Sustainable Intensification of Maize–Legume systems for food ...

189
SECTION 3 HIGHLIGHTS FROM COUNTRY INITIATIVES

Transcript of Sustainable Intensification of Maize–Legume systems for food ...

211SIMLESASIMLESA

SECTION 3HIGHLIGHTS FROM COUNTRY INITIATIVES

212

13 A systems research approach to the sustainable intensification of agriculture in Australia’s northern grains regionDaniel Rodriguez

Key points

• TherearesignificantsimilaritiesbetweenthesubtropicalandtropicalagroecologiesofeasternandsouthernAfricaandAustralia.

• EvidencefromSIMLESAfieldtrialsineasternandsouthernAfrica,andassociatedinvestmentsinAustralia,suggestthatconservationagriculture-basedsustainableintensificationinQueensland’ssemi-aridtropicshassignificantpotentialtoreduceyieldgaps,increaseproductionefficienciesandimproveriskmanagement.

• ACIARinvestmentsinAfricaandAustraliahaveproducedsignificantbenefitsforAfricanandAustralianfarmersandcontributedtocapacitybuilding.

213SIMLESASIMLESA

CHAPTER 13

Introduction

Agriculturalsystemsinhigh-andlow-incomecountriesareknowntosufferdistinctiveproblems.Inlow-incomecountries,thelimitedavailabilityofresources(e.g.land,finance,labourandinformation)andthelackofaccesstoinputs,productmarkets,servicesandinfrastructureconstraintheopportunitiesandincentivesforsmallholderfarmerstochangeandimprovetheirfarmingsystems.Inhigh-incomecountries,increasesintheyieldoftraditionalcommoditiesareplateauingordecreasing,termsoftradecontinuetodecline,highlevelsoffarmdebtconstraininvestmentinmore-productivetechnologiesandinvestmentsinresearchanddevelopmentcontinuetodwindle.Inthischapter,wediscusstheseissuesinrelationtoAustralia’sagricultureandproposethat:

1. thereissignificantpotentialforconservationagriculture-basedsustainableintensification(CASI)inQueensland’ssemi-aridtropics

2. therearestillopportunitiestobridgeyieldgaps1 andincreaseproductionefficienciesindrylandcropping

3. thereisneedforresearchprogramsthataremoretransformativeandgeneratenewopportunitiestodiversifyfarmingsystemsandsourcesofincomeinachangingclimate.

ThesethreepointsarediscussedintermsofthelessonslearnedfromSIMLESAandassociatedresearchinvestmentsinAustralia.

Acrosstheglobe,mostfoodproductionsystemsface,inonewayoranother,significantcrises.Inhigh-incomecountriessuchasAustralia,thesearecrisesofsustainability,profitabilityandlackofinvestment,whichconstraintheopportunitiesforCASI.

SincetheGreenRevolutioninthe1960s,productivitygainsinagriculturecanbeattributedtoimprovementsinagronomy,breeding,thecroppingsystemandtheirinteractions.Thesignificanceoftheseproductivitygainsisreflectedinthefactthat,overthelast50years,wehavefedanadditional4 billionpeoplewithonlyan11%increaseinlandarea.Wealsoknowthatfutureproductivitygainsarelikelytobedrivenbyfurtherimprovementsacrossthesamedrivers.However,thistaskwillrequiremuchlargereffortstoachievesimilargains,particularlyconsideringthatyieldtrendsovertimeforrice,wheatandmaizeareplateauingordeclining(Grassini,Eskridge&Cassman2018),andthatthenegativeimpactsofclimatechangearebecomingmoreevident(Allenetal.2018).

Itisimportanttoclarifythat,intermsoftotalfactorproductivity,gainscanemergefromcombinationsofincreasesandevenreductionsinfarmoutput.Forexample,inAustraliabetween1977and2015,thetotalfactorproductivityofthebroadacreindustriesgrewbyabout1.1%annually.Thisincreasewasprimarilydrivenbyreductionsininputuse(–1%)ratherthanincreasesinoutputgrowth(+0.1%).Incomparison,intheUS,farm-leveltotalfactorproductivityhasincreasedsincethelate1940s,drivenprimarilybyincreasesintotaloutput(UnitedStatesDepartmentofAgriculture2019).Otherfigures(Sheng,Ball&Nossal2015)showthat,inrecentyears,Australia’stotalfactorproductivitygrowthratehasslowedrelativetothatofCanadaandtheUS.ThepoorerperformanceofAustralia’sagriculturesector,comparedtothatofCanadaandtheUS,hasbeenattributedtolowerlevelsofinvestmentinpublicresearchandinfrastructure(Sheng,Ball&Nossal2015).

1 Yieldgapsaredefinedasthedifferencebetweenfarmers’yieldandachievablerainfedyieldsfromtheapplicationofoptimumcombinationsofgenotypesandmanagementtositeandexpectedseasonalconditions.

SIMLESA214

SECTION 3: Highlights from country initiatives

Historically,Australia’spublicinvestmentinagricultureresearchanddevelopmentcontributedtoalmosttwo-thirdsoftheaverageproductivitygrowthbetween1952and2007(Zhang,Chen&Sheng2015).Structuralchangesinthesectoralsoallowedmoreefficientfarmerstoincreaseagriculturaltotalfactorproductivity(Shengetal.2016).Bothfactorshavebeenassociatedwithincreasedefficiencyintheuseoflabour,land,capital,inputsandultimately,increasedfarmproductivity.Largerfarmshadgreatercapacitytoinvestin,andwerebettersituatedtobenefitfromemergingproductivity-enhancingtechnologieslikelargemachinery,controltrafficandautomation.

In2017,croppingindustrieswerethelargestcontributors(1.54%)tototalfactorproductivityinAustralia,followedbybeef(1.3%),mixedlivestock–croppingfarms(0.9%)andsheep(0.3%)(ABARE2019).However,totalfactorproductivitygrowthforthecroppingindustrieshasnotbeenhomogeneousacrossthethreeAustraliangrain-croppingregions(western,southernandnorthern).Differencesbetweenregionsarefoundinthegrowthofinputandoutputmarkets.Forexample,thenortherngrainsregionhadthelowestinputsgrowth(0.6%)andaslowoutputgrowth(1.9%),resultinginthelowestnettotalfactorproductivitygrowth(1.3%)ofthethreeregions.Therearemultipledifferencesbetweenregions(e.g.soils,climate,croppingsystem).Forexample,thesouthernandwesternregionshaveMediterraneanclimates,whilethenorthernregionhasmoreevenlydistributedrainfallinitssouthernandcentralregions,andapredominantlysummerrainfallenvironmentinthenorth.Climate,particularlydroughts,canmodifythevaluesoftotalfactorproductivityacrossregions,althoughclimateconditionshavebeenmoresevereinthewesternandsouthernregions(AustralianBureauofAgriculturalandResourceEconomicsandSciences2019).Thepoorperformanceofthenortherngrainsregioncouldbeprimarilyattributedtoitslowinputgrowth,particularlyfertilisers.Growthinthenorthernregionwas1.3%,comparedwith1.9%and1.4%forthesouthernandwesternregionsrespectively(GrainsResearchandDevelopmentCorporation2017).

InthenorthernregionsofAustralia,thegrainsindustryhasbeencharacterisedbysizeableyieldgaps2(Clarkeetal.2019),smallprofitmargins(Roxburgh2017)andlarge-scaleproductionsystemsthatgrowalimitednumberofcommodities.Climatevariability,poortermsoftradefortraditionalcommoditiesandhighlabourcostshavecontributedtothiscondition.Marketfactorshavealsoconstrainedlarge-scalefarmerstoproduceasmallnumberofcommodities.Thestrategyofdiversifyingcroppingsystemswouldrequirebetteraccessandmanagementofadiversityofinputandoutputmarkets,aswellasawiderrangeoftransport,storageandexportoptionsandinfrastructureforsmallervolumesofhigh-valueproduces.Acrossthenortherngrainsregion,thehighhandlingcostofexportingcontainerisedproducehaslimitedfarmers’opportunitiestodiversifycroppingactivitiesandgeneratedlow-cost,large-scale,risk-averserainfedfarmingsystems(Figure13.1).

Next,wewilldiscusstheseissuesinreferencetoAustralianagricultureand proposethat:

1. thereissignificantopportunitytosustainablyintensifyagricultureinAustralia’ssemi-aridtropicsbyreducingyieldgaps andincreasingproductionefficienciesindrylandcropping

2. thereisaneedforresearchprogramsthataremoretransformativeandgeneratenewopportunitiestodiversifyfarmingsystemsandsourcesofincomeina changingclimate.

2 Yieldgapsaredefinedasthedifferencebetweenfarmers’yieldandachievablerainfedyieldsfromtheapplicationofoptimumcombinationsofgenotypesandmanagementtositeandexpectedseasonalconditions.

215SIMLESASIMLESA

Lack of incentives and opportunity to

diversify rainfed cropping systems

Sizable yield gaps in rainfed

systems

Mediumtohighclimatevariability,highvulnerability,highrisk

aversion

Small profit margins and equity levels

Poortermsoftrade andhighcosts

Large-scale cropping of traditional

commodities

Lowpricesfor traditionalcommodities,highinputcosts,high

farmdebtlevels

Figure 13.1  Drivers of and constraints to farmer-led diversification of rainfed cropping systems in Australia’s northern grain region

Optimum crop designs to reduce yield gaps

Inprinciple,cropproductionisafunctionofacrop’sabilitytocaptureresources,chieflyradiationandwater,andtheefficiencyofthecropinconvertingtheseresourcestodrymatterandgrain(Rodriguez&Sadras2007).InAustralia’snortherngrainsregion,bothwateravailabilityandwateruseefficiency,andheatstress,arethemainconstraintstosummercropproduction.Whilewateravailabilityisdeterminedbysoiltype,management,rotationandin-croprainfall,wateruseefficiencyishighlyrelatedtocropnitrogenavailability(Sadras&Rodriguez2010).Numerousinteractionsbetweenwaterandnitrogensupplyarewellcharacterised,particularlyinrainfedsystems.Forexample,inenvironmentswherewaterlimitscropgrowth,areducedbiomassearlyintheseason,drivenbylowerthanoptimumlevelsofnitrogensupply,reducesthelikelihoodofwaterstressduringcriticalperiodsaroundfloweringlaterintheseason.Thishasbeendescribedasthetrade-offbetweenyieldpotentialandlowerbutmorestableyields(Sadras,Roget&Krause2003;Sadrasetal.2016).Heatstressatairtemperaturesabove38 °C,hasalsocausedpollensterilityaroundthecriticalfloweringstageandreducedtheyieldofsummercrops(Singhetal.2015).Managementthatstaggersthefloweringstageofcropdevelopmentandthetimeoftheseasonwithahighlikelihoodofheatstresshasprovidedimportantopportunitiesforfarmerstodrasticallyminimiseyieldreductionsintheregion.

CHAPTER 13

SIMLESA216

SECTION 3: Highlights from country initiatives

Anopportunitytoreduceyieldgapsandincreaseproductivitycanbefoundfromtheadoptionofcropdesignsthatarebetteradaptedtositeandexpectedseasonalconditions.Cropherereferstocombinationsofgenotypes(G)andagronomicmanagementpractices(M)thatbestsuittheenvironment(siteandseasonalconditions,E) (Hammeretal.2014).Forexample,eventhoughthereareonlysmallvariationsbetweenhybridsintermsoftilleringpotential,maturityandstay-green(Clarkeetal.2019),variouscombinationsofhybridsandmanagementpractices,primarilyplantdensity,resultedin50%and48%yielddifferencesinsorghumandmaize,respectively,acrossenvironments,yieldingonaveragebetween0.5 t/haand11 t/ha,respectively(Figure13.2).Interestingly,theyielddifferencesobservedinFigure13.2aand13.2ctranslatedintosixfoldandfourfoldincreasesinwateruseefficiencyinbothsorghumandmaize,respectively(Figure13.2band13.2d).

Yiel

d (k

g/ha

)

Environment yield (kg/ha)

00

2,000

2,000 4,000 6,000 8,000

4,000

6,000

8,000

10,000

60%

48%

12 kg/mm/ha

2 kg/mm/ha

16 kg/mm/ha

4 kg/mm/ha

Haildamage

Heat stress

(a)

Yiel

d (k

g/ha

)

Available water (0–1.2 m, mm)

00

2,000

200 400 600 800

4,000

6,000

8,000

10,000(b)

(c) (d)

Yiel

d (k

g/ha

)

Environment yield (kg/ha)

00

2,000

4,000 8,000 12,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Yiel

d (k

g/ha

)

Available water (0–1.2 m, mm)

00

2,000

200 400 600 1,000800

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Figure 13.2  Yield of sorghum (a and b) and maize (c and d) hybrids across management combinations (i.e. plant densities, row configurations, sowing times) versus the average site yield (a and c) and total available water (b and d) for on-farm trials across the northern grains region of Australia sown during the 2014–16 seasons

217SIMLESASIMLESA

CHAPTER 13

Bothsorghumandmaizedatasetswereanalysedinthreestages:

1. exploringcropecophysiologicalrelationshipsbetweenmeasuredvariables

2. usingdata-miningtechniques

3. usinglinearmixedmodelstoidentifylevelsofsignificanceinmultienvironment(genotypeandenvironmentcombinationsandinteractions)trials.

Usingtheresultsfromon-farmtrials,simplerulesofthumbforfarmersweredevelopedusingdata-miningtechniques(Figures13.3and13.4).Forexample,thesorghumdataconsistedof488estimatedtreatmentmeans(i.e.combinationsofhybrids,rowconfigurations,densities,sitesandseasons).Themedianyieldwas5.3 t/ha,withminimumandmaximumtreatmentyieldsof1.7and12.8 t/harespectively(13.5%moisturecontent).Figure13.3ashowsthatintheabove-medianyieldingenvironments(>5.3 t/ha),thehighestyieldswereobtainedusingplantpopulationshigherthan50,000plants/haandhigh-yieldpotentialhybrids.Figure13.3bshowsthatinthebelow-medianyieldingenvironments(<5.3 t/ha),thehighestyieldswereobtainedinsolid1 mrowconfigurationsplantedat50,000–60,000plants/ha.

ThemaizeyielddatasetalsoconsistedofmultienvironmentG×Mtrialssownduringthe2014–15and2015–16seasonsacrosstheLiverpoolPlain,eastandwestofMoree,theDarlingDowns,WesternDownsandcentralQueensland.Treatmentsincludedfivefactors:site,irrigation,rowconfiguration,hybridandplantdensity.

Soilmoistureatsowing(initialsoilwater0–1.2 m, mm)wasthemostimportantvariablefordeterminingmaizeyieldundersuboptimalgrowingconditions(below-median-yieldenvironments)(Figure13.4a).Whentheinitialsoilmoistureatsowingwasmorethan184 mminthe0–1.2 mofsoilprofile,therewasonlya25%distributionofyieldsbelowtheeconomicthreshold,i.e.3.5 t/ha.Withlessthan184 mmstoredinthetop1.2 mofthesoil,thecropwashighlyreliantonin-cropseasonrainfall.Forexample,mostyieldswerebelowtheeconomicthresholdwhensoilmoistureatsowing(initialsoilwater)wasbetween150 mmand184 mm(18sites),but50%oftheyieldswerelowerthan3.5 t/ha wheninitialsoilwaterwasbelow150 mm.Inabove-median-yieldenvironments,cropconfigurationwasthemainvariabledividingthepopulationoftreatmentyields.Super-wideconfigurationhadthelowestyields.Withinthesolidcropconfigurations,thehighestyieldswereobtainedwithhighlyprolifichybrids.Amongthenon-prolifichybrids,thehighestyieldswereobtainedwiththehighestpopulations(i.e.≥4,800 plants/ha).

SIMLESA218

SECTION 3: Highlights from country initiatives

Figure 13.3  Rules of thumb to identify high-yielding crop designs (genotype and environment combinations) for sorghum production in high- and low-yielding environments

Notes:Genotypeandenvironmentrulesseparatingyieldlevelsforbelow-medianandabove-median (5.3 t/ha)yieldenvironments.Thedashedredlineindicatesthebreak-evenyieldof2.5 t/ha.

(a) Above-median-yield environments (>5.3 kg/ha)

(b) Below-median-yield environments (<5.3 kg/ha)

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

n n n n

Plant density

Plant density

Plant density Plant densityTillering

ISW

Configuration

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

n n n n n n n

219SIMLESASIMLESA

CHAPTER 13

(a) Above-median-yield environments

(b) Below-median-yield environments

Configuration

Note: ISW = Initial soil water (mm)

Note: ISW = Initial soil water (mm)

Super wide

Tiller prolificity

Density

Solid

n

n n n

n

,

,,,,,,

,

,,,,,,

,

,,,,,,

,

,,,,,,

n n

,

,

,

,

,

,

,

,

,

,

,

,

Figure 13.4  Rules of thumb to identify high-yielding crop designs (genotype and environment combinations) for maize production in high- and low-yielding environments

Notes:Genotypeandenvironmentrulesforbelow-medianandabove-median-yieldenvironmentsthatdiscriminatehigh-andlow-yieldingtreatmentsfromamultienvironmenttrialacrossAustralia’snortherngrainsregion.Thedashedredlineindicatesa break-evenyieldof3.5 t/ha.

SIMLESA220

SECTION 3: Highlights from country initiatives

Theseresultsshowthatmanagementoptions,includingplantpopulation,rowconfigurationandsowingdate,affectthepatternofwateruseoverthegrowingseasonandthefinalyield.Thefindingsdemonstratethatitispossibletoidentifythecombinationsofhybridandmanagementthatmaximiseyieldsandprofits,orminimiserisks,foragivensowingenvironment.Asshownabove,cropyieldscanbehighlyvariableunderaclimatethatproducescontrastingandchangingsowingenvironments.

ThemainchallengeinidentifyingoptimumG×Mcombinationsispredictingrelevantattributesoftheenvironmentatthetimeofsowing.Inherenttodrylandcroppingisahighlevelofseason-to-seasonandwithin-seasonclimatevariability.Australiahasalongtrackrecordofvaluabledevelopmentsinclimatesciencesandapplications(Hammeretal.2014).Seasonalclimateforecastswerecreatedandusedtoinformlikelyseasonalconditionsandpracticechange(seethefarmerdecision-supporttoolClimateKelpieathttp://www.climatekelpie.com.au).However,adoptionremainslowdueto:

• theperceivedlowvalueoftheexistingskillintheinformationofseasonalclimateforecasts

• thecomplexitiesassociatedwiththemultipleinteractionsbetweenfactorswhenmanagingbiologicalsystems(i.e.climate,soilandcropinteractions)andtheireffect ontheskillandvalueofcropyieldforecasts)

• thechallengeofunderstandingandcommunicatingprobabilisticinformation,especiallybyrisk-aversefarmmanagersandconsultants.

