Tensile structures Pneumatic Trussed Anticlastic Stayed Suspended Tensile structures

66
Tensile structures Prof Schierle 1 Pneumatic Trussed Anticlastic Stayed Suspended Tensile structures

Transcript of Tensile structures Pneumatic Trussed Anticlastic Stayed Suspended Tensile structures

Tensile structures Prof Schierle 1

Pneumatic TrussedAnticlasticStayed Suspended

Tensile structures

Tensile structures Prof Schierle 2

Stayed

Tensile structures Prof Schierle 3

McCormick exhibit hall ChicagoArchitect/Engineer: SOMTo span railroad trucks underneath, the truss roof issuspended by stay cables from concrete pylons.1 Axon2 Section3 Center joint4 Exterior jointA Pylon topB Stay cableC Truss web barD Stay bracketE Edge stay, resists wind uplift

Tensile structures Prof Schierle 4

Imos factory, Newport, UKArchitect: Richard Rogers Engineer: Anthony Hunt

Tensile structures Prof Schierle 5

Patscenter PrincetonArchitect: Richard RogersEngineer: Ove ArupStays resist both gravity load and wind uplift

Design alternates Lines meet = concentric joints

Tensile structures Prof Schierle 6

Renault Center Swindon, UKArchitect: Norman Foster

Tensile structures Prof Schierle 7

Golden Gate Bridge, photo courtesy Peter Craig

Suspended

Tensile structures Prof Schierle 8

Suspension span/sag ratios:

Small sag = large stress

Large sag = small stress but tall supports

Optimal span/sag ratio = 10

Tensile structures Prof Schierle 9

New York bridges:

• George Washington Bridge, top

• Roebling Bridge, bottom & left

(diagonal hangers resist deformation)

http://en.wikipedia.org/wiki/John_A._Roebling

Tensile structures Prof Schierle 10

Stability issues:1 Point load deformation2 Wind deformation3 Stabilizing cable to resist wind uplift4 Dead load to resist wind uplift

(increases seismic load)6 US pavilion Expo 57, Brussels

Circular compression ring resistslateral thrust effectively

6

Tensile structures Prof Schierle 11

Oakland Coliseum (1967)Architect: SOMEngineer: Ammann and Whitney

• Diameter 400 ft• Outer concrete compression ring• Inner steel tension ring• Steel strands for main support• Concrete ribs resist unbalanced load• X-columns resist lateral seismic load

Tensile structures Prof Schierle 12

Tensile structures Prof Schierle 13

• Dulles Airport Terminal• Left: Initial structure • Below: 1990 expansion

Tensile structures Prof Schierle 14

Exhibit Hall HanoverArchitect: Thomas HerzogEngineer: Schlaich Bergermann

Roof features:• 3x40 cm steel suspender band• Prefab wood panels with ballast gravel • Skylights provide lighting and ventilation

(prevent balanced suspender support)• Prestressed glass wall avoids buckling of

mullions due to roof deflection

Tensile structures Prof Schierle 15

Anticlastic

Anticlastic = saddle shape, inverse curvatures

Tensile structures Prof Schierle 16

Min

imal

Su

rfac

eMinimal surface equations (Schierle, 1977 *)

Y= f1(X/S1)(f1+f2)/f1 + X tan Y= f2 (Z/S2)(f1+f2)/f2

* Published in Journal of Optimization Theory and Application

The minimal surface conditions:• Minimum surface area between any boundary• Equal and opposite curvature at any point• Uniform stress throughout the surface• f1/f2 = A/B (Schierle, 1977 *)

Minimal surface vs. Hyperbolic Paraboloid

1 Minimal surface of square plan2 Hyperbolic Paraboloid of square plan3 Minimal surface of rhomboid plan

(membrane center below mid-height)4 Hyperbolic Paraboloid of rhomboid plan

(membrane center at mid-height)

