WRAP_THESIS_Silva_1978.pdf - Warwick WRAP

341
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/73386 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

Transcript of WRAP_THESIS_Silva_1978.pdf - Warwick WRAP

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/73386

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you tocite it. Our policy information is available from the repository home page.

NEH CI~LIBHATION TECHNIQlJES for ONE-PORT MEASUREHENTS

using a Cm-WUTER-CORr"lECTED NETI'lORK ANALYSER

by;

. E. F. da SILVA, H.Se., C.Eng., M.I.E.l~.E.

A Thesis submitted for the Degree of Doet.or of Philosophy

.. School of Engineering Science

university of l'1arwick

september, 1978.

IMAGING SERVICES NORTH Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl,uk

BEST COpy AVAILABLE.

VARIABLE PRINT QUALITY

( i)

CON'rENTS

Chap'ter I PAGE A BRIEF REVImi OF SOHE REFLECTION COEFFICIENT' MEASUREHENT SYS,)~EHS

1:0 Introduction 1 1: 2 The Reflection Bridge 7 1:3 Time Domain Reflectometry Measurements 10 1: 4 Swept Frequency Slotted Line Heasurements 15 1: 5 Directional Couplers 18 1: 6 Conclusions 21 1:7 References 23

.Qhapte'r II THE THEORY OF THE MEASURING SYSTEH ----

2:0 2:1 2:2 2:3 2:4

2:5 2:6

Chapter :rg

Introduction The Theory of Reflectometer Measurement Reflection Coefficient Directional Couplers The Measurement Uncertainty of Incident

and Reflected Power Conclusions References

THE HEASURING SYSTEM (Hardware)

3:0 3:1 3:2 3:2.1 3:2.2 3:3 3:3.1 3:3.2 3:3.3 3:3.4 3:3.5 3:4 3:5 3:6 3:7

J~ntroduction ,,:j",'.

. Description of the Measuring sys't~T .' . The Signal Source Bloc]e Frequency stability 2:~ '." The Importance of Source Ma tell," ,,~ <'\

Cl10ice of the Reflectometer ..... Directivity Vol tage Standing 'Vlave Ratio (VSWR) Frequency Range Coupling Coefficient Transmission Loss 'I'he Det.ection and Indication Block System Accuracy Conclusions References

24 25 29 33

45 50 51

53 53 55 56 57 65 6G 68 69 69', , 70 70 74 77 78

( ii)

Chapter IV lmCOH ... 'lliGTt~D REFLECTOHETER HEASUREHENT

4:0 4:1 4:2 4:3 4:4 4:5 4:6

4:6.1 4:7 4:8 4:9

Chap_tg?; .. y

Introduction The Limits of Reflectometer Accuracy Directivity Error Source Mis-Match'Error ' The Combined Heasurement Errors The Effects of Adapter/Connect.or Errors An Alternative l1ethod of Specifying

Reflectometer Accuracy Application of Error Equations System Accuracy Conclusions References

REFLEC'l'OHETER CORRECTION HETHOD~

5:0 5:1 5:2

5:3

5:3.1 5:3.2 5:4 5:4.2 5:4.3

5:4.4 5:4.5

5:4.6

5:5 5:5.1.1

5:5.1.2

5:5.1.3

5:5.1.4 5:5.2 5:6

5:7 5:8

Introduction The Elements of the Error Correction Model Correction Me-thods Using the Invariance of

the Bilinear Transformation Cross Ratios A General Review of One-P ort Reflectometer

Error Correction . Theoretical Error Model Practical Error Model Specific Calibration Procedures The Three Short Circuits Correction Method 'I'he Short/Offset Short/Matched 'l'ermination

Correction Nethod The Three Open Circuit Correction Method The Three Identical Non-1-iatched 'l'ennination Correction NeLhod

The Short/Offset Short/Open Circuit Correction Nethod

The Four Termination Correction Methods Difficulty in Specifying

Calibration Lengths Difficulty in Defining the

Calibration Terminations Changing the Po si tion of the

Heasurement Plane Construction Problems The Four Termination Correc·tion Methods 'rhe Evaluation of the Reflection Coefficient of the 'rest P .i.eces

Conclusions References

79 79 83 85 87 88

94 98 99

101 103

104 105

110

11.2 112 115 118 118

120 121

122

122 123

123

124

124" 125 125

129 130 132

6:0 6:1

6:2

6:3

6:3.1

6:3.2

6:4

6:5

6:5.1 6:5.2 6:5.3 6: 5.4 .

6:5.5 6:5.6 6:6

6:7 6:8

ChaP.-teE, V:g;

(iii)

Introduction The Three Short Circuits

Calculator P rograrrune The Three Shorts Sigma V P rogramlne

for Hanual Use The Four Shorts Sigma V Programme

for Manual Use The Four Shorts (Single Precision)

Programme for Manual Use on the Sigma V Computer

The Four Shorts (Double Precision) Prograrrmle for Hanual Use on the Sigma V Computer .

The Four Unknown/Reference Short Termination for Manual Use on ·the Sigma V Computer

The Aut~mated Computer Correction Programme

Basic principles Interface Between Operator and Computer The Control of the Signal Frequency Measurement, storage and Calculation

of Data Reproduction of Results Supplementary Tasks The Automated Progra~me for the Three

Short Circuits correction Hethod Conclusions References

THE FABRICATION OF TEST A:ND C]\LIBRA'l'I.ON PIECES 7:0 Introduction 7: 1 General Details of the Calibration

7:1.1 7:2

7:3 7:4

7:5 7:5.1 7:5.2 7:5.3 7:5.4 7:5.5 7:6 7:7

Standards Choice of Off set Lengt.hs The 7mm Short Circuit Co-Axial

Calibration Pieces 3mm Short Circuit Calibration pieces Construction. of the Open Circuit and Reference Short CO-Axial Calibration

Standards Fabrication of Microstrip Circuits Maskroaking Photo-Li thography substrate preparation Photoresist Application and Etching Electroplating Concl'lwions References

134

136

138

140

142

143

146

150 150 155 160

161 164 170

172 175 176

178

178 178

182 187

190 197 197 199 200 203 205 206 207

(iv)

£hapt?-r vrrr PRACTICAL PROBLEHS IN COJ'1PUTER CORREC'fED MEASUHEMENTS

8:0 8:1

8:2

8:2.1 8:3

8:3.1'

8:3.2

8:4

8:4.1 8:4.2 8:5 8:6

Ch1?-pter T~ FESUL'rs OF E~crrION

9:0 9:1

9: 1.1 9: 1. 2 9:1.3 9:2

9:2.1 9:2.2 9:3

9:3.1

9:3.2 9:4

9:5 9:6 9:6.1 9:7

9;7.1

9:7.1.2 9:7.2

Intrcduction A Drief Review of the Measurement

Equipment Sources of Errors in Automatic

Network Analyser The Instability (Non-repetlotivc) Problem Practical Difficulties in Measuring

Large Reflection Coefficients; Amplifier Limiting Problems

Modification of Error Scattering Parameters

The Effect of the Multiplication Factor "k" on Line Propagation Properties

Preliminary Computer Corrected MeCl.8urements

A Manual Correction Test An Automated Correction Test Conclusions References

MEASTJREMEN'rs (incl,!ding accur_<?:~'y) USING THE l'-!-r::W COEFPICIEN'l' CORREqTION MEASURgHENT SYSTEM~

209

209

213 213

215

216

218

218 218 220 220 226

Introduction 227 Measurement Results Using the Three Short

Circui t Correction Hcthods of section 5: 4.2 228 Measurement of a Short Circuit 228 Measurement of a Matched Load 233 Errors in Correction 233 Neasurements Results Using the Four Short

Circuits Correction Nethod of section 5:5 233 Measurement of a Sliding Load Termination ~33 Meaf3urement of a Short Circuit 237 Measurement Results Using the Four Unlmown

Ter.TIlinations, and Reference Short Hethod of Section 5:5 238

Measurement of an Attenuator Terminated by a Short Circuit 238

Measurement of a Short Circuit 243 Co~parison of Results Using Different

Correction Techniques 243 Accuracy of Measurements 247 The Practical Aspects of Correction Accuracy 252 Avallabili ty of }feasurement Standards 253 General Procedure Used for Verifying

System Aecuracy 254 Accuracy of Measurements Using the 3-Short

Circuit Correction Method of section 5:4.2 and the Cornpnter Programme Described in section 6: 5 258

Measured Accuraci0.G of the Heans 260 Accuracy of Meal:~urements Using the 4-Short

,Circuit Correct.ion Nethod of section 5:5 and the Computer Programme Described in scct.i o:n 6: 5 261

(v)

.Qh;:pt.~r IX • ~. Continuation 9:7.3

9:8

9:8.1 9:8.2 9:9 9: 10

Cha12ter X

10:Q 10:1 10: 1.1 10:1.2 10 ~ 1. 3

1012 10:3 10:4

~endice~

11:1

11:2

111 3

11:4

11:5

1116

11:7

11:3

11:9

11:10 11:11

Accuracy of Measurements Using the 4 Unknovm Terminations and a Reference Short Circuit Correction Method of Section 5: 5 and the Computer Programme of Section 6:5

Comparison of Results for the Three New' Types of Measurements

Comparison of Results at 4 GHz Comparison of Results at 6 GHz Conclusions References

Final Review Achievement of Objective The Three Short Circuit Correction Method The Four Short Circuit Correction Method The Four Unknmvn Termination/Reference

Short Circuit Correction Method Final Conclusions FutL/re Work References'

The Usefulness ·of the Bilinear Transformation

Bilinear Tra~sformations of scattering Parameters

The Bilinear Transformation of a Circle in the Complex Plane

'l'he Invariancc of the Bilinear Transformation Cross-Ratio Applied to Micro'iTave Analysis

Programme for Reflection Coefficient Correction Using the 3 Short Circuit Method of Section 5:4.2

Hannal Programme Using Sigma V Computer for Reflection Coefficient Correction Using Three Short Circuits

Hanual Progranune Using Sigma V Computer for Reflection Coefficient Correction Using Four Short Circuits

Hanual Programme (Double P recision) Using sigma V computer for Reflection Coefficient Using Four Short Circuits

Manual P rograITh'110 Using Sigma V Computer for Reflection Coefficient Correction U sing Four Unk.nown Termina·tions and C! Reference Short Circuit

Some Statistical Definitions References

PAGE

268

271 272 277 279 280

281 282 283 285

285 287 269 291

292

297

301

305

308

313

314

316

318 320 324

(vi)

.Appendix 12 - Publications

12:2

12:3

Calibration of Hicrowave NetworJc Analyser for Computer Corrected S Parameter Measurements

Calibration of an Automatic Network Analyser Using 'rransmission Lines of UnknOivn Impedance, Loss and Dispersion

. Calibration Techniques for One Port Measurements

* * * * * * * * * *

PAGE

325

328

337

(vii)

ACKNOHLEDGEHENTS

I wish to eA~ress my gratitude to Professor J.A. Shercliffe,

Chairman of the Department of Engineering Science, and Professor

J. Douce, Head of the Electrical Department of the University of

War.vick for the facilities provided for conducting these

investigations • •

This work was supervised by Dr. M.le }fcPhun to whom I am

most grateful for his technical and friendly guidance dud.ng the

past years and for his constructive comments in the preparation

of this manuscript. Thanks are also due to }ir R • .l\nderson of

Lanchester ~olytechnic for many . constructive discussions.

In the Department of Engineering, I am indebted to

Dr. H.V. Shurmer and in particular to a former graduate student

Dr. N. Hosseini who offered most valuable advice in the writing

of the automated programmes. Thanks are also due to }fr A. BUlne,

Mrs K. Stoneman and }fiss L. Harvey of the Departmental Computer

section.

Acknowledgement is also made to the Science Research

Council for partial financial support.

Finally, I would like to thanlf. my wife Ann, who endured

the many months of "wido·whood" whilst this thesis 'vas being

finalized.

* * * * * * * * * *

(viii)

ABSTRACT

The thesis presents three ne,,: computer correction methods

for me<::.suring immittanccs and reflection coefficients using an

automatic network analyser. 'I'he first correction method

called the "Three Short Circuit Correction Hethod" was invented

to overcome the 'difficulty of measuring components embedded in

microstrip or in conf~ned environments where sliding nlatched

terminations required by normal correc·tion m8thods cannot be

used. With this nevT method, error correction is carried out

based on'calibration measurements produced using three unevenly

spaced short circuits. This method was subsequently published

in the I.E.E. journal "Electronic Letters" of 22nd March, 1973.

The second correction method using four evenly spaced

short circuits '\vas introduced t.O overcome the difficulty of

accurately specifying electrical lfmgths in microstrip or in a transmission line with non-hmnogenous medium. The third

correction m~thod 'I-laS evolved to overcome the practical

difficulties of constructing good short circuits ,dthin micro­

strip lines. with this method, direct knm\Tleug0. of the

terminations of the calibration stcmdardG is Ul1!1.ecessary.

Rigorous theoretical derivations for the last two correction

methods have been published in the I.E.R.E. journal "Radio

and Electronic Engineer" issue of }fay, 1978. Detailed

n1Gasurcment results and comparisons of the different types

of correction measurements have been published in the "Micro­

wave ,Journal" i~sue of June, 1978.

( ix)

'I'be last t.wo correction methods also provide a means

of measuring the attenuation and phase changes of transmission

lines, and ·the effective dielectric constant of a non­

homoger.ous line may be calculated if its physical length is k.."lown •

Comparative measurements carried out using the new

correction systems as opposed to the older established

correction syst.ems are included in this thesis. They agree most favourably.

Results obtained using a.ny of the new correction systems have s!1own that measurement accuracies of + 0.5% with a

confidence level of 99% are attainable. These results have been con finned by statistical data obtained from repeated

meas'J.rements (100 in some cases) of an accurately defined

test standard.

* * * * * * * * * *

(x)

DECLARATION

Unless othel\vise credited, all the theoretical and

practical work described in this "thesis is my own.

This worlt has not been submitted at any other university

or institution although some parts of this thesls have been

published in tec1mical -journals.

I

* * * * * * * * * *

(xi)

PREFACE

Overall Aims

The overall aims of this thesis evolved from necessity.

'rhe necessity arose when a team of researchers at t11e

University 'of Warwick were invest.igating the applicution of

lumped components, (transistors, resistors, inductors and

capacitors) for use at microw·ave freqtlencies. As these

elements were constructed, it was found that there w·ere no

convenient means for accurately charaC?terizing these devices.

The author trlen undertooJc the tas}~ of remedying this deficiency.

This worle proved to be a far greater tasle than originally

a.nticipated and the ·author's original research on inductors

had to be cast aside in favour of the measurement problems.

Investigati.ons originally began with the then currently

used rapid measurement techniques for evaluating immittcmces

a.nd after this survey (ChapterI), it ,·,ras decided that the

reflectometer. "lQuld be used. The principles of the reflcct.o­

meter was subsequently investigated in Chapter II. The

peripheral equipment associatc:·d with it were investigated in

Chapter III.

For measurement accuracy, inherent measurement errors

must be recognised and el,iminated· if possible. Hence, the

errors associ.ated with reflectometers had to be investigat.ed.

TIle two main errors, directivity and sourca match, have been

discussed extensively in Chapter IV. A study of these

equipment ei~rOL'S revealed that they are extremely difficult

t.o elil!1il1d.1:-I~ over large measurement bandwidths. Hmvever I

these errors can be recognised and cancelled out mathemat.ically by the use of ~pecif:i.c cal:i.brat.ion procedures. This led to a

hitherto unpublished general mathematical solution for these

errors and the invention of the three ne"T corr(~ction methods

described in Cha.pter V. These correction methods have now

been publi Ghed. Sofb-rare correction methods require consider­able mathematical manipulation of complex numbers and five

manual computer programmes and two automated programmes had

to be written. These have been described extensively in Chapter VI.

The calibration procedures required the construction of several calibration pieces SUdl as short-circuits, off-set

short circuits etc. These have been shown in considerable detail-in Chapter VII.

The determination of the suitability of the equipment

for use ill computer correction measurements has been established in Chapt.er VIII.

The results of some measurements carried out with the new correction systems are shown ill Chapter IX. p.. substantial purt of this lengthy chapter has been devoted to establishing the accuracy of the corrected measurements. To minimise random errors, many measurements (up to 100 in some ca.ses)

have been carried out to detennine the accuracy of the

measurement procedures.

The final conclusions of the thesis are summarized in

Chapter X. Suggestions for further work has also been

included in this chapter.

Appendices 11.1 to 11.10 contain details of some

fundamental principles used throughout the thesis whilst

appendices 12.1 to 12.3 include the published papers that

have result.ed from this work.

* * * * * * * * * *

- 1 -

CHAPTEH I

A BRIEF REVIEW OF SO}ill REFLECTION COEFFICIENT MEASUREHENT SYSTEMS

1:0 Introduction

The purpose of this thesis is to establish new computer corrected measurement procedures for determining the

irrunittances of lumped components (-transistors, resistors,

i.nductors, capacitors etc.,) used at microwave frequencies.

The necessity for this thesis arose when a team of research-· ers at the Uni versi ty of l'larwick were engaged in the

application of lumped components. As thcr;e fundamental

devicer:; were constructed, it was found tha.t there "\'las no

convenient means for accurately characterizing the devices. The inability t'o characterize these devices affected the

author's work most profoundly as.he was then involved in

the construction and application of lumped inductors for

micrmvave use. The test jig for measuring these inductors

(Figure 1.1) had already been built and specimen components

(Figure 1.2) had already been constructed. The same problem "\vas also experienced by fellow researchers D. Nichie

in his measurement of capacitance and A. Kwesah in his

characterization of transistors.

The cl.ifficul ties shared in common "d th these fellow

researchers were that computer correct.cd measurements using

reflectometers could only take place at a reference plane

where calibration standards such as a sliding load could be

used. Hence if a device \vas embedded in a dielectric medium some dist~nce uway from this reference plane, then

only the t.rans.ferred immi ttancc i. C!., device im.-ni ttance

transferred t.hrough a length of transmission line could be

measured.

- 2 -

F:igure 1 . 1 : Test. J' ig designed by the author for the measurement of lumped components.

Fi9ure 1 . 2 :

' .

- -_. __ .. - ---- . -------_.--- ~- ........ _- .. *._---_ .... _ ..

A typical lumped tune d ci r cuit cons t.ructed by the author on a 10 x 10 mm substrate f or the test jig of figure 1 . 1

- 3 -

'1'his deficiency had to be resolved and the author then

abandoned his own 1vor]{, on inductors and und8rtook the tasle

of providing a solution t.o the measurement dilenuna. Hm:ever,

before thi s tasle could be carried out, a survey of the many

different methods of measuring irnmittances had to be invest­

igated.

This chapter presents a brief review' of some of the more

commonly used systems for measuring irmnittances using

reflection coefficients methods. The measurement systems

chosen for discussion are the Rhotector (Section 1:1), the six Element Reflection Bridge (section 1:2), Time Domain Reflectometry (Section 1:3) and Swept Slotted Line Frequency l1easurements (Section 1:4), Directional Coupler (Section 1:5).

The above methods were selected for investigations

chiefly because of the ease of measurement over wide

frequency bands. Many other methods of measuring reflection

coefficients are also Y~own e.g., Deschamps Method etc., and

a comprehensive explanation of these methods may be obtained from tbe excellent series of books on rnicrm'lave measurements

by Sucher and Fox (Reference 1.1).

1:1 The Rhotector Figure 1.3

Input Voltage Bridge Output Voltage

Rectified J.. detector output voltage.

Siveep Frequency Generator

v

- 4 -

The Rhotector (ref. 1.2) is a reflection coefficient

measurement device based on the '~heatstone Bridge principle.

Its corifiguration is shown in figure 1.3 where Z3 andZ4 are

equal resis·tances (usually 50 ohms). Zl represents the

impedance to be measured and Z2 is tl")e reference impedance.

l'llicn the bridge is balanced, the bridge output voltage

(Vo) is zero and the detector output voltage (Vn) is also

zero. When the bridge is unbalanced, i.e., ZI f- Z2 an out­

put voltage Yo' causes the R.F. diode detector to produce a

voltage YD'

The rhotector is constru.cted with a 50.n. coax.ial

measuring port and is supplied with a kit of 8upp1cmentar.f

coaxial loads having "volt<1ge standing wave ratios (VSHR) of

1.0, 1.5, 2.0, and 3.0. For wide band measurements, a

s.·vleep signal generator is connected tc;> the input terminal s

and the detector output signal is nonnally connected to an

oscilloscope whose time base is synchronized ·to the s"V,Teep

frequency. Z2 is externally terminated with a load of

VSWR = 1 and Val~E.~S of Zl using the calibration st.andards

are used to calibrate the appropriate VS\~R t S on the display

oscilloscope. The device to be measured is then inserted

in place of tl1.e calibration stan9ards and the VS-vR displayed

is interpolated.

Referring to figure 1.3 it is seen tha't provided the

diode detector does not load the bridge networ}.::, then

::. V z, - '7 J z%.~ Z4-Z, +Z~

- 5 -

and since Z3 :: Z4 = Z by construction and if Z2 is chosen

to be Z, then

y'~, \1 +}

· .... 1.1

The above measurements are usually carried out at low

.si.gnal·po"iers (-10 aBm) in ""hieh case the diode detector

characteristics may be assumed to be square la",' i. e, ,

. IDIODE' :: k vin (DIODE') where 1{. == diode constant.

Th!? detector output voltage (VD)

where 1\ :: Diode Load Resistance hence, sUbstitut.ing

in equation 1.1

v~ • • • • • 1.2

If l':---Rl.:.. is defined as K then equation 1.2 becomes

4

· .. , . 1.3

It vrill be shm·m later (equation 2.19) that r == .,'?:.-z.. where r is ca.lled the refle'ction coefficient "Z, +"'Z-

- 6 -

The voltage standing ....... ave ratio (VS\~R) is related to

the reflection coefficient ( " ) by the expression

r= and substituting in equation 1.3 yields

V;p =

• • • • •

Figure .1. 3( a) is constructed b¥ snbs,ti tuting various

valuca of VSNR in equa.t.ion 1.4.

Figure 1. 3{ a.l RE~lati ve Ou.:9:2.ut Vql taqe vs VSNE

~ ~~~ 0> ;I~

~

f.iI 0

fS .. ~ 0 :>

b ~ p 0

f.iI :> H 8 ~ H

~

40

35

30

25 1----

20

*5

10 -

.-, 5

~ o 1.0

. . L ---- --/ .

V

/

/ V

/

I V --

I ,/

1.2 1.4

VSl'lR

1.4

- 7 -

A more detailed analysis of the Rhotector may be found

in reference 1.2.

The rhotector is a relcA.tively simple and useful device

for measuring re~lection coefficients over wide frequency

bands and it is an ideal production test instrument as it

is relatively robust. It 'vas not selected as the main

measurement system because:-

1: Only the modulus of the reflection coefficient is

measured.. Phasor values cannot be obtained.

2: The reflection coefficient measured is dependent on

t.he ac"curacy of the !:lain calibration tes'!:. standards.

3: The reflection ~oefficient measured is directly

proportional to the square of the value of the

input voltage (equation 1.2) and over a ,vide

frequency band of measurement the input vOltage

may vary considerably.

4: The detector output voltage is not linearly

related to the reflection coefficien·t or VSWR

(figure 1.2). Furthermore, this output is subject

to the temperature vagaries of the diode character­

istics.

5: The signal applied to the device under test (ZI) is

always less than the generator applied voltage and

could lead to poor signal to noise ratios when low

reflection coefficients are measured.

1:2 The RQ,flp.ction Bridge

Figure 1. 4( a}

The Six Element Reflection Bd.d~

r-----~izol-----~--

V D n

'1 Impedance under test

- 8 -

The reflection bridge is a six-element bridge which

assumes the configuration shmm in figu:r-e 1.4(a). This

neb·:orlc configuration has the grea"t advantage in that the detector output voltage (Vo) is directly proportional to

the reflection coefficient. The network can be analysed

by a simple mesh analysis using the notation shown in figure 1.4(b) "i-rhich is that of figure 1.4(a) re-draHn.

By

Figure 1. 4(hl

The Reflection Bridge of Fiaure 1.4i.~1 Re-dra\·m for Analysi s

B

c

fnspection

V = 3Z0 -Z 0

-Z 0

0 -ZO +3Z0 -Z

0

0 -Z -z " 220+Z ... 0 0 < ...

• • • • •

and defining the determinate (D)

D =

D =

-z o 3Zo -z o

• • • • •

1.5

1.6

- 9 -

The detector ou·tput voltage (Vn) is

VD

using Cramer's Rule to solve for I2 gives

12 = 3Zo V -Z 0

-Z 0 -z 0

0

. -Zo 0 2"Z{"Z . . _1

• ~ [ 3VZo2 J / I2 + VZOZ OX D

and

I., = 3Z0

-Z ..) 0

.-ZO 3Z0

n

-z . 0 -ZO

• 13 ~ [4 V Zo 2J / D • •

Combining equatiors 1.6, 1.7, 1. [: and 1.9,

or

v 0 = V [z:.c ..,. Z 0]

8 [z.~ + zoJ

v [rJ 8

where r = Z:.:, - Zo --- as shm·m in equation 2. 19. z" + Zo

· .. . . . 1.7

· . . . . 1.8

· . . . . 1.9

••••• 1.10

..... 1.11

..,. 10 -

Hence the output voltage V 0

to the reflection coefficient ~ In;~:recr~ ~ (ReF' l . .3) '~lISIZl>.

is directly proportional

• PA.e","~ 1"" ... 1\, A L\~EAil

The insertion loss of the bridge is high, the out.put

voltage being ~:me eighth of the open circuit generator

voltage or ~ of the voltage that would be delivered by the

generator if it ,,;as correctly terminated by an impedance

Zo in place of the bridge. Thus the insertion loss is 12dB. Practical realisations of the bridge circuit have losses

slightly greater than this. This high insertion loss has

t.he adv·antage that source mismatch error (cectio:1 4 ~ 3) is

reducGd but.it also causes reduced signal level to the

device under test.

The greatest: problem "d th the bridge described is that

aball.:t.n;· must. be provided for the R.F. Source or the detector.

This condition is most difficult. to satisfy where microwave

frequencies operating over several octave bandwidths are

desired. If a crystal detector is placed across the

detector load such as in the Wil tron Autotest.er (reference 1.4)

. the baluns problem is overcon1c but then only the magnitude

of . the reflection coefficient I r I will be obtained and

many of the disadvantages common to the Ehotector (section 1: 1)

'vill be evident. A more detailed analysis of this bridge

may be found ip references 1.3 and 1.4.

This bridge was not favoured for t:hc measurement of

complex reflection coefficients for the' reaSOnf.l discussed in

sections 1: 1 and 112. in spite of its higher directivity.

The problem of directivity errors will be discussed fully in

section 4:2.

~ Time Domain Rpflectorn.etry Neasurement.~

Time DOmain,. Reflectometry employs a pulse generator , [0 0 .. J 0 0 '\V'hich sends a voltagE! step lncl.dent wave along a tranSlU1581.0n

line tm,mrds the t.erminating impedance to be measured (fig. 1.5).

- 11 -

If the terminating impedance is not matched to the line,

then reflection occurs. Both the incident and reflected

steps are monitored by an oscilloscope at a fixed point.

STEP

Figure 1.5

. Bloc1~ Diagram of a Simple Ti.me Domain Reflectomet£Y SYsts~

OSCILLOSCOPE

fEi BRIDGED

rr UNKNOWN

GENEHATOR TEE IHPEDANCE

--

The following can be deduced from an intelligent

comparison of the incident and reflected ·step waveforms.

11 Any discontinuities in the line can be located by virtue of the propagation velocity of the step

function and the time (measured on th~ time base of the oscilloscope) required for the reflected voltage

to return. This feature is 'extremely usefUl for

locating poor connections etc., within a system.

2: The waveform of the reflected wave from any dis-

continuities or terminations is most valuable for it

reveals both the nature and the magnitude of the

mismatched 'termination.· Eight ideal oscilloscope

displays o~ this nature are shown in. figures 1.6 and

1.7. TheEG diagrams have been taken. from reference 1.5. The terminating impedance and/or reflection

coefficients may also be calCUlated using the

expressions 'vi th figure 1.6 and 1.7.

- 12 -

Figur~ 1.6 TDR Displays for Typical~oags

--------------------------. 0.---0

ZL ---:;;.

(P. ) OPEN CIRCUIT TERMINATION (ZL = 00)

~J -E. 1.

0-----0

0----,

> (D) - SHORT CIRCU!'!' TEIDUNA'I'ION (ZL = 0)

o

z --> I ..

(C) LINE TEPJUNATED IN ZL = 2Zo

~. ;_0-

ZL --> (D) LINE TERHINA'l'ED IN ZL = ~'Z 2 0

(";

~z o

(, --

SERIES R-L

- 13 -

Fignre 1.7

Q8cl110sco~p'isplays for Complox Load Im}20danc€s ZL

( R-2 R-l -V) .[. (I + _Q.) + ( I - __ 0) e T

(I R+l R+Z o 0

WHERE T" __ L _ R+£o

~--+.-

t--+ t o

R-l (I + -_OJ E·

R+Z I T 0

z ... · L

I

R

L

R

:In Z-+

L C

0- T

- 14 -

These (-?xprE!ssions may be derived by recalling that the

reflection coefficient (~ ) is given by:

ER E' .. =

1.

••••• (Ref 1.5)

where E R = Reflected Waveform

EI = Incident S·t.ep Waveform

~L = Terminating Impedance

Zo .. Characteristic Impedance of the 'l'ransmission Line.

Assuming Zo is real, it become only a mat.ter of simple substit.ution in the above expression to c~erive the four expressions sho\~n in figure 1.6. The waveforms for figure

1 .. 7 .can be verified by resorting to the use of Laplace Transform i.e., w·riting the expression for \-,( s) in tenns

of the specific ZL for eac~ example (Zr ~ R~sL, l+r

C' etc.) .c;1. ~.... s roul tiplying r( s) by --;;--, the transfonu of a step

Q

function of height. E. I and then transforming this product 1.

back into the time domain to find an exact expression for

ER (t ) .

Time Domain Reflectometry was used in the development

of the test jig shown in figure 1.1.

Time Domain Reflectometry ,.,as not chosen for the main

measurement system because of:

1: Difficulty in measuring "the gradients of the

display waveforms accurately.

2 t N\.:~ltiple reflect.ions in a practical syst.em.

3: Relatively poor rise time of step generator at

that ti.me for high frcqu.cncy wor)t ( 6 GIl ) z

4: Difficulty in observing the waveform accurately,

resulting in relatively poor accuracy.

- 15 -

1:4 Swept Frgg:L2cncy Slotted Line Neasurements

A basic block diagram of hml a slotted line may be used in s"\'lept frequency measurements is shown in figure

1.8.

Fiqure 1.8

Dlock Diagram of VSWR Measurements Using the Sweep Fregvency Slotted Line Method

MODULATED DISPLAY SWEEP FREQUENCY GENERATOR t-------~------~

Time Base

STORAGE OSCILLOSCOPE OR PEN RECORDER

INPUT SENSOR

fTTENUATOR

)......_----1.

~ PROBE

SLOT'rED LINE

Ref. Signal.

Ir . ~ .~mpl. •

,

output . signal in dB

DEVICE ur,mER TES'r

Neasurement j.s relatively easy to carry out. The

frequency generator is set to S'tleep the desired freque:r.cy

band. The device under .test is removed and a power meter

is connected to the output port of the slotted line. The

generator is adjusted until the desired output power e.g.,

adBm is obtained.

- ·16 -

The power meter is removed and replaced by a good

terminaticn e.g., a sliding load. One input (carriage input)

of the differential amplifier is grounded and the other

input (reference input) is adjusted by the attenuator to

I>roduce a sui table output e. g. ,- 25dBm. The carriage input

to the differential amplifier is then re-introduced and the

probe penetration adjusted until the two inputs are equal,

i.e., no output from the differential amplifier. At this

stage, movement of the carriage assembly on the line should

theoretically produce no change in output from the

differential amplifier. In practice slight changes occur

because of an imperfect slotted line and termination. The

.advant:nge of using a differential amplifier lies in the fact

that small changes in input. power do not introduce large

errors in VSWR measurements (reference 1.6). The output of

the amplifier is then connected to a pen recorder or storage

scope whose ordinate axis is initially set at its mid-

. position in order to al1mY' measurement' in ei thc~r direction.

The slotted 'line terminatio!1. is then removed and the device

under tes·t (DUT) is reconnected. The probe carriage on the

slotted line is slid manually to and fro over a distance (d). The distcmce (d) must exceed half an electrical ,-ravelength

of the lO"'lest frequency to be measured. The resultant plot

of a typical set. of measurements is shown in figure 1.9.

Fig~re 1.~

Tl'nJcal VSWRP lot of a $'v~...Qt Slottesl Line Neasurement

-·---,.-----+-------t----T -.----I-----I----+----t-.----t-----t

• IEmax(dB j ~-. '-"K .. -~----.~~

~ }-"--.I\,._n-j-· --:;A..--=:::-..:~~:-..:::::::-=_t-=:..--!:==--: I

~ f·--------~~-------+--------~ ({; i

~' ------~------~ 12 13 14 15 16 17 18

FREQUENCY (GHZ)

- 17 -

The SWR(dB) at a particular frequency is deno·ted by the

distance between El1AX (dB) and EH1N(dB) (figure 1.9) at that particular frequency. The VE:\\fR ratio and hence the magnitude of the reflection coefficient can be calculated

in the usual manner.

A simple e~~lanation of the above procedure can be

obtained by first considering operation at one frequency

only. EMAX

and EMIN of this particular frequency can be obtained by sliding the carriag8 probe along the slotted

line over a distance (d) greater than half a wavelength.

This information will enable the.VSWR to be calculated.

Phase infonnation will only be obtained in the distance

through ",hich a fixed reading t e.g., E ... ..f. has moved is l.111

lcrlOwn when the device under test at the end of the slotted

line has been substituted for a reference ·termination e. g. ,

a short circuit. If the recorder or storage scope is

capable of recording EMAX. and EMIN in dB then since

VSvTR(dB) = 20 log " ~}L~X EMIN

= 20 log IE I Y..AX

I .'

-20 log J ENIN I

it. fo1101'1s that· the d:i.fference between I EMAX(dB) I and

I~HIN(dB) I ,.;rill yi.eld VSWR in dB. If another frequency is chosen, EMAX and EMIN "vi11' occui 'at different points along

the slotted line. For a series of different frequencies

(swept frequencies), the series of EMAX and EMIN will be

locat.ed as the carriage probe is moved slm'11y along the

slott.ed line and their amplitudes will be recorded. Hence

the VSNR at anyone frequency can be obtained. It shoUld

be noted that there is no phase information in this series

of measurements.

An alternative but similar method of carrying out

swept frequency slotted line measurements has also been

described by Hewle·tt P aC.kard in reference 1.7.

·- 18 -

This type of measurement was not selected as the phase'

information cannot be ea.sily obtained in theG(~ swept mear.;ure­

l11ents.

1:5 Directional CaU'olers

Directional, Couplers are devices which sample a wave

moving in one direction but not in the other. Such a device can be used to measure the reflected and incident waves in a measurement system and penuit the calculation of the reflect­ion coeffici.ent., The construction ~f a very simple directional coupler is nbm.,rn in figure 1.10 and a simplified circuit sho1'ring the capaci ti ve and mutual inductive coupling and the

irmer conductor of the coaxial line is shown in figure 1.11.

An extensive analysis of the dual directional coupler is carried out in Chapter II. The analysis carried out in

this section is a very approximat2 solution and is based on

that by Carson (reference 1.8) but it does demonstrate the principle of single frequency operation clearly. It also

. explains why the directional coupler "Joan iJ.dcptcd as the main

device for measurement of reflection coefficients and impedances.

Fi!J..ure 1 !.LQ

Ba~ic;:s.onstruct.ion of One Type of Directional C01.lPl er

-r--' R <

,..-----\ - - -

Loop coupled to Inner Conductor

LINE

- 19 -

F:i,oure 1,11

Simplified Circuit Sho11T.ing Capaci ti ve and Nutua1 Inductive Coupling Between the loop and Inner Conductor of a CoaxiC!l IJine Coupler,

OUTER CONDUCTOR

-~ VR

Output Input Jc L + V n n End k-VL-~ C

End

M

INNER ---1 CONDUCTOR

I

By inspection of figure 1.11, it can be seen that

R

V ;-~'-,-L JWc

=

If R /<,.1- then VR

A...J jw CRY "", JWc • • • • •

Current I in the inner conductor induces VL in the loop.

Thus,

• • • • •

The output volt~ge . ~s

Vo - V - R + vL = jw CHV -jw MI • • • • •

If the coupler is designed such that

_tL CR = HO • • • • •

1 •• 12

1.13

1.14

1.15

- 20 -

-\-.. here RO = characteristic resistance of the coaxial line,

then equation 1.14 becomes

vo = jw M ( __ Y-- - I) RO

The voltage and current decomposition equations are

v = V· J. + Vr · . . . . V. Vr

and I I· Ir J.

'= - = ). RO 1\0 • • • • •

where the subscripts i and r represent the incident and reflected directions.- Thus equation 1.16 becomes

v. + V V 0 = j vtM (- l. HO r

• • • • •

1.16

1.17

1.1:7(a)

1.18

Therefore the output voltage is proportional to the

reflected phasor current (or phasor voltage) because the incident components cancel when the coupler is connected as

sho'Ym in figure 1.ll. If the coupler is reversed, its out-

put voltage is proportional to the incident phasor current

and the reflected components cancel. In many caSE~S, it is

not convenient to keep reversIng the coupler, and dual

directional couplers, one to measure the incident wave and

the ot.her to measure the reflected "lave are used. A reflect­

ometer is a dual direc'cional coupler specially manufactured

for good amplitude and. phase coupl:i.ng match over C\ wide

frccJ,lency band of operation.' Reflectometer design is

complicated. Hanrey (rE':-ference 1.10) offers a good bibliography

on the subject.

- 21 -

In practice, the directional effect is not perfect and

leads to a tl'Pe of error called "Directivity Error".

Directivity Error is investigated extensively in Chapter IV. However in spite of the errors associated with reflecto­

meter measurements, this method was chosen as the most suitable because~

1: The reflectometer method provides a quick and easy

method of measuring reflection coefficient and hence

impedances if the reference impedance is well defined.

2& Swept frequency measurements a~e easily carried out.

3: The reflected and incident measurements carried out

yield both amplitude and phase information. See

equati.on 1.18 where Ir. is a phasor quantity •

. 4: Error correction systems are relatively easy to

incorporate.

5: The signal loss bet"\veen the' S\veep frequency signal generator and the device to be measured can be Ie sa

tha.n IdB. Thus low-pow'er signal generators can be used or alternatively larger powers can be fed to

devices such as transistors if desired. ~

6: The sampling loss associated with the incident and

reflected waves can be easily controlled in the

initial design of the reflectometer. A commonly

used coupling factor is 20dB nominally.

rrhe necessity for new rapid and computer correction

systems has been established in the early par-t of this

chapter. The latter p~rt of this chapter has presented a brief review of some of the various methods of measuring reflf~ction coefficients rapidly. Each of the methods

- 22 -

investigated has several desirable properties. The Rhotector

and the \AI il tron Auto tester are ideal production test·

instrUtltents, robust and simple to use for rapid magnitude

measurements of reflection coefficients. Time Domain

Reflectome·try locates discontinuities rapidly and Loeb

(reference 1.9) and his team have used it most successfully

in the measurement of lumped components. The Swept Slotted

Line }feasurements Technique, although relatively accurate

does not provide phase information. The Directional Coupler

provides both amplitude and phase information rapidly and

does not suffe.r from the haluns and higher loss problems

associated wi-th the reflection bridge. Herlce, the Directional

Coupler was- selected as the basis for the measurement system.

'l'he remuining chapters will be devot.ed -to the application

and error correction methods published by the author for the

measurement of reflection coefficients and immittances using

reflectometers.

* * * * * * * * * *

- 23 -

References

1.1 Sucher; H and Fox, J; "HandbooJc of Microwave Neasure­ments" 3rd Edition, Volumes I, II, III, John vliley & Sons J.Jtd., London.

1.2 Te10nic Engineering Co "FHO-Tector VS~~R Detector" Application Bulletin 301.

1.3 Oldfield, W. 11. "P resent-Day S:i.mplici t.y in Broad­band SWR Measurements" l'liltron Technical Review Vol 1, No 1, 930 Meadow Drive Palo Alto, Ca.

1.4 Dunwoodie, D, & Lacy, P "Why Tolerate Unnecessary Measurement Errors?" Wiltron Technical Review No 5 Harch 1975. 930 Meadow Drive, Palo Alto, Ca.

1.5 Hewlett Packard Application Note 62 "Time Domain Reflectometry" Hevllett Packard Ltd., 1501 P age Hill Road, Palo Alto, Ca.

1 ~ 6 1'?einsche1, B "M8asurement of Hicrowave Parameters by the Ratio Method" Publication by Weinschel

- Engineering, Gaithersburg, Hd, U. S.A.

1.7 Hewlett Packard Application Not.e 183 "High Frequency Swept Heasurements" Hewlett Packard Ltd., 1510 Page

_ Mill Road, Palo Alto, Ca, U.S.A.

1.8 Carson, R. S. "High Frequency -J~mplifiers" JOfm Wiley &.Sons 1975.

1.9 Loeb, H "Private Visit to Cranfield Institute of Technology" Bedfordshire.

1.10 Hal."'Vey, A. F. "Nicrmmve Engineering" Academic Press, London 1963.

* * * * * * * * * *

- 24 -

CHAPTER II ----_ .. _----,

TIm THEORY of the MEASURING SYSTEH

The correct:. choice of a measurement system must ultimately

depend on 'the type of mea suremen't required and on the financial

resources av'ailable. Various measuring systems 'Were considered

for the rapid measurement of reflection coefficients. Among

the systems investigated ''1ere the Rhotector (section 1: 1), the

Reflection Bridge (Section 1:2), Time Domain Reflectometry

(Section 1: 3) and Sv.Tep't Slo'cted Line H,easurements (Section 1: 4).

The advantages and disadvantages of each ,system has been

discussed extensively in Chapter I and only a brief sUlnmary is

necessary here. Time Domain Reflectometry (TDR) is ideal for

physically locating a discontinuity with a system. In fact, it

was used extens~velY for that purpose in the ~inal measurement

system. Single frequency or swept frequency slotted lIne

measurements provide accurate results but the measurement met.hod

is extremely tedious and time consuming.

The Rhotector, Reflection Bridge and the D,ual IJirectional

Coupler (reflectometer) certainly excel as rapid wide band

reflection coefficient measurement.:, systems. The first two are

variants of the l'lheatstone Bridge' Principle. with the

Rhotector and the Reflection Bridge, the signal l~vel available

for test is inhe'rently 12 dB less than the applied level from

the signal generator and this could result in poorer signal to

noise ratios vThen large return losses are measured. Dual

Directional Couplers (Reflectometers) may be constructed to

have 10\'1 inherent ,losses~ which means that the difference

betwe2n t,ne signal level available for test purposes and that

available from the signal generator could be less thaI:. 1 dB.

- 25 -

Commercial wide frequency band coa..· .. dal directional couplers

have relatively poor directivity characteristics 'When compared

"ivi th bridgp.s and.. "i-taveguide directional couplers. 1 ... t the

commencement of this investigation, wide frequency band,

coaxial couplers with a directivity ratio of more than 30 db

"ivere not generally available. HO"i'lever, commercial coaxial

couplers (Ref 2.1) with greater than 50 db directivity ratios

are now common. After much deliberation and discussion, the

reflectometer method of measurement using dual directional

couplers 'las finally chosen as the desired measurement system.

This chapter will be devoted ·to the theoretical aspects of such a.measurement system.

A brief summary of fundamentals concerning the measure­

ment system is presented in Sections 2:1 and 2:2. A more

detailed analysis can be found in any text book (Ref 2.15,

2.16, 2.17). However, the .above :sections are required to

establish the foundations for the analysis of Section 2:3

v;hich has not been presented elsewhere. section 2: 4 analyses

the problems associated with the measurement of incident and

reflected powers and the errors resulting from it. This is

an adaption of an analysis carried out by Warner (Ref 2.8 ).

2: 1 The The~?ty of Reflectometer Heas:LH·~.!: ..

The use of reflectometers for measuring the incident (a)

and reflectc9 wave (b) has been described by many authors,

e.g., Hunton and Pappas (Ref 2.4) and Engen and Beatty (Hef 2.5).

'In this 'rhesis, the incident wave (a i ) and the reflected "i'lave

(b i ) '1ith. respect to the ni" th pQrt are defined in the manner

described in detoil by Warner (Ref 2.8 - Appendix 1).

a 0<. a 1

- 26 -

Figure 2.1

~~'i;i.mpl§'.:-Ref lect"o~5? .. ter ~stem

Al1PLITUDE/PHASE i J-- J COHPARATOR -<E~TECTOR

b l ><4 a( incident) ..r ~ b(refl)

COUPLERS " "" /"" , G~KNOW~ --0 Op1\TE

t~_..;:.O ..... R..;:.T __ 1

,-------0,-------------

In its simplest fona, the reflectometer measures a portion

( a 1 ) of the inciden"t wave (ai) and a portion (bl) of the

reflected wave (bi ) a"t a specified plane in a syst(~m. For the

system to function correctly, it is es::-mntial to establish

thai~ there is no mutual interaction bet.ween the incident and . "

reflected power flow w"hen the ~vave impedance (Zw) is real.

Hence some fundamental concepts ,vill inevitably have to be

reviewed.

Propagation conducting, homogeneous

F i 9.1!r? __ ?...:1. of a TEIO mode wave in a perfectly infini tely long T;l~ve guide '-lith a loss free dielectri.~c:..!.. ______ _

Longit.udinal the magnetic

component of ~ field _~ ~ .. <: ~~

~~

A

. t ~2 j E3

B ~1 ~ l... A' : p

t\E = ~2 Ft ~ ~

tOl t/metn;'~I3 ~"...----- Direct.ion of

"~ ,. T-l ~l~ 0 .r"" propagation 0'= .... x H

B'

.1H ::: amps/metre

- 27 -

Consider the propaga·U.on of electro-magnetic energy

(Fig 2.2) in a mediu ... rn bound(~d by AJ."\I BBI e.g., an infinitely

long wave guide. 'The modes of ,.,ave discussed "Jill be limited

to those modes which possess transverSl~ components of both

electric and magnetic fields i.e., 'l'EM, TE or TH ,.,aves.

since Jche longitudinal component of the field may alvays be

found if the transverse components are known, there is no

need.to retain the former explicitly in theory. In fact, for

convenience, it vril1 suffice to· "TOrJ~ entirely in terms of

the transversa components of the electric and magnetic field

strengths dc:motcd respectively by the symbol s E and H. Both

these quanti·ties, E and II vary over the cross-section of the

transmission system but because the spatial distribution is

the same in each case (Fig 2.2), their ratios E3 = E2 = El IT} HZ lTf

remains unchanged. Schelkunoff (Refs 2 .2; 2.3) recogni sed

"t:his important generalization and introduced the concept of

wave impedance (Zw) which is the ratio of these field

strengths so that at a given point along' the guide, '-le have

in general:

Zw = E tl- • • • • • 2.1

where Zw impedance . ohms· = 1.n

E = volts per metre

H .- amperes per metre.

When the wave guide is not infinitely long or perfectly'

terminated, then the total transverse electric field (E) at

any point will consist of incident and reflected parts. Each

of these parts must, of course, be compounded of the transverse

electric field 'components of all waves travelling in the

appropriate direction. The same arguemetl:. may be applied to

the r.!agnetic field (H)

equations belovl apply,

E

II

at a . ~. e. ,

=

=

given

E+ +

H+ +

point. Hence t.he two

E • • • • • 2.2

H • • • • • 2.3

- 28 -

wherG the plus ~mperscript denotes an incident ,,,ave (direction

OP in Fig 2.2) and the minus superscript denotes a reflected

wave (direction PO in Fig 2.2). For this case, the iolave

impedance (Zw) is then. defined as:

Zw :::: E+ H-F • •••• 2.1(a)

or

Ziv :::: -E H- • • • • • 2.1(b)

substit.ution of .equations 2.1(a) and 2.1(b) into equation 2.3

will ~-8sul tin:

H • • • • • 2.4

If the symbols € and X are used to represent the

instantan8ou's values of the complex quanti ties E and H for a

sinusoidal time variation, then:

Re Ee.~"~ Re He iswi:- ,

and writing equ.ations 2.2, 2.3 and 2.4 in il1stantaneous

values will result in:

e s+ -:::: + E. • • • • •

g, + 'lIt-=: ~ + .~ • • • • •

'{ = £+ e:.: Zw Z\f • ••••

2.2 ( a)

2.3(a)

2.4{a)

The instantaneous pO\Ver. flux or poynting Vector, p." is

given by R = E x H. As "He have defined E and?( as the

transverse components, w'hich are at right angles, then P :::: E.l}i ,\ .... here P is in the longintudinal direction so that:

P :::: (r+ .- -) _\.~"-__ - __ C:: ..

Z~I

p

or

P

P

v7hi~h . the desired loS

=

= E+

= p+

result.

- 29 -

J.+ 1

P

(f~-) 2

Zvl

<c.- H -

• • • • •

The reflection coefficient (r) is defined as the complex r.<?-ot.:to of the reflected to 0 incident wave at any

specified point along the ~xis of propagation (Fig ~l).

2.5

On the basis of this definition, it. follows that there

are two alternative ratios which can be used, because the

coefficient may be expressed either in terms of the electric

or mclgnetic field. The former definition yields:

E­E+ • • • • • 2.6

"There rc: = .. Electric Reflection Coefficient and as before E+ - Incident Electric Field E- = Reflected Electric Field.

The latter definition yields:

· , . . . 2.7

where Magnetic Reflection Coefficient and as before

Irlcident Nagnet.ic Field

Reflected Magnetic Field

Ei ther of the defini t:iOl1S of 2.6 or 2.7 may be used.

lImvever, as it is more convc~nient t.o measure the electric

</. fielct the definition of 2.6 will b(~ used throughout this

Thebis. Henceforth, all refl0.ction coefficients will be

- 30 -

assumed to be with respect to the electric field unless other­

\d se sta ted.

At this stage, it ¥Jould be best to refer to Fig 2.2 once , +, " ,

agal.n. If Eo l.S the l.ncldent wave at 0, then at any pOl.nt

P, distant "t" to the right of 0 in the direction of

propa.gation, t.he elecmc field Ep + is given by:

E + p :: E + o

e -pl

where the propagation constant (1))=. 0{ -+ JP

• • • • •

0{ :: the attenuation constz.nt (Nepers/Hetres)

f3 = the phase constant (Radians/Hetre).

-

2.8

and

and

c!' 'I 1 ... ,l.ml. a.r y if E 0

is the value of the reflected "rave at 0, then E - point is given by: at the P p

E = Eo +pl e 2.9 p • • • • •

The nomencla·ture "incident" . ~nd "reflected" assumes the

,\-rave source to be somewhere to the left of "0" and the point

of reflection some\vhere to the' right of P. Equation 2.8 is

merely a mathematical statement of the well-known fact that -~t ' the field at P~ suffers attenuation by a factor e and lags

pi!. radians' on the field at 0 for an incident '\-rave. Equation

2.9 is merely a mathematical statement of the same? argument

for a reflected wave.

Similarly for t.be magnetic field, ,\"e have:

II + p

II P

=

=

HO+ e -pI

p - e+p1 "0

• • • • • 2.10

• • • • • 2.11

Hence the resultant transverse, electric and magnetic

fields .at any point P rnay be expressf:>d in terms of the values

of their forward and back'\-rard travelling components at the

-. 31 -

point Os thus:

E E -}- -pl

E +pl = e - + p 0 0 e • • • • • 2.12

11 Ho + -pI

Ho - e +pl = e + p · . . . . 2.13

-Defining r E

= 0

E+ 0 • • • • • 2.14

.~ H -and = -2-

Ho+ • • • • • 2.15

then from equations 2.l(a) and 2.1(b),r =-~ · . . ., . 2.16

Division of equation 2.12 by 2.13 and using the substitutions

of 2.14, 2.15 and 2.16 gives:

E = E+ --R 0

H P

H~ ·0 • • • • •

If Schellcunoff' s definition in equation 2.1 is sub­stituted:

z'- 1 + r e. +2pl

r e,.+2pl • • • • •

2.17

2.18

The above stat.ement is general. Z t.. signifies the vrave

impedance at any arbitrary point point P, situated a distance

liD.." from the reference point 0 (Fig 2.2) Zw is the character­

istic wave impedance of the line.

If constraints are placed on the line length to ma]ce

t = 0, equation 2.18 reduces t.o another 'veIl-known expression:

Z L- = Z (I + r ) ...]L ____ _

(1 - r ) • • • • • 2.18(a)

, or

- 32 -

r = z '-Z L

• • • It • 2.19

Equation 2. 19 is the very important relationship ,-rhich

forms the basis of these measurements. It follmvs that if

the characteristic impedance Z can be accurately defined w

then measuring the complex quantityr; will allo", Z L. to be

evaluated.

In practice, it is not always possible to measure a

reflection coefficient,ro directly at the point 0 (Fig 2.3) . . , . 'and J.ll most cases, J.t J.S customary to place the measuring

device at any point ou separat.ed from the measuring plane

AB by a distance i' 'e' The relationship between the desired

reflection coefficient (~ ) at point 0 and tbat ( r ) measured at point 0" will be derived.

Figure 2.3

Relationship's bet-~lcen Reflection Coefficients

A" A G

4 t t> r 0" 0 1:; ,. "

o~--··-------------------B" B

LGt E + and E­o represent the incident and reflected o

,,,aves at AB. Let E+';' and E - 'I represent the incident and o 0 reflected '\~~aves respectively on the plane A" B" of Fig 2.3.

Using the basic equations of 2.8, 2.9 and 2.14 it follmvs

that:

=

or

E -...JL E + a

=

," ~

"'1, ~ Eo e... . E +" -f~ o e

r = ., .. , I I' -~.~

<:> e

= • • • • •

• • • • •

2.20

2. 21

- 33 -

Being complex, the reflection coefficients .r and ~ may

be written as jr jeSf and I~ \c!t.:. respec·t.ively ,{here 1) and CPo represent the angle in radians. substitution in 2.21 results

in:

I I.; .l ; ,/. -.z ~ l . I fi.!. .< 3e: r e. 'r ~ \~ Ie 10 e r = r~ I e t ~.Ju e 2,.0( i d I

I rll9'>= [i ~ I e.-0at] e j. (¢o -2.1'12:) • • • • •

From which it is easily seen that the modulus of the

measured reflection coefficient i's att:enuat.ed by a factor n~ .

2 ex x... from the,true modulus, Vlhi1st the angle of the

2.22

measured reflection coefficient is modified by t.he difference

2 I~ from the true angle •

. 2.3 Di.rectiona1 Couplers

:Hany papers (Ref 2.4, 2.5, 2.6, 2.13, '2.14, 2.15) have

. been published on directional co~p1ers. Harvey (Ref 2.16) ,

gives an extensive list of references. In its basic form

(Fig 2.4) 'a single directional coupler is essentially a 4

port network with one port ideally matched. It has been

shown (Ref 2.15 that such a net'\vork manifests 'directiona1

properties. For example, if Port 3' is terminated, then it

is theoretically possible to arrange for Port 4 t.o sample

power travelling in the direction from Port 1 to Port 2' but

not vice-versa.

port 4

port 1

Figure 2.4

Sinqle alld Dual Directional Couplers

u---Dual Directional Coupler--;".

:- - - --~-" - - - 'A~1'v - - - - - -: 3

0..... ',_ ,_ _ _ _ _ _I 3' 4' _ _ ____ ..1 J P Port TC=--_. I --~

I I I '. " T ' I I I I .u1ne I . -0 o 0- 0 . ~ Port 2 Ii. J" I • i ," i I . Slng .. e 2' 1 I 5 7ng1G. Ii I'Direct.ional l I Dl.rectl.onal 'i II Coupler I I Coupler 'I t I' 1 , II 1 II , __ ._ --I ----.---~II ____________ ,...----;:0---

- 34 -

In a practical reflectometer systems, two directional

coup1 ers are required, on(~ to sample the inciden·t "Jave and

the other to sampl(:! the reflected wave. The use of . two

separate couplers joined by a connecting line is undesirable

because of mis-matches between the units. Difficulty is experienced with attaining amplitude and phase tracking.

To alleviate these undesirable effects, manufacturers tend

to offer dual directional couplers units for 1vhich claims

arc made that the internal couplers are matched for ampli­tude and phase.

A dual direc·tional coupler may be analysed as a four

port netvrorlc (Fig 2.4) vli th the general scattering matrix of eq~ation 2.23.

identified by a subscript where ','n" denot.es the port number.

In the diagram of figure 2.4(a), port 1 is the main input

port (i. e. connected to the signal source). Port 2 is the

main output port. Ports 3 and 4 are intended for sampling

the reflected and incident waves respectively. H3 and 1-14.

are the indica·ted sampled reflected and incident pOlvers 1vi th

the incorporated conversion const.ants.

Samples t-i <11_

Incident POIver

Source

- 35 --

. Fiqnre 2 .4( al Signc.l Flow G.r-aph of a Dual __ ..:::D:;...:irect:is:mal G.oupler

C = Desired coupling paths CD = Back coupling paths

Load

Tbe F0;l'lvard ~.9uRling Patq (C) I is' the desired signal path

from one por~ to another •. These are 8 41 for port 1 to port 4

and 8 32 for port 2 to 3.

!.11g--1}_~.£.1~ CQllPlj..ng P_~IJ:}lf1 (CD ) I are the undesired signal paths

to a particular port. The paths are 542 for por·t. 4 and 531

for port 3.

'The Traqsmission Pa·ths ('1'), are the main signal propagation

paths.' These are S21 and 512 for the main signal paths

between port.s 1 and 2.

!

- 36 -

Incident POvler to Port 1

Incident PO·v:er to Port 4

· . . . . 2.24

Direct:i vi ty Fact.or (DIE1=10 log r POv:er to Port 4

POi'lCr to Port 3

· . . . . 2.25

w'hen port 2 is perfectly matched.

For the case of the ideal dual directional coupler, it

is ass1.~med that there, are no undesirable coupling pcl.ths and

that the signal source,' coupler and detectors are perfectly

matched. For such a 'system, Figure 2.4 may be considerably

simplified and reduced to that s1'1own in Figure 2.5 "there

and .b4 :":: S41Q;,) 'b.3= S2.\S32..~Q..1

b3 = £.21 S.~?. ~ b4- S4'

is independent. of CV1

Figure 2.~

Signal Flow Graph of the Ideal Dual Directional Coupler

_-",-",-,;;~..:.o- ___ • • .---____ _

· . . . . 2.26

Perfect Detectors are assumed.

(c)

- 37 -

Equation 2.26 states that the ratio of

Sampled Reflected Power = is directly proportional

Sampled Incident Pm.,rer

to the unknown reflection coefficient of the load. The

constant of proportionality is the factor

For the more practical case of fini te coupler directi vi ty

and reflection coefficient, .let us first assume that the

detectors are perfectly matched, i. e., no pOvler is incident

on a 3 and a4 Figure 2.4 may then be reduced to Fig 2.6.

' ..

e

Legenq:

figure 2.~

The Dual Directional Coupler with Perfectly Hatched De.te~t;ore __

/ 1'13

/

C)

Direct Transmission Path (T)

Back Coupling Path (CD)

Coupler VSt'm

Forward Coupling Path (C)

- 30 -

By Inspe~t:.ion of the signal flow

Q'Z, ::: ~. ( S 210." of· S 2,2.. Q,;:,. ) or Q.2..=

• • •

\ :::.

, D4 •

. . b 4 +

Hence,

Indicated Reflected Pm\'er (M3)

Indicated Incid~nt POyo'er (M4)

= $2.\ 5 32 C

5 41.

graph, it is seen that

S..:l,iQ Cr.",

l- SZ2. rz

=

• • • • • 2.27

comparison of the ideal case (equation 2.26) and the

more practical case (equation 2.27) show that the latter

differs by the ratio of the error terms within the bracJ~ets.

This leads to the conclusions that for accurate measurement,

522 1 531 cmd 842 should be zero. These are partially met by

making the maJ,n line VSWR (522) as 1m" as -possible and by

careful spacing of the two couplers, usually a quarter wave-

1eng,th apart. This latter condition is not easily met in

wide band couplers.

- 3~ -

The complexity of the analysis of the dual directional

coupler increases for the really practical case where it can no longer be assmned that the detectors are perfectly

matched i. e. I pO'YTer is incident on 013

and a4

"\vi thin the system.

Consider again the signal flow graph of figure 2.4; inspection,

by

0", = e·+ I; b, = e 0 0 0 -t l-h~ 0 0 0

Ctz \: "'2., 0 0 0 0 o .~b1.0 0

Q3 Gb3 0 0 0 0 0 o f;h; 0

Q,4- r; b'f- 0 0 0 0 0 0 o rtt14.

. . . . . 2.28

Substitution'Qf·2.28 irito 2.23 gives:

b, ~ ~" 5,.,! S~ SI4- e 0 0 0 + Sll S'Z S,,; Slit 'Bb. 0 0 0

bi!. cf C; <:" <:" 0 0 0 0 C! $)2. Sz; SUt o ~~zo 0 ... l~1 .. l:!. .. ,~~ "'24 "');'.1

b.iI

~ 5.32. S33- S* 0 0 0 0 • SSI S~l.. 5n, Syt 0 o r.ib3 o ;,

b"f- S,l 8.tz c S~+ 0 0 0 0 S .. ~l

c ~ 0 0 of),

"~-i3 • It-! 9-+3 4

.. DI l 0 0 0 . b, ~ fs I,e + S \I Pc. S 12. tz. C! ,.., , s\'+G·

• l1 .:;11.;'3

0.· 0 0 "'2, SZle c! \-' S,17 .. t: Co P Sklr.' D.t .. Ill & "'23 J Ii

0 0 0 b,3 lS~le c! S32C C! r' C! f1 b.~ "'3,q' .:;I.:J1J .:;I;'t 4·

0 0 0 b oi·• 8.--tl e S~i-I~ S/t2.r.: ~T3G S44i' b'1-' 4

Sile = (Sll~-J) SI2.~ S131; S I4-C; b'l C! ~2.\~ Szz12-1 S'2,;r; Sz.;.f+ b2,. ")'2,1 e S~le 5;\ fa S32~ 8 3:;11-1 S.;4~ bJ _b: Co e c! n C! r C" {.-, S4Ar:-1 "'41 .:;1"+1 IS oJ4 Z L. ":1; 3 .,.

. . . . . . 2.29

- 40 -

For the ratio b ~ / 64 , using Cramers rule:

-e (S\\S'-I) c' r. .. 11'2. 1- s" S14~

b3 s~\~ (S~:(f2-I') S 2.1 S?4£; :::

b4 S~I 11 S~'2.12 S31 S34-G_ e \:' S41.(' 0 (S4A~.-I) '-':>4\ 2 "" 41

---e (~-;\I~-I) SI'2.~ S I?>r; c.'

.-.:> 1\.

C' I; .:12,1 '" 0' (Sn\Z-i) S'Z~ G c

"'7-1

8.:;, fi o [' 1:>32- I- (S;;::. 1;'-1) S31 e ,\' ":'4\ ~ S42~ S4-3 G C!

I:> 41

Simplification m.ay be' obtained by lr1ul tiplying t.he 3rd and 4th .' . h d d' r-' columns respectJ..vely J..n t e numerat~or an. enoJnJ..nator by 1%

and substracting them from their respective column 1 to yleld:

(S221"2-1) 8,2.1 C! C i:.> 2.~ A .

. 83~~ 8 3\ 8.3,,-t;

b3 C! r. ":~2 L.

0 ~4.' (E'4./.J~'-/)

-- :::

b1- (822 ~-I) o ,.., 1:>2.!:. 3 'S '2.1

83.2 f2. (S:;;,r3- I) 82,1

842 r;: S4'?>f3 S4-1

• • • • • 2.30

'livhich 1¥hen expanded will result in:

_ ($nr;:,..\)~(~!>IS44 .s34S4J-S.Jl-S2g~(S.3~$4i~~2~)+S:l~+ S24\~~iZ\J -Sol S.~J --""---'--- .. -- --- ---,~-= ......... , .... G;7.,'GIi'.- \)~{St,;,S .. u -S_~l ~~,.~).-s.;J+ S ~\ It:. G~(5~zSll-:,-S::?"\-2>~]+S2.3 G ~ ~~l ~"'~2.-.:.~,,!~J

. .. . . . 2.31

- 41 -

Equations 2.26 and 2.27 may also be obtained from equation

2 31 b k · t" . t' A' t t d tl • Y rna 1n9 i1C prev10us SUPPOS1- ~ons. s 1 s an os, - 1e

equa.tion does not prescn-t a very clear picture of what is

happenin~. However, by expanding the expression and by

judicious collection of the t.erms, some conclusions w-ill be

found.

..

II 'I) I '3

J.l .. ;..l

;-'1 r1)

V) I

- _ l ('I l'"

V)

IL !._...J 1 __ ! '. \j-

\/1

iI

r';l c-.J ..-n

IJ) I Y I -q' n ! \..n

VI I

II I

~I ...... _D 1 _.0

N

('\1

\.j)

N . N

o .p

OJ ..0

o {/)

... -1 III

r..: ro u

..

~I

43

Eql.:tation 2.32 may also be ,"lri tten in t he for:;.-n :

63

b4-

Let

r <.. ( - " C; r \:1, <:::. c: r fI r r -I-r' S r r -s s r n. S S ~ n) _ (' r ~ lI ) r rS _.~ r f' .; ,.. \l}. _ l~2\·>'~2. ' .2132;:)44- 4 -r -21 ..J34~4:>-'4- - ~22.."::>=., · :::<;z 31~44 4- 27.. ~')4\ 1 4-""'" ~ 3'2.~4- ! 4 ~.;l.4.J '>\~L" • .'~\ L~ JII.-+131 ~~I:::>44I4- + .34-~II4- . - r -----

) -5 ~ +S c ~ if r 5 ,... Ii S c:: l' r · ~ r r> n L sec c n c> S S· r::"'! \1 L... S f: \:-1 . c: . -::: n i L 224{ v ."'3,Y4h, -~13 ?".?~4i '3 +- ~"":,'2...J4313 -:::'21~3S:>+L 13 - '::> 2 1 4.2 -\- .- 2.3 .... .31 J..:..2 1.3 - J :n. 3 \ 4:' 3 .5 · !.... -\- t'Lq - ::.3. 4\ 3 .. ~ 3\ -·4-~'3 ... T

b~ b 4 ..

~/

= frm... .. i.e. the measured reflection coefficient~ ·then

r Al L + B

,...-, C \L +- D 2.33

1-f:l'1ere

A

B

c

D

== f. t' _ C' S S \1 ,... .-, _ C" ·r.l-. r " C r-l\ S s;, r '-'\ , C' ' c -\1 _ C S rt ! l..S Z-i '::>3'2. ::>21 32 44 14+S:2.I~.?A.-S4.'2. \ G... ..)L2~SI· '::-'~'2..~::' i::'>4A4 - .n34-.J4-\++ ::>2.4-~~?..~~"4- '"'..<43; I4-J

~ . n 'c:: r-- (11 = {S3! - ;:)3 1 S44l4- -t- ~ 3+ ':>4! ·-4"J

=

( .. \ r r C (- <: S S"· r r S \i .s ~ (' i' - <: ~ -!- c S S 1'0\ '? c Sri L $.:l.~541 "" ::'~:<.:::>33 " '.~}3 - ·-'2;:' 37 .. ~ \ \3 -t- ~Z.I :>.?, t( ~:,13 - 2 \ 33-"'J-L:3. - 2\ 4-'2. ::>~:, 31 4-?_ 3 - :::').:t":Z ~'3 \ 4'3 3)

(5 ~ ,, 11 S-i) 1. 41 ~ " 3? "::>4/:- -;- S3 1 43 \ ~ .'r

. .. ~ ...

2.33(a)

2. 33(b)

2 .33(c)

2 . 33(d)

_. 44 ..

Equation 2.33 io vitally important bcc<:;,use:

(1)

( 2)

I't ShovTS that the measured reflection coefficient

. II' t rwv" is related to the true C by a bilinear

transformation (Appendix ll.l).

The const.ants of a passive bilinear. transformation,

A, B, C, D, may be obtained by three meaS'J.rement:s

(Ref 2.17). It is unnecessary to ]U10W the

individu~l IS' parameters but the scattering

parameters may be calculated by use of Appendix 11.2.

(3) If th(~ constants A, B, C, D of the bilinear trans­

formation are kno,m. then f2 may be calculated.

(Fig 2.7).

(4) Item 3 is of the utmost importance for it clearly

demonstrates that an imperfect. dual 'directional

coupler used ,vi th un--mat.ched detectors may be us~x1

to yield the true measurement of a reflection

coefficient 'if the constants of item 2 are knmm.

Thl1LJs the basis of Compute):" _g0f.~ted !-,lea.§l:!.:r..9.!.!!5lnt . .,§

in One Port Reflection Measuremcnts.

Fiaure 2.7 I __ ._

---7 O-___ ...,.... __ ---.->~-_-.__r--I- ' __ -.

.1 Heasured I f... Reflection

('Y'r\..- Coefficient I I

I

I

C!

""21

8 12 • ..J ---< __ ..... _.-.. ____ .. _ p ~

I --'"

Bilinear Transformatiori

rrrue Refleci:ion Coefficient

- 45 -

2:4 The Neasurcment. Unc0rtdj.n~..9f Inci~ent and Reflected Power

In the foregoing section (2.3) analyses have been made of the process of identifying the incident and the reflected

waves. This section expounds the problems associated with

the measurement of the incident and reflected waves in

coaxial couplers.

For these purposes, the incident ( a. ) and the reflected 1-

( b i ). complex voltage wave amplit.udes are normalized with

respecJ: to the real characteristic impedance (z ) * in the o

manner defined by i'larner (Hef 2.8).

Hencp:

kLd'l. = PI. '7 "-0 • • • • • 2.34

M = Pr 70

I. t • • • •

PI· where _ = incident. pOl·ler. and p~. _ reflected power

* The effect of conductor resi stance on t.he character­

istic impedance is negligible at frequencies above 2 GHz

and for: practical purposes, the line is assumed to have

negligible loss.

2.35

Consider for example, the transfer of power from port 1

to port 4 (Figs 2.8 and 2.9) of a directional coupler in which the effects of the other ports are negligible.

