntl LTIi,

, 22-40

FLECHT- SETOTiftill-tJUffltC/lil nfcWl ( FLECHTSETO

Lfc ) 24.45 5^l i«Lr 25 i L/•;„ c«- j ' 3 , * v-?'W>

*, ANS* l . 2 + T > f i K

r-, ANS x 1.2 + T

L, .

2.

Table 2.3 IC^to

, FLECHT-SET, PKL£fe[Ctti^-|fiJtU>j5JlSA>'ll«O, CCTF (

, CCTFfi,

- 1 0 -

JAERI-M82-002

Table 2.1 COMPONENT SCALED DIMENSIONS OF CYCLINDRICAL CORE TEST FACILITY

COMPONENT

PRESSURE VESSEL

VESSEL INSIDE DIAMETER (am)

VESSEL THICKNESS (mm)

CORE BARREL OUTSIDE DIAMETER (mm)

CORE BARREL INSIDE DIAMETER (mm)

THERMAL SHIELD OUTSIDE DIAMETER (mm)

THERMAL SHIELD INSIDE DIAMETER (mm)

DOWNCOMER LENGTH (mm)

DOWNCOMER GAP ... (mm)

DOWNCOMER + CORE BUFFLE /_2\ FLOW AREA v ;

LOWER PLENUM VOLUME (m3)

UPPER PLENUM VOLUME (m3)

FUEL (HEATER ROD) ASSEMBLY

NUMBER Or BUNDLES (—)

ROD ARRAY (—)

ROD HEATED LENGTH (mm)

ROD PITCH (mm)

FUEL ROD OLTSIDE DIAMETER (mm)

THIMBLE TUBE DIAMETER (mm)

INSTRUMENT TUBE DIAMETER (mm)

NUMBER OF HEATER RODS (—)

NUMBER OF W;-HEATED RODS (—)

CORE FLOW AREA (in2)

CORE FLUID VOLUME (m3)

PRIMARY LOOP

HOT LEG INSIDE DIAMETER (nan)

HOT LEG FLOW AREA (m2)

HOT LEG LENGTH (ram)

PUMP SUCTION INSIDE L'lAMETER (mm)

PUMP SUCTION FLOW AREA (m2)

PUMP SUCTION LENGTH (mm)

PWR

4394 (173")

216 (8 1/2")

3974

3760

4170

4030

4849

4.23

29.6

43.6

193

15 x 15

3660

14.3

10.72

13.87

13.87

39372

4053

5.29

17.95

736.6 (29")

0.426

3940

787.4 (31")

0.487

7950

JAERI

1084

90

961

929

4849

61.5

0.197

1.38

2.04

32

8 x 8

36bO

14.3

10.7

13.8

13.8

1824

224

0.25

0.915

155.2

0.019

3940

155.2

0.019

7950

RATIO

1/1

1/21.44

1/21.44

1/21.44

1/1

1/1

1/1

1/1

1/1

1/21.58

1/18.09

1/21.2

1/19.6

1/4.75

1/22.54

1/1

1/5.07

1/25.77

1/1

-11 -

JAERI-M82-002

Table 2.1 (cont'd)

COMPONENT

COLD LEG INSIDE DIAMETER (mm)

COLD LEG FLOW AREA (m2)

COLD LEG LENGTH (mm)

STEAM GENERATOR

NUMBER OF TUBES (—)

TUBE LENGTH (AVERAGE) (m)

TUBE OUTSIDE DIAMETER (am)

TUBE INSIDE DIAMETER (mm)

TUBE WALL THICKNESS (mm)

HEAT TRANSFER AREA (m2)

TUBE FLOW AREA (m2)

INLET PLENUM VOLUME (m3)

OUTLET PLENUM VOLUME (m3)

PRIMARY SIDE VOLUME (m3)

SECONDARY SIDE VOLUME (m3)

CONTAINMENT TANK - I (ra3)

CONTAINMENT TANK - II (m3)

STORAGE TANK (m3)

ACC. TANK (m3)

SATURATED WATER TANK (m3)

ELEVATION

BOTTOM OF HEATER BUNDLE (mm)

TOP OF HEATER BUNDLE (mm)

TOP OF DOWNCOMER (mm)

BOTTOM OF DOWNCOMER (mm)

CENTER OF COLD LEG (mm)

BOTTOM OF COLD LEG INSIDE DIAMETER (mm)

CENTER OF LOOP SEAL LOWER END (mm)

BOTTOM OF LOOP SEAL LOWER END (mm)

PWR

698.5 (27.5")

0.383

5600

3388

20.5

22.225 (0.875")

19.7 (0.05")

1.27

4784 (51500 ft2)

1.03

.25

4.25

30.50 (1077 ft3)

157.33 (5556 ft3)

0

3660

4849

0

5198

4849

2056

1662

JAERI

155.2

0.019

5600

158

15.2

25.4

19.6

2.9

192

0.048

0.198

0.198

2.4

4.9

30

50

25

5

3.5

0

3660

4849

0

4927

4849

2047

1959

RATIO

1/4.50

1/20.26

1/1

1/21.44

1/1.35

1/1

1/24.92

1/21.44

1/21.44

1/21.44

1/15.25

1/26.22

0

0

0

- 271

0

- 9

+ 297

- 1 2 -

JAERf -M 82-002

Table 2.1 (cont'd)

COMPONENT

CENTER OF HOT LEG (mo)

BOTTOM OF HOT LEG INSIDE DIAMETER (mn)

BOTTOM OF UPPER CORE PLATE (am)

TOP OF LOWER CORE PLATE (mm)

BOTTOM OF TUBE SHEET OF STEAM GENERATOR (ran)

PLENUM LOWER END OF,STEAM GENERATOR (mm)

TOP OF TUBES OF STEAM GENERATOR (mm) (avg)

PWR

5198

4830

3957

- 108

7308

5713

17&52.7

JAERX

4927

4849

3957

- 50

7307

5712

14820

RATIO

- 271

+ 19

0

+ 58

- 1

I-I

- 13-

JAERI-M82-002

Table 2.2 Test conditions of the base case test and their data bases

Item Value Data bases

System pressure

Initial average linear power

ECC injection

ACC flow rate

ACC water temp.

ACC injection period

LPCI flow rate

LPCI water temp.

Maximum initial clad temp.

SG secondary side water temp.

Downcomer wall temp, /wall temp, of vessel\ V below cold legs /

Wall temp, of non-specified structures

^factor °* primary loops

Decay curve of power

Radial power factor

Axial power factor

Local power factor

Total peaking factor

2 kg/cm2a

1.4 kw/m

280 m3/h

35 8C

14 sec

30 m3/h .

35 °C

600 °C

2.5^1.5 kg/cm2a (Takahama 3.4)

1.34-^1.37 kw/m /Trojan 2% ever power \ \30 sec after shutdown/

/Data referred\ \in FLECHT-SET/ 378^287 m3/h

35 °C

14 sec

40 m3/h

35 °C

870 °C (Sendai 1)

265 °C

198 °C

119 °C (Saturation temp.

265 °C

/ Equivalent "\ \wall temp. /

. 5

ANSxl.2 + Actinidexi.i

/Delayed neutron \ 1 effect is considered 1 \in the initial power/

1.15

1.49

1.1

1.885

24.45 (FLECHT-SET)

ANSxl.2 + Actinidex l.i + Delayed neutron

1.435

1.546

1.027

2.278

(Sendai 1]

- 14 -

JAERI-M82-002

Table 2.3 Parameter ranges of tests

Linear power (core average)

Radial power factor

Axial power factor

Local power factor

System pressure

ECCS

ACC injection rate

LPCI Injection rate

Injection water temp.

Injection lines

Initiail peak clad. temp.

Structure temperature

Downcomer wall temp.

SG secondary side water temp.

Kfactor of Primary loop

base case

1.40 (kw/m)

1.15 ( - )

1.49 ( - )

1.1 < - )

1.5, 2^0, 3.0 (kg/cm2a)

280, 250 (m3/h)

30, 60 (ro3/h)

35, 65, (°C)

3_ (without broken loop),

600, 700, 800 (6C)

Tsat

Tsat + 79 °C, T s a t

265 C O

>25. O 5 ( - )

- 15-

To Exhaust

Water Purification System

I^Gas Supply System

Steam Supply Line

Prewurizer

Air Compressor

Ace Tank -

Drain

Steam Supply

^Containment Tank-1 \ Containment Tank -1

Ace Line

Fig. 2.1 Schematic diagram of cylindrical core test facility

i

S 00

JAERI-M82-002

r 8 8

o

to

Upper

Plenum

Core

6th

** 5th

4th

3rd

2nd

1st

Lower Plenum

Bottom of SMpport Plate

Loop Nozzle Center

Bottom of Core Plate

Top of Heated Length

Downcomer

Core Baffle Region

Top of 1st Spacer

Bottom of Heated Length Top of Core Rate

8otfom of Lower Spacer.

Top of Bottom Plate

Fig. 2.2 Dimensions of pressure vessel

- 17 -

JAERI-M82-002

Vessel Wo 11 Downcomer Core Boffle Region 6x8 Heater Rod Assembly Pipes for Pressure Measurements

Tntact Cold Leg

Nozzle for Downcomer Differential Pressure Measurement

Intact Cold Leg

Intact Hot Leg

Intact Hot Leg

T-Tp^ Bundle Containing L<._SJ 8 Rods with 5 T/C

j j Bundle Containing

Plant North

Intact Hot Leg

iXi i I I N y ' ! I

Cold Leg

L__J 4 Rods w,'h 5 T/C B r Q k e n H o f L e g B r o k e n j ^ U g

Fig. 2.3 Cross section of pressure vessel

- 1 8 -

JAERI-M 82-002

Hot Leg Nozzle

Support Plate A-A' Cross Section h-101.6*-

B-B' Cross Section

Support Column

Control Rod Guide Tube

Orifice Plate

Open Hole

Upper Core Plate

Fig. 2.4 Schematic of internals

- 19-

\

JAERI -M 82-002

\V

L_ (VI O «

z -e 01

•H

•d

8

8

10

60 •H to

- 2 0 -

JAERI-M 82-002

\upptr Cora Support P W

Unit '• mm

Fig. 2.6 Upper plenum control rod guide tube

-21 -

JAERI-M82-002

Stub Mixer

Control Rod Guide Tube

Open Hole

Support Column W/Mixer

Orifice Plate

Hot Leg Nozzle

Fig. 2.7 Arrangement of internals

- 2 2 -

JAERI-M 82-002

S • • « •

IX - rr f * •

t • 3E : !

'it' I:: x.: ±..

i : : !

/

r* \ • •

• • •

: 5 _ _ i : i .

• • s • • •

. 3 - - : : : . . • : 3 - - - - * : :

• • y

. 3 - . 5 : » . . •

* * ' " " t"

7 .... r.L . Powtr Zont • •«« * - -Boundary

IK • *Th '• 1 T

t , ; I \ * * 1 * \ • • « • 1

« • I * * id

* * \

I • • y [j

S • • i , • • • "j • • y s • •

- M • ' M • '

• • •

- ^ : : i . -

y • • >

— I s - - - 5

* ? r

_ _ S i j - - H j • • • ^

- _ 1 2 : 1 * "-

m

y •

• • y •

• «

- . i : 1 •

1 •

i « 7 « «

y •

• ^ •

y • • • »

s1 • *

• yl

y a •

• •

c i.

! : i

i ; -

2 I _ t • •

M H «

• •

- S a

[" I

JL

1 "1"

r

T

5 • •

y «

• «

I

• •

F • •

E : S

s i ; i

• •

• ! l_

|

i

i

1

1-

9

;

X

i t

•,

r,

V

«

-

Symbols Norm of Pow«r Zone

0 : High Power Heater Rod 0 : Medium Power Heafer Rod D : Low Power Heater Rod IE : Non-Heating Rod

HJ

u.

(« I

1

u

1

1 rJ

j

j

Fig. 2.8 Arrangement of rods In core

- 2 3 -

JAERI-M82-002

A A /* *\ v l i i r / X X f -\

A A

T/C

A X

r \

A A &> X X

X A & A X f \

XX) A A A A A

X X! . /

A A

T/C

CONTAINING 4 RODS WITH 5 T/C

T/C

A A

x x

A A X \ / T/C

A X

v >

A A

T/C

X

X A A A X / - • >

\ J

X T/C

A A A A

T/C

X X

A A

T/C

CONTAINING 8 RODS WITH 5 T/C

Symbols

• : LOW POWER ROD (Aj : MIDIUM POWER ROO ^ : HIGH POWER ROD Q : NON-HEATING ROD

T/C : THERMOCOUPLE

Fig. 2.9 8x6 Heater rod bundle

- 2 4 -

JAERI-M 82-002

Two Rods with 5 Vc for Top or Bottom Holf

Bundle contoining 8 rods with 5T/c

Bundle contoining 4 rods with 5/C

Notes : 1 ) Each arrow shows bundle direction.

2 ) Total number of T/C ore 9 0 0

Fig. 2.10 Bundle arrangement

- 25-

6 34O

3660 (Hedted part)

_ 1325 (MBO) ^iP. IO ( SN) 1325 (MgO)

j i

I

§? i

Thermocouple (CA.0.5*)

Core

Heater

2560 ( Leod part)

Insulator (MgO)

Sheath

Lower end plate of PV.

A T»' L u> GO

— I ^ in ID

Section A - A

Fig. 2.11 Heater rod

Elevation (m)

to • (-" to

•a

3

t

3 s i (-< I rr § (I) O HI 3"

B rr

p en b in

- t -

04

b

Water Temp. T/c H • —

Clad Temp. T/£ -(Typ«B)

Clad Temp. ?/c

(Typ« A)

o b

o bi

O

p

p 2 i——-

2 0 0 210 2 0 0

oi —• 8 s

ZOO

04 at

-©-

2 1 0

a. "5. a <D

Exhaust Pip»

Pre*sure Regulation System

Pump Simulator

S e p a r a t o r / Slowdown Valve

Spool Piece

ECC water injection locations :

Cold leo •• E C C S © . ® , ® ond

Lower plenum . ECCS ® Pump Simulator

Pump Simulator

Fig. 2.13 Primary loop piping

s I

PV

250

Fig. 2.14 Vertical view of primary loop

ZfO* -

1*0*

*H-*H* Cross Section

Arrangement of Tubes

9622

Outlet Nozzle

- 9 0 '

To Drain

nlet Nozzle

Inl«t Nozzl* 180*

"A*-*A* Cross Section

tfl Inlet Nozzle

To Drain

Outlet Nozzle

Fig. 2.15 Steam generator simulator

JAERI-M82-0D2

500

Pipe preventing reverse flow

Vertical vanes

Verticai vanes 3*. 12 plates

Section A-A

Orifice

From SG Fig. 2.16 Pump simulator

- 31 -

T U G I Temperature

Temperature

Differential Pressure

Pressure

Flow

Level

Signal

Spare

Fuel Power

Cold Junction

C.A

D/P

D /P Cell

Elecrromoonettcl Flow Rote T"

D/P Cell

Limit Switch

Power Transducer

Ibnctton] Pont I

Patch Panel

Control Panel

Computer

f I/O Typewriter

Fig. 2.17 Data acquisition system-I

Cold Junction Fuel Temperature

Fuel

Steam Generator Exit

Flow

C-A <

Steam Superheat Probe C.A

Steam SuperheqtJ Probe C A

Spool Piece (

• « 1

i (

. I 1 T

> <

. D C < Amplifier

Signal Condition

A/D ' COfNWt*

<

Dig itc Recor

i |

der

v . y

Typewriter

S3

Fig. 2.18 Data acquisition system-II

Liquid Level Detector

Signal Coditioner

Analog Recorder

< i——<>

Parade I

I/O

Memory

Floppy Disk

Fig. 2.19 Data acquisition system-Ill

V M M I Wall

Intact Hot Lag

JAERI-M82-002

Nozzl* for Oowncomw Differential Pressure Mtasuremtnt

Intact Hot L«g

Plant North

Intact . Cold L«g

Broktn Hot Leg Brokwt Cold L«g

DC : Downcomtr LLD

L P : Lowtr PUnum LLD

CNR: Cora Narrow-rang* LLD

CWR: Cora Wld«-rang« LLD

UP = Upp«r Plenum LLD

Fig. 2.20 Locations of liquid level detectors

- 3 5 -

JAERI- M82-002

BOM Point B

Top of Bottom Plat* (Boss Lint)

Notat : • ' Location of difftrtntiol prcssun taps (NumMr mtan* «l*varion from bos* lin* in mm.)