WeassessedourcapacitytoinformcropdesignunderSIMLESAbasedonpredictedsowingenvironments(i.e.theaccuracyofseasonalclimateforecasts).Thiswasachievedbylinkingatestedcropmodel(APSIM)withaskilfulseasonalclimateforecastingsystem.Resultsshowedthattheseasonalclimateforecastwasreliableandskilfuland,whenlinkedwithAPSIM,theanalysiscouldidentifycropdesignsthatincreasedfarmers’profits(Rodriguezetal.2018).

Thevalueinskilldependedonthebaselineusedforthecomparison.Whencurrentfarmers’practicewasusedasthebaseline,linkingAPSIMsorghumandPOAMA-2increasedaverageprofitsbyA$143/haandreducedoreveneliminateddownsiderisk(Table13.1).Whenthebaselineforthecomparisonwasthehighestyielding,statichybrid-by-managementcombination,theactualvalueoftheadditionalclimateinformationwas,onaverage,A$17/ha/year,whichisroughlyequivalenttothebenefitsderivedfromAustralia’ssorghumbreedingoverthelast30years(i.e.2.1%peryear,or44 kg/ha/year).Theseresultsindicatethat,eventhoughthevalueoftheadditionalclimateinformationmightseemsmall(ValueoptSCF),itsmagnitudecompareswellwiththatderivedfrommuchlargerandbetter-fundedbreedingprograms.Muchlargerbenefits(ValueoptS)mightberealisedwhenusingsuchinsightsindiscussionswithfarmersonbenefitsandriskfromincreasinginvestmentsindrylandcroppingtosustainablybridgeproductivityandprofitgaps.

Theseeffortshavemadeitpossibletoinformoptimumcropdesignstoincrease farmers’profitsandreducerisksusingreliableandskilfuldynamicGCMmodels,interfacedwithvalidatedcropsimulationmodels.ThereleaseofAustralianBureauofMeteorology’snewhigherresolutionandmoresophisticatedACCESS-S1seasonalclimateforecastsystemearlyduring2018islikelytofurtherincreasethevalueofclimateinformationwhenlinkedwithcropsimulationmodelslikeAPSIM.However,toachievethosegains,improvementsindownscalingtechniquesandreal-timeaccesstooutputsfromtheBureauofMeteorology’sseasonalclimateforecastswillberequired.Further, thisinformationneedstobetranslatedandmadeavailabletodecision-makersinaformthatisunderstandableandusable.

221SIMLESASIMLESA

CHAPTER 13

Table 13.1  Mean profits from farmers’ current practice and crop designs optimised based on simulation using climatology and profit gains from the optimised crop designs

Soil type (PAWC)

Profit (A$/ha)

Farmers’ current practices

Optimised Valueopts ValueoptSCF

Capella high 1,108 1,260 152 3

medium 748 824 77 3

low 544 600 56 4

Dalby high 1,127 1,337 210 13

medium 1,048 1,241 194 17

low 795 913 118 12

Goondiwindi high 866 1,092 226 16

medium 841 1,011 170 63

low 678 793 115 6

Moree high 1,025 1,226 202 23

medium 814 962 148 32

low 373 427 54 19

Notes:PAWC=Plantavailablewatercontent;Valueopts=differenceinprofitbetweensimulationsofcurrentfarmers’ hybrid-by-managementcombinationsandastatus(everyyearthesame)optimisedhybrid-by-managementcombination;ValueoptSCF=differenceinprofitbetweenValueoptsandthedynamicallyoptimisedhybrid-by-managementcombination informedbythePOAMA-2seasonalforecasts.

Increasing efficiencies of external inputs

In2015,AustraliansorghumproductionwasworthA$647 million.Inthesameyear,sorghumbecamethemosteconomicallyimportantcropinQueensland.IntheDarlingDownsregion,sorghumcroppinghasbeenthemainsummercroppingactivity,usingupto37%ofcroppedareaperyear.Understandingwhatmakesasuccessfulsorghumfarmercanhelpinformpracticechange,gapsininformationandinvestmentinresearchanddevelopmentprograms.Withtheobjectiveofimprovingourunderstandingofthedriversforhighsorghumyield,Roxburgh(2017)combinedfarmers’surveydataandcropmodellingapproachestoderiverelationshipsbetweenfarmers’levelofinvestment,farmdebtandproductivity.

ResultsinFigure13.5arefrominterviewswithfarmersreportingon74sorghumfieldssownbetween2010–11and2013–14intheDarlingDowns(Queensland,Australia).Tenfarmsprovidedsufficientdataondebtlevelstobeincludedintheanalysis,withfivefarmersineachdebtgroup.

Thedatasetincludedsurveysfrom13farmsanddatafrom75sorghumfieldsgrownbetween2010and2013acrosstheDarlingDowns.Resultsshowedsubstantialdifferencesinyield(3,882–7,112 kg/ha),wateruseefficiency(8–15 kg/mm/ha);nitrogenuseefficiency(35–78 kg grain/kg N)andgrossmargin(397–930A$/ha)betweenfarmers’fields.Logisticregressionanalysisindicatedthatthebest-performingfieldsweresownbeforeearlyOctoberandhadhigherapplicationratesofnitrogenfertilisers(atleast80 kg N/ha).

SIMLESA222

SECTION 3: Highlights from country initiatives

However,farmersappearedlesswillingtoinvestininputs(i.e.nitrogenfertilisers)andhadlowervariablecostswhenthefarmhadhigherlevelsofdebtperunitoffarmarea(Figure13.5).TheinterviewsfoundthatfarmbusinesseswithdebtsofmorethanA$1,831/haachievedlowersorghumyields(leftbranchinFigure13.6a)andhadlowersorghumgrossmargins(leftbranchinFigure13.6b).FromtheresultsshowninFigures13.5and13.6,Roxburgh(2017)concludedthatfarmers’decisionstoinvestincropinputsweredirectlyimpactedbytheirlevelofindebtednessperhectare.Farmdebtreducedtheadoptionofyield-increasingtechnologies.Highlevelsoffarmdebtledtounder-investmentinnitrogenfertilisers,lowergrainyieldsandlowergrossmarginscomparedtofarmswithlessdebt.

Toquantifydownsiderisk(i.e.theproportionofyearsinwhichsorghumyieldswerebelowaminimumprofitableyieldof1.5 t/ha)ofnitrogenfertilisationmanagementdecisions,anAPSIMsimulationandanalysisusinglong-termclimaterecordswasconducted(Figure13.7).Alargediversityinsorghumyield,wateruseefficiencyandnitrogenuseefficiencywasfoundamongsorghumfarmers’fieldsintheDarlingDowns.Thesedifferenceswerelargelyassociatedwithdeficientagronomicmanagementpractices(i.e.sowingdate,soilfertilitydifferencesandlevelsofnitrogenfertilisation).Downsideriskwasunchangedataround20%,withmorethantwofoldincreasesinthelevelofnitrogenfertilisationacrossarangeofsowingtimes,whilethelikelihoodofabove-medianandupper-tercilegrainyieldsincreasedsignificantly.Raisingawarenesssurroundingtheincentivesidentifiedinthisriskassessmentmightchallengefarmers’currentunderstandingofriskexposureandencourageinvestmentinapplyingCASIpracticeinsorghumcropping.Resultsalsoemphasisetheopportunitytoincreasesorghumyieldsandprofits,andclearlyshowtheneedformoreintegrativefarm-levelstudiestoinformtherelationshipbetweenfarmdebtlevelsandoptimumcropmanagement.

Num

ber

of fi

elds

(a)

<80 kgN/ha

80-120 kgN/ha

Nitrogen input applied

>120 kgN/ha

0

10

15

20

5

25

30

35

Low debt/ha High debt/ha All fields

Num

ber

of fi

elds

(b)

<300$/ha

<300-360$/ha

Total variable costs

>360$/ha

0

10

15

5

25

20

30

35

Figure 13.5  (a) Use of nitrogen fertilisers and (b) total variable costs for farms with above- and below-mean debt.

223SIMLESASIMLESA

Debt effect on yield

Debt≥A$1831/ha

Yes No

Low.80 .20

40%

High.29 .71

60%

Debt effect on gross margin

Debt≥A$1831/ha

Yes No

Low.92 .08

38%

High.23 .77

62%

CHAPTER 13

Figure 13.6  Classification tree for the effects of farm debt on (a) sorghum yields and (b) gross margins

Figure 13.7  Likelihood of achieving (a) yields lower than 1.5 t/ha, (b) above-median yields and (c) yields in the upper tercile

Dow

nsid

e ri

sk

(a)

15 Sep 22 Sep 29 Sep 6 Oct 13 Oct 20 Oct0

0.15

0.20

0.25

0.05

60 kg N/ha 100 kg N/ha 140 kg N/ha

0.10

Prob

abili

ty o

f ab

ove–

med

ium

yie

ld

(b)

15 Sep 22 Sep 29 Sep 6 Oct 13 Oct 20 Oct0

0.40

0.60

0.80

0.20

Prob

abili

ty y

ield

in

uppe

r–te

rcile

(c)

15 Sep 22 Sep 29 Sep 6 Oct 13 Oct 20 Oct0

0.40

0.60

0.80

0.20

SIMLESA224

SECTION 3: Highlights from country initiatives

New opportunities from a changing climate

InbothAfricaandAustralia,climatechangeisleadingtoshiftsincroppingpatterns.Waterstressandextremeheatduringfloweringtimeshavebeencommonabioticstressesthatlimityieldinsummercroppingacrossthenortherngrainsregion.Avoidingtheoverlapofsensitivecropstagesaroundfloweringwithperiodshavingahighlikelihoodofheatandwaterstresscanhelpfarmersreducelosses.Earlysowingcanalsoincreasethelikelihoodofdoublecroppingawintercropafterashortsummerfallow.Previousresearchidentifiedthatmaizeandsorghumcropsshowsignificantcoldtoleranceandhigh-yieldpotentialwhensowninwinter.Eighteenon-farmandon-stationG×MtrialsweresowninalatitudinaltransectbetweenBreezaintheLiverpoolPlains(NewSouthWales)andEmerald(centralQueensland)todetermineifsowingsummercropsinwinterisafeasiblemeansofadaptingthecroppingsystemtoahotterandmorevariableclimate.

Initialresultsontheemergenceofsorghumplantedatsoiltemperaturesrangingbetween10°Cand27°Catsowingdepthshowedthatcolder(<15 °C)andhottersoils(>22 °C)tendedtoreducecropemergencebetweennil(noreduction)and20%acrossalargerangeofhybrids.Reductionsincropemergencecanbeeasilycompensatedforbyincreasingsowingrates,whilethelargestbenefitsarosewithdoublecroppingahigh-valuewintercrop(e.g.chickpea)thefollowingwinter.Eventhoughtheresultsareencouraging,questionsremainrelatedtothe:

• impactofcoldsoilsoncropemergenceandestablishment

• predictivecapacityofAPSIMtosimulatethepractice

• likelihoodandimpactofearlyfrosts

• effectsonwateruseandwateruseefficiency

• implicationsforoptimalcroppingsystems.

225SIMLESASIMLESA

CHAPTER 13

Conclusions

Theresultspresentedhereshowthatthereissignificantvalueinlinkingcropsimulationmodellingandseasonalclimateforecastingtoolstoinformoptimumcropdesigns.However,increasedeffortsshouldbeinvestedinsimplifyingandcommunicatingcomplicatedprobabilisticriskmanagementinformationtomakeiteasierforfarmerstouse.Itcouldalsobeinferredthatproductivityandfarmprofitswouldincreaseiftheinformationincreasedfarmers’confidenceindecisionstoinvestinmore-productivetechnologies(e.g.higherratesofnitrogenfertilisation).Ongoingclimatevariabilityandchangewillincreasinglychallengefarmersandresearchers;however,itisalsobecomingclearthatopportunitiesforsignificantchangesinourcroppingsystemscanbefound.Eventhoughmoreinformationisrequired,sowingsummercropsinwinterappearstobepossibleandprofitable,andbreedingcompanieshaveshowninterestandarestartingtodevelophybridswithenhancedcoldtolerance.

Thecommondenominatorintheworkpresentedinthischapterhasbeentheapplicationofasystemsresearchapproachtoconservationagriculture-basedsustainableintensificationofsorghumcroppingsystemsinAustraliabymultidisciplinaryteamsofagronomists,cropphysiologists,climatologistsandsocioeconomicscientists,inpartnershipwithparticipatingfarmersandagribusinesses.

Itisclearthatfuturegainsintheproductivity,economic,environmental,socialandhumandimensionsoffarmingsystemsinAustraliaandAfricaneedtobepursuedthroughimprovementsinagronomy,breedingandthefarmingsystem,andtheirinteractions.This isonlyfeasiblethroughthedevelopmentofmoretransdisciplinaryresearchprograms.

InthecaseofbothAfricaandAustralia,thiswillrequirethedevelopmentofacoordinatedseriesofresearchactivitiesthataddressthechallengestointensifycrop–livestock householdsalongtheearlystagesoftheadoptionandimpactpathways.Research activitiesshouldinclude:

• ex-anteparticipatoryidentificationandquantificationofbenefitsandtrade-offs,totargetandprioritiseinterventions

• on-farmsystemsresearchtotestthetransformationalpotentialofadoptingsingleandmultipletechnologiesincrop–livestocksystemsincollaborationwithcasestudyfarmers

• developmentandtestingoftoolsforfarmers,suchasclimateinformationapplicationsandservices

• capacitybuildingonthedesignofintegratedfarmingsystems,cropsystemsmodelling,theuseofclimateapplicationstoinforminvestmentdecisionsonfarmandalongvaluechains,andengagementwithpolicy.

SIMLESA226

SECTION 3: Highlights from country initiatives

ReferencesAllen,MR,Dube,OP,Solecki,W,Aragón-Durand,F,Cramer,W,Humphreys,S,Kainuma,M,Kala,J,Mahowald,

N,Mulugetta,Y,Perez,R,Wairiu,M&Zickfeld,K2018,‘Framingandcontext’,inMasson-Delmotte,V,Zhai,P,Pörtner,H-O,Roberts,D,Skea,J,Shukla,PR,Pirani,A,Moufouma-Okia,W,Péan,C,Pidcock,R,Connors,S,Matthews,JBR,Chen,Y,Zhou,X,Gomis,MI,Lonnoy,E,Maycock,T,Tignor,M&Waterfield,T(eds),Global Warming of 1.5°C: An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty,IPCC.

AustralianBureauofAgriculturalandResourceEconomicsandSciences2019,https://www.agriculture.gov.au/abares.

Clarke,SJ,McLean,J,George-Jaeggli,B,deVoil,P,Eyre,J&Rodriguez,D2019,‘Understandingthediversityinyieldpotentialandstabilityamongcommercialsorghumhybridstoinformcropdesigns’,Field Crops Research,vol.230,pp.84–97.

GrainsResearchandDevelopmentCorporation2017,Farm business fact sheet: family and business,https://grdc.com.au/__data/assets/pdf_file/0027/248166/GRDC_ORM_FS_Farm-expansion-decisions_LR.pdf.

Grassini,P,Eskridge,KM&Cassman,KG2018,‘Distinguishingbetweenyieldadvancesandyieldplateausinhistoricalcropproductiontrends’,Nature Communications,vol.4,pp.1–11,doi: 10.1038/ncomms3918.

Hammer,GL,McLean,G,Chapman,SC,Zheng,B,Doherty,A,Harrison,MT,vanOosterom,E&Jordan,D2014,‘Cropdesignforspecificadaptationinvariabledrylandproductionenvironments’,Crop & Pasture Science,vol.65,pp.614–624,doi: 10.1071/CP14088.

Rodriguez,D&Sadras,VO2007,‘Thelimittowheatwater-useefficiencyineasternAustralia.I.Gradientsintheradiationenvironmentandatmosphericdemand’,Australian Journal of Agricultural Research,vol.58,pp.287–302,doi: 10.1071/AR06135.

Rodriguez,D,deVoil,P,Hudson,D,Brown,JN,Hayman,P,Marrou,H&Meinke,H2018,‘Predictingoptimumcropdesignsusingcropmodelsandseasonalclimateforecasts’,Scientific Reports,vol.8,pp.1–13,doi: 10.1038/s41598-018-20628-2.

Roxburgh,C2017,Nutrient management under conservation agriculture systems: a comparative analysis of Queensland and Mozambique,PhDthesis,UniversityofQueensland.

Sadras,VO,Roget,D,Krause,M2003,‘Dynamiccroppingstrategiesforriskmanagementindry-landfarmingsystems’,Agricultural Systems,vol.76,no.3,pp.929–948.

Sadras,VO&Rodriguez,D2010,‘Modellingthenitrogen-driventrade-offbetweennitrogenutilisationefficiencyandwateruseefficiencyofwheatineasternAustralia’,Field Crops Research,vol.118,pp.297–305,doi: 10.1016/j.fcr.2010.06.010.

Sadras,VO,HaymanPT,Rodriguez,D,Monjardino,M,Bielich,M,Unkovich,M,Mudge,M&Wang,E2016,‘InteractionsbetweenwaterandnitrogeninAustraliancroppingsystems:physiological,agronomic,economic,breedingandmodellingperspectives’,Crop and Pasture Science,vol.67,pp.1019–1053.

Sheng,Y,Ball,E&Nossal,K2015,‘ComparingagriculturaltotalfactorproductivitybetweenAustralia,Canada,andtheUnitedStates,1961–2006’,International Productivity Monitor,vol.29,pp.38–59.

Sheng,Y,Jackson,T,Zhao,S&Zhang,D2016,‘Measuringoutput,inputandtotalfactorproductivityinAustralianagriculture:anindustry-levelanalysis’,Review of Income and Wealth,vol.63,S169–S193,doi: 10.1111/roiw.12250.

Singh,V,Nguyen,CT,vanOosterom,EJ,Chapman,SC,Jordan,DR&Hammer,GL2015,‘Sorghumgenotypesdifferinhightemperatureresponsesforseedset’,Field Crops Research,vol.171,pp.32–40,doi: 10.1016/ j.fcr.2014.11.003.