- 46 -

Fiqurc~ 2.8

Po:~(~_ T~9nsi~r through a .. 2 Port Nebvor~

a.., ~

Ger..erato .-(Z1) <-~

<-.----. b,

2 Port Nebvork

[ ]

b.:r --~ •... --.., ->

--- Detector r-4 '4 '

<;-"'-4- '"------'

Let r;. and f4 be the respective source und load

reflection coefficients. Let the pow'er dissipated in the

load be denot.ed by ~ when the generator and load are

connected directly.

Let F?t- be the pO"iver dissipated in the load when the

t"i'lO port n.etvTork r>hmln in Figs 2.8 and 2.9 is connected

bet"iveen the generator and the load.

By definition, the power inserti.on loss (I.L.) of this

2 'port networh: is given in decibels by:

1:. L ...

• • • • •

Figu];e ~.~,

S i.<J.!2 i:1 t.E 1. Oiy . Graph f2_L}=.h§;...Q onr i 9£!,a t iq,n' :~p'mm in Fiqure 2.8

~ 51) SA4 r Q ·t I \ ,II '.1-L ____ ._~_S_\_4 ____ -.l_.' __ --'

b I Cl.'.:r

2.43

If the scatt.ering co('=!fficients of Figure 2.8 are used t:o

define tht':! b·~o per't nebwr,'j(, th(~ complex v,:-ave amplitudes are'

related as follows:

- 47 -

b, = .. Sn.Cl\ + 5 14 0.,4-

If Mason' s non-t.ouching loop rule (He.iJ3 2.11 and 2.12) is

used,

- ----' •. _----- ----~-.-.-.... --------1-(s 1\ r; + 8 r

444 + 8 \4 S4l 18~. ) + 8 (J 8 44 ~ C;

• • • • •

rrhe po"'"",cr absorbed by the detector ( Z 4-) is:

p = '4·

is

• • • • •

2.44

2.45

If equation 2.44AinsertE.~d into 2.45 and the denominator

is re-arranged:

~ .-

. , ... 2.46

The power ~ ~ dissipated in 24- '''hen the generator is

connected directly to it can be found from 2.46 by letting

8 11 = S~4 = 0 and 8 14 = 841 = 1.

Thus:

••••• 2.47

- 48 -

substitution of 2.46 and 2.47 in 2.43 would result in:

I.L.

.. , . , 2.48

w'hich can be simplified fU.rther to

. . . . .. 2.49

In. a.n ideal coupler $ the insert.ion loss between port 1

and port 4 is really the coupling loss (eL) ",Then the source

r; a.nd d(~tector 74 are matcbed. In such a case, equation

2.49 reduces to:

CL

. . . , . 2.50 ,.

'\'lhich is the usual definition for coupling factor (Section 2: 3)

No·te also tha·t in such a case, the insertion loss (I. L.)

becomes equal to the at.tenuation (A) of t.he networlc.

, l~eturning to eCfl'lation 2.46, the measured power P4- is

dependent on Inany factors, most of \.".hich are controlled in

the design of the coupler. However r; is definitely not a

. feat.un~ of the coupler and its magnitude and phase will

undoubtedly ·affect. P4' Hence it. becomes necessary to

investigate the mi s-match errors and pm'ler uncertaini ty which

will ari.se.

- 49 -

To begin with: insertion loss (I.L.) is merely the sum of ·the coupling loss (eL) and the mis-match 1058 (M.L.) Using equations 2.49 and 2.50 results in:

M • L • = I • L • CL

M.L.

• • • • • 2.51

All of the independen·t variables ill equation 2.51 a.re

complex quantities and all phase rela·tionships are possible. If both the magnitude and phase of all of these quantities

areknovm, M.L. can be calculated precisely. HO'yever, if

only their magnitudes are known, as is often the case, then

the mis-match uncertainty is given by

••••• 2.52

since B-1. - 6 ___ it follo-ws that the absOlute / - ~~O'V \..1>$1; ~<iXto

pOvrcr measured by P'1- will be subject to a power uncl"!rtainty

equal to 'the reciprocal of equat:i.on 2.52.

Hence, it can be concluded that although the source

impedance does not. affect the incidc:mt and reflected wave ratio (equation'2.32), it does affect the absolute value of

power in the detectors and will introduce errors in the powers measured by. t.he detectors, if the:i.r. efficiencies nre sensitive to varyin9 power levels. If this error is to be

minimissd then r;; and ~_ should be madE! to npproach the ideal

case of zero.

A similar,treatment may a1:::0 be used for the power

transfer from port 2 to port 3,

- 50 -

The principle of how an impedance or admittance may

be measured using incident and reflected i'laves has been established in sr~ctions 2, 1 and 2: 2. p.. thorough analysis

of the dual directional coupler has been made to demon­stra'te hmv it measures the incident and reflected iv-aves.

The errors associated with the coupler have been derived and the basis for computer corrected systems have been

shown in section 2:3. The equations relating the

uncertainty in the measurement of pOI·rer in. the measuring

ports \Jith respect to the source match has 'also been

derived.

* * * * * * * * * *

- 51 -

2.1 stager C, and Kartasc110ff P, ",Heas1.lremen't Accuracy Hinges on Coupler Design" Hicrowave Journal, April 1977.

2. 2 Sche11~unoff S. A., Ilirhe Impedance Concept" B.S.T,J" 1938 17,7.

2.3 Sche1kunoff S. A., "Impedance Concept in '~aveguides" Quarterly Applied Matherniltic, 1944. 2 pp1.

2. 4 Hunton~ J, K. and Pappas N. L. "The hp Hicro"V:ave Ref1ectometers" Hewlett PacKard J. Vol 6 pp 1-7 sep't-Oct 1954.

2.5 Engen G.F, and Beatty R.H., "Hicrowave Reflect-ometer Techniques" I.R~E. Trans on Nicrowave

,Theory and Techniques 'Vol HrrT - 7 pp 351-355 July 1959.

2.6 Kuhn N" ,"Simplified Signal Flo,.". Graph Analysis" l1icrowave Journal Nov 1963 pp 59-66.

2.7 Hewlett Pacl(ard Catalogue 1973 - pg 336. Directional Couplers 8690B Series.

2.8 Warner F, "Microwave Attenuation Measurement" I.E.E. Monograph Series 19 - Appendix 1 pp 270-272

2.9 Woods D, "Concepts of Vol tage '~aves, Current Waves and Power v.Taves in S P arilmeter Definitions and Neasurements" Nanttscript H32 (1 st May 1972) which is deposited in the I.E.E. library, Savoy Place, London.

2.10 Noods D. "Concepts of Vol tage \~aves, Current Waves and Power '~aves in S Parameter Definit.ions and H(~as1.lrements". Proe I,E.E. Vol 119 No 12 Dec 1972.

2.11 Mason S.J., "Feedbac}( Theory - Some Properties of Signal Flow Graphs" Proe I.R.E. Vol 41 pp 1144-1156 sept 1953; also Mason S.J. "FeedbacJ( Theory - Further P roperti.es of Signal Flow Graphs" Proe I.R.E. Vol 44 pp 920-926 July 1956.

2.12 Hunton J. 1\., "Analysis of Micro\>lave l1E.~asurement ']~echniques by Means of Signal Flow Graphs" Trans I. R. E. Vol }1rl'T--8 pp 206-212, March 1960.

2.13 Carson R, "High Frequency Amplifiers" John \'Ii1ey am Sons 1975 pp 165-167

2.14 Sucher M; and Fox, "J •. Handbook of. HicrO\vave ,Measurements. Volume TI, John Hiles and Sons,

London 1963.

2.15 Montgomery C.G., Dicke R.B. and Purcell E.:H. "P rinciples of Microwave Cireui"lis • McGra-,~' Hill, New York 1948).

2.16

2.17

- :52 -

/

Harvey A. F., "Hic.rovlave Engineering" Academic Press, New York 1963.

Barlow H.H. and Cullen A.I.., Hicx'ovlave Heasurc­rnen:ts, Constable & Co., London 1950.

* * * * * * * * * *

- 5J -

CHAP'rER m:

THE l-1EASURING SYSTEM (Hardvlare)

3:0 Introduction

The theory and associated theoretical problems relat­

ing to reflectometer measurement of irnmi ttC1l1CeS has been

derived in Chapter lIe This chapt'cr will explain and justify

the choice of equipment used in the rneasuring syst~m.

The system described is the manual sys·tem originally

used. to verify the theoretical exprcs~ions. A later

chapter will show how this system was modified to produce a

fully automated computer corrected ::::ystem.

3: 1 D es£!ZiP.t~on of the Measuring ~~y!:?t~!!! .

A bloc]\: diagram of the manua,l operating system is

shown in Figure 3.1. A photogr.aph of the equipment used is , shown in Figure 3.2.

F~guro 3.1

Dl(!£!~ D j~~~gr~;'~f MC'2!2~1Zil2SL sy~;t~ r-------- - -----I -- • L... .----.

.- - .- - - - L- - - .- - - ... - -, "'--= .:1 'Sweep Signal Genera'tor ,vi th automatic level -> control lIP 8690B-Series

,-----_._-Lmv Pass Filter

ALe· .~----~

->-- Coupler

HI"' 779 D

I I

L ... - - - - - - -S}~n~l __ ~o::.rc:.e - Y2:°5l~ - - - -i ----j r - - .- - - .- - - - - - - - - - - - T -

i r-' Indi~:~:;- Detect~r:- I <_~-Reflectometcr i & Display and:.__ I-r:8741A (.1-2)

llP8413A Amplifiers ':;.- HP8742A (2-12) I m1 8414A' -<_ HP 8410A ' .--:--:::=r===--=:

Detect.or/Indicator Blocle

... - -.- _ _ .... .,- "'- -- - - - .-

I

I ___ J

Device under Test

- 54 -

f..i9~:tr2 3.2

~:Ylo.l~qr.~l~.1}_.9f Eg~m?.~.!::_VS22

Hew l ~!t-Pac!<ard Model (;4 J CA Nc tw:>tk Ana lyze r.

8741il

rl J ___ I

87t12A

f!41/frl Polar Disp lal' Plug·in mo'dulc lor 84 ] 0/\ mainframe CRT pul'l l' Lli5jl lJY for direc t rU:1dout of r c~lrct i o n coefficient il nd aogle. Sm ith Chart over :ays illcluded for direct im· pedance or adm ittance readout .

8413 Phase-Gain Inliiciltor (Optional) Alternate plUg'lll modu le for 8'11OA mainframe provici r.s rnc tr.r display of clB return loss and reflection coefficiel1l Jilgil'.

8741A lle1fectiol1 'fest Unit 0.11 to 2.0 Gllz Widpband r ;: fl ectomctcr phase balanced for swept 01 spot freq \Jf;ncy irnp edanc~ t f:S :~ be low 2.Ll Gllz. Accepts '<F input and pro · vides connectil.lns for unkno'NIl trst devic~ il nd 841 lA Cali· brated var iable reference ~!?ne

1l742A Reflec ti cn Test Unit 1. .0 to 12,4 Gllz \vid \~brt IHI re Hect ometer phase U.1 lal1 C8 cJ for impcdJl1ct.! Ie b :1bove 2.0 GHz. Calibrated variab le ref erence 1' ''111':.

i I i - 55 ..

The syst.em mc!y be divided into three basic blocks. A

s:i.gnal source block which generates the signal, a reflecto­

meter bloc]{ which recognises the incident and reflected

waves from 1:he .device under test(DUT) and a Detector­

Indicator system block which interprets the reflectometer

output.s. Detai.ls of ·the three basic blocks will be discussed

in sections 3:2, 3:3 and 3:4 respectively.

In using the cy'U.ipment the desired frequency is selected,

and two calibration pieces, a sliding load ( I r' I = 0 ) and 2.

short (r :: 1/'8'~ ) are used to establish the limits of r: in the m2a:3'L~ring system. The device under test (DD'r) or test

piece ( L. L ) is then measured t.o yield r: The test piece impedance ( -Z \..) is then calculated by

means of Equation 2.18, hEmce;

ZL. = 7o ( 1 ~t.) (1-1""2.)

or

YI.. - Yo(\-T:) (\+1:) . . . . . 3.0

The signal source block comprises a signal generator, a

lOT/T pass filter and a directional coupler-detector system for

automatic level control.

'l'he basic requiremcmts of the signal genr~rator may be

summed up as

(a) Good frequency stability.

(b) A good source mat:ch, i.e. 1m'1 51'lH .•

(c) Sufficient output le~n~l (-'20 d13rr. t·::> +IO.:!Srll)

(d) LOTtT distortion, i.e.., low harmonic content.

(e) An' elcctronic means of keeping the signal output cons·tant.

The signal

,·li th a sp(~ctrqJ

unmeasurable.

- 56 -

source should be ide;:lly a ph<.:isE:~ locJced source

puri ty of such order that all harrctonics are

In addition, there must be complete reliability

and repeClt:i.bi1i ty in frequency s~l ection. l1icrmvave Synthesized

f)i.gna1 Generators (Ref. 3.1) r.tpproaching the idealized case are

nm'l ava.ila.ble. Hmvcver, these generators were net available

and one had to manually phuse lock the signal generator to a

c:omb ·generator (Ref 3.2). 'This unit incorporates "ten 'pre-s'elected

cr"ystals "1:::0 stabilize an. oscillator operating in the region

of 15 MHz:. This stable 1m" frequency signal is used t.o drive

a harmonic .generator. By sui. table choice of crystal md.t.ching,

it would be possible to derive a harmonic to mix ",ri th the

main R. F. signal to provide aD. C. cont.rol vol t.age to th(~

signal generator to maintain the desired radio frequency

constant.

In practice, it was found that phase locj~ could only be

maintai.ned for about 20 minutes because the drift in t.he R. F

generator would be such that it would d=ift outside the "loc]~

range" of the system. A slightly longer period of "phase lock"

could be, maintc.ined if the R. F. generator 'vas switched on for

approximately bolO hours before measurement.

The main H.P. signal source used in all the measurements

is the HevTlett Packard 869GB Series of Generators (Ref 3.4).

These consi 81: of a main control unit 8706}\, a signal multiplexer

8705A, and a R.F. unit Holder 8707A wit.h three Grid or PIN

levelled DWO R.P. Plug-ins. The ·plug-·ins are 869gB (0.1-2GHz

and 2-4GHz) 8693A (4-8GHz) and 8694A (8-12.4GHz).

Full details of the equipment is of course available In the

respective h"'1ndboo1,:s but it can generally be said that these

gencratCJrs are capable of fixed or s,~'ecp frequency operation,

usjng ei.ther manual or elect.ronlc controls. When levc~11ed,

t.he po~rer output is greater t:han 25 nW . (~14 dDm ). The

~~pu.riO\~s s.i.gnills~ i. e., harmonic and non har:nonic siqn<lls for

all the 3 pJ.U9-in units are 20 and 40 dB dm\'n on the? desirE:d

signal rnspectively. The output port reflection coefficient.

is c;.Il.J.ot.ed as £.0.25 {lSWH .f:.l. 67 ). Such a poor SOU1~ce • . ' l' match i.s definitely d1sadv3nt:.ugeouB and 1S cxpl<1J.nec.. ].n

Sf:~ction 3: 2.2.

- ~)7 -

The i mpor-Lance of source mat.er) can be easily visua.lized

by a study O f7 the incidcmt, reflected and re-reflect_ed i.,raves

1n a typica l measuremen-t enviroment . Such a situation 18

dep ict.ed in Figure 3 . J ';-There a dua l direct.ional coupler under-

going mu l -tiple reflec tions is u sed to measure \ a reflec-Clon

coeff icient . The dual directional coupler

generator vi-th a re f lect.ion coefficient R: a I,rave ( e) i ncident a t (J.." and emergent at

1S driven from a

iv-hich produces

b , and it is

used to mea s ure the re f l ection coefficient \:' of an unlmOHn

d evice. To simpli f y matters in 8igure 3 . 3 the effects of

Sll anr,:i 522 of t -11e coupler have b een temporarily ignore d .

Figure 3 . 3

Hul!:iP.le l.~eflections 1n a Reflectometcr §Ts-tem

.' - :.c...----- E 1.

ef" suLTAr-l T

\

----" .... Ctz

- 58 -

In Figure 3.3, the first inciden·t and reflected paths are

denoted by the liold lines and larger arrm.,rs, whilst the second

incident and reflected patbs are denot.ed by the bold lines and

smaller arrows.

The dotted lines represent the um-lanted coupling to the

j.ndividual couplers. E' I and EIII represent the undesired

waves to the first coupler and E' R and Ell R represent the

undesired waves to the second coupler. The superscripts) I

and II denote t.hat the components an~ due to the first and

second incident and reflected yTavE;s respectively.

Lft the desired and undesired c0upling for the first

coupler be Cl and CDl respectively. Let C2 and CD2 be the

desired and undGsired. coupling for the second cotApler.

The first incident and reflected waves are denoted by

eLI and b I respectively.. The second incident and reflected I ,-!. d waves by O~I' and I.,) I respectl. vely and so on. Tl an T2

r~present the main transmission paths.

By inspcc{;:ion from figure 3.3;

>::;:

• • • • • 3.1

• • • • • 3.2

-, -:= CzQ.i C;t \\,.. l, Ov, • • • • • 3.3

· . . . . 3.4

comparison of the above terms gives:

EIz. = .-- · . . . . 3.5

;

• •••• 3.6 .

- 59 -

Hence for each complete w'ave journey around the loop both

EI ... r..;andF~rr(,are altered by the same quantity, i.e., r;(T,T2. . The resL1l tant reflected versus incident ratio ~8,.{:c\2!"'I.) remains

;:1:("'-~"TA'-)

unaltered.· (Figure 3.3). Note particularly t.hat. the above is

true regardless of the directivity of the individual couplers.

'1'h0 above resuJ.t is not surprising as it has already been

proven indirectly in section 2:3. However, in theory, the

loop product (~'l""2 T, T7. ) could be I II~oo in which case the

incident:. and reflect.ed signals would cancel each other render­

ing the coupler useless on these qccasions. In practice,

(I~ ~ I; T ~ ') is seldom I LI2cE a.nd this does not occur.

If the product ('% 12T,T2.) is examined, it is evident that

-f, and \~ are determined by the coupling, attenuation, source

and load match. For example, a 20 dD coupler with no line

losses would result in T, ..c::.O .. qqS (Hef. 3.3). The reflection

coefficient, r~'" , of the test device may range from a

perfect match I 0 I to a perfect open or short circuit I .1. I . Hence, if (~r;: T, T,.)is to approach 0 then. r; must be

controlled and should ideally be .zer.:o.

It was mentioned earlier that the S1veep generator system

used (Ref 3.4) has an output VSWR L 1.67 (q = 0.25). A

trivial calculation for the case 'of a 20 dB coupler and. a

load reflect~.oii coefficient \1\ will show that it is possible

for t.he signal to 1")(~ reflected thrice before it is reduced to

less ·that 1% of its original value.

'rhese reflections cause a poor passband response in a

measuring system, particularly if Sivept frequency measure­

ments arr~ being t-.aken. If wide band at:tenuators are used to

improve t.he passband characteristics, then for the same

oscillator power, the incident wave is reduced, and for Ule

same reflection coefficient, the magnitu.de of the reflected

"laves will also be reduced and in the lirni t, it w'ill b8

comparable to the inherent noise povwr ",ri thin the d(~tecting

system. 'I'his results in further unecessary errors in the measurement. Poot' passband response also introd'uces errors in

the measurement of pOI-ler sensitive devices e.g., transistors, var~ctor diodes etc.

- 60 -

Source mc"1.tch may b e improved by ·the use of i solators/

ci rculator s a n d even attenuation .- matching neb·lOrJ(s . The

former 'are more eff icient but usually l ack the mUlti-octave

b2.ndHidtb.s required and as mentioned above, the attenua tors

introduce unnecessary loss . In e i ·ther case, bot.h methods do

n o t inh ibit. the outpu·\.: v 2. ri a l: ions vi thin theS\veep g e nera tor .

'I'he well established me thods to minimise signal output

varicd:ions and also to present a good source ma tch is the

system presented in Figure 3 .1. rfhis system is s i mil.a r t o

that des c r ibed by Engen ( Ref . 3.5 ) . The sweep signal gener­

ator s u sed incorpora·te vol ·tage v ari able att e nua t .ors . The

output: signi3.J. ( forvard Ifa v e ) is detected by tl1.e direct. iona l

couple r j ust p r ior to entr y i nto the .ref lect:ometer. The

entire sigr..a l sou.cce bloc]( of Fig 3.1 ,,:ill now be shmvn to be

equi v a l ent. to a constanJc l evelle d source Hi th an ou·t.put match

approaching tha t o f the direc·tiona l coupler , which is

considerably bet1:er Jchan that of the Slveep generator itself .

,- - - -- -

F ig~re __ ~..!...::!

~ffecti~::,,~.So'!.:::s.e S~!-eE}

........

[

A~;I'IFIER J--<I1-- DE~EC~" OR --1 '--'1 - -----__ J

Sweep b31L} " a

3 Jnerato~_l ____ ~ ___ 1 I

6)~ - ATTENUA TOR. - a~ COUPLER ---~-~~71--' L. __ "_~ -.--it; 1 _ _____ .. ..:. ___ -1----' --<,!,,;-' '-

Port 1 I L __ .. ___ . . _ _. ._ .. ~ ._ _ __ _ "_ ._ _ _ -- - - - .-l

- 61 -

In Figure 3 . 4 J le t OJ I represent the incident ,-rave "ihich

the generator presents , to the coup ler. By reference to the

signal flow graph o f F igure 3 . :), it. :1. :3 seen i:ha~:

8 -'

e. +r;b,

F ig.u r...£..2..:...? Signal Flmv Graph foL' Effective _si (,inal ~;ource of Fi.92~l~e 3~_

\

c "'21

-----<~+-,-.-- .. -----~_{J

3 . 7

.~ ~.---.

- 62 -

With the coupler netlvorJ: of Figure 3 . 5 connected , Port 2

is t.he ma in signal output p orL \.;iLh the ,:ave b einq en:c:rgcnL

at b 2.. , and 0,,2. is \'lhe J.:-ethe l'ef lected. wave r e-entcrs U1e

system . Hence,

3 . 8

s~ \ ~ \ 3 .8a

From 3 . 8

5"2.. \

and SUbstituting in 3 .8a

b3 [ + q(5,<3 S31 - S33)1= SS~I b 2.- Q[S~ __ ~~ - S3';}

. 5.2 1 ). 21 ~, 2 1 j

. and b 2 = b3[~~i -1- ~(S? :, - 5~~~~214-Q ~ rz~- ~~~2J .... . 3.9

,or b1.. == e / + 1(; ' Q '2.. 3 . 10

where e/= o_r ~2.' + r (s _ - S21 5 33,'\]

.:1 [.5'32 l el 2::> , 53l / 3 . l0A

3 . l0B

Not.e the first terln o f 3 . 9 rep rese n t s the ALe generator

output whilst the second t erm is the effective generator

ref lectio n coefficient .

The d ire ctivity of the coup l e r h~s already been defi n ed

as:

D ::: 20k r ~~ I I and 5).nee ~ IO 53'l.

S:u ic close to unity (~O . 95 & 0 . 99 .;5 for a 10 au and a 20 dB

coupler resp - ~ef 3.3) it can be written :

~3.L == \ 0 - (D/20 ) ) 3 1 3 . 11

t • • ,. f

- 63 -

I f 3 . 11 l s substituted in 3 . lOB for the 'ivorst c a. se

source match

~~ o p::; 1 . 4 ::s: (fj

:->

rr: l- I·s 'I + 22 I -(D/2°)1

10

fi gure 3 . ~

Maximum vsvm o f the Effective Source

whe n u sed i n a clo s e d Loop Control

Circu i i: . -------_. ....~-.--~----.

VSWR

\-40 COUPLER - - --

30 40 50 60

DIl~EC'l'IVITY (DB )

3 . 12

- 64 -

In t.he actual test set used, the directional coupler

used was the He'\vlett Packard Type 779D (Ref. 3.1) This has

a mean coupling of 20:! 0.5 dB and a main and uuxillary line

1 . h" d' L." t fClr thi s SI'dR of .2 maxunum. T e m1.n1.InU!!l l.recL.1.v1.Y

coupler is 30 dB (1.7 - 4 GHz) and 26 dB (4 - 12.4 GHz).

Nhen this coupler is used in a good closed loop auto!l1at.ic

level control system, the worst case source match: ca.leulated

from equation 3.10B is su.mmarized as f01lmfS:

4 - 12.4 26 1.2

* Assuming .. sufficient loop gain.

~: Hewlett Packard quotes an effE~ctive source of 1.2 SKR

(Ref 3.i) but. does n'ot state the frequency. How'ever,

the figures calculated are considerably better than

t.he 1.67 S'lR quoted for the generator alone.

The Low Pc!S8 Hi1nnonic Filter -.--.... ..---

'rhis should be us'ed whenever possible i:<nd should be pluced

before the levelling coupler, as the coup1.er detector is

frequency insensitive and might be affected by the spurious

signals. '1'he ~~purious signals do not effect the measured results

in th(~ Sclme manner because the signals are detected through

tuned amplifiers.

"

- 65 -

Cboice of thf2 ReflecLoTnE."'ter

Tw'o reflect.ometcrs were used. rrhGsC' are the HP 8741i\ for

0.11 to 2.0 GHz and HP 8742lc. for 2.0 t.o 12.4GHz. A block

diagl-am of these systems is shmffi in Figure 3. '7. The signal

is fed to 'the device under t,est via a dual direc,tional coupler.

The incident and reflect,ed Rignals ar'e fed i.nto a dual channel

receiver for processing.

Ref " Plane

Figu,n? 3.7

Basic D iaqram of the H? 8741A and - HP __ 874.~A-13~~fTect2inet~_f.~----

'f . -, r /,1 ~" Llne Stretcher

Manual ]l.djustor

Ref. Channel Output

P -II Reflected Signal

Test Channel Output

TO TES'r DEVICE

Both reflectometers employ' a calibrated line stretcl1er

to enable the electrical pat~h lengths to the n~ceiver to be

identical. Thi s is of considerable advantage as it allmrs

direct readings of the display systems for phase changes.

The coupling factors for all the reflectometers are a nominal

20 eLl) and the ins(~r-tion loss is less than 1 dB.

T'\'/o sets of Directivity Figun~s are claimed by the ,

manufacturerf~ (Hef 3.6 and 3.9), these are tabulated belo ...... :

- 66 -

T.TI...~ Erg.9:'1eng,-.LC?Jl.~ ,

8741A 0.11 to 1.0 ::::.:... 40 dB ~ 36 dB

1.0 to 2.0 ..... -~ 34 dB ~ 32 dB

8742A 2.0 to 12.4 ~- 30 dB ~ 30 dB

------

As the reflectometer forms the "hc~art" of the measuring

syst.em, its choice is of considerable impor'cance. The

mathematical analysis of sect:Lon (2.3) has s'hmffi what is

desired. The l.mport.an-t characteristics may be classified

into five important properties, n.amelYi

Is Directivi~y.

2: svm 3: Frequency Ra.nge.

'4: Coupling Coefficient.

5: Transmission Loss.

The following sub-sections are c:m intuitive discussion of

t.he mathematical .analysis carried ou·t in Chapter 2.

Directivity is a measure of the abili.t:y of a cot,lpler to

isolate two signals, for example, the incident and 'reflected

wave. It therefore set;s the li.mits on bow' accurCltely a coupler

can perform a specific measurement. As an example when making

reflection me~surements a dual directional cO"llpler is required

and the directivity of the t.est port is the most important

paramet.er. Subsequent math8matical treatment '·l.ill confirm

this. Ideally, it ",QuId be desirable to measure t.he reflected

signal alone. However, because of directivity, the reflected

signal i3 combined '\'1i t.h a St-nall portion of the incident. ,\-lave.

This can be easily explained by reference to the phasor diagram

of Figure 3.8.

F i9"\..~.re 3 . 8 EFFE CT OF DIHECTIVITY ON REFLECTION COEFFICIENT HEASUREtvIENT .

, c+-;vity D ., re ~_. , .- <:: -. gna_~ Error ~ ).J.. ______

Incident signal E. C1 ln

1st Coupler

Measured In2ident Signal EM I

Di rectivity E 1:'ror S ignal

'~ /.r~;:j \ 1

i / il / Reflec ted . Signal E

RC2

V

Measured :2ef lec·ted Sianal E'l~' . , l' L

2nd Coupler

-I " 1- 1 ~ l _ _ I L. ted Wave -~.. . . Roflec

J £i .-

CD 2 I

t

C2 ----, r I I' CD 1 ~ 4-

1-- . C1 ~_I- I> r--'

-4l -----l 0-'--, . dent. tl ave

.- "<l -.;. .... ,

~~ InCl , ~ (.~

L-l

I

TEST I !

DEVICE i 1 I t

fS:. ' E in __ . _ _ _ _ ___ _ ~--~~_::~ C1 and C2 EMl & EH2

= desired coupling factors;

= measured signals ; E. = In

CD 1 and CD 2 = undesired coupling factors;

input signal; ER = r e flected signal

O'l ~J

- 68 -

In the 1st coupler, the small portion of t11C reflected

"lave '\olhich combines v;i th the incident si£mal leads to an

error in the measured incident signal. However as the

incident signal is much larger than the directi vi ty ert"or

signal, the magnit.ude of the measured incident signal is

approximately unaltered.

In the 2nd .coupler, the small port.ion of the incident

signal which combines with the reflected signal results in

a phase which is directly additive t.o the measurement

uncertainty. Thus the higher the direct.i vi ty {i. e 'I a

smaller dir~ctivity error signr~l} the higher ,vill be the

measurement accuracy.

\,lhen measuring large reflections, the small portion of

the incident signal that mixeEl with the reflected signal is

very small, and it adds a negligible amount of uncertainty

as in the first coupler. As the reflected signal becomes

smaller 1 the small por-tion of t"he incident signal becomes

more significant. Nhen the reflected signal in dB (return

loss) equals the directivity of the· coupler, the measurement

can recu1 t in a -6dB to ;.. cO dB error. The importance of

thi.s cannot be overlooked and a mathemat.ical analysis shmving

t.he practical limits of measurement ,.;rill be given in Chapter IV.

3:3.2

The VSWR of the coupler is importan1: since it minimises

the simple and multiple miso-watch errors tl1us improving the

accuracy of the measurement. For example, when making S'·'Cpt

reflection measurements, it is customary to set a full

reflection (OdB return loss) referenC'2 by connecting a short

circui t at. the out.put of the coupler. Some of the reflected

signal will be re-ref1ected due to th(~ output port (test port)

of t.he coupler. This re-reflectcd signal 'vill go. through (l

wide phase variation due to the widt:l of the frequency S1,'eep,

adding and subtracting from the reflection signal, tbus creating a ripple in the full reflection (OdE return loss).

The above cff0.cts can also be caused by detect:or mis-matches.

- 69 -

The magnitude of the rc-reflectcd ~3ignal and thus the

measurcmen't unc(~rtainty can be minimised by selecting

couplers ,,,,ith as 1m., a SWR Z,G possible, and by the use of

detect.ors "d. th 10v! SWR' s.

Broadband operation is important because it eliminates

the necessity for several octave band coup1os to cover a

wide frequency range. For example, "lith brot:ldband sources

capable of up to four octave ban~ sweeps, it is a real

convenience. to be able to have a .wideband coupler to obviate

the need for t:imE~ consuming costly calibration techniques.

3:3.4 coupling Coefficient

The choice of coupling coefficient is importan-t because

it determines the level of signal with '\V'hich the detection

cireui ts will have t.o opera-te. :Most sweep generators have

limited outputs (usua.lly +5 t~ + 10 dB~ at 12 GH:?;) and a

convenien't coupling coefficient is 20dB dmm on the main

s~gnal. Such a coupler would extract 1% of the main signal.

On the other hand, a lOdE coupler would extract a full 10%

of the main signal, Furthermore; in pOvrer 'sensi ti ve measure­

ments, e.g., transistors, it is important that the coupling

coefficient remains con~tant over the fre~!Ucncy range of

measurement. Hewlet·t PacJ~ard cla:lms t.hat this feature is

enhanced in their couplers by the use of exponential coupling

designs and lovler coupling coefficients which introduce less

perturbations into the main signal line, thus favouring

lower Sh'R's and better directivity,

- 70 -

Transil1ission loss is the total loss in the mainline of

a direct.ional device and includes insertion loss and coupling

loss. It aSSUmG8 importance ut the higher frequencies ,.,.,here

sweep generators have a limited output often less than

+ lOdBm.

In general, broadband coaxial couplers have transmission

losses of the order of 1 dB.

with frequency. as possible.

This loss should be as constant

3: 4 'fhe Detection and Indication-131oclc

The detection system used is the Hewlett Pac}card Network

Analyser 8410A operating with its auxiliaries HP e411A and

lIP 8413A or HP 8414A. Detailed descriptions of all these can

be found in their respective hand-bOOks. The information

given here is only for the understanding of the measuring

system used.

Figl.lre_~

Basic System used in t,he NetworH: Analyser to achieve __ =-F.=.r..;:::e.g.ll...ency Translation by a Samp,ling Technique

S~ampling > }fixer

Electroni.c Tuned Gate

1st I. F.

- - T - - - - - - - - - _ .. -

2nd " Subs·t. Mixer IA.tten.

'---'--- ---

If .... ~ >~ An~pl t. .~ Log I Detect. Conv.! I -

t ~I 7

Log O/p

---)0 Nag O/p

Local Limi te _. I ~--~ 2nd t ,'1 Phase Generato!: Osc. I Detect Phase olp

.. ~ -1 I'P:h;';';W 1'.<, I-T;~ASE/GAIN ~~~: 'i' Osc. - -'I ~'l Y I INDICATOR

~ s~mplin;J 1t"-E!Jlt 11 2~d·-·T ._~._._: r;~:se I Hl.xcr -1----"> ,I.F. ;7 MIxer r" I 1 Offset

j '-___ .--1 __ _ ___ . I _ . ____ .L. _ - .... - '. -

- 71 _.

1'he basic system consi sts of three units, a harmonic

frequency converter (HP 8411A), a main frame unit (HP 8410A)

and a plug-in display unit, either a phase-gain indicator

(HP 8413A) or a polar display unit (HP 841111'1.) (Fig. 3.1).

In its broa.dest sense, the system is a dual channel self

tuning double super-heterodyne receiver which operates

betl18en 110 HHz and 12.4 GHz. A block dio.gram is shm,m in

figure 3.9.

The Jrey techniqu(~ that allows the analyser to meas~re

complex ratios is the technique of frequency translation by

sampling. Sampling as used in this system is a special

.case m:- heterodyning "lhich translates the input R. F. frequen­

cies t.o a lm.,rer I.F. frequency where normal circuitry is

used to measure amplitude and phase relationships. The

principle is to exchange the local oscillator of a conven­

tional heterodyne system with a pulse generator ",hieh

generates a t.rain of very narrow pulses. If each pulse

w'ithin the train is narrow compared to a. period of applied

R.F. signals,the sampler becomes a harmonic mixer with

eq.uC1] efficiency for each harmonic. This sampling-type

mixing has the advantage that a single system can operate

over an extre;mely wide input frequency range •

. In order to make the system capable of. s,.".ept frequency

operal:ion, an internal phase-loclc loop keeps one channel

of the two channel networJ( analyser tuned to the incoming

signal. Tuning of the phase-lock loop is entirely automatic.

Nhen the loop is unlocked, it automatically tunes back and

forth across. a portion of whatever octave-'\vide frequency

band _~1(l8 been selected by the user. vlhen any harmonic of

t.he' trac}~~ng oscillator frequency is 20.278 Nhz beloyl the

input frequency the loop stops searching and loc}es. Search

and loc}<:-on are normally completed in ab~\..1t 20 IL.$. The

loop will·rc:nain locked for .sweep rates as l1igh as 220 GHz/scC

(a r.ate corrcro,ponding to about 30 sweeps per second over the

highpst freq'.l0~cy ba.nd 8 to 12 .4GHz) . Initially this fact

\ war; not obscl"'ved in the computerized systems (described later)

- 72 -

and considerable measurement error ' .... as experienced. Rytt1ing

and Sanders (Ref 3.11) provides further details of this

sampling, search and phase-locJdng design.

The I.F. signals reconstructed from the sampler outputs

have the same relative amplitudes and phases as the micro­

w'ave reference and test signals, because the frequency

conversion is a linear process Referring again to Figure 3.9,

the 1.F. signals are first applied to a pair of matched AGC

(automatic gain control) amplifiers. 'rhese ]I.GC amplifiers

perform bvo funct.ions; they )).:eep the signal level in the

reference channel constant and they.vary the gain in the test

channel so that the test signal level does not change when

variations conrrnon to both channels occur. This action is

equi valent:. to ta.ld.ng a ratio. It JEmOV(D' the effects of power

variations in. the signal source, .. frequency response 'i~'

characteristics common to both channels and other similar

common-mode variations.

The bm signals (reference and test) are then down­

converted once more to 278 kHz (2nd.I.F.) to enable good

amplitude and phase detection •. This intermediate frequency

of 278 v...H.z has proved useful in checking the phase accuracy

of the receiver. This is because the period (T)

T = _J_._~ .. i. e 3. 6~C; corrf:!s'Ponds to 3600 of phase or

278 kHz

10 picoseconds = 10

To obt.ain the desired magnitude (dB) and phase comparisons

(degrees) the pnar::e-gain indicator plug-in display unit

(HP 8413,A) con·tains a linear phase detec·tor and an analogue to

10garit11.Tllic converter which is claimed to be accurate to

,.,ithin.± .2 dB over a 60 dB overall range of test signal

arnplit.uc1es. Voltage Rat'ios (dB) and relative phase (degrees)

can be rc~d on the meter of the display unit (used for manual

readings) but the plug-in also provides calibrated d.c. , '( l' t' coupled vol tL'.lges proport.lonal to galn a.s a lnear ra "10 or

in dB) and phane for graphical or electronic displays.

An al ternati ve display used ,.;as the Polar Display unit

(HI> .8414.1\). A bloc1~ dif:Jgram of this is sho-wn in Figure 3.10.

. ,

- 73 -

F i5:E:t:re 2.!-.1 Q ~E.9c1.~oJ?JG~(]tam 0L!>o~oa.r DisplaY unit

Da12'Oced ~ A Cos e }10d.ulo~tor 1 0

B :o~~{_ _ c;,R_e_f_e_r_c_r_lc_e ___ , Ir ~~f~~ter/

Input r l L',ITI'te.r_

Test --] t rOO-gOo -I r Balancedl \ 0-

0 -..---f Ampl. -->- Phase 1-rJ . ~J-;

Input __ / l Shiftr J jllodulato1

A Cos(wt + Q)

l-A Sin G

-r 0 Vertical

1-----'----1 o/p Lew Pass

I~il_t_e_r __ •

'f'he unit converts polar quanti ties into a form sui table , . . .

for display 011. the cathode ray tube (CRT). This is

accomplished. by using byo balanced modulator phase detectors.

The phase of the test channel is shifted gOO with respect to

the reference channel before being applied -to the balanced

modulators. The outpu l:. of one modulat.or is proportional to

A Sin G. 'l'l1is signal is amplified and fed to the vertical

deflection plates of the CR'r. The output of the other

modulator is proportional to A Cos e and this signal is

applied to the horizontal deflecOtion plates of the CRT.

Thus the polar phasor can be displayed in the rectangular

coordinates of an oscilloscope or an X-Y recorder.

'I'he polar display' "Tas the unit 0 most' 0

frequently u::;8d (especially in computer controlled measure-

rrtenl:s) as it "rould instantly demonstrate any mal-function in

the equiprn2nt, c.g., loss of phase lock, improper calibration

of standards etc.

·. 74 -

Hewlett Pacl<ard (Ref 3.9) claim the follmd.ng 1'lhen the

system is used vri thout COlnputc~r correction:

Overall Uncertain·ty* Reflection coeffi.cient magnitude of

unkno';>m ( \2 ) is measured to vTi thin r:' =

... (0.01 + 0.02 'r: I + If" ) I 0.11 to ) 0.05 k I l- I. a GHZ)HP8742.~ + (0.02 + 0.02 J r: I + O. 05 '(' I '2. ), 1.0 to 2. a GHz)

+ (0.032 + .052/ r: I + O. 036 If: 12 ) I 2.0 to ) 8.0 GHZ)HP 8742A

+ (0.032 + 0.04 I r:'! + 0.07 1 C 12 ) I 8.0 to 12.4 GHz)

Reflecti£n COE:;_ffici~l!t. al]Sl!e ~1l1certainty:

+ Arc Sin ~ I for . L. 90 . r'''' f 0

f2 .

*Noi:e: ---Overall unc(~.::.·tainty includes the effects of coupler

directivity, source match, and system tracking with

frequency~

The follo,ving information on t.he system is taken

from the Hewlett P acJ\:ard Catalogue Sheet (Ref. 3.9).

8410,0. !'tETWORI( ANAlYLER (Operat ing with 8411M

Instrurnrnt Type: / casu es relali Ie arnpliiude and pbao(! of two RF inpu t Si g il~;S . choice of to'lO p; l~g·jli r.i~. p :ay module':; for meter read ou t (34!3A). or CRT polar display (84 14A).

Frcq cncy Range: 0.11 to 12.4 GHL. Tuning: Autolnil!ic O'ler octave band selected by froill p3nc i

switch. $1 'ept Operation: SI'IU:P~ in octave bands: apply sweep r eler·

ence vo ltace for fast sVlepp operation (cori1pJtib ie with s'mep re ference out of Model 8690A S'Neep Oscillators')

In, l t Irnped nee: 50~! . SWR < 1.4 to 8 GHz. < 2.0 to 12.4 GHz. connectors p;ec i:; ion 7 mm coax (APC) ).

Ch;;nnei Isol3tioll: . 70 dB. 0.1 1 to 6.0 GHz; > GO dB. to 12.4 CHI.

~ rnplitudc Illpu rov/er Range

Rr·ference Channe l: 20 df! variat ion cc i.jses less than :.- 0.75 dO iJnd ~- 2 chaiigc in amp:itucie c;nd phase readings. 20 dS r an~e Viiij be withir, ' .- J6 to - 44 dBrn .

T(;' \ Ch anne l: - 10 (,- 2) dBm max imum. Not to e~ce(:d refere r.cr; channel pO'lIer cy more than 20 [lB.

Dyn:1 '!lic Range Ref ill cnGr. Channel: 20 d8 or more. Yest C!iai1o l; l: GO dB or more.

l st Channel Nols P, : los:. th i1n -- 78 dBrn equ ivalent inpu t noi:.e (mEasured Oil 8~ 13f\ Meter).

Maximum Rf Input to tither Ch :J llnc l: 50 mW (damage level). Maximulll DC on HF Line: ~ . 3 V (damage !evel). A nplitllde Con trol: ;tdju') ts gain of tr:st channel l elalive to

reference c ncl~ner. f <lnge: 69. dB to!,,1 in 10 a:1d 1 dE! ~ t eps; vernier provides

(;ontinl ' ~)lJs ildjostrnent over at leas t 2 dB. I'ccuracy: -::: 0.1 dB per !O dB step. not to erceed _ 0.2 dB

cumulative. _: 0.05 dB per I dB step, not to (lxceed ,. 0.1 dB r.u111~Jl a! iv e.

Genel al Phase CO!1trol: Vern ier provides ccnt irwous phase reference

adjustnlent over at least 90 . OiJtputS: Two rear ~an -I aux ili ::w,1 0 tpu ts provide 278 kHz IF

signals; outputs :nay be. used for s!gnal analysis . special applications, and convenient test pC ll1t~. ; rn od:JlatlO!1 band· wid th nomi ,lally iO kHz.

Refel cl1ce Ch?lIn cl if: 2 vo lts peak·to·peak nominal. Te ~ t Channel If: 10 volts peak· to·pea k ur less, depending en

signfll leve l and test cil3nne! gain setting. Swe ep Rdcrence In! 'If! . AC (,CI.t 5 OC voliflge propor:i(Jn~ 1 to

frequency for pLrr:unl swept ·fr eqllc;,cy opera tion : com· pati~ !t) will ; i) to·1(: .0: ; i" ' oL!a ,~( n Omi" .iI ) sweep rcferr.nce oulput of 8G90Sti i·~ ~I.f " p (lSC;liJiliO~S .

Powel: 115 or 230 \fc·lb lOo~. 50 to 1;00 liz. 70 v;a!ls ( ir~ cllld~s 84 J 1/\:.'

Wei .ht: 84lOfi .. 32 ~ls .. R~! lA. 61 ; I~)~

Dimensions' ~'.110A. 71 • '11 Hgn ]8', in deep. j 6J~ in wid e. 84 1 It I ." III I','; <,'. :'1 d·,,·p ~) if1. widc /.'xc ius: ';c of cunnec tors. c) fl (..:I;:t; p.;u;.v·;,;nt!y c.' !Jcli('i! 1(" C"lIr: dicll' tn 8,11 (ll\ .

Price: 84 iOf·. :; 1 7U Z l i i ;,. F ?c:r

- 75 -

3~13A PHtlSE·GAIH ! WICnOR (Installed in 84 10A)

Instrument Type: P!c!p,i ll rrc ler ci s,13Y u:-:i t for 1!.I~O·'l,. Dis· plays relat iVe ampiituce iil dB b.::!· ... 2cn rf:ieren:e :,,;0 tesi chann t:: 1 inruts or relat ive pr,ase in degrees . Push button seiect ion of metel function ~Ild rcngc.

Amp litude Ranp,e: - 30,10 iind 3 dG full scale . Accu racy: ; 3% of end 5c;:18 Amplitude Output: JU rTIl:livolts per rm I!p to ... 30 dl.! !c'31:

bandwirltil ]0 kHz nJm inal d t.'lJr.ndi'1~ all signal IC':ei; ',(lu ree impr; dance i k~! ; accuracv. . 3~r.

Lin ear Output (rea r p:3f1c l): 0 to 1 V rn:? )if1111nl . 10 kHl bar:d· .... idt~: source impedance approx. 250~).

Maxi:num Drift l og: < - I: 0.1 d8 per degree C. lin f.ar: < _.: 5 mV ptr degree C.

Ph ase Range: ...:_ 180. GO. 18. 6 degrees full scale . Accuracy: '. 2% of end scale. Phase Outpu t: 10 milli olts per ri egrer : 10 kHz bandwidTh : I:, !)

source irnpedaf1ce. Accurac.y . 2 ~~ of reading on ;llJxiliary disp lay.

Maximum Oiift: < ' O.? degree PCi degree C. Phase Offset: :-'. 180 degrees in JO degree steps. Accuracy: j~ 0.2 ' 0.3 . 110 step. not to exceed .' 1.5

degrees cumuiiltive. Phase Respons e Vmus Signal Amplitude: 4 degrees maximum

phase change for GO dB amplitude c.hange in test channel.

Genera l Power: Add itiolla l J 5 watts supplied by 84 1 OA. W£ ir,1 t: 11 Ibs. Uimensions: G in. high. 15'\6 in. cteep. ;'Y{2 in. wide \·~). cludes

front panel knobs). PI ice: $82').

8 1 ~ A PO LAR !)IS LJ\ Y (Install ed in 84101\\

Instrument Type: P!up,·in CRT displJ\' unit for 84 lOA. Displays amplilude and l,hJse c,l ta in polar cocrdlna l8S on 5·in. cathode ra: tube.

Range: Norma lized pola l coordinate display: magnitude cel i· briltion ?O~~ of fil II scale per division SC.l !e fiJcter is a func· tion of GAI N set ting on 8·1l0A. Anirnu fn sca ie fitctC}! 10. (for 0 d8 se tting) decreasing to at leas 0.0316 rfc;- ~Q dB ~e ting); phase CilJ!br,~ ed In 10 c!c?-Iee lI ;r IC ~le lll s (. 'rr 360 degr ee range .

Accuracy: tlf Of circle 1Jf1 CR T · 3 111m radius. Ol! tpu s: Two DC o~:lr,:ts pl ".idr h ,'/olda' ililcl \' I::r. I r om

ponents of p01 ar q·I.lIlllly Ma" l11uIII ou pili :LI \ l:!S , 100'! wurCl: ifl1 peddllc.;. IJ3 nd l·;icit li •. dB 10 hHL

Dlift: Rcar:l ceniel dri l l : \~r\T . . 0.2 1I11ll ; C: iHJx;li:,IY output.

. 5 rn 'l C. i.le.1 SI ,refllent dl. I: dmp:it(idi' IeS5 than ?~, of r 2j:ng C.

p l :d ~e. Ic~s " :JII 0 1 C n(" rf1CI! .. ~lnr, be.'lll c~nt·-,r dll!:'. !l earn Center: rr .. '~3 Ifh: BUI '.: C(~, if Jl :;1I;l:J.a~, S 7e' 0 signJI

inpul · tD ti: ! cinp;k: f·!!;-.;,~ c:nn:e ll lcnt be,wI p~s't,un "d · :'.J~,t rl!en' 10' r['[,·[ll ,V-' .

Ge nlJial Cr.T: 5·incil , 5 xV post (Jccc'erat or tube with P·2 pnosphGr;

internal polar gr.1ticulc. Muker Input (reM panel): Accepts frequency marl\ ~ r Gutput

pulse from HP 8G90·series and 690·ser i e ~ Swrr p Osci!lators, '-" 5 volts peal\. Markel s displayed as intensified dot 011 CRT display.

tHat king Input (rear .panel ): Accepts -- 5 volt bl ill1y.inr, pulse from liP 869Q.ser lcs and G90·serie~ S\/d:<:: P O~ c ili a tu l s io blank retrace durirg swept or.e r3tion.

B a?kgr~ H rjf~ !!Ium inati()n : Controls inte nsity of crn background IlIumlni: i lOn for photography. Fl iminates need fo r 1,Itrav ioiei light source in uscilloscope Cilrner(J when pliotographing in· tern21 graticulc.

I cces sorie" FllrPisheo: Three Sm it h Cha rt overi i:Ys for CRT. PC'.VH: /\ddit ional 3S watts SGPp l i~d lly 84 J OA. Weight: 13 Ibs.

I1imensions: 6 in. high, 15J(6 in. deep, 7YJ2 in. wide (exciudc~ iront pan e l l(ll ob~) .

r ice: $825.

8740A n nS' iiSSlmJ IE oJ m.lT I ,strurr.ent Type: RF power spli tter and cal ibrated line stretcher

fer cOlmniant transmission tests with 84IQA. Provides reference and tes t clHlf1ne l RF outputs for conner.t ion to unknown device and th e a.111A Converter.

Frcqucncy Hangc: DC to 12.4 GHz. rrgquency Respons!!: Me:Jsurement errors from frequency reo

sponse variations between reference and test channels < :1: 0.5 dB amplit lJ(ie and :l- 3 liegr!'es pnas e t() 8.0 GHz; ± 0.75 dB and =': 5 degrees to 12.4 GHz (inclL'des fl cquency response of 8411A Converter).

CI :1tput 1i!l~cllal1 c~ : 50 ohms, reflection coefficient 0.07 (1.15 SWR, 23 dB return loss) DC to 8 GHz; 0.11 (1.25 SWR, 19 dB return loss) 8.0 to 12.4 GHz.

Mi'.xLnu!l1 Rf Input Power: 1 watt. 0.5 rrtili iwalt wilen connected directly to 8411A Converter.

Insertion Loss: 17 dB nomina l. Connectors: Input, compatible Type. N female stai nless stee lj

output, APC). Ref"rcllce Pian e f.x tcnsion:

Electrical; 0 to 30 centimeters. Mechanica lj () to 10 centimeters. 130tli er lensions cal iblated by digiial indicators. Electrical ex tens ion ii1dica tor adjustable for init ia l calibra·

ti on.

- 7 6 --

flower: f)ass ivl' . no primary pov:2r reCJuircd. Wc ip;lIt: 171/2 ilJ 5. U im r. n ~ i u l1~ : 6 in. Ilip, h, 1 6\~ ill . deep, r;2 ill . Yi ide (exclud ing

! \I1 ol;~ uno connec :ors) . Price: $1,100.

874l;, 11W 8742h iiEH EGTlON iEST UHITS Instrllltleltt Ty pe: WidEuand 'C f;8ctom eler. p h~se · bala llc (: d fe(

swept or spot freque ncy ir ilpedil ilce test s .. ith 84 10A. Cali· brated va riable rr: ferell t::c piane.

freq:J enr.y R;Hle;e : 0. 11 to 2.0 GHz (87ti 1 I\) j 2.0 to 12.4 GHz (8742A).

Impedance: 50 ohms. Overa ll Ur,c \: rtain ty: Reflection coe ff icient ma gnitude of un·

kr. own (r' I.) is measured to ','/iUJin r .. _ . ± (0.0) + 002 r' 1. ' + Q 05 r I. 2), 0 11 to LO GHr. ± (0.02 -I- 0.02 . r I. , + 0.05 r I. . 2), 1.0 to 2.0 Gill. =!: (0.032 + 0.052 : r'1. + 0.036 I. 1i, 2.0 to 8.0 GHz. ±: (0.032 + 0.04 ' r I . . + 0.07 r I. 1), 8.0 to 12.4 GHz

Hd l:lc tio:l Cor ~ i i::ie nl Anile U: i:crtain ty: :!: ar c sin ~~~ ,for I.

(1) ~ 90" .

Note: (\ver?11 Uncer t3inty i n~ I ud es the ef fects of coupler directivity. source match, and sys tem t r ac ~ i ng witli fr equency. OircGtivi l y: ~ 4(l dB, 0.11 to 1.0 GHz; ~ 34 dB. 1.0 to 2.0 GH!

Ul741 A' I; ~ 30 dB. 2.0 to i 2.4 GHz (il742Al.

Maxiwllm RF Inpil t: 30 WBItS . 1 mill iwatt whe n connected to 841!A CIJIlVertEi·.

Insert!l'n l os s to Test Devir.e: 1 (m I'lomi na l. He1Iectorr.!;ter C[l upling ClIctiicient: 20 dB nominal. fl efa wnc l' ,P1C:llv Extens io : 0 to 15 cm (374 J !~) ; 0 to 17 em

(87~2A) ; cJiibra tcd by di i:it2 i dial ind icator. ! r. ~I ! c" t !l r is ad­jusl3ble TOi ini tia l calib ra tion.

Cor llectvfS: Inpu t, Type N fel lale, ~t ain l es :; stee l; ilicident, refl ecled. 8nd tln~n OYi n rcficctorncter ports APC- I

Accessory f u r. isl etl: 11 5G5A lipe-7 shorl for i1 eflcctemeler C,,!ibr3tio;1.

POl'fCr: Pasc; i'IC, no primary p~we r required.

W(;i f~hl ; l GI/2 !b<; : (3741 A); 15112 ibs . (874~A) .

Oimf'!lsions: 6 ill . hiEh, 16) 16 in. d?ep, 7 ?~1 in. wide (not in· . eluding CO ll !l 2ctors and knobs) Prices: Mnde l ?'7·HA: $ l, ~Ci() . OO .

Mode l &~:42 r;, : $1,50().OO.

• 87~ I,h. dil tc ti vi ty typ ica ll y > 30 tl8. 2.0 to ?4 CH z.

IMP [U AHCE OVERL AYS FURNISHED WITH A4 14A PO LAR DI SPLAY ._--

- 77 -

3.6 Conclusions.

A brief description of tbe equipment used in this

t.hesis for t.he measurement of reflection coefficients has

been presented in Chapter III. Detailed descriptions of

the individual circuits have not been given as these can be

easily obtained from the individual handbooks.

The blO main errors ~ssociatE~d "Hi th the equipment have

been introduced. The first error, poor source match, can be

alleviated by the use of a suitable automatic gain control

system. Thi~3 has been discussed 'in section 3.2.2. An

introduction into the errors caused by poor direct.ivity

has been carried out "in section 3.3.1. Both these errors

and the manner in whi.ch they limit the measurement accuracy

will be extensively discussed in Chap~er IV.

- 78 -

3.1 Hc·\·rlett P acl:ard "Co-axial and Waveguide Catalogue 1977-1978.

3. 2 PhacE~ LocJ~ Source in Department.

3.3 Hewl(;~tt PacJeard "High Frequency Swept Heasuremcnts" Application Report 183 •.

3.4 IIewlett Packard "Electronic Instrument.s and Systems for Measnrelt'.ent/Analysi s/Computation 1973 Cat~loyue.

3.5

3.6

3.7

3.8

3.9

3.10

3.11

E!1gen~ Glen. F. Micl'Ql.vu.ve Signal pp 202-206.

"Amplitude Stabilization of a Source" -r.R.E. M.'l'.T. April 1958

He'll} ett: P aclcard - Network Ana1ysor Dai:a Catalcgue Sheet - 1st March 1970.

Dunwoadie,D. and Lacy, P. "vlhy 'l'olerate Unnecessary Measurement Errors" Wilt.ron Technical Hevielv Number 5 - ~1arch 1975.

Lacy, P. and Oldfield, W. "A. Precision Swept Reflectorneter" Micro':lave· Journal April 1973 pp 31 to 34 & 50.

Hewlett. Packard - Net1.vork Analyser Data Catalogue Publication 1st June 1967.

Anderson, R.W. & Dennison, a.T. "An Advanced New NcbmrJc Analyser for Sw·eep--Measuring Arr.pli·tude and Phase from 0.1 to 12.4 GHz". Hewlett Paclcard Journal, February 1967 pp 2-10.

Ryttling,D.I{' and Sanders,S.lJ. "A System for Automatic Network ... ~nalysis" Hewlett Paclcard Hewlett Packard Journal February 1970 pp 2-10.

J •

* * * * * * * * * *

- 79 -

CHAPTER IV

UNCORRECTED REFLECTOMETER NEASUREMENT

4: 0 Introd~~ctioy!

The Qv(:!rall a,ims of t"his ch.ap·t(~r a.re to discuss the errors I I

and to establish the accuracy limits to 'f.vhich a reflectometer

may be used'.

section 4:1 establishes the directivity and mis-match error.

The fonner is analysed in section 4: 2, whilst the latter is

examined in section 4: 3. 'rhe effec·t of the errors in measurement

vary with the device being measured. For example, the direct-

i vi t.y error becomes increasingly large as smaller reflection

coefficients are measured. Graphs are therefore provided t,o

establish quic]ny the accuracy limits to w·hich measurements r.:lay

be made for a given system. These are given in Section 4:4.

TIle effects of inter-series connectors and adapters are examined

in section 4:5.

An alternative method of deriving accuracy specificatins

is given in section 4: 6. This m(:~thod is important because the

instruments used,for the measurements of this thesis are

specified by the manufacturer in this manner. Finally compar­

isons are made between the various methods to determine the

accuracy limits for the uncorrected measurement system •

.1.!.1 __ --'T.he !Jimii~s of Reflectometer Accuracy

The theory of the reflectometcr (dual direction~l coupler)

has already b(?en derived in section 2:3. Equat.ion 2.33 ha.s

established that the measured reflection coefficient (Pmv )

is related to t.he reflection coefficient. ( f2 ) of the device

under test (DUT) by a bilinear transformCltion of the form:

- 80 ..

f rm.- = + B

C C + D •••••

wl1erc A, B, C and D are the complex constants defined by

equations 2.33(a.) to 2.33(d) respectively.

In appendix 11:2, it has been shm·..-n that. a bilinear

transformation of equation 4.1 can also be expressed by a

general se't.of scattering'parameters of the form :=:;hmm in

figure 4.1, where:

A = -('SII c ;:)22 8 12 C" ). .:.121 ' B = c ull

C = - c • "')22 ' D = 1

4.1

as defined by equations 11.2.7(a) to 11.2.7(d) respectively.

Figure 4.1' General Scatter..::i.ng PC!.r~~et~

. . . t' Representatlon of a B.1.11!lear Tr~n~fonpa~.!Q!}

c:; ~ ________ r-__ ~,~~21,~ ________ ~

b, 0--,--

The general set of scattering parameters (Fig 4.1)

used ;here,' should rot be' confused with the set l~sed in

ChC:tpter I], for the cieri v'at.ion . of the bilil;ear relati'onship

in the reflectorneter.

In. future, unless specifically stated, the general form

of the scattering parameters ,viII be used throughout this

thesis.

In figure 4.1, b 1 rcpre8Emts the reflect.ed Wave sampled

by the reflectometer, and aI' represeht~ the incident ,.,rave

sampled })y the ref1 ec(ometer. 511

is t}ie p'atr~ of

- 81 -

the signal leaked directly from the incident ,,,ave to the

reflected vlave detector of the reflectometer independent. of

the device under test. Directivity is the major contributor

in the practical case.

821 represents the forward inci.dentsignal path to the

device under tes·t and 512 represen·ts its return path to the

det.ector. 522

is the effective reflection c08fficient at t.he

output port.

The follO\"ling are defined:

I:

2: =

b, OJ,

= indica·ted measured reflection coefficient.

= Indicated true reflection coefficient and is that measured when the direct­ivity is infinite and a perfect output port match exists.

Hence, using Mason's non-touching rule:

b ,

0", =

and for the perfect casol

/

b, eL,

= = s s r 12,21A L

• • • • •

•••••

The relat.ive measurement uncertainty is defined as

4.2

4.3

+ True Indicated Reading - Measured Indicated Reading

True Indicated Reading

f{ Prrrv c 8 21 ~

c c 821 C - = .::112 .:111 ;::)12 1 - S22 r'

1: J:; f (Yl't- = tIl + ~ S c 1.:",2] "1\' :\:~.?C -

By defining

equation 4.3,

= =

- 82 -

= and substituting

+ s r

22 IL

· .... from which both ma.gnitude and phase uncertainty may be

calculated. The phase angle can be ascertained by an inverse tangent series (Ref 4.1) of the form:

-1 Tan

when~

· ....

Equat.ion 4.4 may also be written inmodulus form, hence:

Ed., -I- E/~ • • • • •

4.5

4.6

where Cd. = s 11~_ or if effective directivity 5 12 8 21 ('

(D) is defined as S~412 8 21/ then

Cd- = · . . . . 4.6(a)

and

• • • • • 4.6(b)

Both Cct(Directivity Error) and frr'1,...(Mis-match Error) are phasors and because of their great importance, a detailed exam­

ination of each is essential.

-- [33 -

The directivity er:::'or arises from physical deviations

from the ideal ,vithin t he directiona l devices and can come

from many sources, such as d eviations f.-com t11e prescribed

ge omc-!1: ry, connector mis-matchos or imperfect in t.e rnal term­

in-=>t.i ons. rrhe mo.Dll E:'Y.' in whi ch direct:ivity i nf luences an

aC'\:u al mea surement is shown in figure 4 . 2 where the amplitude

o f -L:he sampled i ncident wave ( a, I ) is considere d to be

uni ty. The resul ·tant vaves at b , is the phasor u rn of the

d:i.rec·ti vi ty error -Vlav e ( tel ) and the ref l ected wave ( c,- ) from t he d evi ce under test. Tl1 e measured r ef l ection

coefficient' ( Prrft./ ) i s 1:he phasor sum ( b , ) r eferenced t.o

( ~I) unity . .

f:i.gure 4~.

Eo ssibl~:-_~gor Cqused by Directivi"!::y

b 2 -~ -,~.- - ~"""""''''I I c I

Direc·tivl ty - 0 . 1 o r 20 d B Return Lo ss D b,

T,.rrv = a 1.

1

.0316-7 ' ::- -

~L ~ :

EL = 20 dB below Re fe rence ._-+ _._ Signa l or 0 . 1 of Re-_ ~ a 2 ference Signal.

E~= 30 dB b elmi Reference C;ignal o r 0.0 316 o f Reference Signal

LoC's) 1. 30)

or

\ U )

O :-iV(-p~ 23 . 31 d B ( Return Lo ~s ) (VSHR ::: 1.15)

Ripple resulting from Phase Changes

o r

- 84 -

The ref1ectometcrs used in the measurements are He'-llett

Packard Models 8741A (0.11 to 2.0 GHz) and 8742A (2.0 to

12.4 GHz). The directivities quoted (Ref 4.2) are ~ 36 dB

(0.11 - 1 GHz) ~32 dB(l ..: 2 GHz) and ~ 30 dB (2 - 12.4 GHz).

The case presented in figure 4.2 is the case '\{here a coupler

with an effective directivity of 30 dB is used to measure a

device having a reflect.ion coeffici(~nt of 0.11 (SWR = 1.22

or. 20 dB return loss) •

If the directivity error is in pl1ase with Er.:- J the

resultant is 0.1 -I" 0.0316 = 0.1316 or 17.61 dB down on the

incident waye. If the directivity ~rror ( EJ.,). opposes the

l-eflected wave, the resultant is 0.1 - 0.0316 = O~0684 or

23. 30 dB down on' the incident '\vave.

Surruning up, it is seen tl1at if a 30 oB coupler is used to

meaarre a 20 dB return loss, the resul-t would be a return loss

20 0 + 2.39 d . tl' t . t . 5 7 of • 3.30 B, ~. e lere ~ s an uncer 'a~n'y reg~on of· • dB

because of the poor coupler direc'ci vi ty. Thi s error w'il1

increase with smaller measured reflection coefficients and

will decrease when larger ref1(:~ction coefficients are measured.

A curve (Ref 4.3) shmdng the possible return loss error for

a 35dBcoup1er is shown in figure 4.'1. 'Similar curves to Figure

4.3 are a1su given by Lacy and Oldfield (Ref. 4.4)

Fi-gure 4.3 p_ossib1e R'2turn LOS£LE .. p::'Qr._g.32..?;.9.0~ by '! Directivity of 35dB as a Function of R(~turn Less Measurement.

~ ~l -6 :;j .jJ -4 OJ 14 ~ e-2 ClJ 14 0 M~ ,Q +2 "M

Ul (I) t4 U) (I)

/

~~ .=-- .~\ -'---.-00+6

o~ H 0 10 20

v--~ Curve for - 35 dB directivity

-30 40

Re-turn Loss Measured (dB)

- 85 -

Source mi s-ma·tch error ( E rnL..- ) OCC'..lrs wl1en a rc[lcctom(~ter

is i ncapable of comple t e l y a b sorbing tJle reflected ,,?ave from a

dr:Nice undeJ~ test. . '1'hi f3 error ari s es beca u se ·the VSHR o f t.he

output por t. o f t .he r ef.lectome t er whi ch is also t.11e source po."(t.

fo r the devie .. ::: u ndert.e sl:. i s n ot:. unity .

'rhe error consequence of t est. port m:i. :::;-ma·tch i s demon s t rat ­

ed in figure 4 .4 '..,h er2 U w ma in reflected s igna l (solid lines )

u ndergoes mul ·tip:l. e reflections at 2 ( dasl1ed l ines ) and

eme rge s as

Ef fectire Sou r ce

rv S\'J R == 1 : 1 ~J"

[r;\ ~= 0. 0 6 OJ. ~4 . 44 ~B return loss .

E L

F icrure 4. /1 ___ .l ______ _

a 2 I _. _ __ _

\. == 1 L1800 L --

II t ... .... "' ,

I

.Ire := ... I'IY'v

O . os! x 1.

In figu rG <1.4 1 t.he gcJ.p lieal d isplay 1S shOl,rn foe tJle case

of a r ef l ectOnlL t~e}::- (V Sl~R 1.]. 3 ) terminated by a s"bort: circui t.

The r esultant phasor ( CTf\...+ E. I.. ) varies bet\>Je2l! 0.911 und 1.06 .

- 8 6 .-

'rhis may s eem some\{hc:tt c ontradictory t.O trC3nsmissj on line theo ry

where f o r the c ase o f r e al n ormali z3.tion aDd p os:!. L-.i ve r'ea l loads

the reflection coefficient L 11 I H0'vever,this r esultant.

is really tlle re:::..,ul t of mul t:ipl e r eflect"ions a nd should 11oi: be

conf used Ivi Ul a single reflected I·lave. No te thi s error is at

i ts vorst w'hen the d c!vice under t "'''"t ( DDT') 11 ~ "" ~ r ·"' ·"' l "" ,-. ... ~ orl c u C! ~ ), a t _.L "'-~\.... l ... J _ _

coefficien t 0:::· uni t y. In c ases ,{here it has b e en necessary t.o

estab li 8h a reference coefficient of u n i t:y, !E.:: op.en/ sh~!:.

E..ef~rencC::_2'!.let.:.h~d ( Ref 4 .3 ) has b een u sed . ( Fig 4 . 5 ). '1'his

method i s not exact and pro rides a mar~JinalJ.y better refe rence.

,--

i1l '0 '-"

(I) (/)

0 I~

~ :::> E-;

fQ

0

3.

2

3

-4 2 3

FRE QlillN CY ( GHz )

4

'l'he figu re is l argely self --explanato ry and sho·ys how tho

average rcfc'L'ence may b e establ i shed j )y t:ald.ng the mean bet,,; ·.en

a reference short ci r cuit. and a reference open circuit . Some ­

times dif f iculties h ave b een encountered i n loca ting the zeroes

to the presence of har monics in the signa l. In such a case, a

low pass f ilte r has helped considerably .

- 87 -

The b70 errors; direct.ivi-ty ( ~cl ) and mis-match ( E rrrc- )

di scuss ed p reviously hav e been combined by DUEwoodic? ( Ref 4 .10)

into Cl. v ery convenient graph to establish the accuracy limits

of Cl. r eflec tomc l:er. Th is is shm.,rn in figure 4.6

-4

. .,.-... -3 co. '0 ........

p:; -2 0 p:; p:;

-1 ~

UJ lfj

0 0 ....:I

~ ~

+1

ffi +2

~ 0'-<

H :x; ~

r C()

fi~e 4~

Gel}.er21 J~ . .rror Limit Cur..v~e s for a Direction~1 - Dev~~

TEST PORT MA TCH V S~\I R EFFECTIVE

DIRECT I VITY ( dB)

20 30 RETURN LOSS BEING ME.T:.,SU1:mD

1-")--3,00 1. 92 1.37. 1.22 1. 10 1. 06

VS'JR BEING :t-mASURED

40 (dB)

1. 0 3 1. 02

- 88 -

For the case of the reflectOmctcr used, (HP8742A) with

a directivity of 30 dB and un effect.ive source match of 1.13,

the follm'ling can be establislled.

Retuxn Loss H~a 8nrp:iLl.dB ~

o 0.2

Ta\?le 4.1

0.6 0.8 ----------------~-------------------.-~---------------------+--------------------~

10 0.9 0.8 1.7 r------------------~------------------~------------------I------------·------·~

. ,0 I 3.3 I 2.39 5.67

00 30 I 00 ~."'tc~ .. ~,.....alf~.r 1\i.'oWJt-_~~",.........t .. H"SIt~,io,. "'~""'''''~~''il~_~ ,. _ ""'_ ... ,.u. ___ ~ _____

6.0 a ....