L.T'• Liquid l*v*l front mi tttr DT. Diff*r*ntiol prassur* trantmitttr

Fig. 2.21 Pressure, differential pressure and liquid level instrumentation locations in pressure vessel

- 3 6 -

JAERI MKJ OIIL;

Symbols

XI and X2 : High power heater rods with T/Cs for clad surface temperature at 5 elevations (42 rods )

Y1 and Y2 : Medium power heater rods with T/Cs for clad surface temperature at 5 elevations (42 rods )

Zl and Z2 • Low power heater rods with T/Cs for clod surface temperature at 5 elevations (39 rods )

Z 5 and Z6 • Low power heater rods with

T/Cs for clad surface temperature at 5

elevations eoch to form a 10 elevation

pair ( 6 pairs)

Nl and N2 • Non-heating rods with T/Cs for surface temperature measurement at 5 elevations (42 rods )

N3 : Non- heating rod with T/Cs for fluid temperature measuremen at 5 elevations ( 9 rods)

N4 : Non - heating rod with T/Cs for surface temperature measurement at upper and lower ends ( 9 rods)

CW • Liquid level detector for wide range

measurement ( 3 rods )

CN : Liquid level detector for narrow range

measurement ( 3 rods )

LP • Liquid level detector for measurement

in lower plenum ( 3 rods )

SS '• Steam superheat probe ( 6 probes }

Note : Symbols denote a part of each Tag

s

Zl

21

Z_h

Zl

CN

LP

X2

XI

Nl

XI

N l

N4

XI

Nt

X I

N1

Yl

Yl

N3

Yt

Yl

- I D number

YZ

N2

ZZ

Zt

z

24

Zt

Z1

6

5

SS

xz

Y

Y

X

N

N3

XI

Nl

X I

Nl

Nl

Nl

Nl

Y l

N4

Y1

Y1

Yt

X

X

Y2

SS

SS

HZ

CW

|Z5

Z6

Z5

ze

Z(

Z l

Z5

Z6

Z l

zz

Y

Y2

SS

Y

X

X2N

N

XI N

XI H X

XI N

Fig. 2.22 Location of instrumei

JAERI -M 82 -002

N2

Z2

Z

Zl

1

1

6

5

SS

i 1

X2

XI

|

r Y

Yl

XI

Nl

N3

XI

Nl

XI

Nl

Nl

1 Nl

Nl

Yl

N4

Yl

1

Yl

X

XI

Y2

SS

SS

N2

W

Z5

Z6

Z5

Z6

U

z

z

Z5 Z6

Zl

Z2

N2

SS

Y2

X2

XI

XI

XI

Y

Yl

XI Nl

N3

Nl

Nl

X2

Nt

X2

N

N<

Yl

Yl

Yl

Yl

X1

X<

iz

Y2

N3

N4

N2

N4

N2

N3

N4

Z2

Zl

Zl

Zl

Zl

Zl

Zl

zs Z6

Z2

Nl

N3

N2

CN

N2

SS

N4

N3

Y2

Y2

XI

XI

Yl

Yl

Yl

Yl

Nl

Nl X2

N

X2

N

Nl

Nl XI

Yl

Yl

X

XI

XI

X2

Y2

yt

N2

Z2

Zl

Zl

Zl

Zl 1

LP

N2

CN

LP

I i

Y2

XI

Yl

Yl

Yl

N4

Yl

Nl

Nl

Nl

Nl

XI

Nl XI

NJ

Nl

XI

Yl

VI

X

X2

Zl

Zl

Zl

Zl

Z2

N2

Y2

Yl

Yl

N3

Yl

Yl

Nl

XI

Nt XI

N4

Nl Xt

Nt

XI

X2

cw

ss

zt

Zl

Zl

Zl

Z5

Z6

'ig. 2.22 Location of instrumented rods

- 37 i- 38 -

JAERI-MB2-002

8

1 UJ

9000

8000

7000

6000

5OOO WWWW

4000

3000

2000

1000

-

Centerl

Topof \

top of r

_

Line of Primary Loop

JCSP:6U7

tooted Realon: r -5760 JZ

Jt ma

W/z. .1 Core Narrow-ronae L L D ^

Bottom

~ (5) (4) (3) (2)

of Heated Regions

1898 1650 1403 1156

L 995

\Lower Plenum

Upper

Nozzlt«:7O27

4363

4198 4115

3950 3668 3782 3702 3620 3537 3455 3373 3290 3207 3125 3042

s

100

LLD

(17)

(16) (15) (14) (13)

(12) ( t i l (10) (9) (8 ) ( 7 ) ( 6 )

(5) (4)1

13) (2)

7 ZOT*

5856

5608 5361 3113 4865 4618 4370 4123 3673 3628 3380 3132

2885 2637 2390 2142 1895

Plenum LLD

(17)

116)

(15)

(14)

(12)

(11)

(10)

(9)

(8)

(7)

(6 )

( 5 )

( 4 )

( 3 )

(2)

(1);

7138

6805

6472

6139

5806

5473

5140

4807

4474

4141

3803

3475

3142

2809

2476

1810 /

/Downcomer

wide-range LLD

0 7 > (16) (15) (14) (13) (12) ( I D (10) ( 9 ) (8 ) ( 7 ) ( 6 ) (5 ) ( 4 ) (3}' (2)' (1)1

• 8585 8436 8288 8140 7992 -7884 7695 7547 7400 7250 7100 6953 ~ 6804 6655 6507 6357 6210

4

-

LLD

Note : Numbers in parenthesis denotes sensor number from the lowest to the highest.

Fig. 2.23 Elevation liquid level detectors

- 3 9 - (40)

JAICR] - M 8L' -1>UL"

Sreom Generator-I ( 1 and 2)

LPCI Pump LPCI Tank Col

Fig. 2.24 Thermocouple locations except prJ steam generator simulators

JAERI- M 82-002

Sfeom Generator - I 13 and 4)

Note : Subscript U and L mean upper and lower

. sides in each pipe , respectively.

S3 \

'ump

LPCI Tank Containment Tank-1 Comomment Tank-I I

icouple locations except pressure vessel and generator simulators

- 41 ~ 42 -

JAERI -M

Steam Generator-I (I and 2)

_ / 1 > T Y 6 T Y O J S \

Base Point

LA. LPCI Pump

UPC: Tank

Fig. 2.25 Pressure, differential pressul instrumentation locations excl

JAERJ-M 82-002

Sreom Generator-Il3and 4]

\ Base Point B

LT. Liquid level transmitter DJ k DT! Differential pressure transmitter PT It P L : Pressure transmitter

FT : Flow meter

ICI Pump LPCJ Tank Containment Tank-I Containment Tank-fl

ssure, differential pressure and liquid level Itrumentation locations except pressure vessel

- 43 t 44 -

JAERI-M 62-002

Top of Bottom Plot* (Baft Lint) ' } ' _Plant North

Notts

I) Example pwt) dtnorts

tht downcomtr surfact

ttmptroturt In tht

aztmutha! orltntatlon (5 )

shown in tht right flgurt.

2) o and • : Location of thtrmocoupM

(Numbtr mtons tlnvotion

from bott lint in mm. )

Fig. 2.26 Thermocouple locations in pressure vessel

-45 -

JAERI-M 82-002

12

ft

to 9

13

26

25

24

23

8

14

£7

32

31

22

7

(5

28

29

30

21

6

16

17

18

19

20

5

Bundle No.

1

2

3

4

3.66

3.0

c o

° UJ

2.0

! .0

0 . 0

.3.05

2.44

1.83

-1.015

0.38

Elevation No.

t

i !

o X

Tag. No.

14 Y l 4

/ *— Elevation No. Heat Rux

Bundle No. Temperature

Elation NO. of Heater Rod

1.454

1. 139

0.889

0.639

0.289

e-8

6-4

6-3

6-2

6-1

5-5

5-4

5-3

5-2

5-1

3.539

3.289

2.719

2.089

1 .769

Type A Type 8

Fig. 2.27 Location of thermocouples installed on instrumented rods

- 4 6 -

JAERI M H2 002

T E O S G 2 H ( K 2 ) ( 5 (TE0SG4H)

TE056IH Ax2) / f> (TE05G3H) (H,

),^\

(K). TEIOG2H(ii2)

(TE10G4H)

\TEIOG TC (TEtOG3C)

(TE12G3O) (TEIOG3H) (TE1OG3O)

TEO3G1 M /1«2) (TEO3G3H)

TE09G2HU2) (TE09G4H)\ TE1OG2C TEI004C)

TE02G1Q (TEO2S3O)

TE0BG2H«2) (TE08G4f

IEQ9G2C. TE69G4C),'

, (xZ) JTE09G 1H \TE09G1Q

(TE09G3H) (TE09G30) (TEC

Notes: (1) Tag Nos. in the parenthesis denote those of

(2) Number in the circle denotes thermocouple ins

(3) Angles in the figure denote steam generator xiental

(4) Symbol '9" denotes T/Cs which are inserted "wrizorj , "o* denote T/Cs which ore inserted vertically fro

8

i

•8

IOOO 1000 1000 1003

12) (H) (10- (9;

Fig. 2.28 Thermocouple locations in steam

JAER1- M 82-002

TE02G2H()c2)\gr.. (TE02G4H)

TEO2G1 (TE02G»0)

TEO8G2H«2) (TE08G4H | TEO9G2C rE09G4C)/

&

\TE02GtC (TEO2G3C)

TE016IH / («2) (7 (TE01G3H) ^

TE07G2H(<2: (TE07G4H)

TE0SG2C TE08G4C

270(90*) TEO0G2C TTE0064C)

TEOIGtO (TEO1G3O)

TEOOGIH (TEO0G3H)

\TE0tG1C (TE0IG3C) TE06G2H(»2)

(TE06G4H) '

\TE09G1C (TE09G3C)

»2) , i 1H \TE09G10

D9G3H) (TE09G30)

/ \ \TEOBGIC ' \ (TE0aG3C)

/TE08G1HU 3 \ T E 0 8 G 1 0 (TE08S3H) (TE0aG30)

ITE07G10 TEO6G1H it Si (TE07G30) (TE06G3H).

TE07G\H(»2) (TE07G3H)

TE0SG14

TE0602C (TE06G4C)

ri-06010 '(TE06G30) TE060IC

ITE0603C)

T£06Gtg (TE06G34J

parenthesis denote tho;e of steam generator- H.

fcle denotes thermocouple installation level .

denote steam generator orientation per the global axis shown in figure for the "Primary Loop

ST/Cs which are inserted "wrizontally from the side wall and symbols'©"and /j\ / r \

tich ore inserted vertically from the top of steam generators. , , , \ ^ , _ ~ - J ~

Piping,

•8 8 8 8 8 8 8 8 3

o

1 1 «

1000 tOOJ 1000 1. 700 '200' 300 300 LJ 250;top!;oo.

® louple locations in steam jenerator simulator-I and -II

- 47 % 48 -

WATER LEVEL IN

TEST VESSEL

FLOW RATE INTO

COLD LEGS

FLOW RATE INTO

LOWER PLENUM CLAO TEMP POWER

to to

00 H

I n>

1 S

YS

TEM

3 . * N •

i

*• i s • o 5

f-

ACC *

— . — —

1

1

Ttat

\ \

\ \

N

[INITIA

L 1

i p

\ \ | /

/

/ /

A s /I

/ s / § / * /

00

JAERI- M 82-002

3.

54 5F-fflft£ L t i f ' i ->£ l9l"]<OS&MHDm%>S: Table 3.1 (C*

(1) segass&^'jjjigntags c i 2. c 1 11 (2) ^ - 5 ><-*s!jjRs£g&

^ E / / C 1 10 ( P 1.5) , C 1 12 ( P 3 )

E C C S B C l 5 (G A ( - , -A; ) , C 1 9 ( G , . , - < - i ' M

C 1 13 ( ACCftAUJflTO. I . C I 6 ( G , . P n

ram/jiwffiS: c i 7 ( 7 0 0 "c >, c i 14 f 800 r )

y 'V y ^J v(s - ia c i - 3 (fi'iSfiuMis;)

C i i ( K ~ ~ 3 S )

i C 1 S i ! 3 ( t - -t > '/ ' ,• 7 9 - 144 )

i C 1 S I M ( f)5"C )

(3) KfiO,iX.fM ' i t l i W K C T i ^ t t i ' i ^ ) ^ ^ - ^ ^ ^ , . )

F L E C H T C l S H 2 ( 1708B ) , C 1 16 ( 3105 B )

PKL C 1 S H 5

(4) t**S41li™«S8

'J 7 f / f tSia^SS C 1 4 ( «*Vi )

C 1 S H 1 f * ; ' . L - 4 I U ] | ] $ , b \ s - - > ? ' )

C ] - 15 ( ' ^Jiiti^ )

C l 9 ( IN (11 • 4 'U.-7J317K )

C l 8 ( ^ - r - v -

< 4 ^ -

ELECHT SET?4»iS3!fe© PKL ®.

L, ^*p<£.>?ftJn**iHiA>©l®Htr-iS«iL,

1.5 m

- 5 0 -

JAERI-M 82-002

Fig. 3.1 *>£ Fig. 3.

2.1 ^ t > Table 3.2.19

Table 3. Table 3.3

SH

SH

SH

1

1

1

1

1

1

1

3

4

5

1

2

.!

4

5

6

7

8

9

0

1

2

3

4

5

6

%

54

54

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

4

4

•1

4

4

4

4

4

5.

5.

5.

5 5.

5 5.

5 5.

IS

1

1

1

1

1

1

4

5

6

fi

7

7

7

rable 3. 1

1

3

2

1

2

0.1

1.

1.

1.

2.

1

n 9

1

7

1

4

3

7

9

9

5

29

1

2.2

1.

1.

2.

2.

2.

3.