Tensile structures Prof Schierle 17

Anticlastic Surface1 Opposing strings

stabilize a point in space2 Several opposing strings

stabilize several points

3 Anticlastic curvaturestabilizes a membrane

4 Membrane shear causes wrinkles in fabric

5 Stress without wrinkles

6 HP-surface Quadratic equation

7 Minimal surface

Tensile structures Prof Schierle 18

Fiber Orientation (Schierle, 1968)1 Orthogonal (causes shear stress)2 Principal curvature (avoids shear stress)3 Principal curvature vs.4 Generating lines5 Principal curvature orientation (small deflections)6 Generating line orientation (large deflections)Lesson: • Orient fibers in principal curvature• Avoid generating line orientation

Test

mod

el

Tensile structures Prof Schierle 19

Edge Conditions

1, 2 Edge Cable

3, 4 Edge Arch

5, 6 Edge Frame

Tensile structures Prof Schierle 20

Edge Cable

Tensile structures Prof Schierle 21

Edge Arch

Tensile structures Prof Schierle 22

Edge Frame

Tensile structures Prof Schierle 23

Surface Conditions

• Saddle shapes

• Arch shapes

• Wave shapes

• Point shapes

Tensile structures Prof Schierle 24

Saddle Shapes

1 Square / cable edge

2 Hexagon / cable edge

3 Square / arch edge

4 Oval / arch edge

5 Square / beam edge

6 Hexagon / beam edge

Tensile structures Prof Schierle 25

Saddle Shapes

Tensile structures Prof Schierle 26

Expo 64 LausanneArchitect: Saugey / SchierleEngineer: Froadvaux et Weber

• 26 restaurants featured regional cuisines• Symbolized sailing and mountain peaks

Tensile structures Prof Schierle 27

Arch Shapes

1, 2 Single arch / edge cable

3, 4 Twin arch / edge cable

5 Twin arch / edge arch

6 Single arch / edge arch

Tensile structures Prof Schierle 28

Arch Shapes

Tensile structures Prof Schierle 29

Skating rink MunichArchitect: AckermannEngineer: Schlaich / Bergermann

• Prismatic steel truss arch, 100 m span• Anticlastic cable nets• Wood slats• Translucent fabric

Tensile structures Prof Schierle 30

Wave Shapes

1 Ridge/valley cables,cable edge

2 Ridge/valley cables,beam edge

3 Ridge/valley beams,beam edge

4 Ridge beam/valley cablebeam edge

5 Ridge/valley cables,closed end

6 Ridge/valley cables,circular plan

5 6

Tensile structures Prof Schierle 31

Wave Shapes

Tensile structures Prof Schierle 32

Circular Wave Shapes

Tensile structures Prof Schierle 33

Point Shapes1 Mast punctures fabric2 Radial cables

3 Ring with radial cables4 Loop cable

5 Dish top6 Eye cable

7 Twin mast rows8 Three mast rows

9 Suspension cables10 Supporting cables

Tensile structures Prof Schierle 34

Point ShapesSea World Africa USAArchitect: SchierleEngineer: ASI

Tensile structures Prof Schierle 35

Ge

rma

n P

avi

lion

, M

on

tre

al

Exp

o 1

967

Arch

itect:

Rolf

Gutb

rot /

Frei

Otto

Engin

eer:

Fritz

Leon

hard

Tensile structures Prof Schierle 36

German Pavilion Montreal Expo 67Architect: Rolf Gutbrod & Frei OttoEngineer: Leonhard & Andrea

• Cable net of 75x75 cm meshes• Translucent membrane

suspended from cable net

Tensile structures Prof Schierle 37

Retractable roof Bad Hersfeld Architect: Frei Otto

Retra

ctable

umbr

ellas

Med

ina

A

rchite

ct: B

odo R

ush

Tensile structures Prof Schierle 38

Design Process

Stretch fabric models

Tensile structures Prof Schierle 39

Design Process computer models Cutting patterns by triangulation

Tensile structures Prof Schierle 40

Erection

Tensile structures Prof Schierle 41

Edge cablePrestress turn buckle

Fabric holder webbing

Details

Tensile structures Prof Schierle 42

Balance Forces

Balanced Unbalanced

Tensile structures Prof Schierle 43

Balance Forces

Balanced tension ring

UnbalancedTension ringrequirescostly footings

Tensile structures Prof Schierle 44

Olympic facilities MunichArchitect: Guenter Behnisch / Frei OttoEngineer: Fritz Leonhard