4: 5 The Effects of Adapter/Connect.or Errors

Refelectome·ter measurements frequent.ly have to be made on

devices vlhich are fitted wi th a different cop..nector to that of

the reflectometcr measurement port. ~'lhen this occurs, an inter-­

series adapter/connector is used and the measurement accuracy

is degraded. Tbe effective directi vit~y (magnitude and phase)

of the reflectometer is reduced and the test port (source)

match is degraded because of the additional wave reflections

from the adapter.

An analysis of adapter degradation may be carried out by

reference to the signal flmV' graphs of figure 4.7(a) and its

t.opologici3.l equivalent in figure 4. 7(b).

- 89 -

F ..iguJ.;e <1,_7j a )

~L.qn.E2....1"'lm". -,,2 raph of _ _ ~.§ fJect(")!:!]et.eE a.nq. Adapt.er

Device

NehlOtl>:

. under Test

E'i.qure 4 , 7 (b)_

TQ.pologi~ill_~:i .. Y2-,!-ent of Iia,-l~ . .r'e_,!~ 7 ( cl

Let \1 = If.::

Let f,'(YI..QJ ==

I I S C ~ ) \5 +- . 2.") v'3PLt

22. .- - -~

\ - 5.53 1-1;

ref lection coeff icient of device to be mea sured .

b,!CL. \ = t he measured reflection coeff i cient "i-lhen an ad"pter is used.

2nd fp."T.1.; = b . / 0.. I

used . vlhen no adapte r is

- 90 -

The additional reflection coeffici ent measurement

u ncertainty ( !}o.._r ) is def i ned as 'the differenc0~ betuc:'l_n

, D and f M~ • Hence : I~r.o-, ".

f~ -- S \2_ S:).\ 1;.' \ - S22. ~

4 .7

A1 though mat hcma ·tically u sef'L:l, equa·t i on 4 .7 des not

present a very lucid picture o f the . adapt.cr ' s effects b e cause

the p arame ters involved are se l dor .. known.. Ho s 't manufacturers

pre fer to issue thoir adapter specif j,cat.ions in ten1S of VSWR.

However use ful i nformation may be obtained by c onsideration of

the v ecto r ial properties . In f igure 4 . 8 ( a ), 4.8 (b) and 4 . 8 ( c )

l e t

k' =

Air =

t~ = fmv --

fp.- =

the true re f l ection c oefficient .

the error vect.or due to t .he imperfect r ef l ect.omet.er .

the measure d reflection 60ef f icient without adapter .

t .he measu red reflection coeff i cient vl i ,th ada p ·ter .

t'b-e adGl i t .ional error due to t he a dap ·ter .

f -m-_ (""!'~

fi fa. ~ I ~----~----~~~-~

FiB_· _L8~ Lowest Heturn Loss

-------t> , ~

f i g. 4.B~ Highest Heturn Loss

Fi~ 4 . 8c Largest Phase Error

- 91 -

From figures 4.8(a) 4.8(b), it can be seen that fer the

\'Torst case errors, the magnitude error simply udds or

subtracts from the true reflection coefficient. From figure

4. 8( c) the maximum phase error occurs when P Nfl" is tangential

to the circle del:;cribcd by Pa .. and ,\,1hen Pr'rn" is tangential to

the circle dcscribed by P~. The additional phase error

I..JJ = ,tan -1 (fA- IfmJ . . . . . 4.8

..... 4.8(a)

Consider the case for the Hewlett Pac]~ard 8742A reflec'to­

meter used when it has an effective source reflection coeffic­

ient of "0.061 , (VSlr:R = 1.3) and a directi vi ty of 30dD i. e •

(.IE rerl/l8. incl = 1°.03161).

Let an a.dapter 'vi th a VS~~R of 1.05 (32dB return loss or . reflection coefficient of 0.025) be used with the coupler

(Fig. 4.9).

The two r:.eflections when in phase can add up to

(0.0316 + 0.025) i.e., 0.0566 of the incident wave v1hich mal ... es

the nc'\\1' effective directivit.y approximately 25c1B.

. ~I ) The test port match. of [INR 1.13 ( \"a ::: 0.06 can become

0.06 + 0.025 = 0.085/when the adapter reflection adds in phase.

'rhe ne1v effective test port source match is VSWR = 1.18 or a

return loss of 21.4dB. lIence it can be concluded that there

is a considerable degradation of the measurement system.

- 92 -

Fiqurc_tl.9

l-,dC}pter Error Ef.fecb~ _on ReJlect.snneter

ll.dapter with Sl,{R = 1.05 . Test Port Hatch (r =0.025) (32 dB R.I..)

. 1.13 VSWR<13=.06)(2~ ____ --,

- I 'l under 30 dB I I L Test

J- ,/1 (DUT)

~_______ ~DUT) . . _--_ ..... Effc>.cti ve Dircctivi ty._

Direction~l Coupler = 0.0316

Effective 'rest Port Match

Coupler ~~R 1.13 = 0.06 Adapter SWR 1.05 - 0.025 Ne\v Hatch ~. = 0.085

Adapter = 0.025 .0.0566

or VSWR ::, .1.18 New Directivity is· -20 10g(1/.0566) -- 25 dB

It is important to examine the measnrement limits for

a 20 cB return loss when the ref1ectometer (I-W 8742A) is used

"d th and wi thOl:lt an adapter (VSWR 1.05). Using the figures

above and going through the calculations of this section, it

can be written:

Return Loss Measurement uncertainty of Device --

-COUPl ~r onE.. (dl:Jj::?UP 1 e.:~ Ad apter ( dB) (dB) - +2.39 to -3.30 +3.87 to -7.18 20 = 5.7 dB (total) = 10.0 dB (total)

-, ...... " . .-

Note that a 5.7 dB return loss uncertaint.y has been

in.creased to a 10 dB unccrtainity simply as a result of adding

an adaptp.e "rii:h a VSWR of 1. 051

-- 93 -

To - avoid having to c a lculate t he above r08ul ts, Dumvoodie

and Lacy ( Hef . 4 . 3) l !ave prt::sented anothe r g ri1ph ( F ig Lj . 10) •

F iqUH~ 4 .10

QncC?rtainty du e to .~da12tefJ~~or

v S~'m OF ADAP TER

+21---~

+3 .. -------"---o 10

ADAPTER RETURN LOSS ( dB )

20 30

RETURN LOSS BEING HEA SURED ( dB)

This graph - may be used in tHO Ifays , ( a ) t .o evalua te the

effect s of the adapter alone or ( b) in conjunction wi th

Figure 4.6 'i"hEn used in the la·tt.er manner, th e maximum return

loss uncertain·ty ( dB ) of bo th graphs are added togc t:hQ l' to

yield the t ot:al ret.urn loss mE:!asurem'2nt uncertainty.

- 94 -

4 :6 An Alternative Method o f Snecifvino _ ______ _____ __ __ •. --1.. _ _ _ '-'--"-

Reflectomete r 1 ... 'CUJ: CiCY

},nothe r f orm f r equer:.tly used t o quanti.f~ re f lection

coeff icient measur ement unce rtainty is t .hC\t give n by a p m'12r

series equation whe re

= A .,. .,.

[' -

Measured Ref l ection Coeffic ient Uncertaint:y

Actua l Reflection Coeff icie nt o f the Device Under Te st and As B ;. Care Phasor Constants .

These . constants A, B & C can be r eadi l y d erived by

ieference to the signal fl ow graph o f figure 4 . 11, ~here

·the justification for using a bilinear transfo rmatioD [l a S

already been shown in section 2 : 3.

a P O'vl e r e-L­Incident

D =- b, /~ --

Q."

ReflEctc~d

Fig'Jre LJ. ~1

fli gn!l l Flow Qraph of .eo

Reflection H.ea ~urj:Dq f0'.§.:~enJ

(1 + T) ---f," - -~--- 2

b

under rr e ~~ t (~) I

P DIve r @-__ , _____ -<;r-L ~~--I----

b I

- 95 -

In this di2.gram, 811 represent.s t.h(~ pOl{er transferred

directly from the input terminal ( a"l) of the reflectometer

to its output ( b, ) independent of the device under test.

Directivity in the coupler is the major contributor but this

also includes leLl](age between ·the various connectors and the

detection systems.

T represent.s "the system scaling factor. The coupling

of the test set and t.he detector and display sensitivities

are the major .contributors to the scaling factor.

822 represents the effective source match to the device

under test, i.e. the effective reflection coefficient

"loo}cing back" into the test coupler from the device under

test.

f~v is the measured reflection coefficient.

~l is the true reflection coefficient.

From figure 4.11 and the o.pplication of Nason's Non­

'l'ouching Loop Law (Refs 4.11 and 4.12) it can be wri-t:ten:

+ 1 (1 +T) t:'

1 _. f,22 k . , . . . and since 8

22 f~ <.< 1,· the binomial (?;'xpansion is

applico."ble,

The higher order teri11S are sufficiently small to be

neglected, hence

4.9

- 96 -

. S r-''2... • t' 1 11 51.nee T 22'L 1.8 compara 1.ve y sma

· .... 4.10

The difficulty ,vi th equu.-tion 4.10 is tha-t "T" is unknO"';'ll1

as yet but. it can be found by the use of a calibrating short­

circuit provided the bilinear transformation constants remain

:invarian-t. Hence,' if ~ = 1 LI8o() and the measured short­

circuit coefficient is ~(short:), egua-tion 4.10 becomes:

. . and by oet-t:.ing f rm..,( short) on the instrument output t~o

be the reference .- 1 /180°, the above equation rE!duces to

T = + • • • • •

and substituting equation 4.11 into 4.10 results in

_D __ f rr'1"V - +

· .... If the refl.9.<2tJ;.on coeffici.~J1t uncert(:d.ntY_l_l!~ is

defined 'as f:rr .... - (' , then -from equation 4.12

or in modulus form for maximum magnitude error

or ,-12 P)..t.:'-' +Dr +C 1

• t •••

· . . . . · , ...

4.11

4.12

4.13

4.14

4.14(a)

where \., =- Scalar equivalent of ~; A = 8 11 ~ Effective

Directivity. B = (S11+S2~) = Calibration Error; C = Effective Source Hatch.

- 97 --

'l'he reflection co(~ff icie!1t 3ng]..~_uncertc;ir~tY __ .L._.2. __ 1 can be

derived di r ectly by a tr igon omet rical derivation similar to

tha t o f equat: ion L;· . 5 or by refere nce to t:11e phaso r diagram

o f f igure 4.12. . " .[) , The measur..::;d reflect lon coefflclent. ! Ij'"('v 15

at c:d. l times Jche p}1asor sum o f the true reflect:. ion coefficient

( PJ:- ) and the reflection coefficient. uncert.ainty ( f )..t. ). The a ngle ¢ rep .r esents t he erro r angle bet:vleen th~ t .rue

r e f l ec-tion coefficient ( P -j:;" ) and the . measured re f l ection

f ' · ( D ) " be , f~ , c oef · 1CJ.ent r /,;Y'_ and J. t w1IIAat lt s rnax1lnUm ,,,hen n-YL- 1S

t an.g e n ·tial t o the circle of movernent of PI..)_ '

Hen.ce:

E.L9tu:~. 12

Phasor Diaaram the Reflect 'on Co~fficj~§nt AriSiie ~u!}i~e.r(;·] .. iJt.y

S ItJ c? M{lo.)(

fJ..~ _. --_ .. - OJ: -fi:.

er M~}( + Arc Sin p.(0

= -D IJ;. ... ..

Fo r small ang l es , f-t:: ~ PI"(lV and eq·ua ·tion 4.15 may be

vrri tten a~.3:

+ Arc Sin pJ.l,

-"._"--'

PlY':"\"

4 . 15

4 .1 6

- 98 -

The equations 4.13, 4.14, 4.15 and 4.16 are reasonably

good approxima.tions. Take for example the Hewlett P acJ~ard

reflectometer type 8742A which is used in theme3surcment

system. The manufacturer's data (HeiS4.2 and 4.7) quote

the following for 8-12 GHz operation:-

Directivity > 30 dB, Residual Reflection Coefficient

=- 0.03 and cO'_lpling factor _. 20 dB.

Hence,· tak . .i..ng t:he transmission fac·tor as 0,995 applying

equation 4.14(a) and 3.10(b),

. • •

A = 5 11 = 0.03162;

C = Effective Source Match .( see equation 3.10{b»

= 0.03 + .995 x -.03162 = 0.06142

B = A + C = .09308

D = Ip... + [0.0316 + 09371~'1

..... 4.17

When it was desired to corroborate these figures with the

HevTlett Packard figu:::-es, great difficuJ. ty 1'las experienced

because the manufiJ.cturer does not publish figures for the

reflectometer on its own. Hovlever, values can be inserted

into equation

of figure 4.6. of 20 dB,

+

4.17 and the results compared t,oJith the graph

For example if C = O.J. i. e., a return loss

0.04172

giving a mea sured Piw...- of O. 1 + O. 04172

= 0.14172 or 0.05828

i.e., a return loss of 16.64 dB or 24.69 .dB. When this 'vas

comp<:lrecl 'vi th the m,;.ximu:'!1 rE·!turn loss given by figure 4.6, it

'v(38 found to be vd. thin 1 dB of t.he cnlculilted \~alues.

- 99 -

The reflectometcr system used for uncorrected measure­

ments is the Hevllett Packard HP8410A. (Ref 4.2). For the

overall uncertainty of the cOTI,plete system i. e., including

the effects of coupler directivity, source match and system

tracking with frequency, t.ne manufacturer's claim that the

reflection coefficient magnitude of the unknm·m ( P/"Y'r"V) is

measured to 'vithin ( P.lJ;.~ ) where

fa.. = + (0.01 0.02 I R.ll + 0.05 Ip IZ for 0.11 - + to 1.0 Ghz · .. 1m

f-u- = + (0.02 + 0.02 /Pmt.! ... 0.05 lPllTll2. for 1.0 to 2.0 Ghz - · . . •

. fAJ- = + (0.032 + o. 0521~"?1 + - O. 036 IPtrl1I L for 2 to 8 Ghz

+ (0.032 + 0.04 .IP,-m ! + 0.07 IPrn.J?' for 8.0 to 12.4 Ghz = - · .. and the reflection coefficient angle uncertainty is givenby

+ Arc Sin f,-u for.,.h L-. 900•

7;:;;:; y

The results of equation 4.18 to 4.21 for the magnitude

and phase angle system uncertainty are 8hO';.,n in figurER 4.13

4.18

4.19

4.20

4.21

and 4.14. The ca3~ for the same equations ';-7hen the directivity

'error is cancelled are shm·m in figures 4.15 and 4.16.

Hew'lett Packard a.rri ve at the figures by using a single

combined bilinear transformation to represent all the errors

in the system. The justification and the conditions by ·which

such an assumption may be made are disc'.lssed in detail in

Chapter 5. They then follow a derivation similar to that

of Section 4.6. Their method 'for the determination of the

magnitude error can be found in Appendix B of Reference 4.9.

The phase error is not derived but it is atmost. certainly

derived in the maruler of section 4.6.

, i

l :f:

TYP I CAL S Y ST £ lINCERTA I HT Y 'I~. P. EFLECTION COE FFi CIE NT MEASURED

.001 .005 .01 .O~ T ---- I .os -~,

FIGURE 4 .13 ~ I --- i I

0 .1 1.0

~ .06 t- I I § I-=+-+--I ---+--+--A-i -i

~ .04 ~.! ~~ ~ I i ~ . ....

· z ~ .02 ~

'-

S.C ·· I? 4 GH', ... ____ _

1-----'--A

eo ~ F'-r=G--_U=R',:E-C -~I: .-1 <1_, ----:11 I[ -------1-1 r I t -------+--l '" ~ I ., _ _ 0 r I't I I; t i , _0 - '2.0 i.'" <,v - :>" : , I

~ • I J --..l ___ .J.. ! I

~ :' I 0 >-,0 ' '' ' ~" \ ,'j-"f---l--i ~: I _~---l \ -\4 I -----' t: Ar> --- -t-- -~ w v

<; i 11,, ~, 1 - I --1-~' i I ~

I It · ' --~--i I l ' .. ( - :~~bgg I

'" t-

.001 .. OO!) .Oi ,a :; 0 .1 .:> '/)

.oo~

I I .04 r 1 I -T -·t--I -

. I

o,~_ 1 ~ il • I ,...._......,J;"'~,,:;.,:,-',~*-;:.:..-'~

8

r-,----I--I R r----t-~-11-----+I---~----+_-I

, ::'l! QfC j i "lf <, (CU: ~:'" ~ l~ l: l t\"' F0 ~ I 1-- -·\- -I -. - [-.----r--. . ! '. I ' , ; I

f. t--~r-+--l---- I '---r--'1

~r----- - \~\' I --- ---j- - ---~-- l • ---- ' '"r; "'.j C -r-':"1 --------~' .. ' 1>'''~~-''\[ -~-'1 .. -----. 1 -~\'I'::;:: -- . --. L ____ J .....-l. I ----J. ;) .. 1" ..... , ___ ;';--\ ' 1

I - 1- I - J t--- --.- 1 -~~'0 Clt l -~:J 1-- ------ -.~-==-t-~ 0 0 1 vt.'j tY. . {J ~ 0 .1 ~ 1.0

HU1.fC1 I') ~J C 'J c::rFICIE~T ..... ['\ ~uREO

I-' o o

- 101 -

One interesting item that has emerged [l.·om Appendix 1 ...

of Reference 4.9 is that He"ivlett. Pacl~ard do not always

calculate the full effect of the effective source match in

their reflect.ometer. '1'he follo'\';i.ng paragraph is t.aken

from Appendix 'A' of reference 4.9:

"The above solutions do reprc'~sent absolute' worst cases

but are usually modified somewhat. The through-line

mis-ma·tch of a coaxial coupler is largE!ly due to the

effects of both input. and output connectors. Since

the input~ connector is vrithin the loop and its effect

thus r~moved, some recommend i~cluding only 50 to 7D:;{,

of the specified through-line mat:ch."

Hewlett PaCkard ·also quote their accuracy SlJecifications

with the directivity error cancelled. Such curves are sho~~

in fig. 4.15 and 4.16. Cancellation of directivity errors

within a' small frequency band is practical. For example in

some microstrip reflectometers (Ref. 4.13) the secondary

line load is adjusted for magnitude and pbase so that equal

but opposite signals cancel the directivity error signals at . the detector. An alternative met.hod is described in Ref. 4 .1·~

In ,,,ide band frequency measurements, this cancellation

is not really practical as both the magnitude and phase

required for· cancellation at each frequency should be lcnown.

4:8 Concl.usion§

The two main errors of reflectometE:~r m2asurements,

directivity and source·match have been discussed extensively

:i.n this chapter. DUnivoodie's chart of figure 4.6 is extremely

uS8ful for it determines the maximum return loss error for

various directivites and source match. The limits of measure­

ment accuracy of the equipElent used in thi s thcsi s has been

sununarized in Table 4.1 but. :H:. may also be calculated using

the alternative methods d(~rived in Section 4~6 and 4~7.

- 102 -

Addi tional errors dUI:~ to connc-~ctor/3dai)tGr transistions

can d(~terio:cate disast.rouslY . _ a meaSlJ.I'cment. system. Both a

mathematical trea·tmcnt and () resultant chart .for this error'

has been included in section 4:5.

For this chapter, an ex.tensive search had to be made of

-the li teratu.n:> because many of the instrument specifications

had been changed by the mcmufacturers as production problems

were encountered. Careful cross-checks had to be made to

ensure tha·t the data obtained vrere pertinent to the equipment

used.

* * * * * * * * * *

- 103 -

4: 9 Referr,':ncGS

4.1

4.2

4.3

4.4

4.5 •

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Dwight, H. B. '''rabIes of Integrals and other Mathenlatical Data. MaD'1illan & Co. , New YorJ,-, 4th Edition, 1972 pp 118.

Hewlet.t Packard Technical Data Sheets "Net\{Qr}: Analyser Model 8410A" dab?d 1st July 1967 8 pages.

Dum<loodie, D and Lacy P, "Vn1Y Tolerate Unnecessary Measurelnent. Error?'~. Sil tron Technicul Revie"l'l Vol 3 No I, 1975.

Lac:;r, P and Oldfield, H "A Precision S1.;ept Reflect­ometer" Microwave Journal, April 1973, pp 31-34 & 50.

He1vlett Packard Catalogue "Electronic Instruments and Systmes for M\~asurement/An.alysi.s/Computation 1973.

Hewlett Packard "Coaxial & Haveguide Catalogue and Nicrm-rave }ieasurement Handbook" 1977-78.

Anderson, R.W. & Dennison, G.T. "An Advanced New' Net1-TOrk Analyser for S'. ..... eep~Hcasuring l,mpli tude and Phase from 0.4 to 12.4 Ghz" Hewlett Pacl.:ard

·Journal s Feb. 1967, 'pp 2-10.

HewlE!tt Packard Technical Data Sheet "NetworJc Analyser 84108 (options)" dat.ed 1 st Harch 1970.

Hewlett Pacl{.ard "High Frequency SW'ept Heasurcments" Application Report 183, Nov 1975.

Dunwoodie, D.E., "Pin-point Errors in Mismatch Measurements", MicrO'lvaves, Narch 1975. pp 50-60.

Hason, S.J. "Feedback Theory; Some Properties of Signal Flow Graphs" Proc. I.R.E. Vol 41, l'J09 pp1144-56, sept 1953.

Hason, S.J. '''Feedbacl<: Theory - Further Properties of Signal Flow Graphs" Proc I.R.E. Vol 44, No 7 pp 920-926. July 1955.

Foster, K "P ri vate COI11.'nunicat.ion 'Ivi th K Foster of Lcmchester Polytechnic, Coventry. 1978 •.

He,.r1ett Packard Application Note 117 -1 "H~cJ:owav(? Net1';orK Analyser Applications." June 1970

* * * * * * * * * *

- 104 -

5.0 Introduction

The purpose of this chapter is to establish a general

error correction bilinear trral-:"sformation model that ,,!ill

enable the true reflection coeffcient of a device under test

to be determined even when measurement" is carried out with

imperfec·t instrumen'cs. At the comm"mcement of this research

in 197,2, there Here two preferred methods of one port

measurement correction. One method was that su.ggested by

Bar1ml and Cullen (R~f. 5.1) in 1950 for determing the con­

stants of the bilinear transformation and the ot.her 'vas that.

due to Hackborn (Ref. 5.9). Bar1oy,' and Cullen suggested using

a short circuit, an open circuit made by using a short-circuit

a quarter of a wavelength a,;.,ray, and a matched load. With the

event of broadband measurements, this method lost favour bl~cause

the" open circuit became virtually indefinable; a fixed length

of quarter ,·;ave1ength can vary by as' much as 100"'0 for octave

band measurements.

The other method which Hac1-;:bo:cn described ,vas that

using a short circuit, an off-set short, and a sliding load

for calibration measurements. The purpose for using the

sliding load at three settings was to describe the locus of

a circle ~"'hose theoretical centre could be calculated to

resemble a perfectly matched termination. This method ,,·as

applied by Adams (Ref. 5.8) in phase-loc]~ correction systems,

by Shurmer (Ref. 5.11) in comput:er controlled measurements and

by Reich (Ref. 5.10) in ~icrcstrip measu~ement3. Reich used

a sliding rnicrost.rip load ".,i th a length of 100 mm. Twistleton

(Ref. 5.12) has alEo made some sliding mi"crostrip matched

loads vd th VS"lH' s of 1.03 to 1.05 for the 8-12 GHz frequency

band but these loads were lurge - approximately 500 Iron long.

- 105 -

Al though these correction systems perform,~d satisfactorily,

two main proble.1l1s remained. Due to dispersion, it is difficult

to accurately define an offset elec·trical le:1gth in microstrip

and t.he usc of a sliding load particularly on microstrip

imposes seve:te restrictions.

For example two of the requirement.s at t.hat time were to

measure luinpod components for u.Sc;:! at microvlave frequencies , .

and to r,1easure th(~ input ~md output admi ttanc(-~s of transi stors.

It llas clear that the physical size of the components in situ

would l"!.ot~ permit the use of a slidinq loc:.d. Hence new

correction methods had to be inv(~.stigated.

In this chapter, various me·thods of corrc?ct:ion including

the three methods invented by the author during this research

"Till be presented. The first corrcc·tion method ('1'he Three

Short Circuits) ,vas published in Harch 1973 (Ref 5.13) The

two other correction methodG (the "Four Short Circuit Correction

Method" and the "Four UnY'.now·~ Terminations z.nd a Reference Short

Nethod") w'ere submi tt.ed for publicction to "Electronic Lettl::rs"

in February 1976. This .was rejE?ct.<;d by th~ I.E.E. as being

too lengthy to print. in' the above publication. Consequently

two full papers were prepared fo1:" publiqation. One was

published in the "Radio and Electronic Engin(~el:-n (Ref 5.23) o.nd

the other 'vas published. in t:he "MicroW'ave Journal (Ref 5.24).

5: 1 The Elempnt.s of the Error. Correct:i on Nod(~l --_.---_._. __ ._ ... _-----_._--, - ...... - --~ *--

.... '.

For the saJ.::.e of clarity) some rc.i t.eration of the points

di scussed previously is necessary. 'rh~ system described

throughout and represented in Fig 5.1 is t.hc Hew-lett. P acl~ard

Nehwrk Analyser 8410A which comrJrises \l dual chiJnncl recciver

(Type 84l1A & 8410A) and a polar display unit (type 8411 A).

The reflectomeLe:cs used can be ei thcr the Hm.;rlett Pac]~ard Type

874l0A or 8742A. '1.'he connector error m·:!t'\{ork represents any

connector or between-series adaptor (e. g., l'1icrostrip to APe7)

tha·t connect.s t.he device under test to the reflectometer.

The signal f~ource used "ras one of the HCI'Tlett Pac}:ard 8G90A

series oscillators.

-- 106 -

F i q}~~0 ~.!.1

B 19 ck D j~09. r ~22-_?!:-1~ r ~2[."H e t 1oTO ~=!~2

SOURCE

Ie RECE IVE R AND <>_ DISPLAY SYS- I TEH EHROR NETWORK I

,0 ,

DEVICE UNDEl{ TEST

P lane A 1 -- . A , ---.- '-1- - -9- 1-

-->--·--'B']· I r HEFLECT01vlETEH _('~ , CO?,,"NECTOR ERROR . I ERROR NETVJORK . i NETWORK.

Ic , I J!,...' ----

~L ______ -1

Plane cc1--·1 '--- Plane nD1

Briefly, the incident. wave at B goes through the

connector and enters the device under test at A. 'l;hc reflected

sign2.1 from the test device is returned tl1rough the connect.or,

through the ref1.ectcmetcr and then ent.ers one channel of the

dual' channel re'cei ver • Thi s signa 1 is then compared wi th a

sample of the incident. wave which we: s fed to the other channel

by the reflectometer. The two signals are then displayed on

the Polar Display.

To establiE:h' an error cClrrection nc't.work for the sys'tem,

it w'ill b~~ shmvn t.ha·t thE> planes l~Al" BBI' and ce l 2lre

related by, the U::-ansformatJons ShOYffi in figure 5.2. .~nd

finally, a system bilinear transformation will be derived to

replace the three transformations of figure 5.2.

Rece i ver and Di f-~!..J lay Error Neb-wrk

- 107 --

Le t [ rep resent t.he reflec'l:ed to incident. · \'l<lVe ratio <I t . plane AA l

D l ! represent 1:;he refl e cted ·to incident. y.rave r a;.J.o a i.: plc:me BBI

represent the refl ect .ed to incident I{ave r ut.i o at plail.e eel

a nd p'"\"fV r E';p l-esen·t the ref lected to incident. 'w'ave ratio In

the d i sp lay plane .

I i.: h as b e en shoWl1 in appencLx 11 . 1 that.:

PI ._--_._----C \--::1 .,... c:l

2- L. 2 5 . 1

I'There (1.. 2 , b 2, " 2 and d. 2 are the complex constants of the

biU.nea r transforma tion bet."Tee n p lan~. A_~l and plane BBl'

- 108 -

In. equation 2.33 it hr.tS been shovm tha t f, is al so

related to P by a. bilinC?ar 'tr<1nsformation of t"b.c~ form

p- Sp -.--.:;.-. =

A, ~ +b, c, P, + ci l ..... 5.2

,...-herc Q.l' b ).' eland eLl are the complex constants of the reflectolllet'2r.

However I :~p is t:hc complex ratio of the reflected wave

E R. to the incident wave E.::i:. 'rhe reflec'ted wave E R. is

subj ected to frequency transla'tion and amplification in one

channel of the receiver. Let this effect be denoted by a

complex cons'to.nt. "a". The Ga.me reflected ""{ave, f. R. is also

subjected to detector and amplifier offset voltages etc.

Let this effect be denoted by another complex constant. "b".

Hence, the combined effects on the reflected signal

results in "Q, C·R. + b ".

Similar conditions are <11S0 experienced by the incident

signal 'E IJ: , and its final output may. also be described by

" C E~ + d.. U where "c" is the complex amplificat::i.on factor

of the incident receiver channel a.nd II d tl rpprescnts the complex

setector and amplifier offset voJ,.t,ages etc.

'rhe detE~etion and display cireui ts tak.e the ratio of the

reflect.ed signal ( 0 ... IE' ~ + b) to "1:.118 incident signal ( C r; i: + eU to produce a .reflection coefficient:. RYr'.l hel1-ee, , ,

Ifm').= a., Ep.+b c f:-r. ~(L

rrhis is another bilinear transformation.

..... 5.3

The results of appendix 11.2 can be utiliz.ed t.o ShO'" that

equations 5.2 and 5.3 may be combined t.o produce

a.Cl, P, + o..,b,· +b

c c., P, '" C.ci'l + d. . . . . . Equations 5.1 ~nd 5.4 may aleo be combined in a

similar manner to produce

5.4

- 109 -

[CL~,O":<+ Cl-b,c2. + b ~J_\:·._+~,O~.~)~_+ (~_~)I ct~ __ h:l~ • • fn c r. + C C ~ + r ·1" + i "l-' ., (- oj- c... rl, '!.~ .;.. ,.1 (~;I L"""'t "I 2. (..(~ I - Q. c:.J I

l. L" 2. 1-. I :,A. V_ (.:. c.A.. ....... ~

• . • • • 5.5

Equation 5.5 is a bilineartransfol"iFltion and may be

written in the general form:

A ~ + B

C \~ + D · . . . . · ....

· . . . . · . . . .

5.6

5. 6( a)

5.6(b)

5.6(c)

5.6(d)

Equ.ation 5.6 is of vital irllportancc for this eq'.lation is the

basis of all single port reflect~n~ter corrected measurements.

However, it must-be emph<lsized that for corrected measure­

ments, it is of' the utmost importance that the cmiplex

constc:mts A, B I C and D remain consti'.!.nt throughout. all the

measurements. Checks and. counter-checl(s lClllst De ntucle to

ascertain that this i.s the case if accura'Lc mea::;ur(-~ments an~

to be obtained.

Theoretical deri vat.ion of the bilinl.?c.r constants of

equation 5.6 is simply not practical because t.he const.ants

themsel ves arc~ the results of many Inore unl<:nm'ln constants

derived in cqu~tions 5.1, 5.2 and 5.3. This can be clearly

demonstrated by reference to equation 2.33 'Ivl!.ich is tho. basic

derivation of e(~ation 5.2.

Thcrtdorc~ the practic<ll approach would be t.o dtC~b2n'1ine

tTle bi1 inca r constants by measurement. To begin w'i th any one of tile four constants may b6 divided by itself to produce

uni i:y prov:i.c1ed tha-t the remaining three constants are also

divided by t.he· su;ne const.(ln-t. It fo110W8 that if -three

- 110 -

calibration measurements, -p, , Pz. -P3 are rr.adc using

II, , r-2.' , r-<3' three accurately defined calibration pieces, \. I \-:>

then the complex constants of equation 5.6 may be calculated.

If a fourth measurement, p~, is then made of a device ,.".ith

an unknmm reflection coefficien-t ~ 1 use of equation 5.6

"lill permit the accurate calculation of ~ •

Many authors (Ref 5.1, 5.2, 5.3,) have suggested means

of de·te.nnining the constants of equation 5. G. One method

suggested by BarlOlv and Cullen (Ref 5.1) is to use a short

circui t, an op,en circuit and a matched load. Other metb.ods

invol ve the use of a shor·t, an off -set short and a sliding

load. In theory, there are numer.ous possibilities that may

be used. HOI-lever, due to practical difficulties; for exarrple,

the charact.erization ,of an open circuit or a practical matched

load, t.he choice becomes limi t:ed. Further details concerning

the methods invented by the author ",Till be given in section 5',3,

5: 2 Correction Metllods U~ing the I!1varJanc£. of the Bil:i.nCo~ar 'l'ransforma,!'.ion CrosS-Rilt:ios

In 'Correction systems involving bilin(~ar transformations,

the calculation of the correct.ed'result is often tedious and

especially time consuming if t.he complex constants of trJ(~

bilinear transformations arc to .. be derived. Beatty (ref 5.4)

has proposed a simpler mathematical approach by utilising

the invariance properties of the cross-ratios of bilinear

transformations. It has beE:ll shm-~n in appendix 11.4 that any

four reflection' coefficients T7, G: , f;' , [4. at a measure-·

ment plane, \AI, can be bilincarly transformed to another

measurement pla~e, 'Z., to produce reflection coefficic-mts

p, , f z.. ' f'~, P 4. See figure 5.3. Furthermore, it.

has also b<?en shown (appondix 11.4) that their result.ing

cross ratios i.. e. I (r;, - \2 ), (p, - f2 ) etc ar'e invari.~nt and

are related by:

(P, - P2 ) -(p;..-t3)

I I

- 111 -

( P3 - f4 .) (" - \~) (~~ - ~ ) = ----

( P 4- - f~ ) ( \~ - r;:) (T:. _ ~l )

Fiqure 5.3 , .

rl'he Invariance of the Bil inear -'I' ran sf Q.rll1a tion C ro s s- ra t i 0 s

Po - PC'+- A -~-~--....".-T

{:.,:I ,

L-

Measurement at .. z" pl~~ Heasurement at "wit J21;:'lnQ

Equation 5.7 ifJ extremely useful for it bypasses the

5.7

need to };now the complex constants of equation 5,6 directly.

Hov,rever, it stij.l r"0.quires the same three calibration measun?­

ments. For example in equation 5.7 I let r., r;: , ~ represent

three knO'. ... n reflection coefficients (calibration pieces) and

let f, , fz ,f3 represent t:heirrespective measurement values.

Let a fourt.h measurement, {~., be made of an unknmvn oFl t' .. r' l' . re_ ec lon coefflclcnt '4' It follows tlat a trlvlal

manipt:<lation of equdtion 5.7 "will permit the calculation of

r;;:., Hence, in practical appl ications, equation 5.7 is

invaluable as it pennits (!;;H':Y calcl1.1ation of the corrccUJd

- 112 -

measurUlllents. Hmvcver, in the analysis of corrected measure­

ment f>.lstems, this equation is not uS useful for its math­

em;;,tical simplification has inevitably disguised many

practical measuring problel11s. For example, direct knowledge

of the corr'plex constant "B" in equation 5.6 help s to ascertain

the effective directivity of the measurement system (see

eq';.<J.tio~ 11.2.7(b) and section 5.3). Directivity should be

relntively constant at a given frequency in a measurement

system. If this differs radically in another set of measure­

ments then F..!q".lipr!lcmt malfunction can be eaF;ily traced. 'rhis

problem will not be so easily identified if equation 5.7 was

used. Hence the three measurement. qorrection systems

presented l:y th8 author will be based all. the general correction expression of eC~lation 5.6.

A General Rpview of One Port Reflectometer Error Correction

Port 1 I

b 1 P = a 2

I I

I

Port 2

--+ I b r:;cattering ---0'-:2..-.

1 Parameters of the comp'lete Reflectometer I ,!, System 1

.--~--~ .0-- a ~14~'-'1

I ·l _____________ . ________ _ I 2

r'.,

- 113 -

The complet.e measurement system incltv"ling reflectomctcr,

receiver, display, connee-cors etc., is considered as a two

port network in figure 5.4. 'I'he dev'icc to be measured having

a true ref1ect.ion coefficient r is connected to port 2.

The. measured reflection coefficient ? is tha't seen at port

1 •

The mathematical details of the an<llysis v,Thieh fo11m1S

have been derived in appendix 11.2. To avoid repetition,

only the results v;il1 be quoted here.

'l'he sca.ttering parameters of the t\\-o port. neb-lork are

describ(::!c.1 by:

8,,0... 1 · .... 5.8

+ S n a..'2,. · .... 5.9

By means of equation 11.2.5,

Q2 S21 r =

Ll, (- SZ'2..r · .... 5.10

By means, of equation 11.2.6,

p _. C h) II + c ~-., ~) ) - 12.. h ?I

1 - S 2.2.1--"1 · .... 5.11

The signal f1m., diagram for equa·tion 5.11 is shOvln ~n

figure 5.4.

Figurc~ 5. '1

.signal Flo","" D iaqram fOL E('Jll<1t.ions ~,6. 5.11 and 5.17---~ . --..... .

- 114 -

Equa·tion 5.11 may also be modified to the form:

f :=

• It ••• 5.12

Equations 5.6 and 5.12 are of the same form, and for

equivalence, then we must have

A := (- 5) - c co + c S21 .- ""11 ":>22 1-'12 · . . . . 5.12(a)

B := c "')11 · . . . . 5.12(b)

c = (- 522 ) • •••• 5.12(c)

D = 1 • • It •• 5.J2(d)

Hence it may b2 concluded that the signal f10\-1 graph of

figure 5.5 is applicable for rcf1cctcrneter error correction.

'1'he physicill meaning of ·the scatt;.ering parameters when

applied in this context, may be likened to the fo1lmdnQ'

prope:.-ties 'vhere:

8 11 represents the effective directivity errors which

in addition to the directivity of the measuring coupler also

include residual reflection effects of test cables, adapters

and l(~akage signals bet"\e?een the. inciden t (J:-eference) and

reflected (test) channels of the receiver etc.

'l'he jusU.fication for thi s representation can be clearly

dcnlOnstrCl.ted in eql~.at.ion 5.12 for the case of a perfectly

matched load ( i\ := 0 ). In this case, .the only signal

detf~cted ,d.ll be that due to. S11 i. e., the cffecl:i ve direct­

ivit.y.

S22 may be seen t:o h~ the rE~sul t of an j mperfect source

match wh?n~by tbp 'vaVQ reflcctpd by the device being moasurecl

is not con",pletely absorbed and part. of t.his .r-eflecb:!d v,';JVC is . , , 'd t rc-reflectC'u to appear as an J.l1cremer.t to the maln InC! ~en

- 115 -

wave. (Note: This source match should not. be confused v:it.h

that of the genera.tor source ma.tell mentioned in s2ction 2: 4).

5 12. S are referred to as the frequency trackinq errors --=-:;;:.. .. _ 21

of the system. These are caused by s!llall deviations in gain,

phase and frequency response. The errors are caused by

differences in the t.est and reference chanr:(!l signal s due to

imperfectly matched cables, differences bet'veen the incident

and reflected test couplers, differenc<.~ in receiver channel

gain etc.

• t 't . In the pract~cal measurernen case, 1 18 not al\lays

possible to connect the devices to be measured directly to the

reflectometer system and the signal f101" graph of figure 5.5

must be modified to include the effects of transformations

due to ~:laveguide/cable/connector lengths etc. Furt.hermore, . d -'!. '} h rn'2asu:rements are frequently requJ.re, on '-leVJ.ces w~ t 1 t e same

reflection coefficient separated by different electrical

1eng'l:hs of uniform transmission line e.g., a short circuit,

an offset short circuit etc.

Figurp 5.§.

r_~~ct~ical SiriIL~l F19.::!.-..r-;]~.ill?2} .. .0J_~he ~ls.ctom(~t_Q! }lea f3:u:-ing syst·f':~D

5'2.1 D2, -.ct e.. 1 eL,

~-'-... -'--- ~------~----~ ,--------~

.. , () S -~~ 1~\~. e~ 01---" .-----_ .. --. -_ .. _ ... ,,--'<: .. '-.--.-----.(} ---.. ---

0 1

"

- 116 -

The resulting modified sign<ll :EJ.m·l graph is shm-ln in . 5 6 F . d . . . h f 11 . fl.gure •. . or ease l.n erl vl.ng tIlt:! equatl.cns 1 te-o mnng

are defined:-

-fY = (eX + if> )Q.

",here -p" represent:.s the total propagation effect.s for a given

uniform transmission line of length It '- " ,

oZ is

p is

1.. is ,-0 . J.8

the

the

any

the

attenuation constant per unit length

phase constant per unit length

fixed length

reflection coefficient of a termination.

The suffices, 1 .to 4 indicate t.he ordered set of measure-

ments. For example ./f/, -- ( 0( + c.f,8 ) 2., r ,vould refer to the

total propagation effects due to a line of length " £," 'vi th

an attenuation and phase constants of ex and f3 respectively.

Hence the general equation of 5.11 adopts the:' forms shown

below:-

For the case £::: t, = 0

· .... 5.13

For the r.Q·se J..,:::: R., ~ , . .

· .... 5.14

For thc~ case i = £. 3 ,

• •••• 5.16

- 117 -

Fro:n equaLions 5.13 7 5.J.4 and. ~\ . 16 it is possible to

derive i-:,he gcn .... --. Cn :L cxpre s d.ons for U1C.~ s;;attcd.ng pararneters .

Detailed deri v3. t.:L~ns 11avc alre2.dy bee n [:ubl 1. sll t:' r.l ( referenC'e

A copy of tJ:l2 p a:ner is included in Appl~ndix 12.2 and 011 1y th e pertinent results ,,;ill be q'.lotcd .

Equations 5 . ~.7, 5.18, 5.19, 5 . 20, 5.22 and 5.23 are extracted

from e(:T1.1~tions; (0), (9 ) , ( l )J (2), (3). ( 4) , (4<:l) respectively

from Appendix 1 of reference 5.23 . For ease of discussions

i:hel un=.!:-

5 . 17

(' t4 · '2f>~ " . " J) r. c>".- ,':; .. t ) _ - /.r., c' I ,. e.. \ +-" I .- I , ..., D lJ:;t, /"' \1 YQ, '::>1\ ,2 -')"" I "'-- ,_

?.::l~12 e = '----- ..... "" .... -.. ------... - .. - ... ( P~ f7 - P ~.)

5 . 18

5. J 9

5.20

•• , • f 5 . 21

/;) ~ rI7('I.. ,;> ' " "' ! :

__ .' ... . _ ,t • ;w,.. . _ _ " . .... ·9 ... '_ . • ., ..... "'·.· ... __ • • "' ....... ..... _. 5 . 22

If the devicE-~ to b(? meo.sured is connected iJC1~OSS a plane

. t i ",l (1 1' c' l' ~ncc. " n II from the l:C.!:cJ."ence r.Jl i:tlie 81. ua :".-,~). a ,I . ,j.W '.;:. ~ L'

5 . 23

- 118 -

Several authors (references 5.8, 5.9) have solved

specific cases but a general f30lution for both lossle~;s and

loss-free calibration standards have not been available before.

5: 4.1 'P. considerable amount of wor]\: "ras expended investiga-

t.ing the many methods of measurement correction. The idea of

using other than short circuits, opell circuits and matched

loads as calibrat.ion terminations Ilas disliked because of the

uncertainty)' of the charac·terization of the terminations.

Many alterriative methods ~,vere tried but three methods pre­

dominated and t.hese Ilere finally choscm for further work.

The three methods arc (a) The rrhree Short Circuit Method

(b) '1lhe Four Short Circuit Hethod and (c) The Four Termination

and. a Reference Short Circuit Met.hoo.

5:4.2 The Three. Short Cir~uitl? Correction Method

In this case, the three t.c!1~minations used are

~ or ~ :: \-;: :;:: " ll~{l~ The electrical leng·th bet\.Jeen f; and r.' is 2-2 a~d the electrical length between 'G and 12 is

(- 2-3 - J!.,Z)' These are shown in, f:i.guI..-t:~ 5.7 •

..-1~Jft. =. (d" + J (3) £2-~ = J{3e z

-,p/~ -.<:: (cz -t-~ (=3) Q. '3

'(:3 :.::: if (£3-,£2)

Devic2 to be measured

- 119 -

If the above are substituted in the general equations

o f 5.19 to 5.22, the follm'ling resul ts

- e2P2(~_SIl) - 6 It - f,) ( P7_ - Pr)

-P rr("l~ - S 1/

CD '" S S -'22. I I'l'n..- +- S i 2.. '::) 2.1 - 1\ 2."2.-

5.19(~)

5 . 20 ( a)

5 . 21(a}

5 ,22( a )

If the connecting elect.ricCtl lines ;::tre considered to be

lossl e ss, t h e above equat.ions beco:nc :

5 .19(b)

+j{)c~ ( co "\ _ P, e '1~' -. I I) + S 1/ .-~-----. --'-- 5 . 20(b)

(P, -. P'2)

5 . 21(b)

.i; _. C I _____ ~I.;:0~~ __ ...;_!.... ___ ._._ .. ____ ~ 5.22(b)

S P to. .1" 0, (. ,:~.,,... rz:2.. ryy... ...1 •. ::'> \ ,~~ ~ ~ \ -.. _, I \ . ~ L'l ~.

- 120 -

o f cquaL:.iurJ.::; 5 . 19(b) to 5 . 22(b) experiment.allY. Ver:y good

results were obtained. ThesE: resuJ~s were published in

E18ctrcrd.c ·Lett.c.i.."S ( Hef 5.13) in March 1973. SincE.~ thc:1.,

Lhis nwLhod of ln2.asurement has been \'8d.fied by Gould and t

Rhodo s ( Ref 5. 14) and Kwesah ( Ref 5 . 15) . Warner ( Ref 5.1G)

dnd Woods ( Hef 5,17) h:rve recognised the n:ethod as acceVr'able

i n t h eir ri9o'COUS analysis of ref.lecto!nc-te:r: r~r~~ors.

'f1-d. s lS th~ ca. ~~~c de '·~cribed by Hac]<:born (Ref 5 . 9) . For

t his,

r-"" -\ I .-

. j

From equation 5.19 to 5 . 22

S -, r I -- f) :j

. ) t;:-o

E' t ' 5 J9 ( ) J. '''' O V11ly t .:r·UG f o r a m;:tlCDcd termination . qua 1011 •. c ~

From equ<: t.ion 5 . 20 n I ' /p . ", ... , £-r~ _ '-," \

';:;. t \ -- A + e l 2- ,,; . ' . ./ ---------... --.. - i)-----

-f, -r'L . I f 1.:he t:rans'l1j ':'3sion line is 10ss1 ss i. e .

F rOIn equa·tion :; . 2 1 .

(s t I .-. f '.,Ie \ + c: 2;>.,)

From quatirn 5 . 22

-Prlon.- .- S II c: I) .,' r _ c... ." :> 'L'I l' /- i., + ... ' \ ~-..:: ~- f ~,. 'I ~ ~_2..

5 . 19(c)

5 . 20(c)

5 . 21(c)

- 121 -

This method has b?en compared by the author ( Her 5 .23)

against other methods and has bee n found to be that l east.

sensitive to length errors L1 the offs2t short.

In thi s method J

r~'::: r iQ_~) 12::: ' L 0° ) ~::: I I C)0

~rorr. equation 5.],9 I _ .

5 '1 ::- -PI e~J5?~-= I) .-- ~ p,? (e'2Li~~~C22 I) - f3 PI Ce-'-~: e,z~?>--p~ __ _

p, (e"{1'3-1J2) I) + .~ (e2P~ f/(-P3-.f>IZ)) + P3 (I (~ e2P2.) • •••. 5. 19 ( d)

From cq11ation 5.20

5 (2..2 =: e 'LP2 { ~ - S I ~±_ ~L~ -- PI -f?. -. PI .

From equat.ion 5 . 21

S { '2. S 2{ -::::: (PI - S \;)( I - S 2. '2.}

From equation 5.22

r c () -1.. C! S - s (. ~ 2.2. rl")'Yt....-' ..... 1'2... 2 1 1\ -> 2l_

'l'his method cari be used provided one c an really define an

~~ . 20 ( d)

5.21(d)

5.22(d)

open circuit termination . Tests with this method (Ref. 5.7) h ave 8hO\{n that the corrected resuits are susceptible to errors in defining the open circuit terminations.

For co-axial cables , HeYllet_t Pac)card ( Hef S . 7) and , \-J oods (Hef 5.18 ) have given figures for various si~andan1

conn(~ctors. They are tabled belm.-

C<2Emec"l:or T:tl?c .~~9hm L:L!2~§

APe7 -~---

N -- MALE N .. - Fm·~ALE

SW\ -" M.L"\LE C;HA - FEMAL .~

14 .2 825 mm (Jnt. nidm) 19.05 mm (Int. Diam)

--2E.~n C ircni t ·CapaC·i tance;,:;r­Hewlr'lt Packard \-;ooos , D.!. --0.081·---------0--07----

0 . 032 • - 0 .1 80 - 0.064

0.032 O. J. 64 9 0 . 22Cl2

-_._------- _._---_._-------_ .. _------------- --'-' --_ .. -

- 122 -

Hov.Tcv(,:r" \~}lOn micro s t.cip is measured the open cireui t

capacitance is i LL -defined . J ames and 'I'se ( Ref.5 .1 9 ) have

given some informati.on on calculating microstrip end effects .

The author ha s ~_nventc(~ a met1D:3. vThe reby the t e rm:i na tion

inuni ti:anc e can bc cal r'u lated directly from the c alibration

measur~men-ts . rf'h i s i s explained fOully in Sec t rimS : 5 .

5.4.5 The Thro (:? Id e ntical Non--Hat~ched Termination Correction - .----- -----------------_.- ---- --_._-----------------:Het110d. , . - r I' --'--- TIn s 1 s the ca se \\Then .1 == 12 = r; == \; , whe r e I""\:.

itially un1'>:nmm. Its use \'lill b e shmm in. Sec·tioD 5 . 5

c ...)2'2.

5 .~21

\' (j) - S 1''\) / \ - -I , \.. I I \...

l From equation 5 . 22

frrr:.- - 5 I I

'5 :1.: frrru +- S 1 'L S :-=-:S \ I S~~~

i s in-

5.19( 6 )

5 . 20(e)

5 . 21(c)

5 . 22(e )

It should be noted that 5 11 is u J1affect.ed by any

·termination hut S22 and 812

8 2 1 are affected by the

recip r ocal of t:he termina t.ion r eflec1:ion CO E.f ficient..

'J.':his is ·the _;"l <'58 vlhen :

r~' = \ L \ 80\7' ,. , r-' .- I I' $'0° 12 - 0' , ..

)

5 . 19(f )

5 . 20{f)

- 123 -

From equation 5.21

5,2.52\ :: (Sit - p.)(, + 52.2..} ..... 5.21(f)

From cqu':l.tion 5.22

r 5.22(f)

This is the method devised by 5hurmer (Ref. 5.20)

Practical measurements using t.his system (Ref 5.23 have shown

the correct.cd n:~sul tc to be highly dependent on the accuracy

of the open circui'l: termination.

5:5.1 These four terminat.ion correc'l:ionmethods were inven·ted

to overcome some of the difficulties associated '~Ti th the three

termination correction methods. The chief problems a.ssociated

with the three terminiltion aorrection method~ are:-

(a) Difficulty in specifying caiibration lengths.

(b) Diffieul ty in defining t.he calibration termination.

(c) Chan9ing thc position of the rr.easun~ment plane.

(d) Constructional problems.

. . 2.!~_.1:_L_l2i-j:Ji"'£lllkiD SP~7...cjJying CllJ ibr2J::iol) Length.§

In the case of air co-axial line and ,,,,ave guide sYf3t.ems)

electrical line lengths can be accurately specified. Hm\lcver,

when dielect.ric filled co-axial lines, ,·raveguides and particulilr-­

ly microstrip arc used, the dielectric medium may not. be

homogenous. Furthermore, because of dispersion effects, the

electrical length specified at one frequency may be different

from t.hat at another frequency. The idGal solution would be

to find 80m2 ly.2tlJod of dE~termlning the propagation propertl.l?s

(total attenuation loss aad phase change) of t.he line at. each

frequency.

- 124 -

5:5.1.2 DjLficuliy in Defininq th~ CaU.bra'cion 'rermin<:1.t.ions

It has already been mentioned in Section 5:4 that

because of difficulty in specifying 'Lhe calibration

terminations, these are generally lir:li·ted to short cireui ts,

open circuits and mat.ched loads. The short circuit presents

little difficulty for co-axial lines and \vaveguides as the

losses associated \'lith electrical conductivity are minimal.

'rhe effective plane of an open cireui t termination is

difficult to determine especially in microstrip. Further­

more, for certc::.in calibration proec'dures, (Sections 5: 4~1

and 5:4.5) the 'corrected accuracy may be seriously impaired

if the open circuit tf; not correctly defined. The difficulty

associated with producing a perfect matched load are well

known and need no further comment. An ideal solution would

be a method '\lhich was independent of th~ calibration term­

ination.

515.1.3 Chanqinq the Posi~ion of the ME'~asurement Plane

In the measurement of some 'Cowponents, e.9., capu.citors,

inductors etc~, it is frequently desir(:~d to alter the plane

of measurement to determine the actual componE·nt. value· of

·the item at its place of origin instead of its value trans­

formt:~d by a :r,_~ngth of transmission line. rl'his chunge of

the measurement plane can be carried out by using equation

5.23. Ho~wever, the electrical length must. be accurately

known at the frequency concerned.

- 125 -

Difficulty io often encountered in the con::;truction of

short circuits in microstrip especially when the line is

terminated ai'lay front the edge of t.he substrat.e. This problem

is compounded when brittle substrates such as sapphire,

quartz, glass etc., are used. Some "Shattering" experiences

were encountered 1.;hen holes had to be drilled to construct

short-circuits. A solution independent of the calibration

termination "muld avoid these problems.

5: 5.2 The Four Termination Correct.ion Hei:hod s ,----

This method 1-laS invented and initially submitted to

"E1ect.ronic Letters" on 11th February, 1976 (Reference 5.21).

The ca1fbration procedure requires the construction of four

test pieces. All test pieces must have identical terminat­

ions, identical "'trahsi t.ions to the nctvlOrk analyser terminals

and identical trans~'l1ission. lines (except for length) connect­

ing the transitions and the terminat'ions. rfhe lransi tions

and transmission lines (Z02 in figure 5.8) must also be

identical to that used for connecting thc~ device to be

measured to the network analyser terminals. It fol10yTS that ~

all the transmission lines used will have identical attenua-

tion constants, identical phase constants and identical

'characteristic ,impedances at each measurement frequency but •

none of them? values need be Jmown at this stage.

---------------.--------._---...,. --."-"-~-~.--........ ..,~~--.'-------~ ...... , .. - ... --......-..--... --~

+ Reference Plane

P. I Perfect ) 0, 1 ~ s., ·1

c' )I Reflecto- ~511 S2.2.-~ V r l mete!: '-0 I <: 1--0-' . I / s,z ~L I ;>1 ~

Ole;. J . ""'I.

I Nea.sured Reflection Coefficients

Error Network.

L = any arbitrarI length

,.... -.-Q. ..... e'

I o e--rv 1r

/

\< 1? ;>1 I

~,.,

Identical terminations and trans:nission lines of Zo2 characteristic

impeda.nce ./;/ '

r- I Qi3 1 -PI = (0<. ..\- Jf3 )Q

~ =~Attenuation constant.

// o e .... ·(:lJ

o e-2 ;v }r 1< z2 >1

c!~

f3 e;= Phase constant J?. =: Line length

0

"

e.- 3 --(U

p-3 -f2' lr I

. \ ...... 31-I"

. ..1

I --f

A I Reference Plane

FIGURE 5.8 SIGNAL FLOH GRi\PH OF THE FCUR TERt\fINATION COFRRCTION ME1:HOD

I-' 1>J (J'\

- 127 -

The physical lengths of the uniform transmission. lines

usC:?d in the test pieces must. h'J tf L ", .. t_ -;. Q.", It L +2Q" ,

It L + 3'.e ", I>lhere "L" and ., r~ It 'e 0 t t 1: t "-1.-- 1 f 1. ar..· c nf3 an S:JU I_l~e va ue 0

" L" need not be Jmown.

For calibration purposes, each test piece is connected

to the net'\'mrk analyser terminals and meClsured. From these

measurement.s, it is possible to calculate the total atten­

uation and phase change of the line length "t". To derive

the scattering paramet.ers of the error netw'ork, it is

necessary to knmT the complex reflection coefficient of each

test piece. No difficulty exists if the termination is a

.short t:ircuit. However, if the termination is unJ~nO\m, e.g.,

an impcrfec·t open circuit, then i·ts stray immittance must

be found. '1'his can be obtained by placing a short circuit

across the reference plane .(Fig- 5.8) and maJdng an additional

(fifth) measurement. Then by using the informat.ion from all

the calibration measurements and. equations 5.28, 5.31, 5.32

and 5.35, it will be possible to calculate the scattering

paramet.ers of the error nebwrk. This information mQ)" t.hen

be utilized for t.he correction met.hods of section 5: 4.2.

If the line impedance of the test pieces is not that

of the reflectometer, the cor.r·ected reflection coefficient

derived ,rill be that normalized to the line impedance of

the test peices. This is of course, the established custom

used ,·d th non-TEM '\v-aveguides lv-here a uniCj'l.'i.e definition of

impedance does not exist. Hence this method is applicable

even when the measured device is embeddl?d in a line impedance

other than that of the rcflect.ometer system.

The signal flmf graphs of figure 5.8 yield:-

p-I

c c: r' - 4'9-­+- ;:) ,? .:::> ;>. 1 1 f'" ---

· ....

· ...

· ...

· ...

5.24

5.25

5.26

5.27

128 -

'I'he m~.thcmatical basis for these corred:ion syste:lls

have b2en derived by the author in reference 5.23 ,..-hich is

included in this thesis as Appendix 12.2.

OnlY the results of this paper will be repeated here.

r~1 '2 Ceo~·3>.2i;p~q ~ +- ~ f4 ~fi Ps - ~ P4-). + ~ 2.,/:; (p, ~:l.-fl/~ •. -~f3 + f3~) . + (-P,P1.+2R~-P,P4--hP3-R.fi+2~~)f •.•.. 5.28

Hence, provided ~d 0, a soluticn. cf the quadratic

equation i.e.; G.oRJ 2-jV is possible. Furr.hermore, It..-P"

may be resolved into its real and quadrate parts to yield

the total line attenuation and phase change. In addition,

if the.phYf:3ical len9th of the line up... tI is known or m(~asurcdJ

the effect:i ve dielecJcric constant may be calculated.

Let on8 root of the quadratic equation of 5.28 be

denot.ed by ()...L.- + J ~"' .... ) whe~e "/L." and" '1)' \I are real numbers.

lilriting G.')-;;..Pv 2..-p in its exponential form will result in

· ..... 5.29

If one root of the quadratic of equat.ion 5.29 is denoted

by (X_ + ~ ~ ), then

e2-·~ __ e 21X P-12F12. =J%~'+'a-2 l.1:!.~~I(~V(Y · . . . . 5.30

Hence,

2 ex Q = fbrv J :c.2 +:J 2 Nepers · . . .. . 5.31

• •••• 5.32

If thc-! reflection coefficient f-' of the test pieces are

lmO"l.m, then equations 5.31 and 5.32 may be used in conjuncticn

wi th thc~ measured parameters A , P'2. I!~ (equations 5.24, 5.25

and 5.26) t.O sol va the scattering parameters of the error

nebfOl'l.;: (equations 5.19, 5.20 i:md 5.21). Neasuremr:nt. correct­

ion can them be applied to an unl~nov.'11 device as det.niled in

section 5:3.

- 129 -

If the reflection coefficients, r·.., of the test pieces

are unJmmm, then it must be found (:ither frOM tables

(Section 5:4.4) or by meilGUreJT\Ont and/or calculation. The

procedure used is detailed in section 5:6.

5:0 'J'hp. EV'll1Ju~:iC)n oft:he Reflect.i on Coefficient of the Tes·t F'ieces _____ -e. __ _

Research into this problem wa:::; initially started because

of the difficulty of producing good short circuits in micro­

strip. It had been obvious for some time tha·t correction

(Section 5:4.4) using open circuits· with their inherently

simple construction is especially desirable in microst.rip.

However, previous attempts (Ref 5.19) at calculating the

stray immitl:ances were not sufficiently accurate.

. .. r (?·"'·d(~) In t.his procedure, t.he reflectlon coefflclent (I ::=: e t)

of the test pieces is obtained by an additional (fifth)

measurement. 'I'his additional measurelf,ent, fs is that made

when a short cireui t termination is placed at the reference

plane sho'\om in figure 5.8.

From equation 5.19, 5.20 and 5.21, it is readily deduced

that provided

(a) S" is unaffected by the type of termination

. I

Sl2. -(.JL+d"'P)C' I

qJ) e':')22..

• •••• 5.33

where 5 2 2./ [ eZf)~ ( P?_ - S 1/ ) + 5 II - P, 1 · .... 5.33a

'~2.. - P,

C: 2.;::' ~ ,.;:~-:.. -. (SL + jq») c I

5.34 ( c) -.>/ - ... e VI2.S 2.1 · .... ~ S/ __ - (PI - 5 11)(1

.'\

where .. ,,,- 21-- - 522) 5.34a · ....

_. 130 -

From the fifth Z'1(;aSUrement

Ps = '5 II + S I 2, S 2. i I L'..?:_? () I -- S:? 2_ ( I! I?':;~--

Transposing $

••••• 5.35

Hence from equations 5.35, 5.34(a), 5.33(a) and 5.19,

the real and quadrate parts of the reflection coefficient

of the test. pieces Jl1ay be calculated. Subsequent experimental

tests prove tha·t. this method is ac:!C'..lrate to 1% of the published

figures.

5:7 .. Conclus~

'1'11e information pn~scnt(-;d in t.his chapter is vi tally

important. D(Jtailed mathematical c:.rgucments have been used . . to establish why it is po~,siblo to measure reflection

coefficients correctly in spi te of imperfect. insi:.J:.'umcnts.

An error correction model has been derived in section 5:1. The general theory regarding correction procedures has been

extensively . expounded in S(~ctions 5: 2 and 5: 3. General

fO!1nul~e for calibration and correction using three calib-

. rat.i.on piece::;:: haVl~ been derived for the first tirr.0., c:md

applied to prc~v:Lously established special cases. Several

ne,,, calibra·tion procedures havE~ bell!} e\101 ved in SE~cUon 5: 4.

Fur thennore, some oJ: tIle method s invented are 11m, accepted

as sta.nc1ard method~ of correct.ion.

- 131 -

The m(~t_hods of Section 5: 5 are exceptional fr,ethods in

that they have shown how the attenuation consla.nt, the

phase constant, dispersion and even 110"\'1 the reflection

coefficient of the test pieces may be obtained. Hitherto

these properties have no-t been taken into account a.s these

t · . losses were no edslly ascertalned. Finetlly this theoretical

analysis has established clearly tha-t error correction

procedures are possible wi tbout the usc of eX}.:)cnsive pre-­

calibrated test pieces.

* * * * * * * * * *

.. ; ..

- 132 -

5 .1 Barlow, Hand Ct::.llcm, A lI}1icrowavl~ Neasurement.s -Constable & Co., London 1950

5.2 Adam, S.F. "Microwave rrheory and Application" Prentice Hall, New .ork.

5.3 Sucher H and Fox J "Handbook of Hicrowave Neasurement.s, Vols. 11 2, 3 - Pergalnmon Press Nevl Yor1~ 1963.

5.4

5.5

5.6

5.7

5.8

5.9

5.10

.. 5.11

5.12

5.13

5.14

5.15

Beatty, R.W. "Invariance of the Cross-Ratio Applied to Hicrowave NetvTOr)~ AnaJ.ysis" National Bureau of Standards. Boulder, Colorado, issued septem .. 1Jer 1972.

Biancq B and Parodi, M "Measurement of the Effective Relative Permittivities of Microstrip" Electronic Letters 1975, II, pp 71-72.

Ajose, S, Matthews, N, Aitchisor~ C "Characterization of Co-Axial to Microstrip Connector suitable for Evaluat.ion of Microstrip 2··Ports" Electronic Letters Vol 12 No. 17 pp 430-431 August 1976.

Hewlett Packard Applicati oa Note 221 - Semi- . Automatic Heasurements using th<? 8401B NicrO'.·lave NeblO.rli: Analys(::?r and the 9825.Zl,. Des)t-Top Computer

Adams S. "A Nmv Precision Automatic Microwt'lve Heasurcmcnt System·! I.E.E. 'I'rans. on Instrl.l111entatiorl

. and Heasurement. Vol IN 17 No 4 Dec. 1968.

Hac].;:born, Richard "An Automa.tic Network Analyser Sy-'stem" Nicrm'lave Journal, Vol 11 No.5 Hay1968.

R~~ich, Volker "Microstd.p-Hessingen mit Netzwer]~analysator'" Nachrichten 'I'echnische zcitung 1975, Heft 5 pp 255-259.

Shurmer, H.V • .#. uLow .. Leve1 programming for the . On Line Correction of IVIicrmYave Measurements" The Radio and Electronic Engineer, August 1971 pp 357-364.

. . t' L 'l',ncleton, J,R.G., "}11.crm..;ClVC Inser .J.on oss Neasurenv.:m·ts" I.E.E. Colloquium on R.P.Measure­merrl:s on Solid sta-te D0vices, London 25th Hay 1971 •.

da 8i1 va, E, F. and HcPhun M.IL "Calibration of Hicrmlave NeblOrk Ana1ysnr for Compu·ter Correct-ed S Parameter Measuremel1ts~t Electronic Letters 1973 9, pp 126-128.

Gould, ~r and Rhodes, G "Computer Correction [or a NicroTdave net1-;'ork analyser wi thout accurate freCJl.H:mcy measurement" E1ectroni c Letters 1973 9, pp 494-49S.

E'i·msah, 'A "Characterization of Inteqrated Di-polar Transistors using Computer Aided Measuro­ments and Optimisatio~! Ph.D Thesis - University of vlarwic}<:,Nov. 1976.

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

- 133 -

Warner, F. "Microwave Att.enuation l1E:"asurement" 1977 Peter Peregrinus Lte (I.E.E. Monograph SeJries 19).

l100ds, D "Rigorous Derivation of Compu.t.:.er Corrected Neb~·ork Analyser Calibration Equations" Electronic Letters 21 Auaust 1975 Vol 11 No 17 pp 403-~04. -

Woods, D "Immittance Transforma.tion using P recision Air-Dielectric Co-Axial lines and Connectors': Proc I.E.E. Vol 110 No 11, Nov 1971.

James, D.S. and Tse, S.H. "Micros·trip End Effects" Electronic Letters 1972, 8 pp 46-47

Shurmer, H. V. "Calibration Procedure for Computer Corrected S P arame·ter of Devices Hounted in Microst . .rip" Electronic Letters 1973 9, pp 323-324.

Hills, T.D. "Private Communication dated 18.2.76" I.E.E. Reference R 1495.

Cox, T D.Sc. Final Year Project 1974 Engineering DepartmeD-t, Uni versi ty of Warwic]t.

da Silva, E. F. and McPhun, N. K. "Calibration of an AutomC'ltic Net1'lOrk Analyser using Transmission Lines of Unknovm Characteristic Impedance) Loss and D'ispcrsion" The nadio aJ1d Electronic Engineer Vol 48, No 5 Miy 1978 pp 227~234.

da Silva, E.P. and McPhun, H.K. "A Revievl of Networ}c Analyser Calibration 'I'echn1ques for One Port Measurements" Hicrowave Journill, June 1978 .

.#.. •• fr.

* * * * * * * * * *

- 134 -

HEASUREHENT EQLJIP1'IlENT (Seftvlare)

6:0 Introduction .. ~-~--------

Practical applications of the equ2.tions in Chapter V •

·require long and ·tedious computations of complex numbers ar:d

a desk-t.op programmable calculator (Hew-lett-Packard 9100A)

was used in t.he initial stages. with 'chis calculator, the

calibrations for each frequency had to be keyed in manually

Clnd the answers WGre returned on a printed sheet .•

Later, when measurement automation was introduced, the

Hevi1et.t P ac}~ard Calct-..lator 'fas replaced by the Rank Xerox

Sigma 5 computer. Considerable difficul t.ies \vere initially

experienced in using this computer as the idiosyncracies of

the computer-nGti-lOrl( analyser int.crface had to be learnt,

and t.he large storage requi rement s of ·the programme made it

feasible t.O use Jche computer only late at night. How·ever,

the many months S'J?ent producing the progranune has been amply

rei-larded "!::>y the speed and th9 (;~fficiency of the automated

systens.

The computing programmes described in this chapter 111ay

be divided into two main categories:-

(a) Progr,)mmcs for manual operation.

(b) Automated programmes.

The In<lnual progralm'lles vd 11 be fully described. Com:)lete

clescr·1.pLions of the rn::torrmte::!d prcgrarnmcE; Cl.re impracUclll

bC'canse of the length of the pro~Tl::-anen(~8.

( I

- 125 -

I __ igurc 6,1

pj cJ:~ __ 9_~L_He~i:L3J:-i- Packi?r< Pr()qranuna~le Cill c ulu LGT jledel 9 1 C:)A

t 9lDOA

Printer mowl.ted on calculator

\ --~ \ ---'------------,-,

9l0DA/ 9 J?O/-,

I I J

/

- 136 -

No·te: It is assunH:;:d tbat tlle read(~r is conversant 1'lith

th8 cc:;,lculator. If no·t please consul t the manual (Ref 6.1).

'l'he prograrmm:" 1'las 1'lri ttcn for use on the Hew'lett P C:lckard

Programable Calculi:.~tor 9100A (Fig 6.1). The p.-ogramme

accept.s input del,ta; calculates them according to the equations

5.19(b), 5.20(b) .. 5.21(b) and 5.22(b) speficied in section 5:4.2; and print.:: the output dat.a.

rl'be ca.lcnlat:or "Till accept t.'VlO. i tt-".:l1"lS of information at

a time; on(~ i,tc,n must b'2 put int.o its "oX." regi ster and the

oth(;l:' m~,l!:lt be put int.o its ",&" rC9ister. In the display,

the 1I,(~" regi ster is -8i tuab~d llLoVE~ the 11::(.11 regi ster. Each

set of informa tion contains hm items af informati on. Five

sets of input. data must be read from the mc~asuring in=;trument~s

by the operator. 'This information must be h:md fed into the

calculat~o:r. in the order specified in 'l'able 6.1.