1

2

1

2

3

0

7

4

7

5

6

6

fiiii

ft A

ISA >\,-

?-••;

1 ) 7

urn Kit;

«»?

a*

'J7-,

Summary

; j Q = 1 . 2 6,

MS = 6 5 C

;jQ-1.2fi, ,

, r ^ ( P K L

7)1W/U K

y ft vj|:. jnth

7?MI9H$ia •.

P = 1 . 5

$& (t1*t'l:r

P = 3

5-WRU5IS • ,'

^Q=1.5.SE

Ol

"it

"ill K'

- ~

W/J

P

CCTF

- : P - 4 2,

: P = 4 2,

A)

;-:s

•. y . P

1 G | . | M

'•'init =

)« ;* • ifc

0 (GA

Tinit =

= 4 2 , Kffl

test conditions

* «5 •£•

Fr = 1.4 4

3—UKU?71-:TK P K L K 7A

(i 0 '2 0

I --- 2 0 > 3

7nn

1.5 m G l i » > V , 7 )

c c Run 2 ICftti-5)

^0 0

W i ' t i f f i * FLECHT 3 1 0 5 B

< k w / m )

P : SE^7 ( Kg/cm2a ) , G : »EM ( mV'h ), K : T i n i t : »fl |f tDfflfiilSS ( X: ). Q :

i : P = 2, GACc=83.8 x 3 ( 14 sec ), Gi.PCi = 10 x 3 Q = 1.4, T i n i t=600, K - - 2 5 , 90 > *-rfijg - T s a t +80 °C

- 5 1 -

JAER1-M82-002

TEST NO C1-SH3 .73.LM..3.

CHPRT NO 165

g 6C2.S0.

200. M

TRC NO

1 TE32X11 •! TE32X1H 2 TE32X12 5 TE32X1S 3 TE32X13

location elevation

5

3 o

1

3.05 m 2M m 1,83 m 1.015 m 0.38 n.

360

HUE ISEC)

600

Fig. 3.1 Clad surface temperature (Test C1-SH3)

TEST NO C1-SH4 oa.us. m

CHPRT NO 165

1 T E 3 2 X I 1 ij 1 IE3i«12 5 TE3iX!b 3 IE32XI3

0. DO.

locatior

i

36D

TIME (SEC)

5 4 3 2 1

• t tvat ion

3JO5 •« 2wU 1,83 m 1.015 m 0^8 <n

Fig. 3.2 Clad surface temperature (Test C1-SH4)

-52 -

JAER1-M82-002

TEST NO C1-SH5

CHPRT NO 165

Q- UOO.OO.

locatior

• L 3 2 1

elevation

3.05 m 2M <» 1,83 m 1.015 m 0.38 m

IIMf ISf.O

Fig. 3.3 Clad surface temperature (Test C1-SH5)

T E S T N O C l - 1 i 7 i . ;*..-• "•--i".r > t i

NO 155 • ' J i ' i i

T I M E I S E C )

Fig. 3.A Clad surface temperature (Test Cl-1)

- 5 3 -

JAERI-M82-002

T E b : :-iC c i - 2

CHQRT [JO i 55

location elevation

TIME I 5 K 1

Fig. 3.5 Clad surface temperature (Test Cl-2)

NO Cl-3

NO 165

" > G NO

1 1 E 3 3 M I 1 T E 3 5 K I I 4

1 0 0 0 . DO

locatior

• 5 4 3 2 1

elevation

3.05 m 2.44 m 1,83 m 1.015 m 0.38 m

0 120 2U0 360 USO

TIME (SEC)

Fig. 3.6 Clad surface temperature (Test Cl-3)

- 5 4 -

JAERI -M 82-002

TEST NO C l - 4 C79.07.271

CHRRT NO 155

a- 100. 00.

1 TE3JKI 1 u 'F3?x'. i4 2 1 E 3 2 X 1 2 5 T E 3 2 x : b

3 U 1 2 X : 3

elevation

T | MP T i l ( 1

Fig. 3.7 Clad surface temperature (Test Cl-A)

T E S T NO C l - 5 i 7 9 . i o . i 9 i

CHflRT NO 1 6 5 1 IE3?»I I <i 2 TE32X12 5 3 TE32XI3

- BOO. 00.

locatior

2H0 360

TIME ( S E C )

5 U 3 2 1

elevation

3.05 m 2M m

1.83 m 1.015 m 0.38 m

60C

Fig. 3.8 Clad surface temperature (Test Cl-5)

- 5 5 -

JAERI-M82-002

T E S T NO Cl-6 .79.ii.09>

CHQRT NO 165 1 TE32XI 1 4 TE32XIU 2 TE32X12 5 TE3JX15 3 rE32XI3

1 I MI :')i r

Fig. 3.9 Clad surface temperature (Test Cl-6)

Fig. 3.10 Clad Surface temperature (Test Cl-7)

- 5 6 -

JAERI-M82-002

TEST NO C l - 8 i79. i i . i9

NO 1 6 5

~u'*!; 4 n ^ >: 4

location elevation '

5

3

1 , - B0C.00

3.05 m 2M m 1.83 m 1.015 m 0.38 m

4t}0 CulO

I I HE iSf. I")

Fig. 3.11 Clad surface temperature (Test Cl-8)

T F_ S T NO C l - 9 i ,;n.,.?.!) M : '"•'

CHflRT" M ; i b 5 "' •' >.'•<:'•<

1 locat ion elevation

s i. 3 2 1

3.05 m 2.44 •» I 1,83 m ! 1.015 m 0.38 m

212 350

TIME ISEC1

Fig. 3.12 Clad surface temperature (Test Cl-9)

- 5 7 -

JAERI-M 82-002

TEST NO I C l - 1 0 | .79.12.201

CHHRT NO 1 6 5

TRG NO

i If32X1 1 "i 1E32X1U J TT32X12 5 TE32X15 3 TE32X13

0- HOO.OO.

locatior

5 4 3 2 1

elevation

3.05 2.44 «> 183

TIME ISET)

Fig. 3.13 Clad surface temperature (Test Cl-10)

TF'- r \ J Cl-11 •=...•. .- "" '"'

locatior

• h 4

elevation

3.05 m 2.44 m 1,83 m 1.015 tn 0.38 n,

210 3S0

T I M E ( S E C )

Fig. 3.14 Clad surface temperature (Test Cl-11)

- 5 8 -

JAERI-M 82-002

TEST NO Cl-12 I9Q.DI.7UI

CHRFT NO 165

Q- HOC 00.

location elevction

• 1 4

J 3 3 2

1

3.05 m 2.44 m 1,83 m 1.015 m 0.38 m

0. CiD(_.

Tint iset)

Fig. 3.15 Clad surface temperature (Test Cl-12)

T K : T N C C l - 1 3 i-: • : . '• .'•' ,

location elevation

3.05 m

3 1J83 m 2 1.015 m

0.38 m

T 1 M F ( S E C I

Fig. 3.16 Clad surface temperature (Test Cl-13)

- 5 9 -

JAERI-M82-002

TEST NO Cl-14

NO i 6 5

Fig. 3.17 Clad surface temperature (Test Cl-14)

T E S T N O C l - 1 5 I8C.0J.36I

CHCiRT NO 1 6 5

IOC 1,0

Fig. 3.18 Clad surface temperature (Test Cl-15)

- 6 0 -

JAERI-M82-002

TEST HO d-16 (9D.J3.P6.

CHPRT NO i 65

TflC UC

1 ' E 3 2 X 1 I <; T E 3 2 X K 2 T C J i X l S 5 ' E 3 J « I S 3 T f i ^ x i l

locatior

• 5 U 3 2 1

elevation

3.05 m 2.44 m 1,83 m 1.015 m 0.38 m

Fig. 3.19 Clad surface tempernture (Test Cl-16)

-61 -

JAERI -M 82-002

Table 3.2.1 Summary of CCTF Test C1-SH3

% m n

in&tf

«S «

C1-SH3

Bffft 5 4 «?•- 4 ft

C 1 - S H 2 ('+'

(f— + y Y 7

& /h J

^n-:/!":/K*.«£Jil

Will

1 9B

(kg

(kw.

(m3

(sec

(m3 /

*ii-iL« Mini w.'.'.'i uimo

^ ? x y ^B$|!J)

'J'!*i8|5'J!P'll>iftfiiiSi

i t '*i51>?x i"^B

(bSMJ)

(C!

( sec)

iUEIC)

<fliil ( s e

1. 4

cm2

'm)

1i)

)

1i)

c )

7- ?

4

a

?

i :

)

)

C

Wi) «c«

42

1.1 5

8 3.8 x 3

I 4

I 0.0 v 3

fifi I

7 I 2.9

I 8 8.0

5 7 3.1

I 0 3.0

1.4 4T*I

L t ,

7 •, ?

M 6

I

6

I

? : I. 4 4

(SH2)

5 0.3

7 l.O

5 0.3

2 6.5

i< If:

- 6 2 -

JAERI-M 82-002

Table 3.2.2 Summary of CCTF Test C1-SH4

n ffi a

% %

C 1 - S H 4

agjpo 5 4 ^ 5 3 1 a

& E ^ (kg/cm2

sptellSiii^&'ffi (kw/m)

SEft*^'ia 0n3/Ti)

BSfiS! (se c )

f&G-'S^&ftiit ( m ' / l i )

• •C<WWI<ii'.'.1iMffi(C)

^ ? x y-f H§RIJ ( s e c )

^ i t a l ! 0 -31 > f'BSH ( s e c )

O l ^ H t i E C C 7KO-9- y'9 — >

a) 2

1.4

8 3.8 x 3

14

1 0*3

600

SA*il

8 2 9.8

5 3 4 5

8 0 3.8

3 0 6.0

€-*8x.fcfc*.

= 65 C

(C 1 - 1)

8 18.3

5 1 8.5

8 1 8.3

3 4 8.0

- 6 3 -

JAERI-M82-002

Table 3.2.3 Summary of CCTF Test C1-SH5

?« Jffi p

1* SK

)& »

C 1 - S H 5

agft 5 4 if 6 ^ 7 B

rk IE ti ikg/cirf a)

#^SItB^®ffi (kw/rri)

lEif£7K^aiEfi (trf / h )

B#R3 ( sec)

.'fiOift kfs iS (nf/h)

•b''iL>Ai[1.1!ii;iiilS; I d

^ • ^ x y ^ - D § | ! 3 ( s e c )

|t1!fcui5iJ!)3'L>fiit5i;S9[ (C)

• tP 'C 'O^ini i^SKSJf Tab -ofc

42

1.0 6

1 1 1

21

48

70 1

7 2 1.9

2 4 5.0

6 9 0.0

1 6 0.0

„ ttl. 1

\ PKL

«H 8 1

5 1

81

34

mm 8.3

8.5

B.3

8.0

- 6 4 -

JAERI-M82-002

Table 3.2.4 Summary of CCTF Test C1 -1

•mm I I B

Ci- l

BSftl 5 4 *£ 6 £ 2 I B

si" 'J 7 4 x £32$ L, A— 7°©

& BE ti (kg/tm*a)

^VsMfaffl&fli (kw/ni)

»$IBJ (se c )

(5Efi**iiJ£» (ni1 /^)

^ j r x y f-B$R)l ( s e c )

2

1.4

8 3 . 8 x 3

1 4

1 0 x 3

6 00

K 7 r > J = -

8 15.4

5 5 65

8 IS.4

3 4 0.0

- 3 5

8 1 6.3

5 1 8.5

81 8.3

3 4 8.0

- 65 -

JAERI -M 82-002

Table 3.Z5 Summary of CCTF Test C1—2

IS

B

C l - 2

Bg*n 5 4 ?P 7 n

3k ffi ^J

B$RJ1

fiSfl: *!•*&«£ ft

4 B

Ckg/cm

(kw/m)

(m3 / h )

feec )

(ms / h )

(C)

(sec )

SltlC)

*IB1 (sec)

L,

a) 2

1.4

8 3.8x3

1 4

10X3

6 00

8 18.3

S ! 8 5

8 1 8.3

3 4 8.0

81

51

81

34

8.3

8.5

8.3

8.0

- 66 -

JAERI-M82-002

Table 3.2.6 Summary of CCTF Test C 1 - 3

mm B

ss**8

*s *

r$L *

C 1—3

BSfQ 5 4 ^ 7 ^ 1 3 B

% & -ft ( k g / c m ' a )

^P^Wtil/Jffiffi Ocw/m)

* E a * ^ M t * (hi3 ,/Ti)

B$fi!] ( s e c )

t&ff.&fcXMfk (m'/h)

4 ? i y f BSCBI ( s e c )

**g |5^xy^Btp B Tfe e c)

T * 0 . y"? yfi-7950" hot

> y*-7S|5icii

2

1.4

8 3.8^3

1 4

1 0x3

6 0 0

8 4 0.8

5 0 5.5

8 4 0.8

3 2 1.5

MDL, lafiJjgi

•95ffl|>7KaBJ;

wall effect

^BJjAsJ*ii>^"5SftAJ*5o C O S

«».*(.

8 1 8.3

5 1 8 5

8 18.3

3 4 8.0

67 -

JAERI- M 82-002

Table 3.2.7 Summary of CCTF Test C1-4

*S »

iS *

C 1-4

BSfU 5 4 *f 7 £ 2

Sja/fci4BI£f?