UnitedStatesDepartmentofAgriculture2019,Agricultural productivity in the U.S.,viewed12June2020, https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx.

Zhang,D,Chen,C&Sheng,Y2015,‘PublicinvestmentinagriculturalR&Dandextension’, China Agricultural Economic Review,vol.7,pp.86–101,doi: 10.1108/CAER-05-2014-0052.

227SIMLESA

14 Achievements and prospects of CASI practices among smallholder maize–legume farmers in EthiopiaBedru Beshir, Tadesse Birhanu Atomsa, Dagne Wegary, Mulugetta Mekuria, Feyera Merga Liben, Walter Mupangwa, Adam Bekele, Moti Jaleta & Legesse Hidoto

Key points

• Conservationagriculture-basedsustainableintensification(CASI)practicesconsiderablyimprovedsoilpropertiesinmaize–legumefarmingsystems,resultinginincreasedcropproductivity,reduceddownsideriskandincreasedfarmers’incomesacrossdiverseagroecologicalzonesinEthiopia.

• Cropresidueretention,oneofthecomponentsofCASI,greatlyreducedsoillossbyerosionandincreasedrainwateruseefficiencyinmoisture-stressedareas.

• Partnershipsbetweenpublicandprivateactorsenhancedvarietyselection,production,disseminationandutilisationofmaize–legumeseedsforfood andfeed.

• CASIincludesmanydifferentpracticesthatcanbeappliedsimultaneouslyforincreasedbenefits.Disseminationneedstheapplicationofvariousextensionmethods,fromindividualmentoringtomassmediamessaging.CASIpromotioncanalsobeenhancedbyintroducingincentivesforfarmerssuchassubsidisedseedorfertilisersandsuitablefarmimplements.

• Cropresidueretentionismoredifficulttomaintainwithfreegrazinglivestockanditrequirespolicyinterventionatdifferentlevels,fromcommunitytonationalgovernment.

• Follow-upresearchprioritiesincludecrop–livestockintegrationforclimate-smartagricultureandriskandresiliencewithCASIpractices.

SIMLESA228

SECTION 3: Highlights from country initiatives

Background

MaizeandlegumesareimportantsourcesoffoodandincomeforsmallholderfarmersinEthiopia.Conventionalfarmers’practice,consistingofrepeatedtillagewithoutcropresidueretentionandmonoculture,hasresultedinsoildegradation.Fieldsurveys,varietyselection,on-stationandon-farmexperimentshavebeenconductedacrossmajorcereal–legumefarmingsystemsofEthiopiasince2010.Theexperimentsweretoevaluatetheperformanceofconservationagriculture-basedsustainableintensification(CASI)againstconventionalpractice,andtoselectcompatiblelegumevarietiesfortheCASIsystems.Varietyselectionwasconductedthroughfarmers’participatorytechniquesindifferentagroecologicalregionsofEthiopia.CASIpracticesincludedmaize–legumeintercropping;notillage,noburning,previousyearresidueretention(mulch);recommendedmaizefertiliserrate(usingcompoundnitrogen,phosphorusandsulfurfertilisersatplantingandurea)appliedtothemaize;andlegumesseededatthemiddleoftwomaizerowssimultaneouslywithmaize.Conventionalpracticesincludedfrequenttillage(onaverage,fourtofive),solecroppingandnoresidueretainedonthefarm,andmaizeaftermaizerotations.ResultsshowedthatCASIconservedmoresoilmoistureinmultiplecroppingandrotationsystemscomparedwithmonoculturepractice.SoillossandsedimentconcentrationweresignificantlyreducedandrainwateruseefficiencywashigherinCASIcomparedwithconventionalpractice.CASIpracticesimprovedsoilbulkdensity,organiccarbon,infiltrationrateandpenetrationresistance,andcropproductivity.HighercropyieldsunderCASIsystemswereachieved,particularlyinyearswithlowrainfall,indicatingtheresilienceofthepracticesduringstressseasons.Significantcropyieldimprovements,higherfinancialbenefitsandreducedrisksofcropfailurewereestablishedunderCASIsystems.Seedproductionofimprovedmaizeandlegumevarietieswasconsiderablyenhancedinmajormaize-andlegume-producingareasofEthiopiabyinvolvingpublicandprivateseedenterprises.Inthisregard,farmers’participatoryvarietyselectiontechniquesandvarietyselectioncriteriawereinstrumentalinmaizeandlegumevarietydisseminationanduptake.On-farmdemonstrationsandscalingoutofCASIpracticesplayedapivotalroleinawarenesscreation,technologydisseminationandadoption.Fielddays,exchangevisitsandagriculturalinnovationplatformswereestablishedandutilisedforraisingawarenessofCASIpractices.Themostcommonpracticestobeadoptedwereintercroppingfollowedbyrotation,reducedtillage,residueretentionandherbicideuse.Theinvolvementofmultistakeholdersinthescaling-outactivitiesandpilotingofCASItechnologiesacrossmajormaize–legume-producingareaswillbeinstrumentalinthedisseminationofCASItechnologiesinthefuture.Unavailabilityofherbicides,shortageofimprovedseedsandlivestockfeed,andfreegrazingarechallengestotheadoptionofCASIpracticesinEthiopia.

CASIistheissueofthedayforEthiopiancropproduction.Accordingly,conservationagriculture-basedsustainableintensificationconstitutescroppingprinciplesaimedatsustaininghighcropyieldswithminimumnegativeconsequencesontheenvironment.Inthisrespect,maizeandlegumefarminghasacriticalpositioninEthiopia(FoodandAgricultureOrganization2014).MaizeandmajorgrainlegumesarethemainsourceofincomeforEthiopianfarmers.Theindigenouscerealteff,wheat,sorghumandbarleyarealsostaplecropsgrowninthediverseagroecologiesofEthiopia.Maizeisastrategiccropforfoodsecurity,whilelegumesprovidevitaldietaryproteinandgenerateincome.InEthiopia,especiallyinthesitesselectedunderSIMLESA,maizeandlegumescoexistandareplantedinintercropping,croprotation,relayanddoublecroppingsystems.Whilemaizeisamajorcrop,legumesareusedasfertility-replenishingcropsinmaize–legumefarmingsystems.

229SIMLESASIMLESA

Importance of maize and legumes and their production challenges in EthiopiaTheproductionofmaizeandlegumesisgrowingrapidlyinareaandvolumeofharvest,expandingintonewfrontiersinmanypartsofEthiopiawherethesecropshavenottraditionallybeengrown(e.g.north-west,CentralRiftValley,easternandsouthernregions).MaizeisproducedinmajoragroecologiesofEthiopiaandistakingoverindigenouscrops,suchassorghum(Figure14.1).

!.

!.

!.

!.

!.

!.

!.

!.

Somali

Oromiya

AfarAmhara

SNNP

Tigray

Gambella

BSG

Dire Dawa

HarariAddis Abeba

Asosa

Mekele

Adama

Hawassa

JiJiga

Gambela

AsayitaBahir Dar

45°0'0"E

45°0'0"E

36°0'0"E

36°0'0"E

11°1

5'0"

N

11°1

5'0"

N

4°30

'0"N

4°30

'0"N¹

LegendMaize production (in qtl)

<3,000,0003,000,001 - 8,000,0008,000,001 - 20,000,000>20,000,000Regional boundaryLakesRoads

!. Towns

Political boundaries should not be considred as authoritative

Prepared by: Demeke Nigussie

2015

0 180 36090 KMs

Maize long-term average production (in qtl) by zone

Production (in qtl)

!.

!.

!.

!.

!.

!.

!.

!.

Somali

Oromiya

AfarAmhara

SNNP

Tigray

Gambella

BSG

Dire Dawa

HarariAddis Abeba

Asosa

Mekele

Adama

Hawassa

JiJiga

Gambela

AsayitaBahir Dar

45°0'0"E

45°0'0"E

36°0'0"E

36°0'0"E

11°1

5'0"

N

11°1

5'0"

N

4°30

'0"N

4°30

'0"N¹

LegendAverage area (ha)under Maize

<150000150001 - 350000350001 - 700000>700000Regional boundaryLakes

!. TownsRoads

Political boundaries should not be considred as authoritative

Prepared by: Demeke Nigussie

2018

0 220 440110 KMs

Long-term average area (ha) under maize by zone

Production (in qtl)

!.

!.

!.

!.

!.

!.

!.

!.

Somali

Oromiya

AfarAmhara

SNNP

Tigray

Gambella

BSG

Dire Dawa

HarariAddis Abeba

Asosa

Mekele

Adama

Hawassa

JiJiga

Gambela

AsayitaBahir Dar

45°0'0"E

45°0'0"E

36°0'0"E

36°0'0"E

11°1

5'0"

N

11°1

5'0"

N

4°30

'0"N

4°30

'0"N¹

Legend Production (in qtl)

-99 - 01 - 20002001 - 1200012001 - 147000147001 - 310730

!. TownsRoadsRegional boundaryLakes

Political boundaries should not be considred as authoritative

Prepared by: Demeke Nigussie

2016

0 220 440110 KMs

Long-term average production (in qtl) map of Haricotbean by zone

Source: Agricultural sample surveydata from 1999-20014/15

!.

!.

!.

!.

!.

!.

!.

!.

Somali

Oromiya

AfarAmhara

SNNP

Tigray

Gambella

BSG

Dire Dawa

HarariAddis Abeba

Asosa

Mekele

Adama

Hawassa

JiJiga

Gambela

AsayitaBahir Dar

45°0'0"E

45°0'0"E

36°0'0"E

36°0'0"E

11°1

5'0"

N

11°1

5'0"

N

4°30

'0"N

4°30

'0"N¹

LegendArea (ha) underharicotbean

No production or data<15001500.01 - 4500.004500.01 - 10000.00>10000

!. TownsRoadsRegional boundaryLakes

Political boundaries should not be considred as authoritative

Prepared by: Demeke Nigussie

2016

0 220 440110 KMs

Long-term average area (in ha) Haricotbean by zone

Source: Agricultural sample surveydata from 1999-20014/15

Figure 14.1  Long-term average maize production in Ethiopia by (a) weight and (b) area; long-term average common bean production in Ethiopia by (c) weight and (d) area

Note:Quintal(qt)=100 kg

CHAPTER 14

(a)

(c)

(b)

(d)

SIMLESA230

SECTION 3: Highlights from country initiatives

Between1995and2016,maizeproductionareasincreasedfrom1.5 Mhato2.1 Mhaandproductionjumpedfrom2.0 Mtto7.8 Mt(CentralStatisticalAgency2017).Maize(Zea maysL.)iscurrentlybeingproducedby10,863 millionfarmersinEthiopia(CentralStatisticalAgency2017).Thelegumespeciescommonlygrowninmaize-basedfarmingsystemsarecommonbean(Phaseolus vulgarisL.)andsoybean(Glycine maxL.).AccordingtotheCentralStatisticAgency(2017),commonbean(bothred-andwhite-seeded)isproducedbynearly4.0 millionhouseholdson290,202 haofland,withanannualproductionof480,000 tgrownoverwideragroecologiesinEthiopia.Soybeanisproducedby130,022householdson36,636 hawithtotalproductionof812,347 kg(CentralStatisticalAgency2017).Inaddition,mungbean(Vigna radiata)andlupin(Lupinus albus)occupylandareasof37,774 haand19,908 ha,respectively.Amongthelegumecrops,commonbeansareimportantasasourceofexportearningsinEthiopia.Forinstance,annualexportfromcommonbeanwasaboutUS$132 million,andthepricepertonnegrewatahighaveragerate(7.09%peryear)between2006and2015(Figure14.2).Legumesarealsoimportantforimprovingsoilfertility,astheyfixnitrogen.

Exp

ort

volu

me

(t)

Expo

rt v

alue

(US$

’000

)02005 2006

Volume Value Unit price (US$/t)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

50,000

100,000

150,000

200,000

250,000

344

483

592610

559 569

644 668

781

683

0

100

200

300

800

700

600

500

400

900

Figure 14.2  Ethiopian common bean export volume, value and price per tonne, 2006–15

InEthiopia,amajorcountrywidedroughtoccursevery10years,whiletherateisasfrequentaseverythreeyearsindrought-proneareassuchastheCentralRiftValley(Beshir&Nishikawa2017).Monocropping,frequenttillage(fourtofivetimesbeforeplanting),andcropresidueremovalorburningareverycommonpracticesinmaize-basedfarmingsystemsofEthiopia.Furthermore,1.5 billiontonnesofsoilistakenawayannuallybyerosion,ofwhich45%isfromarableland(Bewket&Teferi2009;Gelagay&Minale2016).TherateofsoilerosioninEthiopia(20–93 t/ha/year)isfourtimeshigherthanthatforAfricaasawholeand5.5timeshigherthantheworldaverage.SoilerosionfromcroplandscostsEthiopiaabout1.5 Mtofannualgrainproduction(Hurnietal.2015).Lemenihetal.(2005)documentedacontinualdeclineinsoilqualitywithincreasedfrequencyoftillageinEthiopia,provingthattheexistingfarmlandmanagementisnotsustainable.

231SIMLESASIMLESA

CHAPTER 14

Thesamestudyfurtherrevealedlossesof50.4%soilcarbonand59.2%totalsoil nitrogenover53yearsofcontinualcropping,comparedtothenaturalforest.Haileslassieetal.(2005)documentedadepletionrateof122 kg N/ha/year,13 kg P/ha/yearand82 kg K/ha/yearinEthiopia.ThesameworkshowedthatsoilnutrientstocksacrossregionalstatesinEthiopiawerediminishing,exceptinareasundervegetation.Arecentstudyinnorth-westernEthiopiashowedintolerableratesofsoilerosionreaching42 t/ha/year.Thehighestlosswasrecordedfromcultivatedlandsonsteepslopes (Molla&Sisheber2017)

Anotherimportantpressureonfarmlandistherapidlygrowinghumanpopulation.TheEthiopianpopulationisgrowingatanalarmingrate(2.9%peryear).Thetotalpopulationiscurrently105.35 millionandtheyoungpopulation(under24yearsofage)constitutes63.6%.Themajorityofthepopulation(79.6%)areruralresidents(WorldFactbook2017),whoselivelihoodsareprimarilybasedonagriculture.Productionandproductivityofcrops,includingmaizeandlegumes,aregrowingduetotechnologicalchanges(e.g.newcropvarieties,chemicalinputsandimprovedagronomicpractices).Climatechangeandvariabilityhavebeenposingchallengesforsoilproductivityandcropproduction.

AlthoughmaizeandlegumearemajorstaplecropsinEthiopia,theyfacemultipleproductionconstraints.Themajormaizeproductionchallengesarecausedbycontinualmonocroppingandresidueremoval(Wakeneetal.2011).Largeareasofhighlands(>1,500 mabovesealevel)areaffectedbysoilacidity.Accordingly,about43%oftheEthiopianarablelandwasaffectedbysoilacidity(Ethiosis2014).Mesfin(2007)reportedthatmoderatelyacidicsoils(pH <5.5)influencedcropgrowthconsiderablyandrequiredintervention.ThemainfactorsgivingrisetoincreasedsoilacidityinEthiopiaincludeclimaticfactorssuchasahighamountofprecipitation(thatexceedsevapotranspiration,whichleachesappreciableamountsofexchangeablebasesfromthesurfacesoil),temperature,severesoilerosionandrepeatedtillagepractices,wherethesoilisintensivelycultivatedandovergrazed.

Maizeismainlycultivatedbysmallholderfarmerswhodependonanimaltractionpowerunderrainfedconditions.ConventionaltillageformaizeproductioninEthiopiainvolvesploughingthreetofourtimesuntilafineseedbedisobtainedandkeptfortwotothreemonthspriortoplanting(Debele&Bogale2011).Thispracticecoincideswithhighandintenserainfall,leadingtohighsoilerosionandresultinginincreasedsoilacidityandlowsoilfertility.Soilandwatererosionandacidityarethemainproblemstodayinwesternpartsofthecountry.ThelargestareasofthewesternOromiahighlandsaredominatedbynitisolswithhighacidity(Mesfin1998;Temesgenetal.2011).Repeatedapplicationofacidicinorganicfertilisercouldalsoenhancesoilacidity,particularlyinconventionalsystems.Thenitrificationismoreenhancedinmuch-disturbedsoilthanthatwithminimumtilling.Nitrateleachingmightbeaggravated,whichincreasestheconcentrationofH+inthesoilsolution.Pastresearchindicatesthattheuseofdifferentagronomicmanagementpracticeslikecropdiversificationandintensificationusingrotationandintercropping,reducedfrequencyoftillageandresidueretentioncangreatlyimprovesoilacidityandincreasesoilfertilityandproductivity.Croprotationandintercroppingpracticeswithconservationagriculturehaveimprovedandconsiderablyenhancedsoilfertility(Abebeetal.2014).

SIMLESA232

SECTION 3: Highlights from country initiatives

TheissuesoffoodsecurityinagrarianEthiopiacallsforsustainedfoodproductionbyimprovingandmaintainingsoilfertilityandenhancingitsmoistureconservationcapacity.Sustainablecropproductionsystemsneedtobedevelopedtoaddressthechallengesofdepletingsoilfertility,climatevariabilityandgrowingpopulationpressureinEthiopia.TheSIMLESAprogram,fundedbyACIAR,wasdevelopedandimplementedinfiveAfricancountries(Ethiopia,Kenya,Malawi,MozambiqueandTanzania).SIMLESAactivitieswerebasedontheprinciplesofCASI.SinceCASIpracticesmayvaryacrossareasbasedonsoiltypes,moistureandslope,experimentswereestablishedacrossmajoragroecologiesanddatawereobtainedandanalysed.CASIincludedsimultaneousapplicationofminimalsoildisturbance,permanentsoilcoverusingcropresiduesorlivingplants,andcroprotations/associations(FAO2014).

SIMLESA program objectives in EthiopiaTheSIMLESAprogramhadthefollowingmajorobjectivesforEthiopia.MostobjectiveswerecommonacrosstheSIMLESAcountries;however,forageproductionandabroadersetofagroecologieswereconsideredinEthiopia:

1. characterisingmaize–legume(fodder/forage)systemsandvaluechainsandidentifyingbroadsystemicconstraintsandoptionsforfieldtesting

2. testinganddevelopingproductive,resilientandsustainablesmallholdermaize–legumecroppingsystemsandinnovationsystemsforlocalscalingout

3. increasingtherangeofmaize,grainlegumeandfodder/foragevarietiesandtheirseedsforsmallholdersthroughacceleratedbreeding,regionaltestingandrelease

4. supportingthedevelopmentoflocalandregionalinnovationsystemsandscalingoutmodalitiesandgenderequityinitiatives.