T'2.t~le 6.l' InE'lJ,LFonnd t::

. set [-'---.---1------. -. -----, 1- -) l -- "XU RC01 pt.er !Iv" Reg] E~'ce:r' :<ema!.....<:".§ Ord~r ----=----.- --1._--- .. - ---- --------.-.~-- ..

f"-- fhanl.· -- 'Freq-:-- in-'G'i-rz F·rE~q'JE.mc~y -'of 'Operation

of 1st: short Clrcult

Nagni L1·1(:!· l\ngle/Degrcc He~su!~ed RCflectio~ Co(.fficient I of 2nd r:;hort circult

Hagnitude Angle/Degree Neasured Reflection COGfficient

3

4 of 3rd short circuit

5 Magnitude

.1-_____________ . __

Anglc/Dcg)~ee Heasured Reflecti on _ J~~_ un}:;:nOl>Jn d~V __ J··._c_e ________ ....:

Coefficient

'fhC! output-. d;).ta iG printod out in the fannat S]10\·m in

Table 6.2.

*

__ '_0 __ -.

1 Magnitude

2 Magnitude

3 Hagnitude

4

5 Nagnitude

6 Magnitude

7 Magnitude

8 Magnitude

9 Magnitude

10 Real

11

- 137 -

:.t'abl e 6-2

OU"l:.e..~lt Forrn('1.t

---.------4-~.-------------- ----\ Angle/Degrees Heflection Coefficient

of 1 si.. sllOrt cireui t*

Angle/Degrees Reflection Coefficient of 2nd short circuit*

Angle/Degrees Re1:1ection Coefficient of 3r:d short. circuit*

Angle/Degrees S11 - Error Nr",b{orJ{ . P aramet.er

Angle/Degrees S22 - Error Netvmrk Parameter

Angle/Degrees 8 128 21 - Error Networ){. Parameter

Angle/Degrees Neasured Reflection Coeff't of Unknm-rn Device*

Angle/Degrees Corrected Reflection (beff' t of unknm"rn Device

Angle/Degrees Actna1 Series Impedance· (Polar Form) .#:

Quadrat.e Actual Series Impedance (Rectangular Fonn).::L:'

of Set 9; only one figure will be printed J

This data is merely prin,.ted o~t t<;> ensurt; that a copy of the input data to the machine 1S ret<:uned.

:#:: l'li t.h reference t.o a 50 SL line system.

The programme is pre-recorded in machine language on

Magnetic Cards (Hew'lett Pac)<:ard Type 5060-5919). Each magnetic

card is approximat.e1y 93mm x 51mm in size and each card contains

two standard programmf~s. Each standard programme 'Hill store

196 prog1:"().ln steps of j.nstructions but 1'1 steps are automat.ica11y

lost within th2 machine .wh(~never one storage regist.er is used.

If the m:lcrd.ne is programmc~d correctly, it is possible to

SUCCf'::,sively feE~d 0(18 standard programme set of inst .. t'nctions

after anothl~r into the machine without destroying the inform-:

at:i.on retc.d.ncd· in the storago registers .1"He. ~\..c;w t-\.\f\I'P.."f" (!:>

Gr\"'E\1 ON ""'~E N~)('T"" PAI'i!5:.

- 13\7.1 -

Floy Chart of the Programme used on the HP9100A Calculator

Enter Card .A.

Clears machine.

Input frequency data. in GHz. Continue

Prints out frequency entered in ODs.

Calculates and stor-as the phase shift for tb~ •• lecta6 lj. De 1 ength in re~i ster a '. Generates a cons1.~nt. s.t.op

Input 1st reflection coefficient. Continue.

Prints out 1st reflection coefficient and processes values for storage in register' ~. Stop

Input 2nd reflection coeffiCient. Continue.

Prints out 2nd reflection coefficient and proc.s.e~ values for storage in register c. Stop_

Input 3rd reflection coefficient. Continue.

Print. out 3rd reflection coefficient and proce ••• s values for storage in regi.ter d

Calculates 1st and 2nd tenaB of the numerator of ~11 End.

Enter Card B Continue.

Enter Card C

Calculates 3rd nuaerator tera of S11 and stores the total n erator result in registerl Z and 9.

Calculates the denoaiaator of Sll

Calculates the total value of Sll And stores results' in registers 9 and d. End.

Continue

Calculates 822

and stores the results .in registers f and e.

Calculates 812

S21

and stores the results in registers Y and b. Stop_

Input measured reflection coefficient. Continue.

Prints out measured reflection coeffcient •. .

Commences calculation to yield corrected r~flection coefficip.nt. End.

EnLer 'Card D Continue

/ 6

Continues calculations to yield correcteri refl. coet.

Print~ out reflection coefficient. in polar form, its cquivnl~nt impedance refprenced to 50 ohms in b~th polar and TI~ctangular form, and itA equivalent capacitance or indue tanc e.

End.

- 138 -

T"lO lU2giK'tic cards (4 stvnd;J.nl progr anunes) vere u-tilizcd

to produce the output data of 'l'able 6.2. In spite of these

standard programmes, tbe_n~ 'were st.ill s-torage problems and

t:.his restricted the use of the progr3mmc~ to tbe C0_se where

there is an equal electrical leng-th betwEen the short circuit calibration piE'::cer.:;. The lengths' 'are pre-set into the magnetic

cards but it anI TJ.,T tal\:e~~, a fe,T." sec'on('! c:' to alt'C>l~ I" _ • -..;;J .~..... ~ ,-.~- '::'1118 .leIigtn.

In·the coded pT-int-out of tbe complete programme given in

Appendix 11.5 t..hi s lengt.h has beer:. set for Gmm. To avoid

errors, t.hc cO~2d progranuT'J:: print-out has b(::en taken directly

from the machine, but it can be easily decoded by reference

to t.he decoding table also included in Appendix 11.5. '1'he

.other ,estrict.ion on the calculator is that its associat:ed

plotter must be discol'"!:lected.

The prograj.nm2 ,yorks sa.tisfactorily and t.he complete

calculat.ion procC!ss (including the loading of the magnetic

cards) takes about three minutes. This i::> s1m., in computer

terms bu.t it saves about half an hoar of band calcula·tions

for each set of measurement.s. Wit.h t.he advent. of t.be auto­

rna·ted pro9ram:mc[? of J.;hc Sigma V Computer) this system is 110".':

relega·ted to manual mf~aGUremGnts cr to those cases 1-1h<?re a

few' quic}( set. of results are required wl)en the Sigma V

Computer is unavailable.

This progral1'me . ., t' . tl wr1t:ten for use 1.n COrlJuc . .1.on ,n 1

t.heXerox Sigma V Computer. D uta f loom the netvlOr1,,-analyser

has to be rGad a::1d punched into data cards. rfhe progranune

,,,as originally used in the calculation of data for a puper

(Ref 6.2) on the three 8hort circuit correction met.hod

described in section 5:4.2.

The flow chart for thi s progr;:-<mmc~ is 811m-:n in FigurC!

6.2.

- 139 -

Figure 6.2

Flo,;-; Chal~t_ of 3··-S-~C)rt~~l!~t~::U_LE-~~9:.JTamme

( STAR~ '-J-~

Y ~U'l' 7 DATA

. I

.~

INITIAL

CALCULATIONS

_ t [

MAIN

CALCU.LArrIONS

PHINT ou'r] ,--~.' ~~~~:~--,-1

Ini tiate Fortran P rogl'amme

Reads Input Data which consists of frequency, magnitude & angle of Refl. Coef. of 1 st., 2nd, 3rd Short, 0, Ur-]-w"10wn

Sentinel to test input data, if data STOV card is blanJ{, programme stop s .

. Calculation of effective electrical length8 bebleCl1 81wrt. circui ts.

Calculates Error Network Parameters and corrected reflec-tion coefficient of. the .d<pvic(~ under test.

w ri tes 0:..11: input data and corrected reflection coefficient of unknown device.

Returns to read more data.

- 140 -

The prograrrune is relatively short c.lnd is given in

Appendix 11.6. By the alt~eration of two constants it may

be modified for any offset hmgth of short. circuits.

The entire prograrrune is punched on cards. This is

useful as it is loaded onto the bac]~ground system of the

Sigma V 1 'which means that result.s may virtually be obtained

at any fn~e int:erval betw'een t,he top priority foreground

programmes. Loading and running time is about two and a

half minutes.

6: ]_-1.h? Four Sho rts Sig~a V ~~J::9gra!!.lmg for l1gnual Us~

This progranm18 was 1vri t.ten for use on the Sigma V

Computer for three main purposes:-

1: To calculate from the measured data ,of Section 5:5.2

the to·tal attenuation and phase change of the equi­

distant offse't lines and then to use -this result for

the correction procedure of section 5:4.2.

2: To form the bas:Ls of the calculation sub-routine for

the automated prograrrune.

3: To compare the results of tne single precision (six

significant figures) of the Si9ma V computer against

those obtained using double preccision (fifteen

significant figures).

The flow-c".\1.art of this programme

6.3.

.: c' oJ. .) shO'vn in figure

- 141 -

Figure 6.3

Flow-Cha£LQ.f 4 Shorts {}1a~.uaJJJ rO.9..f.'2.rI1me

START

INPUT DATA

f

r CALCULATION OF LINE

-TROPER'rIES

SEIJE CTI ON OF LINE PRO­PERTIES.

ERROR CO[{RECTION

OUTPUT

DATA /-L-----<c-__ •I - _.

Initiates Fortran Prograrr~e

Reads input data which consists of 5 sets of refl. coe§; 4 calibration on~& one from the device under test

. sentinel to test input data' if . ?-@.~ data card is blanl<:, program~e stops

Calculat.es the total attenuation and phase of the transmission lines associated with the calibration pieces.

Selects tl1e roots of the quadratic equation t.o obtain the correct valu.es of the attenuation and phase of the offset lengths.

Calculates the net"lork error para­meters, and the correct:ed reflection coefficient of the device under test

Prints out bot.h the input dati'l and the corrected data.

-- 142 -6: 3~!he !:~_~r E;'hort_s __ L.~.t'!'"192:!::_P r~ct~i~n) P rograrnme f.22: -- Nanual_.l1..§.~....2!l.. ·t'he !:;i9.:!lE_y-_COmR.~!'~~~

The p~ograMne is listed in Appendix 11.7. The entire

programme is punched on paper cards and is suitable for back­

ground use on the Sigma V Comput_er. Loadin.9 and running time

is about ·three minutes. Addit.ional sets of data require

about one minute \'lhich is mostly printing time.

As this programme vraG t.o be incorporated in the auto­

mated programmes, it had to be thoroughly chec}~ed. This was

carried out as follows:-

(a) Practical. values of the error neblOr];;:: parameters 311

,

S22 a.nd 8 12 S21 were assumed, An electrical line length

having· practical attenuation' and phase characteristics

was also chosen.

(b) These chosen values 'vere used in conjunction "lith

theoretically perfect short circuits and a ell.osen

reflecti:>n coefficient for the test piece to calculate

P, , fi ' ~ , 1'4 ,Ps- the apparent ref'lection coefficients

of the calibration and test pieces. These calculati.ns

were carried out. using Cl }1cind calculator (Hewlett

Packard Hodel HP 21) which displays ten significant

figures.

(c) 'I'hese theoretical coefficients P, , Pz., Pa , ~~ , P::r . were , fed in·t.o the Sigma V programme, and i i:8 resultant. outp'l.lt

.... • • I.'

values, i.e., S11' S12 8 21 , S22 and the corrected

reflection coeff iciemt of tbe tes·t piece were compared

againbt the values initially assumed for them. In all

cases, the .results agreed to' within the fifth decimal

place. This is extremely good as the Sigma V in single

precision form only calculates up t.o six significa.nt

fi9ures and rounding-off errors are bound to rest.1.1 t.

Intermediat(~ calculation values VJere also compared to

ensure that the att.enuation and phase chan~ aSGociat-ed wi th

th(? offse·t lengths w·ere correct.. This '\-Tas ma.de possible by

t.E~mporu.ry alteration of t.he output statements in the progran:mc

to provide ~le .intermediate calculations.

- 143 -

The entire system was repeated for different sets

of results to ensure that the first verific3.tion "las not a coincidence.

Finally I in using this prograrmne, the rest.rict.ions

on the minimmTI off set ler.gths detail(;d in section 6.3

should be observed for minimal computational erl·ors.

A corr.ection programJUe for Section 5: 5 carries out

many mathematical operations on small numbers. The Sigma V

computer calculates ,.,i th only six digit accuracy when ope­

rated in the. single precision mode. ",r11en operated in the

double precision mode, the Si'lme comput.er calculates with a

fifteen digit l1ccuracy. In order to investigate ·,.,rhether

"rounding off" errors would be troublesome, a double pre­

cision programme with a flow chart similar to that of figure

6.3 was ",ri tten.

Practical values of error scattering parameters,

offset line length att(~nuation and associated phase changes

were assumed. These figures were fed into both the single

precision and ~the double precision programmes. Doth pro­

grammes were slightly modified for thes(; purposes t.o print

out intermediate resultr;. The results obtained from both

these prograrm-,10s were"! compared ,vith the initially assumed . . values. These results are .tabulatE~d on the nex·t page.

r Total I EleCtrical Item

19ffSgt compa.red Lenqth

I -[lior.;3.l:"d ) I !. and Return)

0.25 A IA::teriuatio~'l (900) (r-J'eper/cr,l)

I Phase (Radians)

Comparison of Sinale and Double p reci sion p roqrcuTh.'TIe Rpsul ts

I

Assumed values

1.2000000000000 E-3

1.68179512023926

Double Precision Sinale Precision Calculated Calculated Values Values

l 1.199999999999537 E-31 1.199079 E-3

1.68179512023926

~ I ~ ~~O) Attenuation 11~20000000000000 E-3 (nepers/cm)

I 1.68!79 ~

1.199999999999537 E-31 1.186839 E-3 l I I I

• 02777 A.. (100)

Phase (P.~di~ns)

Attenuation (Nepers/cm)

Phase 1 (Radians)

.747464358806610

1.20000000000000 E-3

.1868660L~499 8169

.747464358806610 I .747472 I 1.200000000177164 E-3j' 3. 248334 E--3~---1

. I I

.186866044998770 .200133 i

!-' .r" ~

- 145 -

The main conclusions are:

(a) Computationa.l error is small "i'lben tJ1e uDi t offset

electrical length (forward and reflect.ed pat.h) is

a quarter vTavelength ( 1\./4) at the frequency of

measurement.. The unit offset length is defined as

tvd.ce tbe electrical di stance beb"een any of the

evenly spaced calibration pieces.

(b) Computation error begins to be troublesome ;til single

precision mode when the unit offset electrical

lengt.h (forward and reflected path) is O.111lA.~A/l0 at the frequency of measurement.

Gross computatiopal error occurs in the single precision

mode ",,,hen ·tbe unit. electrical offset length (folivard and

retu.rn path) is O.0277A at the measurement frequency.

Hence, the restriction that the minimum unit offset

electrical length (fODr,lard a.nd return pat.h). is greater than

')~/5 must be applied whenever the idnqle precision measure­

ment. programme for section 5: 5 is used'.

It: has not been possible to incorporate double precision

computation wi thin the automated programm(~s dUE~ to computer

s·torage problems. Hence, the restricU.on mentioned above

also applies to t.he automated programme of section 6: 5.

. . The det~aiJ.s of t.Ile double precision progranum;~ are

included in JI..ppendix 11.8. 'l'he pr?grarrGtl(:! is extremely useful

for ct~cking out suspect computational errors. It is also

used for manual measurements when th(~ Si~1;,r.a V computer is

unavailable for automatic measurements.

- 146 -

This programme ,.,as i{ritten to chec}~ out the theories of

sections 5:4.4, 5;5.2 and 5: 6 10lhich are that:

(a) The unknmffi reflec·tion coefficientr:; of the

calibration pieces can be calculated from

the calibration measurements.

(b) The Jcotal attenuation and phase change of

the offset lengths may be calculated.

(c) The results ca.n be used for error calculation.

(d) To form the basis of a sub-routine for the

automated progra~ne.

The flow-chart for this progranune is Shown in figure

6 .. 4.

·- ILl7 _.

Initiab:::s Fortran Programme

I~[ INPUT~' DATA " . -

Heads G input data sets (4 'open' J

1 short circuit) and onG set from the device under test.

I~

/\

. :

CALCtJLATION OF LINE PROPEHTIES

-'-

Sentinel to test input data; if da"ta card is blanlc,

7(STOP) program!nl= stops.

Calculat:es and selects the correct total attenuation and phase of the offset lengths.

CALCULATION OF REFLEC'l'ION COEFFICIENT

T~~

Calculates the reflection coefficient of the 'open' pieces to enable'the error network to be found.

CALCUIJA'rION OF ERROR • PARAHETERS

C ALCUTJATION OF CORREC'l'ED MEJI.SUr{El-lEN'l'

-

Calclllat.es the error netw"ork parameters to enable correction to t.aJ<:c place.

Calculates the corl-ected reflection coefficient of the device uncler test.

Prints out the input data, thG line prop2rties s reflection co-

, , 'b ' . cfflclent of the call ratIon plCCGS, ar~"d t.:he corrected and uncorrected reflection coefficient of the device under test.

- 148 -

The progran1m,p is punclJec1 on cards and being relat.i vely

short (104 st.atements) it has bo('n included in Appendix 11: 9.

As this progr~Trune is vi tally importa.nt:, it had to be thoronghly

chec](ed. This v{a~3 cClrried out in the follm,ring manner:-

(1) Values based en practical results were chosen to

produce the bput data. to t.he prograllline. These were:.-

C! ':>22

r

Frequency

- 0.9980757 L1.3~~090o

= 0.01385706 1122..!..:,1584300 '

= Un]mmffi reflection coefficient of the calibration pieces

= 1. 000 I 5.4000

- Reflection coefficient of the device

:: 0.023900 [-12.0.695702

:: 3 CHz (;',:: 100rrun in cdr)

unit off- 10mrn set Len9th::

(2) From the datu. in (I), the expected measured reflection

coefficients, R ' P2 J ~ , fir. J R- and ·f!,n,were

calculated by using equations 5.24, 5.25, 5.26, 5.27,

5.24 and 5. 24 respectively. Calcula'l:'.ion was carried

out. using a ten digit 'hand 'c'alculator (Hewlett Pac}card

Typ~ HI' 21). The val uo s obtained v1ere:-

P, :: 0.999998 {13.613Q130

Pz - 0.999999 /-57 ~9719lo p; = 1.000000 [-135.722251°

P4- - 0.999999 /148.718243° p',. .~ = 1.000000 l1.I9. 999855*~

,,,",

0.020000 L60.0.9,OOOOO t:r(I.. =

- 149 -.

(3) The values obt.ained in (2) were then fed into the

computer programnK'. P rovidC'd no "rounding cffll errors

have occurred, the results produced by th(:: programme

should agree with the origina.l d.ata in (1). A comparison

table is given belm.".:-

I't:em C~narec!

c ':>11

5125 21

1--... ------.--

8 22

j~ttcnuation

Phase

(Calibration) (Refl. Coeff)

(Devic3 ) ( R(~fl. Coeff)

-------_ ... , A §'""b'l1ed _ DC! ta I C?lcCll lll~e Para. 1 L -.i Se~

--0.04385706 0.043

L§J~!1~7l}} 0 ~ l.§.

lated Data -par~;..! .. 3)

--0.9980757

H. 345090~ -' 0.04385706

L122.L~5843° . -

1.00000

720

1.000000 0

12.d.90000_ ..

.. _ .... -0.99f3 071

~3488390 --.----

0.043 929-· /12~

. . . 0 ?- •. 438152 •.

---. 0.999 999

'7 1.9982°

--------0.999

I -- .. ----........ ---.----f

0.023900 /-J20.69570?

-

0.023 972 ,---0.845939 ; -1 ~l

-

The following conclusions ",ere drmm:·-

(1) 'I-be computer progruIn.'ne is correct.

(2) Slight rounding-off errors occur. This is inevitable

.... rith siX-digit computation. It was not. possible with this

o:r ,vi th the other ari tbmetical cases tried to ascertain how

th0 "rounding-off" errors could be propori.:ioH8d between the

manual calculator and th<= computer. HOvJ"ever, computational

accuracy t.o '\d thin 0.0001 has been achieved.

(3) The idea that a reference short cj.~-cuit meusurement

could be us~d to calculate the reflection coefficient of thE::

unk:novm calibration termina.tions 'W'aFJ confirmed arithmetically.

- 150 -

(4) Finally, all the points mentioned in the early part of

section 6:4,(a)~ (b), (c) and (d) have been verified.

The main purpose of the a"..ltomat.ed progranunes is to

enable computer corrected measurements over: a wide frequency

band to be made quic)~ly and accurately. Two prograrruneS '-[ere

used

(a) 'fhe Four Shorts/Five 'l'erminationProgramme.

(b) The Three Shorts 0, Allied Correction Progranune.

The i t.ems discussed in this section are applicable to

both programmes. Items peculiar to a particular program.TT.".e

will. be identif::'ed by reference to i:he programme concerned.

6:5.1 Basic principles

The automated progranune initially developed by Duc).;:ett

(reference 6.7) ~as used as a starting point, and new

calculation s-t.orage and display sub-rout.ines were 1.vri tten

and inserted by t.he (:l_1J:thor. sections of the inter-active

control structures were also modified.

Wh · ., '1 t f en on-ll.nc computer·-correctl.on 18 usee, se's 0

reflection coefficien·t measurements using the appropriat.e

calibration pieces are ma.de at. fixed frequenci es 1.d thin the

band of interest. The number of ineasurement sets made is

determined by the number of calibration pieces used. Each

set of measurements is stored within the computer. The

device to be measured is ·then connec·ted and a further set

of reflection coefficien·t measurements at~ the same fixed

frequencies ar~ mc..d(~ and stored wi thin the computE'!r. When

t.he correctedmeasurement· results are required, the computE.'r

wi thdrmvfJ from st.ore the informat.ion required, calculates

and prints out. all the measured and corrected S'2ts 0::­measurem(;;nts. ,subsequent me:wurement. of other devices at

the same fixed freLJUcncies may be made ,·rithout further

calibration. Facili t.ics arE:~ a1. so provid2d "Ti thin the

- 151 -

programme foy graphical displays on a video display unit of

the mea~nJred reflection coefficien-ts in eitbe.r- polar or co-ordinate forms.

Additional facilities arc also provi.ded for over b\T<".mty features. These include data storage on extcl:nal tape, repetition of readings etc.

The programmes may be examined more closely by ref­

erence to the photograph of the measuring equipment (Fig.3.2)

and the diagram shO\ving the inter-face between the measure­

ment_equipment and the computer, (Fig 6.5). Flow-charts of

the pr~grammes may be found in figures 6.6 and 6.7. Only

the main features of the programme will be discussed.

verbatim listing of the prograrrunes will no·t be given because!

of length; for example, the five termination programme

involves one-thousand two-hundred and sixty-eight (1,268)

Fortran statements and two-hundred andseventy-nine (279)

machine code instructions making a total of 1,547 statements.

The main functions of the progranune are;-

(1) To prompt the operator into follovring the correct calibration and measurement procedure (Section 6~5.2).

(2) To calculate, step, and control the frequency of tlle

signal generator ~,vithin the desired frequency 1::-and.

(Section 6:5.3).

(3) To measure, averagc, store and 'calculate the data

obtained. (Section 6:5.4).

(4) To reproduce the results graphically on the video

display unit, to print-out the results on the line

printer, and if desired to store measured data on a

separate data tape for later use. (~ection 6:5.5).

(5) To pennit the use of supplementa:cy tasks such as

measu.r-ing line. attenuat.icn and phase changes, to allO"loJ

repeti tion of sorne m(2!asurGments to correct for errors

during calibration etc. (Section 6:5.6).

Figure 6.5'

Block Diaqram of the Com~uter Corrected Microwave Analyser System

FRE Qt..TENCY C01.JNTER

I Ii\

1 1 I ImFLECTO-1

SIGNAL SOURCES I. PROGRI\HMABLE I-- - - - ::-f HP 8693B/8694B/ ~ VOLTAGE 1- - - - < I

869gB I SUPPLY • - - -~ SIG~AL _ MU~~IPLEX;ER ! . I. I HP u70'JA/. :06A/ , _ <E: ___ ~ __ I

8707A_: . I I I I

~---! I POLAR DISPLAY }IP 8414A

NE'TI'V'ORK ANALYSER

1-->-1 BUFFER (20 dB) AHPLIFIERS r--> .- - '- ---,

I

I METER I j . I HP 8410A

'

I l __ ~i-------------- r J I->-=-i, HARMONIC HIXER

A, HP 8411A ~. I

i , l .~l __________________ ~

DEVICE UNDER TEST

VIDEO . DISPLAY

lJNIT ,- ---~

L J I

XER()x SIGl-'JA 5 COMPlJTER

including

Card Reader Tape Reader Line Printer Display unit D to A and A to D Converters Disc Files etc

CO}iPUTER IS SITUATED n~ 1::'\ DIFFERENT BUILDING

I Tv-risted Pairs .of // I Cables connecting ! the measurement ~------------------~ equipment and the computer.

I-' Ul N

- 153 -.

GR'r)

FHEQUEN~~ SET -.-J . '--t-

-."<~--------------~~~--- --------

r-;.TOPS OR

MAIm & STORE

READ INGS FOR EACH FREQ. SEE FIG. 6.7 '---"--_._-----

. ~ND~ H /' NEW DEVICE'

: READ ING S? .

COHPUTE ERROR P 1\ R},HE 'I'E HS l-, T EACH FEEQtTENCY FOR DEVICE AND STORE RESULTS FOR PEINTU;G.

REQUESTS USER I TO CONNECT I

_ TERMIN~;:'~N __

/18 -~E IDUNA 'I'I ON

~~

DIS:E'lL}lY OF

I ~:'E.HFOR}!S 1. USER SELECTED TASK (SEE FIG. 6.17) Al\'D RE'l'UPu\T '1'0 A ;.u1'r­ABLE POINT IN THE M2\IN

P R 08 HAl'-fl'1E

RE8UL'l'S ON __ ;>-_ VIDEO DI~:;PLliY m~IT

/

~ REQUIRED?,.

- 154 -

K.i~l'2.re _h'Z Dl~tail.R __ 9f Fn:'C)'l)ency Stgrnqe:.., Pros!?dure an<U i q Xl (~L i'1 §' 2 Sl).,::-e)ne!2:L ...

~-----.-

ARH IN'I'EI<RUPT -CLOCK PULSE S NO\~ TRIGGEHING 100 THiES PER ~)ECOND

HAVE READINGS

BEEN }1ADE FOT{ ., ALL FREQUl~NCIES

" REQUIRED?

"yU .. 111ARE ! 0'-RElID ING S

.. 'l.ND ~I'I ORE

I .. :\~E~_GE _______ _

Y

N

HAVE 180 CLOCK pm~SES BEEN

ENCOUNTERED?

DISARH

INTERRUPT

COHPUTE SIGNAL PULSE S REQUn~ED -->:­TO S'rEP TO NEX'l FREQUENCY

_. __ ._--

OUTPU'!' SIG~AL

PULSES

- 155 -

Communications between the operator and the computer is

ci'l.rrh-..!d out via a graphics tel.ll1J.nal (Video Display Unit (VDU)

wi-th an input keyboard) situated remotely from the computer.

A typical qt~cstion and anm,rer routine is show'll in figures 6.8(a) and 6.S(b).

Upon recc'!ipt of the uppropriate operator commanG1

the

VDU prints out the first five lines of figure 6.8(a).

3jnitialisation in the progra:rnmc refers to the measurement

frecJUency band1:'!idth required and to the number of measurement

steps requ.ircd. The option to use an external data tape to

store all tli.e measurement data is also given. If the

external data tape is- desired, the computer ,vill search the

tape until it finds the last stored dai:-a position. For this

particular case, the display indicate~ that 37 data set-s

have been stored. The next duta set to be stored will be

indicated as Test 38 (see figure 6.8(b»:

The amplifiers referred to in the programme are thebm

20dB Voltage ampiifiers inserted betw-een the neb.,rork

a.nalyser a.nd the remotely sited computer. When these

amplifiers are used, the computer: must b(~ informed.

The programme then presents two options either (a) the . ... . . f'

standard calibrution using 4 short circuits (figures 6.8(a)

or (b) the non-standard calibration using 4 unkn01m term­

inations and a reference short circuit (figures 6.9(a) and

6.9(b). The above mentioned figu-res are photo-copies of the

video display. Nost of the remainder of the display is

devoted t.o the initialisation procedure. The "no. of points

per reading = 10" "Timing Interval (N# 0.01 sec). N = 30" indicates that the averug8 of 10 readings is taken at each

frecr.:ency ste.p aT'.d that the interval betvlCen cuch reuding

is 0.3 seconds. The next three lines indicate to the computer

,.,hat instnlments are in use.

~ Figure ~1U Communications bet~~~~Operator and Com2uter

REflE CTIO N COEffICIENT ME~SURENENT CORRECTION

USING 1- SHORT S OR oJ UtlKt'FJWN TERMIUATIONS AN!:' A REfERENCE SHORT VEP.SION 0VL2/R2 J -B~IW) FAC IL I TIES I rKLUDEf) It!ITIALlSHTION REQ UIP.ED r! TiPE Y I)P' t~ ')YES USE or ('AT A TAPE REOU IRED ", T .,.p£ Y OR rl ~ '( ES DhT~ Tn?E lOA~ED : 37

RE AMPLIFIERS IN USE ~ T(PE Y OR N fYE S INPUT TYPE CO~X ONLY

: STAHD~.RD C?LIBRATIOII U·;[S SHORT CIRCUITS ONLY

tKINSTANDARD CAL lBRAT I Or-~ USES .,. UN I<UOt.IN TERMH~AT IONS litH) A REFERENCE SHORT

~iA!m(l:;L> ~flLI8RHTIOt! REOUIRED I) (r(PE )' OR NO) ~YES JOYS1Ii~i:' IS tj:)T IN USE . HO. OF ?0! Wts PER ~EAD ItJG =10 TIMI!!G Il·n[p.!JkL ( H(t~)'01 SEC) . N=30 H~PUrS TA!<[q FP.Oi1 POLAR DISPLAY OR PHHSE GAIN WHT ?

(IL ~'e, PO :':: .. l :Hi1LE: TYPING ANY CH ARA CTER P

6 IN:~iU:i f~.=~";U:rSCY (GHZ> = +

NO. or ?O!NTS = 21 S~!iCH TOLt:C RESET TO 3!J •

• R£CT:O~ TO rREO. IN MHZ = 0

f-' VI ())

- - ..,. - _. - .-.------

~d

Figure 6 . 8(Q2-

Com..munications betlveen the Operator 2nd Computer

K=t CONNEC T CALIeRATION 1 >YES K:;Z Cf)dtJ[(T U::LI8RATION 2 iYES ~=3 ({Hm[CT CHLIBRATlt),-$ 3 >,(ES 1< ::~, ~()rH!£CT C~lI2P.KTION i ) YES

HE!·: f){;:lHCr. ~, ~,,(E5

Tn~E (;['}I(Z !OE,·H'IrrCAYION & TERI1!t./P1T !.HTH CR )~ESY 3" .~ ::E (.OHtJECT £>[lJ!CE ) '(ts

IS VDU ~IS?LAY REQU!RE~ ? tTYPE V OR N).

-..'

>-' Cl -..J

I....

F iqu~e 6.9 ( G\l~oml'll~D:~cations bet.:'!~ee~Q2era tor and Comput~r

R£ ? ~[(YI OH COEfFICIENT HEASUREME~T CORRECTION

USING 4 SHORTS OR f UN~NOWN T£RMINATIO NS AND A REFERENCE SHORT ')ERS ~ 0l! (,UL 2' /R 2 ...r-~:A~~l> rACIL!TI£S ItlCLlJu£D I~ITI~LlSATI0N REQUIRE D ? TYPE Y OR ~ ~,ES llSE ~Jr !;.~~rk TAPE: R£0UIRED '? "'!'(P£ --( OR t$ >Y£S DRTH TAPE LOADEO: 3B ARE AMPL!Ft£~5 IN USE? 11PE Y OR N ~YES INPUT Y l'P£ (O~il: (.IfH .. (

S TF1!'~O~RD C~L! 8R~T! ot~ USES SHORT C I R':: U I TS ONLY

f-WHST Aj~ r;;!r\j CAL.! eRA r 1 ()N USES ,,- Ut~XNOt.-lH T£Ri'1H~AT I eNS ?l~~rJ A REFERENCE SKORT

ST~HDAR0 CALIBRATION REQUIRED ? <TYPE Y OR NO) 'NO ':Ol'ST!CK ts :.01" IN USE. NI). or PC I NTS P£r~ R [(~iy.n-iG ==10 Trn!r~G H~'I':'{~ !)ML ( i~!~0.ld:1 ::r:.":-C). N=33 INPUTS T~¥EN FROM P0LAR [rSPLA~ OR PH~SE GAIN UNIT ~ TYPE L(jG,,t .. ! t j .. t:~ r~Ot ~!~ f-'(iL C[!--lTHL d£~~~i j..;HILL 1\'P!1l(; ANY Ci--:ARf-iCT£R r:: MA><ii';Wt nu::)ut:ncy ((~H::~) ::.: B MIlEIWii fR£OUENC'! ,GHZ) :;> B N~. OF ?nI~T~ ~ 31 S t·U Y C H T D L F. eRE S e. T TO J!;. MINIMUM ~REQUE"CY S£T ~? ..... ,~ "'···c-·· !.: ... ~' T/' e:'"~l-·~ '! ~~ M:.; .... ~. "" t.. .. ,1r.............. ):,.}., ,';J . , ", (..~.. ~ f .. f .tS\£ .....

f-' Ul (Xl

,J

Figure 6.9(b) Communications beb!een the Operator 2nd the Computer

t~ = 1 CO~N[ ( T CALI BRATION 1 K::1 (J)"m£CT C. ALI BRATION '1. t~ ::) ((nmE(.r Cf1LI8RArIOH ~

~~=i ~ONNE CT CALIBRATION i ' -~ (0~~rH: (T REFEP.E rKE SHORT .- .J

HEW DEJ!C[ ~ ~ (ES

Tf?E DEVICE I0£NT lfiCAiION ~ TP.IAl or i~/ie/ ?7 ~=6 (ON~ECT DEVICE

>'r(s > YES ;" tE S ~ \' ES

:.YES

TERMIN~TE WITH CR ,

irES

IS UDU ~rSPLAt ~EQUIRED ? <TYPE Y OR N>, t-' t.,1

'.0

- lEO -

For t.his particular case, the rninimurr. and maximum

frec;nencie;3 have been chosen ·to be 4 2.nd 6 8Hz respectively

and mea.surements will be ca.rriE"~d out at 21 frequencies evenly

spaced bet.ucen 4 and 6 GHz. A facili·l:.y for adjusting the

ini t:ial s·tarting frequency t.o the correct value is also

incorporat:pd in this po.rt.:Lcular case, no frequency correct­

ion 'VTaS considered nec'2ssary.

No explanation vrill be given for figures 6.8(b) and

6.9(b) as they are considered to be self-explcmatory.

To control ·the signal freC;.rttency, bvo signals are

required, one to select t11e desired R. F. Oscillator Unit

and the other to alter the vol tagE~ cont.rolling the , f..requ.ency of the chosen oscillator. There are three R. P.

SI.,reep oscillators with the signal source unit and the

desired oscillator 1S selected by means of a direct voltage

which is int.erpreted as a 4 bit binary 'ilcrd by the Con'erel

'Uni t (lIP S706A).

The direc'c voltage controlling the frequency . ~s

obtained from an electronically p'rogrammable vol tage pO~Ner

supply v,Thich is in its turn controlled by the computer.

A Voltage range of 0 volts to 73 volts is required from

the pmlTer supply to control the ent.ire frequency range of

each osci.llatc.~:-:· The resolution of thi s voltage is

controlled in increments of'l millivolt by each voltage

pulse from the computer and these are supplied at the rate

of 30,000 pulses per second. The particu.lar voltage level

to provid.e a given frequency at any stage of calibration

or test:ing is determined by the dab:t stored and calculat.ed

wi thin the computer.

Wh(~n the maximum frequency (8Hz), the minimum

frequency (GHz) and the nun'J.x~r of frequencies for measure­

ment are spE~cificd (Fig. G.8(a», tbe computer calculates

- 161 -

the nwnbf~r of pulses required for the minimum frequency, th8

number of pu.18es required for each increment in frequency

and the number ofpulscs required for the maximum frequency.

It commences by select.ing the appropriate sweep oscillator

calibration table and displaying ,·,hat it considers to be

the minimu.rn frequency. 'rhe operut.or is at liberty to al ter

this fr.equency if it: does not agree wi-th t.hat shm.;n on the

frequency counter. The computer receives the additional

instructions and will alter the minimum frequency to suit

the operator. It also stores the new number of required

clocle pulses as that required for the minimum frequency and

r~-adjusts Lhe n(!cessary freq-uency stepping procedure

described earlier.

'r"TO other important points must be mentioned here.

l{hen the oscillator frequency is altered a small amount of

waiting time is required for the frequency to strtbilize.

T·he amount of waiting time built into· the programme is

one second a.~ thi s is incorporated in the flow-diagram

of 6.7. In addition to this, 300 milliseconds is normally

allO\·red behicen each of ten readings carried out at any

one frequency to· nullify ·the effects of noise voltage

transients etc.' The operator has the choice of altering

the timing interval between measurements by calling up the

pertinent sub-routine (Section 6:5.6).

The programme incorporates facilities for accepting

the non-identical output voltages from tvm different display

units, namely, .the phase gain indicator unit (UP 8413A) and

the polar display unit (lIP 8414A). The phase gain unit

provides input information in polar co-ordinates i. e.,

magnitude either in lineur form (0 to 1 volt max) or in I. -

ded.bels (50 TiN/dB) cui phase 10 mV per degree}. The polar

display unit providGs linear outputs (± 10v Max) in the

form of rectangular co-ordinates. 'r'be computer must be

informed as to 'vhich display unit is used. In most cases,

- 162 -

the polar display unit is invariablY used because (<1) it

provides a better signal to noise ratio to the comput0r

especially after the 20dB buffer anplifiers and (b) it

provides 2Ti instant display, of a.ny instrument malfunct.ion during measurer.:tent.

It was mentioned briefly in Section 6:5.3 ~)at ten reflection coefficient measurements are taken at anyone

freq1.1ency to minimise the effects of noise transients etc.

These readings are put into a temporary storage register,

nveragcd and only the final result is put into 'the main

data storage. The other reac1ir.gs are discarded •

• Calculations are carried out in a sUb-routine called

"Calc" (Not shovm). ';['his sub-rout:.ine features several "IP"

statements to detenuine whether the standard calibration or

non-standard calibrilt.ion calculation procedure is required.

If the non-standard procedure (i~e.s 4 unknown terminations

and a reference short) is used, then the unJmovm termination

will also have to be calculated. The atte:nuation and phase

properties of the t.ransmisiion 1 ines used in t.he calibra'tion

procedures are calculated in both cases and are available in

t.he printed results.

The error parameters and the corrected ~eflection coefficient of the device under test are also calculated in

this sub-routine.

1\.11 the above data, calibration (lnd Ineasured results

can also ,be stored on an external data tape. This procedure

allO'l,"s: -

(a) An almost unlimi b?d sot: of rr.easurernent.s to be performed

and stored.

(b) Measured data to be readily available without recourse

to tb.e measuring equipment • •

(c) There is no pl'\ot,o·-C'o~ying facili t,iPG allied to the video

el:i sp)"ay un.i t in th(~ mC(]Silrcments 1abcratory but one .is

available in thf~ computer room si tuated some distance

oW2.y. ri'he ability to n:cal1 mea::mrcd data on the video

dl sp1cty unit in 1::.he computer room permits easy pl1oto-

.j

', ....

~ OJ +l ;j

§" o C)

<1J

~I ~I ru ~ o +l ru ~ (!;

o OJ

..c: . -I-J

W Ll ,Z LJ "::;)

C'

_. .... ......

hi t:'- • >- '1"J o 1..' Wz Z )- Il.. l>..J <t: <.t 1..' ::3")000 ..J ~_I

Cl i....' ~ ~ W -:;: I.f) ':'!: l ... O.:W t·· .. 0

.,:-, I...i.. ::)~.:'I l,l"l

(jJ ~" CI U' W !"'J L.J 1.<1 ::;. C'.: ::> (I.....'":) t;':: L. ... to- .:c ::: 1...1 .... l ... ! 0 1....1 I .. J ::.1 Q.. ;:) 4..") til ..J ..J ::.: C:'- 1.: ,:;, ::J ::-:;> ll. ~., :J WI- 121.10 ~ ~··c t,J ~ .-... t'!j

. ~.J Vt ';:l,; 1..:.1 .... vi ~. (~. ,::.. _I ::: v ,_t'1 .. 1: ,;: ::t: < .... <~ ... " I- ::::. _J <I G-Q..Z ..... ~ (!.. •• - ..:r (~ W Cr-..:t (...... :r: 7. ") ,-:') .,,J ~~ W o .:1: . • a. ::: lit,., Cl (t.:

- 163 -

I'X (,,)

::t: ... ..... 3 .,... .

W -.... .... • .;:a: I/) 0:: -.,. ... ~ ! .... .:> ..-of -w-'"'-

.... )-

ex.: w " •. J 1-- G.

~

~ >*. .... ..... .....

0 .~

..... ..- U ,,!: W U 0:: .... 1.." -l.- I..) ~ ~ 10 .. 0

If) l- :7- t~.1 w:: ld U.: '-w (") ..... ",,,,:) ;,... - .- .:t <:- r.n t..' ....I

W,·l'1I .. .J 0.. L.J ~) '.;:: f.J)

~.-' ~ _c'Z .... ~:::l -XO ~ ;;. hI ... , ~) It..l '-) 0': ':) ... ') I- ,')

W :::> ~ 41n a t~ l ... .1 )-• . :J-:: II (f')

:.::.: t- N ':',c. H . . - .- .- '. _ .

- 164 -

6:.1~~2~?proc1uction of Results

Facilities are provided for three types of graphical

display of t.."le results on the video display uni-t. rfhe

provision for entry into the display sub-routine is made

availabl_e automatically at the end of each device measure­

ment (rig. 6.9{b» by the query "Is VDU Display Required?

(Type Y or N)". The operator then has the choice of three

displays (see Figure 6 .10). rrypical photo-capies of some

of th8 graphical plots for a short circuit are given in

Figure 6.11 (Amplit.ude vs Frequency), Fig. 6.12 (Phase vs

Frequpncy) and Fig. 6.13 (Polar D ~splay) • In all cases,

the points joined by a line are the uncorrected values;

. the corrected values are denot-ed by separatf:;! symbols. The

abOVe-olY,('l1tioned figur~s are actual size photo copies of the

display which is a convenient scale for most applications • . However 1 expansion facili t.ies for both the abscissa and

ordinate-scales are provided if desired. This facility

may be obtained by answering the query II}1AX X = "in the

bottom left hand corner of each display. For example in

the measurement: of a Ina-tched loaq (r:ig. 6.14) the difference

between the corrected and the uncorrected reflection

coefficient was found to be-impractically small for full­

scale display and it was -decided to expand the ordinate

scale to produce a meaningful graph. This ,vas carried ou-t by the fOllo,,[iiig sequence:

"MAX .X = " 6 CR (Carriage Return) I'

liNIN X ::: " 4 CR " III1AX Y = .. .1 CR .. "MIN Y = .. a CR I'

The first two replies designate thf~ frequency band­

width to be displayed whilst the last bvo replies set the

ampli tude range required. The result is tb.e graph of

Figure 6.14.

IS) 1

"It'

U ~

i£I'I r,~ 4.J

.... ~ (.J .., . ~ f , Cd) "'I .~)

""~ .. , ~ ~

~)

"14

-~ ........ -............ ~ .. -.. .

... . -",

. >~ I'

~.,._ .__ ~~ .. ,. .. ___ ." 1"--;-- ... ., .- I'

·-165 -

, .... .... ~U .. , . .......-u.---.. . .. , "-.w.. .. ,, . •

.... , I

-, { .... ! .. W

I •

. .... .. -., _ ..

, .... • rJlti, .4 " . ~ . .

-~

Q

• o .. c;3

o

\\I r-l

....... :- ..... -- ..... "... ..... -

- 166 .-

C N

l!W:_ ..... ,.,.ro"' .. "'~rlW'I:'"' JIJI..-.............. :,.

'.

, . .. ( ..

.. I;.)

J .. '

-6 ., ='1 4' ".;) " " G,

~ :; • ..

" , ~

~

c: • J ,., ... \ - .. . .... ... . .

. ,..- -- ..

- 1.~) 7 -

>'1 :'d .--l 0-fJl

'M 0 ~ rtl r-i I 01 jl. '

·1 M rl

\.0

OJ l--! :J 0 • 'r' "-'

~ p)

... N .....

ct!) --... '--1~'I-'--'+'-"'''''''--i-'''--'--''''''-~ • .. Q

• W U

0

U

r;.) ~ ~j

N ~~, (!!! • a.. .. ~ f' 1 •

01 .... U I

",,'J

U 1/# I'

I

.d.

~ 0"'

tl rIJ' >' (1)

'0 ~ +l

~ ~ I

~ I ~I

0 ) c~1 N :"j

U 0 (j~ - rei 2 (])

U '0 ~, C

iCl

U ~ ~I ..

u ~I t1) ..., \.0 \ -N ~I :.t #JJ

::s

~ -81

• r:r.d .,

~ ~ , SD ", .04

'"'" >

t •. ;)

'U

'l' , c· .,)

~ I> o

....

- 1 6 8 --

4r .-( "\

1-... ... ~~

J t-,

~ I

~ .

Co

I J.ii1 . ..

~_(.li

[' ) • i­t I

'. ' ~

"., " ;~

~)') i~

. ! ;' f.,., t I - ., .. ,

~

l~

~

~

'T~H LO~D ON 10/6/77 4 - 6 GH7 NS C 1 C~S CC W Ne 29

FREQUENC'!' t!;iZ

... 00-1 4 , ~ 00 4,200 4.:)00 ';''''00

.!l~C'

4.oeO ... 70C iI.BOO ~.9:>()

5.0C~O

5. a. 00 3.2,10 5. 30 J 5 ... 0= 5.500 5.600 !}.700 5.300 ~.90J

6.000

FREQUENC'!' 6HZ

" ' OOG 4· 1(:0 ... 2CC 4.30C

'f ... 00 4 . 500 ~.6;)~

!>.70o ., . 800 .. ·900 5'000 u.~(;['1

E - 2Do 5,300 S·'tOO ~ .~OQ 5., 6~(, Ij .7::; :;',300 5·900 6 · (;00

CALI6RATICtI 1 AMPLT PH.IoSE

'~73 .9:J 8 .91" • ~' 99 -::36 .:;)69

·91'1 · ~56

· $36 . 938 ·~ 59 .. eE6 - 977 - 562 .9 51 .S 6 1 .9S 4

! ·018 " .008 1·(106

. 97 ..

~;9 . S

-7 ... 2 -60" (.., ~5,.5

-45.7 - ~?s

-37.5 -31. 8 -2 1+., ~! n·S

-3.5 -l, . ~

! • g·o

~5~ b

2:' .(} :?D." 36.2 ~l .e 47·1 52.5

c .!. L!an.nreN 2 AI"PLT Pk bSE

.993

. 963

.;::6

. ~21

.952

. ssz

. <;8 ..

.s ~ o

. 935

. 33 ..

.952

. s71

. ':i59

. 9~3

.52 -94.0 .968

' .• 952 . 983 a9 83 .sS7

- 176 d .r.~73 ·2

-H.8 . 1; -1£;>-:; -155.5 -152.9 -1 .. 5·9 -1 ~'; ·6

- j41 ·9 -136.5 -1 ::; 1 .3 ui?8.3 -1?5.2 -!?G' " -l1S.2 -1 O!h 7 -~04 . 6

- 10e.5 - 97 .. 9 -9 4 . 2 - 91- 0

REF C6E FF l'lEAL IMAG

-. 00:3 -.C'O" -.OCl ·-t.' C;.

.(lC l - ·000 - .002 -. c05 ~.006

-.O O~

".011 -. 011 - .O ~l

-·011 - .(;09 -c O~2

- .oe8 -·015 - .012 -. 017 ·-0 16

-a? ? ~02 Q

. 017 0\)13 . otn . 00 7 · 005 .OO?

... nc':> -. 011 -.Ol5 -.S15 -·r,<'l -. OlQ - . 02? -· Q1P. -· OlR .... n'3 -. O~?

-. O!,')

·· Ol?

~.

CALIBRATION :;) .ir-:PLT PI-1ASE

CALI BRA; I aN .. AHPL T PHASE

. 968 ·9 3<; . 905 .SSt .921

· . 9:'9 . 952 . 930 .910 .: 9l! .935 .951 .. 9:'7 . 930 . 9~3

.932

. 963

.993

.9al

.ges

. 957

86.9 ' 87.6 90.2

1. 002 .966 . 937

3. 9 -920 97 • 8 '- -- . 9 I; 8 99·1 .979 99.t, . 9S7

! OO. 7 103 . 0 106. :; 108.8 ~OS.5

111.0 112.6 !1 6, 7 11S,~

122 .6 122.6 123.8 12 a 6)3 120"0

. 961

. 932

. 936

.960

. 973

. 973 . 955 · 938 .958 - 989

1.020 1 ·00b :- 006

.977

-7 .8 - 9 · 6 -9.6 ~7.9

6 ·3 -7.5: .. 9.:;

"11.:? -11,0

- 9 .9 15 10.3 "'12 · 0 -1 3 . 4 - 1 J, .. 1 -1 2.~

~ ll · S

wl1.5 -13. 8 -l!l. C - 16. 9 -17.6

REF CeEFF ;'MP Of' P .... ASE

. 024

.C20

. 017

.013

. 01 0

.007

.006

.005

. 007

. 014

.C18

. 01 9

. 023

.022 . 024 .022 . 020 . 020 . 0~ 7

. 021

.020

"3C .5C7 109.3 ""3; " OvG 1~O.2 - 3:i.~ :; 3 5':' . 6 -3i.999 ~~.B - 1;(; ·392 85 .2 "'l,.:·~985 90 . 5 - .. 5.:)97 11 &.1 1045. g7~ 155.0 - !i2 .. 931 "'1"9 a5 ·37.23: -1 2<; . 5 ~3 .. ·8 g! -125. 9 - 3'- • .. :n -1 25.50 - 32 ·i20 - 11 7. 3 - 33·18.,. -1 2 1.0 ~ )c..53<; -1l<';5 " 33 .:95 "'12.s.. , .q. - ::l~o163 -1 15 .5 w3:;.973 - 131< 01:. - 35.1+83 ~13 5 . 8

- 33 ·7 '>5 -1 "£'.0 - 34 . 01~ ··1 ~3 . 3

~F.:F. S HOR T Ar<P L T PHASE

. 918

. 91+ 1 ·!l 9b

t·e03 .S82 . 9'13 . 935 . 9"'8 . 974 .:'89 ,975 · 96 1 .976

1.008 1.032 1· 0?6 !. 00 3

. 987

. 96 7

. 972

. 961

1 10.6 19. "

126 . '-' 130.::; 136.1 1:;:::·3 152 .5 1 61.0 1 68 .6 175.1

w17 8.7 -1 70 . 2 ~161.8

-15'1.4 "'1.;.8.3 -1 l,::.S -137 .6 -131·2 -123.3 - 11.6 e li -1 08 .9

VS rR

1, O ~ 9 1.041 1.O::l5 !.0?6 t ~ o~9

i e Ollf. 1 . 01 1 1.010 1. ,11,,+

1.02 8 1. OJ , 1.039 1 , 0,, 7 : • O~5 1.048 1· 0~5 ·

1 · 040 1. 04 1

!' 03't 1. 042 1. Dol! 1

U~CP.T D::;VIC£ toHPLT P HIISE

. 01'1

.011

. 009

. OOB

. 007

. 0 0'1

.002

. 003

. 001,

. 010

.Ol~

-015 .02:) . 021 .023 . 022 . 020 . 020 . 01E . 021 . 021

- l • .,

-· 4 !l.1

13.2 26 . 6 24 . 6 33.6

177 . 7 .... 151. C - 125.8 - ll3.6 - 102.2 -90.4 -77 .9 - 68.5 u 66 . g -57.8 - 57.0 ~ 52 -1 - 55. 2 " 53$7

FIGUP.E 6 . 15

6"E LTNE LEN(ii H ~JEPERS DEGREES

• C 1 · el . C1 ·C1 .C1 ·00 · 00 ·CO .C O ·CO .CO . 00

• co ·CO .00 ·00 . 00

• co ·CO ·00 ' 00

I; 7. 9 1 ·.9 .16 50.l,b 6 1.72 52.96 t.,4.14 55.3 1 5(' . 58 57 .7 3 58.85 60 .13 61.26 62.33

. 63.68 .:. 1+. 61 65.9B 66.91 68.34 69 . 30 70·67 71.66

DATA SHEET OF

P RINTED RE SUL'I'S

.1"., . \

!-' ...... V·

~

- 170 -

The data sheet produced by the line pd.nter at the end

of each measurement. is shown in figure 6.1.5. The informa1.-.ion

presented is fairly comprehensive and includes;

(a) rl'he frequ(~ncy of measurement.

(b) Trle n~flection coefficients of all the calibration measurements.

(c) The reflection coefficient of the device under test.

(d) The total one-way attenuation and phase of the incremental length of line beb-men the calibration pieces.

(e) The corrected reflection coefficient of the device under tes·t aiven in the lower rectanaular data

~ ;;:.

b1 k T""· . I • J- 1 d . . oc. nlS 1S glven J.n rec·,.angu ar co-or J.nates (columns 2 & 3) polar co-ordinat.es (cols 4, 5, 6 ) and in VSVlR relative to a 50 ohm line.

The programme has facilities'for various supplementary

tasks. These are lisb?d in detail in figure 6.16. Entry

into these sub-routines arc only permitted at certain

points in the programme. These points are obtained by

typing "No" to any of the' follm·ling questions displayed on

the video display unit.

( a) connect Calibration l? - No

(b) Connect Calibration 2? - No

( c) Connect Calibration 3? - No

(d) Conn(~ct Calibration 4? - No (e) Connect Device ? - No

(f) Is display required ? - No ( g) Di~)lay Re~Jired ? - No

(h) New Device ? - N'o

This ,·d.ll result in t:hefollmd.ng r:entcro.ce:

"Tas]c? (Type LI for list of opticns) t!"

'"

{ r '. ,

Figure 6.16 List of Supplementary Tasks

< OPTIONS - TWO LETTER KEYS REQUIRED LI LIST OPTIONS ZE RESTART PROGRAM BG RESTART CALIBRATION RE REPEAT LAST READING SK RESET K (SEEBELOI.J) ND GO TO NEW DEVICE CA CALCULATE PR PRINT Dl ENTER DISPLAV DU DUMP READINGS UP UNDUMP READINGS ST RELEASE PROGRAM CO I riSERT COr'1P1ENT CE CENTRE BEAr-1 AM RESET AMPLIFIERS IN' RESET IN?UT TYPE WA WAVEGUIDE OR COAX CL DEFINE CALIS PIECES JO JOYSTICK SWITCH 'FR RESET FREQ RANGE ,r1F COf<RECT I"lIN FREQ NO RESET NO. POINTS : T1 RESET TIMING INT TF' UPDATE TAPE FORMAT DC DISC FILE CLEAR

~

SETTINGS FOR K IN SK OPTION K=1 CONNECT SHORT CIRCUIT K""2 COr1!~ECT OFFSET SHORT 1 * K.:.:3 COi"--iNECT OFF5E-i SHOt<T 2 1<>4 CON;-·IECT OFFSET SHORT 3 V:er.:; '" ,-

:~':~6 CO!{,"·iZC:-r DEV!CE

TASK '? ("rvp~ LI FOR LIST OF OPTIONS) t,

......

......}

......

- 172 _.

AtU:lis stage, the operator is free to select the

tasl~s listed by t.}}l:i.ng the key code listed und terminating

wi th a carriacge return (CR). ~ 1 t' t' 1 . f '-, 1rey - 8 .. en'Jo. .lve y l_ t,,~e r~_

codes cannot b2 romembered then typing LI i'l:Ll1 result in

the display of figure 6.16 and any of the procedures listed

may be sl~lected by typing in the appropriate key code.

The progr~r;une is termi.nated by typing "ST" at t.he

task ent~J point.

Finally, when t.1d. s programme is used, the restriction

mentioned in Sect.ion 6:3 should be observed.

6: 6 The A'J.t.omated Progr2mme for the Three Short circuits Correction Met:.hod ---_._--_ .. _-----.--

This programme operat.E.~s in a similar manner to that

der.;cribed for the 5 termination program_me except for the

fqllowing points:-

(a) All lines are ass~~cd to be lossless.

(b) All the electrical offset lengths r,:mst be stated.

(c) All calibration termlnat.:i.ons must be known.

A tIPical operating format is sh01';11 in Figure 6.17 and

a t~{picaJ. line printer data sheet. can be seen in Figure 6.18.

. .. The programme also incorp01;ates bw other correction

systems (Ref. 6.5 and 6.6). These are useful when the

cross-checking of measurements are required. This programn1c

w'as writt.en by Stoneman (Ref. 6.3). Other than providing

the deriva.tions for the three shorts correction procedure,

no credit is claimed for the 'vriting of this programme.

Figure 6.17 orJcrating Fonnat foE. th.e Three ShoJ."ts Automated p'rogramme

REFLECTION COEFFICIENT MEASUREMENT CORRECTION

USING MATCHED LOAD WITH SHORT OR OPEN CIRCUIT OR SHORT AND OPEN CIRCUITS VERSION OUl2/R2 J-BAND FACILITIES INCLUDED INITIALISATION REQUIRED ? TYPE Y OR N )YES USE OF DATA TAPE REQUIRED ? TYPE V OR N )NO ARE A~PLIFIERS IN USE? TYPE Y OR N !YES INPUT TYPE COAX ONLY

STANDARD CALIBRATION USES SLIDING LOi~D# SHOHT AND OFFSET SHORT. STANDARD CALIBRATION REQUIRED? (TYPE Y OR NO) !NO CALIBRATION WITH MATCHED LOAD REQUIRED? (TYPE V DR N) !NO CALIBRATION PIECE 1 IS SHORT CIRCUIT. CALIB. ?lECE 2 IS OFFSET SHORT. CALlE. PIECE 3 CAN EE OPEN CIRCUIT CR OFFSET SHORT.

CALlE PIECE 2: LENGTH OF OFFSET SHORT (eM) 2 4 C(tLIB PIECE 3 ? (TYPE op· OR OF) !! OFFSET LENGTH OF OFFSET SHORT (eM) ~ 2 JOVSTICK IS NOT IN USE. NO. CF POINTS PER RZADING =10 TIMING INTERUAL( N*0.01 SEC). N=30 !NPUTS TAKEN FRori POLA:-< DI5PLAV OR PBr~S~ GAIN UNIT ? TVPC LOG, LIN ... or.( POi. ! ~! POL CENTRE EE};r~ iJHILE TV?ING f;NV C:-;AR{:~c·rER y f··~8~<!t·~lj~·~ FR:QtJ:::t'~:C'yf (GHZ) :z 4 r·aHl~;lun FF{EQU~NCV (GHZ) "'" 2 HO. OF POINTS c 21 St . .l!TCH 1'OLEC RESET TO 3t.J. MINIMU~ FREGUE~CY SET UP CC~RECTICN TO FREQ. I~ MHZ =

,I-' ...J w

:l

: <

310 MA7CHEO LO~D eN 2/7/77 ~-~ G ~ 7 S /. 46/1 '16

FRE QUEN CY 01-'-

.... 000 .... 1 Co ~.~Oo

".30e ~';'OG

"" · !lOo ' ('On

4,100 ;;· .. ZOo '- . 900 SdlO;') h.1 00 5.200 5. :;'10 5,"00 5.500 5 · . .100 '>,Jeo ~ . 80()

5 . 9:>0 1" 000

FREQ UENC Y "' .. z -~ . O~!') -<It. 1 Co .... 200 .. . 300 .. ·1;00 ... 500 ~·600

".700 ... aoo 4.:300 5 . .... 00 5 . :'0 0 5 · 2CO ~.3C()

3.4~0

~ . 5::'n

:i-en\) ::;.70n ::;.~Co

~6~C:')

£, . 00

K"'l A:'IP

.965

.93(. 1.035 1<0 2 0 1· 022

- SlO .s .. , . 961> .. 5~ ~

l-QC'9 . 583 ·97 ~ . 535

:.~19

1'0 .. 5 :·0-'49 1- 03 1

.003

.9~O

· 95 9 -9 8 ,.

P~ASE

17A.6 1 7,} .7 17".9 175.9 "~a 17 1.,3

.l 7b.i'. I J 7. lr ,7A .2 177 . 1 .; 76 . b

' :-8 . 4 17Q .O

-: :"3. 6 , 79. 1 177 .1 173.1 175 .:; 175 . 2 17 5 . 0 175. ::

REF ceEFF RttL

· 00:: .co .0,0 _ 007 ,co2 .C 2n _ OGS

. nc~

")(jC3 . rOl < Cl :

"'-~ . 00 3 · O~G

' 01':' - ~ ,jOb .0.2 · r04

~· o: ... --013 -.006 • • 01 7

K"? AMP

• 96" - . 994 , · 0;: q

. 994

. 96 ;>

.S At O

.. 93h

.96'<'

• <;7 "3 • 37 ~i . S5t . 9S ~

• 9~ :> 1.0\f,

1 • nO? . 9 1<; .967 . 9~ ;>

• <)6 '! .9£>J.:

- ·~~6"

;11116

• nl'; ;"

.05. - • 05<

• r .... fl . n,," .. 04 7

' 0" :> .041 · ,n n · 03R J t~~ 7

.03£>

• ~/ 3C; . 03 ..

• O ~~ " . 034 • :")3-. .. v:; Cj · OJn . 1)40 · 03<

P~ .lSE

~3"".6

,33.5 ~ 30.3

l26·0 1;:>5. ? 126 . 8 j?6· f; 25,,?

123 .7 , 21.5 1?1·5 12 1 .4 120 .7 119. 8 115 . 0 112 . 2 1 11 . 9 li O .5 :0 8 .9 la8 .3 05.6

K- 3 .l.t1?

1.001 1.015

. 996

. 9'10

. 9 4 !

. 96~

. 98 0

.995 ·97 1 . 9<. 3 · 959 . 990

1. 00 0 .99 ! .973 .96 6 . 988

1.01 8 1·00 7 1·021

. ~8 5

;>;';:'SE

64-3 59 · 0 53.6 50·9 50,9 49 · 0 '16'" .,.1 · 2 37.:1 35 . 2 3 3.3 3 0 ·:' 25.5 2 ). 7 19" :.. 17.7 1~ · 9

12.1 7 . 6 3."

·0

1( ....

.!.HP

·00 0 · 000 ·000 ' 000 ' QOO - oco

' . oco · 00 0 '000 '000 · 000 ·000 .oeo · oco ·000 ·00 0 · oeo . nco .000 • OC ()

· OCJ

REF COEFF ' :O M? n~ PtlA f;E

-('j ..:>6

..05 1 ,oS .!,. ~ ()i .. 0 ~O .. 5 ., USt . 0:"2 . 0,. 1

·-- . 040 . C1:;l! - 039 .0 3 6 . li3':. . n.1R .. O:'-j~

. 026

. ~35

.042 .. 03~ ~ 0'.0 . 0:37

~?fo.690

~25 . 8 09

- :>5.420 -? 6 d32 7 .... :' t~ . 9~ 7 - ;;." . 8 82 u27.S07 -=-7 . (,44 ·?7.955 -?8 . 318 -~"'f; ~ ;:3;; - ?1\.9 3 - :')" ... 7 b -i' :; + ~ 3

8 1.' 0 ' ~5 . 2 7q-O 81 .3 57 .. 4

i.7 . 3 .~ :; . <: 1\ ... . 1 c!> . ; BS .6 7~.H 9~. o

7 .... 8 e ... l

-2S- OO J 99.9 - 2 8 .. 9; 1 lC 9 ~ s -?9. ?:1 S~"n

- 27 · :'OiO 1 l0 . 2 -? 3 . b5 0 11~ .3 ~ ? :· . d,,! 6 5 $\ _2 - ;:>((~613 :17 ....

PHASE K .. S AM?

·0 .0 ·0 · 0 ' 0 ' 0 ' 0 -0 ' 0 • a ·0 · 0 . 0 · 0 .0

' 0 ·0 · 0 ·0 · 0 '0

VS.JR

1.097 1. 108 t . · 1 ! 3

t·09:1 1.0Q4

!~1 0 7

1 • n ;~ 8 1. Oil 7 !.0~3

I.OSO 1 • " il l 1 · 07 ... 1. 0 7 6 \· 07& 1·073 1.07 .. 1. rl7 2 t. 0:1 7 !· 068 1 . 08 fl

1 -077

, 000 ' 000 iOOO ' 000 ;;000 '000

' . 000 '000 - 00 0 • 000 - 0 0 0 ' 00 0

• · 000 '00 0 '000 ' 000 '000 ~OOO "000 -00 0 -coo

PHASE

. 0

. 0

.0 ·0 .0

'0 . r,

' 0 '0 ·0 -0 . 0 .0 ·0 .0 .0 ' 0 '0 -0 · 0 ·0

K",,; OE v ICt:: AMP PHo\.SE

·015 .012 . 011 .011 ·009 -007 -006 '003 'COl '00 5 ·OCB · 01 3 .015 · 0 17 .01B . C15 .01 7 .016 • 0 15 .015 .. C13

54.41 51.? 51 .3 50. 1 45.8 45. 3 42 .7 38 .3 ~56.4

"1?1.9 -107 . ':)

- 99 .2 .. 91 .7 - 51 .2 -89.9 -R B./; - 8 7.8 - 92.3

":00.1 -1tO. 4 - 12 •• (j

FIGURE 6.18

DATA SHEET OF

P RINTED HESULTS

~ J

"~

1--~ .p.

- 175 -

Five n:anua.l and ti\TO automated computat.ion programmes

have been presented. These· computer progranmes form. a very

necessary and important. part of the research programme to

verify the theory e:xperimentally. Of these programmes~

great difficulty was experienced in writing the automated

five Termination Progranune. As this programme was unfunded,

cornpu·ter programming assistance was not available and

considerable t.ime and effort had t.o be inve~~t.ed in gaining

the familiarity with the compu'ler hardware needed for this

type of work.

* * * * * * * * * *

- 176 .-

6: 8 Hef. e re11CC' S .---_._ .. ------ _ ... .... __ .. ..-

6.1 Hc ..... rlett Pacl~<lrd Co., Page Hill r~~d, Palo Alto, Ca.liforni<:1., ItHE~\'11ett-P ac!{anl Calculcc tor }lodel 9100A Operating and P rogramIHin9" •

6.2 eta Eiilva, E.F. and HcPhull. ~vf.K. "Calibration of Micrm'lave Ne tv,ork j\nal}"ser for Computer Corrected S P arar;lci:er Bee. 8un-::meY1ts" Electronic Letters 1972, 9 , pp 126-128.

6.3 Shurmer, H.V., L'l:n':.ton, H., Hosseini, N. and Eatie A Stoneman "the Application of an On-J..Iine Computer ·to MicrO\'rav(~ l1easurement" Il1EKO VIr - 10-14 Hay 1976 (London).

6.'± H0.vllett. Pac}..:anl /Net.wor]);. lI.nalyser Data Sheet" Model 8410A issued l~t.July 1967.

6.5 Adams,. S.F. ment. System" pp 300-313.

"A New P recision Automatic Heasure­I.E.E.E. Trans. 1968, IN 17,

6.6 Shurmer, H.V., HCalibration Procedure for Computer Corrected S ParametpZ' Charactr.?]:sat.ion of Devices Mounted in l1icrostrip" Electronic Letters 1973, 9, pp 323-324.

6. 7 Duc}~et, J. "P rivatf~ Communications" Computer Programmer, Depart.ment of Engineering J Uni versi ty of Narwicl~.

* * * * * * * * * *

- 177 -

CHAP '1'E R VII ~-':':'-"---. -----

The FABRICATION of rfEST and CALIBHATION PIECES

7: Q_Introduction

The theory of the new mea.surement systems have been

dl:.~scri0ed in Cha.pter V. The associated computer programmes (software) for calculating the required correction results

have been explained in Chapter VI. rfhis chap·t.er provides

details of the construction of the calibration pieces used

to verify the theory of the previous two c:hapters.

It was ob-v·ious in the initial conception of these

calibration pieces that any design conceived must incorpor­

at.e the following vi tally important: properties:-

(a) Electrical and tr..echanical stability in use.

(b) Uniformity in reproduct.ion.

(c) Ease of construction (economy).

(d) Easy interface with the measuring instruments.

After much thought, it "'3S· decided to construct the

majority of thes8 calibration pieces in air coaxial line

using APC-7 cOlmectors for the follovring reasons:-

( a)

(b)

( c)

The characteristic impedance of a precision air coaxial line can be accurately defined.

APC-7 connect.ors are kn·:rvffi to be electrically stable and provide more consistent VSWR's.

The mechanical dimensions of these cmmectors are hr~ld within tolerances cf + 0.0025 m. m.

- 178 -

(d) Inner and Outer conductors I'd th dirnensions c:.n.d toJ.ercmcr~s identical to that of the APC-7 connectors arc available and may be purchased separately to permit easier fabrication of precision air-coaxial lines.

(e) Various transitions, e.g., co-axial to micro­strip etc., are available.

(f) Easy interface with the measurement reflect­meters 'I,hose ports arc als:J connected with AP C -7 connect.o:r.s.

(g) Easy machinil"2g of the inner and outer conductors due to their physical dimensions.

7: 1 General D('~tails of the CalibrCl.tion Strlfldards

'rhis section describes the points conunon to the coaxial

calibration standards. Particular details of the individual

standards will be described in later sections (7:2; 7:3 & 7:4).

7:11 Choice of Offset Lengths

The choice of offset lengths within the calibration

pieces is important for the following reasons:-

(a) At a particular ,frequency of mGdSUrem8nt the offset lengths must not be chosen sO that the calibration reflection coefficients measured are r I_~L , r /e"·2:rT_, r-' ~~-='?':.01 etc., 'lI11ere rr.... is any interger. For, if this ',o1ere the case, then t.be error network cannot: be solved.