Jh S. fi

B*RH

fftfl: « • * * « £ •

*i.c>wioj»it5iina:(

*5'C«assK (

£ * * v-Hsua

7B

(kg/cm8 a)

fltw/m)

&n3/h)

(sec)

(m'/h)

C)

C)

(sec)

SIC)

'pi fe e c )

Mi, £iLT

#1*8 6 — 2 K

1.4

83.8X3

14

! 0 x 3

600

4** Sft 1R

8 7 9.8

5 6 3.7

8 4 0.8

3 6 2.0

:? xy-f l^rB

***?

%

8

5

8

3

life

1 8.3

ias I a3 4 ao

JAERI-M82-002

Table 3.28 Summary of CCTF Test C l - 5

H S6 B

e *

C l - 5

B9fn5 4 *

C 1 - 4 i C

B

*fflfflJfflJIB

(fiSJB)

1 0 ^ 1 9 3

1-5 £®ffl?trf#

k g / c m 2 a)

SS (kw/tn)

(tit (tns / h )

Wlj ( s ec )

i t* ( m s / h )

Jli.1 ( s e c )

'f-B^Pol ( s e c )

2

1.4

8 3.8X3

14

1 0x3

50 0

7 6 6.4

53 1.5

7 6 6.4

3 2 1.5

K (C 1-2) i

7 6 6.4

5 3 1.5

7 6 6.4

3 2 1.5

- 6 9 -

JAERI-M 82-002

Table 3.2.9 Summary of CCTF Test C1—6

% m a

ZS

$& Ml

f£ 5(1

C 1 -6

ag?a 5 4 ^ 1

& E /]

fgEa*^«

OS*)

lfl 6 B

(kg/cm2 a)

S (k w/m) fi (m3/h) rBT ( s e c )

» (m'/h)

IC)

K] ( s e c )

^ 8 8 ( s e c )

2

1.4

8 3 .8x3

1 4

2 0 x 3

6 0 0

* a M 7 4 2.9

5 3 0.5

7 4 2.9

3 18.5

u, 7

5

7

3

6 6.4

3 1.5

66 4

2 1.5

- 7 0 -

JAERI-M 82-002

Table 3.2.10 Summary of CCTF Test C 1—7

•mm-} <& tfc •

» * *

f£ *

C 1-7

ag*n 5 4 1 u

^ ff 1

SEft*^«ta

(5Ea7k^«t»

(SL^7 /h*<ttoT*f»:

^15 8

(kg/cm2 a)

(k. w/m)

(m3/h)

( s e c )

(m3 / t i )

( s e c )

JUS] ( s e c )

0 Ctf*^sS^!c

2

1.4

8 3.8 x 3

1 4

1 0 x 3

70 0

8 3 5.4

531 .5

8 3 3.5

3 2 8.5

76

5 3

76

3 2

6.4

1.5

6.4

1.5

- 7 1 -

JAL-JI-M82-002

Table 3.2.1 1 Summary of CCTF Test Cl—8

PI ffls B

•%&&&•

IS JR

ScO'

fS Jg

C 1 - 8

B3ft 5 4 ^ 1 1 £ 2 9B

7'a — ?'•} vX.lt, ') 7 <

i&L, >\/—-f;v—

% & tl

WK£fc%ffiS. B#RS

•#5jC^liofc46c

f t * * ) , Hffi ~'

(kg/cm2

(kw/m)

(m3 /h) (sec)

(m3 /h)

C)

(C)

( sec )

l ( s e c )

oSi i t-')

i tztb, #

a) 2

1.4

8 3.8x4

1 4

1 0x3

600

* a « 1 o o. •: 2 2 1.5

9 0 0.5

1 8 3.5

^ffl'JtP'll>^ifl>?- (ECCS XD/k^iM

o

1. 5 m OjgSS S T ' S f *

7 6 6.4

5 3 1.5

8 15.4

280

ofc& (9 0 0 C) , If j g ^ l> '; v

B#PB1 ic/i/—y •>—Ji>%.i±iiitf z> it

- 7 2 -

JAER1 -M 82 -002

Table 3.2.12 Summary of CCTF Test C I—9

^ OB a

* « & « • •

*s »

C l - 9

BgftJ5 4 fp 1 2

,*TL ?y /A* i f

3R E 1]

(Sfl:?.l:**-«£H

©Si >\s—-f^

fl I 3 B

&*&©*&

(k g /cm

(k w/m)

(ms /h) ( s e c )

(m» A\)

(C)

( s e c )

^05! ( s e c )

1 / 2 11£ K>

2 a ) 2

1.4

8 3.8 x 4

1 4

1 0 ^ 4

600

$ it K B23

6 2 8.5

7 7 5.3

3 4 1.5

V(J

H 7

5

8

2

6 6 4

3 1.5

1 5.4

80

- 7 3 -

JAERI-M 82-002

T a b l e 3.2.13 S u m m a r y of C C T F T e s t C l - 1 0

%m H

C l - 1 0

BBfrl 5 4 % 1 2 /1203

i l x , &E;j£1.5kg/cm2a

* E ti (kg/cm !a)

^iSjStlM'j/JiSSE (kw/ 'm)

fi/f ?!:**.«£» (m3 h)

H^lil] ( s e c )

fftMitt-jfc&ijfcB ( m ' / h )

*''C>»/J«BA4,!'liiSiia' (CI

<5^9 i y - f D,VI!!| ( s e c )

•^'iJiiB^ i v-f B$|i3 (sec )

i L T , *©

1.5

1.4

8 3.8x3

1 4

1 0 X 3

fiOO

^ lit HI

8 0 0.0

6 2 8.5

8 0 0.0

3 7 8.5

&mn>m < n»

7 6 6.4

5 3 1.5

8 1 5.4

2 8 0.0

- 7 4 -

JAERI-M82-002

Table 3.2.14 Summary of CCTF Test C 1-1 1

nm B

i£ *

C 1-1 1

B9fD 5 5 1 fl 1 7 B

ffa«yt* <ci-« K* i^

& E # (kg/cm2a)

¥i S9ti!:*jS?lS (kw/m) SElft*S«ti l (mJ/1i )

BvfUil (se c )

BSEtf:*^^£R (m 3 / h )

fr''L>W)Wlftil5ifflK (C)

*P'll>li(T5ia(g (C)

: £ ? i yf-BSPul ( s e c )

2

1.4

8 3.8 x 3

1 4

1 0 * 3

600

8 1 1.3

5 2 0.5

8 1 1.3

3 3 0.5

S-KS^T, Cl

%atil*iS¥l«» (C 1-2 ) ICUK

iv c i -2 tH-oanftt t iu

8 1 8.5

5 18.5

6 1 8.4

3 4 8.0

- 7 5 -

JAERI - M 8 2 - 0 0 2

T a b l e 3.2.15 S u m m a r y of C C T F T e s t C l - 1 2

IS. SU

C l - 1

flam 5

I T .

% E

€!£•&

(SEa

^ ? x

<rS-se c )S

2

5

Hi

*

m 35

<

9M fl2

B-Vii.1

Ulff

4 B

(kg/cm2

(kw/m)

( m ' / h )

(sec)

(m3 / h )

(Cl

(Cl

(sec )

8 0

ffl (sec)

i L T , i<DKWi

a) 3

1.4

8 3.8x3

14

1 0 X 3

600

* a » 7 269

3 6 0.0

7 2 6.9

2 3 9.0

Elf I i3 9.5 Ci&<,

76

5 3

81

28

tit)

6.4

1.5

5.4

0.0

, i^iyfUrifc 17 1.5

- 7 6 -

jAERr-M 82-002

Table 3.2.16 Summary of CCTF Test C1—1 3

I I B

ts * &#

C 1-13

nafti 5 5 fp 2 R 7 a

#sf *P'D#£|J& (ECCS )«

S E J (kg/cm2

T^i^StU^^S (k w/m)

SE:S^Kl^»!itt (ma / h )

B5RS] ( s e c )

(S E f t 7Kf? WL1 (m3 / h )

£?xy-f8§ | i i j ( sec)

ti'i^ulJ^'x > f"8$lal ( s e c )

§ ( fi T fco C Of;£6it, ^'C

xy-^B§(ia](i45secS lC^-^

a ) 2

1.4

8 3.8x3

9

1 0 X 3

6 0 0

8 2 8.7

5 3 6 0

7 9 8.3

3 3 0.5

7C6.4

5 3 1.5

8 1 5.4

2 8 0.0

- 77 -

JAERI - M 82-002

Table 3.2.1 7 Summary of CCTF Test C 1—14

•mm-

C 1-1 4

BHfU 5 5

£p'C>©

^?xy

**»?

(ijESfi)

I ' C 1-1

^2n i 5a

S«-800C£LT. •€•«

) (kg/cm2a)

;j*ia (kw/m)

WMii (m3 A )

B$f!i! ( s e c )

&tf£tt ( m ' / h )

MiVJiaiffi (C)

i|fig. 'Jtr/i

^ffi (C)

*fl$lii] ( s e c )

xy-J-B#RU(sec)

4-eiil07C£4--3/;o

2

1.4

8 3.8*3

I 4 1 0x3

800

4* fit l i

9 3 0.7

5 5 9.5

881.3

3 4 6.0

mm 7 6 6.4

5 3 1.4

8 1 5.4

2 8 0.0

- 7 8 -

JAERI-M82-002

Table 3.2.18 Summary of CCTF Test C 1 — 1 5

m m B

ifl&CF

BX *

C 1-1 5

HSftl5 5 ^ 2 ^ 2 6 3

C 1-411—81©'J 7 -f ^J i l

It \&tj JLtotXhtz J6, SSS^?'

S E J (kg/cm2

¥t=J*»Ui ffi!t (kw/ra)

SrEa-^SStlt (mJ/h)

B-VliS) ( s e c )

(ftJHI;M«*>Klit (m3 / h )

*''C»WJW)ttiY!iffllff (Cl

^ ^ x y - H S l i i ! ( s e c )

WS?x.fWi(sec)

(fiXS)

UStfxil, ttAao^Biilclftf

a) 6-2

1.4

8 3.8 x

15+1

1 0 x 3

6 0 0

ACC^I

* IA 1

8 0 8.2

5 4 6.5

8 0 8.2

3 4 8.5

'J 7 ^

3

0

*,

« 10

5 3

81

28

fi.4

1.5

5.4

0.0

- 79 -

JAERI-M82-002

Table 3.2.19 Summary of CCTF Test C 1—1 6

i s«

mm

s a

sex

Hi

C 1—1 6

agfn 5 53:3 £ 6 B

KB K> l§ i$&i£l^#TJ*&£?f r>

* E n ( kg / cm 2 a )

¥* ifeStilAS!ffi (kw/m)

SE?t?K^SRli ( m 3 / h )

8?fPn1 (sec)

<SH:'ft7K 'iftS (m3 /h )

•feJ'OAiiSjiMffi (Cl

t ? i x-fH.VI'!! (sec )

42

1.5

360

1 4

40

6 00

A- &-f H A

4*1 »A W

6 2 9.3

1 9 6.5

6 2 9.3

13 7.0

FLECHT—SET 3 1 0 5 B t *MU

mm 7 6 6.4

5 3 1.5

8 1 5.4

2 8 0.0

lU^iJ'*B* i?ii>ll^5* i, —UftWlcfillBi^illliCCTF Oii

65R9

1 3 2.7

5 9 3.9

10 1.0

•5#FLECTHI*li : i t

- 8 0 -

JAERI-M 82-002

Table 3.3.1 Test conditions of CCTF Test C 1 - SH 3

2. A f£ B 54.. 4. 19

3.

4.

5.

6.

7.

8.

9.

10.

JS & #5

tb Jj ik

tfl KB i S

* HE

to iw ft *

» * *

*P 'C> im

H

IS

/}

{ft

ft

1$

£UtfJ 7.64

?9 ->1j TUS

F3|!7' i/+ A

SO : : 3< ffli]

ECC*iU

ACC«t«

LPCItfttt

MW ipj

5 A : B :

135 °C

145 "C

084 m

7.2 m

(.6 °C

fli)

/Jffiffi 1.

C = 0.70 : 1.0 :

3

SG

4.2

2 69 mVhr

3 0.1 m'/hr

&. * B$ £iJ 5 7.5 sec ~ 9 3

93

70.5 sec

*P 't> ft IS 8

^ ^ x > f-

- sec~ -

- sec~ —

sec~984

?SS 543

iffiffi 573

FB# l] 103

I ffi 7 1 3 -

Rf Si) 188

sec

sec

sec

sec

•c

sec

sec

kg /cm1

-7" •>-/!/

(ACC TS

(ACC a -

(LPCI 3 -

(LPCI T 3

15 KW/m

0.4 7

;u 13 6 °C

SK 263 *C

0 m

|57"U-^-Aft*)

• * K u / f t * )

^ U ^ - A f t * )

- 8 1 -

JAERI-M 82-002

Table 3.3.2 Test conditions of CCTF Test C 1 - S H 4

1- SS ft & "s C 1 - S H 4 (Run 8 ) 2. St f* B 5 4. 5. 31

3. a ft e g »• 7 > - * 3ft%a% ( ECC &A*a 65 -4. * ^J & ft

9.37 MW ¥*9*8tfc^£& 1.40 KW/ra

A : B : C = l.OB : 1.0 : 0.82

5. ffl KB fi ffi

LLL_JQ. n r '•>' u /i/ 118 °c

i 2 i t SGziekfiii«t(*iaK 264 t

fE /J

2.0 6 kg /cm'a

0 .85 m <t> - 7' •> -

S G ." * ffli] 7.1 m

ECC*i!A 67.5 "C

ACCMiB 286 mVhr

LPCIiffil 3 0.5

5 3.5 s e c - 70.5 sec (ACC ~F8&7°is+&>&&)

70.5 sec~ 77 sec (ACC 3 - ;u K

77 s e c - 7 9 8 sec ([PCI 3 -

- sec— - sec (LPCI

9. HJEE*B8&B#£I] 6 5 sec

10. itp £> S K

*P it it

11. ft *

K S

Si]

K

m

594

803.8

306.0

829.8

534.5

t

sec

t sec

- 8 2 -

JAERI-M82-002

Table 3.3.3 Test conditions of CCTF Test C 1 - S H 5

L a 8 I f C 1 - S H 5 (Run 9 ) 2. M 8 B 5 4. 6. 7

3. g H 1 I *§&Stf& (PKL - K7A)

4. m n & it

7.09 MW -KJlSdJ/jft-ffi 1.06 KW/ra

A : B : C = 1.02 : 1.0 : 1,01

5. ftj ffl S ffi

?0 V t> vjgflia 138 "C =i T '-' U ^ 144

SG ..:, <*; ffli) 7.1 m

/K ft ft

ACC»(flft 131 mVhr

LPCIoftll 4 8.3 mVhr

| 83.5 sec-119.5 sec (ACC

160 sec

<l> ft S6 M m. 721.9 t

4 J i y f H Si] 24S sec

m %

u s °c SG -(jcffldat^affi 268 "c

6. ^ E >J

4 26 kg/cmza

7. W KM m * (ft

0.85 m ^ - 7°•>- /u 0 m

119.5 sec~133.5 sec (ACC 3 - * K

13a5 sec~484 sec (LPCI a - ^ K

- sec- - sec (LPC1

9. SS*FJteB$^l] 101 sec

10. *p -C> S «

620 *C

690.0 °C

- 83 -

JAERI-M82-002

Table 3. 3. 4 Test conditions of CCTF Test C 1 - 1

1. IS 8 »

a at is ss

4. tb /J &

5. to 181 ffl S

ffi /J

8. ft; * fc ('(•

a 10. <P /t> S ffi

11. fit

C 1-1 (Run

'kthf) 9 35

IMIA-lSift

—ftS'-tt^:

SG i" <);

Ecc*a Accata LPCI Mi *

&*»**]

66

*p 'C> * * i

*&**(

£p 'C> ft

4 ? i :

54

10 )

MW

i

188

122

0.87

7.1

3 8 4

264

3 0.6

sec-

6 9.5 sec-

75

sec

•7-ffita

A : B :<

°C

"C

m

m

t

2. ;

: = i.