Thefollowingagroecologieswereselectedandresearchteamswereestablishedtomeettheseobjectives.

Agroecologies SIMLESAresearchactivitieswereconductedinthedrought-proneareasofCentralRiftValleyandsouthernregion,subhumid,high-potentialmaize-growingareasofwesternandnorth-westernEthiopia,andsemi-aridareasoftheSomaliregion.Theresearchactivitieswereconductedbydifferentagriculturalresearchcentreslocatedacrossdiverseagroecologies(Table14.1):

• theCentralRiftValleywasmanagedbyMelkassaAgriculturalResearchCenter(MARC)

• thesouthernregionwasjointlymanagedbyHawassaMaizeResearchSubcenteroftheEthiopianInstituteofAgriculturalResearch(EIAR)andHawassaResearchCenterofSouthernAgriculturalResearchInstitute(Hawassa-SARI)

• westernEthiopiawasmanagedbyBakoAgriculturalResearchCenter(BARC)andPaweAgriculturalResearchCenter(PARC)

• north-westernEthiopiawasmanagedbyAdetandAndessaAgriculturalResearchCentersoftheAmharaRegionalStateAgriculturalResearchInstitute(ARARI)

• thesemi-aridareasofeasternEthiopiaactivitiesweremanagedbySomaliRegionPastoralandAgro-pastoralResearchInstitute(SoRPARI).

Thelong-termon-stationtrialsincludedsolecroppingofmaizeandlegumes,maize–legumeintercroppingandmaize–legumerotation.

233SIMLESASIMLESA

CHAPTER 14

Table 14.1  Research centres implementing CASI practices under the SIMLESA program in Ethiopia, 2010–17

Description MARC BARC PARC EIAR ARARI SoRPARI Hawassa-SARI

Altitude(metresabovesealevel)

1,500 16,50 1,120 1,694 2,240 1,761 1,689

Latitude(North) 8°24’ 9°6’ 11°5’ 7°03’ 11°17’ 24°27’ 07°03’

Longitude(East) 39°19’ 37°09’ 36°05’ 38°28’ 37°43’ 10°35’ 38°30’

Annualrainfall(mm)

763 1,244 1,586 955 1,771 545 1,001

Averagemaximumtemperature(°C)

28.4 27.9 32.6 27.6 25.5 28.2 27.3

Averageminimumtemperature(°C)

14 14.1 16.5 13.5 9 12.6 12.6

Averagetemperature(°C)

22 20.6 20.0 17.5 19.95

Soiltype andosol ulfisols nitisols sandyloam

clay vitricandosols

SoilpH 7.1–7.4 4.99 7.0 5.4–6.3 6.4–6.9

Agroecology moisturestress

subhumid hothumid

tepidtocoolhumid

mid-altitude

semi-arid

mid-altitude

Note:CASI=conservationagriculture-basedsustainableintensification

Research teams SIMLESAEthiopiawasimplementedbymultidisciplinaryteamsfromthedifferentagriculturalresearchcentres.Teamsincludedagriculturaleconomists,agronomists,breeders,entomologists,pathologists,weedscientists,agriculturalextensionandgenderspecialists.AgriculturaleconomistswereinvolvedintheidentificationofproductionconstraintstobeaddressedthroughCASIoptionsformaize–legumeproductionsystems.ValuechainandadoptionmonitoringsurveyswerecategorisedunderObjective1.Thisteamwasassistedbyagronomistsandbreederswhovalidatedtheresultsoffieldsurveys.Objective2wasledbyagronomists,whohadacriticalroleintestingCASIpracticesacrossdifferentagroecologies.Theagronomistsestablishedlong-term(since2010)on-stationandon-farmtrialsacrossdiverseagroecologiesinEthiopia.ThedataobtainedfromtheexperimentsweresharedwiththeteamofcountryprogramcoordinatorsandscientistsfromtheInternationalMaizeandWheatImprovementCenter(CIMMYT),whowereprovidingtechnicalsupporttoObjective2.

SIMLESA234

SECTION 3: Highlights from country initiatives

Thethirdobjectivewasspearheadedbymaizeandlegumebreederswhowereassistedbysocioeconomistsandextensionpersonnelworkingwithfarmersinselectingimprovedmaizeandlegumevarieties.Themajortaskwastheidentificationoffarmer-preferredvarietiesusingparticipatoryvarietyselection(PVS).Bothfarmercriteriaandscientifictechniqueswereadoptedtoidentifyvarietiessuitablefortargetenvironments.Forexample,genotype-by-environmentinteractionanalysiswasusedtoidentifymaizevarietiesforadaptationtowideragroecologicalconditions.Similarly,grainandforagelegumevarietiesthatweresuitableforintercroppingwithmaizewereidentifiedandrecommendedforproductionundermaize–legumecroppingsystems.Likewise,on-farmdemonstrationsandmultistakeholderplatformswereestablishedtoaidfasterdisseminationofinformationandtechnologies.Accordingly,selectedmaizeandlegumevarietiesandCASIpracticesacrossvariousagroecologieswerepromotedwiththesupportofagriculturalextensionistsandgenderspecialistsundertheumbrellaofObjective4oftheSIMLESAprogram.Resultsoftheseresearchactivitiesarehighlightedinthefollowingsections.

BasedonresearchresultsunderObjectives1–3,demonstrationsandscalingoutactivitieswereestablishedin29districtslocatedin12administrativezonesacrossmajormaize-andlegume-growingagroecologiesofEthiopia.Thezonesrepresented31%ofhouseholdsinvolvedincerealand30%inpulsecropsproduction,and44%maizeand27%andcommonbeanproductionhectarageinEthiopia(Table14.2).Theremainingsectionspresentthefindings,followedbyconclusionsandimplicationsoftheworkdoneoversevenyears.

235SIMLESASIMLESA

CHAPTER 14

Tabl

e 14

.2

Num

ber

of h

ouse

hold

s, p

rodu

ctio

n ar

eas

of c

erea

ls, p

ulse

s an

d co

mm

on b

ean

in S

IMLE

SA p

rogr

am a

reas

, Eth

iopi

a, 2

016

Zone

/Cou

ntry

Cere

alM

aize

Puls

eCo

mm

on b

ean

Hou

seho

lds

(No.

)A

rea

(ha)

Hou

seho

lds

(No.

)A

rea

(ha)

Hou

seho

lds

(No.

)A

rea

(ha)

Hou

seho

lds

(No.

)A

rea

(ha)

Ethiop

ia16

,326

,448

10,219

,443

10,862

,725

2,13

5,57

29,06

2,00

81,54

9,91

23,94

7,66

429

0,20

2

EastShe

wazone

364,03

839

5,97

723

9,46

692

,374

191,82

570

,451

100,92

216

,723

WestA

rsizon

e46

4,51

529

0,66

029

6,04

963

,538

148,56

627

,146

109,60

818

,685

WestS

hewazone

523,40

552

5,38

233

4,61

998

,354

250,96

656

,910

1481

2–

Sida

mazone

402,25

453

,467

286,26

531

,548

644,58

023

,311

473,99

614

,535

Had

iyazone

268,03

110

7,64

197

,306

20,041

131,49

312

,335

54,454

2,72

5

EastW

ollegazon

e27

6,56

828

8,00

526

5,80

113

5,19

211

0,71

518

,140

47,297

Jigjigazone

86,773

66,421

48,813

21,314

––

––

Metekelzon

e10

5,29

510

0,45

183

,092

23,398

56,234

12,792

30,459

1,74

7

WestG

ojjamzon

e61

6,94

951

7,67

159

7,31

221

2,55

730

2,29

172

,631

36,046

10,763

Arsizon

e61

1,38

052

6,82

033

6,04

881

,089

310,58

962

,058

71,478

7,63

0

WestH

arargh

ezone

858,24

922

2,40

158

9,96

839

,808

348,12

012

,632

285,64

55,17

8

Awizon

e26

5,69

122

8,83

624

7,50

869

,659

94,482

25,047

3,69

70

Guragezone

195,59

096

,349

105,25

632

,151

130,74

612

,917

38,894

111

Alab

azone

61,395

38,924

58,658

19,898

30,128

1,81

228

,638

1,62

6

SIMLESA

program

areatotal

5,10

0,13

33,45

9,00

73,58

6,16

194

0,91

92,75

0,73

540

8,18

21,29

5,94

679

,724

Perc

enta

ge o

f Eth

iopi

a31

3433

4430

2633

27

SIMLESA236

SECTION 3: Highlights from country initiatives

Findings

Farming systems and household characteristicsTheSIMLESAprograminEthiopiacharacterisedthefarmingcommunityfromthenationalregionalstatesofOromia,SouthernNationsandNationalitiesandPeople’s(SNNP)andBenishangulGumuz.ItlaidthegroundfortargetedresearchonCASIcroppingsystemintensification,insitusoilandwaterconservationandmaize–legumevarietyselectionandtheirdissemination.Itincluded53communitiesconstituting576householdsacrossninedistrictsinsemi-aridagroecologiesintheCentralRiftValleyanditssurroundingsfromSNNPtothesubhumidhighmoistureareaofwesternEthiopia(Bekeleetal.2013).Later,in2012,tworegionalstates—Amharafromnorth-westernandSomalifromsemi-arideasternEthiopia—werecoveredandthefocusofresearchexpandedtocompriseforageproduction,aslivestockkeepingisanessentialpartofthemaize–legumefarmingsysteminEthiopia.

Farmhouseholdswerecomposedofanaverageofsevenmembers(therangewas4–15)offairlyequalnumberofmaleandfemalemembers.Female-headedhouseholdsmadeup14.3%ofthetotal.Householdheadshadanaverageageof39(standarddeviation=12)withaboutfouryearsofformalschooling.Thenumberofhouseholdsperkebele3averaged746(standarddeviation=290).Thefarmhouseholdsownedsmallareasofland(1.29 ha),ofwhich90%(1.16 ha)wasusedforcropproductionandtheremainingforresidenceandgrazing(Bekeleetal.2013).Thepercapitalandholdingwas0.1 ha,makingfurtherlanddivisiondifficultandsustainingfoodsecuritythroughcropproductionchallengingwithoutintensification.Thepercapitalandholdingwas0.28 ha in1995inEthiopia(FoodandAgricultureOrganization2001),meaningtherewasa 35.7%reductioninjust15years.

Regardinghouseholdlabourincropproductionandmarketing,menandwomenparticipatedinmaizeandlegumelandpreparation,planting,weeding,harvestingandgrainmarketing.Theproportionofmen’sinvolvementinfieldoperationswashigherinlandpreparation,plantingandharvestingwhiletheparticipationofwomenandchildrenwasgreaterinweeding.Marketingofgrainharvestwasajointdecisionbetweencouples,andneitherofthemhadexclusivedecision-makingpower(Bekeleetal.2013).Thisrepresentedapositivemovetowardsgenderequityandequality,signallingthecommunity’srecognitionofwomen’sneedtoparticipateintheissuesthataffectahousehold’slivelihood.ThisresultisinlinewiththatofBeshir,HabtieandAnchala(2008),whodocumentedthepracticeofjointdecision-makinginresourceuseamongfarmhouseholdsincrop–livestockfarmingcommunitiesofbothChristiansandMuslimsinAdamadistrictintheCentralRiftValleyofEthiopia.Otherthancropfarming,livestockconstitutedalargepartoffarmhouseholdlivelihood:77%ofmaize–legume-growinghouseholdsownedcows,87%hadotherlivestockand43%keptdonkeys.Theaverageholdingofanimalswas2.88tropicallivestockunits4(TLU),amongwhichcattleconstituted2.36 TLU(Mulwaetal.nd).

3 KebeleisthelowestadministrativeunitinEthiopia.4 Onetropicallivestockunitisequivalenttolivestockweightof250 kg.Theconversionfactorvariesaccordingtothe

livestocktype:1ox=1.12TLU,1coworheifer=0.8TLU,1sheep=0.09TLU,1goat=0.07TLU,1horse=1.3TLU, 1mule=0.90TLU,1donkey=0.35TLU.

237SIMLESASIMLESA

CHAPTER 14

Financial viability of CASI practicesTherelativeadvantageofatechnologyisalong-establishedcriterioninagriculturalinnovationadoption.Thelevelofrelativeadvantageisusuallyexpressedinfinancialprofitability,statusobtainedorothervalues(Rogers1983).ThefinancialfeasibilityofdifferentCASImaize–legumeproductionpracticesacrossagroecologieswerecloselymonitoredanddocumented.TheCASImaize–legumeproductionpracticeswerecost-effectivewithahigherbenefit:costratio(3.79)intheCentralRiftValleyofEthiopiacomparedtotheusualfarmers’practiceofcontinualsolemaizemonocropping.Similarly,insemi-aridareasofJigjiga,apastoralist/agropastoralistcouldearn4.25timesmoreincomebyintercroppingmaizeandcommonbean(Table14.3).SimilarresultswereattainedfromproducingmaizeandcommonbeansunderCASIpracticesinotheragroecologies.InHawassa,CASImaize–legumeproductionpracticesoutperformedconventionalpractices,whilethemaizeandcommonbeanintercroppingsystemwasthemostprofitableproductionventure.Intermsoffinancialviability,maizeandcommonbeanintercroppinggavehighermargins(3.33–6.08)acrossmajoragroecologieswheretheSIMLESAprogramhasbeenexecuted(Table14.3).Grossmarginsofmaizeproductionunderconservationagriculturewere136%higherthanmaizeproducedunderconventionalpracticesinHawassa.

Table 14.3  Benefit:cost summary of conventional practices versus CASI maize and legume production across major agroecologies in Ethiopia

Location Conventional practices

CASI practices Benefit: cost ratio

(CASI sole maize vs conventional

practice sole maize) (%)

Sole maize

Sole maize

Maize–common bean intercropping

Maize–common

bean rotation

Common bean–maize

rotation

Hawassa 3.48 4.75 6.08 4.99 6.36 136

Bako 3.67 4.49 3.33 3.90 3.67 122

CentralRiftValley

3.51 3.95 3.79 2.05 3.51 113

SouthGojjam

1.95 2.97 – – – 152

Jigjiga 3.32 3.78 4.25 6.73 – 114

Notes:CASI=conservationagriculture-basedsustainableintensification;figuresareintermsofbenefittocostratiofrom unitarea(ha).

AmongCASImaizeandlegumeproductionpractices,cropdiversificationgavemultiplebenefits.First,itenhancedproductivity.Second,itdownsizedtheriskofcontinualsolemaizeproductiononplotsplantedwithimprovedvarietiesofmaizeusingchemicalfertilisers(Jaleta&Marenya2017).Withrespecttodroughtriskreduction,CASIpracticesshowedextraresilienceduringmoisture-stressseasons.Forinstance,commonbeanrotationandintercroppingwithmaizeunderCASIgaveconsistentlyhigheryieldsthanasimilarcroppingsystemunderconventionalpracticesinbothdrought-proneCentralRiftValleyandsubhumid,high-potentialagroecologiesinEthiopiaduringalowrainfallseasonin2012(Merga&Kim2014;Abebeetal.2014).Moreover,CASIpracticesgavehigheryieldadvantagesundersolemaize,comparedtosimilarconventionalpracticesinadroughtyear(Abebeetal.2014).

SIMLESA238

SECTION 3: Highlights from country initiatives

Intermsoffinancialbenefit,MekuriaandKassie(2014)illustratedthatthehighestincomewasobtainedwhenconservationagriculturepracticeswerecombinedwithimprovedmaizevarieties(Figure14.3).Thesameworksubstantiatedthatthemaximumyieldincreasewasrealisedbyusingcropdiversification,minimumtillageandfertiliserapplication,wheretheminimumyieldwasobtainedwhenonlyminimumtillagewasadopted.

Figure 14.3 Impact of agronomic practices on maize variety performance and net maize income in Ethiopia

Source:Mekuria&Kassie2014

Adoption status of sustainable intensificationResultsofCASI-awarenessraisingeffortsinSIMLESAstudysitesinsouthernEthiopiarevealedthat97%oftherespondentswereawareofSIMLESA’sCASItechnologiesfromon-farmdemonstrations,attendingfielddays,participatinginexchangevisitsandmediabroadcasts.Inthisarea,themostimportantpracticesadoptedwereintercropping,minimumtillageandimprovedmaizeandlegumevarieties(Getahun2016).TheawarenesslevelofCASIpracticeswas71%intheBakoarea.Teklewoldetal.(2013)foundthatsocialnetworksandthenumberofrelativesinsideandoutsidethevillagepositivelyaffectedtheadoptionofCASItechnologies,particularlycroprotationandminimumtillage.SIMLESAdemonstrationplotsandextensionworkersplayedpivotalrolesincreatingawarenessofCASIpractices.

0 1,000 2,000 3,000 4,000 5,000 6,000

Rotation + minimum tillage +improved maize varieties

Rotation + improvedmaize varieties

Minimum tillage +improved maize varieties

Improved maizeseed only

Minimum tillageonly

Rotationonly

Rotation + minimumtillage

Net maize income (Birr/ha)

Prac

tice

239SIMLESASIMLESA

Maizeandlegumevarieties,andminimumtillagewerethetechnologiespreferredmostbyfarmersintheBakoareainwesternEthiopia.InsouthernEthiopia(e.g.theLokaAbayaandBorichaareas),unavailabilityofherbicides,andshortageofimprovedmaizevarieties,foodlegumeseedsandlivestockfeedwerechallengesassociatedwithCASIadoption(Getahun2016).Fielddays,exchangevisitsandinnovationplatformswereimportantmeansofawarenesscreationamongfarmers(Table14.4).InBako,anadoptionmonitoringstudyshowedthat51%oftherespondentsknewofatleastoneCASItechnology.ThemajorCASIpracticesadopted,inorderofdecreasingawarenessanduse,werecroprotation,intercroppingandminimumtillage.Majorpositiveprogresswasnotedfromintercropping,residueretention,zerotillageorcombinationsofthese(Table14.4).Inthisstudy,farmers’preferenceswere,inorderofdecreasingimportance,intercropping,croprotation,cropresidueretentionandherbicideapplication(Figure14.4).