(b) The offset lengths should be chosen to produce large calibratIon reflection coefficient angles differences to minimise the inaccuracies involved in bpE:cifying offset lengths. For example if t.he ability to measure a mechanical length is limi t~ed to .! O. Olmm , then ~boosing an off!?et length of O.llTUTl is obviously unwise for a - 10'10 t.m.cer'c.ain·ty vlould be involved in specifying the offset length.

() , ",... 'f- 1 c For maxU:1Um acc~...lracy .In locatlng tue Vlr _n~ centre of a Smith Chart, the calibration reflection coefficients sho'.:IJ d be L~paced 1200

for any three termination calibration IT'.(~t.hod (secticns 5:4) and 900 fOJ:: any four termination method (Section 5:5).-

- 179 -

(d) Unn8ccessary r.lechani:cal dif£ ieul ties would arise in maintaining the concentricity of the inner conductor if the offset lengths ,,,ere made too long. support. by bead etc., is not favoured as discontinuities albeit small, will be produced unnecessarily. Furthermore, errors inaccurately spe:d.fying the:! electr.ical length of the offset, especially with changes in frequencies, could rE!sult.

In vie,,! of the above considerations, tables 7.1 and 7.2

were conr;;tructed to permit u more detailed study of optimum

offset length. Each table contains' SE!Ven sets of "preferr.ed"

offset lengths. set 1 to 6 are chosen for optimum offset

lengths for a particular frE~quency. For example, ::et 1 is

chosen for optimum operation at 12 G!Iz. Similarly, Sets 2,

3, 4, 5 and 6 are chosen for operation at 10, 8, 6, 4 and 2

GHz respect.i vely.

From t.he~.~~ '~~ableq it is clear thr.:tt if the ideal electrical

offset length Sets are to be chosen, t.hen r~u.ny Sets will be

required. This is obv~.ously financially unacceptable and a

compromise had to be raade into choosing one set of calibriltion

pieces for the short circuit measurements and one set for open

circuit mcusurements.

.. Offset Lenqth . LnlllLl

1---1 Set

4.167 8.333

§..<?.t_~ 5.000

10.000 Bet 3

6.250 12.500 set 4 8.333 16.667 set 5 12.500 25.000 Set b 25.-600 50.000 §et 7..

4.670 9.340

- 180 -

:r'able 7·.1·

iQ.,= =!. x 1 Ollw..:.n/ 81 . 3 Termlnatlon HeQsur~l1.nen"t§

~

!?ffecth~§.' Pb?se Clv.l.ng.UPegreesl

2GIIz 4GHz .~

6GHz 8GHz lCXmz ...----

20.0 40.0 60.0 80.0 100.0 40.0 80.0 120.0 160.0 200.0

24.0 48.0 72.0 96.0 120.0 48.0 96.0 144.0 J~92. 0 240.0

30.0 60.0 90.0 120.0 150.0 60.0 120.0 180.0 240.0 300.0

40.0 80.0 120.0 160.0 200.0 80.0 160.0 240.0 320.0 400.0

60.0 120,0 180.0 240.0 300.0 120.0 240.0 360.0 480.0 600.0

• • 120.0 240.0 360.0 480.0 600.0 240.0 480.0 720.0 9GO.O 1200.0

22.4 44.8 67.2 89.7 112.1 44.8 89.7 134.5 179.3 224.2

---_.

-

12GHz

120.0 240.0

144.0 288.0

180.0 360.0

240.0 480.0

360.0 720.0

720.0 1440.0

134.5 269.0 I

- 181 -

Table 7.2

{C == 3 x 1011 mm/ s) 4 ')~ermina tion HeaslJ.rements

OffS~ Effective Pha8~ Chanqe JDcgree_~~l l!eng·th ' .LE!I'.:..~ 2GHz 4CHz 6GHz 8GHz 10GHz 12GHz

r-···· -Set 1 -

3.125 15.0 . 30.0 45.0 60,0 75.0 90.0 . 6.250 30.0 60.0 90.0 120.0 150.0 180.0

9.375 45.0 90.0 135.0 180.0 225.0 270.0 Set. 2

3.750 18.0 36.0 54.0 72.0 90.0 108.0 7.500 36.0 72.0 108.0 144.0 180.0 216.0

11.250 54.0 108.0 162.0 216.0 270.0 324.0 Set. 3

4.6BB 22.5 45.0 67.5 90.0 112.5 135.0 9.376 45.0 90.0 135~0 180.0 225.0 270.0

14.064 67.5 135.0 202.5 270.0 337.5 405.0 set 4

6.250 30.0 60.0 90.0 120.0 150.0 180.0 12.500 60.0 120.0 180.0 240.0 300.0 360.0 18.750 90.0 180.0 270.'0 360.0 450.0 540.0 set 5 ~

-9.375 45.0 90.0 135.0 180.0 225.0 270.0 18.750 90.0 180.0 270.0 360.0 450.0 540.0 28.125 135.0 270.0 405.0 540.0 675.0 810.0

fie \:' .. 0. 450.0 540.0 18.750 • ')0-. 0 180.0 270.0 360.0

37.500 180.0 360.0 540.0 720.0 900.0 1080.0

56.250 270.0 540.0 810.0 10eO.0 1350.0 1620.0

set 7 --4.'(>70 22.4 44.8 67.2 89.7 112.1 134.5

9.340 44.8 89.7 134.5 179.3 224.2 269.0 14.010 67.2 134.5 201. 7 269.0 336.2 403.5

- -.--

The short circuit set cons·tructed J.S t nat 5hm-1n in s e t 7

o f 'rable 7.2 rn(ln~ly 4 . 67JThll., 9. 34niffi an~l 14 .0 1nun. Tbe open

ci rcui t calibration set chosen ·\.;ere 4. 8 3ni!n, 14. 83mm, 24 . 83ITJr.1

and 34. 83mm. These 13.re obviously not: the Eelectrical ideals"

but were cnosen as a. compromise be'bleen .he conflicting

electrical and rllechanical reqairement s

7: 2 The 7nun Sl1or-t Circuit Co-·axi al calibrc.t iGl1. Pieces -_._----- --------- ----_._---------

Photo copies of these short ·ci;:·cuib·) are shmm l!'1 Figure 7.1.

The machine d r-aFing::~ rela·ting to t .heir construction are shm-Tn

in Figures 7 .2 and 7 . 4 to 7.7. Those were designc'd by the

author . fj...9ur~7 .1

Photo9l::~b 0::' the Short Circuit ,Qalil.?rC!tton P icces------

-- 183 .-

PI GUlIE 7. 2 .

A~C-7 Locking Nut

E~3 I on Short f;irCldt . \~;~I);':1bly

Sco10: 2 :1 u~~r0X . · pinin.ll : Clp .• n

• a. t. e ! 1 .'1 i, ,J u 1 y, ] n 1

............... --.. --..:.----.. -~--.......-..----.............. ______ .~ •• __________ ... ____ 'RIlI ..........

Off f1c t Sh (Jr t Circui t Do y

~---'-

I H, rom d in.:n

APC-7 Lockinc; N t,

APC-·7 Body

n 'nil (~j, [\'ll1

FoJlS 101 orf~ct, ~hl).t CiI'cnit . r·!' c"lh 1.r . S(~(t1e: 2:1 rl.''''lJro :~

l"irlinh: Cln Fl.>-' 'r()1C'1~tm cer:: -----­Da.te ~nd, July, 107 ·

- 184 -

The rr,achinir:g was carri(~d out in the ,.".orkshops of the

Univ2rsity of Han-delc. General Assembly and gold plating

were carried out by the author. Details for gold plating are explained in Section 7:5.

No difficulty was experif~nced in the machining cf the

short circuit block Figure 7.2 as extreme accuracy is not

required. Th(~ crit.ical part of this assembly is that t.he

surface nA"(Figure 7.2) is completely flat. This is

essentia.l for both the inner and out.er conductors of the

mating APe 7 connector butt up against this surface. 'l'he

intern;;l diameter of the mating APe 7 outer conductor is

7mm and the diameter of gmm of surface "A" allOiis an annulus

contact. width of Imm •. Good inner conductor contact is

assured by the spring loaded inner conductor mechanism.

(Ref 2 - Amphenol Patent).

For the'construction of the offset short circuits, it

",ras ini tally proposed that the construction of Figure 7.3

should apply wi t.h the provision that the offset line length be count.er bored ~/.ri th a hollow reamer. This method proved

to be impractical because such a reamer was not available.

SEcondly even if such a reamer was obtained, the lathes

available for use in the workshop could not be relied upon

to hold a turning diameter to within a tolerance.! O.0025mm.

An alternative design was required and the a~;sembly produced

is shown in Figure 7.4.

The assembly of figure 7.4 has two main features. The

larger diameter of the inner conductor (Fig 7.5) is held

to 3.04 ~ 0.00254mm (Ref 3) and the outer conductor (Fig 7.6) to 7'i. O.00038rnm (F!.ef 3). concentricity between the inner

and outer conductors were ensured by care:r:ul boring of the

plug (Fig 7.6) and careful as?cmbly. 'l'he inner conductor, plug and outer conductor assenlbly "laS then gold plated.

'RDS 10,1-Outer

E;':S 103 Inner Conductor

APC-7 ./king Nut

b0 ~ /'0 __________ " APC-7 Sl '-=i _ Body I •

Err~ 10.:; !'lug

.AJ?(",-1 Outer ConG.llctor

Uemarks: The ':!mtcria.l s "1~cd for E':)S 103-5 Ilre I .. l~lc: from. _'1rn-rher.ol l'rcci?ion nod 131-2f>2G and Tube 1 :n-~O~!7. 'l'hc ttrce i tC!i!S ~.re

.. oft ~oldered tCGeth~r;::.t the edg-ea 'l'hn n.ss0::thly i!) t:Hm plated hefore be:i.n~ fully ass-:;:nbl eel ..

I

FI GCR'R 7.4

.-

Cent,re Line

__ ---. J:rC-7 31 ir1 ing Sl ee-ve

EDS 102 Offset Short Circuit Assc~bly.(Becdlc~s) Scale: ~il n~prox Finj sh: Cl COl!

Tolere.nces: Dnt.e: ,tth Jhly, 1971.

I-' OJ l)1

- ] 86 -,). ______ .!:.,.:L.,~,~~ _ ______ '. -'

-~ 1

L ._---p

1.5 mm ( i am I, [ ---.-~(--.. ----.--

~- I- --------- ---E-=- '-----~ ) r ---- l. _______ _ _

AHs emhly

A B C

Length

4.67 -9.34,

J 4. OJ

(L)

FI GUnJ!:: ,'.5 ---~--

1,04 rom __ SL diatn

r' ED~- 'l()~;' -~-:-cr Conr:ct::---

I Mr.t 1: i\nnheno 1 1 :11 -2026' Fini911: Clean, no ,.mrr!~ Si ze:- 1-: 1 D'men. il ns : ni l linetrc9 To JcrnJ1 Cc~" ·el·"t'~ + 0 (}9~

- J 1., ' i~ •• + . _ .~ u Dl ~IS .- 0.011 -------._-----_._--------,---------

7 rom ' diaD! to _. force .!>it EDS 101

~ ,*

Assemb) y A n C

Le'igth{ rum ) 21.00 16.3:) 11.66

r ;..J

r - ---L . ___ _

mm

r l~ o r.1 in a 1 Diom 1.5 rmn

j To forc e fit 1 . 5 ~~ diam

, of EllS 103 Inner Conductor

--... ~

l , -~-.. -,-------,---EDS 1 .5 Plu g Y.~C! .tl: Copper . Finish: Clean, no burrs 'Sj zo ~ I{ : 1 Di non I' i Oll A : 1111 II . rw trJ. Fl

- 'r o lcrrmc s : J.(;:n '~th.q - 0.02!) DiN'lS ! O.Ol ~ --...------------.. ., . --.--~. -----_. ______ -L _____ . ____ ~_

Hex, l\ut .

21.00

11 nnn l o,cross ' flats C:~ __ . r,_, _-__ 12_,_0_0 __ -"I. I

~ - - -

_. - - C = .~ _-_1.'------,·,-'--'---.. -' --_'---1' -

---.. --~ .. '--7/16 i nch-28 NBF -2 TH'D Specir.l r.n . ;;: . 110G'}'.1Of)'3u l'~ TJ ID ulICle 'cn /.. t. ( ) lllirH/ din. .•

F GUilE T. 't ---

7.00 run diom cl j til

DDS 101 o'ter C0n~uctor llu.t l : ,Am h no 1 131-20~7 Firdrht Cl fi.)J~ no lllrr.'"

Di l!l enH io1l9: m' 11 inc':,rt~0 . 'rclc.!'oncc!!: J Cll ;Tt!\!j :t 0.(' ['.1

..10 llin"k .:. n.~} 0

DA'!''R· ~·t' \ July Ifl74

ijunl c3/', nt-n ' p. d ot .. 1ct'wl ~: o.

- 187 ..

All t.he abcv2 offset short circuits were constructed

in this manner. They all have t.he same external dimensions

(Fig 7.4) but differ in the-offset line lengths by the

corresponding assemblies s11m-in in figures 7.5 and 7.6.

The offset length of 4. 67mm was decided by ease of

construction b(~C2.use the eli stance between the end of the

inner conductor and t'he surface of the bead on an APC 7

connector is 4.()7mm. Hence, if the first offset 1\Tere set

to this length, good electr:lcal contact can be made

betvlE"!Cn the outer conductors of the short circuit and the

connector.

7:3 3mm Short Circuit. Calibration pj_ec(~s --------.. ---... ----.--.... ~

Shortly after publication of the paper (Ref 7.4) on the . three short circuit calibration methods, one of my colleagues,

A. Kwesah (Ref 7.5) decided to use the above method for . h' t' d . measur~ng t. e ~npu - ~mpe ance of tran~:a stors. Discussions

,,,ere carried out between us and t.he short circul.t cal:'Lbration

pieces evolved are shown in Figure 7.8.

These calibration pieces are design8d to be used "d th

3mm (OSM) connectors. Details of these can be fonnd in most -R.F. conn<.~ctor catalogues (Ref 7.6. These dielectrl.c filled

coaxial conn,-:~ctors have tl. nominal charact(~ri stic impedancr~

of 50 011:n8 ,,,hich is pr.oduced by _ an inner conductor diameter.

of 1.270mm and an outer conductor "71108e int.ernal

diameter is 3mm (nominal) •. The dielectric used is poly­

tetrafluorethylene (Teflon) which has an effective dielectric

constant of 2.1 (Ref 7.7).

3 mm 'hnr1. Ci I'cni'!:. --' - .---~--...;...

o · ().

~ ::.::.::.:;.:::;/

3 !'11m Strnigh t. ))£LnlJ 1 J a ck Rc c (' 1:"1;. G c1 e

16' rom dir.m

-_."--

Solder Fi I ) ct.

MatcriBlt Drasa 17i rd sf : Cl can nd Go 1 d PI 0..4 ed' Sc~le~ 2: 1 'pproximatc y .

- 189 -

After much delibera.t.ioi1, it llas decided not to construct

bhe offset coaxial lines usingtefl.on as a dielectric as the

offset l(>ngths must be accurately k·nown. Idr filled coaxial.

lines ,.,ere choSGn instead. In order to minimise the

discontinui ties, the inner conc~uctor of the air line; was

choseii··to be of the same diameter {1. 270 mm} as tha t of the

3mm connector. For Ct. 50..n... alr line, t.he outer conductor

internal diametGr was calculated to be 2. 925mnl.

The calibration pieces were constructed from solid

brass cylin?crs (Fig 7. S). rfhe cylinders for the offset

short circuit standards ,{ere centrally bored to a depth of

25nun uith a 2.90mrn reamer. The inner conductors ,.,ere lathe

turned from solid br"s8 I

to the dimensions shown ,

p1.eces 1.n I

Figure 7.8. The 1nners w'ere construc·ted in this manner to

minimise the high current density losses at the short

circuit ~oints. A concentric ring of solder was placed

around the larger diameter of each inner piece before they

were inserted into the bore-holder of the brass cylinders.

The brass cylinder assembly "las then heated until the

solder flowed to ensure good electrical· contact between the

inner and outer. Each compl.eted assembly 'vas :then cleaned

and gold plated. '"

The 3mm connectors (straight panel jacl~ receptacles')

were ground and, polished to present a flclt mating surfaco • •

to the bra.ss cylinder a8s(~mblJe8. TvTO diametrically

opposed locating spigots vTere fixed to the brass cylinder

to minimj.se concentricity problems between thl'1 two pieces.

Finally two 8 DA brass screws were used to ensure reliable

contact between the connector and the calibrating pieces.

ThefJC short circui tr:: have "lOrk(~d remarkably well.

Excellent repe~tibility of measurements carried ou·t using

these calibr.ation pieces have been reported by Kvesah

(Ref 7.5).

I

I

I ,

- 190 -

Photo c opies of ·these standards are shm"rn in Figure "1 . 9.

The a ssembly drcrv .. ings o f the open cireui t. standards and tll.e

r eference sho rt: ci rcui t st.andards are given in IT igures 7 . IO

and 7.13 respec·ti ve l y. Detc.\iled dra,vings are g i ven in

Figures 7. 11 and 7. 1.2 f o r the open circui'l:s and Figures 7. 14,

7 . 15 and 7 .16 sho\v details f o r ' t he reference short circuits

:J.:.9U rr~ 7.:..2. p'hotograIil.L.2.f t.he Tl1.rQe Open C:Lrcui~t:. p..i:ecg§

"'..L - • lJen"re LIDI"'

I nner Conductor EDS 201

nut,,,,}, , Conctlctor EnS 202

FIGURE 7« 1 (I

Arnnhenol

Gouplin~ ]'-Iut

' 7 rron connector

I--- ~

I I

EIJS ?OO

COllr 1 in~ Sl ~eye

Inner Conriuctor ~echn~jRm

Bend

A~~er1bl:y D~·n.~1in;.::

.,. .

.L::.ne

CRlib~ntion riocc (n~~n Ci rc uit) Scnlc: KQt to sca le ,, \1'.(.(' 1;:)/0, 177 ~';Ot0~ : A-:1T"H'nol 7 'm, co-'nector

to ':.,; ~ll;)'~ 1 i c

1-' tD l--'

- ~ SurfcceA to be perpendiclJln.r to ~c 04, m:n dia,in &. J. ~ 54 en dio.m .'7. t.h 0.013 T. 1. R. 3/64(O . 04G) diam drill

6 '.35 deep_ 0- 30 N.F. 2TI Thtd 4.76 deep MinI c'bore' as shom!

0.013 'i'~ I. R.

I I 'I I !

I~"""'-'" --.:..-.-~)~~-~' ~~'"""',f. ~~~ '~"""""'.- S~~~~ d

I, . ! ( ~ . i 1 I ~~~ DL~ d;"" I )! ~~~~~~J r .~ 1-'

\.0 t'..) I

I I 14 r----

semhly

A

D

C

D

I.,

L (IT.:::i) • I

4.83

l"!:~83

2'1. B3-

34.83

FIGURE 7.11

- -11.98 L [ Surfnco A

----fL~ !

EDS ?01 H,1'~n. c''\yn'tJ'":TO?l

I,~[d,()rinl; l~:l l!Cllol ITlnf~r nr}(!_

13~-2026 (nu~nliecl)

Fi;li~h: Clen.n , no burr!;.

Size: 10 :1

'l'olerr.1lce: J ,e!"[~tlls :!:... O~O?V .ent!'(:,,,:; + O . Ol;'~

:;) i ;r;oasionn : I:r.U 'uil0.[)F; oU;o;',, :i;)('I .'~(,o.tcd .

D/lI " 1: 15/r./,-·

l~' T!! ' D undercut to -Bi Dor diameter .

Surface i_ to be perpendicu1~r t,c 7 . 00 ~.

a.nd 9 . 51 illr.J dia.os with 0 . 013 1\I . R. 7/16"- 28 !\""F:F- 2A T : 1D

i , ... 1 . 91 !W1 .. f :.. 1n:ti ..

j

~

rt • 1 -- l' 410~;~" Jlnr ..... i ,,) -:1CC:;' e.. J • .!J. =. \)/ . ',h10 u

I. t 0 01" ~ T R . J. ~ 1 ~ () L" - • •

I ! / 1--' -----~--------..---,.!:.,..---~~:-::-.':'Y1~ ---1 x-

,

i- - - - -\ ~( - - - -. . - - - - O.4"J7~l - -:- -1111- - I li-~ t '. 7 .~o im1 9~51 ~

I - < --- --.- -.---- ... -- . ~~~~:s __ -111'- j 'LC ~_ dia m d~a.a j-- - - ;/------ ----- ~- ~ ·-- ~I-..xaL~·· t 'Y ------~ I I

1 .. 9.53 I III L 8038 ;:oiL Sur f ace .A

r ~ t"-. I i ~ 13. 34 ~: I _ r . 17.78 1

~~ .L ~. t

As!'>c-nhly T { ~ ,r.t::i1 ET';:; 202

1-' \.0 W

\ 30~OO ~ FIGURE 7 . 12 Outer COTHluctor. AI=; ;':,(=11bJy . :,in.t- l: A 11':10""10 J Ou L~r

n 40.0.0 . J

C 50.00

D 60.00

C 'i11 (l u~ t or 131 - 202 ( SUll p J i(' d )

Si z o: ~ :J.

~ o]e r n.n c e~ : icn~t~R * 0.025 11 L r ~ I~' ± {) . Q I 3

Dimcnsion ~ : nn unless Ht~tcd o the n ri s e.

Dn.t c : l!) t:.h JI.'lSW~'t , lu7'i

...

EDS 20,-('-,:i: C,Cl' Cnnductcr

EDS 2GE. rlug

RVS 204 Inner Conductor

APC- 7 Outer "'-nouet-or J\.!'C-7

. S-,~_pr>ort. Bca1

FIGURE 7.13'

A!,C- 7 I,oc1dng Nut

CDnductor Mechanism

Body

S1iding" ~}lcc·-.t; ·c

EDS 203

!-' \.0 ~

Offset Short Circ~it Assembly S~ale: 2:1 ~pprox Finish: f;lean Tolcr~~cGs : ----- -D['.. te~ 15th August, 1977

o th er· ..... l IH) . Ii' 'tU n., 'i. 1 4 -----..-~ ....... --.

Di r:1enF;ions: I

Toler~nces: J.engt hs * 0.025 __________ . ____ . ____ . __ ~ ________________ ._J _____ , __ ._~i fj.::l~ ___ ~ O. OJ :i~. I ~}----- IJ .-.---~ . [

~;):-.- I-~r ---~ _ -.1 _ Non; ntt 1 Di nm 1.5 rom '1'0 fo rc e fit 1 , 5 diom of . )S 2(14 Inner COYl rlu~tor

J!l GUn.}; T. 1 f

._--------di= to ~ I j :~; 205 Jc) '--- .~ . -~, ---r--

L :..D ') 206 1)1 ug

'):? --,- ---- -. '''---1 -=~11'i"'- '\ ~ \tvt . = Cotner

() ~_ 5 .. -t . Fin). s11: CI e(),ll f no iJU1TB

A3sembly L mm Size 1-1

A 13.1'( O.t> I>imenni-cn: chJ.rnf ! t' ToJ ern.nco::!:

m:i 11 il'le (;.rcs Le)H~th~l :t o. O~~) ])jnm~ :t 0.013

16/8/77 . Grove :tor solder ring

.'

Dr .. tc:

---_.--. ,-------_. --_._-------------~-.--.------, -,

~ 'l .OO fl.C.O di ~linm

- ~ .. - - - - - - - - --"---'- '- ,~-.

lI0'\:. 1: ~ I 7/J Gil 2e 1BF' . :. Th ' ~ J 1 mm IT, 1."r:1HJ\:d ft,l P.)'). _ •. j.lnnfl / a.cr'OIH· .10g;J " 1'~ 'rh1d I

fJ o.ts undN'cut '('() mi nor cliam

FI GUR}t.:: T. 1 G ---"' ..

I EDS 20[; utur Com uctor J.!a.t.l: AmTlheno 1 J:n -2(~:' 7 ::!'i • .1 1)1.: Cl ')t:~t), no lmrl"l c;'i %e: 4:1 ))il:-:cnniohfl: mill un cn~ ~tt tl~ ~

o thf!L'l~i l1e . Tole l'cmces : I. 1 9t1).'~ ± 0.(1 1)1')

]} ' WJ ':t(.l't.

Dfl.tO: 16/3/71

- 196 -

The construction of 1:he open circuit. calibration

standards havo been dictated by the m,;cc8si ty to retain the

standard support: bead v1i thin the APe 7 to centralize the

inner conductor. Insu1ative supports were not used at the

far end of the conductor to retain un:lformit:y within the " , , edt' t' prec1s1cn a1r 11ne. on' UC'"lVe suppor "s, sueil as a short

circui t placed a, quarter of a 1·mvelongth away '\vcre rej ected

because these would immediately make the calibration piE!ces

narrOvl frequency band devices. It ,,'as realized thC1t support­

ingth2 inner at one end only will cause concentricity

problems at the unsupported end (£<11:-" end) between the inner

and out.er conductors. Adams (Ref 7.1) has given some

figures relating to this problem. In practice, tIle concent.­

rici ty problem has nO.t proved to be troublesome. This is

believed to be due to the fact that the ncar end is rigidly

held by the support bead and that it is centralized by the

inner COl:lductor of the mating APe 7 connector.

In order to minimize the effects of the supporting

bead, and to provide sUffici.ent thread length for a rigid

support, the first open circuit plane' (Fig 7.11 A S8 .~) '\'13.8

placed 4. 83mm a\lay from the far surface of t.he support bl:!ad

"Thich is a physical length of 7. 671mn (14.01 ele::trical) from

the contact edge of the inner conductor. The other reference

planes are spacc:~d apart at 10mn1 increments (Ass B, C and D

of Figure 7.9). The outer conductor (Figure 7.10) was

orig:LnallY drmH: for four assemblies. Each outer wa s • •

meant to exceud the length of the inner condu.ctor by

approximately 16rnm thus providing nearly 100dB of evanescent

mode attenuation at 12GHz for the THOI mode. A later cost.ing

exercisE:! shovled that this method 'vas prohibitive and it was

decided to use a common outer ana APe 7 connect.or and to

change t.he inner conductors as desired. This method has not

proved to be particularly troublesome but does require more . computer time during calibrati.on becausE:~ of the longer

time required for' ch;mging the calibration pieces.

- 197 -

The reference short circuit 'vas constructed using the

principles derived for both the short circuits (Section 7:2)

and the open circuits described in this section. The short

circui t plane has been placed 4.83mm av;ay from the far side

of the support bead to coincide "lit.ll the plane of the first

open circuit ca1ihration standard.

Hence, all measurements are referenced to a plane 4.83rrun

a"\-lay from the far. side of the support bead (i. e. , 14. Olrrun

electrical) from the contact edge of tbe inner conductor.

The fabrication of the microstrip pieces ",ere carried

out on the premises. The general principles are w'e11 ltnown

(Refs 7.8 to 7.18) but as the majority of the it.ems ",rere

fabricated by the author using non-commercial equipment

developed wi thin the Uni versi ty, a brief rCf~ume of the

methods used "I"i11 be mentioned. 'l'he main fabrication

processes are shown in Pigure 7.17.

. . F i gu r~~ 7. 1 7 MalD._Fabrl·cation Processes C?f Mi£!2§trill

[--;rt."o~HotOli thog.r~9

l' .- J-Cl]bc~t" 'r'ltp. •. ) • .' "' • G .' .. --_._- .'~

E1:£.[Jn ratin.!1 'fj.i

1 t 5.1 Maskma}:i!!£1

Phot.o R(~s:i.st ill~(~ ~.£: t c11i n q

Tbe desired arhvorlc "ms drav1TI 011 "Cut N strip" film

using a co-ordinatog:r-aph ",ith a Flha.t"p cutting blade. "Cut

N Strip" film may' be dCGcrib(~d as a teflon transparent sheet

film 'vith a thin reddish (strip away) plastic film ~ttached

to it. rl'he film is claimed by the manufacturers to be

, ;

l.

~ I

I I

I

I I I I I I !

1 i I

I I

I

I ~" ,

1:0 1' ,....1 . :1 Pi,1 01 "n '..I I HI r1;

Ii (l ) 1

j I • f

\ .

: f

- 199 -

.. dimensionally stable and to provide excellent contrast for

subsequent photographic "mrk. The coordinatograph has

vernier scales vlhich permit. accuratc~ posi tioninq of the

cutting blade to wi thin.! O. 01IT,m. The dra\"ings were

normally made ten or t'iventy times the actual size required

so that any cutting or stripping irt'egulari ties ' ..... ould be

reduced significantly. '1'he masked produced ''laS tabm into

the photographic laboratory for photo-reduction.

7: 5.2 Pl!oto-li thC29ra.phy

The photographic equipment used ",·o.s developed on the

premises. Kelland (R~f 7.15) did the preliminary 'i>lork and

Hichie (Ref 7.16) finalised the system. A picture of the

photographic laboratory is shown in Figure 7.18. The

I photographic bench is on the left; the wash basin and

general fi1m'development equipment is on thE) right. All

photographic equipment is attached to a riqid beam suspend-

d t {-" • •• 'I .... d' e by spr~ngs ..:rom a m;:un frame to m~n~m~se ~u~l .tng

vibrations. The back 1i t art"lOrJc is fixed ·to one end of

the beam. The simple box camera and t~he focussing

microscope has slide attachment.s to permit movement along

the beam. various lenses may be used 'with the";! camera body.

Dimensionally sta.ble photographic plates are attached to

the other end of the camera by a va.cuum chuc1c. No shutter

is provided "li thin t.hG carnGra. Exposure is controlled by

exposi.ng the film to bacJ.: lighting cr,tanating from b(~bind

h c· d" . d 1 b . th t e arbmrl(. ..:)~ze re uct~on ~s carr~e OUt:' y mov~ng e

cam(~ra body along the bench until the desired image on a

dununy photo plate is obtained. The same image is: also

exami.ned by a travelling microscope t.o ensure sharp focussing.

Focul:;siDg and aperature control is carried out by adjustments

within the lens used.

Exposure time u~3ually b~ti'n~en 8-30 seconds was varied

to suit the reduction S1.7e and the }\odal{ high rE~soluti.on

plat.es used (Hef 7.11). Development timc;;' waG rigidly

controlled and was carried out according to the folJowing;-

- 200 -

____ ~h~W;;;~.;~':~'_.."I!!!II: _ ...... ~.,.-p;aaq:c"e; '_-UIIiIIIUII~~.

Developer

Stop Bath

Solu tion

- -_._-1 part I~odal;,: DG de-ionized wate

3 parts Glacial to 8 parts de-i

10 to 6 parts r.

Acetic Acid onized water

Time...lgen.,!;.le ?-9.?-_ta t ion} ------, --6 minutes

-45 seconds

~--------~------------------- ---Rinse De-·ionizc·d Wate r ---_.- ,.-- .-

o .

Fl.xer 130 gr.1S of Kod<A pOi>Tder per Ii t.r ionized vTat.er

k Unifi.x

---~--,-------

Rinse De-i.onized wate .----.- . ------Hypo­Clear

e of

r

Hyop d in

61 gms of I\odalc Powder di ssol ve litres of de-io nized

r

dc-

-----Clear

2.25 water _._ . . ... -

1 minute - ...

8 rnim.'ttes

1 minute -

10 minutes

--- . . 20 minutes

-Rins;=-t ~e~ior:i::;:~~;; ... _. ' ........ , .... --

Two main tYlJes of substrates "iere u.sed, metal deposit.ed

substrates, e.'g., alumina." and sapphir'e substrates. In the

case of the latter, metallic deposition 'vTas carried out

o t' Th' 1 h t.1S1ng vacu.um evapora 10n. e eq'.1:Lpment usee ",ras t.8

Ed1,'Jard!3/Bil.·v (,f: Hodel TA-150. 1~ close-up vlew of t.he

evaporation chamber with th8 bell Jar removed is ShOl:11 in figure 7.19. The method of using this unit has been

substa.ntially described (Ref 7.8, 7.17 and 7.18) and only

a resume of the preparation and vacuum deposition of the

• b • substr<:l.tes w~ll ~e g1ven:-

Vl Vl tJ

..:-:::: .. u

.C

E

.. -

<1-' .. ':l :J ;::r :Jl

f)

.r:. (])

u c 0

L. .. ~ Vl

Q) .Q

C :J n II/

~

.... 0 .. -

' .. .... 0 a. a. :J til til-

(\)

..-~i. 0

C .. (11

(.1 .0

() :J .... 'J)

-201-

t::

Ul

> 1 L.

()

L.

0 .. -c: 0

E

~I '7

b ~I H

I' (-: :S18

~ r.~ IH °If.~ 8

1

o..H .:r;IO

t-: ~ I ~ ti..

c.

c o \..

~ ,

III

CJ

>,

, - .. J'.

---I .'(

" a "J • ~ . ~ .:

. I

'I

. '-:;.";

:J

E

,;

- 202 -

(a) First Wash Substrates ,.: .. ashed in a solnt.ion of 5cc teepo1 and 100 cc de-ionized water in an ultra-sonic bath for 3 minutes (Fig 7.20).

(b) Second Wash

(c) 'rhird l''lash

Same as First 11o.8h.

Sl.lbstrat.G "lashed in 100cc of carbon tetrachloride for three minutes in ul t.L~a soni c bath.

(d) Fourth ~~ash Substrate "lashed in 100 cc of 180-

propanol in ultrasonic bath.

(e)

( r)

( gj

(h)

( i)

(j)

(k)

d '.' (1 )

(m)

(n)

( 0)

(p)

Substrat.e dried in oven at 70°c for :ive minutes.

Substrate placed in vacuum chamber, Dirvac TA-150.

System evacuated to 0.1 torr.

SY:3tem' heatf.:!d to 150°c for fifteen minutes of out­gassing.

Heater s'\"itched ,off J but glow cleaning applied at 1Kv for ten minutes.

Filament current switched on at 25 Amps and left for five minutes.

Nichrome heated and allo'wed to deposit on target shield for two minutes. This is to'minimise any ni~hrome oxide on th0 substrate later. , " .

Nichrome deposited on substrat.e for 60 sE~conds. Target vOltage was set to ;2.. 5Kv I recorded current "Jas 25rnA. P reS81.lre was 5 x H'P rrorr; thickn(?8S of deposition about 400 Angstroms.

Copper heated and alloi';ed to deposit on target sheild for two minutes. This is tQ minimise the deposition of copper oxide on the substrate later.

Copper ct0.posi tcd for twenty minutes ,,;i th target vol tage set at 3I{v. r~ecorch::-cl current was 65 rru\. TId.cl.ness of deposition about 1 micron.

System left t.o cool. After thirty minutes, air. "ms , allowed in by the bleeder value. If the subst,'Cr.:'.te

was not dGsired immediately lit 'van stored in the vacuum unt.il required.

Removal from the vacuum chamber 'vas l.lnrn(;:!diat.ely follmled ,vi th photorcsisi: cO<lting to minimise oxida.tion.

- 203 -

'J~wo type1':i of photoresist '\o;:ere used, the negative type

Roda}:. Thin Film Resist (KTFR) and the positive type resist,

Shipley l>.Z 111. The negative resist w'as used when it vias

desired that all image parts eXposed t.o ultra-violet. light

,·muld be w'ashed away in the developer. The posi ti ve

resist vlaS usC?d when it. "ras desired that all the parts not

exposed to ultra-violet light ,{Quld be washed a1vdY in the

developer.

In both cases, the method of application is the same.

H:.F.T.R. is. applied \dth a syringe f:i.tted with a negative

resist filter (MillipOB Type AfI.vIP Ol300-A), Shipley AZ 111

is. applied vi th a' syringe fitted v1i th a posi ti ve resi st

fil ter (Hillipore Type UHWP 01300;-.A). 'rho equipment used for this work is shm.,n in figure 7.20.

The substrate was vacuum held on'a rotating spinner.

A thin layer of resist was allo~ed to flOW over the substrate,

wllich was then spun at 3000 rpm for 20 seconds. A s~col1d

coat of resist was similarly applied and spun. Pre-etch

baking t:i.me was 10 mlnut.es at 70°c. Exposure time was 3

minutes followed by development in KFTR developer for th(~

KC?dalc t:ype and ~hipley AZ 303 for the posltive resist.

Post-developing baking time ",as 10 minutes at 70°c •

.#, . .• f. .

The copper etch used vms a solution of ferric chloricl.e

prepared by mixing 80 gms of ferric chloride 1vi th 400cc of

wat0.r. Etching ,.,ras by gentle agi t.ation and the complete

etching time \va~ about 20 seconds.' The substrate vlas

inunedia·te1y removed and washed as soon as the nichrome lay(~r

underneath 'vas visible. The nichrome etching solution ,.,ras

prepared from 40gms of potassium ferrocynio.e, lOgms of

sodium hydroxide dissolved in a solution of deionized water

to make a solution of 200cc. The solution was used at

50°c. 'rhis :::olution \.,real(cns ~dth time and should be

di scarded 'vi thin sc.~vcn days. In practice, it was noted

thfit even after 3 days, thH etching qualities \vere impaired.

Electroplating was them usod to t.he required thicJmcss.

-~ ~ a.. ::J II)

L. <1.J .... 0 ~

l-i

0

I .

<i CJ) Q~ <V .....; "'0

'-0 '.-0 L

OJ C OJ 01

U

C 0 (/}

0 ,. ;:)

a.. C.J... :J 1.1,1

'-Q)

'- .> Cll ~~

E 0 ..c u

0 O. ..... 0 c:: t... Cll E- u C <!. 0 Col '-> C (l)

~, .

;-.., til

0 Vi

0) 01 C. '0

..c: u >' 0.) , C 0

", . • • 1 ~ .", ., • . ,.,

.. , .. ., ... ~ . ~~.,

c: E .. :) 0 u

Ul 0.. 0 u (/) 0

..... o -.-o u

'- 204

Vi 0 a.. (/}

E ". u (]) ... "

ij) (.1 .... >-Vi (fl

U 3:

. '. , . ........... , . . _,

U

C ()

til

iJ C '- 0 - .. -::J

'-I ' --- ' . I '

I r, ~ • "'. I.~ ·:I .i. I

"

~I a.. 0 :J

(/} V CJ '-"- QJ Q.J .. -

't- o '+- ~

-Qj C \.1 0..

'0 ..... .....

.... :/l

'iii to ,

01 QI

\., C (') C .. ~ 0 0.. ..c Vi 0..

.... C OJ

lIi 0'1

ttl

'""" ('J L...

0

0 .c 0..

-- .... ----- ~

~I r--

~ I.r. 0 0 H ~

C

Vi

t? vjl Z (.Ll H H if; E-I (jj H r.rJ ...:l (.) H 0 ') p::; ~ 0.. (:L.I

......

.c ... I .. O. Q)

C C .... C\..

:J

lfl

'-'0

0 C

" ~

~ '--,

...... C Q)

E c ,:fl

~

\.,

OJ C C

a.. (/}

- 205 .-

Most of the plating techniy\.les Cal(l8 from (Refs 7,13,

7.14, 1.16 and 7.18). The book by Raub and Mueller is

excellent on fundamentals and helped considerabl:r towards

understanding t.he ot:1::er rt'ferences. Graehme (Ref 7.18)

is particularly good Clnd goes into considerable detail on

thin and thick film plating. .l\lt.ho'..:lg11 copper plating was

achieved fairly easily, considerable difficulty WdS

experienced in plating after etching. 'l'his ,,,as finally

traced to photoresist contamination and a cleaning process

had to be derived.

After the etchir:g of the chron',e film; the remaining

photoresist '\vas removed; 1~FTR by a spray of carbon tet­

rachloride; Shipley AZ 111 by a spray of Acetone. Both

actions "Here follOvH::d by a spray of Isopropanol. By this

time, the copper surface 'was well and truly 9xidised and

had to be once again acid dipped. Various solutions of

11i tric and hyd~·ochloric acid dips Vl?r(;: t.ried. The one

finally decided upon was a 20,% of sulphuric acid used for

a 20 seconds dip. The substrate was then immediately

connect0.d to the plating bath. A solution of copper sulphate

and dilute sulphuric acid ",vas uSE~d as the p1atin;J electrolyte.

The soluti.on, was made by dissolving 850gms of copper

sulphate in a "Teak solution of dilut.e SUlphuric acid made·

from mixing 198 gms of concentrated sulphuric acid mixed

wi th 9 )j, t.ref:;· of: deionized '\vater. '1'he age-old~· precaution

of. always adding acid to 'vater was adopted in preparing the

sOlution. The C'.lrrcnt used "las 300 rna per square centimetre

of plating surface.

Copper plating vias follmved by a gold flash using' a

gold plating solution, a commercial product called

Transt.bcrm Solution made by PHD Ch(~m1.cals Limi t(~d. This • ".. l t r. 1"':0 d' . solution must be mc:nntalnea. a- v:J C ur:tng pl;"\tJ.ng. f1'11e

solution is used undiluted. Hemoval from the gold plating

bath must be follovred immediately by u dip in I Elopropanol

- 206 -

follOvie(} by inunediate drying with compr2::;sed air to provide

a shiny gold finish. '1'he curr.ent used was 100 ma per square

centimetr.e of plating surface.

rrhis chapter has explained and described in detail the

construction of the calibration and test peices used in the

oystem. Considerable effort vlaS expended in trying t.o

produce "theoretically perfect caJ:ibration standards. vfuilst

not all of these aims have proved practicable, the majority

and vital principles have been achieved.

'rhe consistency of the various standards have also

. been verified by I{wesah (Ref 7.5) and Hosseini (Ref 7.20).

* * * * * * * * * *"

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

- 207 -

Adams S. F., "A New' Precision Autcmatic :!'-1easure­mcnt System" I. E.E. E. rrrans. 19(,8, IM17 pp 308-313.

Ampheno1 Catalogue Sheets "Series 131 - Precision' 7nun Conncct.orsH Micro\-,ii.tVe P roduct. Dat_E~ D i n~ctory 1973. Ampheno1 Specificution Sheets 0:::1 ou'ter Conductor Tubing 131-2027 and Conductor Rod 131 - 2026.

da silva E. F. & McPlml1 M. "Calibration Micro­wave Net'worle Analyser for Computer Corrected S-P arame'ter Measurements" E1ec'tronic Letters 9, pp 126-1~8, March 1973.

l\wesah 1\, "Characteiiza'::-.ion of Inb2grated Bi-polar 'I'ransistors using Cc)mputer Aided Heasurements and Optimisation" Chapter 4 Ph.D rrhesis •. University of Warwick 1976.

. . h . tlM1.crowave Engl,neers' Tee nl.cal and Buyers Guide Handboo}.;:" 1970 Edition published by Micro'ivave Journal, Horizon House, Dedham, }1a.

Military Standards. p-19468 on Plastics published by the Joint Arrlled Services. U.S.A.

Hai,sse1 L. I. and G1ang M.H. "Handboo}: of Thin Film Technology" He GravT H i.1l, Ne'\oV York 3970.

Keu.ffel & Esser Publication "Uses of Stabi1ine 'Cut N Strip' Film Data She(~t 1964.

J\oda}c Publication "An Introduction to Phot.o-f b · t' . "d 1 . t' ",', tI 'a rl.ca J.on uSl.ng hQ ak P :lOtOSfI:tlS1.'.1. vr:. healS'::'8

l~oda.k Publication Book No. P 79.

r\odaJ\: Pub1icat.ion "Kodak High Resolution Plat.e" Data Sheet. ~.,

Chemical P rocesses Ltd., "12/1,s Resist Stripperfl

Data Sheet by Ch8mica1 P rocesses Ltd., Chidburgh, Suffoll(.

W. Canning & Co. Ltd., "Handboo}c on Electro­plating" Binningham, 20t.h Edit.ion, Jan. 1966.

Haub E. and }1uel1er I{ "Fundamentals of }ictal ]1)ep08i tion" El sevier Publishing Co. 1967.

Ree1and G "The Cdmmissionin9 of a Hpduction Camerall Uni yersi ty of ~'1arwic)q Internal Report 1969.

Hichie D, "H:i,crov.~av0 Integrated Circuits; P repara tiOll of and Neasurement Techniques for Overlay Capacitor" Ph.D 'l'hesis, Univcrsitr of Wanviel.:;, 1978.

7.17

7.18

7.19

7.20

- .

- 208

da. Silva E. F., "Inductors as Lumped Elements in Hicrowave Integra.ted circu.its" H.Se Thesis University of NanTic}>:, 1971.

Pender R. S., "Thin Film Hicroelectronics" I.E.E. students t Quart8rl~{ Journal, sc~ptem.ber 1970 pp 153-157.

Graehme A., "Electroplating Engineering Handboo1<.1t Hhei.nho1d Bool\: Co. 1969.

Hosseini, N. H., '''fhe Application of Computer Aided Design to Hicrostrip Cireui ts" Ph.D Thesis, Uriiversity of Harwiclc, July 1977.

* * * * * * * * * *

. ..

- 209 -

CH.i",PTEH VITI

,

PRAC'I'ICAL PP.OBLENS IN COMPUTER CORREC'l'ED MEl'.SUfillHEN'I'S _._.,---

8:0 Introduction -------

Tl·.l,e main purpose of this chapter is to examinEe:! the

problems ",hieh are cnconnte:r.cd when theoretical ideas are

applied to practical problems. A brief survey of the

complete measurement equipment is initially made. This is

followed by a more detailed review of the polar display unit

to establish, the principles by which the magnitude and phase

components of the reflection coefficient are detected. The

problems associated with non-li~earity in the amplifiers arc

also analysed and the solution used to overcome this problem

is explained.

< Tests are then carried ou·t to E!stablish the viability

of the equipment for computer corrr~cted measlll:-ement.s. These

are folloi.J'ed by further tests to confinll t.hat both manual '

and automated corrections have been satisfactorily achieved.

1\ bloc){ diagram of the measurement equipment is shown

in figure 8.]. and a det,ailed block diagram of the polar

display unit is shO\~-n in figure 8.2. 'r'bese nrc based on the

manufactur'cr's information (reference 8.1).

REI; •

SIG.

• nEF • SIGNAL

- 210 -

Fioure 8.1 . -... --<..;..;,.;;;----.. ~

SIGNAL GENERATOR HP 8690B SEHIES

J-----'-1---NEASUHEHENT

PLANE , I

=l- INC. I -<!-- . __ h.... I HARHONIC REFLEC'rOHE'rER V""

MIXER A!'-;1) LINE 1----1 HP 8411A.~.. ... '---~ ______ ~ ... ~ STRETCHER ~--

HP 8742A REFL.

rrEST SIGNAL

HEA SUREl-liNT PLANE

I F.:. ]\HPLIFICATION

POLAR l DISPLAY UNI'!'

HP 8410A _-{> .... ' HP 8414A

-------'

Fiaure 8 .2 • .c p 1 ~r D~ splay (h"1'S414A) Overal l B l 0cl<:. Dlagram 0.1.. 0,,_0. ......

--- .--;.-.

• - rT1 • i ,/-ortical out:put c~:n,~~£ A~;f\ I; I D I ~ V ~. C •

~~9~~llO~rorll i"'~J900 PHl1SE J J SIN ¢ .-~D .. c.>-4ID"7 ~c. ~l /~~\ SjN ~ ~'. I ') - ::,., r-'D'Prrr.:'CT''H-' I ~ / I I . '\/ >-- 1 ------jX~J I isnIFTER · I' ~".. U~ It· V 0 i . : {]!L\ ' /<! I / I I I I , . .. _ , I I .I'd, \ L-<t <:?-, y' \. /i\ r' A SIN cb VertlCcI.L . . _ i~ __ -I __ _

rh I !. I Shift M] , ! --A-- 'y !BE.r~M CE~~;'-:-~ I . II I I L . VOLTAGJ, I ) \ I " IIADJUST. '" I I II ' I & FILAMENT \V j... ~ A CO S d\ . I • I ! SUPPLY / __ ./ r

I PHASE! I· I POL. y--l ~ --- . ~~ITTER 14 180< 11 ~ DI~:/ >-- I TT~R I - 1i\ 278 KHz Phase I LIM...L .~ '" I . 1 Ref en,,'mce . Signal I i I HIGH

fro:n HP 84::'OA I I VOLTA~EI I i j SUPPLY I ; ! 1, I

-Ii , j . r "" f

leos" rp '·--1 L"" I J ~ >1 . -I-V' Qi17V1' c. . J - -------7"!DETECl'OR i 11 . I If, HOJ;~zon';al

i J . I, V Shlrt AOJ •

; I A COS~ Lt ____________ ~ ___ ~~=-_~ I,' Horizontal output 'INTENSITY I

~ :==lMODULATOR LI-------_____ _ > ~ I

$..-------'

I',,) ~ ......

- 212 -

In figure 8.1, the output from the signal generator is

fed int.o the re£lectorneter. The reflectometer samples the

incident signal (reference signal) and feeds this reference

signal via a variable delay-line (line stretcher) into the

reference chalUlel of the mixer. The reflected signal from the measurement plane is fed into a co-channel (test channel)

of the mixer. The line st.re·tcher is norlnally adjusted in

US!?, so that the electrical path lengths in bot.h the

referenc(~ and the test channels are equal. Both signalS are

dOim converted to 20.278 11Hz (1st I. F. ), amplified, and dOvIn

converted to 278 KHz (2nd I.F.) for applica.tion. to the polar

display unit (figure 8.2). The 1st I.F. amplifiers in both .channE:!~.s are cont.rol1ed by an automatic gai.n con"trol system

sampled from the reference channel. Any change in signal

generator output level is equally compensated for in both

channels. 'rhus the ratio between the test and reference signal remains unaltered. The referenc.e channel is provided

with a phase control and the test channel is provided with

an amplitude control. Both these controls are situated within

the main I.F. unit (HP8410A).

'rhe bioCk diagram of the polar display unit (figure 8.2)

is particularly interesting for it ShOvlS t,he processes of

phase detecting. It is important to notice that the phase

rl~ference signal is amplitude limited before phase detection

commenc(~s. This has the effect of theoretically rendering

the detcc"tion cireui ts insensi ti ve to amplitude errors when

the "limiter is working efficiently. Practical confirmation

. of this i{aS obtained by measurement of the phase angle of a

shor.t circuit for a given amplitude gain. The gain control

was then altered and the phase an91e re-meas.ured. Resul ts

obtained in this manner showed t~e phase angle to be independei1t of the amplitude signal for large reflE?ction coefficients. .

- 213 -

Hands, (reference 8.2), \'ioods (references 8.3 and 8.4),

l~dams (references 8.5 and 8.6), Ridclla (reft~rences 8.7 and

8.8) and Harner (reference 3.9) are so:nc of the authors who

have investigat.ed sources of errors in automatic network

analysers.· Harner has issued a comprehensive list. This

is includ~d below:-

(a) Instability i.e., the inability to produce

identic(1l results for the sarr:e measurement.

(b) Nois(~ • •

(e) Non-infinit.e directivity in the couplers.

(d) Imperfect matching at the t.est point.

(e) Departures from identical traeldng in the

test and reference charuLels.

( f) Leakage between the tw·o channel s.

(g) Imperfections in calibration standards such

as incorrect dimensions of thf! connectors,

contact resistances, errors in offset length

specifications etc.

(h) Imperfections in instrumentat.ion such uS freqt..lency and power level non-lineari ties,

gain and phase drifts in the I.F. amplifiers,

detect.ors, attenuat:or and di splay cireui ts.

(i) Quantatization errors, SUC~1 as errors in the

analogue t.o di.gi tal conversi.ons, rounding off

errors in computation etc.

It has alre~dy been S110wJi. in Chapt.er V that the

me;1sured reflection coefficient, P is related to the true

reflection coefficient r , by a system bilinear transform·-.;,.' p Ar +B 1 a .... ~on of the - C\-l '+U- 'vlcre ~., B, C, and Dare

compl(~x constants. Furt.h(~rmore, it 'vas 0.1 so sho'\Vl1 that by

mo.l'>:in9 a S(!t of co.li.brat:ions, the complex constants can be

solved mathc:matically and h011ce yield the the true reflectJ.on

cOl?'fficicnt,

- 214 -

This mathematical solution is. only possible if the four

complex consta.nt.s remain invariant throughout the set of

me<l sur-emen·t 1 i. e., the en ti re measurement system f rom the

calibration standards to the computer output terminals

1 · . must be stable. If tus J.S not the case, then computer

correction is not possible. Henc(~, it is essent.ial that

testB ar.e carried out to ascertain wheth(~r the equipment

is suitable for ,con:puter correction.

The method used to verify tl1.e stability of the system

v.ras the repetitive measurement of t.he same calibration

piece twenty time's.

The condi Lion.s of meaSUrCitient '\V'ere:-

(a) The same test piece (short circuit) was

disconnected and re-connected for each

measurement.

(b) The frequency ",;ras selected by the computer

for each meClsurenlcnt. Hence any errors

introduced by frequency drifts t:tc., '\-lere . included.

(c) The measurement. result is that taken from

the print-out frOITl the'computer. Hence

q1.l,aritatization errors, etc., "J(~re included.

(d) '1\lle amplitude gain was dt::!liberately set to

Pl:"("~:c'pt. r(~flection coefficients less than . ' unity to ensur(~ that amplifier limiting

would be minimal. A full discussion "rill be given in Sect.ion 8,3.

The results of the measurer;:cnts carried out at 6 GHz

are tabulated iri figure 8.3.

- 215 -

FicH'l.re G. 3 _. -"'''-'-

- .... -.~~,..----.,---... - .. ~--.~-AII1l?.1 i t.~de !?~X£:g§ A 1llP.]. i t l?~} E· Degr:.ce§

.~--... - _.-0.92B 175.6 0.919 176.2 0.928 175.6 0.925 177.1 0.925 175.4 0.919 175.5 0.933 175.5 0.919 175.6 0.925 175.5 0.915 175.5 0.927- 175.5 . 0.916 175.2 . 0.921 175.8 0.915 175.3 0.923 175.8 0.915 175.0 0.923 176.0 0.915 175.0 0.921 175.9 0.938' 177.1

--,.

From the table sho",m in fig-ure 8.3 the following w(~re calculated.

Hean Amplitude ::: 0.9223 St.andard Deviat.ion of Mean Amplitude:::: 0.00617 • '. Standard Deviation 0.67%

11ean Phase (Deqrees)::: 175.7050

Standard Deviation of Mean Phase ;:: 0.5633° • • Standard Deviat.ion 0.32%

In t.he rQsults calculated above, the amplitude and the ... '.. 1 • , I'

phase have been calcuiated as if the numbe):s arc t,-lO

independent quanti tics. 'rhe bllsis for this t.reat.ment has

been discussed in Section 8~1 • •

The final conclusion from the above measurements was

that although the measurement syst.em was not perfectly

stable, it did appear that computer correction wns a 'b'l't pass). ~ ~ "y.

In the Ineasurement system used, t.he HC"rlett P aclcard

Reflectomcter System is situated some distance away from

the comput(::lr. The signal lines connecting the- t1m pieces

f ' b' " T ' o cq1.upment are Em Ject to no~se-plc}t-Up et.c. 0 ~mprove . +

the signal to noise ratio, tho t.WO outputs (- 10" volt.:> Mw:)

- 216 -

of t.he pola r display a re applied to two external 2Cc1B . ~ . b ~ . t' 2.l11p lL( lf~rs e:L o.'.::e appllca· J.on to signal line s . I deally

i f a reflecti on coefficie nt o f unity is set to produce

maximum output, then no lil!1iting of the external

ampl:i.fi(~rs will resu lt. Unfortunately in pra ctice, due to

errors i n t.he measurement equipment, it is possible to

measure apparent reflection coeff icients greater than unity .

Wlen this occurs some limiting of the external amplifier

occurs. ,'1'0 avoid 1.:hi8 the amplifier gain setting 1'1ith the

Hevrlett Packard eq-uipmE:nt is reduced by approx imately

1- 2dB so tha t '" reflection coefficient of unity is presented

to the c ompu 'ter tc=rmina1 s as slight1 y less than unity

rv 0. 9 . If ·this mult.i plica'tion ' factor is denoted by r ~ then any measured reflect.ion coe ffici. en'c , I?rv , presented to

tlx.;! c Clt pu'ler terminals become p~ and the follO'iV'ing relation-·

ship appl i es

• I

Prv := .fi f ryu .. ... 8 .1

T o ascertain the effect o f the above on the error

netvlOrl: se ·tt ring parameters and the fina l corrected results,

t:he follow'ing a~alys:i.s was used~

From conation 5 . 19, "

and usin9 equati.on 8.1 and defining S11 /( as tbe neiV' modi fie d

value of S11 , (11 -2.p. n n '\ 0.2. P f (""'rI -Z(f:.-i J

.) \4 r:! \ 0.'2. f) f, ('" ...... i' - 2(;. l"" f"' '-(f\- ",) S I ~/ ::-:::J~?'P.&J.!Zqs.:' II IEl. - -r<~. ;\.I , I;;' e ," ~~ 11~_1--.._~~I~I::~- :""2e- :..L:

.l.J. f Cr.' r-' ?.(t~· {';4) r. (-. ) - .Y~ fj (1'--' j ' I - .. of". f' 1-:' E:;(P.r~ ~·)'\ +,{}, II (1.1 ~J )"' r: ,,...,1'.) r..:: , .. \ ;~ e.' -.,.. I 3 I - Q. 2 '? e - I 3 • ) 1'':' 3 I :;; ,- :~ :-. '-- .

Herl':".: Lhc conclusion i c,;

C 1/ ;) \ I ~_ S! I ... .. 8.2

_. 217 -

. r 20 From equatlon ~ •. ,

S 2?. ::: r~~~{/l:-::,~' 1_+ F (5 I'. - ,r, ) ~ .~1 0~- p/)-"-"

Using equat.:i ons 8.1 and 8. 2 and defining 822

1/ as the new

modified fa.Ille of S22

S I I

'2'2.. -

The conclusion j;s that S /1 .. 22 4. ••• •

822

i s uni:l.ffected by the ltlul t.iplicat.i.on factor k.

c c . ")J2':>2 ~

From equation 5.21,

S I 2. S 2 \ = (P, -- ~. I ) (\ -- r- 271. f1 ) \ I

I

~ II Using equat ions 8.1, 8.2 and 8.3 an d dp.fining S12:':121 as

the n ew modified value of 8 128 21 ,

c r II ~I<l. ~2\ =

. .

,£2. C PI - S I 0{ I - S 22 r") ) .1,'

.....

8 12 821 is affected by the multiplication factor k.

ThE2_~ ort"ect~d_ ReflectiqL,r __ _

F l"Ol'n =!(JUCl tion 5. 22

8.3

8,4

"I;' U sing C~i'n . t i or; s 8. <1, 8.5 , 8. 6 and 8. 7 and def ining as

l18 modified value of I

/I ..-. I t .~ R-f't"V -- ·Y~-, S', I

"-"_ .. --._--_ .... __ .. -_ ..... _, .....

\

'''"111 . - •. ...- \ I

- I • it ••• 8.5

- 218 -

The conclusion is that t.he corrected reflection

coefficient result i.s un<lf fected by the multiplication

f a. c t <:.11'_' \I lc'!

The result of equatic'Tl 8.5 can be cross-chr~cked by

recalling the invariance of the cross·-rat.io of the bilinear

transformation of equation 5 . 7

( P! - fr) ) ( ~ - f+ ) ( " -- Q ) ( \; - ~-"- \ \ ---_. -- .. _----_ ._- -

( f~ - f3 ) ( H,- PI ) ( ~ - \=' ::. ) ( \-, t' ...

:--" - \ \

and using equation 8.1 again , it is seen ·that " k" has no • 'effect on the correc·ted result.

8: ~..?_ Thc_ Effect _of 'the Mul tJ:Qli.ca.tion Factor "k " ,9n_ Line P rOp'aqation Properties

From equat.ion 5 . 28 whi ch is repea ·tc.:;d here

)

)

r t 2 Ce-:J'} ~? (- P, f3 + P, f2r + ~ P3 -- f2 (~') -I-~ 2 -p (f, p.,. _. P, f4 -R r3 -i· -f~ t~.)

-t(- P, P? +- 9. P, ~:, .. ~ P4- - P? P3 t- 2. P';t Pf )}:::- 0

it. i 8 clear t.hat t~he multiplication factor "k" has no effect

on t he results for ·t he propagation properties of a l ine,

8:4.1 A Manual correction Test

One of the earlies·t tests carried out to check t.he

ffecti Veness of omputer correction ''''as the measurement of

a test p ie ce ( coaxial termin tion) t.hrough t:lu" .e differ nt

transi i:ions. '1'he correcl:ed reflection coefficient repul ts

,,,,ould bE. . dentical in all three cases as "the s ame test piece

was measured. Vastly different r.s 11 t8 w'ould have pointed

t o errors in the system . 'l'he SUCC(:!ss of these;, corr ctions

were ultimately pnblished by the aui-.1y l~ ( refer.nce 8.10)

and .his is in J.udeJ as App0ndix 12.1 in this thesis.

HC':·lOV'_,!" as many dct.CJilr.; of the practical ltlcasur ment.s had

'r.O be deleted i!l l:be pnbli ation, they \v.ill be provide d here.

- 219 -

'rhe mc;,;umrcments "Tore carried out using 7rmn air coaxial

lines aad short circuits. The method of correction chosen

was the three shorts method of section 5:4.2 using the

correc-tion prGgrc..I:1.:1~e of section 6: 2. The teet piece chosen

was a He",lett: Packard Type 909A coaxial termination. All

calibration and t:est. pieces were fi tt-ed \V·i th 'PJ)C7 connectors.

At the time -of verification, st:d-table one piece off-set short

cireui ts were not available and they 'fere cons-tructed by

using a standard Hewlett Packard Coaxial Air Lines (Type

11566A - 10.25 ems and Type 11567A - 20.25 cms) t.erminat.ed

wi th a coaxial short circui t (He~vJ.ett Packard Type 11565A).

rEha three sets of calibrations and measurements w-ere

carried out usi~g;-

(a) s(~t 1; consisted of connecting the calibration

pieces direc-tly to the network a:naly8(~r for

measurement correction.

(b) Set 2; the neblOrk analyser was connected to

a pair of 3mm (aSH) to 7mm (APe 7) adc:ptors

bacK-to-bacJo;.:. Hr~nce 'the i:ef.erence plane -h'c.tS

transferred to the 7mm side of the final 3mm

to 7nml adap-cer. All calIbrations and measure­

ments '-Jere then made re[erencl7~d t.o the new

plane.

(c) Set 3; the net"Tor.k analyser was connected to

a paJr of 7ll'Jn (APe 7) to General Radio Ad3pb:~rs

(GP.~,74) connected bac1c-to-bac}(, thus t.ransf(~rr­

ing the mc:asurement reference plan!~ to the end

of the APe 7 side of the final GH874 connector.

The Game calibration pieces and coaxial term­

inations were used for measurenlent.

The re~l'.llts of t.he three 8(~t::; of llll=:!asurements al.e given

in Table 1 of Appendix 12: 1. From this table, it was

concluded that the . corrccV~d resul ts could be cont.ained ,d thin

a circle corresponding to I r I ;: 0.0035. Hence the measurement

system was considered to be Gufficiently stable and an auto­

mated computerized system wuf: ,.,rorth producing.

.-. 220 -~

'rhe above inforll1.ation was subsequent'.ly used by Gould

and Rhcdes (rcfe:c8i1c8 8.11) for further expcrimr;mtal "lOrk.

It sho'-lld also be noted t.hat Gould and Rhodes reported that

their results compilrcd most favourably ";viUlthe results

produced above i.e., all their measured reflected coefficients

'Vlere .... ri thin an error circle of 0.0033. Some of the otb.er

authors 'which have since ac}\:nowledgaJ the paper are l'~oods

(reference 8.3). Shurmer (reference 8.12), HossE~ini (reference

8.13t Menzel (reference 8.14 and Warner (reference 8.9).

8:4.2 An Automated Correction Test -----_._-_._---_._--_ .. _----_. ~

One of the earliest automated measurements carried out

on the three short circuit correction lnGthod of section 5:4.2

was reported by K .... resah (reference 8.15). Kwesah's results

were obtained using the 3mrn short circuit calibration pi~2ces

described in figure 7.8 of section 7:3. For his test piece,

Kwesah us(~d a Tek Nave thin film chip resistor (Type 20-01320-

50) whose nominal value 'vas 50Q. -:- 2%. His measurements ".rerc

made in the 1 to 8 GHz band.

Kwesah's rE;!8u1 ts for the 2-4 GHz band are given in

figures 8.4, 8.5, 8.6 and 8.7. Attempts at combining his

results onto one grapl1 were unsuccessful because of the

closeness of his results. Hence. KW'esah' s independent ,,,ork

has also shov.'TI. that the three short circuit correction

method is a good one. .. .. ., ...

This chapter has shmm how the theory derived and

developed in the earlier chapters may be applied practically.

A brief review of the equipment for computer correction was

carried out in section 8: 2 .1. A. full mathematical treatment

has also been presented to show how the effect,s of amplifier

1 · , . . · . d 1ffi1t1ng may h0 mlnlffilse- o

221

.,.

.• It

.'

\\ , \ , \ \ I t J I • J f ' , , t , , r \

\ • .1 , t , f f

r , , f I 1 , . I \ \ \

~ t~

*~ · "'~

C'\t • ~

t.t') - . • ~

, ... . ~ -I-

\\ 0

~ f;,i -.. -~~!!,..., ...... "-.",~:,.,..,..-:~ ... ,..-.----- .... ,., ..... ----------}-,,,, •.. -.-, -----+t·--~- ...... --·i .....

r~

~ ~

" >-; !.:.)

t~ Cy 1:>1 r:~ ~t.

!I) (..) .~

N ~ ..... ' N f.,' ... I:: .,~

~ , .. .... ~ .~

G ',.l C; ..... ~

f'41

~ s.! 0

',.:. ~ tl ~

N ' ..... ~ ~

., .. ,

I.

..

, ' "

" , ,,' . '

f ! ------'--r~-----'~,.--- .....

• • •

\ \ \ \ \ \ \ \ 1

j\ I J \ \ \ \ \ \ \ \ \ , I f r f , \ \ \ \ \ \ \ \ \ ~

~ -1'"

If)

0)

223

t~ I'~

~~ .. :.;

t) _ (0 ~ . ~J ~ tj

QI 14 ~ ~

. t.~

r I I I

'I I , I I I •

I I

I I I f J J \ \ \ \

i I I I (

I I t I I ,

\ \

" I.·J ~. .. . I l _. ____ ~.~~--.-i-,~-t-4-.. ·----· , .. -f.-

(J

• co 1:0 to; I'> ,

oC3':).;:.f;Da '-asr:':U

"

. CO • l'.!)

'.-)

k.;

. t<;)

a ..." • ~.

C.) ~i ..

224

. ,

C.;) -............... ~~,-......--

I I I 1 I I I I I I I ,

I I I J I I I t I I

I I

I I

I , , , , \ \ \

, \

\ \ \ ,

.'

~J'-_1-~ ·---·~-1-... ~ r, o c"', M 1"-1 I' ,

- 225 -

'l'wo metbods, one manual and thE.' ot.her automatic, to

prove the feasibili t.y of the three' 611or·t: circuit correction

system have been pres(mted. Fin;J.lly, rC8ul ts obtained

independent.ly by another researcher an~ producC'd to shO\·!

that thi s correction system ";OrkfJ very 1Jell.

* * * * * * * * * *

..

..

..

., ,

8.1

8.2

8.3

8.4

8.5

'8.6

0.7

8.8

8.9

8.10

8.11

- 226 -

Hei,rlet t P acl:ard; ltEi c r:m·;r ave NetlJOrl-c .P.naly se:r Applicat.ions" Application Heport AN 117-·1, Palo Alto, Califon:d.a.

Hand, B.P; IlDeveloping F,ccuracy Specifications for Automa·tic. Network Analyser" He"\vlctt P ack3.rd Journal, Feb 1970, No 21, pp 16·-19.

Noods, D; "nigorous Derivation of Computer Corrected NetYTOr}~. ".nalyser Calibra{:ion Equation s" Electroni cs Lt-~·tter.sJ 1975, 11, pp 403-405.

vJood, J); liRe-appraisal of Compu·ter-Corrected Networl( Analyser Design and Caiibrationlt P rcc. I,E.E. VOl 124 No 3, March 1977 pp 205-211.

Adarr(s, S; tlA NC1-T Precision Automatic Micrm>favc Measurement system" I.E.E.E, Trans 1968, HI-17 PP. 30?-313, Adams, S; "Automatic Neb..J'orlc Neasurement.c" P rcc I.E.B.E. Vol 66, No 4 April 1978, pp 384-391.

R idE~lla, S;' "Computerized Hicro\'Hlve Heast.'trements Accuracy lmalysis" Proceedings of the European Microwave Conference, Paper B34, 1973.

Hldella, S; "Computerized R :-flection l1casu.rcmc.:mt:3 C~P.E.M. Digest 1973, PP 51-~3~ t~arner, l-!'; tlHicr01{aVG Z-\ttenuation Mea.st1.rC:lncnt.s" (I.E.E. Monograph 19) Peter Pen·-;grinus I,td 1977 pp 208.

diA Silva, E.P. and HcPhun, ILK. "Calibr3ticr. of a Microv,rave Network Analyser for. Commltcl' C-:H'l~cctE:d "S" P arcHoet.er Measurementstt Electro;lics Lett.ers, Barch 1973, 9, pp 126-128.

Gould, J. W. and Hhoc1es," G .H; "Computer Corr(~ct.ion of a HicrO'\~ave Network Analys(~r wi t.Lout Accurate Frequency Ncasun~m0nt" Electron:L~ Let.ters 1973, No 9, pp 4~4-495:' ...

8.12 Shurmer, II.V: "Calibration. Procedur.e for C0mpt1t.E~r­Corrected S Parameter Char~ctcrization of Deviceo No'Unted in Hicrostrip" ElectronicsLcttcrs 1973, 9, pp 323-324.

8.13 Hosseini, N; tlOptimisat.ion }!cthods for Hicrovlave Circui ts" Ph,D Thesis) Univer::;i ty of WaJ:'\vic1;: 1977.

8,14 MGrlzei, H: ,IINet'vork Analyser Eof'lect:Lon. N0.aEu.t:'(;~-• • • • "t:>.' mcnts of H:tcrostr1p C1rcu11:8 no.:. ,.~cq1..Urlng exactly

reprcducibl e Coaxial to Microstrip 'l'ransi tions" Elect.ronic-:fT.0.tters; 8 July 1976 J Vol 12, No 14 pp 351-353.

8.15 l~wesw.h, l~j "Charactcrizat.:ion of Int.egratcd Bipolz:.r Transistors using CornputC!r lddcd NE-~a nUl'ePlcll.ts and Opt.imb·';:ll.:.ionH Ph.D tl'11/':S.tS, U111 vorsi ty cf i~anric}:, 1976.