SG

2.07

mVhr

mVhr

- 6 9.5

- 75

sec~7 5 9.5

• sec~

as

•«im

i *

_ -

601

815.4

340

815.4

556.5

sec

sec

sec

sec

•c sec

°C

sec

St m H 5 4. 6. 21

35 )

tl&Bt 1.40 KW/ra

08 : 1.0 : 0.82

r >< u iv H 7 "C

-*fflH«t#fflK 263 °C

kg /cm!a

- r > - / u 0 in

(ACCTS|57"utAa*)

(ACC a -'H-'u/ftTJO

(LPCI 3 - * K u ^*ii*)

(LPCI TSRT-t'-J-AftTtO

- 8 4 -

JAERI-M82-002

Table 3. 3. 5 Test conditions of CCTF Test C 1 - 2

L U Ji I ^ C l - 2 (Run 11 ) 2. IS $ B 5 4. 7. 4

a a si is §?- a*Pt*s$

4. tb # * ft

9.36 MW ¥*9»di.ft®8 1.40 KW/m A : B : C = 1.07 : 1.0 : 0.82

5. fij Jffl iS ffi

9'? i/ fi -yjjia 187 °C ^ r '>* u ' " ' _

118 °C SG r.ftfflK#Sffi 263 TC

6 ^ IE /J

2.06 kg/cm'a

7. iw m m * te ' 0-86 m / u - r v - . ^ 0 m

SG ~ * ffl 7,3 rn

a a- * * ft-

ACCiKS 242 mVhr

LPCISJM 3 0.S mYhr

53 sec- 69 sec (ACC T%-7"\st Ajt^)

69 sec - 78 sec (ACC n -A/K

78 sec-727 sec (LPCI 3 - * K

- sec— - sec (LPCI

9. S5a*ia4&B#£i] 6 7 sec

10. *p i|> S S

617 t

818.3 t

?48.0 sec

<£,» « a a K 818.3

£ ? i x * 1$ #J 518.5 sec

11. « #

- 8 5 -

JAERI- .VJ82-002

T a b l e 3 .3 .6 T e s t <mditions of C C T F T e s t C l - 3

1. t£ & II ^ C 1 ~ 3 CRunl2 ) 2. IS & B 5 4. 7. 13

3. a a i n 4. HbS ft % #

9.35 MW ^^« | i± j^^g 1.40 KW/m

A : B : C = 1.0'< : 1.0 : 0.82

5. m m & & 9 0 v ti ? l i S u s °C u r '< u >\s 110 °C

-fr&X-yfmU 120 °C SG -~ l l f r i g g 2 64 °C

6. & S /J

2.0 5 kg /cm*a

7. tt 88 H * & 0.85 m M / - - 7 ' > - ' U 0 m

SG r . i^ fflij 7.4 m

8. i£ 7k £ ft

38.0 °C

: 2 5 2. mVhr

L P C I B E S 3 0.8 mVhr

5 2 sec— 6 7 sec (ACC

67 s e c - 77 sec (ACC 3 - n< K

7 7 sec~86 1 sec (LPCI 3 - ^ K

- sec— - sec (LPa

9. SS*§84&B#^1J 6 5 sec

10. *p ,£.> fi K

617

840.8

321.5

840.8

50 5.5

'C

°c sec

°C

sec

l i .

J A E R I - M 8 2 - 0 0 2

T a b l e 3 . 3 . 7 T e s t c o n d i t i o n s of C C T F T e s t C l - 4

1.

3.

4.

5.

6.

7

3.

).

}.

IH

m

*

i t i& i>

& m. s-/J £ ft-

n u n

Mi ; j

)W $ 'K (>'/.

;K S ft-

-C> fi IS

C 1 - 4

'/ *) V 1] •

.--#;#:* >-

S G T- f>C

ECC*S

ACCJSIft

LPCIffi lit

& * m m

75

* P • * * •

*P *> ft

(Run 13 )

9.31 M W ,-jij/

2.

'— >

j ^ ^ f f i A : B : C = 1

vHt f i i 1 8 5 °C

?®& 157 °C

fi.O2

-A 0.8 2 m

01'] 7.4 m

3 0 7 °C

SG

• 20

195 mVhr

30.5 mVhr

— sec— —

4fi.5 s e c - 7 4.5

74.5 s e c - 8 8 5

— sec— ~

sec

SUMWSffi 654

SfiiiraSffi 840.8

S?xy*0$£lJ 36 2.0

f3i iS ut tj y 9.8

y * »S Si] 56 3.7

sec

sec

sec

sec

•c

°c sec

•c

sec

1.03 :

7 ' <

kR-

-/•

(ACC

(ACC

(LPCI

(LPCI

H 5 4. 7. 27

mm

1.39 KW/m

1.0 : 0.82

V iu 158 °C

mUlS. 26 4 "C

- 'i- 0 in

11. <f

• 8 7 -

J A E R I - M 8 2 - 0 0 2

T a b l e 3 . 3 . 8 T e s t c o n d i t i o n s of C C T F T e s t C l - 5

I.

3.

•1

r>

7

8.

9

10

oil Effl

111 y j

M 101

*

M IW

ft <fc

flj-Si 'Kl

Ak Iff

ii; /J

* * w

s ct

£ S

C 1-5

stsass

'rii'Jj

v •'; y

SG .".

F C C *

ACCriK

1.PCI oft

?1.*8§

6 3

(Run

:. '*7 *

9.36

* ••' "•« U

r-s-'V.Ai

W

a «l| 5 2!

67

76

_

sec

a s s

14 )

MW

i

120

0 87

7 3

394

278

3 0.2

5 s ec -

sec~

am (

f t

A • B :

°c "C

m

m

°c

2

M ACC jiftit)

-jesfii

C 1

sc.

1 9 9

m3/hr

mVhr

- 67

- 76

s e c - 7 3 8

sec~

as

i S

IS Si]

- _

595

7 6 6.4

3 2 1 5

7 6 6 4

531.5

sec

sec

sec

sec

°C

X. sec

t sec

. 0 7 : 1

/ y

(ACC

<ACC

fLPCl

(LPCI

11

1

0 :

I

(in'

'V

54. 1 0

4 0 K W '' m

0 82

'' 115

Mia 262

a

0

! r \y + L.i\.k

i ru + Art*

19

t t

m

)

)

)

)

u. m

JAERI-M 82-002

T a b l e 3 3 9 T e s t i o n d i l ions of C C T F Tes t C l - 6

I. i t » I t '•; C 1 - 6 ( R u n 15 ) 2 .A |$ I I 5 4. 1 1 . 9

1 !fi 'J ft ft

Ti l l ,0 9.3 7 MW JpiSjfilth/jSfBt I 40 KW-'m

f - i¥^ l» l l l l /J ' ;> f l i A • B : C 1 0 7 : 1 0 : 0 82

.ri w »! a i i

V -•; y ?; / ' U i!m 1 7 0 ° C i •>• / < i -i \\2 °C

,', 119 "c SO .MI'IMiM^ia 26 3 °C

•> 0 2

7 OJ 101 A 'K ''A

+ i . 0 8 8 m 'U

SO '. ft W 7 2 m

ECC/K & 36 8 °C

ACCMtlft 27 9 mVhr

LPC] i&m 615 mVhr

52.5 s e c - 65 sec (ACC Tf357'> t

65 sec— 76 sec (ACC => - ^ K u ?'7t:/tO

76 sec —770 sec (LPC1 3 - ^ K I ' f

- s e c - - sec fLPCI Kg(?7" u t

9. flffet/Kfl ftftft#%"'l 6 7 sec

10 *p ;il> itJ IS

*P 'L> ' l ' *8 l$«£ iSJ t 74 2 9

318 5 sec

•)P i> « I S S 742.9 t

^ ? x y ^ »# £l| 53 0 5 sec

11. fid #

- 8 9 -

J A E R I - M 8 2 - 0 0 2

T a b l e 3 . 3 . 1 0 T e s t c o n d i t i o n s of C C T F T e s t C l - 7

1. ^ & (S '} C l - 7 ( R u n 16 ) 2. J. MS II 5 4 1 1 . 1 5

3 & & ffi •«:• '.<5'-9®m3Kmm<gmw&m TOO-a

V ill >) * ft-

t i l 1 , / ) 9.38 MW •VV.miW'VtiflL 1 4 1 K W - . n

T-i¥. hI'MHi /J'/} fli A B C - 107 1 0 : 0 8 2

m IBI iM /a v ••; > / j . - i f fdUl 1 8 0 t i i- ' < L 'V 1 0 8 °C

"c s i ; *(iiij/)itW./Mia 264

I 98

H /(; K 3fc f'l

3 9.0 °C

: 2 7 9 mVhr

LPC!tf t« 30 4 mVhr

68 s e c - 85. sec (ACC

85 s e c - 9 1.5 sec ( A C C 3 - * K I / 7 ' t t

9 1 5 s e c ~ - 8 8 8 sec (LPCI 3 - ^ K u frf.fc)

sec (LPCI

9. I'vHi'KBflstnWfS1) 79 5 sec

10. •&' ,£< Wi S

K 693

833.5

328.5 sec

#* '6 « £ £ I* 835.4 t

£ ? x y f- 1% JiJ 53 1.5 sec

m %

- 90 -

JAERI -M 82-002

1.

3

1

5

7

8

9.

10.

J.

A

ill

W

*

M

/!;

Table

I t <S •}

>J ft fi

101 (,'„' 10.

)l ; ))

x» ft 'K <;/

'K * ft-

* .0 <U *

3. 3. 1 1 Tesi

C l - 8

9 '') y

- * * • - .

KSI57

S G .

ACCrttt

LPCItft

65

'jj"1 ;|\\ til

'Jp iL* f-t

4 * .

(

Mill

>) •

u +

M

frt

•kt.

t conditions

(Run 17 )

It (- 'U-7 > -

13 7 M W

/j^/li A

•' H» dil 1 8 3

" N U 120

A 0 8 7

(llij 7 4 5

369

279

3 0.9

5 3 sec —

7 0 5 s e c -

7 7 s ec—

sec —

sec

M fi S

/ * n $i|

of CCTF

: B . C

"C

"c «;

2 0 8

m

°C

mVhr

mVhr

7 0.5 sec

7 7 sec

408 sec

sec

59 7 °C

900.5 t

18 3.5 sec

900.5t

2 2 1.5 sec

Test C

«k ^

1 5 m )

1 07 1

k _

( A C C

( A C C

(LPC1

(LPCI

1 - 8

11 5 4 1 1 2 9

1 4 0 K W / ' m

0 : 0 8 2

L •!- 110 °C

t<*(M/tt 26 4 t

• u 1 4 6 m

F3!7'ut Art-:*)

:i - ;u K U^r t*)

u.

- 91 -

J A E R I - M 8 2 - 0 0 2

T a b l e 3 3. 1 2 T e s t c o n d i t i o n s of v . C T F T e s t C l - 9

1. J. I t rft '•', C l - 9 ( R u n 1 8 > 2 ^ & i I 5 4 1 2 1 3

3 ^ I* ta •«; mEgftifeaiS (4 a -

•1. in i) •£ n

9 3 4 MW fi'-Jtaiti /jftlft I 4 1 KW m

'\"ft.h\")l\\))'/)fa A • B : C 1 0 7 1 0 : 0 8 2

f. f;j 101 /U 10.

9 ••} y ij .- HVn.', 1 8 0 ° C ' '' ">' i 'i- 1 0 7 ° c

•tk&l'yrWti 1 1 9 °C SG * p | * ( / K « i a 2fi7 °C

fi * M h

2 0 3 k« t in"Vi

KfSiV I , ) - ; , 0 8 6 m

S G ". * ffli| 7.4

ACCMitt 283 rnVhr

LPClrfttt 404 mVhr

54 s e c - 7 0 sec (ACC F

70 s e c - 77 sec (ACC :> - ^ K

77 s e c - 8 7 3 sec (I.PCt n - ii, y

sec (LPCI V8R7 u- +

9- |ir*£>Kra<tf;B.Hi| 6 5 sec

10 '£P 'i * Z 5 f ?

i f f 607 °C

775.3

34 15 sec

ip 6 « g fi fi 823.0 t

f 7 i y f l | fi 62 8 5 sec

m %

- 92 -

JAERl-M 82-002

Table 3.3.13 Test conditions of CCTF Test C 1 - 10

1. St & ffi 'i C l - 1 0 (Run 19 ) 2 . A %k II 54. 12. 20

3. aC & (S •£ "°7 * - ? & » & % (%Etl (5 1.5 Kg/cm8 a)

1. II) Ai .% ft-

^ l l ' j j 9.39 MW f-fcJftllli/'Ji'ftia: 1.4 1 KW/m

A : B . C -- 1.07 : 1.0 : 0.B2

) « Iff

y •'; 'spi nr ?M 17 2 "c a r /< u- ^ 108 "c

-**.f^71<?7(lll1 u s t SG :MMMU\%. 267 ~C

ii; ;j

1.5 5 kR/cm';i

089

S G I". »: ffli] 7.3 m

8. rf: * % ft-

ECC/kjg 39.3 °C

ACCffiH 269 rnVhr

LPCISitffl 30.4 mYhr

55 sec— 7 2.5 sec (ACC TfiB7"H-

7 2.5 s e c - 7 8 sec (ACC a - ;u K

78 s e c - 8 5 8 sec (LPCl a - ^ K U / f t

- s e c - - sec (LPCl TS

9. Sa7kH&B#Si| 6 6.5 sec

10. *P ;L> S ffi

606

800.0 °C

37 8.5 sec

•& <fr g M S ffi 800.0 t

4 ? i y f Kf SI 628.5 sec

- 9 3 -

JAERI-M 82-002

Table 3.3 14 Test conditions of CCTF Tost C l - 11

1. J. S£ (S '•; C l - n (Run 20 ) 2 „£ t& II 5 5. 1 17

•1 i l l >J £ ft

'Nti/J 94 0 MW •\'V--ffll\\>r-titH. 1 4 1 K W i n

•\'\1>M\\'>h'>)<\\ A : B C 1 0 7 : 1 0 : 0 8 2

t

9Q "c sr, *(iniA^/mtia 26fi "c

'^0 4

0 8 8

SC, ". /K ffl 7 3 m

« ii: 'K % f'l

; ^ 3 9 o °c

ACCrftW 242 m3/hr

30 1

B5 SPC— 7 2 5sec (ACC KSB71 u t i.f

72 5 s e c - 79 sec (ACC :' - ^ K ^ 77

79 s e c - 948 sec (LPC1 n - ^ K u-

- s e c - - sec (LPC1 h'Sfl-T l / t Aft.*)

6 8 sec

610

tn -C> ft i€ fi

• ^ i y + KF

81 1.

330

81 1

520

3°C

5sec

3 t 5sec

- 94 -

JAERI-M 82-002

Trble .1.3. 15 Test conditions of CCTF Trsl C 1 - 12

1. J. & S ' I C l - 1 2 (Run 21 > 2 J. & \\ 55 1 24

3. & m <s •«!• " 7 > -?a>i%a& (&H-:;J a 3 Kg , w a)

•1 i l l >] 16 f t

'fltiJ) 9.4 0 MW f i'.MU'Ji-Mti I 41 KW/111

l i M ) f l i _A_ H C 10 7 : 1 0 : 0 8 2

' / •"; > / j v H? C 1 9 0 " C ' ( • ' - ' ! ' i 1 3 1 ° C

- * * .-t- -y >' <?. u 13 3 "c s i ; * (iii| flit 1 a m 2 6 5 'C

n. /j

3 0 f>__ kg -cni ;ri

S 4c !>'/.

( • ' S ! 7 b f i 0.8 6 ,n 'U '/ y i\, 0 m

SG ". fK t l 7.4 ni

n ECC*ff l 39.9 "C

ACCofttt 28 9 mVhr

LPCInftSl 3 0.7 mVhr

52 s e c - 6 9.5 sec (ACC l-'fflSV

69.5 sec— 76 5 sec (ACC i - ' i - F U

7h.5 s e c ~ 8 0 8 sec (l.PCI -1 - - ^ K u ?'f£/K)

sec (LPCI KSPVu +

9 ltySi'kP4!te(KH~l] 6 3.5 sec

10. fr' O £ S

,lf 601

•tp .L> m M, U

4 ? 1 y f II

11. m #

726

239

726

360

0

9

0

sec

•c

sec

- 95 -

JAER1- M 82-002

Table 3 3. 16 Test conditions of CCTF Tesl C 1 - 13

1.