Table 14.4  Farmers’ awareness and use of CASI practices, Bako, 2013

CASI practice Awareness Ever used Used after 2010 Change after 2010 (%)

Intercropping 95.5 26.0 11.0 42.3

Rotation 93.0 58.5 2.5 4.3

Minimumtillage 32.5 17.5 16.0 91.4

Residueretention 80.0 29.0 14.0 48.3

Reducedtillage 52.5 27.0 12.5 46.3

Chemicalfertiliser 96.0 70.0 3.5 5.0

Herbicides 71.0 21.5 13.0 60.5

Handweeding 100.0 98.5 0.0 0.0

Intercropping+minimumtillage+residue

29.5 12.5 11.0 88.0

Rotation+minimumtillage+residue

22.0 8.5 7.0 82.4

Notes:CASI=conservationagriculture-basedsustainableintensification;n =200

Figure 14.2  Ethiopian common bean export volume, value and price per tonne, 2006–15

crop rotation

maize legume intercrop

zero tillage herbicide use in maize production

residue retention

22.94 1.84 61.46 5.51 8.26

0% 20% 40% 60% 80% 100%

Mos

t lik

ed

CHAPTER 14

SIMLESA240

SECTION 3: Highlights from country initiatives

IntheCentralRiftValley,farmersreportedtoknowandhaveusedimprovedmaizeandcommonbeanvarieties.Amongthefarmerscontacted,12%werefoundtohaveexperienceinhostingthetechnologiesasamemberofaninnovationplatform.Thesegroupsareidentifiedasfirst-generationadopters.Consideringthedistributionofvarieties,Awash-1(aharicotbeanvariety)andMelkassa-2(amaizeopen-pollinatedvariety)aredominantamonghostandscaling-upfarmers,whereastheMelkassa-2andNasirvarietiesweregrownbymanysecond-generationadopters(Table14.5).

Table 14.5  Adoption of maize and common bean varieties by different categories of CASI farmers, Central Rift Valley, 2013

Crop Crop variety

Category of farmer involved in CASI practices TotalNo. (%)

Host farmersNo. (%)

Scaling-up farmersNo. (%)

Second-generation adoptersNo. (%)

Third-generation adoptersNo. (%)

Commonbean

Awash-1 10(18.5)

29(53.7)

11(20.4)

4(7.4)

54(100.0)

AwashMelka

5(17.2)

13(44.8)

6(20.7)

5(17.2)

29(100.0)

Nasir 8(14.5)

7(12.7)

33(60.0)

7(12.7)

55(100.0)

Maize BH-540 1(4.8)

5(23.8)

9(42.9)

6(28.6)

21(100.0)

Melkassa-2 19(15.2)

48(38.4)

48(38.4)

10(8.0)

125(100.0)

Melkassa-4 – 7(87.5)

– 1(12.5)

8(100.0)

Note:CASI=conservationagriculture-basedsustainableintensification Source:Adam,Paswel&Menalen.d.

Similarly,adoptionofCASIpracticesshowedthatmaize–beanintercropping,maize–beanrotation,minimumtillage,residueretentionandtheircombination,fertiliserandherbicideapplicationwereadoptedintheCentralRiftValley(Table14.6).Maize–beanintercropping(34%),minimumtillage(28%)andcroprotation(24%)werewidelypractisedbyfarmers.Hostfarmersweremorelikelytoadoptmaize–beanintercropping,whilescaling-upparticipantsweremorelikelytoapplyminimumtillagewithfertiliser.Maize–beanrotationwaspopularamongsecond-generationfarmersandmaize–beanintercroppingwaspopularamongthird-generationfarmers(Table14.6).

241SIMLESASIMLESA

CHAPTER 14

Table 14.6  Awareness of CASI practices by different categories of farmers in the Central Rift Valley in 2013

CASI practice Category of farmer involved in CASI practices TotalNo. (%)

Host farmersNo. (%)

Scaling-up farmersNo. (%)

Second-generation adoptersNo. (%)

Third-generation adoptersNo. (%)

Maize–beanintercropping

19(20.7)

34(37.0)

25(27.2)

14(15.2)

92(100.0)

Maize–beanrotation

14(21.5)

16(24.6)

32(49.2)

3(4.6)

65(100.0)

Minimum/zerotillage+fertiliser

8(10.7)

42(56.0)

16(21.3)

9(12.0)

75(100.0)

Minimum/zerotillage+residueretention

14(77.8)

2(11.1)

2(11.1)

– 18(100.0)

Minimum/zerotillage+herbicide

6(24.0)

8(32.0)

9(36.0)

2(8.0)

25(100.0)

Note:CASI=conservationagriculture-basedsustainableintensification Source:Adam,Paswel&Menalen.d.

Contribution of CASI practices in increasing yield and reducing downside riskThemajorcomponentsofCASIpracticesincludereducedtillage,residueretention, andcropassociation(rotationorintercroppingoflegumeandmaize).IntheCentralRiftValley,maizewasthemostcommonlyproducedfoodcrop,sowninanaverageof 1.08 ha/household(46%ofthecropland).Around0.45 haoflandwasallocatedtocommonbeanproduction.Bothmaizeandlegumesweregrownmainlyasasolecrop,withonlyafewhouseholdsintercropping(randomlyscattered)legumewithinmaize (Abdi&Nishikawa2017).Farmersproducedmaizecontinuallyunderconventionalpractices,withoutcropresidueretentiononfarmplots.TheaveragehighestmaizeyieldsobtainedunderCASIpracticeswas5.76 t/haintheCentralRiftValley(Merga&Kim2014),5.55 t/hainmoistsubhumidregions,and7.0 t/hainsubhumidnorth-westernEthiopia.

ThecombinationofmajorCASIpracticesincreasedmaizeandlegumeproductivity(Merga&Kim2014).Inadditiontoproductivitygains,adoptionofCASItechnologiesreduceddownsiderisksfromshrinkinginvestmentstolabour.Cropdiversification,useofimprovedvarietiesandapplicationofchemicalfertilisers,alongwithCASIpractices,gavethemaximumyield.Abandoningtheuseofthosetechnologiesresultedinloweryields.Likewise,maizeyieldfelltoaminimumifafarmerabandonedtheapplicationofbothimprovedvarietyandchemicalfertiliser(Jaleta&Marenya2017).Theriskofmaizeproductionwashigherintheabsenceofcropdiversification.Thesamestudyindicatedthatcropdiversification,applicationofchemicalfertiliseranduseofimprovedcropvarietiesreducedthedownsideriskby51%.Inthiscase,cropdiversificationservedtwopurposes:enhancingcropproductivityandreducingdownsiderisks.

SIMLESA242

SECTION 3: Highlights from country initiatives

Increased rainwater productivity under CASI practicesHighersoilmoisturecontentinallsoilhorizonswasrecordedintheCASIcommon bean–maizerotationplot,followedbyCASIsolemaize,atbothplantingandharvestingtimes.TherainwaterproductivityofmaizewassignificantlyhigherinCASIplotscomparedtoconventionalpracticesplots,evenduringthelowestrainfallyear.Intermsofrainwaterproductivity,thehighestvalue(10 kg/mm/ha)wasobtainedfromcommonbean–maizerotationfollowedbymaize–commonbeanrotation(9.2 kg/mm/ha)andsolemaize (8.2 kg/mm/ha)grownunderCASImanagementpractices,comparedtotheaverage valueof7.4 kg/mm/haunderconventionalpractices(Merga&Kim2014).

Maize–legumeintercroppingsystemsunderCASIhadsignificantlyhigherrainwaterproductivity,comparedtocroprotationsystemsorconventionalpractices.Soybean–maizeintercroppingunderCASIinBakousedmorewaterthanconventionalpracticesingrowingseasonsunderawell-distributedrainfallpattern.However,undererraticandlowrainfallregimes(belowtheannualaverageseasons),commonbean/soybean–maizeintercroppingwasmoreefficientandincreasedrainwaterproductivityandaccumulatedmoreyield(Abebeetal.2014).IntercroppingmaizeandcommonbeansunderCASIreducedyieldloss(risk)typicaloftheshortrainfallseasons.Additionalyieldgainsof38–41%fromcommonbeanswereobservedinthemoisture-stressedseasonwhenrotatedwithandintercroppedwithmaizeunderCASI,comparedtosimilarpracticesunderconventionalpractices(Abebeetal.2014).

Duringmoisture-stressedyears,maize–commonbeanrotationunderCASIwasfoundtobemoreproductiveinthesemi-aridCentralRiftValley.Thiswasattributedtocropresiduecovertominimisesoilwaterevaporation,andenhancedsoilmoistureretention.Yieldsofmaizeintercroppedwithcommonbeansweresignificantlysuppressedinseasonswithlowrainfall,probablyduetocompetitionforsoilmoisture(Merga&Kim2014).CASIcroppingsystemsshowedbetterrainwaterproductivityinallseasons.Thedifferencewasparticularlyhighinseasonswithlowrainfall.ThisindicatesthatcroppingsystemsunderCASIweremoreresilientinsemi-aridareassuchastheCentralRiftValley.In2013,thehighestmaizegrainyield(5.76 t/ha)wasrecordedfromthecommonbean–maizerotationunderCASI,whilethelowestmaizegrainyields(4.02 t/ha)wererecordedfromcommonbean–maizeintercroppingunderconventionalpractices(Merga&Kim2014).Theyieldfromcommonbean–maizerotationwassignificantlyhigherthanyieldfromallconventionalpractices.GrowingcommonbeanandmaizeunderCASIatMelkassaproduced40%and28%grainyieldadvantagesoverconventionalpractices,respectively.Similarly,thestoveryieldofmaizeincreasedby25%underCASIcomparedtoconventionalpractices,whilethatofcommonbeanimprovedby34%inamaize–commonbeanrotation(Merga&Kim2014).

Thesamestudyshowedthatrainwaterproductivity—theratioofgrainorstoveryield(kg)torainfallamount(mm)fromplantingtophysiologicalmaturityofthecrop—wasaffectedbytillageandcroppingsystemsinyearswhentherotationcropwasmaize.Therainwaterproductivityformaizegrainyieldwithmaize–commonbeanintercroppingwas18%greatercomparedtomaizemonocropping.Whentherotationcropwasbean,rainwaterproductivitywassensitivetocertaincombinationsoftillagepracticesandseasonsaswellasthetypeofcroppingsystem.Therainwaterproductivitywas18%and20%greaterwithmaize–commonbeanintercroppingcomparedtomaizemonocroppingformaizegrainandstoveryield,respectively,whentherotationcropwasbean(Libenetal.2017).

243SIMLESASIMLESA

CHAPTER 14

Soil moisture and soil erosionResearchresultsfromCentralRiftValleybyMergaandKim(2014)revealedthatmoisturecontentofsoilhorizonswassignificantlyaffectedbytillageandcroppingsystems,basedondatafromfourcroppingseasons(2010–13).Thesamestudyrecordedhighermoisturecontentatadepthof30–60 cmbothduringplantingandafterharvest.Commonbean–maizerotationunderCASIretainedconsistentlyhighermoistureinallsoilhorizons.Thesoilundercommonbean–maizerotationhad34%highersoilmoisturewithinthefirst15 cmofsoildepthcomparedtoCASIwithsolemaizeatplanting.Thelowestsoilmoisturecontentatharvestwasobservedin2012inthecommonbean–maizeintercroppingplotsunderconventionalpractices.ThisresultisinagreementwiththeworkofErkossa,StahrandGaiser(2006)fromthehighlandsofEthiopia,whodocumentedCASI’ssignificantpositiveeffectonsoilmoistureretentionandsoilfertilityrestoration.

Ethiopiasuffersfromsoilerosion.Thisisthemaindriverofsoildegradationandcoststhenationmillionsoftonnesoffoodgrains.ResearchresultsfromtheBakoAgriculturalResearchCenterontheeffectsofdifferentsoilmanagementpracticesonrun-off,soilnutrientlossesandproductivityofcropsshowa25.39%and10.37%reductioninrun-offfromuseofmaize–commonbeanintercroppingunderCASIpracticescomparedtomaizemulchconventionalpractices(Table14.7).Residuemulchingnotonlyreducedthesurfacerun-offbutalsoprovidedacovertothesoilsurface,reducedsoildetachmentbyraindropimpactandtrappedthesedimentscarriedbysurfacerun-off.Asshownin Table14.7,treatmentsthatreceivedresiduemulchunderbothconventionalandminimumtillagereducedsoillossandsedimentconcentrationinrun-off.Soillossreductioncomparedtothecontrolwere97.9%formaizemulchconservationagricultureand92.27%formaizemulchconventionalpractices.Thismightbeattributedtothehighsedimenttrappingcapacityoftheresiduemulch(Degefa2014).

Table 14.7  Effect of different tillage and management practices on soil loss at BARC

Treatment Run-off depth (mm)

Sediment concentration (g/l)

Soil loss (t/ha)

Solemaize+minimumtillage(conservationtillage)

44.99a 667a 18.92a

Solecommonbean (conservationtillage)

28.39cd 45.17ab 7.03bc

Maize–commonbeanintercropping (conservationtillage)

22.12d 38.23ab 4.69bc

Solemaize+mulch (conservationtillage)

34.13cd 62.63a 9.84b

Maize–commonbeanintercropping(minimumtillage)

35.88cb 27.8b 4.04c

Solemaize+mulch+minimumtillage

40.76ab 48.57ab 9.56b

Mean 34.38 48.18 9.01

CV(%) 13.93 3.77 33.37

LSD(0.05) 8.729 33.07 5.47

Notes:CV=coefficientofvariation;LSD=leastsquaresdifference;valuesfollowedbyadifferentsuperscriptletter(a,ab,b,c,cb,andd)aresignificantlydifferentacrossmanagementtreatments. Source:Degefa2014

SIMLESA244

SECTION 3: Highlights from country initiatives

CASIpracticeswerefoundtobemoreeffectiveinsoillossreductioninmaizeproductionplotsinsubhumidzoneatBakoonUlfisols.Thesoillossdifferencewashighforsolemaizeunderconventionalpractices.CASIpracticesreducedsoillossintherangeof34–65%,comparedtoconventionalsolemaizeproductionpracticesundermorefrequenttillage.Thehighestsoillosswasregisteredundersolemaizeinconventionaltillage(Table14.8).

Table 14.8  Ecosystem benefits of practices of CASI and conventional practices at BARC

Practice Soil loss (t/ha/yr) Per cent % reduction

Maize–commonbeanintercroppingunderconservationagriculture

1.8 35 65

Solemaize,mulchandminimumtillage 1.95 37 63

Maize–commonbeanintercroppingandconventionaltillage

2.71 52 48

Maize–commonbeanintercroppingandconventionalpractice

3.44 66 34

Solemaizeusingconventionaltillage 5.21 100 0

Note:CASI=conservationagriculture-basedsustainableintensification Source:Degefa2014

Yield and seasonal rainfall variabilityExperimentsconductedintheBakoareainthesubhumidagroecologyandtheMelkassaareaundersemi-aridconditionsshowedthatCASIpracticesperformedbetterduringsoilmoisturestressyearssuchas2012—theyearinwhichthelowestrainfallfor20yearswasregistered(Merga&Kim2010;Abebeetal.2014).Maizegrainyieldshowedadecreasingtrendunderconventionalpractices,butanincreasingtrendunderCASIacrossthecroppingseasons2010–13(Merga&Kim2014).ThesamestudyrevealedthatmaizestoverandcommonbeanstrawproductionwashigherunderCASIthanconventionalpracticesintheCentralRiftValley.

Associatingmaizeyieldwithrainfalldistributionandpatternduring2010–13inBakoshowsthatmaizegrainyieldsubstantiallyincreasedacrosscroppingseasons.However,ayieldreductionwasobservedin2012,whichmightbeattributedtothelowestaverageannualrainfallonrecord(Abebeetal.2014).Moreover,reducedrainfallanderraticdistributionduringtasselingtosilkingstagesresultedinunusuallyearlymaturityofthemaincropmaize,whichcouldbeamajorreasonfortheyieldreduction(Figure14.5).

245SIMLESASIMLESA

CHAPTER 14

Figure 14.5  Daily rainfall and thermal degree days during the common bean–maize cropping systems, 2010–13

Note:Arrowscorrespondtophysiologicalmaturitystageofmaizethataffectedtheyieldofthecropcomponents. Source:AdaptedfromAbebeetal.2014

Grain yield, land productivity and incomeInnorth-westernEthiopia,anexperimentonintercroppingofnarrow-leaflupineandwhitelupinewithmaizewasconductedundertwointercropplantingarrangements:singlerowandpairedrowsoflegumebetweenpairedrowsofmaize.Theresultsshowthatmaizeandnarrow-leaflupineintercroppingwithpairedplantingarrangementsgavea16%highermaizegrainyield,18%higherlandequivalentratioand15%increasesinnetreturncomparedtosolemaizeproduction(Assefa2017).

Dai

ly r

ainf

all (

mm

)

2013

Thermal degree days

0102030

2012

4050

0102030

2011

4050

0102030

2010

4050

01020304050607080

SIMLESA246

SECTION 3: Highlights from country initiatives

Thehighestlandequivalentratiowasalsoregisteredfromsinglearrangement,andmaize–whitelupinewithpairedarrangementwasassociatedtoactualyieldofthecomponentcropsintheintercropsystem.However,inthemaize–narrow-leaflupineintercroppingsystem,theyieldgainofmaizewasassociatedwithayieldlossof narrow-leaflupineandthelowestlandequivalentratio(Table14.9).Onaverage,theintercroppingsystemwas42%moreproductiveascomparedtosolecropproductionasmeasuredbythelandequivalentratio.Thisresultisconsistentwithpreviousfindings(Saban,Mehmet&Mustafa2008).