* * * * * * * * * *

•. 227 -

CHAP'l'ER IX ---_._-

RESULTS OF MEASUREHENTS (including accuracy) USING THE NEU --.----~

----, ... _._-_. -"'-

FEFLEC'I'IOlIj' COEFFICIEN'r CORP.'i:~~C'rION tf.S.A SUREJ-A..EN'I' SY STEMS

~~o Introduc~ion

. No attempt will be made i.n. this chapter to present all

the data measurE:'d for reasons of space; only a cro8l::.i-scction

of the measured data will be presented. 'I'he da.ta shown will

include mCClf;UrClnents of matched loads, offset 8hort ci:::ct1.its,

short circuits etc., USil1g the three ne';l rae0.5urcment correct·­

ion Dystem:3 of ~ections 5: 4.2, (three short cireui tn) a:J.d

5,5 (the four and five termination methodE]).

Data will also be presented to show how the corrected

measurements tend to V<'iry "lith calibrat.ion errors such as '

errors resulting from specifying the incorrect offset. lengths.

CompL1.ri8ons arc~ al~o made b(:!twr~eIl the corrected m~;:.snrcmt~~nts

on a coaxial load using t~he nml reflect.ion r~flection

correction systems of section 5:5 and that of the older and

more established r;Y!Ttem ( short/off set short/mi:ltchcd 100.<1) of

section 5:1.3.

Finally data pert.a:i.ning to mE':'l8Urr'Mcnt acc'Lu'(1cics

provid~d in scction~ 9:7 a~d 9:8.

. J. ;"

- 228 -

9~l.l M"~~u~eTn~n·t_.2..L§. ~:rh9rt. ct~~d.t:

A short circuit., an offse·t short c.ircuit of length 3.0mm

and ar..other offset short cirelli t of length 4. 6mm ·\ofaS used as

calibra tion devices to computer correct the rcfE:lction

coefficient of a short circuit. The resLllts are shown in

figures 9.1 to'9.3. The cal.ibration and device measurements

were carried 01. .... t bearing in mind the practical considerations

mentioned in section 8:3 i.e~ calibration and measured values

",ere taken. with reduced gains on the networl<. analyser •

• Figure 9.1 sholls a polar display of the reflection

coeffi.cient for the frequency range 4-6 GHz. A glance on the

polar disl)lay will quickly reveal ,·rhether good correction has

been achieved. However ,beca.use in this case both the

measured and corrected sets of values are virtually super­

imposed upon· themselves, the display is not particularly

useful for identifying a particular result against a part­

icular frequency. rl'o overcome this problem, alternative

graphs have been provided. Firugre 9.2 is a· graphical display

of the reflection coefficient. amplitude vo frequency. This

graph 8hm'ls clearly the measured anc1 corre'.::b~d reflecti.on

coefficient for a particular frequency. Figure 9.3 :i.s

similar except that instead. of amplitude, the angle has been ,

plotted against frequency. From these graphs, it can be

seen that measurem(~nt correction 11<3.8 been successfully

carried out. A print-out sheet relating to the for.egoing

measuremt~nts is given in figure·g.4. In t.his t.ablf.!1 columns

k :: 1; k ::: 2; k :: 3 are the calibration m8asurements.

Columns k :: 4 and k :: 5 are not rela.ted to t.his set of

measurer.:lents at all. '1'hcy have becn left in the programn~e

store from other correction systems. Crhe print out. sub­

routine is corrUClon to the different: calibritt:i.on. systernsj. . -

Column l~ :::: 6 is thcmeasured (uncorrected) val un of the

device. 'l'he correcLed set of. values is g1 ven in the low·or

set of columns, ,:"hcre the results are first given in

rectangular co-ordinatc,!!:: anct t.hen in polar co-ordinates.

From the foregoing, it is clear that vf:~ry good COtTGCt.­

ion has l;.~~en achieved.

41i I':t' <::, (' . ::..~ ~~~./S\",

... -X '"'CD rjL' n'f'E:J p,' ~ ._\1" .... 1.. •• 7 ~1..

/ '~

i.gc;: .......

$

i . o0~~·

I i I

• 20C1t ,

Frequency Range 4-6 GHz

"~' __ ~4 -+--t--t----, -.6:,6 ",:, .. 2u~ II · 2e~

\ \.

co.;:;::.;; CTED

!"! ~ ¢ 51'" t..-'_._ .r...

~~:~~ !( ~

~ .... ~~ -. ~:;;!1 T

! I r I

E .. , t

_ ",.f~6""':'''-

C .vi. ~ t

I -l.fH';--

.'e:, .~ to. :c.() }') 1.S0

FIGVi<S 9 . 1 P-f~FJ,EcrrION COI~FFICIr:Nri.'

(POU\R DJSPLl~Y) OF ShORT CIG:CUI'l'

[o.)

t·) :1)

.- 2~~O -

E-< H ':.) U Q

(!)

\ t-~ ~ ,"" :fi) ZH ~ • t:r.: 0

1 w

.~

C E- ~

I "-'~ ~o I ' '""'

(t.) 1-"-1 0.! ,u J

0

I\~' c~ • -0 ''''-... 0

~. ~ "- C'J Z OW

~'-..~ '7l 8 8 ~ " ~

~ CJ E-'

! U ~t4 H

(;) ~ 8 ~ t·~ • C.l ~l ~ 1 p:; i 0

l-i ~ ~.t. • ~ I <D

U r ;/' Z /' 8 I c

(!) ! / ~,;;; ' (!)

l ,

~ T'~ I!> l i ~ t

1 I t~ -;ti- I ::r:

() . ;4

('r. m ~2:

M '1f'

~ () t .' r·,

0 (J)

W ::..)

::-. l (~

U f:l

~ t\

~ I.t.

'/'/"~/ 0 ~ " -;9 0 . . _ '11:

~. . .

<to (~./ ,

. ;

r:t

i 'SIW'W- ___ ~ __ ,.+ ___ '" ...... -. : .. . ..,.".'T ...... ---1--- - .. --r----... --.. -- /of -'\:

(!)

V If';

:1'1 I;' .:, 'i.')

~ m t'_ -'t"

, . ... • • , . , .. , ."" . " ...

u u.

,. ,> ••

- 231 -

I,~~ (~

__ -----------~-.. T.f...;----~ --_ .. -.... ~--,--.. -.--.. ~-"" I

t,::,"-.-........ --

0

0".

""" (?)

Q)

')

• .. ' .... J

"-

/

0 ril 1:--1 u r.il

ffi 0 C)

--- .... _-

..

Z 0 H 8 0 W H ~.I

~ 01

(1'1

------.-... -~

ir-..~-.--

E·, H :::1 0 ~ : .. ~ U

E-~ ~ 0 :r. til

(:t ( 0

.... _ 60 --.-... -.----. --" .......... -~ '.I) ----.:.";.

I I I '; )' ,

i I

.~~

.)

J ~

"

I ._-_.~~ __ l~ __ .~ ~ .... "",...,.. • ...- ....... -- ....... • ~..-. .. --... -, ... ""._ .. I ..... --· ..

f

I .... _ ... __ . __ ...... _.1. ...f l ;~ • 4_ _" .. ~ .. __ ...... _. .

o .. ~ ..

, :.~ . ., I

~J r

Hai ~ O:-'/bC

f"I"CuU[NCY :i,.\'Z

~, ceo "'.00 " 2')0 ... ::'0:> ~,"JI)

'., "'00 11,6('0 ... 7 ~10 ~: E>10 ... (;,'1'\ " ". - ..... ...J

s .oC'o 5 •• :"0 ~,,,:' :. SIJ ~ C

5f'~· ao

~f ': c,G ::, too 5 t -; O( 5.F:;{, 5,~CO

orOCe

Fi<ECUENCY - ... U'"

~, Jeo I.o\oc ... <.'00

'"I.3'CJO .;.~Co

4, S( o· 1;.600 .: > 700 ... soo :. . '300 5· ~!·o 5.~OO

S.2vll 5.300 ~: .. O(\

5 , 5CO S . bJO 5.7CO 5,('00 5.9C'D ~.OOo

FIGuRE 9.4 . CORRECTIONS' '. OF A S!.:rORT_ CIRCUI7 TJSING TF..E 3 SHORT CIRCUITS HETHOD

X-l ;..t"lP

• F.7 9 s l. i' .I':!> 5 · , . • r ~ 1 ,r7? af.i':) . HeS ,!'f 6 . C)r.:: • i;!' 0 · :;72 ........ • _;t J

• ~;: 1 . f.5 2

• a!-'5 ,~!6

91& .$90

• He 5 oI.;S 0

?:-1.5£

t 7 ... 7 17R .5 17B.9 li9.~

"'~7E\r3 .. 1. 71). 1 -17:'.3 -17 7.'S .~7 6 .:

-17 8 .2 ... ~7~.3 ~ .. 1;a.3 ... 177.;;'

!79 .S -179.7 - !73.9 ~1 7d.:;.

1/3.7 1 i 7. b 179.5 !79t:!

flU ( ufrf Rf.AL

.. ! • OO~ ~- l. • ro2 -.'JS~ • • C;:)J

-.!;;S6 -. 999 ~ltOD]

- .99'5 -.9:1<. -. 596

.oco ~1 .0'lt

~. 3:;9 - 1 d){)O -.~9<;

.. ~ . ·:0 ~ -. 956

·1, 003 ..... 595

·1·CC3 -l.CJl

K:. ? AM?

• ~70 • fit. ') , Pol, 1 .R':'4

• J\7 0 • f,f>9 . 355 • f~5 7 • 8e 3 . 81' 1 , 1'55

• t.f ~ , e~ 6

• R~ It . 8L6 . 87 .... .. f.s5 , C.:o 7

84 r. .851

• B7 5

!MAG

~ ,C2C

~.OU7

..... 011 -f CC:)

.0:3 -·00'1 " .G:>~

.oCle OC~

.0;)2

.00 ... - ,01 ::

•. u! 1 -. 0:)6

. OOS -. en-.:;~2

,oc~

•• eli ? . Oll

-.C20

P~ ASE

l!:>i.o 1'.'3.3 ~,,9't 6 ~:'S'.7

:48. 5 ~ .. 7.9 1; .,. ~ 1:' 7. !.I 1'.6,7 l!' s.Q 1 J, 3,5 1:' 3 J 7 lit 2.0 1 .. 0.5 139. 1 t3S.2 ! 37.2 135 .2 i 35 .5 136. 0 13 6,,0

1~ .. 3 A~P

• R65 • ~o4 .1H 1 • 1!!>9 • Pob 3 • R!;> 1 .850 . 85 i ; 810 a Rb2

• 8~ 7 . 859 _ 37!l

.86 ..

. 8 55

.866 _ 89 '­_ E59

. 2" 1

. 3~O

.873

iiEF COEFF

PH:.SiO

1:?4.J 132.9 132.6 132.3

:>3,9 1 2Rol:~

129.0 128. 2 12 6,9 123.7 1 23.4 1~2·3

1 20.9 11,.7 117.3 1:! 6. 3. 11 .6 11 .? 11 .6 11 o!l 11 .7

K-!+ AI'P

1, i 1 ~ 1 • 111 1·1 0R

. oeo ,oeo . 000 .cno .000 .0:10 .oeo ,000 .000 .0,:)0 . OCO .000 .oeo ,")00 .000 .O·CO .OCO .000

Al1P 08 PHAS E

1. 002 1.002

. ~n

• '193 .

• =9L ~ · 9~L:;

1 ·007 .95:5 • ~ 9£, .9';,ob

1.~UO

! lCC4 1.000 1.000

• s:;~ 1 .. Of}8

. )5" ~. 00R

,~::5

1 . 0;) ... :.00:

.1)15 ~!"B.8

. 01,\ ~179.6 ... 070 - 119.1,­• • 062 ~1 7~.!~

• • 03~ -.00'3

.058 - . 0(;1 •• 038 - . 039

. 001

. 033

Us. 2 - 1"i9 .8 - 179 . 'J

1;;0.0 179,8 17'1.5 ... l9.R

"' 17'),,3 •• OG~ !o7'),""

. 00 : - i79.7 ... O~b 179,7

. 063 · . C ~ lt

,Ob7 ... C" ~

,030 .O.!O

... !. 7 9~ 2 175 a 9 179ds

~:79 .. 3 179·4

- .1. 7 ~f 9

Pl'1A6E

1( .. 5 AM P

13'1·9 13 4 . 9 134.':)

·0 · 0

• 0 . 0 ,0 .0

·0

• a ·0 -0 · 0 .0

• C: .0 .0 ·0 .0 .0

VSIJR

-:;_'J~;:

.:;~J~il

t ' ~::fJJ: -er~i:##

tl"~It1

t t l ,1ft .,::, f.

fif'l##

" ~ .. : i ;;. #, ; t I II

~;'J'V~

Jt'~J)' ;$tJ4"

"J"~~$ :]"J1} •

HI""~ t 1.iJli

# fiihl

".IIJ:~ ,t1:I :ft

,,114"

1· 11 0 t. 1 ~ 0 l' 109

- 000 - 000 -000 '000 '000 -000 · 000 coo

'000 .coo eCIJO • Q ,')()

• 000 '00 0 • uOO ' 000

~. 000 lOCO

PHASE

134.9 l:; ~.R

l34d; .0 . 0 .0 .0 . 0 _ 0 _ 0

. 0 to • C .0 . c . 0 .0

• a · " .0 .0

K"6 DEVICE A~P PhASE

.82 1 17 9. 7 • 8l! 1 17 11.3 dl,!;O 179.1) .a!:3 . "~ 79 .0

• a 7 7 • 1 7 ~ • ()

• :;77 . !D6 . 86 J;

• JS 1 , 9C ~

,279 , 87 5 . 3 56

" 9C 1 .390 .139 :2 if 511 ,525 • Sa b . 863 1 tiS !

~!7 S · 9

- 171::. 0 -17i- 5 - . 7<.-3 - 1'l8.3 -17 Y. 1 - 177,6 w 17 ad -1 79 .. 2 Q t80·0 .., 1 i '3 f 1 w179.0

17 11.5 ! 78 ·::1 178·S

oJI17!j · b N lU N

- 233 .•

The corrected reflection coefficient measurement of a

matched loa.d will not be given here bec2.use th2 results of

such a measurement by Kwesah (n~ferenc(~ 8.15) have alreCidy

been included in figures 8.4 to 8.7 of section 8:4.2.

Kvesah has report8d excellent results.

9~1.J __ ~rrors in CorrectiQD

From repcrts by other authors (referenc,'.?s 8 .11 and 8.15)

and by comparative measurement.s with other n,-;flection

coefficient'systems (references 9.1 and 9.3) the correction f • .t= •

system appears to functJ.on satJ. s .... a.ctorJ.ly. HOI"c'\rer" for

good correction, it is essentii-J.l that the additional phase

changes associated with the offset shorL circuitn are

accu,rately knovrn.

lines but trouble

etc. In order to

Tl " . J • f' d • • • us 1S eas)..Y f;pecl~e J.n cc·ax.1.al aJ..r

b . . l' .. can e experJ.enced vn.t:1 lnJ.crost.rJ.p IJ.nes

inver,tigate this problem, a termination

was constructed and correction was ca.rried out using the

true orfs(:!'!::. leng'ths of 4.6mm c-md 11.6mm. FaJ.~x~ correction

was then calculated using the same measured data but vll th + . ' - 2% errors J.n the offset lengths. The reSUlts of such measurements are shown .in figure ,9.5. From this graph, it is clear that t.ht~ nC'1cessi t.y for accurate off8(~t phase sh:i.ft.

specif.ications are nl0st: im8ortay~t. It shoUld also be noted

that s.igna,l frequency drift during- measurenl0nt. is tantm:'tount

to additional phas9 ~hift er.ror. Furtl~er informaticm on ort'ors in calibration standa:rcls may be obtained from ref.erence

9.1 which is included as z.ppendii 12.3.

9: 2J. Npa8t1nC!mf:~n:: of a. SJ :i.d. h!0 LOC3(i 'l'f'l.rm:i.nat.i.on .~ .. -----.............. -.--~--,--..... -.---... - .... ,""'--.. --.-"'-----'----'.-

The reflection coofficient amplitude me()suremr:.!nt of one

pos:it.:ion of :;1 sliding Joad is shov.tn in figure 9.6. The

measurement "ras made u~;ing a sliding load short: cireui t

coaxial line to prcduce t.he;! four S!10rt circuit ci":.llibrations.

II d

c~£;L~§~ 8~~>~~~

... ~I.0<;J'OJ E] • • • ., ~ r - I 1- : I--! r'"" ill r~ ... ~ .... 1 ~

'1' II \I \I II .;-1 (.! d N

It .-~ c.-< d::)

() Q \)

()

o o

.~ .... . ~

I 2\ o (. )( I I I () x ~~ I x I

_. 2J4 -

' r

ol·-----~d------'--~---'-' ----;)1 r - I ,- I 0

.,~ J

~) ; ~l

"

I I 'Y,

f \ ! j

x

I

1

N - - .

~)

0

.;;t'

N ~,

G ~ .. <

"' t

ti') . 0'1' f.Ll !Y. :.,) (') :-~ u~

F-' O~ o ~r ' )-, ~

If)

'.".,.r

-- 235 -

~.

(YJ

c~ z .-J. U U

fJ) 11: U

.. <4

0 (.1)

N :x.

i.~ , -.

...... 1

U) , v'l "' .. ~ C

4-(;, • ...f

W ", . . ~ .. , 9'iJ

('.:., • ~ ... .,.J

'J~

. .,., ~ .. --,---.< .. -,-................

• •

~ ...;- ~ "'~ ... 0

~'I tJ ~~ (-, 'Cl X • • , ~ .' - ....

vf t<!,= .. ...:

st.!O!I><G

Fi\COUEN::V Gh!

.--000

.. ·100 ".?QC J,.3,J0 4.:';:'0

".500 ... t&OO ,..1\)0-".BOO ;.900 5.000 5·100 5.200 5·:;00 5,1,CO "j.5;)()

5.6')0 5.7'::0 ~.aO)

5-900 Q 000

fr:CCUEhCY Ghl

~.ooo

... · 1vO 4.20e ~.3;:)o

4, :")0 ~.!:,CO

~.6Co

't'lOe ~;, ero

.SOO 5.0(\~

·10 5·20C S.3eo '3.40(, ~.SOo

5·:>~O 5.7Ce :;, 3(;~

5. S.,"l~ 0.)00

FIGURE 9.7 CCRRECTIO~S OF A SLIDING LOAD USING Th~ 4 SHORT CIRCUIT· }ffiTHOD N i!/bI17 ~ ~ 6 G~Z SC i eNS CC~ N~ 3~

C,\LI31<t.: !~N t .:.!1PL T F~:'SE

UL:SFitT:eN ? to/-·p!... 1 r HllI SE

. 9~2 • :' 35 .9 89 ~.(,' C£:. ~ ~-

.979

.. 53 ;

.9:31

.. 3~3 .S t.(> Q,'~

*_tJ..J

. o;SS

.9:"7

.~t-, 1

.::~::

'-1 , .. 17 !.Cl~

• :;;~n ,961$

.~'5 ,::-51 ~~:'3

11' • E l?C ... J 1.~7.~

l :-: t c . ..:,

137" ... 1 t.4.:;?

1~3 'b 1 b! .6 loS.? 175.1\

-1/ i' .? -. 6~.7

.-.1.6: .1 ~::;3 .7 "'1!;1c~

"'l~~.~

·1 ); • ~ -*13.C, .. 4 ·1?2. li -ltS-.:' . - ., .... .&. OlS _ _

.r.;'i~

.SS9 1.001'1 1.::09

.9 g9 'Is~2

.930

.~ 3~

. <;5~

. 96~

.:l51

.931 • q :l~)

."70 ''19~ .,,95 .S6:> f 3 >t:J ~; 2:; ~ 9:;b­.92

~'6.J

?~ eO "S-l fb d~ ~O.O

3,<·7

'" \ .7 c.7·2 c.;:>.5 SO,S ~"C~'9 6",.;3

73.3 7!'!.:: $12·5 ~.1j·7

R8.t 92·g 9~ • .{,

! ,13·1 107.S

RfF CflEF? ;;'E .,.lL ! "(-:;

- 01"3 ,O~9

.Q()7 • C.C!i

- CO) .O «'l

• • Q!l1 -.:02 .... 005 -. cc;. ..... CO~ ~. OC:?

-. C;J: - .eo? ~OC~

diD) . ~C5

· OO~ .C02 . (11)4

toes

.oo?-~ aCG •

... c~C:.,

.000

.OC?

.OO? ·00;:> .CO~

.,OOn ¥,0 D2 -. COI. ··ao"} -· 01? -. Ollo ~·o:~

- -e.l!::l -.0"? -.n!? ..... Cl~ ~. Ci:'9 -. O::!')

CA:...IF.RLT:::e!ll 3 CALlBRA'T lOt: • :.MPL.l PH4Se: MiPLi Prl~SF:

·913 .933 .S};l .9;'4 . 96,. .921 .9t? .9?3 .946 .957 . 9 50 .930 .9 .. 6 .977

1.()ot 1.0J':'

.5R3

.96Jt • 31~ 5 ,·552 .940

-so.s - 77 . 0 -"75.? -76.0 -75 .0 -72 .6 -67.S - 611 .5 ... (,.! • ~

-59·0 .. :i8.·i ·5".5 -~ \) .3 -"-7.4 - ":0 .1 -'-,0.2 -1.,5.r: ft ;'3.5 ":19.9 "':l8.3 -36.3

.~34

d54 1 . 005 l·006

.985

.9 .. 2

.932

. 9';3 ·9 60 .973 .96'1 ·:1 .. 4

S ···• • ::> ,

• 9 ~l\ 1 • O~ S !.C13

.596

.976

.957

. 962'

.950

-177.3 .... 170.2 - 176.6 -1i'')·7 ~79.C

tiB.7 .... 1,9,,0 ~ 1 78. () ",177.5 - 178.0 ~179.0

.,177.8 -l i6.2 -: ,5.8 -l i6.9 .. 119.4

)75.1 ~'2.5 179 . ~ 17a.9 178.9

REF ~ '!5C:FF ",HP OS PHA5E

.o: ~

"co:) .0::)7 .0(,5 • :04 .O-(';!"

.C02

.O O?

. (105

.oo~

• C :,;';

)O~3

.012

. O!

.01if

.013

.C~3

.013

.012

. C10

. 01v

03·1.3~ 1--.,0.572 - 43 ·:; 94 -4:;.,,68 -,.&.627 -47.712 -')].01,7

7eD . "--~.c

3.E 2'9 .. 3 ?7.;'

101,.5 - 530130 14 g.1, ~ "''3-. 93S )79.0 -Q.7.711t "'15~.6

• 41- ,300 -:!? 0 - 4().;>l,S -l()S.O .. 3 ~ r 6 j 0 - 9 :-! • .3 -37.09~ -37 r 1 CJ9

.... '.Bl1 -37·5<,7 -:n . ~52 -3 B .~ O~ ~40.4C5

-~ O ·2Gl

-97." 30 .)

- 77.8 - bP..3 - ,,6 . 0 -:?C - Ed •• "2 ... E: ~ Ii .,

REF. S~ORT

AHPL T PHASE" UseRY DEVICE :'l1PL T PH.\ SE

,~'#'" ,.'i" tl,I': ::J#~:"

h "., ':~'~r flit:;"

"",.,til ~~$'j

ei'~$) H"$Id;1~

fl-Ji1 '

;H'~U li.llCf

"d'# -:1

;:"""/1 ~ tl #,.~,

'.;."'~ f'J!"'~ 3$1;1' #t14':;~~

.OP'

.016

.01'<

.012

.Ol l

.'J10

.008

.005

.OO~

. 002 ,003 .009 .012 aD! ..

"til': :;' :~'6 '!t~lIt :;

tt#~-;'

~~I.;"#

'"1 ,I ~ t,. 1J#"# : ~t

;,:J-I;:< ;J.~"#'" • 0 14 .. ~.U'j

't!~"f~

'(J.C:!" . 'J#",jJ

~,i~/~ ._ .012 ., t: "#., ;J ., . ---- .. 01 2'

e:'i ". #:;f#t.

i-IIC:lI:J f;~";') • $# ~.,

''I'' ,<'

, 'JS ~~R

1.e28 1. ot 9 t.O~4

1.0:~

1.007 1. 008 1 a r.O~;.

1.00~

~.:)1)

1. 00 <> 1.010 t, 01 E .02"

1.028 1 . 028 1. D? £,

t.,:,:?1 1. C2 7 t.O?~

1.019 ~. 0:; 0

.0 10

.CC8

.C03

.CO" ·

2.2 4 • ~l 6.6

1: ,4 19.7 20·1 44.10 49.9 67.0

-!30·0 -111 .1

w 86 .~ .. ;3,2 ~6?·3

-55.,1 ,Jt /y .• 8 .. 32·5 "23.5 ~c 8.9

"3·3 -.7

e"~ U NE LENGTH NEP~RS Dt:G R[[ ~

• CO' .00 .co ceO .co ·00 .CO . co .co - 00 • C \) oCO · 00

CO • C 0 .00 ·00 ·co .eo -00 . 00

-'le.23 -=t9.S" 50.80 51.~6

53. 12 SJr.33 55. ':;>0 r.,b.i.~

57.83 53. 98 6:J.l" 61.32 62·'108 b3.":':; 6'1'£'+ 66.02 67.2i 6811 ~ 7 £.9 . 6) 7 a ~ ~)9 72·13

l~

.F

~ \;.

"

:: .~

.'

N uJ (j)

- 237 -

The phy::::icaJ. spLlci.ng betVJeen each calibration \\TClS 1 cent:i.metr(:;-.

A print:. ou:t which gives dptail s cf the calibration, measnrpd

and corrected values is shom1 in figure 9.7. 'I'his print O1.xt

differs from Ul~t of figare 9.4 for it contain8 additional

infoJ:"rnation not sllcnm in the gr.aphical displays. These are

the atb.:!nuation and phase c11ange aGscciated vlith the evenly

spacod lengths between 'ell'=! cal ibration piecE~s. For a 1 crn

length of geod aj r coaxial iinE~, the attenuation is as

expected, practically zero.

Comparisonsbet:vleen the t.hs:oretical ;..:nd measured electrical

offset lengths yi€·ld the table below:-

r~F' ='"""~~. l·r~"~r~c~;=:7·:7;~:::;7'~(;~.::::~"j-~"·---p~'-~~,"' ..:. rcglJ.en_<2Y ~~,.;;-;:;;: .. :::;_~,.:::::::-..: __ '~;..:::-~_::.:::~:;L~_ .... ______ . ~r.£§!l.'..7_a 9.9 ~ GH~ 'J'l:teoretj.c<.'t+ :JtJ~eaSu.r.('!d!Ca}c.'~J:at·'~~QDj5)s:r.~pn!}~X ~

~_"" __ "_ •• _g',,~~::.t2IMftIfD.. ~,.~m~"""""'''':a'Jl'''~~ >.......,....... ..... ~ .. ~.....,~' ....... ,....- ............. li~1

4 . 48. 48 • 23 0 • 48% i 5 60 60 • 14 0 • 2 3r}~ ~

6 72 72.13 O.lC;b t "1'9Mii.·=· ... MD'Rn'f'fUI~art .. «.~l~~~~~~tt1",.. 'iIIIIl:u._~,~ .. ~.:1~~· ...... ~ .... cw .. ... s u...;J.

r d' .' 1 t .. .• () rhe J.screpanc~es Cl.re C'L1C 0 lnaccuraCH~S :I.n a manual

setting of the lOmm offsets; (b) sett.i119 t.he frequency of

measurement; (c) c01'nput.ational el:'rors. The discrepancies

are greatest\'lhen the electrical length is shortest.. 'l'h(~

reasons for .thGSC computational errors have been ext.cns.i vely

discusued in section 6:3.

. , It shoulJ be. noted that this programmo can be u[)(?d to

measure tl:.c attenuation and phase change associated with

short lengths of 1 inc:"! , e.g. J microst.rip. Th8 effective

dielectric constant of such a line may also be ascertained

if the physical length of the line is )mown.

In normal mea f>U remcntE; c~rried out on a net.wor};: analyser,

the electricallcngthc of the rcfcn,'Ece and test ch::mncl are

sot to bc~ equal, Hence .. t.he reflection coefficient.s of a good

s110rt circuit. can be expected to hover around tllc 1 L1flQ~, point.

on a pOlardist:.lay ns tho rm.?:asun~mcnt freqll(:mcy is al t.OJ~ed.

- 238 -

If the elec'trica.l lengths of the reflecJc.ion and test channels

are not equal, then t.ne an91e of the measured reflect,i..':~m

coefficients would appear to alt2r with frcqut?>.ncy on t.he

polar displcq. A good computer correction scheme shoald

resolve thesG apparent discrepancies and produce corruct(~d

results t.o prove that: the device is in fact a short circuit

and all i t.s reflection. coeff.i.r..ient valves should cluster

about the 1L1800 point.

This effect is very clearly demonstrated in figuJ.:";2S

9.8, 9.9: and ,9.10 where a. short circuit mea.sured with the

above-stated conditions is Sh01·.rtl. to be a short. circuit 2.fter

computer correction.

One of the preliminary chccl{s card.cd out .. on this

correction techn~ql.1e was the measurement of Cl lOd)) attenuator

terminated by a. short circuit. If the vmm of t.he attenuator

is temp~'rarllY ignored and if one assumes the short circuit

to be perfect, then a return loss of 20 dB (VSWR 1.22) can be

expected. In practice this would net be so because of the

input and output match of the att.el1uator and al so because of

slight variaticns in the attenuator loss. However, such a

set of measarements does provide a crude but eff!?~ctivC!

approximation. rr-he results of such a corrected mea8uren't(~nt

are shown in figure 9.11. The correction vras carried out

using the cc.librat.ior. pfuces. described in section 7:4. It is

easily seen that the corrected results tend to behave as

predicted.

~!{1.)~~ OW iSJG,'" S GH~ SC 1 eNS CCW NO

!c0~~ 1 I I

~-'--®

I i -"' J , ~ . . . ,

'3~

~""

r'IGTJ&S 9. 8 I .509-[

('ORR7CTt:D ~ !. '-' ~- I. J..- i I

PCLAR DISPLAY OF A SHORT CIRCUIT CSING 'rHE FOUR SHOR'1' CIRCUI'l' CORRECTION !'1ETHOD . 'Ii .

\ f I

\ J; l \ 0 I .\ I ! \ ;

'\ 1 aZ£0t J i , . , t;~:----+--~~r -1------- ·-·i-···~ . =,

- ~ d'~ ~ SIr.C! - '"}[.\t.i.J. I 7~r:t .. ~~~ i • ,';1';' • ..., Yo • . .,..,- ., & .f";" t.J , .. -a- ... W ... ....,. ~ .. ; - ~~-

\ : .'. L ~\ - 2~"'-i-· • !Jt~ t

~ UNCORRECT2D ~ ,/ t . / I I· . ~ I "\ / r , 1 ~. I :

'\., t/ - . I~~~ .L "'" . -~~ I ,. \.:."'-- I "-~ ~---'--t>,

'of ' I

_ i ~. ~..J ..,. tit ...... ..,;

:;- .):U. ~ .t~X ::<

t'.) W \.0

6~ 11~CI~~ ~-e GHZ SC 1 ~~S CCW NO 3~

, \1" 'i. I .m,oT

8 I r,. L r_.

~ ,-I", G S=;!1 ~ u ,- I ,.., I ~ t r.r.. !

~ I ~ }'

~.- • .;. f::H3 .... r ~ .... U r.r~

,-=1 I r~

i I

U' ~ -, t1M".

• 20~ i­I I

I

i' .. "

" s~ " (1\ t) _ ~~I~r ..... ~~.l!.. ~ .,;:"'..........,

~/

~ ""'~ /,y"

", .. "t'.

-~:,~::-

$ ~ ~ $ S--~\5~ , 'iI!

~ "'---~ ~~------- ...

G ~ 'A (.) G ~ ~~.~~.

---- ...... , '~

c Cm.F.,ECTED UNCORRECTED

F:::GURE 9.9 '\l'iPLITUDE DISPLAY OF 1\ SHORT CIRcurr USING r[HE FOUr:z ~,HORrf' CIRCUIT CORHE CTI ON :-mTHOD

--.---r-----~..........--___i .- ; t f) i· ~ 1f} >:.2

FREQUr::NCY HJ GEe

S.B

t·~ r' ,,~

o

$HO~n~ OH l~l"r:,f'/ 4-6 fi~2 S( 1. eMS eel.! NO ~5

l.e ·~ ... '4 ~t ..... { t

/~ !Z e . ;/\-::-""

3£ • ;;; .... i,., w I

\

! •

~':.~ V

'-~ ... ..t~ "'""

v

U':. ~ ,-------------------tS c

~,.:.~ • (;-':};)I

t ~ r o -..,.... c:;; .: ... ~,:~ .. ~; ,. - I

I j

i -lee'l~

t I I

.!I a·3 .;.oln ... ~ ~" .. ~ "" ,

:)1~ "',{ ".Jo"~ ~ 0 ..............

H~l>-~ X :.:

CORRECTED

/ \ \

\ I \, -4,-t,

a e e ft ~- e

.~

'\ \ \

\

0 ffc--"!~

FIGURE 9.10 PI-L~SE DISPLAY OF I,> SHORT' CIRCOIT USING THE FOUR SHORT CIH.CUIrl' CORRECI'ION HETHOD

FREQUENCY IN GHZ

:~

~ e a e ~) e 0 e:; 0 Il

~J ..:::, I--'

.I

~)~ . .g

'<" , ,'t I

/f / I

/ J

/ f

I

t . "r'~ I I

1'2

t IG _"- m i j

1 1.1)

• I

i

4- .3 f: I ~

J I ~., l- (.11 .

_._-' ______ -+_.-- ---]---.----1--........... I - -~.::. () Q T"\, ....

' •. :d

N :r: l':l

: ~~ 1 .... 1

~ () ~'" ,.., fit :::J 0 ;:.1' r.~ fLl

1 • 1 • ~

~

- 243 -

1'110 measurement results carried out on a short ci rcui t

using t'his mcthcd ar..d the calibration pieces of section 7: 4

is shO'liTn in figure 9.12. The table of results associated

vd th it can be found in figure 9.13. rrhe main differenct?

'bet\;'een this t2.blr~ Clnd that describ9d fo'!'- figr!re 9.7 is that , , 1 'b ~' f' an addl.tlonal set. of ca.,l. ral:'J.on 'l.gures 11ar:l been added to

the print out under the Reference Short Circuit Col1..unn. Th(~

corrected rC~8ults are particularly consist:.ent i<Ti th frequonc::y.

li0,.t;£ s

. 9: 4

. The information given in figure 9cl3 may be used in

conjunct.ion with the computer pr0gr2mrne of Appendix.

11 t 9 to calculate t.he ac1mi ttance of the l.ml-::nmm t2rm·­

ination. The theoretical work for this calculation

has been referred to in section 5s6 •

To provide a means of comparison b(~tween the nC\'1

correction met:hods and an older and morE! established one ..

(reference 9.3 D.nd section 5:4.3), it ";{as d8Cit.:18d to ml=!anurc

a matched termination. The results of t.hese mCl1Emrcmcnts

are shOi\Tn in figure 9.14. Apart from a small ird. tial' cross­

over, it can be seen that the Dhort/offset: short/sJ.idinS}

load and thG Three Short Clrcul. t Corre::tion }Iethod reGul ts

agree very ClosE;~ly. The .resul ts obtained by U)O Four

Evenly Spac(;d Sbort Circuits He thod and the Four 'I'8nninr.Ation/

Reference Short Circuit Met.hod 'it"e also very similar. It

might'be argued. that there is a slight discrepancy between

the former set (3 termination methods) (llJ.d the latt.er set

of measurement. BOlvever, it sl10uld bt:.! borne ~.n mind that

the former set assumes thC'.tt lossless linc?s arc used in t.11C

calibrations 1-thilst the .latter set taJ~cs line attenuation

into account, therefore identical results shoUld not be

e:xp(~ct.ed •

~ ... _ .. ' - ....• -•. - .~ .. ",,-.~ .... _". .. --}.--.-J!J lSI lSI -S!

UJ

- 7·:11:\ --

- -.,-.~ .. -.. - .. _. '-i" ~--'-'------1 ~ ... f~ I ': ~

N t ...-i I

, ........ \ -. , -'\

\

~IGtrro~ 9 . 1 3 CORRECTIONS OF A SHORT CIRCUIT US ING 4 TERMI NATIOl'JS & A RE F. SHORT CIRCUrr

r':.SC9

~-q: ()U t l~ CY C t. L! a~At leN 1 O!..P3i< ATIeN ? CAL l f)RJ..rlft hl 3 CA(.l BRAT leN 4 RE F . SH(}RT UNCR, DEvIC£ c,,!:: LINE' LE~.:Gi H

G~, Z AhPLT PH jI ~ E: Af"'PL l' PHA S( AMP L T FHA S£ AM PLT P H :' SE At-.P t. Y PHASS AI"YLT P «{.Sf :;r P[ RS l! E. GRrt:~

11 .000 .9 0 6 -1 !; 4,0 • 91 D. 1 t9 · 9 . . 91,1; . 2 3·3 . R 29 · 7 S - 3 . 93<1 1,3.3 . 937 lt3 , 5 • C 1 .Ii 7.75

1o .SCO s!Jl 1 &l6 0 -0 .. '3:04 87.3 .920 p 17· 7 . 8 ?C "12 4' .3 .9 33 25.3 . 936 2~) .. 3 .01 51;.2 7

5.000 . 9 ~7 ~ 171 .6 . 0.: 0 9 '5~ .9 .89.1 - 55 . 0 . 92 1 - l7!5·2 . 923 13.0 . 923 12.9 • C:) bO d O

5 .500 .9) 1 ! :')3 . 1 . _ os 11 31 fl ·,:) . . ~89 .. 98. 1 . 92 2 125 -7 .953 - 2.1 . 953 ... 2 .2 · 01 66. :Jj

... 000 . 9 J 1 !.:,.3 . 9 . 9 ~ 3 4 .6 .9 11 ·1~4 . 1 . ~~ s 7c.2 .937 .. ~7 . 8 . 9 ':'1 -17 . 8 · c :) "7 2 ·37

",:'(,0 .h98 !29 . 2 . 9 1 f D 21 .1 . 921 1 7 3 '.2 .9 17 -2 3 . 3 <9 0~ w32. 1 . 90 2 ~ 3 2.0 .G ~ 78 . 77

7,000 · !l 1 2 11 :> .? "C' '3 9 " 55.7 .913 137 . 1 , S :) 6 - 29 ,1 .885 -54 .2 .2 &11 .. Sit . ! . co 1' 3.69

FliEQUENCY i'EF CfEfS' RE F Ce E F" f"

Gt1Z REA L 11'110 :3 AM," , !:iB P;;~ S E VSIo:R

.:;, 000 -1 . 000 ~cOO 3 1. {)00 a. OO4 -1 79.8 :,#:,t1 ';f~OO .. 1·00'1 ,::>01 - 1 .004 . 0 32 179 . 9 ;!~I # ~~ '

'3,0 0,) toI IIIOCC .. co~ ! .000 ' - .·OO? 130 .0 tv~: ;f 'tS

5.5!)0 -. 999 .OO~ . • 5 S'9 ~. OC5 ·l ilO . a " tI~:fli

!,. coa .. 1· 00~ - .OCo 1 • co~ . q 36 ~1~ 0 .0 . ~.t: = iI:j j C

6.500 ". 999 "':tOO2 . ';)= 5 ~ .C08 -17 9 .9 : :Je,(JI: 7 . QOO .. . 9S9 ~.COl ;9.93 - .COO ",1 80 .0 '~H " .:Jl

N ~ l..'l

n ._

fI

I I

__ .06-J ~; I -",

~ ~ ~ u I H . (:t, i.l.! tIl o u I ~ J', o !;l .. 04-

G I ~,~ ;.-1 i r.r.. I ~ I

~ I

.... ~)(-;:-- CorreC"ciorl usina Short/Offset Short/Sliding Load

- -- -- Correction using 3 Short Circu its

- - 0 -(;; - Co=rection usir~g 4 evenly spaced short circuits

-- Correcti on usin9 4 " Open" terminations and a Reference Short

.1' - <> - 0 ~- ~-=-~~-------O --c -------.. - - -~ ! _ c"-'-:::--. ~ - <:> -0-0-0 - CI - 6 - 0-0 -0---=-0

", -C~ " ---- - - ---, ~- , -. . -- ------- -- - .----.-1----- _ ~ _- - ;. -;::.::,.: . - ;0< - ~ - ;;~ - X -~'--K _.}<'--X--?'-'_ -~ ~-,(, ~-(. J -----,i-Y - ,.. .

-f "::::" :; ::::. )( --

-. 02-4 .-.:.----f- 1-- -l !. ---;

5.0 5.2

Figu.re 9.14

5.4 5.5 5. 8 FP.EQiJEt.YC? I N SHZ

comparision of Corrections using Four Di fferent'. Methods for the measurement of t h e same termination(matched l oad).

6 . 0

.-..,.

N .j::. (J\

/

- 247 -

Ho.ny more set::::; of rr~flect.ior! coeffi c iE:."nt: measu rements

s i ng the 0 (:her correcti on b~chniques arl::. g i ven i.n a paper

( reference 9 . 1 ) publi s J.led by t .he a uthor. '1hi s publication

i s included in Appendix 12::3.

9 : 5 .-A~cur:.:.-:!~Y of Mea. sure!!!.§n·t_~ /

Seve:t"al 'Q)xthor s such as Hand ( reference 9.2), ],dams

( r e fe ren c e 9 . 3 and 9.4) Ridell~ ( r~ferences 9 .5 and 9.6 ) and

Woods (r2fer-ences 9.7 and 9.8 ) have irlvestiga ted the problems

ofaccur -:tcy in c omp u ·l::.et" cor):"ecl::.ed measarerr,e1.ts . Each a ut.ho r

h as placed part icul 3.r emph as :i.s on several errors . Hand ( Reference 9.2) ha s mad e a det~iled st.udy o f errors -with

p a rticula r reference to noi se , gain erro r and ·the particul a .. r

erro:cs in 1:he c a1. ibr-a·\: ion. standards on ·the He1v.1.et.t P ae:l;:ard

8542A system . '1'hi8 system is a transmi ,sien <;.nd r eflection

me asu. r :lng , yr3i:.em and i s not . dire c ·t J.. y applicC'..ble to the measur-·

ing system used here. However: some of his principles can b~

used .

Consider the ignal fl o ,I graph'J r; an idc<Jl ized rcflecto ···

meter syst .m ( f igure 9 . 15):

p=b a

~ iquy::~ ~J~

Flo~~haJ:"t 9f an Ideal:i. z~d RC;;:F1.§:;;.tC?..met~L

'r-'~­

. . I , ~

01 11

It can easily be seen tllat f o r a di r ectl: connect d

calibration. piece ( p.. :-:: 0 )

c:.~

.:;. t I ... . 1

- 248 -

Consid :>2-:' n 1,1 t.he case when t here is gain e:-ror ( c.~ ) noise error ( E'n . ..- ) and r(~flection coet'f icient er.:.", r ( tr ) J

and u s:i n9 t .lL suff:Lx 1 to dellote the e:c.ro rG fo:(" equat.ion

9. 1, the r:el"T reflect i orJ. coeffi;:.~ient becomf~S :-

1& ., • , • c 1 ( \ :J. a I

For the ideal i zc:::d ca .. :,'e of an offset calibration pi f.?ce ~

it: can b e S2en [1:'om '\:.he flmv chnrt t "bat;

.0. I ~

" ,. .. .

and for the non-idealized case; 'taking gai.n, 11oise, reflection

coefficient errors and t.h~: addit.iona J. eJ:-rors of offset lengths

( E..2. ) equat.ion 9.2 becomes:-

9.2(a) .# ..

J t· • \;1,.(1 _.

Similal'."ly foJ:' the third calil;y:at:ion the idealized ca sp. 1.8 :

.. .. . 9.3

and foJ': the non--idea lized case it i",,:

I-

f: "" (I + t~?/l- 1\

" .. , ~ 9.3(0.)

- 2,49 --

case 1 8 :

1- ....... --: p .~ ,r'Y(\...f - 51 I +- ~")! '2.. :::'~.1 L.

----:---.,:,. .. _, -\ -- S 1.::>...l \..

\v11 icl-, "eSll] ts il)

f"L n ~

r~/)'i't,..- - ' - : t

f J 50 " . S··--~-~-1\-, .... ' . 2/, -r '-:; 12 ?.i·- \ t \ .... ':....l.

and for the non-idealize d case

! - ';,. ... ,'"""'I , ~.~ ' \.-

9 . 4

,y-hich results 1.n

\~: I ;::::. _L (r~~n_,:~_~._, :::: c: I'~. ___ , _____ . __

(/"5 '2.'4 P 11<t1~ C' (':> c..; q, ~., , ... 9 4 ( "' "\ • (;( J

-~E~tJ + '':::> [ h ;::,~ \ _.- ~ \\ -2'1.. -. ·;;;':l·:~ . .'=rr~Z!..

It is clear that the ide a l erro r sc-tcering pa~ameters

S11 ' 5 125 21 and 5 22 Will b e derived from equdtiODS 9 . 1, 9 . 2

and 9 . 3 . ( section 5:4). The non-idea.lizE'.u erro!;' scac·. l:ering

p a ramaters SIll , S12SZ1( and £22 / are c a lcul a ted from

equations 9 . 1(a) , 9 . 2( a ) and 9 . 3(a). Th e co:-nputer is noL

aW'are of t he idealized parameters . It can or:.ly sub s ti tute thE.! . d l' d l' '"' ISS I / r') I . . • non-J. ea lze .va. Ul? S, wi 1' 12'"21 1822' and <'- ', ln t o egu3t1on

9.4 to solve for the reflecti.on coef f ic::. Gnt. Thi.s \fi11 rw

doubt result in furt.her error, If ·-~II • • .. I L. ) 8 dc=f lne d a s tnt.

calculated erroneous reflection c02ff icir':l1t then eq'L<a'l..' on

9 . 4 ( a) may be written as

. .. . . " 9. -1(b)

'vhich :i.s real l y the calcul teu rl2['ult i-hen g< in, J'1.Oi se ,

calibration termination error and of fset errors are cons idecJd .

The problem is how to di stingui sh thl. calculated re .. u1 t ('-...., 1/

1-. ( calcu1a'l:ecJ. by equat.ion, 9.4(b)' from the ideal :'z2d one ,

r= A direct solution is not p ractica l be cause ccurtlte

lrnm<Ledqe of ' -he individua l e rror.J ar.e not }mnwn. Hand

( ref erencf.:! 9.2) ,,,ho hClR fun. acc(;!ss to th,~. manufa ct.t'~ rer's

data ha s point.ed out ·that: any att ~mp .. at a complHt 8XJ.Jli it

solution is ainU .. ess · s ince \vhilc t.;1 maximnrn mag n i ·UdE:.8 of

the variou.s terms may be .movn , t ·h.eir p h,; s(-!s arc i n gene.;:-a1 q1 i t.e

- 250 -

unpredictable. Hand al so tri(0d combining the r'undom-pha S8

errors ... .".i th the root of the sum of tile squares (F'J'lS) values

of <2mpli tt. ... des but finz.o.J.ly decided on a stat,istical me·thod of

analysis.

His statistical method i.nvolved ta"jdng t 'n .. • sets of

calibration measnrc'!I!lerlb3 (Hand does not e;peciiically stat.e

what '1"J1,' is but his released data seem3 to be baaed on 2 to

12 measurements). From thf~se calibrations, he calculated the

error parc::.met.e.cs. He then assigned magnitudes, {based on

production lir...e limits} to the error pc:.ra.meters. The phase . error limit '!,vas set bet'i-Teen 0 and 2lf radians and phar:.;p

"'\-ras selected by a computer driven random nUlr,ber generator.

Selected values of the device to be me2\sured "Jere then inserted

into his corn:!ctiol1 p"rogrammc. The l:'esul t,G obtained wer(~

then corcipared against his original input values and the

difference noted. Hand described 'his device to be measured

In his calculations 8 11 and 8 22 were made eq'tJ.Cll i~ phase

and magnitude [:0 that in effect there were 200 calculated

values of the £ame quant.ity compared.

Froi.'. these 200 values, 8 of the i,lorst values ,ITcre discard~~d,

" .. hich meant that· the remaining ;values had a pro::,abilj,ty of

192/200 or a 96% confidence level of being \dthin C1 certain

region V,'110se outer limit ' .... as determ:i.n(-::d by t.he 9th worst value.

Hand claims that this procedurt~ can be used to establish

the limiting curves for the syst~)m or for that rr.atter any

degree of confidence level.

Adams' paper (t'eferel1c(~ 9.3) is ext.remely useful in that

it does provid~= detaiied error infol.'111ation O!'l individual i terns

such as contact resistance, eccentricity of coaxial line,

connector mismatch Qrror , etc., Adamn also list.s some errors

on phase-loc1~c:d systems v.'h.1. ch do not. sec...~m to b(' available else­

where.

- 251 .-

For reflection type n~ea tilJ.re~('.(;~nts, 1'1dar:lS claiI:m the

c"!oJ..culab-:d syster:: l..mcert:.~:inty to bc~;-

without a Phase T.oc:l< Source: ------•• -----~--- ...... -- .. ¥ --.. ---~-.~...-•• ~ ....

Magnitude of Uncertainty :-: ::[O·OC~.d-D.o \'5"P .4- 0-0\ p~.]

Nith a J?J).as~.1!2_C:~S.....:?S~~: Hagnitude of Uncert.;::d.nty == [email protected]'+ O.~a5p +O.OC?lpiJ

Angle ~f Uncertainty

where P ::.: \ T: \ and \S 11\« p

m .± \Q .25°+ J:c..;;J _~:..?' ~~ +- 4- ~~I (0 .cC)5'f~ p

in th(? e~JL'tat:ions rCl(~t:ing to angle error.

It is not }cnmvn .to which E'YB.t-ern the ab9ve J;-igurcs apply.

Adams does not give t.h2 informa.t.icn and ned ther does be

indicate clearly as t.o how tlv::s('! fi.gures w'ere deduced or

obt.ained:

Ridella (references 9.5 o.nd 9.6) in addit:ion t.o having

given some equat.ions (deriva.ti.ons not 8hm'ln) for the calibration

.repeat.ibility, the meas'..l!'cment .t:epcat{bility etc., h.as

reported the res1.l1 ts obtai. ned '\'lhen various devices "i,ren:! mcas1.1rc:"!d

on four d:i.fferent networJ;;: ana1.ysers. HO'w'ever, rddel1 a l:'E.ports

that the error expressi.ons which he h("!s arrived at differ ~

I

considernbly· from those of Adams (reff:~rencc 9.3). He also

points out that the error curves issued by Hr;!1·tl!?t:t Packard , d ' ~, J •

hav~~ been. mo 1.1.. J;ec.l. very often over tl1~~ ycaxs. 'flus 'h'c:l.S also . . noted by 'Lhe {'..athor when irlVest.igating ha.rdi,rare data in

chapter 4 (section 4: 3) •

Woods (references 9.7 and 9,8) notes that the calibration

procE-!durc describ~d by Hand (n~ferenc0 9.2) overlooJ~s ·the small

impedance changes t.hat occur whr:m the reflection/tr:ansnd.ssion

swi tchcs are changed over 2.nd Woods h3S suggest.ed tJH~ tlSC~ of

t.hree receiving channels :instead of t.he prcs(;;l1tbJo to over­

come this. Fortunately this probl(~m doE.!s not exist in the

m(-~a8\,tremcnt. system u.sed by the author becc:usc only reflection

measurement is c:o!1.sid8rcd here.

that:

.- 252 _.

Nevert:helE":!:3r;, from t.he above p3:-()graphs, it. is cleal'

(a) Different opinions exist as to ho'''' the ()ccura~~

of an automatic net1.lork analyser should be

E:pecified.

,(b) Detailed information on the errors of ir~dividual

items are virtually unobtainr.;'}.)le.

The pd me purp0f.je is to Df.;! able to determine the trnc

reflection coefficient of a device and to be able to predict

the accuracy of the measurement ': and its confidence level.

Indi vidual errors exi st.ing '\vi thin the instruments are accepted

and efforts to correct them will not be made for the re-deidcrn J

of the instruments is not intended here. However, it is vitally

important that the bilincox tr.ansformation corr,plex. constan't:1,

A, B, C and D (representing in.:struemeri.t system (~l.·rors) n~main

invariant during all thc"'meaourements, this has been

discussed e~tcnsivclY in section 812.1.

In the ·case of correction systenu; using short arid/or

open circuits, many of the s'Jurces of errors mentioned in

sectibn 0: 2 sur.h, as (b) to (h) are minimized because: •

(a) The reflected or test signal is larcJc ( 1 r\ ~ 1. ) during calibration and tends to mas]" the effects

f . • f" l' .• o no~se, leakage, non-J.n~nJ.te (l.rectlvlty etc.

(b) rl'h8 magnitude of t.he reflect.ed signal E remain

at similar levels t.hrougbout t.be calibration

procedure and the ~mrl:ing dynamic rlln90 of the

amplifiers, det.ector.s etc is redt1Ced. This

reduct.i on i ~3 even lriore evident. ",-[wn tho devl ce

to be measured also has a largo reflection . . l ' ,.. .. coeffJ.c].cnt. 'I'le rnJ.n~nusat~on of non-ll_n(2arl. ty

and limi t,ing prol?18!l!8 hetve; nlso been discussed

in detail in section 8s3.

- 253 -

Confirlnat:iol'l of measu.rC:~:·J.tl.i?!1t aCCllr~ac.~y (~a_rl ])e Ifh'JrG ea~sil~{

ascertained if SOTne acc'tll'"dt(::ly defin,;d calibration standurds ,

traceable:! to Nat ionaJ. Standards cu:-e Clva.ilab10 for comparati VI:?

measurements. Ri.d2l1a (rcfercnces9.5 and 9.6) was particularly

fortunate in this respect for he had access to the tlS~ of four

different netwprl;: ancl.lyf~ers in differc~nt coantries and Ol:e of

t.hesE'~ analysers (HevJlett P c.c1\:.ard. in Gcnl~va) ,,;as traceable to

a National Standards T...abor?'to.ry. For tbe \,'01:'J<:: at Harv.'icl( ... ., 1" d' t . . Dnl verSl ty, such flnanCl.a. cxpen.1" ',ure \-las l.rnpractlcal and

considerable effort had to be made into acquiring SOJn2

·accura~ely defined st.andarcs. To b(=gin vit.h the use of

existing "standards" ,.,ithin ·the laboratorie::; of the University

of Nan1icl~ were lmpractical for a.l though some of the match,~d

~oads and offset short circuit:s had been. calibra·ted at 01:'8

tin1f~, there wa.s no assurance that the calibration values were

still valid.

Ideas introduced by l'1oodf~ (reference 9.9) for the const,ruct­

ion of lmmittance standards were also inv<?Bt.igtltcd but <lfter

(~xami.nation of his equipment and s(~.;Jdng ll.:i.s advice, it w,'-;.s

decided that the fin~ncial costs would be prohib:i.tiv~.

'1'he construction of test pieces whose el(~ct.rical !

properties can be '-Jell deflnp.d has bl"'.2t1 suggcst:cd by H;llncr

(reference 9.10) as a me:lns of c'l1.ecking the correct o!,!cration

of a net'\wrlc analyser system. 1"1'11is idea was seri.ously

considered and J cd to t~he adoption of a modified EC\vlctt

Packard ;'PC7 Coa.x:i.al Short Circuit. (Type 11555A) as the main

measurement standard.

The main constructional features of 'this short circuit

have been described in Chapter VII and d~tailed in figure

7.2.

- 254 -

From an inspection of figure 7.2, it: is clear that the

electri.cal contact. n:quired for a good short circuit is

dependeDt on the mnt.act area and conductivity of Surface A.

This surface was eXnmined more closely after dismantling

the entire short cireui t assembly. Af-tor Surface A had been

cleaned and poli sl'led it 'vlaS checked for surface roughness on

the Tallysurf machine. The sU4"face irregularities were

less than O.002rrun. 'I'his su:r.face was then re-clC.:'!aned ,again.

Visual ins;>ccticn of the surface revealed sufficient gold

plating on tl-le short circuit surface!. Ha.d this not. been so,

then re-plating would have been carried out.

rl'he advant.ages of using such a device as thr-.! main

calibration standard are:-

., .. . 1 ( a) The f ~nanc~ al co st \~ m~nl_:r.1a •

(b) The reflection coefficient can be accurately

defined without expensive recourse to

calibration laboratories.

(c) 'l'he APC-7 on the short ci.rcuit ensures minimal

interface problems w'ith its mating connector on

the reflectometer.

The general procedure udop~·.cd for assessing tlJe accuracy

of mea surement '<Tas that of repeating rna:1Y Gets of mcasllre:nents.

For example, in corr(~cted measurements involving the Three

Short circui.t Correct.ion Nethod of Section 5:4, one hundred

sets of measurement:s of the same t(n~t piece was carried out.

Each set of n~easurements involved:

(a) Rcpec.ting the m:r.1C ca.Ii bration procedure at

,the same frequency of interest using the same

co.l ibro.tion st?ndards.

(b) Heasurirlq the same t.est piec(~ after calibrating_

(c) Calclllating the correct' reflection cocffic~entG.

The fonnul;)c!' of ClDpendix J.1: 10 '\-[C1-(' used to calc'..llatc the . ~

r('lc;:~n value and to predict:. from tables t.he expectea dcviationr:;

fr.om the mean a·t the requirecl confidence le"/(;'18. 'r}le resu:!..ts

obtain(~d from statist.ical tables werE~ then compar-ed against.

the known reflect.ion coefficien·t of t.1H·) tE?st pieces -to shm..;·

the f~rror of mea8urenH~nt.

For this a.ssesslL1c.:mt, one-hundred sets of measurement.s

(calibration and test piece ev<:t.luation) 'w(,~re carried cut. 'rhc-?

test piece used was t.he modified Hewlett. P acl<::ard Short Circuit

described in section 9: 6.1 ~ ,]~he networ};: analys'2.r and i t:s

per iphE:.~ral instruments (excluding the computer) "yere s,';ri tched

on for two hours prior to t:he conmlcncement. of mc~s'-lrements.

The 1st and 2nd off Get short circuits used in the calibrations

had off set lengths of 3nun and 4. 6rmn respectively. '1'he

calibration a.nd test pieces were f.~pray cleaned after every ten

sets of readings.

The measurements were carried out at 4Gllz without the use

of the phase locJc system. Heasurements 'vere car):ied out I

continuously ar,ld required a]ntt 8 hours of comput.er tif\1c. To

avoid prejudicing the results, shown in figure 9.16 J no

measurement. 'vas discarded. This has r2r:mltcd ~.n some particularly

bad sets of lnP':l.F'!llrE;~mel1t.s e. g., set 32, v.'h(~re t.11G corrE~cted . . . reflectiOll coefficient. was calculated to be 0.975 [1J}}. 0 ~ Analysis carried out later af'ter e~amir-d.nq tbe cOlilL')uter pdnt­

out revealed the .third calibration reading to be a't faul t.

The reoul ts in figure 9.16 ,,,ere processed by ma)<;:ing tho

assumption that the magnitude and phase angles measured for

large reflectipl1. coefficient a!'e indepenc:ent events. '1'his has

already been jtlst.:i.fi(~d by the ar9'\.J.(~m(?nt.s of. section 8.1.

Nex't:, the magnitudes and phase n.ngles (figures 9.17 a.~Ald 9.18)

were plotted and it. vms observed that:. the distribution "r;:U3

close to the normal (:!rror CU1-ve. By using equations 11.10.1,

11.10.3 and 11.10.5, t;he mean and the best estimat.e of the

~ -~,.- --

Figure 9.16

Table of 100 Corrected Reflec tion Coefficient Measur ements Taken at 4 GHz

I .. w---~~~-~ . Ico~rected 1~1 Corrected 'I )corrected 'I ICorrected

Ref1ect.ion i "Reflection I I Reflection I IReflection No.~oefficient t ,No,!coefficient Nq coefficientl . No. Coefficient I

'}.fagni- ?haS8! t IMagn-'Phase ' 1 ~'lagniIPh2, seJ.I· ~ hrc:g l1i-tpha. se I

r:-~1tgde De) it ,tude (Dec) ' tude Dea~ I It'.ld~~3LJ 1 1 .998 ,180.0} . 26\ . 9951 80 .1 '1 511.003 179.l9 1: 7611.0011179.3 i 2!l.OOO p 79.8 1 2711 . 002 180 . 01 52.! .993 17S, 8 1 7 7 1.002 1 180. 0' 3 !1.003 179.8 1 28 1 . 996 179 . 4 53 1.001 180.0 7811.000 179.9 41 .?93~81.529! . ~~2 18~.~ 1 1 ~4 1.OOll. ~80. 41 . :911.0~4 ~80.2 5

11 .004 .1.80.5 , 3° 1 • ..,/ 4 18.l.7i . :>5. .9981179.0 1~'-' 0 1 . 9':18 .l79.2

6 .994 180 . 3 If 31 t l . 002 179.3 156 , .9961181.1, 1 81 .9981 80 . 1 7 /

1 0999 .. 180.11"32; . . 975/ 1 33 .0 , J57!1 . 009

1180 . 4

1!82 J1.003 180 . .. ·3

8 1.0091178 . 8 133 1 . 995[180.3 ! 5S' . 998 180.5 , 83 1 .994 ,180 . 7 91 09931180.8 lt 34 !1 .001 180 . 3 1 ! 59 . 998 ~~0 . 2 11 84 1.OO~ ~29 . 7

10 i l.008 178.9 35i . 9951180 . 7 '160 . 999 1!9 .7 ; 85;1.003 i/9.6 II I . 997

1

179.8 1361100001180 . 81,611 1.009 180 . 7 , 86\1;009 ]80.1 121 .997 179 .9 37 1000411 79.8 1162 . 979 181 . 6 ; 87j .991 , 181 . 5 13 ; 1. 001 19~.0 138 1 . 9951180 .7 1! 63 .991 180.71 88 11. 0081181 05 14 1 . 9961180.4 >39

1

. 997 :1~ 1.0. 64 ,999 179,8 1 89!1 . 0001:!.80.2 15 , .996!18D.l 40 . 997 ! 180 . 8 i 165 .996 1179.81 90' . 998,1180 . 1 16 1 ,996 180 . 7.41 .9961180.9 1166, 1.0121179 .2, , 91 1.007 , 179 .9 17 : . 9991179 . 8!,42, , 998,180.41167 . 995 180.9 1t 92 1.004\ 180.3 . 1.8 11.0041180.1 143 , .997/180.21 168 .999 ~!.79.1 1 19 3 .9921181.7. ; -9 11 . 0071179,7 1"44 11 . 00511P.;0 . . Il 59 1 . 0 00 180. 2119.4

1 ,999 1 80.1 I'

20 , . 994f180.7 4511 . 004 1 80 .J.f 70 1.006 180 . 811951 . 997 180.5 21 t' .991·179 . 1 . 45!, . 996!1 81 . :)J 71 ,999 179 . B 196 . • 997 ,1 80.5 22 , 1 .004 180 . 4:147 1.005 \ 179.61 72 ! .992 l79 .5 197i .999 1180.4 1 23 11.003 181 . 0I i 4 8 r'1.00sI180 .0 1 7311.003 11 8 0 . 4 98 11 ,005 1180.4 I 24 \ .999 · 180. 4!~49 . • 9841183 .8 1'41 . 997 179.9} 99, . 994/180 . 7 i 25 ! 1.oooh {~o.0 50!1.005 ; 180 .'4 i75 __ ~98!180.1ll~L~.~O_5~?/'9 .0 J

~ .

N U1 G

• I .-l j'

C- I

U rz:l 1-1 , I-t4 I' : P.' , • -- - i ~ d •

• l. _

I-

0, • I

-j

- 6 :..:... , o

I

~ '.-ci t :z W :

.::::>.- 4 -' 0 -

, .. J.;: _ •. . I I

--I . I i .. ;

. _.L~~

. ..J ,180 1-- .-

180 . 5 !

PP.r.ASE_ O~~rFI:!~Ct:IOl'·~ COEFFICI£:NT _

.\ , .. I .~.,r.........- ...

.1 L_ '

j

" 1~1 !.

J -1-' -, r (DEG,?-EES)

i .\

_. ·-1 182 1 82 . 5

1 '

.,

Fi gu.re 9 .19

Rene ction. Coefficient Resu! ts 'vi th Confidence Levels for Measurements on a Shor-t Circuit (based on 100 Neasurems!}-ts Using tIle Three Short-=­Circuit Correction Hethod)

.. ...... :z:;::::::a;::;a::iI;;::z ,",~_==-:::"",!C.~~"=,, ____ ~~~...cr~""'~ :a::; 2..... L.a:a:t S!5SC;t .. SL::a!lLllHLs:w::sr:uu:::a:itizt£&1a:::JL..~"'~1

~ Reflection Coefficient at 4 GHz

Item

.; !:i ~~

~

~ Nagnitude ~ Phase r¥WJ%Z &1:ae.z~~~""! ===.~ :::::zcc:a::::::~· ' ....... ---h -~~"""-""'-!!II'.n::::.~~~~..I':'f! ... ' f' . ~ ~ f)

~ True Reflec~lon Coef lC1.ent. ~ 1 . OGO ~ 1800 ~ i of Test Devlce ~ , J E - ~ i

!::::L I Hean of 100 Hec.. surement.s

Best Estimate of Standard Deviation '

0.99884 0 . 999 180 .290

-- -','------=---, ~ 6.6038 E -3

r-- * ~~. ----------------.------~----------"Expected Range for 90% ; . 9988 ::: .0109 i.e.

Confidence Level ~ 1.010 (Max) or + 1.0% 0.988 tHin ) 1.2%

I • !'i ft

0.780°

.... 180.29 .

181. 57 (Max) l ~ Q OC' ' l ' ~ ) / J • I \ ·l..Ln

1.287 1 . 8 . or ~ 8 7:7~

.- ,55%

·i ~ i ~

~ !,

~ } }----- --.

E:Arpect.ed Range*for 95% Confidence ~evel

Expected Range''< for 99:b Confidence Level

.9988 :: 1 . 012 (Hax)

.986 (I'·lin)

.J,.

.9988 .: 1 01(:' ( -') _ . _ 0 Hax

. 982 (Hin)

.0129 i.e. or + 1.2%

- 1. 410

.0170 i.e. or + ],. 6?-b

- 1. 8~;

, '1

tt ~

180.29 .: 181 . 31 (Max ) 178.76 (Min)

.J,.

1 00.29 .: 182.30 (Nax) 178.28 (Hin)

1 .. 52 '3 i . e. or + 1.00%

6G~1 ~ ~ ,o

2.013 or + 1.28~

- 0.95%

J !

~ ~ c ~

~:J2"..::=c~~=:o:eJ.P;sa:s:aag, 4i)!;s:::pt •. ~~~~.r::.~(.;;;J~# ~~~":!.~:'~.':''''N.~~'""'-.. ", ...... 1tT'''...r.~.t\I:~'l..''"k!D"''~~.:a'; I

*Calculated by mea~s of statistical table (Taple 1 of Rcier8nce 3 in Appendix 1113) 11 yercentagE' l:'tlnges are rE~l ati ve to 1 U_~Q~

~v Ul '-0

" .

- 260 -

standard deviati on "la s --:alcuLJ.t.ed. These v a lues we rE:! then

u sed in co ljunction I,ri th T,3bl _ 1 of J:<efen:mce :3 o f Appendix

11: 10 to p~oduce the table ~lown in figur~ 9 . 19. Fr om thi s .1-

·t ablf:~ it i s seen that me :::l SU!-E'me nt Clccur clcy to "\d.thin -~1. 4X

with a 95% confidence level c an be obtaine d , tor a 99%

1 eve J 1 accuracy toO .: 1.. 8%' i s attain abl e .

9:7 . 1 . 2 Measured Accur:cies of the Means -----.- .. --~-... . - -.-- ---.. -.-.. - .-~ .. ---.-------...

'I'he mearmred accuracies of the means of the r agni t ude

and ph ase are of courSE:! bette r ·l:han t bese value£ . Using

equations 11 .1 0.9 and 11.10.10 of Appendix 1 1 :1, i . e .

X = V -'.> 1", (y\.1 .:. -'S fYV

the f ol l owing tacle Cf igure 9 .1 9 ( a ) ) may be construct:ed.

Fj:..9~~~9Q .

Accu ra"y of tll.e Mei:ln Measu1:'emellts --Obtainesl t rom F igure 9 .. 19

C f ' d Mea sured Means ll OO He asurementsl tori ~ erlce ~~,. '"' :: .. _ ______ ~-""==l;:.- ,.;"':"'_~~_.-__ n)O~.~

Level ~1aqn ' t.Ud C?:·k f11a£.g* ( de~re('l s) - ~",:iIIWk;,.""",~~ -- ~-

·' (Max) or -- .01..% lBQ,4J.9 ( Max) or ;- . i3 3'Y~ 90o~ .

1< . 997'7 = (Min) - 2 .: · % 180. 161 (}Ilin) +. ,0901. " ., ~ :0 ---r 99993

----------~.

1.0001 ( Hax) or ;-.0 131<- 180". 443 Hax ) or -1-. 246)~ 95% , . "

j.997 5;5 (Min) (Min ) +.O76~ - , , --- _ .. .....-- ........ _ ... _ ... _---_ .... _ . __ ._-

1. 0005 (Hax ) or + .05 % ·80. 491 (Max.) 01:- 1· . 273'1, 9 9°6 I ,

- . 29 .. % l80.0B9 (Min) ,·.049('; , r~J} l~l .• J~2:!!.~ ~~ ...., ...-

1:Referred to 1 Llf~OO

From figur _ 9 • . 19a, i t is seen ·t.ha ·t ,[:,he mean.~ )f i:he

magni tude aad phase angles of the test pie ~e ( reference rme rt. , ') C l.J:CU t t 48Hz haVe J een measu red with i:l co fiden.ce l::>vel

o f 99% t: o vTi t:h: n O .~;G of· the t ru _ val ue .