3

1

J.

ill ))

(ft

m. ' J

« •

ft

c ,<

1 - 1 3

7 i- -

( R u n 2 2 »

^%3?a« (AC

9 4 0 M W

2 A

C rtA«*fB|«)

5 5. 2 17

m

I 4 1 K W ' m

A • H . C 1 07 10 0 82

V ••; y I] .-lya | 7_6 jC_ ' '' "•' i " 12 1 "C

•-*#.|^/IM M J T_ SC,

fi * II J

2 03 k

7 »U 10! ^ r >K (>>

h;^ ' "U+/ - 0 86 m -u /

S G ". * ffli| 7 5 m

8 /I 'K * (1

ECC^KiJJ 40 3 t

ACCAW 277 m3

LPCWttt 3 0 3 mVhr

5 3h s e c - 7Q sec (ACC ( • K ' / l /

7 0 sec— 7 4 S sec (ACC ' ' - 'L- K U

74 5 sec - 8 5 8 sec (LPCI :' - 'U K

sec (LPC1

9 fijyKFflfc-B^J 6 5 sec

10 ^ .(!• (4i S

"> * SB

«r

IS

,fff

r?i|

K

Si)

601

7c e

330.

8 28.

536

3

5

7

t

sec

t sec

- 9 6 -

JAERI -M82-UU2

T a b l e 3 .3 .17 Tes t c n d i t i o n s of C C T F Tes t C l - 1 4

S '-/ C l - 1 4 ( R u n 23 i 2 , 4 $ 11 5 5. 2 15

3 .A 58 It «- ' - ' T ^ - 9 fll%&%(»«•£?ftJffliiaflE 300 C)

1 tl! I) £ ft

' r i l l / ; 9 j i 0 MW f^J(sa,'IWj;<;)Q J 4 J K W ' i n

I' tt h M i l l 'J '-•> Cli A : R . C I 0 7 1 0 : 0 8 2

r> W I!)) A! Id

SC,

kjj -

086

SC! '. * Bl 75 m

ECC/k i4J 4 0 4

27 7 m'/hr

30 4 mVhr

85.5 sec -1025 sec (ACC V % f l> + A it * )

102 5 sec-10 9. 5 sec (ACC J - » H - > 7

109.5 sec-948 sec (LPCI ^ - <u K

sec— - sec (LPCI >"ffi7"u

9. SM-'KI5fli!n':54'i| 9 fi 5 sec

! 7 7 2 °C

8813

34 6 sec

IP i I S S I 9307 t

t ? i > f ^ $! 55 9 5 sec

- 97 -

JAERI - M 82 -002

Table 3 3 18 Tes t cond i t i ons of CCTF Ti-st C 1 - 15

1 J. S# # '•; C 1 - 15 i K u n 2 4 - I A *& I I 5 5 2 2 6

3 d.(; K fflt # fflftfll^tS ( ') 7 < a- v - , u - -x .i > ft£ ff x (| \ )

•1 111 'J % ft

- r d i / ; 9 4 0 M w -J- * -j*tSi it: vj .*;i*j i .i i K W

v ••; > /; . -H^y 1 ".r ' "C ' • • ' - • : 'i 1 f>K "C

H 0 6 > „' OH

KCC >K AA 39 6 °C

ACCMtW 23 7 rn'hr

29 8 m ' / h r

- s e c - - sec . A(.'C ! %

4 7 sec — 8 2 5 sf r i A e' C > ^ K u

82 5 s c c - 8 6 4 sec (1.1X1 > -'i- K u

s e c - - sec (I.PC! KST.7 t + / • / I :

9. l*f iti''Km«ti^-f^'1 H I sec

10 tp >u (S If

6 8 9

P t * g fi

g: ? x x + »#

808

348

808

2

5

2

54 6 5

t sec

t sec

- 98 -

JAERI -M 82-002

Table 3.3. 19 Test conditions of CCTF Test C 1 - 16

1. Ht i S '•} C 1-16 (Run25 ) 2. & f& I] 5 5. 3. 6

3. IS m tffi f- te&V£.f& ( F L E C H T 3 1 0 5 B )

4. It! h % ft

9.88 MW f-fejjjg|ii;jtt;l3; 1,4 7 KW/m

A . B : C ^ 1.06 : 1.0 : 0 79

ffl Iff

u s °C SG • •^ f ly i lWag 2G3 °C_

))

4 2 2 kK/Wa

\:%-}~\s-r u 0.90 m '^ - 7" > - ^ 0 m

SG ._". * §\ 7.4 m

6 7

: 361 mVhr

LPCl eft !ft 40.1 mYhr

49 s e c - 75 sec (ACC

- sec— - sec (ACC n - ;u K U ?'ffi7JO

- sec sec (LPCl 3 - ;u K

75 sec -590 sec (LPCl T

56 sec

593

629.3 °C

13 7.0 sec

'C> ft g iS ffi 629.3 t

i v -y 1$ £i] 196.5 sec

- 9 9 -

JAER! - M 8;-002

4.

4. i

C 1 2 ...?!$ i M ^ ^ % { ' t T - L I 11 , . i t t«ftn . / ; . , Ti iblc 1 1 1 :- (." 1 - 2 ..A|ij i C I 11

M . ,U f; c ,'_ ' . h o

n.'.r. U ' - C M J . - U

. I l l 1 , he I I 2 - . ) . J l - i j ; . l 1 1 I M I U ' l l 'J Ml l i t

/ I 'Klii-]!tf;»-V4 |]i.i !> I K i | i y . 'KI ! i l ( i ; ; i i . ' i 4 i | i t I K f i .

t « i i l f * l l ( , t 2:i H \ A C C -i- - K I M " , | . | \ ' | I - I-

Kt ftll

1- fi n-i - ?-J it- ^ i i C A •*''_ /*: v ••; > '; •• i t i ' .L-L ;>^ tM;K(' r! i . C 1 2 , C I - 11 W M.j-iCt* i~

H. I I 1 ; : i , ^ 1 - ' L + / . ' / ^ l t K 5 ' ^ ^ - i ' I I T U , L 1 2 i c l t

Llc-Ttfr C 1 2 . C ! I 1 T I J i i l . . ] -X3,

t L / : • ' , « t K x. O n «

I M « 1 l r. : : K W i ' ^ - V i f i i t - u - v r c i h - ? " - c o i l - y j t U ^ ^ J t K ' W ^ ^ - ' j W - 2nn ttUijii

t l i C I - 2 i C I I 1 J^Wtzm^fSX:W.i'i^\ 2 0 0 » W ( « I C i i l ^ T C 1 2 I C l t - ^ C l 11

- v^HWjUi- ' ^ i iS ' j 20 » . f t i v +• > 7 S H T u

c i - 2 (cJtKL r e

' J-^l^it jf , C 1

I 11

2 i C l - I I i«l!i ' ! i ;(

- 100 -

J A E R I - M 8 2 - 0 0 2

2 1 V.

H : / j V r S i - a - ^ r t t l f v l ' - K ; fe'<i « - * . ' : i : * l f : ) ) * • 0 2 M I ' . J c H i ? H , 1- M ' i- <

r A 1,1 A . ; • ' ] ( ' ; i c . •-:. M i ' d - i f i i ' - ' r • • , / t M ; : . ; : i •.>; ( i • . . . t W I i l l V n * 7fi ( I r ^ l i l o r - A i

/ ,> ' • . .•,< i.-:, ',• ' ^ ; ; , i ' K t • /;. . u i ' i /<>.' . l . l ' C I i i - r ftl*.'-^/::. ,'_•".!. 7~> I . I V I

i. ! - " ' i , : ' M i . M : m ' i i i i | : ' ( / v . " . . ! : ! . ! . i 1 , • > , - : , 1 - 3 : ' t t - ' . ' U f H ' / . M . l - f f i ' i / - ' . , ( / ) <

H i | | : ! | ' l ^ ' ) , A ' W l l i l « i i v ( i : U i - ; - - i j ' . i . ' f f i i ! \ , Y . I « r i t ! /•, l ' ' u ; -1 1 « '" -'-»'-i • • - ( U t t A < i / - f - U U l l i

' J ' . . | . . | M I I V l . ' i . l , ' - ' ! ! 1 , ' j : t ' • :fi. M W - , t , : j , t t ' j S f l l ^; i l ' . ' i« . M i i k W m r H T " i J o i U ' - U I :

W P I i l i 'J 1 7 i ; ' . - i n i i H- ; u \ * i e n ; ' j ; : A i w ..' •:,

. . i t l fc i lV i . ' t t ' ; V-•!•'.:!. '• - ^ 'J ' ' i l i ; . ! J | i ; ^ ; : 1. 0 i - v - \ i \ . n I - ; : ,j

^ i i /:

I f a / 1 L. * . • • • r : i , ^ ! S « l M 1 ] 4 f i ( * i ' i n i l - i - - ; A ' < i . i ! : ! ' j - ( « » ! . ' . ^ n / ; K I H - ; : : i I a ; - - ' i. •' . ' - y ) f f i i a -

Z n . i ^ f t 'Kc r , ' ; i | r V j ^ ' J i i L "C>•* ^ . I '"11 ' ! •K.WffifA.Z * i i * i r f r i A \ ' M

7 7 » / 5 > . j 1 8 0 f i ' i i u i * i T l i R K S R l c f t j / / " L T

- 101 -

JAERt- M 82-002

CCTF

•I'^'M .'.'.'.It•'".;.-<i-l,'."]y'i 'in i f tc i(••]#... L/:f«"'rT!-")/T.l l .?--cn :c UA,<>1 "Ct "o t'M'-jr j ) ,* 11.

I t hum I- X -VJ - f i l Z t i ' l . i W i -<X;ut'f ' Ml*-jtt-ft W) i ! j . ' . a r c i >£ ; £ fy.iUi<Z> *><

•r.'^.iL.'i Fffi ' u i -•.*••'. ACC .'K/JVI. 'K raftf; znz ' : . ' js f* • ; L . ' .' ') tCf/jir-i -:• t»¥1H>vi

» a ; l-«,;. ',;•;, _ ' - : H I . ' j ^ S R i f i i / j ^ " ^ 1 m r . t , ? . 'k-'-ftto.hlid * <l - : . i : j n mAq^-'Kwft..1; /J ;

' j V f S i a i i i i i f t » f f l : i - j ; « i / - > i : : i A < f i a n i ' ( < ' C ( A / : ^ n / : . ^ u . c t f r ' i J -:, K I I I I - . L C . - R . W : ^ n . ^

i ' l , ' , 1 ^ : - !. ;) tt.«ini; l - t t 1: ') I- / j . ' IM l . l ' K r .1. 0 A / : M i . ! f !- c'i,IV ^'^UlU1.1 '. i'.i iaVUX'C

'.". : ,'. .Vd!IVj-y).",il i/- ii3 y\irA\''.W '<t®\% hiZi'ii I /• a t t r A t "C • ' ) / ! 'Kii-V-'i: t. 1-

1 1 . ' .JJ•••.(« ' t •! ''••> i ' ' cc I- 1 i - ' t l ^ o - i i / • 1. / : 7<; w ; - A I V 1 •• ^••". I . I H M

' • ; - O * '••!!. , | \ ' K l i l / j i * ' j 1 ' ) , ' _ ' i .'• •L",|-..,.-),'f i | - 4 ( | ; ; i I „,'. i , | f t M - : ' . ; . U 1

l ; i « . I 1 ' ! . : . . I ' j I i ^ f i / i W E . ' - J i S J ' j ^ f ^ - " l ' ' r . ' i l i i c ^ i H i a i i . - r ^ - i - ) i I ' l l H i - . ' . ' . , -^ i

i " j • i W ' ' ; - : . iu,:':i (f,iltLljr-jKnn C'C.v.O, v i > -r n; f ';i|!.irj :<(in H 'C ,^ r, •> , -y i ;

> !• : t T i M j - ' l - ' i l l ' j ' ;>0 i r . : t j : . ' , . ) : i : i • * n l f t ' j i i j l i n L C ^ / ; t /i-b >.L.' I . ' j t i i i- • '

H. I . , ) ' £ ^ . - , . I , . , L , - C . - ) « I * / ;-r" i( i%.' i . ' i . ' i - * 'L i 1 ! H S i L

I M « . I 1 \2 ;z '•••••: •r--lii?A:± i|. ' j t f S f t . X i ^ t f i f i t - j . f

V-,%. 1 1. 12 T ? •'; > •f.^-''Kafi^n.1fi:H-S;ft:t*!:jil;-^<1 J;T :C ECC 'ky)* l . 'k*- -« ' 5 : f l : i

-*j -?;t)Wrt,Vi ']<;c4; 0 ffi/jn-4- .. 63 » i : rft{,V.(J'bi-L-o«t«Si: K« i : i* L •ti'.L.'T«^'<ift't-. A*

W;^ n -o i . ' iUiU o, 67 f'X; ECC 'k^ ' l - \4Jnliii ^ - ^ H ^'CUJtft^. ' j l l / : t /; 76 ft'

!iH:'k'-- i-MACC't-K/).. ' )LPCH:- K.cUJJfix. '>U. F.CC'kO^f|I^tt;i*'j 1 9£

- > ^ c ' - 'i- K u *' ^CD?1:^K*i L P C I t - Kirtfljftx. i j t l i : i l l ct 0 . S C I * > ' " J « * ' < ; M : ^

ic «t \-T o J; -i i : ' i 'oo filfclSf 3 - -u K u /-^^tHJ-t Z fctifi. Rlli LPCI * - K ir t i i 'o i I") B.'f

- 102 -

JAERI- M 82-002

>.'• ; '." £ i n n f m

U ^ 6 ' d f l ] i ' ' x ' i - i l f c ' 4 f i d m A q ' C .*> O t ' j l l fi m A q (IV L> d f r C J j o

f 'K / j ? ' - f t ' j ( r i l l ; - i "J ; i " S V J < ^ x . . • , ) ! ' : / ^ j L '. • * # « > ' ; t f l i K i ^ - c : . t ; i : ^ '

. L I c o r , c s c ( f V i a ^ i ' K . , ' , , ! I V / T ' j / > : , ; - . ! v .'„• r . . | ' ^ , ( , . /, •1-M t f i! l iM ldi C , , | W H i

f V K l <•" , , ! [ 1 , 1 , / ) A f l " ^ i i > ' V l A, A i l / ' ' » • ' . , ' ( . v . 7 ; '., . - ; > f , ; i . H / l / ' , i ; ! | i - : i ; . ! 'k C«% /• .'• ? l . •; o>

' K i t . i i ' ' . • i ' l j n » A < i - : i ^ > , l o o f t ' l ' i I • . • 1 ) | ! i i . " ' •' ' i i k y - : . 1 - , ' ) . I ' , ) • ' ; r, v ••> i> .• ' R i n ' i

A - M ' K : ' 1 •:> d ( 5 ' ; •• ' ' ' • > | I K « ; I W , I I I | k ^

J -1 I X ' V I / . ^ r ' K ^ ' l

I-" 1K". 1 1 i s r . I ;".<:•' t- -»- i.yvKin'i. P u ^ - j - 4 I 3 ; ' L •) 7.1

f, s i ^ j t u i ' i i o , 0 , -b i ,L ' \ i I,-I!LIIU') F. • ,JJ>.', ir> r+ fvia.i; tn" i J o iil

1; I; n y r -j fU1i;-r i . l£t t«W)!/ . ( ! i ' l ; : , i ; o *'<tfC'l-.hi5.-11'.49";:,,t« c > ' ; iH. ' rc tn ,C-i l ' , i

^ r f a ^ ^ f t i l i i c . t ' o '* '<v^ ' ) - : ! i l ; i . i ' i 'L^M^dlil 'L'Wi;^- n . i - , , t l l L .':?,', '4lc i n i i . 300

i n n HV)!!!]-c*'j I k)> s W r ' f : 101IA5/fit '"C I . , * ' / u .' .'• "C !• •> ' ' n i t i f l S

s i ' o i B 5(1 f. fr \.1ft-' u- -t A - 1- •; • -' j n « : i i : i j f c L C t - o .