Table 14.9 Effect of planting arrangements on grain yield and land equivalent ratio of maize–common bean/lupine intercropping in north-western Ethiopia

Treatment Maize grain yield(t/ha)

Legume grain yield(t/ha)

Land equivalent ratio

Intercrop Planting arrangement

Maize+commonbean

Singlerowintercrop

5.86 0.79a 1.5a

Maize+commonbean

Pairedrowintercrop

5.66 0.74a 1.4ab

Maize+narrow-leaflupine

Singlerowintercrop

6.40 0.24c 1.3b

Maize+narrow-leaflupine

Pairedrowintercrop

6.55 0.38b 1.4ab

Maize+whitelupine

Singlerowintercrop

5.54 0.44b 1.4ab

Maize+whitelupine

Pairedrowintercrop

6.24 0.47b 1.5a

Solecropmaize 5.66

Probabilitydifference ns * **

CV(%) 6.91 25.83 14.70

Solecropcommonbean 1.86

Solecropnarrow-leaflupine 2.12

Solecropwhitelupine 1.14

Notes:Datawerecombinedoversites(JabitehinanandMecha)andyears(2012and2013).Numbersfollowedbydifferentlettersonthesamecolumnindicatedsignificantdifferenceatthe5%probabilitylevel.*,**and***aresignificantdifferenceatprobabilitylevelsof0.05,0.01and0.001,respectively. Source:Assefaetal.2017

Similarly,experimentalresultsconductedinsouthernEthiopiashowedthatadoptionofCASIpracticesandtechnologiesincreasedhouseholdreturnoninvestmentinmaize(32.6%)andcommonbean(49%)production,bygrowingcommonbeanstwiceayearintercroppingandrelaycroppingwiththesamemaizecrop.Thisisbecausethegrowthstagesofbothcropsoverlap.Commonbeanisplantedasasecondcropnearmaturitysomaizeisharvestedwhilecommonbeanisstillgrowinginthefield.Thissystemofcroppingincreasedtheyieldofcommonbeansby50%comparedtothatofconventionalpractice(Markosetal.2017).FinancialprofitabilityofintercroppingandthehighpreferenceoffarmersforintercroppingwasdocumentedacrossdifferentagroecologiesinEthiopia(Merga&Kim2014;Abebeetal.2014).Fieldexperimentsconductedon11plotsinsouthernEthiopiashowedthatmaize–commonbeanintercroppingproducedthehighestmaizeandcommonbeangrainandbiomassyields.Theperformanceofalltheintercroppingexperimentswassuperiortosolecroppingsystems(Table14.10).

247SIMLESASIMLESA

CHAPTER 14

Table 14.10  Grain yield and biomass of maize and first belg common beans in permanent long-term SIMLESA plots in Loka Abaya and Boricha districts, 2015

Treatment Maize Common bean Land equivalent

ratioMean grain yield

(t/ha)

Mean biomass

(t/ha)

Mean grain yield

(t/ha)

Mean biomass

(t/ha)

Maize/commonbeanintercroppedinconventionaltillage

7.66 15.33 0.07 0.1 1.47

Maize/commonbeanintercroppedinCASI

8.54 16.44 0.1 0.15 1.77

SolemaizeCASI 7.21 14.39 – – 1

Maize/cowpeaintercroppedinCASI

8.04 14.28 0.07 0.14 1.53

SolecommonbeanunderCASI

– – 0.17 0.32 1

CommonbeaninrotationunderCASI

– – 0.15 0.17 1

LSD(%) NS NS 390** 580* 0.328*

CV(%) 15.07 16.86 13.3 8.27 9.4

Notes:CASI=conservationagriculture-basedsustainableintensification;LSD=leastsquaresdifference;CV=coefficientofvariation.*,**and***indicatesstatisticalsignificanceat1.5and10%levelsrespectively. Source:ReportsfromSARI

Environmental sustainabilityRetentionofcropresiduessignificantlyreducedrainwaterandwinderosionandalsoresultedinhigherrainwaterproductivityinthesemi-aridCentralRiftValley(Megaetal.2014).Similarly,farmershostinglong-termCASItrialsintheCentralRiftValleyandsouthernEthiopiaoftenindicatedthatCASIplotsexperiencedlowornoerosiondamagescomparedtoconventionalpracticeplots.AcompellingillustrationofthisoccurredwhenaheavyflooddevastatedcropsintheHalabadistrictinsouthernEthiopiaduringthe2016croppingseason.Inthatseason,allcropsunderconventionalpracticewereseverelydamagedbytheheavyfloodandnoorveryminimumflooddamagewasobservedtocropsandsoilsunderCASI.Moreover,thebenefitofcropresidueretentionwaswitnessedbyfarmersinthesouthernpartofEthiopia,whereacut-and-carrysystemwaspractised.Inthoseareas,therewasaclearindicationthatsoilcoverincreasedmoistureretention.ThisagreeswiththefieldexperimentresultsfromMelkassa(Merga&Kim2014).

Moreover,anincreaseinthenumberofmacrofaunainsoilwasrecordedonplotsinsouthernEthiopiawheremaize–legumeintercroppingunderCASIwaspractised.Macrofauna,particularlyarthropods,decomposeandhumifysoilorganicmatter,andfunctionasecosystemengineers.Macrofaunaareessentialincontrollingthenumberofbacteriaandalgae.Certainmacrofauna,suchastermites,areresponsibleforprocessingupto60%oflitterinthesoil(Bagyaraj,Nethravathi&Nitin2016).Moreover,burrowinganthropoidssuchastermitesimprovesoilporosity,facilitaterootpenetration,preventsurfacecrustingandsoilerosion,andtheyfacilitatethemovementofparticlesfromlowerhorizontothesurface,helpingtomixtheorganicandmineralfractionsofthesoil(Bagyaraj,Nethravathi&Nitin2016).

SIMLESA248

SECTION 3: Highlights from country initiatives

ResultsfromthefieldexperimentsconductedinsouthernEthiopiaclearlyshowincreasedsoilmacrofaunawithcropintensificationcomparedtoconventionalpractices(monocropping).Theintensificationsystemhadasignificantlygreaternumberoftermites,ants,millipedesandcentipedesforallthecroppingsystemsunderCASIthanthoseunderconventionalpractices(Table14.11).ThisincreasewasattributedtointercroppingandresidueretentionunderCASI.

Table 14.11  Soil macrofauna under CASI and conventional practices in southern Ethiopia, 2015

Treatment Average number of soil macrofauna

Termites Ants Millipedes Centipedes Others

Maizeandcommonbeanintercroppingunderconventionalpractices

0.67 12.9 0.23 0.9 2.4

MaizeandcommonbeanintercroppingunderCASI

10.6 18.2 1.3 3 4

MaizeandcowpeaintercroppingunderCASI

2.8 42.8 0.1 1.3 4

SolemaizeunderCASI 0 24.2 0 1 3.3

SolecommonbeanunderCASI

7.9 10.8 0 0.7 1.4

Commonbean–maizerotationunderCASI

1.4 11.4 0.3 1.7 4.3

Note:CASI=conservationagriculture-basedsustainableintensification

Similarly,amarkedlygreaterimprovementinsoilproperties(bulkdensity,organic,carbon,infiltrationrateandpenetrationresistance)andcropproductivitywasobservedatMelkassawithCASIpractices,suggestingsuperiorityoftheCASIsystemforimprovedsoilqualityandenhancedenvironmentalsustainabilityinthesemi-aridareasofEthiopia(Mergaetal.2017,underreview).Thesamestudysubstantiatedreductionintopsoilbulkdensityinthesemi-aridMelkassaareaduetoincreasedsoilorganiccarbon(OC)asaresultofresidueretentionandreducedsoilcompactionunderCASIsystems.Increasedsoilcarbon(SC)andimprovedsoilmoisturecontentswereobservedbroadly,acrosscontrastingareasofEthiopia—thesemi-aridCentralRiftValleyandthesubhumidmoistBakoarea(Libenetal.2017;Abebeetal.2014).

ThelowestsoilpHwasrecordedwhenmaizewascontinuallyproducedunderconventionalpracticescomparedtoCASIsystems.TotalphosphoruscontentofthesoilwashigherforcommonbeancropsgrowncontinuallyorinrotationwithmaizeunderCASI(Figure14.6a).Higherpercentagesoforganiccarbonwererecordedinmaize–commonbeanintercropping,solecommonbeanandcommonbean–maizerotationsunderCASI,comparedtoconventionalpractices.ProductionofsolemaizeunderconventionalpracticesandCASIpracticessignificantlyreducedtotalnitrogencontentofthesoilswhereasasignificantimprovementwasobservedwithcroprotationandintercroppingsystemsunderCASIsystems(Figure14.6b).

249SIMLESASIMLESA

CHAPTER 14

Figure 14.6  Chemical properties of soil influenced by different cropping systems with tillage practices (across locations during 2010–12 cropping seasons)

Notes:pH=soilpH;CEC=cationexchangecapacity(cmol/100gsoil);P=phosphorus(mg/kgsoil);OC=organiccarbon(%); K=potassium(cmol/kgsoil);TN=totalnitrogen(%).Source:Abebeetal.2014

EventhoughfieldevidenceshowsthesuperiorityofCASIoverconventionalpracticesinimprovingenvironmentalsustainability,freegrazingisstillamajorchallengeinmanypartsofEthiopia,deterringresidueretentionandallowingongoingsoilerosionbyrainwaterandwind.Itisimperativethatalternativeforagecropproductionorforage/feedsupplysystemsareexplored.Itisclearthatmaizestalksareamajorforagesourceforlivestock.Maizestalkisgiventoanimalsfromtheearlyageofcropgrowththroughmaturitytopost-harvest.Thissystemofcontinualthinningofmaizecropforfeedmayaffectcropyield,asfarmersthinthroughoutthegrowingperiod.Aseparateplotcouldbeusedforforagebyplantingmaizedenselyandharvestingitbeforeitdriesupcompletely.ThisisaninnovativepracticeamongafewfarmersintheSiraroareainWestArsiZone.Policyinterventionmaybeneededtoestablishlocalorcommunity-basedactionstocontrolandminimisefreegrazing.

Maize, grain and forage legume varietiesWiththeobjectiveofprovidingvarietaloptionstofarmersformaize,foodandforagelegumes,aparticipatoryvarietyselectionapproachwasemployedbytheSIMLESAprogramindifferentagroecologiesinEthiopia.UnderObjective3ofSIMLESA,numerousvarietieswereevaluatedindifferentareasusingfarmers’andresearchers’selectioncriteria,andfarmer-preferredvarietieswerereleasedforcommercialproduction.Promisingpre-releaseandreleasedvarietiesobtainedfromongoingbreedingactivitieswereevaluatedunderparticipatoryvarietyselectiontrials.Thishasbeenfoundtobeareliableandquickapproachtoidentifyingfarmer-preferredvarietiesforbothsolecroppingandintercroppingsystems.Witcombeetal.(1996)provedthatparticipatoryvarietyselectionisaveryquickandcost-effectivemethodforidentifyingfarmer-preferredcultivars,whenasuitablechoiceofcultivarsispresented.

pH, C

EC a

nd P

(a)

Bako Tibe Gobu Sayo0

4

6

8

2

10

12

pH CEC P OC K TN

Bako Tibe Gobu Sayo

OC,

K a

nd T

N

(b)

0

1.0

1.5

0.5

25

2.0

2.5

SIMLESA250

SECTION 3: Highlights from country initiatives

Participatory variety selection of maize

InEthiopia,anumberofon-stationandon-farmparticipatoryvarietyselectionandmother–babytrialsofreleasedandpre-releasevarietieswereconductedbeginningin2010.ThesevarietieswerealsogeneratedbyvariousCIMMYTprograms,suchasDroughtTolerantMaizeforAfrica,WaterEfficientMaizeforAfrica,ImprovedMaizeforAfricanSoilsandNutritiousMaizeforEthiopia.Participatoryvarietyselectionofmaizewasconductedindrought-proneareasofsouthernEthiopiaandidentifiedthatfarmers’majorselectioncriteriaweregrainyield,maturityanddiseaseresistance.Furthermore,farmersalsousedmorespecificselectioncriteriasuchascobsize,bare-tip,grainsizeanddroughttolerance.Basedontheseselectioncriteria,farmersidentifiedShalla,AbarayaandSC403asthemostsuitablevarietiesforthedrought-proneareasofsouthernEthiopia(Table14.12).

Preferencesandprioritiesvariedacrossgenders,basedondifferencesintheirroleinfarming.Womengenerallyparticipatedmoreinplanting,weeding,harvesting,seedandgrainstoragethanmen.Women(inbothfemale-andmale-headedhouseholds)playedamajorroleinselectingmaizevarieties,whilemenplayedamoresignificantroleinselectingthecommonbean(cashcrop)varieties.Thisdistinctionisexpectedundertheseconditions,wheremeninteractwiththemarketplacemorethanwomendo.

Table 14.12  Farmers’ selection criteria for maize varieties in Borecha and Loka Abaya districts of southern Ethiopia, 2013

Criterion Maize varieties ranked by farmers’ criteria*

Abaraya BH540 BH543 Shalla SC403 MH130

Earlymaturing 4 5 6 3 2 1

Adapttomoisturestressarea

3 6 5 2 4 1

Bigcobsize 2 4 5 1 3 6

Norottencobs 3 6 5 2 4 1

Bigseedsize 3 4 5 1 2 6

Heavyseedweight 3 4 5 1 2 6

Whiteseedcolour 1 2 4 6 3 5

Fullhuskcover 2 1 5 6 3 4

Droughttolerance 2 6 3 1 4 5

Sum rank point 23 38 43 23 27 35

Overall rank 1 1 3 4 5 6

Note:*Thelowerthesumofthescore,themorepreferredthevariety.

AnotherparticipatoryvarietyselectiontrialofeightreleasedmaizehybridswasconductedinJabitehinanandSouthAcheferdistrictsofnorth-westernEthiopia,acrosseightenvironments.Thethreemostimportantselectioncriteriausedbythefarmerswerediseaseresistance,droughttoleranceandhigh-yieldingpotential.Researchersalsonotedthatgrainyieldandotherimportantyield-relatedtraitswereusedtoidentifydesirablevarieties.AMH851andBH661,withrespectivemeangrainyieldsof7.8t/haand7.4 t/ha,wereidentifiedasthemostsuitablehybridsfortheregionbasedonresearchers’andfarmers’selectioncriteria(Table14.13).Farmersunanimouslypreferredthesehybridsforbetterfieldperformance,diseaseresistance,prolificacyandgrainyield.

251SIMLESASIMLESA

CHAPTER 14

Table 14.13  Days to maturity and yield of maize hybrids evaluated in Jabitehinan and South Achefer districts of north-western Ethiopia, 2012–13

Hybrid Days to maturity Mean grain yield (t/ha)

BH542 154.0 5.67

BH660 174.0 6.69

BH673 174.7 7.07

BH545 156.0 7.14

AMH850 169.1 7.35

PHB3253 149.3 7.42

BH661 178.7 7.43

AMH851 171.6 7.80

Source:Elmyhun,Abate&Merene2017

Tofurthersubstantiatetheselectioncriteriausedbyfarmersandresearchers,a GGE-biplotanalysiswasperformedtoidentifythemostidealvarietiesforthearea. TheGGE-biplotanalysisalsoidentifiedAMH851andBH661asthemostidealvarieties ofthehybridsevaluated(Figure14.7).

Figure 14.7  Comparison of maize hybrids for their suitability in north-western Ethiopia

Source:Elmyhun,Abate&Merene2017

PC2

- 37.

25%

Comparison biplot (total - 82.72%)

-0.50

Genotype scores

Environment scores

Average environment coordination

-0.25 0.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

0.25 0.50 1.000.75

PC1 - 45.47%

G2 E3

E2

E4

E1

E5

E6

E7

E9

G6

E10

E8G5

G7

G4 G8

G1

G3

SIMLESA252

SECTION 3: Highlights from country initiatives

Thechoicesmadebyfarmersusingthesecriteriaareinagreementwiththeyieldrecordsofresearchers.Thisshowsthatfarmers’evaluationcriteriaagreewiththemeasurementsandanalysismadebyresearchers.Acombinationoffarmers’andresearchers’selectioncriteriacouldbeusedforrapidselectionofimprovedvarieties,comparedtotheconventionalselectionapproachofresearchers,whichtakeslonger.SimilarselectioncriteriawereusedbyAbebeetal.(2005),whoidentifiedthemostdesirabledrought-tolerantmaizevarietiesusingamother–babytrialapproach.

Similarly,19commercialhybridswereevaluatedacross11environmentsunderdifferentmanagementconditionsthatrepresentmajormaize-growingareasofthecounty(Woldeetal.2018).Amongthehybrids,BH546(7.5 t/ha),BH547(7.4 t/ha),P3812W(7.2 t/ha)and30G19(7.00 t/ha)wereidentifiedasthehigheryieldingandmoststablehybrids.Thegroupingpatternofthehybridsobservedinthisstudysuggeststheexistenceoftwocloselyrelatedmaize-growingmega-environments(Figure14.8).ThefirstwasrepresentedbyBakoandPawe,inwhichPioneerhybridsP3812Wand30G19werethewinnervarieties.Thesecondmega-environmentwasrepresentedbyHawassa,Haramaya,MelkassaandTepi,andhybridsBH546,BB547andBH661weretheidealvarieties.Theotherhybridswereeitherunsuitableforornon-responsivetothetestenvironmentsused.Arsi-Negellewasanoutlierenvironmentthatwasnotsuitableforanyofthehybridsstudied.However,toconfirmthepatternsobservedinthecurrentstudy,additionalmultilocationandmultiyeardatawouldbeneeded.

Figure 14.8  Maize-growing mega-environments constructed using genotype plus genotype-by-environment biplot for 19 maize hybrids evaluated across 11 environments

Source:Woldeetal.2018

AXIS

2 14

.75%

-6 -4

-4

-2

0

2

4

-2 0 2

AXIS1 57.88%

Negele

Haramaya

Hawassa1

Hawassa2

Bako1

Bako2

Bako3 Melkasa

Pawe1Pawe2

Tepi

30G19

AMH760Q

BH140BH540

BH543

BH546

BH547

BH660

BH661

BH670BHQP542BHQPY545

Gibat

MH130

MH138

P3812W

SC627

Wenchi

SC403

253SIMLESASIMLESA

CHAPTER 14

Aseriesofvarietyevaluationtrialsresultedintheidentificationofbest-betmaizevarietiesforscalingup.Atotalof12maizevarietieswereidentified.Ofthese,sevenvarieties(BH546,BH661,BH547,MH138Q,MH140andGibe-2)werereleasedduringtheSIMLESAphase.Somevarieties,suchasBH546(erectandnarrow-leaved)andMH130(shortplantstature),wereidentifiedasbeingsuitableforintercroppingwithdifferentlegumespecies.Inaddition,thesevarietieshadhighergrainyieldthanthepreviouslyreleasedvarieties.Thesevarietieswerethenscaledouttoreachalargernumberoffarmingcommunitiesintargetareas.