- 261 -

'l'he proc,:::duH~ used for determining tlH'~ 2ccuracy cf the

4 Short Cireui t Correction Hethod 'V(~s similar to that: card (10

O'.lt for the Three Short Cireui t System (section 9: 7.1) excC':)t

that 20 meas1J.rer0.cnts per frequency were carried out. The

resu1 ts obtained at 4 GHz are sho'l\T!1 in figures 9.20 nnd 9.21

respectively. For this nurnber of l'.leasurements, t.he application

of statistica.l theory is vo.lid only who11 tht! me3Sl::.remcnL is a

stationary sta.i..:i.stieal process i, e. 1 i::he repeated resul t.s arc

consistent. 'J:'he test used to d2terminE'~ this i.s similar to

t.h3t descrl.bed by Harner. (refererlce 9.10). Por th:i. s test,

the 20 corrected mr:!<1suren:ents of figure 9. 20'i\Tcre dividc!d into -b:lO groups of 10 each. The mean valu£~f.i, A.. , , and '):.,?, and

the variances d,2. and oJ; of the magni tudf-~s of each group ""as

calculated. 'I'he variances were then um)d in the Snedcor' 8

F Test (Variance Ratio rr(~st) which j s defined a e" ... -:.. .

. Greater Estim:3te of the Variance o[ on8 Hea~mrem(.;j·lt. Group F = ------------------------------ -------_ .. --

Lesser Estimate of the V<lriance of Othpr. H~asun?'IlJent. GrOl~p

From table 6 of reference 11:10.3, it \las noted tha.t. for

'Il.. -- 10, and for the vC'.riance td be consid(.;!r.ed stc-:'adi tb:m

F b 3.13 (5% leV(~l of varic:,nce ratio). ", .f II

The means, :::(.,and :(.2.. were also tested using t.he \ I

student . t tests i. e,

Error in He;:m t = ,---.. -- .

standard Error of Nean j 0', '2.

For a 5% probability curve t L 2.1. This informatioll

'vas obtained from tClble 4 of reference 3 of Appendix lIt 10.

5 6 7 8 9

10

- 262 -

F t9.~~LQ_2,_.?_q

Corrected ReflAct0~ Coefficients obtained at." -4 c;Tiz"'u Eli 11(-;-:t}:~(?·-f. ou r '-f;lj t) rt-r;-{"r.ctij t ---corre~CiorL 1'f~~11C,d'-of. sr.!.~:.tLCi:2_2 ;'5"-"-----

F iru:u:g_9~J . .90r.r.:.~~1ion .... Re..fl.£ctj. on....Cq,~ffis.i cEt.:'i Oht~dr~ed ll.i.6 GHz~~g th~~ Fou.r ShoFt Cj.r£:..iJc CorrectJ.on Method of Sect.ion 5: 5 .-._ .... -.--.... ------ . --------;;.,.,

I

- 263 -

The 8a11I.0 procedure was adopted for pl'ocessing tlH::

measurements on phase.

The follOl{ing table vras produo?d~

r----I'~~-~~~~P.M'=-~~~~~~.;;_'-~r----~.=~ ... ~~~:::"--.''"-='~~''''1' I (4 Short Cl.rcul. t -------- . __ ._-,

·;:ti;-;::~~t;;'''"r·~~~;'-- --;~-""I'-~~~~~: r-;~~---l . I 1" -;e"an Test (t)---;'-:;~;---I .2.1 --r O. 99. ---;~ .... -, I....,..,... ....... _,., .... _., ..... ~,~, __ .~~ .... _._,_ .. ,_, __ ....... _."""".~_.~ ... < ..... _.,....-.. , •• - ... - ..... -,.~,. ,,,_J

. .

From these results, it is seen t.llat. the I:lCi:lSun."'ment data.

is of a stationary statistical nature~ Hence thf-~ UBe of

t.,.,(;~nt_y rn~asurernents is justified.

The analyses for these rJ(~asurementsare given in figures

9.22 and 9.23. It should be noted th::.t the correction fer s!1~aJ.l

samples (20 measurements) have been mad~~ t,o th9 statistic:)l

data.

For the 4 GHz set of measur.ement.s; it is S2(~n tha.t

m~asurf~rrent Clccur~cies of about + 1% with a confidence J.c~vel of 95% can be achieved with one riH?asurCm(::!nt.

Similar results have ~lso b~en obtained for.tl18 set of

meaE\UrCments carried out at 6 GHz.

~

.. KisLure 9.22

Ar.alysis of Results obtained in Fiqure 9.20

(Fo1:r Sbor-t Circuit correction Heti-:od)

rJlJJl:ilCCi(;OSiW ...... :iJ!UQ!_a'~~xa,.,!C!::szz::a:a:a::u::!!lSi-.. L ••• ''';J:--J~..;.iirr.r!C;';~CtS ssw. OlI<L&llfli:!ii't..~ ..... X"". .... ... au .................... SA!I ..... iiN :_ ~,Jd .. wss:s .. A_ ..... __ ., %&A&4L.= we_.B. :z:s:s: ",:oa"Ci_~

I i ~ , • • ••• ~ ,..,! ij

< • ~ HeflectlOn Coef-F1C).en-:: at... 4 GLZ • ~ I --~ ~ I te;n r"'-- .... "r"'--- _. .... - L • _.--_ ... - ·'i ! . I ~ Maqnl tude' i pr;:3.se (dearees) ~ ~_k._!1$1"""_""_ _·m::u:>>>>JONP"*,,_a ...... "" at '~-- .. ""'""_.. __ -;.. _ __...""1_'_'_". __ , 'i""oas"".=-_ .... ,., _== ..... _.~ ',..., ~ fl t . C ff .. I i « I ~rue rle eC,lcn oe lClent ~ 1 000 I 1800 ~ I of Test DeVlce ~ '.. j <-- < ~ ..1 I Nean of 20 Neasurements 0.99825. ! 180.2 j I J ~ . . r ~ I Best Estlmate of Standard g , Deviation 0.0053693 , 0.72475 !

1 i i , i ~

.• 99825:t 9.23519 E-3 i.e"j' 180.2 :::: 1.24657 i.e., I Expected Range*for 90'10 Confidence Level 1.007 (Max) or + O. 77~ . 181.45 (}fax) or + O.SO;.~ '.'.i

O 089 ' "1' ) 1 1°' ~ ~ 8 Q 5 ( '-'1 • ) 0 5 8"" ~ ~ • ~. \ J. J.n -. 70 1 / ..... r. ln • I£' 1

I ......! . .I. il -, t dR' + qr:;-I 00825 "1 1~7'8 r.' ~ lCO ~" 1 51"72 ' r:.xpec e ange')l' ..:or _..J~;O .J"- -. L._ .... ."j-E., ~ v' • .<. - 0_ <± ~.e.,

Confidence Level 1.009 (Nax) or + 0.9% ~ 181.71 (Hax) or + 0.95% t I O. 987 (Mi~) - 1.1% i 178.68 (Min) 0.73% ; r- . J

I Expected Range*for 99% .99825:t 1.53025 E-2 '130.2 :t 2.06553' i.e., ~ i Confidence Level 1.013 (Max) or + 1 .. 3% ~ 182.26 (Nax) or ". 1.257& : L_ z_ .. go 0.932 (r:in) 1_08% _t ,"1:~13 (~~ __ j*,':":~

1t Calcula·ted by means of statistical tables (Table 4 or Reference 3 in Appendix 11: 3) • All percentage fi~Jures are relative to 1 li§..O°.,

N VI ~

F';gure 9.23

AnalYsis of the Results of Figure 9.21

(Four Short Circuit correction Method)

r .... >::aJIia&JSitL.JlKecs:e::s:ua>JkLiS .. J(Q .. ~..... • !.zatL:»i!U2J! ..... __ .,.c=:.w:o:w;::..... ..waat::a1i:sa&L !JMczar • JIIJa:::e ... nA::c:::a;;::a;;JiJSt.:.-."':::O:x:z::;_ •. 1JSEa!DM1a:a:au::ceu:t::1l!WJ~~

i .' Reflection Coefficient at 6 GHz i r

Item I ~~ i i . tlagnitl~ ~ '. '. Phase (Deq~-ees) J

1S8Z;;~~_;;;,;:;;'i~~a;=;~~ci:;;=-"-~ . · ,- · .. ·"la

000 -- d ·--r-=-sr-~::~~~i . of Test Dev1ce . ' 1 . • g ~ ,~

Hec:.n of 20 Neasurements 0.99985 I 179. 985 ~ ~------------------------------------~~--------------------------------~~ ~

Best Estimate cf Standard p2viation 0.0049659

~ ~

I .0550860 i ! i

f--_ ~ .~ 1 Expec;ted Range* for 90% .099985 ! 8.54134 :B-3 i.e.1 179.985 t .94747, i.e. ~ l; Conf1dence Levels 1.008 (Ma.x) or + 0.8% I 180.93 (Max) or + • 51~~ ~ i 0.991 (llin) • ge,6 , 179.04 (}lin) • 5Jc~ ~ i ~ ,t-' t + - ~ • Expected Ra!1ge* for 95% I 0.99935 - 1.03787.E-2 i.e'l 179.985 - 1.51297 1.e. ~ I Confidence Levels I 1.010 (Max) or + 1% 181.14 (Max) or + • 63:'{, S ~ O. 989 (Hin) -1.1% 1.78.83 (Hin) • 65:'s ~ ira I E~-pected Range* for 99% I 0.99935 '! 1.41528 E-2 I 179.985 .! 1.56995 i.e. ~ I Confidence Levels 1.014 (:';3X) or + 1.4"'0 ~ 181.5'5 (Nax) or -;- • 86"~ ~

L.~4'_& ___ ._"_ __'@ __ .""' .. 44 .. ~L' .. _O·",~'::'::, .. {:~a~_~M::~'''_''R:'?:~~~.u: ... :: ':~'::idJ * CalC'<.llated by means of sta.tistical tables {Table 4 of Reference 3 in Appendix 11; 3)

All percentage figures are relative to 1 f1SO?

t-.} c~

Vl

- 266 -

If the proc,2'Iure outlined in section 9: 7.1.2 is adopted

the following to.bles (figures 9. 22a and 9. 23a) resul b

Ficmre 9. 22C"t !-qcuracy. of_ t;h? Hean l'1§~i~:~;ire13~<?I!~t._9b.L_<ainf~Sl. f.!qr~FiquJ;"Q...~z. ~ ....... ~~_~ __ ,."jI';\'~~"'MIX __ .~·I"'· •• $M •• *I,_""·JI;'''''':'f*lodftI'a..;: ..... .!Ir.~, ...... ~~'~'.'>('.""""~. __ ""'"""'IIIIt'UI~"'~M"-r.o-__ ;:. .... ,.. u-l

• l ~~1eaf>ur~,g Means J20 }f~:il§~Iel!!~ts) .£Qnfl~~ce ____ _

Lpill . t d ---..,- . - ----~ HCAgP:f.. .... l1.. . ..?!.. Pha 8(;*.

~~~-...-, ..... ~ .~~."."rn.----..r1'>."1'I'~1l.~'IIr"""'Q'-.""I .... _ bi"iL:t;:.Il\o;~ ..... ~......-.-.~~_,.-.. '¥ ___ I'MlllIiIlr'l.

90% 1.0003 (Hax.) or of- .03';6 180.478 (Max) or + • 2 6n~ .• 9962 CHin) .38% 179.92.1 (Hin) .04"{'

I-----------~------------

From Figure 9. 22'a, it: is SE:~en that the means of the

magnitude and phase angle of the test piece (reference short

circui t) at 4 GlI:;.; have be(~n obtained with a confidence l(~vel

of 99% to "Ti,thin O. 5?~ und 0.2% respectively of the tnw value •

95% 1.002 0.997

• (l.lax) or + CHin

"Cl/ • ", .. 0

• 3:'~ 180.24 (Ha:x) or + 179.73 (}fin)

1.003 (Hax) +.3% 180.34 (Hen:) or + 0.9966 (Hin) .4(\~ 179.63 (Min)

.13)~

• 15"':'

.18%

.21"; ___ " .... ____ '1iJ;.t'~A~.~~ .. ~~J!t!~t;u_~~;>O_, __ I ____ .... _......,.,NI$IIit:: ................

Referenced to 1 Llf300

From figure 9.23u , it is seen 'th;;t the 111eans of the

TIlr'>.gn:l tudE~ and the phase an91e of the t(!st pi.(~<.:e (refer(~nce short:

circuit) at 6'3Hz IleNe beC!1 cbt<li11(~d ",ith a confidence level

of 99~b to within 0.£):10 and O.2ob rr~sppc'tiVt:ly of the true value.

- 267 -

9 : 7 • 3 l~ ccurc:.sLQ.f...l~.~a§u.ry-m~l}_~:Js._ .. 1~~si:.~th~L~. __ IT_111-~novrn 'l'ermina·tions and. ;:0, HE'fC'n::~ncc: Short. Cix-cait Co-rr,....c·t·~cn ~.f(.."t·~J-:-10··..:l of C;;:c··:-:t·--';on 5:-:-;;--~'~~-h~\-C-n!"r1.'tpr ....:::- c .. ~t.. J J.!~:::"-=.:_~_>:':"._-l' \..):"- . .1... - .. ..:._~_~~l..:..;~~~_"- .. # l., __ ~r::::'-:'

p rogsa!'llI!~_Qf !:i.0ctJ-gD: 6:~

Twent:y sets of calibrations (4 opcn' cireui ts a!ld 1 refer­

ence short) 'Kcre used for this met:hod. The results of the

measurements obtained are shown in figures 9.24 and 9.25. The

tests mentioned in section 9:7.2 to determine the validity of

the stati stical data at 4 eH:.? yielded the follo\dng results:

From the above -table, it was decided that: Cl statistical

treatment of the data "laS valid.

Tl 1 f t 'h t"...· ~"f 1e ana yses or -_.lese measuremE:~n s are fJuOvrn ~n ,l.,l.g'.1reS

9.26 and 9.27. F •. t t.1 GHz, it is Geen that m8;).8urcm2nt accu.racies

to within :t 1.3% with a confidence level of 95% arc obtained fo:c

t'he 6 GIlz set of measurr~ments.

If the p.,roccdure outlined in sect.ion 9: 7.1.2 is a~lopt.eds

the folloiving tables (figures 9.26a and 9.27a) result;

fj.:.q·~:tr(l' 9,. 2.§.~

!,·~:c;~I~L.9LJ:he.J'feci.n J1e~_~!:l'!91:.1gn!::fLQ1?t.::1.i!1.!lq, . .1'J;:Q.t~L.fi(ml:C ~. 2q

- 268 -

Fl' C") '1"0 9 7~ ~-,'-- .. --

.~;;":"~.:··!f:_r,~a~~~h~~.?.fJ~0~.JA:-?...,~S"';~:,~~~~-::-"S~'f,.5i'l--:"':W;- .. lVt~*Iof,Mi,~.~.:r'r;~n-.1t-r~r,"";:t-!_I ... ft\~ .. a-i_t""_ ..... ~1.~.)

.Qg.r~ecte'£',.BefJ:,psti-g __ !1 ~ 'f9.I.~ __ (~~~_~,:g.J3.~~fl~_c..!:i2D: I-

N C2'!ff.:L".i?c~"-'-...'L.9H " 'I No £oef H c,;smt at 4 GIl"

~ _Q'~;~~~~:wi~;~a:~==;;:;l ,- -~:~i;:;~~-;:~i ~--- 1. 0·~;--1~~~~-~-;;~·"1-=~;~M.Q;-~

I: ~ 1.001 1[;0.0 12 ,998 179.9 i 3 1.003 180.0 13 1.009 178.7 ., 4 1.002 179.9 14 1.000 180.3 ~ 5 .998 179.9 15. .999 180.1

6 .999 180.1 16 1

1 1.000 180.2

7 1.007 178.5 17 1.002 180.1 8 1.003 180.0 181 .999 I 180.1 I 9 1.000 iBO.2 19 1.003 ~ 180.0 _

i 10 .999 180.0 20 .999 i 180.3 "'Il_ .. ..,.t.,_ ..... __ ~_~__ !Vl.~,~,~~1Il~~~

. " -, ,m";.'mw:,Jt~J'I"It.-~lIlf~J"'J" .. -'i;,·~· .. _..-:!_~'~lt'Ittnt~_C~~'GI!"._&.iI~.iII."_~ .... n.

I COJ;_;:'~~-~~d_13 __ ~.J.:..(i.ct::t...Q.~ I' -,-, ~o.x"re_ -~.tS~.:tJ.~~f~_g._9t5:9..n, ~_1_-! No goeff~c}~llt aL..LGHz NO! fS.0.Lfl.£1s;n~-~_q_t_j GI-L~ ~

-'r;;;7:'~;~l;;;:!o~;;~ . '·-r·;;~;;i;'~;;;'t;~~~ l-f-'~~I~="'~ ~~~;~'~·'~·ii'~i·--j

3 1.003 180.2 131 .996 178.9 H 4 1.007 181.1 14 1.006 180.6 I._

5 .995 179.4 1~ ~.003 180.0 ~ 6 1.003 180.0 16, ~.004 180.0 H 7 1.004 180.0 171 .991 180.2 d 8 1.001 180.1 18 .999 179.9 n 91 1.004 180.0 19 - 1.003· 180.0 ~

10, .999 p, 179.9 20e _ 1.006 180.6 ~ :t!l\"~;"'~!;;:!:'~~~'f&'~~%~.Ln\i~'tf~til.~Y.~_~·:~~'~&t'''~~'_a~:~ff.~;t-e~\rfll;:~~~~~~~W":~~~~~-\;~;;"4&~~xcri

Fiqu.re 9.26

Analysis of the Results obtained in Ficrure·g.24

(4 Open Circuits/Reference Short Correc'::ion Hethod )

~~~~~~~~,e .• _.::o:a:a::r-~ .• i"an£:f3r .. <t~.:::aea:::w""!4.""":"!2:R'Z3i!ll4AWiZJJi!;iS:;_:.:n:::gq~":-rY'~~4?,.r8~~~JIt

~ ~ " '1 U ~ . R2flect1.on CopffJJ~1.ent 2.t ':"1" GHz \l 2 Item - ~~n"-~~:c;::;zu~,, ... ~~~.~~~~z ___ ... ~~ ~... -co: ~~5

3 - , ~1agnitnde . I Phase (Decreesl R

i";ruc a;;fX;~';i;~-~~i;t;=i;~;=-r-· "---'=;'-~oo -- - ""--r·"---·ww kl~O' ~ -:::.~::.------. ~i I of Test .ueVl.ce • I · ~

I .. }lea.n of 20 Measurerr:ents I 0.99825 .. 180.2 ~ Ix. li,---------.-----------1~r-----...,...-------------~, i B t E' t' . .(::~.... A d I ~ ~ " es ... S J..ma-ce 0... ;:;, \..an, .... ar I I. ~ ~ Deviation 5. 36S259 E-3 • 0.72475 ! ~ f "1~ -/

~ Expected Rcmge* for 9O;~ 10.99825 :t 9.23512. ,B-3 i.e. i 1$0.2 t,1-..24657. :L.i~.; ~ Confidence I.evel i 1.007 (Max) or + 0.7% a 181.45 (Hax) or + .,80% i i. . ,0.989 (}:lin) 1.1% ~ 178.95 CHin) ,58~~ n

I Expected Range* for 95<}6 10,,99825 ! 1.12217. E-2 i.e.i 180.2! 1.51472 i.e.~ ! Confidence Level I 1.009 (lvlax) or '!- 0.9"/0 t 181.72 (Ha..x) or + .95% !f i, ~ 0 c37 {~ .. ~ ..... ) .. 3'V 1, ~70 r;8 '-'K';n) 7i!"l! 2 . f·":;' ; ;'..1.. J.. ol .1. •. ,co ~.A. u. \0.... \. J."1_'- - • -. '0 ~

1 Expe::ted Ra~ge* for 99~~~ 10.99825 :: 1.53023 E-2 i.:.1-180.-2! 2.06553 i-.e.~

I Conf~dc~nce Level i .1.014 (l'viax) or + 1. 4 js • 182.27 (Hax) or + 1.,26% a

. __ '_" _____ £1.'_._ • __ • ___ ... -..~':~~.... .; .. :::.," ,t_~~.::~~~ ___ ~ ~~~~~«,. ucam»~ * Calculated by means of statistical Tables (Table 11 of Reference 3 in Appendix 11;3)

All percentage figures are relative to 1 L!80o

:-v Q ~

Figure 9.27 ',.., , d' . q 2-A!1.alysls of t.:.,!~ Results Obtalne In F:tO,"'..lre ~. J

l1 Open Circui ts/R'eference Short Correction JlIethod)

F'""!"~:..1..1..~';" 'i.;"llT~:J::!.~·;!saa::,.:iSiliN:S~.'i$:h...!'_,,,,,,-,_.·-=_"':""·· MO ..... '''"''0:-,,_5 "·'j;l22'-::;W~''''''''·--u:.!"~'.a.;.;;;,..r,"""§'!!:r::;T·~~_'·;::::7~,.,,mc;;::!lJJ'''''>~.---=:SW:, .••• """''1.~~,., ..• ~.~,-7,

~ Reflecti8n Coefficie:1t at 6 GHz ~j '" T~'em . ..j !',~...!:.. *_::a_2'q~~. __ a;: ........ L'..,;::"~~."">&M!£iIUi:Sl~"'!"r_~~'~~

~ ,~0 ~ , t1,sgnJ.tude i. Phase (Degre?s) ~ ~ IS· '" ; "-=~~ ... ~C;:'!"' .... " ... "",a::;;; ..... ,,;:S;"'l#ltiiiOi::o::t:~ ~~t~,...,!'f.. .... _ ....... 9';M4~>;j.. ____ , 1·"':';"~!u-"~7.~~.~"""~~""~~"'i.~:r..~~l":""-~~~~~$'::-:-"'::~~.~~~r.»-:

'~'T' c> ..... efl ,-..::..' C .L!'-F' 'on+- .. ,; \: '- ru .... 1'_ • e __ l..lOn oe.!. ~lCl_J._..... .' 0""0 l' .. 80 00° '. 1 of Test Devi:::e - I - .... iJ .l - • \ ~ ~ g • .\ ~;:

~ Neall. of 20 Neasuremen.ts 0.99985 I 179.985 }

Il I :1 I Best Estimate of Standard ~ ~ Deviation i 4.96593 'E-3 t 0.55086 ~i ~. ~ ~ Iii

~. :expected Range* for 9O;~ 1.99985 :t 8.54141 E-3 i.e. r 179.985! .94748 i.e.--~.' :~ Ccnfiden::::e Level I. 1.0089 O~~) or + .8% I 1~O.93 o-f<;X) or + .52% 3 ~ i : .991 (l1J..n) .9% i 11.9.04 O'hn) • 53~~ ~. ~ . .... . -F iFxpected Range* for 95% .99985 ! 1.037E8 E-2 i.e. I ~179.955':' 1.15129. i.e. ~ ~~ Confide:lc{:1 Level ~ 1.010 (Hax) or + 1. (l<:.{, ~ 181.14 (}fax) or + .63~b ~ ~ I ,989 (Ninj - 1.1% j 178.83 (Min) .65%--·- ~ ~ ~ i' t ~ Bxpect9d Rancre* for 99% 1.99985 ! 1.41529 E-2 i.e. ~ 179.985 -r- 1.56995 i.e. r ; Conf.id·~nce Level f 1.014 (l1a..x) or + 1.4% t lE1.55 ({-fax) or + "8;:S~6 ~ i i .935 CHin) - 1.5% E 178.41 (Hin) .88:':':" rl !Y. , ~ ". ;2....r:~i<.it2l!~,1'~~~~~~...}~ ... ~:.u:d..;..'",.:it'.·:.r~;~,. ... ~·-.,..-::~~.::;::;.~3'","~:4J,,~1r.a"_~.$a·~:~"iJ.:~:.t:i~~...$"~":f:~J:i";;<:~n;~·",";~~1."'-r;;~~.1t£~"lfK'S'~tt':'~~~~=~r.d:;l

* Calculated by mea.l1.S of Statistical Tables (Table 4 of Heference 3 in Appendix 11: 3)

1 ' . l' 0 .lI.l percentage flgures a:..-~ relatlve to _ Ll:..§Q

r-..l ...... i o

- 271 -

From figure 9.26a, it . 1.8 SE'~Em that the mea.ns of the

magni t:ude a.nd the phase eng·le of the test: piece: (reference

short . .) ClrC1.1.J..t at -1 GlIz h,,"l.VE~ been obtained ,d th a confidence

level of 99Cl{, to ;d thin O. 5v~ and 0.2% rer:;;pecti vely of the true

value for t,.;cnty measurenent:3.

E..i..~~~12J: \? Q.!.2-2.9: ~fE~g_9.Y-2i thejl0.<;.n Nes,:"!ur~~!:~~~~1ts 01?t·sJned fJom Figure...2..27

From figun."! 9. 27a, lt is seen tha:t the means of the

magni tudc~ and the phase angle of the t.est pi(-=ce (n!ferenct'!

short cireui t) at 6 GHz have ber·m obt:.cii:.ed ,v-ith a confidencE!

level of 99)G to wit.1d.n 0.4% and O.2~G n;spectively of the t.ruc

value.

9! 8 COTiiDari !;;on of Results for the T1n:ee _____ • ___ ,.L .. _. ___ • ______ ... ~ .. _ .. _. ___ .. _.,~_ ..... ___ •• _ .... _____ ....... _ ..

Ne"\·! Tvpes of 1·1f"~asurc~m(:~nts __ .... :..J..-.---.... --------....... --... ___ .....

In section 9: 7.1, tl1C! measurement conel usions were based

011 100 sets of measurements. In sections 9:7.2 nnd 9:7.3 the

measurement conclusions were each based on 20 sets of meaSl.l!"G­

ments. In order to provide a similar basi.s for comparison, the fin:::t 20 sotE) of t.he results (figure 9.16) of the ThreE.!

Short Circul.t CC"J:,rec:t.ion Hl~t.hod were analysed and 1 ts resul t.s

are shO"~·m in fi~u.ro 9.28. Thus t.hrce different sots of data, ..

each obt.ain8d by a eli ff,,~rent correction method but each based

on 20 sets of meaGur~nent8 at 4 GHz could be used for co~par-• J.son.

. Figure 9.28

The Ana1 ysis o~ 20 Measurements carried Out at 4 GHz usigg the Three S"!lort Circuit Correction Method of s2ction 5:4.2.

T:"1e T"Jentv ?1e3.s ..... 1rements used are tl:>.ose of Fiqure 9 • 16No .1 ·to No. 20

ir~~.eo:::;f • ..t.:;::X::;;;.;'i::::SI!U:::S:S::&;-..!.:~~:·sret~~~3 ___ ~~2·~YJIie>-!"&i.'t.'~~~.a.~~~;~~~.;a,«:i~it:.:l!~ .... :r::::;,!,~~.~AlJ!J.:.",~~~~,,~~·r.:t~~.:&.'t"W'_1i~J.:.~

i I Reflection Coefficient at 4 GHg: . B >i I tem ~-~."'iI'4Z\U!tisZ!&!a.i&iU''1.ii;: .. _a:a'~·''''·>Mt'&C;;;<L~J~Q;~"·-.:w.<.4A7~4;J7~z:~~w:~.Z:A!.~.:'Z.~~;'f;~~.f~~~;;;_

~ --- .. I Hagni tude I Ph;:lse (Desg:ees) ~ ~·:':"~~'IioL!i .. "U;V'~i~~,~~~~.".:':;.~.:L~~~~::s::.~,~.."..;.:~ ... t·J;:;,"~v~7~,i:.-:;ri;:'~7~~:;"-'v""k-::~·~.f~~"!.7;;.~.i'.~:,:::::r;..:;,r~, ~~:;;;.=;--~:r=;;J;:_ ... ~,,;,,,,,::,(x=~~4':.o.A.:.J. .... -:?~:!:Jf?4;"i~·.:,·

l.T~le Reflection Coefficient i·· 1.000 I 180.000 ~ ~ O:l: Test Devl.ce ~~; g ! ~ ,:' , ~ ~ ~ ~ }lean of 20 Heasurerr..ent.s! 0.9994 I 130. 085 ~ ;.r < .l _··:t ., <=l, • ., .I- "-" •• -1-';."., .1-<:> o.t:: ~-'- d d ~ I ~ ~ .v~S_ .t::.::S_-.l!.;,a",t_ .I." "'. l-an ·ar 'f. '= ~; . .,..~ -' .... ' '. 4 0-784 ~ 3 ~ 0 6J "11 :4 tl..le\.r]_a~~on ; .JI .r.;- ~ •. £:1.: ~

, q I W )1 i ., :;: ~ 1.....1. ~-.: ~Expected Range* for 90"'b ;10.9994 ~ 8.56189. E-3 i.e. ~180.085 '1.05626 i.e. f? ~ Ccnfidence Level i 1. eC8 (Max) or + • 8~b i 181.'14 (Nax) or -}- • 63% ~ p ~ "'0* ('1' \ 00' I' 17c '"'3 {M'·) "4"'-' ~ tI .::1 ... 1 1 \,l.\~l.nJ • .Jo . ':i. v .... l.~.t .~ ';I:> 1~ t . ~~. . ~

o • ~ , • , '. ~ rl-. ,,'

bEA-pectGd Range"" for 95~{' SO.9994 :: 1.04036 E-2 i.e. 1180.085 ..:. 1.28349 i.e. ~ ~1 Confidence level I 1.010· (Hax) or + 1.0)b. ,.. 181.37 (N3.x) or + .76:°.' ~ i{ , 0 '"'89 f.y.,r.!) 1 101 ~ 1 78 no fV' 'f6t'>' ~i 1 ~ .~ \i"'l.1.n -. ,0 ,~ .... 0. \l.ll1.; .).,,;;! ;i- ~ --<':---- . ~~ ~Expected Ra!1ge* for 99% 0.9994 ..:. 1.41868 E-2 i.e. ~180.085 ::: 1;75021 .. i.e. 1 ~? Confidel1.::e Level 1.014 (Nax) or + 1.4% i 181.84 (}lax) or '7 1.02% G i: 0 c 8 r::: (-:vr ' ) 1 50 / .. 1'-8 "') 3 (M • ) 9?:> - . ;, 0::: J l.ll.n -. /0 ~ f. J. ,.ll.n • _J~O ;', ~ ~ ~ ~~-.::.~~~ .... !? "...!!'~~:n~~·~:.".3:i4;(--:::am;rx.~41""'':-~~;~- <I':;"L-ii>-:;;O.x;Z~,E7...a:'1.1' .. ~~'i-3::1Lt:.:e~··it·,:',t0;4Uf..-.,.»·'iUR'i,_t3+U":", i3'!. ..... I:-Jl~.~~~~,.~~~=~~~~i'D··.::,t~:'7~!~m;,~:!?:y.,-:!-7:~~,

*Calculated by reeans of statistical Tables (Table 4 of Reference 3 in Appendix 11:3)

All pe:>:centage figures are relati~-e to 1 ! 1800

I'''> ~ IV-

- 273 -

rro prov:i.de comparison <1t a different. frE:qucncy c. g. ,

6 GHz, furt:hl~r data based on 20 S(.~ts of me,)fmremc!nts using

the Three Short Circuit, Correct.ion ME:~thod had to be obtained.

The re51.1l ts of the~~e measuremen·ts arc s110wn in fig1.1r'c 9.29

and t'he analysed data is given in figu1.-e 9.30. Hence this , " 't ' , t 1 tl·1 • 9 J.nformacJon ~n c011.Junc ·1.on ,on :.1 . ".l(~ ("ata of f1.gure .23 c..nd

9.27 could be used as a basis for comp~rison at 6 QIz.

The j.nformcrtion presented in figure 9.31 bas bsen

extracted from figures 9.22: 9.25 and 9.28. The resul·ts of

these'measUrelTICnts have bc(:!:t1 ba.sed on the corrected reflf.!ction

coefficient measurements (20 set.s for each method) of a

specially prepared coaxial short circuit.

The conclusions are:-

1 t From the best estimate of the starldard deviation, it , '1' l' . . . 1.8 seen that there 1.S very 1.ttlc C J,fferencc J.n t.he prec:.r81on

of measurerncnt for three different corr(;.'ct.ion systems. f£he

reader should riot be misled by the;:! fact that the t.hre2 short

circuit correction method c:ppcars marginally better ·than the

other two methods in Figure 9. 31 ~ Referral bach: to figure

9.19 will ShOll t.hat the best estimates for ·the sta!lda.rcJ. ,. , • f'

deviatjons based on 100 measurements are 0.00660 and

0.780 0 for the magnitude and plmse an91e respectivGly.

These figures are slightly 'HorSE~ than t:he data present.ed for

the three short, circuit cClrrec·tion m(~thod in figure 9.31,

even though they come from th~~ same stat.istical data.

2: It sr..ould also be noted t.hat the conclusions of (1) are

based on the fac·t that. the lines 1088£8 associated \vi th the

offset short circuits are ~ero. If t.his is not the case,

t.hen the three short circuit correction met.hod should be

used 'vi t11 caution.

•. 274 -

F; Cf1.lro 9.30

Analysis of the Resu1ts of Fig~re 9.29

F tJe7!':::st'_JIiit!if!l!£!_'i ~,t 'd**~~.~.n.. Uii:i§;~G&:.a:u£L!iW;U£ ;m"!l1:"~t:aIlBU"-.s:a:= G'5ZIO!A...~:.:tW!zza:2za.o::ea===== E£AX.!c!.W~

iii t:i • '" _ 1

Ref1ection Coefficient at 6 GHz I ~~~~~~mg.~~'~~~~~~ ~ 2 _I_t_E:_m_ ~WSJAt&::::u::::JIit£iIItlW~"$Ji== ;"~~""J~~_2n!t ""ZI'IIIfiSJ ..... &.:;;JI*;g::It~n. .. ~w~:~

~ ; Haqn~ tude. . ,- Phase (12..~~'- ~

~_~;~~;n;;;~:sc«;=:L~~;;;i;:;~-=r12UagW~.~~~:;;~uQ&=k=i~~'=i~~~~~;~~-~~=-~z- ~-·1 I of 'rest Devlce ~ • r;., • ~ f ~ ~ ~

:~ Nean of 20 Heasurements j 1. 001 ~ 179.88 I I Best Estimate of Standard !I~ -~I~- i ~ Deviation 4 & 99368 E-3 O. 752259 ~ ~ . h f$- .. e ~ ~ , )'l '.

I Expected Range* for 90'10 I 1.0001 + 8.589E-3 i.e. I 179.88 + 1.2939 -i.e. -".~.: ~ Confidence Level i: 1.0087 (1-1ax) or + 0.87% ~ 181~17 (Max) or + .65% ~ .~ ." .9915 (Min) . • 85;& ~ 178.58 (Hin) .• 79% ~ :{ ~:l '.: ~;. .L ~:l~.. ,t}

~ EA""f)ected Range* for 95% 1.,0001' 1.04368E-2i.e. ~ 179.88' 1.5722 i.e. ~ I Confidence Level " 1.010 (Hax) or + 1-.0;& ~ 181.45 (}1ax) or + .80]~ r, ~ i .S90 (Min) -:- 1.0% ~ l78.31 CHin) .94%~· ! ,J 'If IJ

~ Expected Range* for 99:~; ~ 1.0001 + 1.4232E-2 i.e. ! 179.88 + 2.1439 i.e. -~ ':f .... on.r:::~ OJ n"o Lev 1 ii , r.14 ,~~..,,"V"'\ or + 1 4"/ WI 182 0" (M--) or + .. 12'"" (1! ....... ~J.. ..Loe _c'- . e . .. .1.. 'J. \.l.~u..<_1 _ • /Q ii....... ...JC..x 1. .;0 !;:

~< t. 0. 8 :::" ("r ' ) 1 50 / - ~ 177 74 (' . ) ~ 250/' . \~ ~ r; • J J .uln. -. /0 1~1 • }dn - J... /0 .~ '1·;:::Z'~~~:':"'~c,~ ,. .. ,~ .. ~~.:w'1Ii.~~~'U;;~_-i2 .. ;:.t-..r.0Ii\.ii-~~ .... _:g:;~",_",;.~~~==-r:l,li!:::-A3S2;:::t#44-"'!it~~~~.t!'1"')";:;~e::::;;!. .... !,-;a~,~~~Q .• MI&:nj&.'a!t~~t:.~Z1:.'~

* Calculated by means of Statistical Table (Table 4 of RefE~rence 3 in Appendix 11: 3)

All per:-cent<::.ge figures are relati va t.o 1 i l800

r--) ~

"-"

-Fiqure 9.31

~ompari son of the Three Ne~.,.. T'ypes of Correction Me-t.h9ds Based on 20 Measurements of 3. Short Circui-t at 4 GHz

,JIIIIae: ,.,.. ___ a wae;;a::wc:a:xwa::at a c,...,~~ :ss _ .pc _ -';::<iA!&.J ::aus. SUZL ;;_0, ~

i . 3 Sh .,..t c· ,-",. t' " £! Sh t C" ,. t i 4 Unknm\rn. Terminati~m2 ~

!

i 90:;~ n .,ef., l.:On ..... 1(.tenCe

,''1

~ --. i 0_ l.r ~ .... 1. - . 4 or l.rcu1. r d R -F c- -i- ~ l"i : , • 'h d . "-h d .~ an' a G .... erence ~Lhor·_ i· 'l! Correct1.on Let 0 Correct1.on Me<- 0 l C· . t ,... , . --=-t- d ~ ~ Ite""'- i l.rCU1. \....orreC1:1.0n I!.e .no f..< t~"co. ; -- ~ ,,: ~. __._ :.t 1--. .' ~:~~";d" j. Phase (Deg) Magni tude 'Ph::,!... ~~'!l..L M~~;it,:~e I P~!.lD..!l.'l.L.1 Ii I I I f,

~ Best Estimate of' 0 00497 .... 8 Ji": 0 6' 411 0053693 0 72475 005':>""9') I 0 7~4'75 ~ I,' S-I- ~ "''''-d D • ~ +- • • I; ...\.. • I·' .J 0 '-' i "L.. ,~ i1 .... ancu_ ev1.a. ...... 1.on • II

~ I ~ : " I t;

~ ~ I ~~

.. 6"'::!n' I ..!- 7<'1 !II • 8 r,'LI .L ~-I • + 8 ("0/ ~ • • ->70 99 8 ' • A:> ~ 180 ' 2 T. VI, '> Q 9 0 -. ", r;,'" i 1 R 0 2 ", '"', ','0 ~,' 5 /i0,I' 1 10/ .j' 50-I' - U l."' c' ~ c." c~, , • "/0' • iot~ • Li-;v .~~-c - .• -,~ .... ~o:;

ij "f.J

t " i ~ ;~ . I ' ~ ... a . ~.,

• 01 01" . I OC;c 00' . n:::::·,; ".1 1/0 ., 00 1 +. 76/0 008 ..,. .9;o lI180 2 + ..... ~·YoII 098 IT- • ..-7.:>1 180 '2 lor. ::..-'/o~: 1 10/ t ...... • 660/' -'..; 1 '(>/1 . - -.~/. .;oJ ., ')",' -. 7~O' (J

• ,0 • /0 • J../O • J ...)/'0 J.. • ..JIb - • ...1/0 ;' .•

I '1< . " ! !i1 :Jt ,fli _ -, n ·l ...-...:.. ... '\ 'j , ' l;.. ' " ~ GO-I I + 1 40/" + 1 02'" + l' -:>.,;;0 + 1 "'51:'1 II + ' 40 ,1 .L'" 2 ~ol ~ ~,' _';),0 " gog , • -/O~ 1 ~o 1 • ~/O, '90P .... .J;"'~' ., 80 2 .L. .C!i 9 ..... 8 .L. ,0 100 2 r.1., ti,,, ,;' ~Co':';d~"'" L" 1 II_oJ 1 "''''1 U/. 9?o" ;J'J 1 00/ .' 10/1<'1~' '::1, 18/ u. 10" .'. 1'1 i1J- ....... e.:.tt.-e (~·l"e ~ • :)/0 . -. ~J>.:I .O-;Ot - • '"":tt~O~ - _. ;0 _ ... .I<~o~ ~"l .~ ~ tl iI ' '. ~.-!lO.~""""'''$&£Z~~'--=-' ~~.!.t;~ .... _ .. ~ _ ........ ..,..... 1 t &.ZJi04~C"""'=e;ioM"SJ.== .......... ~r":I .=pu~w..cI~

Level

.,.

tv ~ (J'\

- 277 -

3: If an accuracy to ''lit-hin 1% 1. s de:s:Lred \ii th c:t confidencE:":'

level of 99'}'o, iJe appean> that the mea!1 of three n~PQut('~d

measurements would suffice.

4: If an a.ccuracy to within 0.5% is desired "i"ith a 99%

confidence level 1 then the mqan of ten rep€;a.ted measurements

s'hould be ta}~en.

The information printed in figure 9.32 has been

extracted from figures 9.23, 9.27 and 9.30. rrhe results of

these measurements have been based on the rE"?flection

coefficient measurements (20 sets) of a specially prepared

coaxial short circui:t.

The conclusions are:-

1: From the best estimate of the standard deviations, it

is seen that there is still very Ii ttle diffen:mce in the

prcciDion of measurement for the magnit:udes of t.l1r..~ three

different correction sys·tems. I-iowever, there is now (-1

larger phase deviation ,lith t:he three short. circuit corrr!ct.­

ion Sy8tcH~. This is because the offset calib:caticn e1f.'!ctrica1 " .

lengths in thi's programme are caicl.llated from the prod\Jct of

the physical offset lengths and frequency. Hel1cf:.~, any .I. • ,.

frequency drift would appear to be more significant.

2: There is still a remarkable degree of similarity betlrcen

the resul ts fOr the Four Short c'ircui t and ·the Foul' Ur..1mo'W11

Terr;'tination/I~eference Short cil:cuit Correction methods.

3: An accuracy to wi thin 1~'6 with a confidence level of 99'~

appears possiblQby taldng the meun of t.hree meas'urcments

for all tllc cort'cction methods.

4: 1\n accuracy t.o w·itJ).in O.~il~ with a confidence level of

99% appear::; possible by ta}dng the In(;;c:m of t.en measuremenls

for all the correction methods.

Ficrl1re 9.32

Comoarison of the Three Nevi TJ':Q.?s of Measurenent~ Based on 20 l'·feasurements of a. Short Circuit C'tt 6GFz

i-.""';'''l!f¥.M~..:LC!i~ _:xa""'.!,=_U .. A:a._ 3 S"h&'#fiu:""'ce£·-=:- t ·1-zuowwc

4 Sh t" C . ~ ""'t'Kati_m~S --~-=:';:·~o::' ;~:~7:;::~:~ .. -~a-l " I 1. or~ l.rCUl or lrCU.1.. . I d R - C"h I ! ' '.:j an a' eterence .... ort ~

iTt" Correctlon t1:ethod Correctlon Bethoa c' l··t c ,.. __ ·t· r' M"'t"'" r' ! i .=-?B! ' , . ,lrc_u ,or~.ec ],,),1. "- 1:~J

I , Hagni tude 'Phase (Dea) H::lg!1i tude Pha.se (Deg) 1" M;c:~:;~:;--I ;;~;s~ (~~~""i

f~~~~~~d:~D=;~~~t'~~~~i'-;'~~~:-;~-" O. 7522 0.0049659 0.55086 'I o. ~'l:~,;;-! ... ~~:::;:e_&'~T-~i I Li _anGa.... - ~-'l' _c. l.on l , I I 1 190){' " C\oo + .87%'1'79 9 + .65%1 999 + .&/0 "'79 9 + .51%1' 999 -+ o C'lai 170 . 0 + .52% J ~ . ~ L - ..... ~j 0 R -01'...· 7 en/ ('hI t' 5 ~)/' - anI ~ -' • e >-: 3"/ i< I ConfJ..a.ence ,c'Vel -:- .... ::>/0 • _;0 .::r1O • _,0, .-'/o~ -.-, /O~ , i1-. II . t ,; ---1 ~ll -01 .. I : I '>/..L r- ?ol .J. I '-'01 f ~ ~:J~ • t¢ , .. ,~ C\ _. 11.000 + 1.~; ,179.9 + .8~~ .999 + 1.0~~ 179.9' .o~~~1 .999' 1·~~1179.B + .6~:,~ ~ ~.' ._O •• f1Q,.D,-" L ... 'iiel {; 1.0;0 .9""'/0 1.1;0 .6 ..... ,.-'j, 1.J...:Inp. - .6::.>.< < !- --l~ i I . ·-3 ;, , ~

f< Q 0"/ ("/" ')0/ Lt,~i.l. 0/ /lo/ ~ . q --:0/ .;: ~.- ~~/.O , ('\0'" + 1.4/01 170 9 + .!..I""o 99'"' + 1 •. ;<> 179 9' .86,0 999 + 1,;,.,01~79 <;:,.,+ ".JlJ/"~. i Ccnfide:1ce L~~vel f-'v v - 1.5% I ~. --1.25% • ';1 - 1. 5/61- . - .87%' _ 1.5%.L. .0 - ,88%! ~~~~~r..G'JIt:.X:u.e:-~~~l.;"~~~;~;;;rGt.&l-:u:'n.,~~..;:tt",;:u.,'t~_T- . ~ ~_·~\I.:;-.~~!,,.~~'Wafil'~~~~~~?~~>-:W:: .... Q·~.::ti..?!.~ ... ~~J;.~Q.;ji,.~~~~&:··Z'-i~t·

N -...J 0)

- 279 -

Thi s leng-t1-"y but none-t.he-1ess very ir\tpo):"Lant chapt.(:"r

bas verifi.ed expC:l:-imcnta.11y the tt~2oretical idc-!as d;.?velop(?(~

in t.hp early chapters of the thesis. Tr,e::~ first half of this

h t h ' th' h' , c op'-er 2,S S,10i·m . e Vi:rlOUS grap l.cal plots a~1d the pt"l.r.~-

out rpSll.l t:. sheei:.s which lTIoy be obta.i.n~d ,{hen corrected

measurements are made.

'1'he seco.i.1d half of 1-.hi s c11Glpt,er has been d'2votcd to

obtaining, COii1p~~ring a.nd interpreting the statist.ieal datil

amassed. Consider2.ble t:J.rrte and effor": had to be devoted ,to

cclrrying out these 0.11 important task.s for vri thout them,

onG i'lOuld a1viays be in doubt as to the d-.;grr;>E? of accuracies

\vhich can be obtain.ed when t.hese correction methods are used.

Direct comparison with measurements carried out by other

met.hods e. g., the Short/Off Short/Sliding Load/Het.hod (sect-Lon

'5:4.3) have not been included because there is no assurance

that such a method' (section 5: 4.3) is perfect.

HOvlever, grapn.ical comparisons and some measurern,~r:..t e!"rors

hu.ve been inc1ud,~d by t"!:1e author in a published. paper

(reference 9.1)~

The general conclusions from the measurement of the

test. piece indicate that accuracies t.o within 1% with

confidence level s of 99~\6 are possible with 3 m(~asurements <, It'

and'that. ac(:uracies to 0.5% vrith confide-nce 1ev'218 of 9£.«;6

are possible .... d th 10 measurements. These con-:::'usi0l1t3 a.ppJ.y

to any of the nelV correction systems.

* * * * * * * * * *

-' 220 .. ,

H,-"'ferE;l1CC'S -----..... -.~ .. . - ....

9~1

9.2

9.3

da Silva, E.F. und :HcPhun, M,l\:. "Cal:i.bration 'l'cchniques for One Port Me(2SI1r2wents" Nicrovfave Journal, June 1978 pp 97-10C.

'LT1and B~ 'P tlDI':'ve:>.lo'j'l' ~'lg ')\cr<~'r-'("''V' r~")'~c·J'.(.:'; ('-'al": ""')'1'" I: 1. 1 /If.a.. -",.:' J - /.~ ,_ \.A • (.1 ---.J. ..... i~ ('_ _ . J... __ .... ___ ~~ . _ ~

for JI.uto;r:.t.ltic N2t"w:nk Analy:;,ers" Hewlett P ac}..:a:rd Journal, February 1970, No 21 pp 16-19.

AdalnE!, S.}."". :He a suremcnt: pp 30~-313.

"A Nev[ Precision l\utomatic Nicrowave SystGmil I.E.E.E. 'l'rans. 1968, Il1-17

9.4 Adams, S.F. "AU.tOffi<:lt.ic Net'tv-orJ .. l1·':::i:lsurement.s" Proc. I.E.E.E. Vol 66, No 4 April 1978, Pp 384-391.

9.5 Ridcl1a, S "Comput.c:cized HicrOi'r(:lv~ MeaE;1ue:ncnt.s Accuracy AnalysisH P roc.:(::;·~dj.ngs of t.he European l~icro\vave Conference, Pcq:.·cr B34, J.J73.

9.6 Ridel1a, S "Comp1.1.te.1::ized Rr:!flection Heasurements" C.P.E.N. Digest 1973, pp 51-53.

C). 7 v~oodf:l, D. "Rigorous D(")ri va U.on of Computer Corrected Network P"naly::;er. Calibratibn Equations" Electronic Letters, 197~, 11 pp 403-405.

9. 8 ~'1oods, D. "Re-.!-\pprair:>al of Computer-Corrected Network Analyser Desi.gn and Calibrat:icnH P roc. I.E.E. Vol. 124, No 3, March 1977 1 PP 205-·211.

9.9 Woods, D. "Inuni ttance 'I'l'ansformat.ion Using P recision Air-Dielectric Coaxial Lines and Connectors" Proc. I.E,E. Vol 118, No 11 Nov 1971 pp 1667-1673. .

9.:tO Harner, F. uHicrowave [l.tb.:muation Heasurements" (I.E.E. Monograph 19) Peter Peregr:inu8 Ltd., London 1977.

* * * * * * * * * * •

- 281 -

CONCLUSIONS OF THE THESIS _ .... __ .. _ .. - .. _-----.. _----------..

. 10: 0 Fin?l Pe-..tiew·

The information presented in tJJis thesis is the

a.ccumulation of several years of research worle direct0d

towards producing a systeHl for the rapid and accurate measurc-•

lnent of irn.11li ttances over 3. ".ride frequency bancli.,ridth.

project was commenced by carrying out a su.rvey of the The

existing rapid wideband measui.-ing techniques. (see Chapter I). This

survey resulted in the selection of the reflectometer as the

desired measurement system. A thorougll understandi11g of

principle of reflectometry was then considered essF.mtial

considerable theoretical ,,,ork was carried out in Chapter .

the

and

II • This work was mainly directed to establl.sh.i.ng t.he deslr2.ble

and undesirable properties of reflectomet.ers. The principle

of computer corrected reflectometry, i. e., acceptirlg the

defects of the reflectometer hanliorare and con:ecting these

defects by calculation (software) "ras establish(~d in this

chapter.

Knowledge of the peripheral equipment associated ,·li th

the reflectometer is considered e~:m(-:mtial and a brief descript­

ion of the equipment used viaS p'reGented in Chapter III.

Measurement e;quipmcnt is seldom perfect and the rcflectomet(;r

method of rnec).surcmcmt is no exception, a!1d an extensive review

of these errors ,{ere carried out· in Chapter TV.

The establichm~nt of a bilinea:: tral1s:cor-rnation relation ..

ship bct,,,een the measured :cerlect.:i.on coefficient and th<~t Of

the device being measured. led to the at::v:;)lopmcnt of the nev1

calibrc:.tion and correction proce.dures described cxtE;l'lf::;:l.vellr in

Chapter V. 'rhe use of computer correcb~(.1 systems required

.~ 282-

considGrable computaticn, iI.nd t11e developm~nt of the computer

programmc~s described in Chapter VI vTaa inc'li table as mc.l1ual

calculations were found to be impractical. Consid()rable

effort was devoted to inv(l[.Jtigating computati onal errors.

The lind ts of accuracy associated with the use of single and

double precision numbers in the correctiC'!"1 programmes was also

establ.i shed. 'l'he de"'lclopment. of' the automated progr3.rrJ1~CS

were particularly time consuming as the lengt.h of these

programrltes required ·t.he use of computer oVGrlay progr;:.unming

t.echniques to reduce thE'.! at.orage requin:!ments within the

computer.

, Considerable effort was also put into the design of the

calibration standards for the vari.ous cQrrection m(;;~thods.

These standards (described in Chapt.er VII) hav~ been proven

to be electrically and mech;:.mically stable. They have also

been fabricated without much difficulty.

Initial tests to determine the suitability of the

equipment for computer corrected measurements v.;ere carried

out in Chapter VIII. The first hal·f of Chupter IX has bf::~en . .. devoted to the presentation of a cross sectJ.on of. measurement_'.i

carried out using t.he three new correction methods. The

second half of Chapt~er IX has been clevoted to a very e)'ten81.V(~' di scussion of the measurement acc~racy of the new' correctl.nJl , ,

. methods. These accuracy conclusions are summarized in

Sections lOI1.1, 101.1.2 and 10:1.3 •

. . \

lili.L.l\ c)1:i. cven~11!-_0_f Obj££!:.iY~

The objective of this thesis has been to renearch for an

accurate and rapid means of measuring lumped components over wide bandwid·the at microwave frequencie8.

'1'his objec~ive ,har:: been fulfilled by t:hl~ invention and

pUblication of three new' computer corrc:~ction net'v'ork ~lnalyscr

methods fo.r-. the rapid and accurate mr~asurerN::.'nt of :1mmit.tances.

These methods "rcre construed theoretically and havG been

·~ 283 ••

proven by experimentt';!.l measurements. 1~utomat2d measurement

procedure::; for these correction systems lnve also }x:~t:n

developed •

. The nevi correction systems hav(~ be(~n called:-

1t 'rlle '!'hree Short Circuit Correction Hethod.

2: The Four Short Cireui t Corr(~ction Method.

3: The Four Unknown 'rermination/RGfert:>nce Short Circuit Correction l{'3thod.

This method was'invented because previous to this method

there was no rapid and accurate means of measuring immitt,ances

~n confined spaces over wide frequency band,V"idths. 'rwo manual

computer programrnes (Appendices 11::.> and, 11; 6) and one auto-

y" mated programme have been produced for this correction system • . {

: Thr~ results obtained with this correction method for t.he

measurentent of ,a reference test piece (short circuit) are

given in figure 10.1.

The results. (section 9:7.1) have been based on a normal

ga'l.ls{sian distribution: of 100 mea$urem~~nts

det.ermined for a confidence lovel of 99%.

based on the table above indicate ,that:-

and have been

statistical data

(i), .. The mCO.n of 3 measurements ",.viI!

produce an accuracy to wi thin ± 1% •.

(].'].') The- f 10 t '11 _ mean 0 measuremen' s Wl.

t . tl' oj. 0 r:o' produce an accuracy 0 w]. ,un - • ;:)70.

Frequency Measured Reflection Coefficient Theoretical Reflection Coefficient

L GHz

I ' 4

Magnitude Phase (Degrees) Phase (Deorees}, Magnitude

I 180.09 ! 1.750 + • 999 - 1. 4 I 9E - 2 * 9 c 9· + • 1 .4% or .• J .. ....",

- • .L • .:);b 1.000

, L-I

I 6'

I· 1800

I or* 180.09 + 1.~/o E-... - .9~J

,__ I ' = •• I. __ 180

0

i _ .,_ . ..J.... .. i

0111#&=_. 'J~_ I .--= ....... 4

179 • 88 ~ 2.144 i or* 179; 88 + 1.12;6

1.25%

1.000 ! 1.423E-2 ~ 1 40 /

or* 1 000 + • ,0

• - 1.5%

1 .• 000

*Referenced to 1 /180°; The. improvement in accuracy is (;',pproxi!nately 5 times that quoted by Hewlett Packard (See section 4.7)

Fiql1re '10.1

l-1eaS'Jrement Results for the Refere!1.ce Short Cireni t USinq the Threr-s Shoct C~.rcui t Correct'; O!l :HeaS'.:trsment

N co ~

I

- 285 -

10: 1.2 The Four Short. Circuit. Correct~_o:! Nethad ._--_ .. _------------,,--_. -.-.-...... "-, ... -.~------ .... -, ..... -

This method 'iras invented to overcome tht:; difficUlty

of specifying accurate offset lengths i;:1 microstrip.

Two manual computer progr<1.mr!1.r~s (Appendices 11: 7 and>

11: 8) and an automated programme have been v!rit.ten for

this correction system. Two sets of culibration pieces

(sections 7: 2 and 7: 3) have been constX1.1cted for this

correction method •

. The results obtained with this method for the

measurement of :1 reference test. piece (short circuit)

are given in figure 10.2.

The results (section 9: 7 .2) have been based on a norr.1a 1

error curve corn:!cted for a small sample distribution of 20

measurements and determ:i.ned for a confidencc~ level of 9976.

statistical data based on the table above indicatE~ that.:

. (i) The mean of 3 measurements would produc(~

'h' + 1°/ an accuracy to W1t 1n - ~.

(ii) The mean of 10 measurements would produce

10:1.3

"; ' .. , . "+ . 0/ an accuracy, to WI. t.tll.n - 0.5/0.

The Four Unknown Terminat.:ion/ncfE)rl'?nc,~ Short Ci.!:££i:t correction M(~trK;,.:l ---

. This method ",as invented to overcome the difficulty

of producing short circuits for cal.ibrations within a

One lllanual computer programme (l,ppendix 11: 9) and an -

autom<lted pro~raltUne have been wri ttE:m for this corrcct:i.on

system. One set o~ calibration pieces (section 7:4) have

been constructed for this correction syst.em.

'. ~ &iiZ!4A if'] btU G.: ."~==L'S 1M eJe*'di5Cii&lit::::aw:s... if 9-"!t*::w:::szz:e:z:zU!iW!:s:ssaS:U==Q.WSWi& 9 ..... C:zs:x===SUW4. JUS =_~

~,~ F Measured Reflection Coefficient Theoretical Reflection Coefficient ~ ;;1 reqc..1ency ---!i ! ill::!!!" Nagni tude ~ Ph2cse (Degrees) ~i tude I Phase (Degre~ J. •• 1., +. 'I + ~ II ~ .998 - 1.~?OE-2 IS0.2 - 2.06 . 0 ~ c ~ oJ. 4 . * .. 998.+ 1.03% r* lS00') +1.25 1.000 ~ 180 ; ,; or. 1 8°/ 0 • ~ -1 04 ;! ~ ~:"J - • {o. ! ';i .y, . ;~

~ .999 ± 1.415£':"2 179.99:t 1.57 I ~ i~ 6 ...!o 1 40/ + SC:O' 1.000 I 1800 I ~l * 999" /0 '* 179 99 • VIO ~ 3 ~ or . • _ 1 50/ or • _ Sf}>-' :1 ~ '"':;" • /0" • '0.. ~ t; ;"'~~ .. ~:;:AiI:!$>i2WCi -...... -P'1IS.::m •. ·c:~~~~lIf'/Iilii·ac Q,Zl'--- :;:;=:: !;:"-;A::::a:;;:w:::::AJ£lI"'l!/Io1I:I:aY.ZI;;:;;.a .. ;a:z::t:e.:c:Cl~'":l¥t._as::dfit ... & *,1:. I~~

* Referenced to :: l1800; The improvement in accuracy· is a.pproximately 5 times

t11.at quoted by He~.ql$tt P 9-ckard. (see section 4. 7)

Figure 10.2

l1easurement Results for the F.eference Short Ci rcui t Using t.he Four Short Circuit corre..£!~.on Method

tv co 0"1

- 287 -'

The results obtainc(i 1,.,. ith thi s method for the meaSUl"e···

ment of a refere::1ce test piece (short ci rc':..lit.) are gi v(=,n in

fi~Jure 10.3.

The results (SE-~ct.ion 9: 7 • 3) have b<:?en based on a normal

error curve corrected for a small sample distribution of

20 r.1ea::mrcm~mts ;::l.l1d detennined for a 99% confidence level.

statistical data based on the above table indica.te that:

(i) The .mean of 3 m8aS1.lrements of t.he test. piece

wi.ll produce an accuracy to ,d thin :t 1%.

(ii) The mean of 10 measurements of the test piece will produce an accuracy to ,d thin ! 0.5%.

comparison of the ·three new correct.ion systems {section

9 r 7) have shown that the st;:mdard devia-t:ion of c.ll t.he:::e

methods are ·similar. (However, it should be noted in this

case, that. the 'offset line propagation losses in the calib­

ration standards in the case of the Tbn::.e Short. Cireui t

Correction Method were negligible).

", , - ... 'I For most practical CaSeD., it is envisaged t.hat t.he choice

of the measurement system "rill be dictated more by the

convenience of usage than'by the accuracy requirements.

The Four Short Circuit and the Four UnJcnown 'rermination/

Rqf; Short Method should be used in measurement cases ,v-here .'

the:offset electrical lengths change ,·d.th frequency (e.g.,

microstrip) and where offset line attenua·tion may be object­

ionable, or in any case where the propagation constant of . the transmission meditl..."l1· is unknmvn.

-- == • ..

* Referenced t,o 1 usoo; The improvement in accuracy is approximately 5 times

t.hat quoted by He ..... l1ett Packard. (see section 4.7)

FiT.lre 10.3

Heasurernent Results for the Refere~ce Short Circuit !ising the Four Un}~.own -Termi!l~ions_(Open Ci rc-uit.SI· Re~erence Short C; rcuit C('rr~ction Met.hod

l-.J co CD

}

- 289 -

If th(~ freql.1r::mcy of measurement is not }movm precisely

then more accurat(~ measurerr~en·ts "rill also be achieved by using

the last two named cDrrection methods b(:!cause these methods

obt.ain their calibrat.iol1 offset el':?ctrical lengths by measure­

ment. (rfhe Three Short Circuit Correction Hetllod depends on

a knowledge of the frequ,ency an.d the physical length to .

calculate its calibrat.ion offse't .len.gtns),

It is the aut.hor's belief that the Four UnJmown

Termination/Rcferenc(;~ Short Cireui t Het'h.od -vTill prove to

be the more versatile of the three rlGiV' correction methods

in practica~, rneasu!:ements.

10:3 Futur~.~9rk

Research worle is never completed. In the case of the

present 'equipment, considerable improvement in accuracy ivill

be obtained when phase-loc}{ed signal·· generators are used in

the measurement system. Ref lectometers vii th ,dder band­

widths and grE.~ater directlvltil~s v.ri.ll also provide greater

measurement versatility ..

Imp.rovements in operating ecollomy will. result "ri th tiH~

replace,ment o~ the prosent computer by (l microprocesso~. One such system 'such as that developed by Crane (Reference

10.1) could be used to control the mcc:umreme:mt C'quipment.

Ano·t.her success, at eliminati.ng the large computer have been < ...

carri(~d out by Hevrlett Packard (R(~ferencl: 10.2). It is

envi saged that future versions of the net"VlOrk analyser will . · . tl' th . . l.ncorporatc lUl.CrOprocessors Wl. un e l.nstrument casl.ng

and that computer correction facilities will be commonplace

in such measurements.

,New Hethological Systems are constantly appearing to

challenge the present ones. A typical example i8 the Six Port Reflectomcter which has been described by Engen

(References 10.3 and lO.4)~ This syst.em has been claim~d by Engen to be the alternative ·to the netviOr)~ anG11yser.

Engen also claims that less ccnr1'">licat.cd peripheral cquip-

, mont is required and 'that irwtrUI:18nt costs 'vill be drastically reduced.

- 290 _.

Authors such as Bpatty (Reference 10.5), Adams (Pc~ferenc0

10.6) and Engen (Re.f(~rence 10.7) pt1.blish l)(:~ri()dic rcvit~",.;s of

t.he st.ate of ll1icrm.,rave metrology. In th(~ case of net',;ork

analy~:;ers, the trend amung these authors set'.:!ffi to indicate

that future development 'Worl{ will bf~ directed to'wards t..he

• J'f' t' ft' i t ~ s1.mp.1. 1.ca 1.0n 0 nleasureUlen eq\.upmen.; 0 reO-uee costs,

arid that the Hubseq'J.ent det"c~r:lorat . .i.on in hcl.ro\.yare perform­

ance ,-rill be compensat.ed for by more extc'nsi ve use of

computational equipment such as mic.roproces~30rs. If t.hese " '- , ~ ..

authors are correct in th(~ir assumpt.ions, then computel:.·

corre-ction sy~tcms will be with us for many y(::ars.

,

.. , . • ,i.

Refererlces - ,---10.1

10.2

10.3

10.4

1~.5

10.6

10.7

- 291 -

C "[:... .'''0. t D· t. ,t U· • t ra!le, J,'. l.r~va'e ~GCU8S~0l1 nl.versl. y o:t

l'larwick, Coventry, England, 1977.

He1.rlett Packard, "S2l1ii Au'tornatic Heasurcments using the 8410B Nicr.owave Neb-,;ork Analyser and the 9825A Desk,-Top Computer" Appl ication Note 221 - Palo Alto, California.

Engen, Glenn F. ttThe six Port RE~flect.cmeter~ An Alt.l?:rnative N!~t\·:ork Analyser" I.E.E.E. Trans on MicrO'\yaVf~ 'l'heory and Tec~Jnique8 Vol HTT-25, 12 Dec 1977. pp 1075-108 •

Enqen, Glen.n F HAn Improved Circuit for Implementing the Six Port Tec1mique of 1'1ir::1'o­,\-rave Neasurements" I. E. E. E. Trans. on l'iicro­wave 'rheory and Techniqaes 1 Vol H'I'T-25 J Dec. 1977. pp 1080-85.

Beatty, R. W. "Aut:Oli.latic }-!easu.rements of Net'work Parameters - A Survey'! National Bureau of Standards, Boulder, Colorado, l.'June 1st, 1976.

Adams, S'. "Automatic Hicro"rave Nct,'mr]';: Heasurements" Proc. I.E.E.E .. Vol 66, No 4 April, 1978. pp 384-391. Engen, Glenn. "Advances in Uic,cmvave Science"

. Froe. I.E.E.E. Vol. 66, No.4. April 1978. pp 374-383.

",. * * '* * * *: * 'if *

- 292 -

THE U~)Ert,TLNE.sS OF THE BILIhm;.p TR~NSFOPlv.Lr.".Tlm-J ------,-----_._-"_. -- ---- .. _-

rr:he principle of bi-linear transformation applied t.o

electro-magnetic fields is used extcnsi ,<,,rely in this thesis,

The purpose of th:LS appendix is to jUstify its use and to . .

clarify the fnndamental pos'tulates assumed irl its llse.

Il\J"PUT

I I I' r-----~------.-,-

TRANSMI s~n ON

SYSTEM e.g.

, , Waveguide

---____ .-.-.-___ ..... .t

AI

Z 2 ~--''''''''----'-,

OUTPU'f

PLANE PI . PLANE P2

+h d' • • In ... e J.agram above, the tr~ns!n1.ssJ.on system may

contain' any assortment of conductors, reactances, reslstances,

insulators etc., .... lhich need not be specified. HOv;cver, these

components do determine the electro-magnetic coupling bet't\'een

the input and output planes •. Ncm-lineai':' materials, i.e.,

those vlhoce electro-·~agnet1.c propertles (h~pend on the strength of the electric or magnetic fields an~ (,;!xclnded from the . .

transmission system.

Two fundamental pOG·tula~.c~s are r(-::ql1irc~d

1: The field at the output is zero if the field at th2

input is zero (i. e., n.D internal SOl.1rC8 of electro­

magnetic energy other tha.n that su}::plicd fr.oi3 the

input)

2: All. field component vr~ct()rs (E, H) add line;'lrly in

t.be reqion between refE;rence planes PI and P 2' Hence

a field (~l' Hl ) added to a field .(E 2 H2) producr~s a

fie 1 d ( E 1 -l-E 2 I II 1 "'H 2) •

Let the field cDl-nponents at planes PI and P 2 be

represented by (E l' HI) and (E 2 , HZ) respecti vel}". Th(::!l1

from the usual two port theory

E1 = a E2 + b H2

Hl = C E2 +. d H2

•••••

• • • • •

(11.1.1)

(11.1.2)

where a,b,.c,d, are complex ·parameters defined in t.hl::

norma.l way.

\ .# ••

using Schc1'KUnoff' s definitions for w'ave il-:1pedance, i. (:~. ,

Zl = El/H l ' and Z2 ;:; E2/H2 and dividing (11.1.1) by (11.1.2)

a ~2 + b El . II a Z2 + b Zl· 2 -- = = :;; - .

. Hl E c '7 + d c ~1 .+ d

~2

l-I 2

or

= " . . . . (11.1.3)

- 294 -

Hence all transformations of i~mpedances throuqh trans-.. -' ., 1 . ,

mlSs~on systemo satl.SfYlng postulates and 2 :ITioY' be descr.lbec~

in this manner which is called a bilinea.r transfo::.~maticn as it

is 2, ratio of b'lO line~n- equations.

Division of the numerator and denominator of t.he right­

hand side of equat.i.on (11.1.3) by any of its constants e.g., a, wIll rL~sult in three new constants, aid, bids c/d 2.!ld unity.

rfhe left-hand side of the equa!;:ion remainn unchanged •. It

follows that 1-1i th three St~t.s of data, solution of the constants

w'ill result and t.he eq11i valent bilinear tra.nsfo::.-mation beb:-ecn

Zl and Z2 can. be ascert:ained.

Three other general properties of bili.near transforma'tions

should be noted here:-

1: It can easily be shown that if Z 1 is a bilir ... ear

transformation of Z2'and vi~e-versa then,

-d r7 + b Z2 ::: Ll1

... _-c 2; 1 + a

• # .... (11.1.4)

2: If Zl is a bilinear transfo~at.i.on of Z2 and Z2 is a bilinear transform-3.tion of Z3' i.e., let

_ a Z2 -I- b Zi - c Z2 + d

, then it. follmvs that

and AZ 3 -+ 13

:::: CZ 3 + D"

Zl _ .a(Az3 + B) + b(CZ 3 + D) ''', (A'7. 3---::-, B-),.---..... --d:::-:(.-:,...---r':-"'-+-r·-» ~ u· -r . .....1J3 .

_. {aA + bC)Z3 +"'{aB '+ h.,D}

"( cA 1- ccOz3-- oj- (cB + dD) . " ., ... (11.1.5)

- 295 -

vJhich mr.~ans t.hat two impE.~d;;.\nc:c bilirJcar tral1Efcn:l:-::tions

oc:curinq in cascade can be replacExl by a thiJ':d bi U, near

transformatj.on \-'l}lich satisfi.~s the ccnditic:'.l of t.hc

cQ,nstituGll"t. bilin2.ar tranGfOrl11<itic)ns.

3~ Any two port netw'ork described ,vi th t1'lc convcnt:i.onal

lnpeuul'1cf.! matrix of the foem s:\C;w'11. in (Fig 11.1) 1':1.3:1

be sho';·m to be rela'ted by a hilinr::,:,:x tranSfO!1rtation.

V 2

F i.9.llr3-1!..*1 .2 ~p qrt ): m£..<?d sD:.£§":..': ~1:!? cl~Jjg]f:

•• of ....