\;%Vi i- / . -Co ' )^ /K m n . l.ffi v 1. <- . ' . t i l l . IjUlk I'n . 'tW 1 •?•(.'"' Eq. 171 ICi< I fi

Fig. J 1. MI ;M1V-~ - ra i l : Wil'k \P , iWlfi"--VODH^JJU-X .P , ,S - I^ - fa^ ^ - v

3 't---'({-(i:.tzt>\ ^ I t f J W ' i - yz^llJ]liy><n!.liz?, I ^ Kip. 4 1 I 5 i : ; j SG.'li

I T u+ A j) KnKicM-ttfA: t h -•?? 1; J; ^^flftGWI'^.V^S-'h t ( a t " - - ' ?-Min5«'4

t " - - v - 3 ' t - r i t,izizim -(Dttw.&i, ,xts>), a t " - - -' 3 • i - 7 i ; i ) r « - 7

Fig. •) 1 1 5 c V^ru t /*i&Q.t>i*>i-L<%m?$ Yl$L^i$1-Z r,3 ®fr>', 01!

- 103 -

JAERI-M 82-002

A P , £ © K ? ^ - r o E / : i f 0 * A P

Jf>5. A P B i A P , O l l i , Eq

£ fcic, ©«?=> - ^ K u ?V xn>\ctsttZR1M'kl±ti!MtZ>o 58»T=> - ^ Ku ' / / x

±& L T(JIJT.ilSHE03* - ^TT* 5O «?lfr ^ - ^ K u ' / / x

m,, £ { 0 ! ^ ^ - r^iffi -> Titan hifcU\ m , ffl-,«;i|ft^'S

Fig. 'I I. 16 \C SG Al )?\s± AiiUi 17'u-J- y , i •.ftfflijnftAifllia'S-'.i^",, SG Al I V i / t

l I 7 u ->- AcOy^jHlffii lili' -ft L ^., J; A: SG (111 I W->

Al I •/ ^ ')• AOfi'dfll^lft: J: 0 t'i> L H W J ^ I H ' C C * ? . ^ , •c«;i;':ffl

C- * «f ¥:/{f-C* -» fc,, S G ©(f 11J 7 u 11. ic te (•/ 5 MWM If (i ^ki *U!W?H.V 4'i| 63 fi)> ic Jb

L,*, 120fJ»Jil|!$r-(*li!i'220 •CliJiiftlC^L, r « m i i l J -'^T*>7oo SG *

L r«'xUP-ffl^©.«\fe;a*^fe)i: I it * r 'HCi 5 SG HIM 7 u t Acofflffiii 216

L fc*< ••> T

Fig. 4. 1. i7lcfi£t:3-^Ku-^lcfcW5 ECCffi*i$l£- SG

ECC •+-- h5•(i^^-e«[E/)J^;£•']"^•ro 76&IC^;)<* - KA« A C C t - KA>t) LPCI * - Kit

S£^$n/-:^feic, ECCa7KiiHE(± j 1 ^ ' i i t , ACC-e- Ktrfi,

s t i twLrje^sf t£af-f t i^<saz-r5 £ SG*>h<r>

- 104 -

JAERI-M 82-002

Table 4 .1 .1 Comparison of t e s t condit ions between Test Cl - 2 and Test Cl - 11

Test Date

System Pressure (MPa)

Linear Power (kw/m)

ACC Flow Rate (n\3/hr)

LPCI Flow Rate (m3/hr)

ECC Water Temperature (°C)

Duration Time of ACC Injection (sec)

Control Rod Guide Tube

Spool Piece

Cl - 2

July 4, 1979

0.2

1.40

242

31

39

24

without baffle plate

no spool piece

Cl-11

Jan. 17, 1980

0.2

1.41

242

30

39

24

with baffle plates

8 spool pieces

- 105 -

JAERI-M 82-002

O- C1-2(TEO4XI5) A CI-1KTE04XI5) + C 1-2 (TEO5XI5) X-CI-1KTEO5X15)

1200

900

600 a> a. E

300

°~ 200 400 600 800 1000 Time (sec)

Fig. 4 I.I Rod surface temperature just below the control rod guide tubes (bundle 04 and 05 )

O CI-2(TE29X15)A -CHKTE29XI5) x C1-2(TE31X15>

CHKTE3IX15)

1200

200 400 600 Time (sec)

800 1000

Fig .4.1.2 Rod surface temperature just below the control rod guide tube (bundle 29 and bundle 31)

- 106 -

Differential

C

o

I

_ •s c 3 S a ? 3-a a.

pressure p

( mAq ) O in

o o

t>

o

to

OJ

O o

i

Q CL

a a. o o

3-(D a a.

O O

ro

(D

Differential pressure (mAq) ro ji o a>

-

; i

r

0

11

1

---

x O

o

+

JAERI - M 82 -002

O CI-I IAP, A ' C t - l l i P , + CI-2

x CI-2 AP8

Q .

S 2

-

L—^^r^

APj

-

100 200 300 Time (sec)

400 500

Fig 4 15 Total pressure drop across loop

o ^ECC/LP

(20

°0 100 200 300 400 500 Time (sec)

Fig. 4.1.6 ECC water injection rate into bwer plenum

- 108

JAERI - M 82-002

o • r h c c c 1 + ••• r ru

(broken)

4 0

30

20

10

0 1 - ->o • • L 100 200 300 400 500

Time (sec)

Fig 4 1 7 ECC water injection rate into each cold leg

0 100 2 00 300 Time (sec)

400 500

Fig.4 I 8 Total power supplied to the core

- 109 -

JAERI-M8C-002

- Broktn loop

S 6 4 D«-«ntralrm»nt rate 9. I I %

Error : 6.4%

I 484 (St»am) 9.701 I 3401

(Wat»r) L l ~ 3 " Due to condantotion

Unit kg / i tc Tim* 35O±IOt»c 8a** rot*

2.967

Fig 4 1.9 Measured mass balance in system

o APC (Odeg.) A AP c (90deg) + &PC (ISOdeg

* APc(270deg)

100 200 300 Time (sec)

400 500

Fig. 4.1.10 Symmetry of core head

- no -

Clod surfoce temperature (°C)

IV)

CO

3

a. o 3 O

o CD

3 (D Q

a.

Differential pressure (mAq)

O"

d o 3 at

en x O

1 ro o

a. C » —

-

-

\

o &

00

o

f

31

Differential pressure (mAq)

i

sure

Q. rop aci

5 (A in

> l00|

o o

w H8 ^ o 3

300 (sec)

400

8 1 1 1 1

I 1 is

} r

-

-

t>

O o

> >

I

OJ

3 3 a>

>< o

•s 1 3 CD

3

a

Differential pressure (mAq) p p o p p b ro *•& o> a>

z!8 CD

o o

k - ) 1

I ,,,,

----

[ ; I i

X O

N O

2

3 o a. a a

CD O

0 0

JAERI-M 82-002

o - mt (loop() -a-rhj (Ioop2) + -rhi (loop3)

* ••• rh» (loop4) 2 . 0 i . i i .

'0 100 200 300 400 500 Time (sec)

Fig. 4.1.15 Steam mass flow rate at loop seal

500

400

p

£ 300 3

2 &

£

100

secondary side

outlet plenum

|| inlet plenum

r base case ^ SG I

1

(bocrtc) 120 480 240 360 Time (sec)

Fig.4.1.16 Tempera?•_"•» in steam generator

6 0 0

- 1 1 3 -

JAERI-M82-002

3 0

O>

o o 111

E 10 -

140

C 100 - .

60 -

2 0

1.5

1.0 51

- 0.5 E

lt«m

ECC wot«r

upttraam of ECC port

downstream of ECC port (mtaturtd)

downstream of ECC port (calculated)

50 60 70 80 90 100

-0.8 50 60 70 80 90 100

Time (sec)

Fig.4.1.17 Flow behavior around ECC port of intact I

- 114 -

JAERI-M82-002

4.2

iF\g. 4. 2. 1 X h

§l>gi, 9-yT y V y KSffi fS < , ?xy*ttf

f\$\i>m<t£iQ, &<b<fat$t>SMlifr-t£-,X^Z>o Fig. 4. 2. 2 i c ^ - f i - j It, E ^ K ^ H . *P<£>A

*£&*£%If,

2.

-5 X - * <!: L Tf f « -^ ; 5 '3<?).i.C*«in*»rK+AifiH.l/Q:tf)lt«f«- Fig. 1 2. -) iC j i to .it :1& Table >1. 2. ] IC/j*<tu M:(Vi«)tB!lcitWL 'C. LPC I MtlftA<A;LU>Jyrj ( 62 ms. h ) 9

yyy^y h'iLVQWiH. <, >j x y-f 0.VIII] t.hb'j> < y 0 , •J}i'C>tf)?ftii|IA<m < If 0, V - >r v •>

Kfflffiic '5-x. S5E()Mi*s A * l> C i **i>/J>So LPC I «£H*>''J^^ ^11,', ( | i | ^ ^ - r i c 1 7 m'/ 'h

, 9 - v r 7 ^ ^ K»(O?ft£|]*«A>« Office - / ) ' ,

vTyQv KiSffiA*50 t ISfflW < . ^ - ^ T ^

ACC

iso sec ja

£ L t l i , ? ' ^ > * T * R i i A J % i t > n , A C C

(i, Fig. 4. 2. 5

4. 2. 6<c

8 L,

y* v Ytf-kk < UZtztb, )p<L>

CtDiztb. ^S|l©ffi^ltfcl>Tli. Fig. 4. 2. 8 ic^-^J;^ ic

- 115-

JAERI- M 82-002

4. 9'0 V *-7§|S^-7 * -9%1'M;

?"<? y+i vBgig£^*7 * - * i L / : 2 oaagjOft^WMnSljES- Fig. 4. 2. 9

KBStS£^;l, Fig. 4.2. 10f£/fv

* fc Fig. 4. 2. n ic^-t-J; -5 ic,

L, tolMicfciPTIi, [iTfl#ffl?' vAT^Kifflliliia'^L <. f3*^, Ift?"^

^ T Fig. 4 2. 12 fe<fct>'Fig. 4.2. I3 ic^ t .> CtX

T ' - 'y ( i , •Jj>-C.«^K>(OflS5<tfiti(ili&.eiI*-i"5 t f l T , Fig. 4 2. 12 ic,j';t.t; -j

.«e!T-(i80 sec tftic Fig. 'I 2. 13 IC,j<t'/'^ y *

. 'Jji'L'-ewftM;ic j ; 70siiit>\:.w\:.•$ z t y>t?n y i *> i i n s * n *>„

5.

Fig. 4 2. 14ic,j::tc o « f - ? ^ ^ , [.Tiifi'li, *>« f3lPJfc^£H^fj5-,]< L, Mi

«tH5: Fig.4. 2. 15fcJ;O' Fig. 4. 2.

; tat, - » : * ^ -

:*^oA>5o 6t->T, ffi

-OAriJitEi mfl: FL, •bi.L' £|]/5\t;< ' i 5 i ? i i n 5 .

Fig. 4. 2. 17 ICfx Lfc iS^Wii lSSlSdl tK*^^*^ <t TlCtP-D h^TTW^a^'lK , Fig. 4.

2. 18 ic,f; L/: J;-5 ic

l i . •*P'

-So

6. ECC &•&><? S

ECC /KS«"*7 ^ - 9 t Lfcatg8O«81sK**iSiSffiS-»«^aeiJtt2Lr Fig. 4. 2. 19

< . ECC

1 141 sec

, ECCKM, ^-v^mtizm'

KlCjJiLTl>5a

- 116-

JAERI-M 82-002

7. '<??< -*%}$>M%ti<Dt Lib

2. ECC MtfilotW/JD —•• 'Z<1 v ft

(i ECC

- 117 -

c V

Table 4.2.1 Test conditions of flow rate effect tests

00

I

RUN NO.

14

15

18

20

22

System Pressure (ata)

2.0

2.0

2.0

2.0

2.0

Power Density (kw/m)

1.4

1.4

1.4

1.4

1.4

ECC Water Temp.

(°c)

39

37

38

39

40

ACC Flow Rate (ni3/h)

278

279

"283

°242

277

ACC Period (sec)

24

24

24

23

°21

LPCI Flow Rate (m3/h)

30

"62

°40(17)

30

30

Note

Base Case

High LPCI Flow Rate

Low LPCI Flow Rate

Low ACC Flow Rate

Short ACC Injection Period

PI 2

00

3 n m

Flooding rate ( c m / s ) o ro *

oi

8

-

• ^ "

*y^

1 1

igh

w

tem

3

*^ TJ H

OJ

b

i

r~ o

>< c ^ <B

3 pre

*—» TJ H

-

-

ase

o o (A (0

"D H

!

o

-

"3

00

rod surface temperature *C

33

i 2

C3

ID to

cr

01

JAER1-M 82-002

©~- 1.5 ata A--- 2.0 ata +--- 3.0 ata

100 ?D0

T I M E 300 400

( SEC I 500

Fig. 4.2.3 Effect of system pressure on pressure loss across loop

1000

•° 600

3

"5

200

Base Case HghLPCI LowLPCI Low ACC Short ACC

"120" ' 240 Time after BOCREC (sec)

Fig. 4.2.4 Effect of flow rate on clad surface temperature

- 120-

P 1

0

2

e o

1 ' o 0

UCSP

Loop

Core

Downcomer

Base Case Low ACC Short ACC

50 100 150 Time after BOCREC (sec)

Fig. 4 .2 .5 Effect of ACC flow rate on water head and pressure loss

01

Base Case HghLPCI LowLPCI

50 100 150 Time after BOCREC (sec)

Fig. 4 .2 .6 Effect of LPCI flow rate on water head and pressure lo s s

JAER1- M 82-002

©--- 600 °C 700 °C +- - - 800 °C

l?00

100 200

TIME

Fig. 4.2.7 Effect of initial clad temperature on clad temperature history

O-- 600 °C 700 °C +--- 800 °C

o a;

if) in

or

D f

-

100 200

TIME 300 '00

1 SEC ) SD0

Fig. 4.2.8 Effect of initial clad temperature on pressure loss across loop

- 122-

JAERI- M 82-002

©-- - Hot DC -*• Cold DC

UJ or

= > 600 t—

a oc UJ Q_ 300

71

I • 1 1—-T —

-

100 200

TIME 300 <00

SEC soo

Fig. 4 .2 .9 Effect of i n i t i a l downcomer wall temperature on clad temperature h i s tory

Cold DC Hot DC

200

o_ i ac |—!i;< ll——6 r *"

Fig. 4.2.10 Effect of ini t ial dovmcomer wall temf rature on fluid temperature at core inlet

- 1 2 3 -

JAERI-M82-002

Q— Hot DC -— Cold DC

o CE

Z3 CO to LU cc CL

2 UJ

*

1 / •

A o ~

100 200

TIME

300 400

I SEC )

500

Fig. 4.2.11 Effect of initial downcomer wall temperature on downcomer water head

Tf-:coi NO 12 i-9.07., 31

CHART NO 265

5 1. CiQj

Fig. 4.2.12 Pressure losses across loop in cold downcomer wall test

- 124 -

JAERI- M82-002

TEST NO

CHflRT NO

Fig. 4.2.13 Pressure losses across loop in base case

O-- K = 25 K = 35

1200

_ 900

600

UJ O_ 300

f i.