Design competition model

Design metaphor:Spider web over landscape

Tensile structures Prof Schierle 45

Olympic Stadium MunichArchitect: Guenter BehnischEngineer: Leonhardt und Andrae

The roof consists of 7 saddle-shape cable nets Anticlastic curvature provides stability: • Concave cables support gravity • Convex cables resist wind uplift• Cable net supported by:

• Masts at rear• Ring cable• Flying buttress

Tensile structures Prof Schierle 46

Stretch fabric model

Piano wire model

Tensile structures Prof Schierle 47

Cable net of 75 cm (2.5 ft) square mesh(flat squares formed anticlastic rhomboids)

edge

cable

edge

cable

soil a

ncho

r

Tensile structures Prof Schierle 48

Cable net lifted into space

Twin cables facilitate the deformation

Flat squares meshes deformed into rhomboids to assume anticlastic curvature

Tensile structures Prof Schierle 49

Cable net assumed anticlastic shape

Anticlastic net with acrylic glass roof

Tensile structures Prof Schierle 50

Arena roof• Translucent skin below cable net:

• Two layers of translucent fabric• 4” thermal insulation between fabric

Glass wall with cantilever trusses

Tensile structures Prof Schierle 51

Swim arena

• Point shape cable net (high and low points)• Translucent skin below net consists of:

• Two layers of translucent fabric• 4” thermal insulation between fabric

• External mast support

Tensile structures Prof Schierle 52

Acrylic panels of 3x3m (10’x10’) with neoprene joints are supported by75x75 cm (2.5’x2.5’) net of twin cables

Tensile structures Prof Schierle 53

Cable details

Tensile structures Prof Schierle 54

Mast details

Tensile structures Prof Schierle 55

Pneumatic

Air Supported Air InflatedFuji pavilion Osaka Expo 1970

Tensile structures Prof Schierle 56

Pneumatic structure types:

Left: Air inflated

Right: Air supported

1 Air inflated cushion

2 Air inflated vault

3 Air inflated dome

4 Air inflated dome grid

5 Air supported dome

6 Air supported vault

7 Air supported vault with cables

8 Air supported dome grid

Tensile structures Prof Schierle 57

US Pavilion Expo Osaka (1970)Architect: Davis Brody Engineer: Geiger, Berger• Size: 465 x 265 ft• Steel cables• Teflon-coated fiberglass fabric

Tensile structures Prof Schierle 58

Silverdome Pontiac, MI (1975)Architect: O'Dell Hewlett & Luckenbach Engineer: Geiger/Berger

Building data:• Capacity: 90,000• Size: 770’ x 600’• Air pressure: 5 psf • 10 - 75 hp fans • 15 - 100 hp fans• 50 revolving doors• 93 pressure balance doors

Tensile structures Prof Schierle 59

Cable TrussG G Schierle & UC Berkeley students

Tensile structures Prof Schierle 60

Cable trusses

1 Lintel trusses

2 Concave trusses

3 Lintel truss with compression braces

4 Lintel truss with compression struts

5 Concave truss with tension braces

6 Concave truss with tension struts

7 Concave/lintel truss with braces

8 Concave/lintel truss with struts

9 Gable truss with radial strut

10 Gable truss with center compression struts

11 Radial brace truss

12 Flat chord truss with compression struts

Tensile structures Prof Schierle 61

Auditorium Utica, NYArchitect: Gehron & SeltzerEngineer: Lev Zetlin

Tensile structures Prof Schierle 62

• Olympic pool• 4 multipurpose gyms• Cable trusses, 120’ span

Tensile structures Prof Schierle 63

Loyola University PavilionArchitect: Kahn, Kappe, Lottery, BoccatoEngineer: Reiss and Brown Consultant: Dr SchierleSpanning the long way provides openings to join outdoor seating for large events

Tensile structures Prof Schierle 64

Watts Tower CrescentArchitect: Ado / SchierleEngineer: ASI

Tensile structures Prof Schierle 65

Stadium roof Oldenburg, GermanyEngineer: Schlaich BergermannCable truss & anticlastic membrane panels

Tensile structures Prof Schierle 66

Tensile structures are fun