. ,. . ... . '/

By inspectipn V'2 = -I ZT,;and substituting in 2 .. , equation (11:1.7) results in

I., ..

't t" . (1 1 6) Substl U lng In equ.atlon 1 •..

\

V 1 =

produces

(11.1.6)

0.1.1.7)

and defini ng i~ uS

thus

z

whore

'I.r Y 1

.~ 1 1

a

C

-- Z · 11 ~"

::- 1 . ,

b

rl

- 2.96 .-

=

::::

.7 .. , '('I. Z Z r>' '.Jl"'-'~ :r "-'11 ~..,? - J] ').£.''"'1) J .L. . .t.,~ ",' i!-::: --.------.-.--.--,-.-~.~ ......... - .. - -

'7. + r'I ""r.., " o!..J 22

n~IJ" .:_= cZ ... + d

J.J . .. . .. .

(Z z -'" '7. ) :1), ~22 .!412~'21 - ~Z

ZZ2'

(ll.l.,B)

* * * * * * * * * *

, ..

--"--,..,.

- 297 -

11: 2 .

The purpose of this appendix is twofold:-

(a) to show the relationship between scattering

parameters and bililear' transformations

(b) to note that two scattering bilinear trans-. formations may be replaced by a single, scattering bilinear transformation which '

satisfies the constituent :bilinear trans­formations.

fiC'lU(Jring C08fficientlL9f a 2 port Network

~. ,-ia..z.,. and bt • b2. arc; defined as the incident

andreflect.ed waves into the two port network

t.

298

J t I a 1

, b 2

I .... . I [sn 512

] t .

PORT PORT ONE

I " . 5 21

c . I b 1 "'22 a

. , TWO '

,<-f ('- _., ~ J . I

I

• •••• , (11.2.1)

• •••• (11:2.2) ....

. ' By definition, the reflection coefficient ( f.) is

defined by

Ref lC'cted W3V('!

Tncidlmt VI <.1 v!'!

Jhmtx~, Lhe reflection coefficient ( f) "looking to

into thp t\\'O port n:.'twork is

f = • • 4' •• (11.2.3)

.' ;~' . - .' . . . ,:",:",._~,. --+<~ .. .r .... ·,~ .. :....,..~l_ ........ ".£,; . .1. ... ,::0:.;" ;~~,_~_ ,.,,,,,. ;,.;~, .,'''; _.,: ....... ,~"""'~:.."'~:.·.,..,~_(~~,-" ... h":;.;.:~~'~. ~ ~L, ..... ~.~.,4:_ :;_ -.i _" .~'h,' '.,..,..r,.";.-. ,.".--.:.....,,;;n,.>""'~ .. .t' ... 1i!~''''';;,<_ .• ,.. ;'0.., .,:..,.,..> .... > <l;

- 299 -

.(.\-l) and the reflection coefficient, . l~

of the load t.erI!1ina·i'7.ir:g

port 2 is ~ -"

• '(t , • • (11.2.4)

SUbstituting equation (11.2.4) into equation 11.2.2

D..., • =::. O .. 'l. 52.1 Q...\ -\- S2.:t. [.:'2-

-- r Q z. ( /1- -:- s 2~) -- 'S 2.1 (J:.; r

Q ' S:i.\S~If2. . cL~ ~ C;;:' 52'4) --"I - S2,J~-

Subst.:Lt.uting equat::i.on (1.1.2.3) and (ll.2.5)

(11.2.1.) gives • b , - '511 Q..,I.+ SIl... <..1..2,

b , ~= f -- S If. 4-

ev!

c ("> t-'., ....:,. 1"'-.. ~?..I 11_

.... _---

or f ::= - (S\t ~?,2.. - S I? S::\.;) k -\- S \1

or

where a b

---

::

d ::

- S?~ r2 ..\- I

- (~. \\ S 2". - S I ~ C;:l0:== _4 /~ S 5"

.. . . . . (11.2.5)

into c::JUation

• • • • •

• • • • •

• • • f •

• • • t ..

• • • • •

· . .. . .

(11.2.C)

(11.2.7)

(II. 2 .71)

( 11. 2.7 c)

(11.2.7d)

Hence reflection coofficients bet,-.'cen two measuring planES

have also been shown to be related by a bilineal" transformation.

... 300 _.

" . . Let the J.1'!dJ.v~dual tranr:formations be denoted by

and

then frO!1:l equati.on 11.1.5

f, =

••••• (11.2.8)

"\.;hich is al":.othcr bili.nr::!ar transform~tiol1.

Hence .. it can be con.cl'l:lded that t'\'ro reflection coefficient

bil1near transformations in cascade can be replaced by a. single

bi.linear transi"ormation ·,,;rhi.ch sati.sflcs the conditions of the

con:::;titue-nt bilint1ar t.:X'ansf0!1natlon8.

A. similar exercise may be used to S1101'1 that three or • • t" d ,.. mor.e bl1l.near transforrna .10ns ~n ca::::ca e may J..:a. reduced to

that of a singlE'! bilinear "l.l::ans[ormat:ion. if and only if the

constants of the const.ituent bilinear transformations are truly constant,. i. e. they ar(~ unaffected by the act of

cascading the additional netvlOrks •

.,. . ....

* * * * * * * * * *

- 301 -

THE BII,INEA.R THANSFor~HLYrION OF A CIRC"LEIN 'l'HE CO:'f:>LEX PL.\!·~E -----------_._----._- ------_._--_.-_._---

, iI .. ~ 4 ...... ' The pUI1)ose of trUD appentllX 1.S ... 0 stnnmar1.ze triO COl"' ... copt:s

necessary t.o establish' the princi.ples in the text. Hnch of t.~1is i-vor}~ has already b(;~(;!~ derived and publishpd by 'i';arner

(reference 11.3.1), Boxl.ow &. Cullen (Reference 11.3.2) and

Marton (Reference 11.3.3).

Consider a bilinear transformation of the form

p= to..Ir1+ b c r '+-·.cl . . . .. .. (1J..3.1)

where P represents tl-ansfCJrmation of points in the r plan.e

and a, b, c and 'd are complex constants.

I

The tran8formation may be cns1.ly r.e-arJ~·anged in the I

'f;; CL r #~ b 4-~ ..:. £+1. , c·' . ( .... , -----. ..-c (r -\-. cA..(c.)

p -= Q~'4- (bC __ - c~.cl\(· \ r '\

c. .l c ~ ) r' J)Lk ... ) l' •• 4" • (11.3.2)

Equation ,11. 3.2 shows that a bilinear transformation product;::s

three dist.i.nct operations , '

11 An invE!rsl,on terra

2:' A m~gnification und 'rotation term

3: A complexordiBp1ac\~m:;mt te.t'r.i

""1 ' 1 b .• • ~leEe W1. 1 "8 cons~der~d In tUrn.

- 302 -

T'n-' -rrl"""" r",i '01' '['(' 1r' ___ ,,:_. _ __ '=-_'"'_,_,.::.:.......L • . ~, .• :::...:.:~

For 2 linear circlJ,lt1J::" loci f' , t1'1e inv -r SE~ i s a11.,jay 3

l ' . .. .. , 1 ,. , anot~er Clrc e prOV1G0Q on~y t~at the I lnear loc~ do not. PClSS

t .hrough t .h2 orig i n.

,--. ---J

I' do' ~ (" rl' bOt" " el' re'} of-,' _r ::..r.·)','· 'I'. !:~ . i '"' '-_;:; - ._ ' ... :, c,' . . , . _ .... ., ._ 3.nd C'entn~ If then f) des -:ribes a, circle of radiu8 0\ and c<:?I1.tre !3 in f:;. gure J 1 • 3 • 1

F.' i If" r ..,] 3' 1 _:....:!.:.::J.~ .. .i-:-_±-;:._. _ !-::..

I nve sion of ('l, Circl e .. __ ........... ... _----_.----_._--

I

(' I do' :

d and f3 are ..:bo'NT by Barl,m.; and Cullen ( Pt 'f 11.3 2)' to be

---

and

Note in bot.b ca.ses U e term

magnifict.1t ic.m tcrm ~

1• ... ", •• >

$f • " • , (1 1 . 3.2 )

• f. ••• (11. 3. 3

llH::.rely a

- 303 - '

. . ( '\ 'n::t-~ anq1J.lar J::ai..:.f~ of chiUc"ge at the o:c19lJ'l .....) of tht:!

PY.'oC.uce' ci~cle /~ re1at~1.ve to ::hF,; angula r rate CJ f. change

o f r-' j s not constcnt~. 'l'h is foJ.:!.o';{S f::-om t.~.e p lar form

n l /""\ ,- L 1"";1 I ': P ---_. -,...~

Th'~~ modulus :>f the i t ,,.. J.9cJ./c .

equa.l \"bl~jj I '~ I e. == 0 rotatioll is not thE, same

, .. ..

't vTO :cat.es of change only b ecome

?nd even t hen t.he direction of for t e -~ 8f'

Tr' leI e r rrT----- -'-1'11~ Hac; ific,;ation ~!.!..iJ~o·t(~.t.ton.;,. 'rerm

( 11 . 3 . 4)

· / I I ~ 0rrrv 'L' ..::> J_ ( b c. ,,{ \:;-:::. i'-1 e. <;;;;l. __ • __ _

I ~ I 1e ',-, CIt.... • ..1. f' . . ' . ' }ill} tipl icat .. ion

b y !"t lle Ntt.- cons] S'C; 0 a HlC'l.9rni .lea Clon o :f ·the amount: I . '

which does not di:J'tort t:he ci rcle but. does magnif y the

distance :from t he origin 0 , and a. rot.ation about the

origin 0 of t he llli:lgrli.fied f iguJ .. c by tb.e ang l e Otlt'l~ as

sho'vln in figure 11 . 3 , 2 .

Nob:~ t:bat. ·the points A and B r emain t .be maximum and

m:i..ni m;)m rad '" a l di stances J~e8pect.ive lf from 'the or i.9~.n ()

-- .104 -

• 1-.. i CL I , D:u.:;placcnl..-nt by ·t.l~C con:;;>l''::::'K 17: 1 ?-mounts 'co a SJ.lnp · e

~- ""' ~>n (";, ] :ltl'O' 11 o ·f '·'1e (;']~ '10 ·!. l' .1'~l"OI,·· ·t, ~·..,,·t:'t!Lon J' v -::. d ·j"" ........ 1~e l .. . .. (..l ~ • c.:. • _ L- r _ .•. . _ l_~... \' . .. L. J . "'-. l ) • u. .1. o. _ , ::0 l- (,1 ... , •

I c..\..- I ' ., ' "'~. . c:- 1.n t.be th rect1.on c:;. ~~ rclCJ.i:1.\Te Lo U:.e r ea l ax.lS as shown <-

in figure 11.3.3

0'0

NOi:;,e that. th, transformed points A,If and Sl are no

longer the maximum a.nel mini.Inurn radial di s ':":anC!es from t:he

oriq :Ln 0 of the po:.i.nts on i:he circle.

Ref{-~ren,c ~

11.3. 1 Warner, F " Mlcrohrave A1.:tenuaLLon Jv1easu. :n~men ." I.E,E. >Iorl.ogrc-:,p.l Sari:.:.!'" 19. Pete r pere9r'inu!'~ Ltd •• 1976.

11,3. 2 B?xlI.YW H j &. CuJ.1 (;~n A, "Hicrm-Tav e Heasur m .n'!: " Cor~sti.:d)le ~. Co Ltd.)- London 1950.

11.3.:~ Hor'tcn, A.FL " ldvanced E l -.ci'.J ical Eng :i nee:ctng pi tma n C' : 1971.

* * * * ~ * ~ * * ~

- 305 -

'fEE INVAF .. IANCE OF ~('HE BILnmA:f~ 'l'R\ 1~;FDRt"'J·~.'rIOF

CROSS ·-f-<AT·I O APPLIED '1'0 MICRrMAVEl1.NAI ,YSIS

-----.... ~--.-.-... - ' .. .. _-------_ ...... _._ ... _- _. ._------'J1his p :cind.plf:' ~. s o f great: importance '\vh en it l' c' . ::>

d esired to transfer f our poi.nts, eg r e f l ection coefff i cients

17 ,f~: ) \~' ~ C .... ' a t: i:i weadurcment plane, \.; , int.o f our points

"'. ~r , ~ • p- , "3 ' 10 .... '-"'~ " r . r at. anot.her plane , Z . The relationship

betvleen these poi nts is 9i\l'(:m b)"

•• .. to· • 11 . 4 , 1

Conside,L 't:he eli :-grarns be l ow' :-

N Plc:mc - --_ .. -

.. , . In the d iagra1l18 above , each poir:.t, I- J l8 r el;:- Jc(:!( t o

r, by a bilinear trci.Ylsfo l'ma·tion o f the f o r m

(

Hence , j'

Cl. \ ,?., .;- b --... -~ ... ---. ..., C \ 2 . + c""

P .- to I 2.

c:. 1--;' + cL

:: ... .." --, ~ ( c r, .y.. cl ) (c ~. ~~ (j .. )

• • . b C' \-1 P -Pz. i_a.d .. _..:._.~:.lJ_\ .-=-~. - ( c r.' + d )( c.r;,l + 0.. )

\ - "" ( 1.1.4 . 2) 't •• , •

Similarly it c an be shm·Jn tha t

n

- ~r J cu:L -=-~~2:....1.0:3 .: (; J. 1'-3 .. ( c\3 + d- )( c.r~ ·+ rJ., )

· , . , . ( ,.. 4. 3 ' ... .t. • .... . )

, ... , ;-1 .

f ';l. - P:~ J o..4!... - bC: .. J __ L\ .. ~ - 13_1 _. ( c:. rz. + d- )( c. r; i" c.l )

· .. . . ( J.1 . 4.4)

(-, rOT ~_ - P, .. i o..&.-.~::~J~~'4. --=-.'.-..J.

( c r: + ci. )( c.r; + d .. )

· ..... ( .. J II \ 1 . • -->: , :;',

Dividing equation 11 . 4.2 by equ3t.:LOn :1.1./1.4

. .

(1 1 . 4 . 6)

- 3C)7 -

Similarly div iding equation 11..4 .3 by 11.4 . 5 gl.VCS~

. .

. ... ' .. ( 11.4 7)

Finally mult!plying e~l ations 11.4 .6 and 11.4.7 together

gives:

"·Thich is t'h,e desircd resul-t of equation 11.4.:1..

* * * * * * * * * *

- 308 -

PR~R]lJvlME FOH HEFLEC'frON COEFFICIENT COrmECTTC~ USING '[HE 3 SHORrr CIRCUIT METHOD OF SECTION 5: 4 • 2

------"----------------------------

This appendix provides the m\"lchine code programme for operation on U'le Hewlett P acJcard P rogrammahle calculator

HP91'00'e. The programlne accepts the three short circuit calibration measur~~mepts in its polar form (modulus and angle

\

in degrees). ' From tht s dat.a, it calculates, stores and prints

out the error correction networle in polar fonn. T11(7

measured 'reflection coefficient is then entered i11 polar form

and the corrected result is printed out as:-

( a.)

(b)

( c)

a

as as

reflection coeffi.cient. normalized to 50 ..Q,..

an impeda.nce in polar form

impedance ,

rect.angular coordinatGs. an ~n

;" ,

"" 't f h ' Due to the ll.m~ ten capacl. Y 0 t. e machl.!"1c the pro'gram.r.ic

was writt.en' j.n four sections (2 magnet.ic cards) . and '-!as ,fed in sequentially as the C(llCllla1::.ions'proceeded and add.itional

storage bccamc~ available. The lengths of t.he off-sets al so . '

had to be preset within t.he progra.nl111e. However, the pre~set lengths can be easily altered.

To minimise the possibil.ity of any typhographicaJ. error's,

the progralIDlle is given directly from the act\.lal print-out from.

the Hewlett Packard machine. 'I'his print-ont uses numerical

codes to repreS(::l':i.1t:. the machine instructJons. A conversion

code i s given in Table 11. 5.1 to C0l1vert tlie nmn(;!rical codes

to t.he Jcey or roachine instr'Ucti0l1S. "

- 309 --

- 310 _.

-,

~t:p -~:~:-_.--:--_. I

~od~l ~ite; ··~~~de ] s'tep COUE!' step ---.---- ----. 0.0 ••• ~.20 3.0, •••• 17 ,;

6.0 ••••• 00 0.0 ••••• 47 0.1 ••••• 41 3.1 •••.• 33

.; 6. 1 ••••• 27 0.1 •• t • ,16

0.2 ••••• 4.5 3.2 ••••• 40 .J 6.2 ••••• 02 0.2 ••••• 27 0.3 ••••• 27 3.3 ••••• 16 I 6.3 ••• ".65 0.3 ••••• 64 0.4 ••• ~ .07 3.4 ••••• 41 " 6.4 ••••• 60 0.4 ••••• 34 0.5 .... .. 2! if 3~5 ••••• 45 " 5.5 ••••• 61 0.5 ••••• 30 0.6 ••••• 02 v. 3.6 ••••• 45 J 6.6 ••••• 63· O. 6 •••• " 1)5 o .7 ••• ~ .00 " 3.7 ••••• 22 " 6.7 ••••• 74 0.7 ••••• 60 0.8 ••••. 00 ,; 3.8 ••••• 15 ,j 6.8 ••••• 66 0.8 ••••• 17 o . 9 • ; • • • 00 1 J 3.9 ••••• 34 " 6.9 ••••• 22 o .9 ••••• 30 O.a •• ~ •• 36 ./ 3.d. ••••• 31 vi 6. a ••••• 10 O.a •••• ~17 0.b.,.~.40r 3. b ••••• 33 " 6.b ••••• 111 O. b ••••• 64 0.c~ •••• 13 I 3.e ••••• 17 " 6. c ••... 14 O. c ••••• 34 O:d:~' ••• 03 ./ 3. d .•••• 33 6 .. d ••••• 30 0.d ••••• 3D 1.0.' .••• 06 .; 4.0 ••••• 40 'I • O ••••• 14 1. O ••••• 65 1.1 ••••• 00 '# 4.1 ...... 17 1 7.1 ..•.• 6·4 1.1 ••••• 60 1.2 ••••• 33 " 4.2 ••••• 61 7.2 ••••• 34 1.2 ••••• 02 1 .. 3.' .' ... ' .17 " 4. :3 ••••• 63 7.3 ••••• 30 1.3 ••••• 30 1.4 •• ' •• ~ 0], I 4.4 ••••• 13 7.4 ••••• 65 1.4 ••• f .13 1.5." •••• 26 v 4.5 ••••• 73 7.5 ••••• 60 1.5 ••••• 36 1 ,·6 ••••• 32 ( 4.6 ••••• 62 7.6 .•••• 16 1.5 ••••• 01 1.7.· •••• 11 " 4.7 ••••• 65 7.7 ••••• 30 1.7 ...... 65 '1.0 ••••• 23 I 4.8 ••••• 50 7.8 ••••• 16 J. .8 ••••• 60 ·1.9 ••••• 15 .j 4.9 ••••• 13 7.9 ••.•• 64 1.9 ••••• 6J. 1. a ••••• 41 I 4. a ••••• 27 7. a ••••• 34 1. a .•• It .63 l..b.',;. •• 45 -I 4.b ••••• 01 7. b •• t •• 30 . 1. b ••••• 74 1. c •• ••• 22 ./ 4. e ••••• 65 7. c ••••. 65 1.e ••••• 66 1. d. " ••• 15 J 4. d. , •.• 60 7. d ••••• 60 1. d ••••• 32 2.0; ••.•• 34 " 5.0 ••••• 17 8.0, •••• 61 2.0, •••• 22 2. 1 •• ~, .', 31 ,j 5.1 ••••• 27 8.1 ••••• 63. 2. 1 •• , • •. 33 2.2.' •••• 33 J 5.2 ••••• 64 8.2 ••••• '"i4 2,2 ••••• 24 3.3.t •• '.li .; 5.3 ••• , .34 0.3, ~ .•• G6 2.3 ••••• 11 2.4 ••••• 33 J 5.4 ••••• 30 8.4 ••••• 31 2.4. t ••• 30 2 15 ••• 'f .40 .. I 5.5 1 •• I .65 8.5. 'f ••• 34 2.5 ••••• 22 2.6 •• ~~.14 ./ 5. 6 ••••• 60 I 8.6 ••••• 24 2.6 ••••• 34 2.7 ••••• 41 I 5.7 ••••• 14 8.7 ••••• 11 2.7 ••••• 14 2.8 •• ~ ~ ~ 45 .; 5.8 ••••• 27 ·8.8 ••••• 31 ·2.8 ••••• 27 2.9 ••••. 22 ./ 5.9 ••••• 64 8.9 •••• ."30 2.9 ••••• 64 2. a ••• ~ • 15 " 5. n ••••• 34 a.a ..... 34

1

2. a •••• • 3l 1 2. b ••••• 34 ..; 5.h ••••• 30 8.b ...... 47 2. b ••••• 30 2fC ••• ;~3l ./ 5. c ••••• 65 8.e ••••• 47 2. c ••• , .66 I

2.d ••• ~.33 " .5. d •• ••• 60 8.d. ~ .... 4~J 2.d ••••• 60 I --

..

t'

1 III 'Ill

step Code 1 3.0 ••••• 16 3. 1 ••••• 30 3.2 ••••• 16 3.3 ••••• 64 3.4 ••••• 34 3.5 ••••• 30· 3.6 ••••• 66 3.7 ••••• 63 3.8 ••••• 61 3.9 ••••• 63. 3. a ••••• 62 3.b ••••• 65 3. e •••.• 60 3.d ••••• 13 4.0 ••••• 30· 4.1 ....... 13 4.2 ••••• 33' 4.3 •••• ,,01 4.4 ••••• 65 4.5 ••••• 60. 4.6 ••••• 61 4. 7 ~ •••• 63 4.6 ••••• 74 4 .. 9 ...... 66 4 • a ••••• 60. 4"b ••••• 16 4. c •••.• 30 4.d ••••• 16 5.0 ••••• 64 5.1 ••••• 34 5.2 ••••• 30 5.3 ••••• 66' 5.4 ••••• 63 5.5 ••••• t7 5.6 ••••• 30 5.7 •••• ~ 17 5.8 ••••• 64 5.9 ••••• 34 5ta •• '. ".30 5.b ••••. 66 5.e ••••• 60 5.d ••••• 61

Step COd~ I 6.0.' ..... 63 6.1 ••••• 62 6.2 ...... 65 6.3 ••• ~ .• 63 6.4 ...... .24 6.5 ....... 11 6.6 ••••• 25 6.7 ••••• 62 6.8 ••••• 65

. 6.9 ••••• 60 6.a." .••• 61 6. b ••• " .63 6.e ....... 74 6. d ••••• 45 7.0., •••• 66 '7.1. " ••• 23 7.2 •.•••• 17. 7.3 •••• .,40 7.4 ••••• 11 7.5 ••••• 60 7.6 ••••• 16 7.7 ••••• 27 7.8 ••••• 64' 7.9 ••••• 34 7. a ••••• 30'· 7. b ...... 66 7. c ••• t. 63 'l.d ••••• 61. 8.0 ••••• 63· 8. 1 ••••• 62· B.2 ••••• 65 8.3 ••••• 60 8.4 ••••• 13 8.5 ••••• 27 8.6 ••••• 33 8.7 ••••• 01 8.8 ••••• 65 8.9 ••••• 60 .8.a ...... 47 8.b ...... 47 8.c ••••• 47 8.d ••••• 46

- 311 -

_;':;:=~Od; 1 0.0 ••••• 47 0.1 ••••• 61 0.2 ••••• 63 0.3 ••••• 74 0.4 ••••• 66 0.5 ••••• 63 0.6 ...... 14 0.7 ••••• 27 O. (3 ••••• 64 0.9 ••••• 34 0'. a ••••• 30 0.b ••••• 66 0#c ••••• G3 0.d ••••• 17 1.0 ...... 2'7 1.1 •• o •• 24 1 .. 2 ••••• 11 1.3 ••• " .40 1.4 ....... 17 1.5. It •• 60 1.6. to •• 61 1.7 ••••• 63 1.8 ...... 62 -1 ~ 9 .••••• 65 1. 0 .• •••.• 60 1 . b I • t •• 14 1. e •..••• 27 1. d ••••• 64 , Z.O ..... • 34 ll. 2.1 ••••• 30 2.2 ••••• 66 2.3 ••••• 27 2.4 ••••• 24 2.5 ••••• 16 2.6 •••••. 25 2.7 ••••• 27 2,8 •••• t 64 2.9 ....... 34 2. a ••••• 30 2.b ••••• 66 2.e .•• " .• 31 2. d t' ••• 34

step Code

3.0 ...... 26 3.1 ••••• 22 3.2 ••••• 34 3.3 ••••• 31 3.4. , .... 62 3.5 ••••• 66 3.6 •• , •• 63 3.7, •••• 61 3.8 ••••• 63 3.9 ••••• 74 3.a ••••• 45 3.b ••••• 66 3. c •• r' .60 3.d ••••• 23 4.0, •••• 16 4..1 ••••• 00 4.2 •. ~ ••• 27 4.3 ...... 01 4.4 ••••• 60 4.5 •.•••• 61 4.6 ••••• 63: 4.7 ••••• '52 4.8 ••••• 65 4.9 ••••. 60'

44,;a· .' ••.• 140

'1 • b ••••• 3

4.C ••••• 14·· .. ·II

. 4.d ••••• 64 5.0 ••••• 34 5.1 ••.•• 30

.5.2 ...... 66. 5.3 f •••• 24 '. 5.4 ••••• 11 5.5 ••••• 40 5.6 ••••• 14. 5.7 ••••• 34 ' :'.8 ••••• 30 '1 5.9 ••••• 24; S.a ••••• 11 5.b ••••• 31: r-: 24~ :".c .. -. .. S.d ••••• 17

t _____________ ~

st;,p cOd:') 6.0 ••••• 32 6.1 ...•. 30 6.2 .•••• 33 6. 3 ••••• 30 6.4 ••••• 22 6.5 ••••• 62 6.6 ••••• 65 6.7 •••• 160 6.8 ••••• 61 6.9 ••••• 63 6.a ••••• 74 6. b ••••• 45 6. c ••••• 45 6.d ••••• 24 7 .0 ••••• 14 7 • 1 ••••• 30 7.2 ••••• 24 7.3. I" .11

. 7 • 4 ••••• 30 7.5., ••• 31 7 • 6 ••••• 63 7.7 ••••• 41 7 • 8 ••••• 45 7 • 9 ••.••• 66 7. a .••••• 60 7.b., ••• 61 7. c ••..• 63 7.d ••••• 62 . 8.0 t· t ••• 65 8.1 ••••• 63 8.2 ••••• 24 a.3 ••••• 11 8.4 •••• ,30 8.5 ••••• 24 8.6 ••••• 14 8.7 ••••• 65 8 t 8 ••••• 60 8.9 ••••• 61 8 I a ••• ~ .63 8.b ••••• 74 8.c ••••• 47 8. d ••••• 46

Gte~'~~_ 0.0. It ... 47 0.1 ••••• 65 0.2 ••••• 60 0.3 ...... 17 0.4 ••••• 27 0.5 ••••• 16 0.6 ••••• 60 0.7 ••••• 61 0.8 ••••• 63 0.9 ....... 62 O. a ••••• 65 O. b ••••• 63

.0.c ••••• 13 O. d ...... 27 1.0 •.•••• 07 1.1 ...... 21 1.2 ••••• 02 1.3 •• I •• 00 1.4 ••••• 00 1.5 .•••• 00 1.6 ••••• 00 1.7 ••••• 35 1.8 ••••• 27 1.9 ••••• 6l

, 1. a, •••• 63 ·l.h ••••• 74 .. 1.C!.~ ••• 45 .1.d ••••. 45 2.0 •••• '.66 2.1 ••••• 60 '2.2., ••• 23 2.3 ••••• 17. 2.4 ••••• 40 2.5 ••• ;, .16 2.6 ••••• 00 2.7. I ••• 30 2.8 ••••• 01 2.9 ••• ~ .60 2.a ••••• 61 2. b ••••• 63 2. c ••••• 62 2 .. d •••• ,22

- 312 -

step Code

3.0 ••• " .23 3.1 ••••• 14 3.2 ••••• 05 3.3 ••••• 00 3.4 ••••• 36 3.5 ••••• 17 3.6 •. ~ ••• 24 3.7 ••••• 16 3.8 ••••• 63 3.9 ....... 00 3. a ••••• 30 3. b ...... 01 3.e ••••• GO 3.d ••••• 61 4.0 ••••• 63 4: 1 ••••• 62 4.2 ••••• 65 4.3 ••••• 63 4.4 •• ,' •• 25 4.5 ••••• 16 4.6. ~ ••• 65 4.7 ••••• 60 4.8 •• tf .61 4.9 ••••• 63 4.a ••••• 74 4. b •• l •• 45 4. c ••••• 66 4. d ••••• 45 S.D ••• t .23 5.J. ••••• 17 5.2 ••••• 40 .5.~3 ••••• 16 5.4 ••••• 00 5.5 ••••• 52 5.6 ••••• 07 5.7 ••••• 10.

. 5.8 •.••• 50 5.9 t to •• 07 5.a ••••• 10 5.b ••••• 47 5.c ••••• 47 5. d ••••• 47

step Codc~

6.0,. •••• 47 6. 1 ••••• 01 6.2. ' •••• 30 6 ., .lq

• .J • •••• 3 ...... 6.4 ••••• 14 6.5. ~ ••• 35 6.6 ••••• 56 6.7 ••••• 35 6.8 ••••• 02 6.9 ••••• 35 6.a ••••• 47 6.b ...... 47 6.e ••••• 47 6. d ...... 47 7.0 ••••• 47 7.1 ••••• 00 7.2 ••••• 44 7.3 •••• ·~lO 7.4 ••••• 06 7.5 ..... • 4·' .7.6 ••••• 47 7 .7 ••••• 47 7.8 ••••• 14 7 • 9 ••••• 35 7. a ••••• 02 7 • b ••••• 35 70 c •••.. 56 7 0 d ••••• 35 8.0 ••••• 47 8.1 ••••• .47 8.2 ••••• 47 8.3 ••••• 47 S.4 •• #0.47 8.5 ••••• 00 0.6 ••••• 45 8.7 ••••• 45-

. 8.8 ••••• 45 8.9 ••••• 46

L ____ • ___ .. J

_. 31:-s

("T [I/DED ~!V~t-.' VFflSll: t ; ;"),'1 ! fi r:: /, I t( J I , ,( R 1 , K r ?, K H 2} ¥. i ~I , t< n J , K 1 .. ) j( R I • • ' I: A '. , K R 'I

:> (1£:.41 MA r,t'f[; , M.C.II!::!; 3 r. E /> I MAr; S 1 ~ , 1:'/; r, 5 I 1, ~I" r, T I~ S,N r, TI~ ;; I Ii A G S ?:' , h , G !> ;1 ? I t' ,'. G." L 1.. I

~ rf,llG ':,l, F;H:~ 5 I< E /, I F I () t' F (i Ie • P sri r 11 E T I, I ~i 1 J ,~ H J X I • >: f{ } I: t, ! .' ,( il " , I-: I, 2 I ~: p. 2 I K I, 3 , K f I ~ , l: ! I e ,I 6 r O t~ PI £ X ~ I A " C I D J KIf K 2 If::l ,,(1, 1\-1, X J S 1 1 , S 21 S 1 ? • S 2 t! J r V t, l. uE

7 100 CO~T1NUF 8 II EAli (ln S, ?COI F' dUd . • I<Bld(A2J!(f'l2 , KA3d:'13 / K A",,:e,'1

. 9 !OO FeRMIT ( 9tl 10 IF( F .f.>l. 0.0 1 S'T'GP it A" r.,..PL>: (\. 0, 0,01 12 C11U;t. " c.C'l'J80 B?S l ~. r 13 !-' 51 0; .. 1' . 0 '" (HlfGA L~ ' THE TA u c.\ ~561650 • F l 5 fll .. I. (I , . !'i Pi (C', M r. G I.)

16 'OR", 1-n " C(~ S ( e ll En /II ~i' 0 .. rr1PI. '): (Il R .CI) 18 1<1 .. 1.· 0 If- Slt~ ( Pr.I1 1 !I h 1< .. 1; () v r: r. SIP 5 I I ~o w ,. r.,1PLX 1 \./11 ,1 / I I c t ): 1 " 1· rt .~ ~ T N ( 1' ;, c. r 101 22 r.H .. 1.(1 " Ct'SIH1E'f U :?3 ~ .. r:11PI)I l(P /X I ) ~'" I~Bl "K!H ~\ 3 .1 4 15~li'6/\ 8 0 i'li r.) 1 IJ I< h I 4' S J I' ( f:l'l l )

b2 63

I< R 1 " I: ,1.1 ~\ c: 0 S I K n I I )(1 .. C I',P I ;~ finn. K 11 l ~B2 Q KR? 4' ],1~159r6/1no KJ~ • K'~ .. Elh l~ n2l KR2 n KA? ~ r:C S I I<H2l r.2 .. Cl'IPI. X ~~:H21 ,,[;» roB3 1: 1'\3 ,',1 301. I, 159?.611g0

Ii 1:~ .. I( h:'l . ' 5 J I; I I( O:l ) KA3 ~ KA~ • rO S I I<D3 ) 1<3 " C:-;P I ;< (KR3, to:1::! 1 I: U'I " K n ~ .. a oil, l S 92 I'> I i 11 0 r.14 " ~h~ • SI~ ( ~R4 1 r.R' ~ KA4 ~ rMS( KB~ )

K ~ .. CMPI x r I<R I ; I 1< I 4 I n g KI.~?~(W·A l -K2~K3'(X. A) Kl ~K3. r WnX!

C ~ ( N·Alo ( K?-K3 ) ·(XMA l ~(K2 K\J 511 SIC S 22 " l !'i 1 1 R 1<1 oj- O{ 2 S U ) I III " ( I< 1 •• )( 2 ) S e l!>12 1> ( £ll "' I<\Hqh+~??) -,V/.J lJf: .. I V-I) • 5 11l/I S?~ IJ 1<'1 ~ . Gi?IS1? .. !';11 .. , S?;:>,

• 'F Rl:rJ rI F I ~A G~\ 1 .. CAAS (!)U) ,..tiG.dl .. !~7 .r !J57r. " AT!dO??(Alllh(l{51~)JnE/.I.(SI1))

I~ II G T " S " C A II $ I E; 2 1 S U! I "'~G lI~ S .. ! i' ,? 9~;7l) u Iti/>N2tAII1hGIH21G121/nOU S2 1S 1?11 ~AGS? 2 ~ C6A~ 1922 1 ANGSI' :~ " !i :> , ?95 7 B Il /, T.l. li/? {AJM AClI SZ21.iiE /,L!!l2211 ~AGV.L • CARS (T VALUF I 1,I~Gv~ L .. H7.,"!''37'' " Al'''N~{/,I11''G(T\,ALUE )/ f fI.L ITVALIl ' I I MAGMFS w ~. RG ( K~ I

ANGHf S ~7 . ?9S7H.ATAN?(AI HAGIK ~ I, "EA L( K' l)

f1Ulr'IIT (I cr.) Flccn , I~/, r.f;l \ I AI\G~ 111 IIA OTH , f.r:"""'5 ~ 11AGS~? rl>lIGs?? , I-A"VAL , ANGVAl

OUTPItT I \Ci\) t'AGH[ S, IdWKl,: S lUTi'lll (\ ~I\ l K!.l. fHdCI>2d<H2d;le3.:<C3Jl·A4,';1'\1,

Cie i ". l ()O

;

~

; ,

- 3 }A -'

j\P_PENDTX 11; 7 -_._---------

co r rr!C '\' i OD 1J:ri n g f our she rr. ei r cl.li t s .

2. : <: 7 I . P i? 1 9 I ! 77 ! J r:1i:l EF(l ! rt;HIT f~ t.t H U; I G (I

EXTENDE D FI V -~, VERS 1CN DCl I 2 3 h 5 • (,

7 n !J 1 () -11 1 2 13 '-If S.5 1 6 1 :! 18 19 2 {J 2 1. ;~ ~

<:3 ,! 4 25 ?r: 27 ~IJ

29 30 31 ~~ .,) t ,.

n 3 /• :i5 3(, :i7 38 3'9 ItO II I 4 2 1,3 H 45 "'{. "7 ', ll 4 9 !:>o 51 5f! 5 '" 54 !; 5 ~(,

'- "I 5 8 ~ 9

C ,'H I s Sl',r:U: pr~ SC E rSI() '1 p:-;r:GR'\'" ~ E TS F e H I, !: v ::'ILY 5P(,CELJ )W Ri5 I MPLTC l r CM~P LEX ( S I

CIt' FI. Sl'Jh Sr ( 5 1 100 ·COt-<"{) !,u t:

"EA n r l U~ , 2C 01 &l,a2.A J "" A5 , A6.A 7. lG,h 9" ,o 200 ;.:O M'11> r IIO F I

TfIAl. [Q .O.(i) ST(' P OATh pr/2~1~1 59~65 3 6 1

AcA • £ raP I /I S O. Q 1'.1 /. ",' . i ~ C C SIA2:' 1 Al0 ~ A I ~5 rN ( A 2 Al

!lI!lI " CI1PL X ( Alt. JA l il l AltA • A~.PI/\80 . 0

A3 A u A], reS ( ~~A I

~ 3B • AJ .R ! ~ ( A4 A)

S II ~ I U C I~P U I I :\ 3 /., ,',38 I t 6A • A~ .PI /' R0 . 0

A 5 ~ M £~ ~ C e SIA 6 Al ft~B • A ~ ~S I~ I A 6A I

51 13 1 • CM PLX I £5 a.A 5B I ABA A~r r l/ 1 0 0 . O

A7A • h 7 ~ cn~ r A6 AI

A73 ~ A7 .S INI A8 A) SI I ') « C~P L ~ \A7 A / A 7 a l ~ 1 0 A " 'ID ~P I / 18 0. C 1\910. " " ')··,· C r. ~f h! Cl f. ) ASS. Aq • S I NI Al OA) 51 1&1 ~ CHPLX(A 9A I A9B l SA .. ? • 0 '" I ? r I I 1 '" s 1. I 3 I - S i I I 1 .!i r I 4 1 ~:; 1. ( ? 1 >" 5 i ( :3 I .. S I f 2 I '" s rI '. 1 I 58 u -5" , I . SI ( 2 1+S 11 2 1.s r ( 3 1-S 1t 3 1.S It 4 1+RIl l l ¥S rt AI S C" .... ;1 ( 1 I ~ S 1 I 2 ) "~~ .0 ", S I I 1 I ~· s r i 3 1+ S \ I 1 I (. f; t I Ii ) i · S I I 2 ) .. S I f 3 )

I M2 .D ~S II21 .SI(~) . S Ir 3 1 .S [ I" SD ft s a.~2- ,.C .SA~ GC SEl.o '" ( ~S fl ~ CS OHT( SO ll/( ? .O -l'c,A l SE2n" I wSA ~ r.!lr)n T(SOII/ ( 2 . 0c. 5 "1/ SEt , .. "j? O,.S E10 S E2 1 .. ' ';! .O . S £2 0 SE3 n • C~PL X I\ 'DJn ' OI SE 1? • q ~ 11 .~ 2 -~.O~SE 30 .SE30 GE2? n S ~2 1'e 2.4 . 0 .SE3 0. SE30 S£l ~~ ,. I · SE 11."C Sr. ~T ( SE \ 2 1 111 2 .0 "-5 1-: 3 0 1 5£1 4 ... I Qr.; '- l l"C ~O'lf I SE : <: I 1/1 2 . J ~Sr30 I 5 £ 2 :·1., ( ~ <;r. 2 1 +C SO 101'( ( S E ~ 2 j 1/ I 2 • 0 "S€ 30 I S f. (~ 4 .. ( w <is: ? \ ~ C GO R i I ;, £ 2 2 ) I I ( 2 , 0 ' ,S J::3 0 ) pl ... U! t").O ~'A" ,. N2 (A l ~.\GI SE: l 3 )' P. t: t. L ($r13 1 )/ P! ,, 9 ,. l tl Oot1'; f\ 1 <l1-? ( AIM .r. 'lI -:i£ l', J/ kf.Al I Sfl" 'II P t PC ;" I iJ v • Il ' t, " I." j ~ ; .\ I ~1J. n ( s ~ c:3 I I r< E I.:. I :j S ?;l) 1 / r 1

. pO ~ \ ~O. C'A r ~ N 2 ( 61MA G t SE24 1/ REA L( SE2. II /F r flItA .r; s: " C .O

. rFI PA.GT'I.nEM,.A ND. PA. nE. PQ . AN". PA.G E'PC • .\~ C .p~.0E ,r D I \ Pk A~£ .. "1. Ifi pn .Gt . l . O E-4.A NO. PR .GE .PA.~~n . PR . GE . P C. A ~O . p~ . Ui . ro I

t. r'J 1 105€ .. PG TF t I-"C "iT, 1 .n:-;'~4 <I"'~ D . PC . r: t=. . 1> >\. A ~I !'). PC .Gt: . f'O . A"I() . PC. GE . PO I

1 1"14 ,1<;<: .. PC I F I Pf)'4 l'l . n c: ... II. I.ND.F' O.GE.P; •• hlifJ.(>() . J·~ P& A:\c.pa . f<E . ?C l

1 PI-' ~ .• f. .. r r. DEl ) • CABS I SE l l l SE3~ k C~B~ I &~ l ~ '

60 6 1 6 2 G3 6 " 6 ~

(,6

6 i (, 8

6 9 70 7l. 72 73 jllj

75 16 77 "18 79 no 8 1

B3 II .. I.l!'i 8& 87 fll; as ~)O

91 92 53 94 95

..... ,

S£3 ~ • C &qS I S~21 1 U ~3'l u C~~S ( SE 2 ~ )

t . rT F I.'.I '" \ (j

315

l r: (;' ... A ~':: .F O , f1A l " TT r:I U u SE::' ! " F : Prt/\ ~:"· , F: r;f rd ) :. TTC:! lJ ~ ~[32 I F I Pf. ... S>:,E r.~ . pc u. TrFIIL' ., St:-l3 l F I PH(\!j:;.· .• t-: f: .. Pi» ) h 1 1· ~· dJ ~ f,t:~ ' 1

PH AS~ n r 4A~ [ ~ P I/1 60. 0 li !;C.. :, r rF :Jl J "C :".1" l. x ( C ;~ s ( p ~ h S El l S I 'I ( i'f<l. S [ I I !.51", C: 'PLX tc rS ( .. r ·'-IASE 1, ':~i t j ( FHA~;E l )//O T TO'o\1 ,,','1 -,. I S! I I I • fl r ( 2 I • ! S 5 1 - S E 3 () I 1 - ( S r t 2 I .' S r ( ) I I ' ( :;;; 0 u ,; F 30 I I

t "' ( S r31 ~ st ( . i~1 { S5 1 4S50 1 )

S /!2l' ! S! 111 " t S5C-"SE301 ) ~ ( S 1( 2 l''1S<; ~ 550 ) H· (S I( ~;:';· ( SE30 - 551 1) 511 .. 5 '. 1 /,,'-2 SGAM • C ~PL X ( ~ l 0 . 0 . 0) S 2 2 \ " I S 5 (I " ( S 1 ( 2 ) u S 1 \ 1 ~ . S 11 w G l til f I I S r ( <: 1 - [.; I ( 1 ) 1 S2~ n S;>2 1/ S GJ"· S )r ?1: . ..: ( G:{!, .. S 1 1 ) 1 .. ( G[3C"'G22~S(i4r-i )

S 12 S? 1 • S l~2l \/ SG' H - . S J (. .. ( S I ( 5 I .. S 1 1 I I I Sf!?".. g I ( !i H S 1 (' S? t •• s 1.1 ~ S;> ~ )

/, 20 .. C t" S \ :5 ! (, 1 ... ~ l .. 1. !'.C.C ... HA t l?( h I Mt.G ( !'I 6 I ,RE I. U S16 lI /P l Z E P F I~ S '" "L ,H; ( t, r TF. N U ) r LGE Q P HA SE 1 80 . 0 / r I DUT PUf(: CR l SA , S~ , SC I SD / SE10 / SE2C,SEll / SE2 1. SC13 , SE 1 ~ ,

1 5E ;> 3 . SE?~ / Ph.~B . PC . P D

() U T Pu r l Ie a l S I I 1 ) I S j t 2 l , £ I ! 3 ) I [. r ( I, ) , 5 I ( ':) I , S 1 6 I ,\ T T f. NV I "~/. 5 E (1 U T P LJ r ( 1 C B I S 5 O . !; 'J t , S I I I S 2 2 1 1 S 1 ? 2 I 1 , ,.; G 1.11, S 2'2 J S l 2 S 2 ! O Ll i PlIT( 1(, 8 1 All A? ~:,J I A4 ,1, 5 , 1, 6 ,A 7 , ,1.1'1 . 119 , "' !. O /jUTf-'l;T ( \ t il) S Z6 OUT pUTl leDI 62 C. ft2 1 DUTP UT(I Ca , lePERS tl U1 PlJr I' C: 13 ) ',I, 1 ,542 Gll H l lO(; sTep END

31f

APPEl ~)IX 11: 8

H ) rT'O ~")l-t"> .":lJ',Ir.. \', D0~:l)1 e Pn~c:i ;lion ) ,.,n.)1ua , , , t. '"

[):rCNOEtl ;:) 1I"f'" YEr..S 1 ell n ot rt-i Pt ;CtT r/F!,: .1tB :.t, B,c,n ; L . ?1

2 TMP I rUT r:::~!JU:Y. .. H.rS I 3 (In' 1'' 0:; 1 ~1, >:r (1 5) 1; '

5 , (" " " ' , ..,

Ll '-9 ',. ,

1 () :' '11

1 r,' • '\3

:V,~ t 5" '1~ 11" ," n;,: 19

'elF 2( '~Cf., 2:(

" c ~ " 25

" 2{;. ,' . '1'7

' ;.~ -": . ~ ?

',30 ' ' :41 ' ,~;'l' rho "31>;' '3 5" ::3'6'. :ri J!f 3~

' ~O ' , t;'-' . 4-2-: ~:r"

~ J,~

I;T;-47 ' S' " "'9

- 50'~

fi 1 , S" 53

' ~~'

55 !5(.

!l7 58 59 60 61 b i! '

100 [ e~ i"r! ;U~

n F. .... !) I lOt, , ? C fl 1 A 1 , ,I., 2 I- 1.:._ ":~ ,. A .... ~ .... 5 , 4. 6 , I .. j ' , .• ~" I J.. 9 I I .. t 0 ~oa FOi" IH Y ' : \ :1" I

TF! t i .E:).c) .(H~DO 1 ST!'!:> . 1l~,T'\ Py I ~ .jl; 1 ~'~ » ( . !i3SRC;·/ 9nO I

/'.i:! I", "f,2+Pf / 1 .1I0C;)

~: A . Al~ncn~(.2hl A H3 .. A I"' os {I. ( Ac,\ )

R 1 r \ I ~ Dl": '" PI. Y. ( "'. /" 1113 1 h4A.A ~.P T/I. gOC~

~3~r ~3~nCBR ('~&I ' /,38 ', 1.3~, n c: TN (~ 'l-4 )

GII?)~Dt~P(~IA2~.A~ B ) h(; (.,,,,:.(,.',,;> T II .POu?

' ~5An{5 ~nrn~ l ~~~ )

,1.58,,(, (;"11'; I~. (I. ('A)

SI!'! "D r:I-'PI. . (AS, .. AS8 1 AgA"t.~ ;;.Pt II .)lOC:>

- A7/,"A7":lCfl~(t,f:t:. 1 11 7e I\A71;· rl~TI;(Ail/') .

.. 'n t { I, I "0:: 1' ;,'1 ):1 1\ '/I. I A 1 !H I.l Ch .. ~1rj"PT II d l (l1'l2' ~ 9k~A9~n(~5 !~1 0t. 1

1\ 9 r. "b !J .. (')", j ! ~ , A to :. I

nII',\ "'D("nrl '\:If.'JI,./.Si\\ f.~:lf') .. OCIIPL)c II. v.DO , O.ono I , sA .. ;>, 0 <' (S ,T ( !! ~S 1 ( 3 1 .. S T ( , I ~' s 1 1 It I ~~ I ( ?, ',< :1 ) , :~ \ +S', f?) ¥s r t ) I

-, S e.. B T ( \ I , 5 ! I,;' ,' . , ; ! ( ;:; , ":' ! I 3 1 ~ S T ( ::l ) < S r ( 'I I +;, r I 1 1 "s I : 0'1 )

!':: C" H t: Ii) ,,; s'! t ;> J":' • n ~ crt! ) '" C 1 ( 3 ) ~!'; r I 1 ) If. !: \ I; 1 + S r ( 2 ) .. S I , l , i -2 . ~ ~ S' ( ?I.Sl(~) .SI ( 1 ) .Srt~1 'APe SH~v'-~.C.SA~SC SC:ln " (qSf1 0} CO . (lHT t S I)I ) /I?'.O"S& I SEeD ~ ( -SA ' u · CDy ar T(Sn) 1 /12.0.~61 SE'11 " ":>.OKSE II

' r,Ei.!t OJ ,- ? .(l" ~I~? 'l

SE30 " ntI1 PI't l l, .OOOOo . O.OOO;)Cl)

!1Eli' u !~ r. ll .... 2 "4,O "S~::ln'.f.=3n SE2i » SF?I~.2 ·~.O'SE~o.sr 0 9 t' ~ N I -SE lt • CDBDAT(QrI2Il/(?OcSE301 • E14 .. ( .. El[:\ \ •• Cc\!'irlR)'ISEI?11/(?n'S C:>0 1 9~2l ~ (~ aF? i + CD90qTISE22 1 ) / t ~.O.~E30 ) SE2~" tw~, r.;.' , .. C(H;Pi~r (C;(? ? )I/t;~.()'IISClOI r.\ .. 1·" c: r; ? .... /1 A j hI~ 2 l or ~ A ('j ( S E 1:< ) J il R .:. to LI 5 E t 3 I I I P r pA " t. RCn?nATAN2 I DIMAnr~Cl_'lnR~AL I5 E \ 'II/P T PC 1.80D~~~ArAN~I01MfnI S~23 )/ O~~il( S F~Jll / pr PO .. ... 8 nr. ?.,n li r I , Nt' I r) 1 Ii I, n ( S r.;:.~ ) I Dr~~ I. L ( S F.'Z '. I : If'! PHAn~ a o.ano oo . t F ( f':" , a', • I , n n «~ • tIl D • P I, • r, E ,p 13 , .\" n • r A • (j [. , (" . h N () •

t I'1l.n E .I> . ) P~H,9(:, .. PA

r F(pn.GT ., .~ ~ ' .4 HD . p~.nE . PA .A~n . p~.GE . Pc .a~ n. I PU. r. c .r'r.) C)IIASr. ., i"1

r F I Pr.GT.I.nnu •• hNo . pc . nE .P A.AHn . rc . nE , PA .a ND. t PC.r::!: t ."nt "VIIS"· ,.. PC .-

rF<rn.OT.'.nn ~. ND .pntnr . p~ . 'Nn.pn . GE.PA.hHn. I PD.nErP~) PN~9r. _ 00 II II CD .~I' r;, ,;:'131 12 .. CIJ P <S(C;l't~ 1

L:~ .. COAP !'ilC;r.<'3 1 til . , ':!)trl ~ ( .. 1='~4 I

63 l>lj (, 5 66 ('7 6F:

69 10

--,7~

/2 'n 74

':"5 '---jt.

:'1 7 '7B

",' ''7!"r.' ' SO fH fie

"03 !II; .[I!; : 86 '87 81.1 '09 !JO

:!ll : ...

92 ,

317

ATT~~U ~ 'Otn ocn !r:-!f"II"s>,n)' '' ,\ I ATT[ '~ lI .. L1 Tf(r>~Jj\ 5 1=.F O .P R ) f'7 1t:NLJ I.? j F ( P I-~ A s ~· . c:r: .' pe l I. T T r: "w " I 3 t r (p r:~s !" .r r..pn)Ari[NI) .. ( .I,

P : 1AsFpP l-i t.Sf :;. "'I/~ .r.o n? I> ~;o <» /. T t r: '" III' DC t·! P L X ( C r. rH: I !' H 1, S r l I r'l~; r ~~ ( f> Hil S F 1 I fiG1, nCt1PI y.(nr. n S{~·PH t.\ 5J:" )J nS] ~ J i "' P~; A S;: } '/CATTrt-.!lJ} .'

' 1)11 .. (!':ltll'l5Yt;>I ~ (S'il"!) E30 1 .. !;Tt~) .', 5113 1 '.' I S !; u', 5 LlO ) \ " I'( :J I <!!::T II lc, (S!51-S5nlI/IST(11 l;. (!' !;, O_ G[3n ~' 5 T {;:-'" ,? C Sf; 1 c o S!': rl I ~ R 1 ( ~l 1 IJ ( fi F ~ I) .. S 5 1 : I

flOA t'. '" nrO'l ;' 1 ~ ( , ,ODOdl.O n U I

, S221 (r,~O,,'SI!?I"Sl' I +SllwSlll 11/( S1(? I M"j't~ I) 522 S??'/~~ (,dI1

-r; 1 c ~' l ~, " t 5 r t 1) S 11 I <, I S C 3 0 ~ S 1:' ;: '" 5 (H H I G12s?l ~ ,,'??11/GGAH

. S H, p , {s v ( !:I 1 ·.51 l I I' ( S ?? 1,1 S 1 ( \:I I ~, g 1 ? S 2 ). u f; 1 1 .. S?? I .~~O t" Cn/. F;~tl~rc, l

.. -tiel •• " . !' n?~f)~'·" N;'> (OI hMI ( S \ 61;DnrAi (S!I'; ;/I'Y :> EPrI? S u ni(\(; (,~"':'Et-:UI

f'l U T P IJ j ( I () Po I ' /. 1 ;i. :' , /. ':,1, " ..... h 5; '.,6 • I:. 7 • A 8 .,. /l 9 I " 1 n J' A'2 0 J to 2 ; flUT P IITt1t':I;1 r,l{, ' .

• (1 Ui P : IT i ~ Ui I ;:; III S f\. S'::. ~~fl, SF. j 0 I !~ r? (), S E 1, ~ .. SI::: 1 • :; E: :~, S E l. I; ,

\ SE?~,SF?_ ,P A ,p n.Pc,pf) .

'- [~ U) PIIT ( I en I h: ( j :, G 1 t ? I, S 1 ( :11 J 5 1' 1 " I, !:; I (!j , .!-i 1 6 1 An £ I<\JJ f'HtS ~­r: ur PIIT ( \ (; R I ~ bO , f. 5 ~ , 5 , 1 , S 2i~ l ." S 1 ? ? l l, S G:.l1, ~; ~ . 2 J !; I 2S ? 1

''''- IWTPIIT ( l toR I ' ;:> EPrns (lO 'ff' l flC

'r::Ttlp !iNO

I '

- 318 --

.... ' : ... .

. . ~ Cl rctn v .

EXTEND CC Flv-~ I VERS I~N n~l

<.-

\ C i'f</er;rn: '1M f: 1",>1 4 lJ'<!(/,[l',/~~ ) i:JI~ll."J/tTT ~IN S /1 1/ 0 to p[rErlE ;< C[ """R i it C r,A1.l.Y If; Tr'F I. CndL OUTPUT L/:I.\ D Af)lqrrt.NCr. . 3 C (lu I-TO Tf, TIoj F r '1/dl ! f.l t.R,' Pl,;n UF _SA L LY D!V r D;,:c r.y ;:~~P I "' lO ' ~9 I, C 'it) ftFT f.TIU,Y Ct.PA :::ITh. ·,Ct: TN PF~ ,) 1 '1 0£ PI.Ft:'O llY F' .1'1 O;./. t)

'" 7 J\ 9 10 11 12 I :~ \ 1} I" .)

,.£> 17 1 8 . 19 <!CI <'1 7.2 ' ?3 i? it 25 26 27 c B 29 30 31 3i? 33 34 35 :i(,

3 7 :U! :~9

'10

'" 1 Itt! 43

"' .. 4 :~ ~6 • 7 "g .. 9 50 5 1 52 s:~

!l~

55 ~ G (;]

!'Hl ~ .

60 h1 (, i!

Itl P LTCI T Cln? EX I S I ~ Cl M~~S l ~ h c rl b l

In C C!lN rTI',lJr:'

Ill: A 0 ( 1 O"i • ? r; I.' 1 111 J h;~ I A 3 • G ~ • A fj ~·A (" I. '71 II H I J'.. ~. I f. 1 0 I I . 11 • f . t 2 200 F(H-~r1 .A r!1~ ;:- )

'I F(~l., r:IJ.~)'O l Sf !.!;>

DAT A Pi /~'14t 59~h536 1 , 2A A? ~ P II PQ .o AlA ~ ~ ' ~ CC~ ( A2A , A18 ~ AI .Rl~IA2A l S r ( 1 1 .. C I~P I \c I h 1 /1. , .\ 1 a I Alt A u A._Pi/tHO.O 6 3 & " A l .~C~IA ~h l A3D • A~ ~q !~I' th l

S I ( ? I .. C I"P I X (.'.:J A 11.3 Fl I A6t p ~ G G P!/1 DC .o

r. r;, A .. 1.. " ~ cr' " ( II" A I AGS n A" . R l ~ f~6A I !'; I I~ I " (',P I X IA 5t" ·" 5P. ) A8A • AR . ~I/I Hn .o

A7A p 1..7.C C" I ~S '1 1 7B » A7 .S '~ fA8A ) !) 1( III .. rl~P I ~ Ii. 71. d . 711 i

AID A· Aln .PT/ lac .Q ~9A ~ Aq ~ CeR ( A l 0A )

690 • Aq ~ ni~(~!OAI S II !i l '" CIlP I 'll (J, ') ... . A~H\ ) L1 2A" hl ?P! /I MO .O All' k Al, ~~eq 'Al? A I Ali1'1 .. Al 1 "'~; ·I I A1 21. ) S 1 (A I -CM PL ~ , A 11 J. t I, II B ' ~A~?O. I SI (l I.S! ( 3 1 ·~1 f:) .S! ( _ JM S I(21 ~~ lf~I +S I ' 21~G!t41 ) Ga ~'-SI " l og I(?1 . S l' ~ 1 .S! (31-S I(3 1 .S1 ' ~ I. S I(1 J. Sl l~1 S C .... r; T , 1 ) ~ s ~ I ~ ) u 2 . O ~ <; r I t' " S 1 (3 1+5 T I , ) I" S r ( ' i ) 4, S I ( 2 I t,:; 1 f 3 I

, -~. n ~S TI 2 1 .C I' ~ I .S lf 3 -S I, .) ',~ OI'J ~B:f.V? ~/I" l~.'!; I' . SC

SU n .. ' MSi.l' + CS('ilY I S f')l l/ i?.o "s<\ 1 C2 r. .. ' ''SA "CS(J. rr sl"l ) 1/ 12 .(j +SA I

SE ll " M?C<. S~: :o SE? , • ":".0 "'3E'2 0 51:.3,) " r.f· '~' L X ( 1.,1;,0.0 ) fi E l~ ~ ~F 'I .~ 2 -4 . 0.SF30uS£30 S[2? ~f? \ 'U?4 . 0~SE3 0. SE30 S£1 :~ .. ( ~!;" ' 1' < CS(jq1 !S r: t2 ) 1/12.0.' 5r :lI) ' SE 1._ 1~<; . ' \ .. r ~(jp Y I SI:. 1 2 11/ (i:'.()"f'f: :HJ ' S E?:? ", ( 'ft <; r.- :.' 1 .. r. s c ~ T I !l E? .:! : ) I ( ;.!.. 0>, S;-:; 0 ) 5E?'I\··' -<;r:?1 ~CSGfl" ( Sf?? ) )/( ?.O"Sf 201 PI, .. U II).O "hi'II I' '' I A I /'< ,.r;'SE1 3 1I flr A I . (~": 1:J1 1I "! p(l .. P~I'}.Cl ~ !' T ."N;>( ld M.\r; ( SEHI>l(E:'L f SE 1 ~ :I / P T ~> C " , no.I) ... A r4 1';'! I .~l"'l}'G l sr;>"l I , ' fl£ L ( SE~ 3 ) ' ,' (>1 pO .. lilO'C: "" Th/J 2 ( J.iKA (j {f,F.;:?~ldH: f. 1 (!; I: < ', II/Pr PHJ.S~' ,0 e.o 1 F I P A • U '( • 1 • OF. .!, • A tiD , r, '. n.( • r u , :' 1). PA • G C • PC • ~ NO • P A • liE . f' I) 1

I P ... . ·.S £ " P I.

' J F IP ;,.r:;T". ()E - +.I;I~D.P~\ . tl E .PA.Am. r"'. ;'lE. PC .... ' <O PR. Cf. . P I 1 P)1 h f.;( • pn rF(l'r, :, r.~ .n£ .. .." . AI-JQ,F'C.t::t:"f''' , flfl f) .PC; .G E .l' • • :..JO,;> ' , GE.PO I .

t PHI.Sf .... PC

..

63 64. 1 .. 5 ;, (,

£,7 68 (> '9 ~O

7! 7? 7.3 7':·

. '/ G .. ' 7 ~; -n 13 79 eO III 112 S;~,

r,l). fl5 lie. H7 81.1 r.9 90 91 92 !)::!

9 /; S5 96 97 98 C)!1 100

.' 101 10 ? 10 3 10q

319 ,-

iF" ( ? r~ • G T • \ • !, [ ~ ~ • I. lin. P OJ. C; f: • Pit. ,'''if: . PD. G ( • PC • t. '.:r) • f-' l~ • r, [ • pe l 1 Pi-1AS[ 11 f'r;

S£3 \ .. r..InSt SE 1 ~1

SE3~ N (:~ aS t SE1~ J

5E31 - CftRS( SE231 5E3, • r. ft~S t SE2~ 1

I, TTrh Li .. \ 0 lfIP I-'4SF' .(O.P !IlATT[IJU " S[3 1 rr· ( P i·I, S"'.EQ.pr~ I", TTENU n S[J2 [F( P~ASE.F~.PC:'TrENU ~ 5E33 y P ( PMASF .r;:i.. f> OI I, rrcliu " SE3', p H~. ~f" ... ;'H A<:F It· rr/P; n,fl 5 !) 0 .• t. T1 l' rw "c ~:? U: { L OS ( P Ii " <; E ) J 5 I N I nu. S f: , ) S~ l .. en.-( xc C('S ( "PH,\sr ), S I 'I ( .. P'~:. !':F ) 1/.\ T t!;: /, l)

Sil l IS l (ll "."l ( 2 ) ... C 5',; 1·· S~:30 / ) ~ ( S tl 2 / ~~;r ( ;.1 ).' (S50 .. SEJO ) 1 t ~ ( sr I 3 1 .sr(\l~ I S':i l 5501l

G~·2u I SI (11 " I ::;5C SE3G ll + ( SI( ;~ ) .y.(::;'31··S50 ) )tc ::jr(:} ; 'HS"30~!':;~~t) ) S1.1 '1. f,~t/S 'l~

52 2 1' '" ( C:;50~.(C;T(<!)~· !;1. 1).· r. l! .. sr (1')/I S1 ( ~ i" :'I C111 ' !':t2;>1 :. ·· U i TC 11 "5'1 ) <> CSF.1C w S?2! I

SGt. II.,Sl?r i til (;l \ ~ ~H I b 1 I~C'??t 5 22 La S?r~ 1/ r'Gt.-r~

3l?S?1 ~ S\~~ 11 /SS6"

S 17 (7 { S! t i<: l &.!' ~ \ 1 ; I l S 2? -l'- ~ r ( {, i -(. S 12S ii 1 ··S ! 1 ~\ S 22 ) a20.(685(917) . A~1 . 'fio.r . ArAN2('IMAO (S171I REAL I SI" )/P! ZEPFPS • AL "O ( hTT ENUJ 7 Epr~S~ LP S (Z E r ERS '

pH" SF" P)o. !';~' '" 1 8 0 • 0 I P I SALLY ~ C. O;>. (1 ~5GAH l/ll tSaA H) . pUFJ:'l'J to .~ri::'O( eAI. LY)/(, 002~PI )

. OUT I'll T ( 1 en I !J. I J A? I 1.3 J A I" 1; '5 , .H. , A 7 , :. [\ I 1.9 I A 1 01 1. l ! , " , ? tl U1' Pl! T ( \ (~I: ) S r ( t 1 > S r ( ? i , '3 I ( 3) , S 1 ( I; I J S 1 ( G I J 5 r ( 6 ) , : . r r r ~I u; PH 1,5 t QUTPII,lIC!lIS 711. 2('),A" t, ZE?rnS .

Oll'( P I) T ( , C fl. 1 S~ .. riB.;, C/. sn I S E 1 0 I BE ? o , !'; Eli. I S . :' I I S f I 1, SE I ~ , , S E~~ / SF2 •• ~h/pn'~C,PD

(l u r P II ';'1 , I ~ 1\ 1 S !; c , S S 1 , S 1 \ I S?? t ; S 1 <, ;:> l. 1 , !; r. "d·I. f. ; ' ;:; , S 1 ;:> c.; 21 il U t "1 J T ( \ ('II I !': 4 1 • ~ 10 ? OU)' PuT ( 1 C r; I S All. Y /. PUFF I'

. GtI Ttl i nc SToP END

' . .

- 320 -

f\PPENDIX 12: 10

SOl1E STATISTIC1"L DEFIIHTIO;-JS --------_.----------------------

The PUl:-pose of this appendix is to define and clar.ify the

procedure used in derivin.g the results of chanters 8 and 9. . ~

}1ost of the lnfo:nllation. comes froD". the three main rDferences given at the end of t.his appendix. Derivation of ·the

equations used here will not 1.>e givc::n ilS they have already

been derived 'in their references.

The definition.s Rnd eqUalities, are listed 'belavn-

1: X-L is a measurement value assigned tCI the It i. tI th measurement. '

2: "YL. is the total number of 'measurements

3:

4:

5:

The mean (X ~) is defined as the (lVer,lgc of t 'rr,; measurements of ;(..i.-

t ,

,A.. :: "YV

... / I '\"-=: J'~= ~L'GL

.t ::: I

yTej o'ht.ed nl8::tn ( ?C.. ) is defined -----......,..- ). -l_c Ij'~t. :(.1-,as

::c -::::::. I. ..... """, _____ _

-<.. :..ff1.,..

L~= wL i -= I

~ihe.t'e W l..::: nu~ber 'of measurements for that particular ;;(.,L.

.. . . . .

-. . . . -\

'l'ho devlation ($1..) of a mca1:;:uremcnt X,t in a set of "n/ nIE~a::n:trC!ments is defined

.. . . . .

(11.10.1)

(11.10.2)

(11.10.3)

6:

- 321 -

'rIle preci sion or st:andard de::..v1.f.:Jti211 (d ) of a set of 'r(l"",' measurements is given by

.. . . . . NQ.t£: This is not the definition given by many hand calculat.ors e.g. Commodore type (m::4148H) etc. They usc the definition given in 7.

(11.10.4)

7: ' The bef?t_g§.timat:e of the st~md_i1t9_deyi~!:ion .. {w,., ... >,

8:

is defined as

I ..... (ll.lO.S)

. • th d f' 't" b d Tlus 18 ·.e e ·1n1. l.on. g1.ven by some .;::ttl·

calculat.ors e. g. Conunodore Type (SR4148R) et.c.

The variance ( d.2) is defined as the·squure of the standard deviation

, ..t.::: ')'V

[ft··· L:: I

• • • • • (11.10 .. 5)

It follows from 11.10.4 and 11.10.5 that

.... " ~' (11.10,,7)

9:

10:

11:

- 322 -

The stcmdard d('vi~tj:on of t:'he mean Cd (.c f1"I-)J is given as

• • • • If

Th~ best, estimate of the standard deviat.ion gf trl2...mean Cc,.'1"\" (><. 'I"~)j ,is' d~fi~;d -as-

The above is also called the Btandard error.

• ••••

(11.10.8)

(ll.10.9)

If the avera].l resul L.gf t "lV' measur~m(~nts _{ X ) is vrritten as

• • • • • (11.10.1.0)

If a Gaussian distribution is assmned, and ir

Sm.,'= AJ tr1J ,,~-< is detennined ,-lith a confidence level of 68.27%

SMI = \. C;5f'"",,, .. II H It It It 90 .10~~

S ... ,., J~.1 'I ".,...... ... rr I'(\.J., It " It '" " 95.45%

S rt\1::: 3 {J/I'(I.J, .\ " tt " " It 99.73'~'b

12: If Z"Ir.:. ex +- (t ";(..+ b '&' where C>(, (1.., b.,are constants then W1 th t 'l'\..' measurements of ;::. <mel f I'ff't.! meaSUrt~r.1ents of )\~ , the best estimate of the true value 7- is :.?'r,'I.trV'\...o and -_ ....... __ .. - ... -.;;::;. -----.-:;;..

• ••••

13:

- 323 -

and

al"ld the measured value Z is given by

z ~ .... - S ~('f'I'\, C:Z .. )

· . . . .. (11.10.12)

· ., ... (11.10.13)

• 4Ii • • • (11.10.14)

0( .c.. b • If 7- -:.;: x.. ~ , where C;, a., b, are constants then wi th t ')'1....' rneasurements of -:t , and tfrn ... ' measure­ment.s of ~ the £§.:'5~~8t.i.m9~!-.§. . ..srL!:ll~ true v<1tue gf Z ~J2.~ .. ~y-r~ and is g.ivEm l;ly

' ..... (11.10.15)

. , . . . (11.10.16)

, ~,

14:

• . ..

- 324 -

and

which gl.ves the measured v<:llue Z aD

If

4., >

• • • • •

• • • • •

• • • .. t

... , , .

ReferenceR - -~

1 Barford, N.C. 'Experimental Measurements; P recision, Error and l'ruth t Addison-WBsley Publishing Company Incox"porated (1967).

( 11 • 1 O. 1,7)

(11.10.18)

(11.10.19)

(11.10.20)

(11.10.21)

2 Young, Hugh D' 'sta.tistical rrreatment of Experimental Data l NeGra"W Hill BooJ\: Co (1962)

3 Brai thvtai te G ['" Titmus C, 'Lancl1cstcr Sl)ort stat.istical 'l'ables f English University Press 1967 reprinted 1972, 1973 & 1975.

* * .• * * * * *. * •

IMAGING SERVICES NORTH Boston Spa, Wetherby

West Yorkshire, LS23 7BQ . www.bl,uk

PAGE/PAGES EXCLUDED . UNDER INSTRUCTION ......... .

FROMTHEU!NIVERSITY ..

r '. r _ ":, :_'.;

. '.