100 200

TIME

300 400

( SEC ) 500

Fig. 4.2.14 Effect of loop flow resistance on clad surface temperature

- 125-

JAERI-M 82-002

O--- K = 25 A--- 35

3 1/3 ID UJ

100 ?00 T IME

300

I SEC 400 500

Fig. 4.2.15 Effect of loop flow resistance on ^jessure loss acros« loop

Q--- K = 25 K - 35

100 ZOO

TIME SD0

Fig. 4.2.16 Effect of loop flow resistance on steam mass velocity in loop

- 126 -

JAERI-M 82-002

O— K = 25 - - K - 35

1200

CJ

_ 900

LU

or

3 BOO i—

cc

oc

LU

Q. 300

— * -A

k

100 zoo TIME

300 400

1 SEC ) 600

Fig. 4.2.17 Effect of loop flow resistance on clad surface temperature at highest thermocouple elevation

O — K = 25 A--- K - 35

0.8

o en

0.6

en to

(X 0.4

0-2

0.0. D V>

h—e e — * -*

D 300 400 500

TIME ( SEC )

Fig. 4.2.18 Effect of loop flow resistance on water accumulation on UCSP

- 127 -

JAERI-M82-002

1000

120 240 360 Time (sec)

480 600

Fig. 4.2.19 Effect of ECC water temperature on clad surface temperature

- 128-

JAERI-M 82-002

4 .3

LT FLECHT*££&i8<i PKLJg£Sti$£ff->fce Table 4. 3. 1 It FLECHT

-16 £ FLECHT

Fig. 4.3.1

t'-*Vf/7 7 V t -it 1.67 i 1.49 T?£3O FiR. 4. 3. 2. ID

LPCI

ilfi'lffifASo FLECHT

•> > * v^o/Wlff^- Vic * - '< 7 o - J-U-^i .fi{tc LPCI MtWl- A/i

o Fig. 4.3.3

i .ccTFO/J*J FLE

CHT l e t t e r <t^CiA^A>5o Fig. 4 3. A ic ? x v-fx y < n -7<©Jt$2fe:5R£v;f<!h, i1^

, CCTFOf-)i]IIi FLECHT

Table 4. 3. 2 ic PKL K7Aagl i PKLiS&aei C 1-SH4 H v S PWR

- 129 -

JAERI-M82-002

Table 4.3.1 Comparison of test conditions between FLECHT 3105B and CCTF Test Cl-16

RUN NO.

COMMENTS

Containment

Pressure (MPa)

Peak Power

(kw/m)

Averaged Power

(kw/m)

Axial peaking

factor ( — )

(*°ACC flow

rate (kg/m2s)

(*1}LPCI flow

rate (kg/m2s)

ACC injection

time (sec)

ECC water

temperature (°C)

SG secondary

water level (m)

SG secondary

temperature (°C)

Initial clad

temperature (°C)

FLECHT

31O5B

0.407

2.76

1.37

1.67

392

valiable

14

66.7

7.3

267

593

CCTF

Cl-16

0.415

2.78

1.47

1.49

386

42.8

17

67

7.4

263

593

Note: (*i) ; Flow rate is determined based on core flow area.

- 130 -

JAERI-M 82-002

Table 4.3.2 Comparison of test conditions

between PKL K7A and CCTF Test C1-SH5

di ft (MW)

m » * it (-) » (-)

» SIS £ * (m)

it) ft» *

ft'lff (KW/tn)

3j .6 M10) U IS. CC)

PKL K 7 A

1. 4 22

337

0

3.9

1. 1 7 : 1 0 : 0. 9 2

1 19

1. 0 8

7 2 0/650/630

CCTF C1-SH5

7. 0 9

1824

224

3.6 6

1. 02 : 1 0 : 1 0 1

I 49

I 0 6

6 20

ECC rt A C C Tr- K l A C C * - I-J; I") LP " I

ECC ;K

S HE ft

CO

(MPa)

35

0.4 3

43

0.4 3

single intact 3 8

double intact 3 7

broken 7 2

intact 1

i ntact 2

intact 3

broken

- 35

- 3 5

- 3 5

- 3 5

- 131 -

JAERI-,VI 82-002

2.0

1.0 -

o 0.

-1.83

Fig. 4 .3 .1 Axial power profi le

o

FLECHT 3105 B

CCTF C1-16

o o

101

•£ 5

I 50 100 ISO

time after flood (sec)

Fig. A.3.2 Core inlet velocity

200

-132-

elevation

Clad surface temperature (°C) 00

8

n

o. 01 e Ml » n m rr ( I 3 •o ID

r t

e n>

1 I" tn

o

loo

Q .

at CD o

IV) o

rv> O

o» Ok

o

CM

o

! 1 1 i

rn -n

1 1 1 1

1 1

rn -t x"" ~* 3 CJI pL

0) S"

CC

TF C

FLEC

HT

C

oupling

Is5 5 CD

o — —

JAERI-M82-002

4.4

Fig. I A.

1.5 mmf i i e i Lfcfflliili, ^ - 7 •> -

ft 5 iO>

Mlffi ' C e r a 900 "C ) ^-ax., Hl J*M!ffiWr j n / : o

Fig. .1 <! 1 (C-jiSn-Cl**, ft'n£fc\\iiibtt<,tt. 'k'i\ ,W\i)<mt LSf?*i. / t - r - > - ^

.«C<1 JE'l;8S(l|iJA'^toj);Jjic J; 0 :)•• •• •/(||i)icfi;*Jj LWiM), .-K'*l 'l-.aSfl|i|«rft(4*<(«: KL

- - T •>• - >KO h"ii^co^ll A P, Asti¥(/j|| 1' 5 C t KW& * ft Z> o

. Fig. A. 4. 3cDD>H"il AKfcl^r. ' .Pz CMS K, . \P

5O Fig. 4 1 4 IC y"O y A vg)5,flj'.i:>a5i«^/.r:«:/pt-o C « £-ffi t<>^- 7 •> - JU Ss Ai

AP,. smax lcii

-?(c« D, ¥'b(Di$£l)lZisteftZ X t lets. 5

2. 'J 7 <

T a b l e 4. 4. ! K,-f<f- J; o IC 2 OHCT> 'I 7

1) T9!7" u j - Aft;J< 4 n - ;u K u /

2) T S R 7 " u + A 7-5 y - > y / + n - ^ K i

a9mss > ttr

- 134 -

JAERI-M82-002

c i 4, c i - i 5 i c o ^ - c , 5 C I J , C 1 5 Fig. 4. 4 5 , Fig. 4. 4. 6

Fig. 4. 4. 7 ICC1 4, Cl 2 Ofr'^AU/KfflOlt^^/jl-to 'J 7

T ^ a C i j O ^ ^ S o Fie 4 4. 8ic^'5

i ^ r i l l , hiWv ( Fig. 4 4. 9 ]*>^(>K

') 7

, u 7

Table 4.4.1 Test conditions of Refill simulation tests

Items

System pressure

Average linear power

Radial power ratio

Initial peak temp.

Downcomer wall temp.

Lower pleaum water hight

Total ACC coolant volume

ACC flow rate

ACC injection period

ACC coolant temp.

N2 injection

LPCI flow rate

LPCI coolant temp.

Units

( kg/cm2a )

( kw/m )

( - )

( °C )

( °C )

( m )

( m3 )

( m3/h )

( sec )

( °C )

( m3/h )

( °C )

Cl-4

<

<

< 1.17

198

0.9

240

14

35

w/o

<

<

RUN NO.

Cl-15

6 + 2 >

1.4 >

: 1.10 : 0.90 >

600

198

0.9

1.6

240

14 + 10*

35

4sec*

30 >

35 >

N2 gas injection was intended to continue 10 sec, however it continued only about 4 sec.

- 135-

Clad surface temperature (°C3

Power (Arbitrary unit)

xn o

I a

a.

sr 09 B 3

O O •o

2 i

JAERI-M 82-002

Liquid Itvtl of contalnmtnt tank I

Liquid Itvtl of containmtnt tank 2

60 120 180 240 300 Time (sec)

Fig. 4.4.3 Differential pressure and liquid level transient

in loop seal water filling test

e

cr

E 6

I4

£

Powtr shutdown -,„

[)owncomtf jT

\

^, -Timt whtn AFb-AF^ would txcttd " APLSBWI, if powtr did not shutdown

1 t 1

100 200 300 Time (sec)

4OO 500

Fig. 4 .4 .4 Collapsed leve l of core and downcomer

- 137 --

JAER1-M 82-C02

O-— Ref i l l mode A — Normal mode

a a:

a. 300 -

a-—;~-e-

. in

-

*

-

100 200

TIME 300 400

I SEC ) soo

Fig. 4.4.5 Clad surface temperature history

©--- Normal mode A--- Refill mode

cr a:

Q. 300

I0D ?00

T I M E 300 «i)0

( SEC I soo

Fig. 4.4,6 Clad surface temperature history

- 1 3 8 -

JAERl-M 82-002

©— R e f i l l mode •*--- Normal mode

UJ

G_ 100

. a— •• a

100 ?00

TIME

300 '00

I SEC I

Fig. 4.4.7 Fluid temperature at core inlet

O-- Downcomer (Refill) x--- Core (Normal)

Core ( R e f i l l ) H — Downcomer (Normal)

er z UJ

u. u_ o

1 1 t 1

100 200

TIME

300 '03

SEC

Fig. 4.4.8 Collapsed water level in downcomer and core

- 139 -

JAERI-M 82-002

O ~ Ref i l l mode Normal mode

z: •

-

-

J

) «no son TIME ( SEC

Fig. 4.4.9 Water level in upper plenum

JAERI- M 82-002

4.5

I. t t 46

Table 4 5. 1

y

l»r(i, W'stf?\H ECC'M ">-x

^c i/ji, '/0 >Avffl

' m,. * m,->«0

5 ~ ]5 ^-CftO. l:!51l7'ix^/xE^[l*APu*<*3'i:>- y''V A-?^-t£ At',, AP,.(O5 - 15

ET. 0, 55 1 M:« Eq. (IW^^mi, !ft2.5 - 7.5 ^iS^iiiffi^ EM* f n> £ 0 (fi»U*

X, E C C * - hT-

, Eq.(7)J; 0 A > 5 i -j ic

- 141 -

JAERI- M 82-002

tS&ffl&IC&^-ai, C C T F i F L E C H T SET, PKL ©fctifii II, $Sf«W:A>'£ '3,CCTF

-9 ic— $?£

'J 7 <

2. ff

(i) rk/mm^k'kmmvrizts^rzmznzimtra (2) tyfccaW&LfcMil

(3) '•Iaa;i>ffil«rM!*^C>/ilrtJMlO:,1tt' fi««-(!"{irtf:/J?^iL>^Wlc')6Yi!,tl!c')A:yj« ' " - r > - ' i^f f i* .^^

c n ^c/XtjtSSJIJ, C C T F 5fi 1 * , -^ 2 r*;^' -ll- C'A! «!i S *1 -5. WC tit,,,

% A11 * « p w R T S /u * n T s 3 - 'f K f '/tn * f J !•: c c s w n « j j A «sit w < j . ,t 13 ,v,'i

t ' l : i i ' i ECCS //AfcRUft I , J; O'i-^-CA'-a^rJTW^ PWR 0,15,1 )• & j j T ; tolCk;-^T*>5,,

( CCTF35 2 C'lji'iL-Tn-itSSjOMf^^So 1

r I t f c l ' T ( i , f'fki*ISate8*ffl^.C-«*i|:->W;aiWi'3ti3ffl.'a:(i. ft870"Ci,H'»-

sil, CCTFXB10°CCSg.m^'ii^\ 890

©

L, ^©iifitfci'© J: -5 ^ i*^ f*^ - i5^T CCTF

- 1 4 2 -

JAERI-M 82-002

Table 4. 5. 1 Summary of the system behaviors

m H EMtf*

BX{ti) | j j 75 SI*

ECC # - h- T'OSlttlCj:

4^ aS 1^ ro J6 5K

ECC if— Is T'W)S)Sf^<t

SfiftAfL

EMfcr'HCj;

man

- 143-

JAERI- M 82-002

5.

2 1 0 < ^m

(1) 'i:yfeii¥ffi

LTIi,

(2)

fc A>', C tlli ECC

(3) / i / - V • > -

(4) fco c«')'T,

LT,

, H,

- X * 4 ^ ' # F. Mayineer

Herdtle, R. K. Fujita fticfc

54

iife,

> 9 -i

. S.

fc C . K . L e w e . H . G .

- 144-

JAERI-M 82-002

G

GACC

GLPCI

mg

me mp

mECC mECC/LP

K

Q

P

APg

APn

Tinit Tsat

P

volume flow rate (m3/hr)

ACC volume flow rate (m3/hr)

LPCI volume flow rate (m /hr)

total mass flow rate through the broken loop (kg/s)

water accumulation rate in the core (kg/s)

water accumulation rate in the downcomer (kg/s)

liquid mass flow rate from three intact cold legs to downcomer

(kg/s)

steam mass flow rate from three intact cold legs to downcomer

(kg/s)

^ C water injection rate into a cold leg (kg/s)

ECC water injection rate into lower plenum (kg/s)

total mass flow rate through a intact loop (kg/s)

total mass flow rate through four loop,- See Eq. (2) (kg/s)

water mass flow rate through broken cold leg nozzle (kg/s)

water accumulation rate in upper plenum (kg/s)

loop K factor ( - )

average linear power (kW/m)

pressure (MPa)

pressure drop across broken loop (mAq)

pressure drop across broken cold leg nozzle (mAq)

core head i.e. core collapsed level (mAq)

downcomer head i.e. downcomer collapsed level (mAq)

pressure drop across a intact loop (mAq)

upper plenum water head (mAq)

flow area of loop piping (m2)

initial clad surface temperature (°C)

saturation temperature (°C)

steam density in a intact loop (kg/m3)

steam density in a broken loop (kg/m3)

- 145 -