Participatory variety selection of grain legumes

ParticipatoryvarietyselectiontrialsofcommonbeanvarietieswereconductedinthedrytomoistagroecologiesofsouthernEthiopia.FarmersidentifiedHawassa-Dume,SER119andSER180assuitablevarietiesforHawassaZuriaandBadawachodistricts(Table14.14).Farmers’selectionsweremainlybasedonseedsize,earlymaturity,marketdemandandgrainyield.Selectionsbasedonresearchers’evaluationcriteriaalsoidentifiedHawassa-Dume,NasirandSER-180asthemostdesirablevarietiesinHawassaZuriaandBadawachodistricts.TheselectedvarietiesarebeingwidelytakenupandproducedinsoutherncentralareasofEthiopia.Ingeneral,13high-yieldingandstress-tolerantlegumevarieties(7commonbeanand6soybean)werereleasedorrecommendedforfurtherpromotion.ThevarietiesweredevelopedwiththesupportofTropicalLegumesIIandIII(TL-IIandTL-III),andongoinggovernment-fundedprojects.

Table 14.14  Farmer evaluation criteria and ranking of nine common bean varieties at Hawassa Zuria and Badawacho districts in southern Ethiopia

Variety Criteria Hawassa Zuria

Badawacho

SS EM Mkt Yld DisR SSRFS BM colour Sum Rank Sum Rank

Dume 4 4 5 4 4 4 3 4 32 1 33 1

SER119 3 3 5 4 4 3 4 5 31 2 32 2

SER180 3 3 4 4 4 3 4 4 29 3 26 3

SER176 2 2 2 4 4 2 3 3 22 5 25 4

SER125 3 2 2 3 4 2 3 4 23 4 24 5

SER48 3 2 2 3 4 2 3 3 20 7 24 5

SER118 3 2 2 3 4 2 3 3 22 5 23 7

SER78 3 5 2 1 1 5 2 2 21 8 21 8

Nasir 4 1 1 4 2 1 4 2 19 9 19 9

Notes:SS=seedsize;EM=earlymaturity;Mkt=marketdemand;Yld=highyield;DisR=diseaseresistance;SSRFS=suitabilitytoshortrainfallfarmingsystem;BM=beanstemmaggot.Scoring:5=highlypreferred,1=leastpreferred.

Participatory variety selection of forage legumes

TheSIMLESAprogramfocusedonCASImaize–legumecroppingsystems.Inadditiontominimumorno-tillage,effectiveweedcontrolandmaize–legumeintercroppingorrotation,CASInecessitatesretentionofadequatelevelsofcropresiduesandsoilsurfacecovertoimprovesoilquality.InEthiopia,cropresiduesareusedasalternativesourcesofanimalfeed,aslivestockkeepingisanessentialpartofmaize–legumecroppingsystems.Forexample,wherethelivestockpopulationishigh,challengesofresidueretentionhavebeenidentifiedasthemajorbottleneckinadoptionofconservationagriculture.

SIMLESA254

SECTION 3: Highlights from country initiatives

Theencroachmentofcropsontraditionalpasturelands,andthelackofappropriateforage/fodderspecies,compelledfarmerstoincreasinglyrelyoncropresiduesforfodder.Therefore,systemsforproductionandsupplyofforagecropsneedtobeinplacetoenablefarmerstoretaincropresiduesintheirfields.TheSIMLESAexpansionprograminEthiopiaaddressedissuesrelatedtofodderandforagesinmixedcrop–livestocksystemsinadditiontoSIMLESA’smainobjectives.

Severalforagelegumespecieswereevaluatedon-farmandon-stationacrossdifferentecologiesinSIMLESA’shostingcentresinEthiopia.Theprimeselectioncriteriaincludedrapidgrowthandgroundcover,shadetolerance(suitabilityforintercropping)andhighbiomassyield.Accordingly,twocowpeaaccessions(Acc.17216,Acc.1286)andvarieties(black-eyedpeaandKenkey)ofcowpeaandonelablabaccession(Acc.1169)wereselectedforfurtherscalingup.Awell-organisedandstructuredfieldevaluationwasundertakenonsweetlupinegenotypesinnorth-westernEthiopia.Inthisregion,lupineisusedformultiplepurposes,suchashumanconsumption,greenmanuringandforage.Itcanbeproducedonsoilsoflowfertilitywithminimumagronomicmanagementpractices.

Foursweetlupinevarietieswereevaluatedfordrybiomassandseedyieldononeresearchstationandfarmers’fieldsacrossdifferentlocationsoverseveralyears.Thevarietiesshowedanaveragedrybiomassyieldrangingfrom3.5to4.0 t/haandseedyieldrangingfrom1.7to2.7 t/ha.Amongthevarieties,SanbaborandVitaborshowedsuperiorfieldperformanceacrossalltestenvironmentsandhadacceptablelevelsofcrudeprotein(Figure14.9andTable14.15).Thesetwovarietieswereofficiallyreleasedandregisteredin2014forusebythefarmingcommunity.ThiswasthefirstreleaseofsweetlupinevarietiesinEthiopia.

Figure 14.9  Seed yield of sweet lupine varieties evaluated across Ethiopia

0

1.0

0.5

1.5

2.0

2.5

3.0

Seed

yie

ld (t

/ha)

Sanabor Probor Bora Vitabor

255SIMLESASIMLESA

CHAPTER 14

Table 14.15 Traits of Sanabor and Vitabor sweet lupine varieties

Variety Seed yield (t/ha) Crudeprotein (%)

Maturity(days)

100 seed weight (g)

Height(cm)

On-station On-farm

Sanabor 3.7 3.1 35 140 16.0 90

Vitabor 3.8 2.8 32 141 13.8 78

Inanotherexperiment,12whitelupineaccessionsobtainedfromlocalcollectionswereevaluatedforseedyieldatsixdifferentlocationsinnorth-westernEthiopiaduringthe2014–15maingrowingseason.Theaccessionsincluded(asdesignatedbytheEthiopianBiodiversityInstitute)Acc.242281,Acc.238996,Acc.238999,Acc.236615,Acc.239029,Acc.239007,Acc.242306,Acc.239003,Acc.239045,Acc.239032,Acc.207912andalocalaccession.Theseedyieldrangedfrom1.60 t/ha(Acc.239045)to2.44 t/ha(Acc.238996),withagrandmeanof1.94 t/ha.Acc.238996(2.44 t/ha),localaccession(2.22 t/ha),Acc.239003(2.12 t/ha)andAcc.239029(2.07 t/ha)hadahigherseedyield(Table14.16).Ofalltheenvironments,DebreTabor(3.72 t/ha)andInjibara(3.43 t/ha)showedhigherseedyields,whereasDibate(0.75 t/ha)andMandura(0.40 t/ha)hadlowerseedyieldsthantheotherlocations(Table14.16).

Table 14.16  Mean grain yield of 12 white lupin landraces tested across six locations in Ethiopia

Accessions Mean grain yield (t/ha) Mean

Fenote Selam

Merawi Debre Tabor

Injibara Dibate Mandura

Acc.242281 1.98 0.33 4.91 3.14 0.69 0.41 1.91

Acc.238996 2.70 1.71 4.23 4.58 1.01 0.42 2.44

Acc.238999 2.69 1.03 3.29 2.50 0.75 0.34 1.77

Acc.236615 1.47 1.42 2.88 2.96 0.62 0.32 1.61

Acc.239029 2.15 2.03 3.98 3.11 0.84 0.33 2.07

Acc.239007 2.40 0.80 3.17 3.90 0.66 0.44 1.90

Acc.242306 1.90 1.81 3.37 3.17 0.72 0.36 1.89

Acc.239003 1.58 1.56 4.17 4.04 0.82 0.56 2.12

Acc.239045 1.71 2.02 2.74 2.08 0.69 0.37 1.60

Seed production and dissemination of selected maize and legume varieties

Seedsofselectedmaizeandlegumecropswereproducedbydifferentstakeholdersanddistributedtothefarmers.Well-designedseedproductionplanningsystems,calledseedroadmaps,weredevelopedforselectedvarietiesreleasedbeforeandduringtheSIMLESAprogramforseedproductionandscalingup.Bako,HawassaandMelkassaAgriculturalResearchCenterswereresponsiblefortheproductionandsupplyofearlygenerationseeds,whilepublicandprivateseedcompaniesandfarmers’cooperativeunions,suchasMeki-Batu,wereinvolvedintheproductionandmarketingofcertifiedseeds.Twoprivateseedcompanies(AnnoAgro-IndustryandEthioVegFruPLCs)andfourpublicseedenterprises(AmharaSeedEnterprise,EthiopianSeedEnterprise,OromiaSeedEnterpriseandSouthSeedEnterprise)wereveryactiveinseedproductionofmaizehybridsidentifiedbySIMLESA.

SIMLESA256

SECTION 3: Highlights from country initiatives

Morethan30tofbreederseedswereproducedandsuppliedtoseedgrowerstostimulatetheseedproductionanddisseminationsystems.Theseedcompanieswereencouragedtoproducerequiredquantitiesofbasicandcertifiedseeds.Overthelastsevenyears,nearly300 tofbasicseedsand6,500 tofcertifiedseeds(80%hybridsand20%open-pollinatedvarieties)wereproducedanddisseminatedwiththedirectandindirectsupportoftheSIMLESAprogram.Thequantityofcertifiedseedsproducedunderthisprogramcouldplant260,000ha.Consideringanallocationof0.5 halandformaizeandafamilysizeofsevenpeopleperhousehold,theseedproducedcontributedtothefoodsecurityof520,000householdsandmorethan3.64 millionpeople.

Taking SIMLESA output lessons to scaleOnthebasisoffieldresearchresultsfromlong-termon-stationandon-farmtrialsacrosscontrastingagroecologies,CASIpracticestestedbySIMLESAactivitiesprovedtobetechnicallyfeasibleandfinanciallyviableforsmallholderfarmers.Thesetechnologiesweretakenupforlarge-scaledisseminationusingdifferentscaling-upandscaling-outapproaches.Inthefirststage,demonstrationsofbest-bettechnologieswereconductedacrossvaryingagroecologieswhereSIMLESAhostingcentreswereoperating.Incollaborationwithlocalextensioninstitutions,CASIpracticeswerepromotedinvillagesthroughfielddays,exchangevisits,printedextensionmaterialsandaudiovisualmedia.Anumberoffielddays,demonstrationsandtrainingsessionswereorganisedand16,683,1,564and3,596stakeholdersattendedtheseeventsrespectivelyovertheperiodofsevenyears.Printedextensionmaterials(leaflets,manuals,pamphletsandposters)wereproducedanddisseminated.Audioandvisualtools(TVandradiobroadcasts)werealsousedforwidercoverageofthescaling-outefforts.Themediamessageswerebroadcastinanumberoflanguages,includingAmharic,AfanOromoandSomali.

Basedontheseexperiences,agrantagreementwasmadewithagriculturalandnaturalresourcesdepartmentsinthezonestohandlethedisseminationofCASIpracticesusingEthiopia’shighlystructuredandwell-establishedextensionsystem.SevenzonesofagriculturalandnaturalresourcedepartmentsfromOromia,AmharaandSNNPregionalstateswereinvolvedintheSIMLESA-basedbest-betpracticesscaling-outactivities(Figure14.10).Theseregionalstatesrepresentedthefirstthreemajormaize-andlegume-producinganddenselypopulatedregions,andconstituted80%ofthepopulationand50%ofthelandmass.Theycontributedupto96%oftheproductionofmaize–legumes(CentralStatisticalAgency2015).Inmostcases,theidentifiedscalableconservationagriculturebest-betpracticesandtechnologiesundertheschemeincluded:

• reduced/minimumtillage

• maize–legumeintercropping

• legume–maizerotation

• herbicideapplicationforweedcontrol.

Thefinancialandtechnicalfeasibilityofthesetechnologiesandpracticeshavebeenprovenacrossthedifferentagroecologies.

257SIMLESASIMLESA

CHAPTER 14

Figure 14.10 Major districts of the SIMLESA program implementation areas in Ethiopia

SIMLESAoutputsalsoledtoinitiativesbythefederalandregionalofficesoftheagriculturalandnaturalresourcedepartmenttopromoteandscaleoutCASIbest-betpracticesinplaceswheretheybestfitandenhancedtheproductivityandsustainabilityofmaizeandlegume-basedproductionsystems.Theseinclude:

• Thescalingoutofmaize–lupineintercroppinginAmhararegionalstate.Thelocalbureauofagricultureandnaturalresourcesincludedthepracticeinitsextensionpackage.ExtensionmanualswerepreparedinEnglishandAmharicforextensionagentsandfarmers.

• ReducedtillageinitiativesbytheOromiaBureauofAgricultureandNaturalResources.

• ThedevelopmentofrecommendationdomainsandmanualstopractiseCASItechnologiesinselecteddistricts.TheFederalMinistryofAgricultureestablishedaunittopromoteclimate-smartagricultureandCASIpracticestestedbySIMLESAEthiopia.

• Theestablishmentofacountry-levelconservationagriculturetaskforcetocoordinateinitiativespromotingtheapplicationofconservationagriculturepracticesbydifferentinstitutesandorganisations.

A.A.

Harari

Dire Dawa

Gambella

BenishangulGumuz

Tigray

SNNP

Amhara

Afar

Oromia

Somali

7

6

9

1

14

3

4

8

20

191729

16 15

28

23

213

10

22 27

24

11

12

18

21

2526

5

37°0'0"E 44°0'0"E

44°0'0"E

14°0

'0"N

7°30

'0"N

0 180 36090

Kilometers Prepared by Demeke Nigussie

SIMLESA project area districts

1. Jijjiga2. Gursum3. Jabitenan4. South Achefer5. Guangua

6. Jawi7. Dangur8. Mandura9. Dibate10. Pawe Spe.

11. Wayu Tuqa12. Gobu Seyo13. Bako Tibe14. Boset15. Adama

16. Dugda17. Adami Tulu Jido K.18. Dodota19. Zeway Dugda20. Meiso

21. Ilu Gelan22. Siraro23. Shala24. Meskan25. East Badawacho

26. Hawassa Zuria27. Boricha28. Loko Abaya29. Halaba

14°0

'0"N

7°30

'0"N

37°0'0"E

SIMLESA258

SECTION 3: Highlights from country initiatives

Gender roles in maize–legume production AstudyongenderintheCentralRiftValleyofEthiopiashowedthatwomencontributedtohouseholddecision-makingacrossmaizeandcommonbeanvaluechains(Table14.17)onissuesofaccesstoandcontroloftangibleandnon-tangibleassets.Thedatashowthatthegapbetweenmenandwomenfarmers’accesstoagriculturalinformationwasdiminishing(asexpressedbyfarming-relatedinformationfromextensionworkers)andseveralimportantdecisionswerereportedlymadejointlybybothspouses.

Table 14.17 Access to resources and decision-making in Central Rift Valley in Ethiopia (n = 61)

Description Gender/measure Average/count

Ageofthehouseholdhead(years) 39(±13)

Typeofhousehold male-headed 54

female-headed 7

Modeofmainfarmlandacquisition inheritance 39

villageallocation 21

both 1

Landuserdecision-maker men/husbands 32

women/wives 6

joint(spouse) 22

husband’sfather 1

Malefarmerusuallyobtainsfarming-relatedinformationfromextensionagent

yes 42

no 19

Femalefarmerusuallyobtainsfarming-relatedinformationfromextensionagent

yes 36

no 25

Womengrowseparateplots yes 6

no 54

Maindecision-makertogrowmaize man 26

woman 6

joint 29

Maindecision-makertogrowcommonbean man 25

woman 6

joint 25

Source:Ownfieldstudy,April2017

259SIMLESASIMLESA

CHAPTER 14

Gender roles in maize and common bean production Manycropproductionactivitieswerejointlyperformedbymenandwomen.Marketingwasdonebymenandwomen,althoughthevolumewashigherformenwhilewomensoldlesservolumesatfarmgateandvillagemarkets.Concerningcontrolovercropproductionresources,themajorityofhouseholdsmadejointdecisions.Womencontrolledtheincomefromcropsalesinone-thirdofhouseholds,showingimprovementinthisaspectfromwhatwascommonlyperceivedasloworinsignificant.Thereis,however,limitedaccesstoandcontroloverproductiveresources(landandlabour)amongwomeninmale-headedhouseholds.Likewise,accesstoextensionservices,trainingandmarketinformationwaslesscommonamongfemale-headedhouseholdsthanmale-headedhouseholds.Thismayhindertechnologyadoption,contributingtolowproductionandproductivitythatmayleadtolimitedmarketparticipationbywomen.Attentionshouldbegiventowomenintrainingandextensionserviceprovisions.

Women’sandmen’spreferencesandprioritiesvaried.Morewomen(bothinfemale-headedandmale-headedhouseholds)preferredmaize(themajorfoodcrop)thanmen,whilemoremenpreferredcommonbean.Althoughmaizeandcommonbeanwerethemajorcropsforfoodandcash,thesecropsaresoldsolelyasgraininlocalmarketstomiddlemenorconsumers.Therewaslittleopportunitytoaddvaluetomaizeandcommonbeanthroughproductprocessing,whichcouldinvolvemorewomenandyouth.Thisneedsattentionfromresearchersanddevelopmentpractitioners.Decision-makingaboutcropproduction(includingseedselection,seedstorage,landreparation,planting,diseaseandpestcontrol,weeding,residueincorporation,harvesting,storingtransportingandmarketing)primarilyinvolvedadultmales,withfeweradultfemalesandchildren.Adultwomenparticipatedmoreinplanting,weeding,harvesting,seed,grainstorageandmarketing.Childrencontributedmoreduringplanting,weeding,harvestingandlandpreparationofmaizeandcommonbeanproduction.

Conclusions

CASIpracticesinmaize–legumesystemsacrossthedifferentagroecologiesinEthiopiaprovedtobeenvironmentallyfriendlyandeconomicallyfeasible.MaizegrainyieldwasconsistentlyhigherunderCASIsystemscomparedtoconventionalpractices.CASIpracticesconsiderablyimprovedsoilqualityintermsofbulkdensity,organiccarbon,infiltrationrateandpenetrationresistance.Asaresultofimprovedsoilquality,increasedcropproductivitywasrecordedacrossdifferentagroecologicalconditionsofEthiopia.Likewise,ahigherlevelofsoilorganiccarbonwasachievedinmaize–commonbeanintercropping,solecommonbeanandcommonbean–maizerotationsunderCASIsystems,comparedtosimilarpracticesunderconventionalpractices.Maize–legumeintercroppingsystemsunderconservationagricultureconsiderablyincreasedrainwaterproductivity.Bothintercroppingandconservationagricultureincreasedrainwaterproductivity,whichtranslatedintohighergrainandstoveryieldadvantages.

CASIwasfoundtobevitalforsoilconservationbyreducingsoilerosionbywaterandwind.Cropresidueretentionwithconservationagriculturereducedsoillossbynearly100%.Reducedrun-offfromCASIfieldsresultedinhigherrainwateruseefficiencyinmoisturestressareas.Maize–legumeproductionintensificationprovedtohavemultiplebenefitsinEthiopia,includingenhancedproductivity,reduceddownsideriskinmaizeproductiononplotsplantedtoimprovedmaizeand/orchemicalfertiliser,andhigherfinancialreturns.Thehighestincomewasobtainedwhenconservationagriculturepracticeswerecombinedwithimprovedcropvarieties,whichisdirectlycorrelatedwithCASIandcropsystemdiversification.

SIMLESA260

SECTION 3: Highlights from country initiatives

Anumberofmaizeandlegumeswereselectedandutilisedbyinvolvingpublicandprivatepartnersinseedproductionanddissemination.Involvementoffarmersinparticipatoryvarietyselectionwasinstrumental.Participatoryvarietyselectionwasatooltodevelopconfidenceamongfarmersaswellasseedproducers,whichspeduptheuptakeofimprovedvarieties.Farmers’varietyselectioncriteriaprovedtobeconsistentwithobjectivemeasurementsadoptedbybreeders.

AdoptionmonitoringindicatedthatawarenessofCASItechnologywashigh.Thiswasaresultofhostingon-farmdemonstrations,attendingfielddays,participatinginexchangevisitsandlisteningtomediabroadcasts.ThemostimportantCASIpracticesadoptedbyfarmerswereintercropping,minimumtillageandimprovedvarieties.Improvedvarietiesandminimumtillagewerethetechnologieslikedbymostsmallholderfarmers.However,therewerestillchallengesthathinderedadoptionofthetechnologiesdevelopedthroughSIMLESA,suchasunavailabilityofherbicides,shortageofimprovedseedandlivestockfeed.Therewerealsobiophysicalconditions,suchassealingofsoils,whichreducedthebenefitsofCASIpracticesinsomepartsofEthiopia.Moreimportantly,opengrazingwasachallengeforresidueretention.Thiswouldneedpolicyinterventionsatmanydifferentlevels,fromcommunitytohigherdecision-makingbodies.

CASIpracticeshadapositiveinfluenceonsustainablecropproduction.IntercroppingmaizewithcommonbeanunderCASIshowedthehighpotentialofavoidingcropproductionrisksundervariableandshortrainfall,includingdroughtyears.IntercroppingwasmoreprofitablethanotherCASIandconventionalpractices.Intermsoflabourdemand,CASIreducedtotaloxendraughtpowercomparedtoconventionalpractices,mainlyduetoreduced/minimumtillageandintercropping.

Manycropproductionactivitieswerejointlyperformedbymenandwomen.Marketingwasdonebymenandwomen,althoughthevolumewashigherformenbecausewomendidlessatthefarmgateandvillagemarkets.Mosthouseholdsmadejointdecisionsaboutcropproductionresources.Womencontrolledtheincomefromcropsaleinareasonableproportionofhouseholds,showingimprovementonpreviousreportsofwomen’sinvolvement(loworinsignificant).Womeninmale-headedhouseholds,however,stillhadlimitedaccesstoandcontroloverproductiveresources(landandlabour).Likewise,accesstoextensionservice,trainingandmarketinformationwaslesscommonamongwomenthanmen.Thismayhindertechnologyadoption,contributingtolowproductionandproductivitythatmayleadtolimitedmarketparticipationbywomen.Thiscallsforgreaterfocusonwomenintrainingandserviceprovisionactivities.Men’sandwomen’spreferencesforcropproductionvaried.Women(inbothfemale-andmale-headedhouseholds)hadastrongerpreferenceformaize(themajorfoodcrop)andmenhadastrongerpreferenceforcommonbean.

MaizeandcommonbeanwerethemajorfoodandcashcropsinSIMLESAinterventionareas.Thecrops,however,weresoldsolelyasgraininlocalmarketstomiddlemenorconsumers.Therewaslittleopportunitytoaddvaluetothecropsthroughproductprocessing,whichinvolvedmorewomenandyouth.Thisneedstheattentionofresearchers,developmentpractitionersandpolicymakers.

261SIMLESASIMLESA

CHAPTER 14

ReferencesAbebe,G,Assefa,T,Harun,H,Mesfin,T&Al-Tawaha,M2005,‘Participatoryselectionofdroughttolerant

maizevarietiesusingmotherandbabymethodology:acasestudyinthesemi-aridzonesoftheCentralRiftValleyofEthiopia’,World Journal of Agricultural Sciences,vol.1,no.1,pp.22–27.

Abebe,Z,Birhanu,T,Tadesse,S&Degefa,K2014,‘Conservationagriculture:maize-legumeintensificationforyield,profitabilityandsoilfertilityimprovementinmaizebeltareasofwesternEthiopia’,International Journal of Plant and Soil Science,vol.3,no.8,pp.969–985.

Adam,B,Paswel,M&Menale,Kn.d,‘Maizeandharicotbeantechnologyadoption-monitoringinthecentralriftvalleyareaofEthiopia:ThecaseofShalla,AdamituluJidokombolcha,andBosetdistricts’.

Assefa,A,Tana,T,Dechassa,N,Dessalgn,Y,Tesfaye,K&Wortmann,CS2017,‘Maize–commonbeanintercroppingtooptimizemaize-basedcropproduction’,The Journal of Agricultural Science,vol.15,no.7,pp.1124–1136.

Bagyaraj,DJ,Nethravathi,CJ&Nitin,KS2016,‘Soilbiodiversityandarthropods:roleinsoilfertility’,inAKChakravarthy&SSridhara(eds),Economic and ecological significance of arthropods in diversified ecosystems,doi:10.1007/978–981–10–1524–3-2.

Bekele,A,Kassie,M,Wegary,D&Sime,M2013,Understanding maize-legume cropping systems: a community survey approach,ResearchReport97,EthiopianInstituteofAgriculturalResearch,AddisAbaba.

Beshir,B&Nishikawa,Y2017,‘Understandingsmallholderfarmers’accesstomaizeseedandseedqualityinthedrought-proneCentralRiftValleyofEthiopia’,Journal of Crop Improvement,vol.31,no.3,pp.289–310.

Beshir,B,Habtie,E&Anchala,C2008,‘GenderbasedfarmingsystemsanalysisinAdamaWereda’,inYChiche&KKelemu(eds.),Gender differentials for planning agricultural research,AddisAbaba,Ethiopia.

Bewket,W&Teferi,E2009,‘Assessmentofsoilerosionhazardandprioritizationfortreatmentatthewatershedlevel:casestudyintheChemogawatershed,BlueNilebasin,Ethiopia’,Land Degradation & Development,vol.20,pp.609–622.

CentralStatisticalAgency2015,The Federal Democratic Republic of Ethiopia agricultural sample survey 2013/2014 (2007 EC) report on area and production of major crops (private peasant holdings, meher season),May2015,vol.I,StatisticalBulletin578,AddisAbaba.

CentralStatisticalAgency2017,The Federal Democratic Republic of Ethiopia agricultural sample survey 2016/17 2014 (2009 EC) report on area and production of major crops (private peasant holdings, meher season), May2017,Vol.I,StatisticalBulletin584,AddisAbaba.

Debele,T&Bogale,T2011,‘ConservationagricultureforsustainablemaizeproductioninEthiopia’,Proceedings of the Third National Maize Workshop of Ethiopia,AddisAbaba,Ethiopia.

Degefa,A2014,Effects of different soil management practices under maize-legume production system on soil, water and nutrient and yield in Bako, West Oromia, Ethiopia,MScthesis,HaramayaUniversity.

Elmyhun,M,Abate,F&Merene,Y2017,‘Evaluationofmaizehybridsusingbreeders’andfarmers’selectioncriteriainnorthwestEthiopia’,posterpresentationinArusha,June2017.

Erkossa,T,Stahr,K&Gaiser,T2006,‘SoiltillageandcropproductivityonVertisolinEthiopianhighlands’,Soil and Tillage Research,vol.85,pp.200–211.

Ethiosis2014,Soil fertility mapping and fertilizer blending,AgriculturalTransformationAgencyreport,Ethiopiasoilinformationsystem,MinistryofAgriculture,AddisAbaba.

FoodandAgricultureOrganization2001,Soil fertility management in support of food security in sub-Saharan Africa,FoodandAgricultureOrganizationoftheUnitedNations,Rome.

FoodandAgricultureOrganization2014,Conservation Agriculture,viewedAugust2017,www.fao.org/ag/ca.

Gelagay,HS&Minale,AS2016,‘SoillossestimationusingGISandremotesensingtechniques:acaseofKogawatershed,northwesternEthiopia’,International Soil and Water Conservation Research,vol.4,pp.126–136,doi: 10.1016/j.iswcr.2016.01.002.

Getahun,D2016,‘AdoptionmonitoringsurveyanalysisofCA(conservationagriculture),southernregion,Ethiopia’, Greener Journal of Agricultural Sciences,vol.6,no.6,pp.195–202.

Haileslassie,A,Priess,J,Veldkamp,E,Teketay,D&Lesschen,JP2005,‘Assessmentofsoilnutrientdepletionanditsspatialvariabilityonsmallholders’mixedfarmingsystemsinEthiopiausingpartialversusfullnutrientbalances’,Agriculture, Ecosystems & Environment,vol.108,pp.1–16.

SIMLESA262

SECTION 3: Highlights from country initiatives

Hurni,K,Zeleke,G,Kassie,M,Tegegne,B,Kassawmar,T,Teferi,E,Moges,A,Tadesse,D,Ahmed,M&Degu,Y2015,Economics of Land Degradation (ELD) Ethiopia case study: soil degradation and sustainable land management in the rainfed agricultural areas of Ethiopia: an assessment of the economic implications,WaterandLandResourceCentre,CentreforDevelopmentandEnvironment,DeutscheGesellschaftfürInternationaleZusammenarbeit.

Jaleta,M&Marenya,P2017,‘Downsideriskreducingimpactsofcropdiversificationinmaizeyieldenhancinginvestments:evidencefromEthiopiausingpaneldata’,posterpresentationinArusha,June2017.

Lemenih,M,Karltun,E,Olsson,M2005,‘AssessingsoilchemicalandphysicalpropertyresponsestodeforestationandsubsequentcultivationinsmallholdersfarmingsysteminEthiopia’,Agriculture, Ecosystems and Environment,vol.105,pp.373–386.

Liben,FM,Hassen,SJ,Weyesa,BT,Wortmann,CS,Kim,HK,Kidane,MS,Yeda,GG&Beshir,B2017,‘ConservationagricultureformaizeandbeanproductionintheCentralRiftValleyofEthiopia’,Agronomy Journal,vol.109,no.6,pp.1–10.

Merga,F&Kim,HK2014,‘Potentialofconservationagriculture-basedmaize–commonbeansystemforincreasingyield,soilmoisture,andrainfall-useefficiencyinEthiopia’,inNVerhulst,MMulvaney,RCox,JVanLoon&VNichols(eds),Compendium of deliverables of the conservation agriculture course 2014,HramayaUniversity,pp.1–9.

Mesfin,A1998,Nature and management of Ethiopian soils,AlemayaUniversityofAgriculture,ILRI,Ethiopia.

Mesfin,A2007,Nature and management of acid soils in Ethiopia,HaramayaUniversityPrintingPress,Ethiopia.

Molla,T&Sisheber,B2017,‘EstimatingsoilerosionriskandevaluatingerosioncontrolmeasuresforsoilconservationplanningatKogawatershedinthehighlandsofEthiopia’,Solid Earth,vol.8,pp.13–25.

Mekuria,M&Kassie,M2014,Sustainable intensification-based CA for sustainable food security and poverty reduction: evidences from SIMLESA,WCCA6presentation,Winnipeg,22–26June2014,http://www.soilcc.ca/news_releases/2014/congress/June%2023%20Menale%20Kassie.pdf.

Mulwa,C,Kassie,M,Bekele,A,Jaleta,Mn.d.,Socioeconomic profile of maize–legume based farming system in Ethiopia: characterization of livelihood strategies, production conditions and markets,BaselinesurveyreportfortheprojectSustainableIntensificationofmaize–legumefarmingsystemsforfoodsecurityineasternandsouthernAfrica(SIMLESA).

Rogers,E1983,Diffusion of Innovations,3rdedn,TheFreePress:MacmillanPublishing,NewYork.

Saban,Y,Mehmet,A&Mustafa,E2008,‘Identificationofadvantagesofmaize–legumeintercroppingoversolitarycroppingthroughcompetitionindicesintheEastMediterraneanregion’,Turkish Journal of Agriculture,vol.32,pp.111–119.

Temesgen,D,Getachew,A,Tesfu,K,Tolessa,D&Mesfin,T2011,‘PastandpresentsoilaciditymanagementresearchinEthiopia’,reviewpaperpresentedatthe2ndNationalSoilandWaterManagementWorkshop,28–31January2011,AddisAbaba,Ethiopia.

Wakene,N,Tolera,A,Minale,L,Tolessa,D,Tenaw,W,Assefa,M&Zarihun,A2011,‘SoilfertilitymanagementtechnologiesforsustainablemaizeproductioninEthiopia’,inProceedings of the Third National Maize Workshop of Ethiopia,18–20April2011,AddisAbaba,Ethiopia.

Wolde,L,Keno,T,Berhanu,K,Tadesse,B,Bogale,GT,Gezahegn,B,Wegary,D&Teklewold,A2018,‘Mega-environmenttargetingofmaizevarietiesinEthiopiausingAMMIandGGEbi-plotanalysis’,Ethiopian Journal of Agricultural Science,vol.28,pp65–84.

WorldFactbook2017,CIADirectorateofIntelligence,viewed5October2017,https://www.cia.gov/library/publications/the-world-factbook/.

263SIMLESA

15 Intensification of maize and legumes in KenyaCharles Nkonge, Alfred Micheni, George Ayaga, Martins Odendo, Christine Ndinya, Rosalyne Juma, Bernard Rono, Catherine Muriithi, Vincent Weyongo, Patrick Gicheru, Ludovicus Okitoi, Felister Wambugha Makini & Leonard Rusinamhodzi

Key points

• Conservationagriculture-basedsustainableintensification(CASI)experimentswerestartedinKenyaformaizeandlegumeswiththeobjectivesofincreasingrainfedproductivityby30%andreducingdownsideriskby30%for100,000small-scalehouseholdsinonedecade.

• Farmersidentifiedtheirpreferredmaize,legumeandpasture/fodder varietiesandtestedthemunderCASIpracticesandotheragronomicpracticesandvarieties.Theyieldsofmaizeandlegumestripledandquadrupled amongcollaboratingandneighbouringfarmersrespectively,comparedtootherfarmers.

• FarmersrealisedlaboursavingsofuptoUS$250/hacomparedtoconventionaltillagemethodsofgrowingcrops.

• CASIresultedinsignificantlymoresoilwateratvariousdepthsandatharvesttime,lowersoilbulkdensityandhighermicrobialpopulationscomparedto conventionaltillage.

• ProfitabilityandsustainabilityofCASIandtheadvantagesofinnovationplatformsinexperimentation,solvingfarmers’problemsandlinkingfarmerstomarketswereevidentlessonsfromthisprogram.

• ThereisaneedtoembedCASIinKenya’sClimateSmartAgricultureStrategytorealisethebenefitsofincreasedfarmprofitabilityandenvironmentalsustainability,andtoalsoformulatesupportivepolicyforinnovationplatformstosupportfarmerstoaddressproductionconstraintsandlinkthemtomarkets.

SIMLESA264

SECTION 3: Highlights from country initiatives

Introduction

Fordecades,maizeandbeanyieldsinKenyahaveremainedlow,at25%and20%ofpotentialyields,contributingtoproductionrisksforfarmers.TheSIMLESAprogramactivitiesstartedin2010toaddressthisproblem.Theobjectivewastoincreaseproductivityofmaizeandlegumesby30%andreducedownsideriskby30%inonedecadefortargetcommunities.Keyactivitiesoftheprojectwere:

• participatoryvarietyselection

• agronomictrials

• gendermainstreaming

• thedevelopmentofinnovationplatforms.

Aninitialcharacterisationofmaizeandlegumecroppingsystemswascarriedouttoidentifytargetcommunities.Participatoryvarietyselectiontrialsevaluatednewlyreleasedandpre-releasevarietiesofmaize(47varieties),legume(39varieties),andfodder(12varieties).Agronomictrialswereconductedtoevaluateandidentifybest-performingconservationagriculture-basedsustainableintensification(CASI)practices.ProductionlevelswerecomparedforspecificCASIpracticesformaize,legumeandfodderproduction:

• zerotillage

• zerotillagewithDesmodium

• furrowsandridges.

Farmersidentified14maize,23legumeandsevenfoddervarietiesfromthe participatoryvarietyselectiontrials,whichtheyendorsed.Participatingfarmersalsoexpressedsupportforallconservationagricultureoptions.Thirteeninnovationplatformswereinitiatedtobuildresearchcapacity,supportexperimentationandscalingoutoffarmer-selectedtechnologiesandpractices.Short-termtrainingofKenyaAgriculturalandLivestockResearchOrganization(KALRO)staff,partnersandlong-termtrainingoffourKALROscientistswascarriedout.

Farmerssharedinformationonthebenefitsofconservationagriculture-basedsustainableintensification(CASI)practices.Gendermainstreamingwascarriedoutthroughtrainingofscientistsandpartners,resultinginmorefemaleparticipantsthanmaleparticipants.Maizeandlegumeyieldsamongparticipatingandneighbouringfarmersincreasedthreefoldandfourfoldrespectivelywhencomparedtonon-participatingfarmers.Severalscaling-outmethodsweretestedanddemonstrationswerefoundtobethemosteffective.By2017,povertylevelsinthecountiesinwhichtrialswereimplementedhadnotchangedsignificantlycomparedto2010.ProventechnologiesandCASIpracticescanbescaledoutateconomiccorridorlevelsandmorebroadlytohelpmeetproductionandpovertyalleviationgoals.

What was the situation in 2010?Kenyahasasurfaceareaof580,397 km2andapopulationof50 millionpeople(Worldometer2017).Thepeoplearecomprisedof42ethnicgroups,withthesixlargestonesaccountingfor80%ofthepopulation.Thecountryliesbetween4.5°Nand4.0°Sand34°Eand42°E,spanningahighlyvariedagroecologicalzonationfromcoastalandinnerlowlandstoalpine.ThecoastalregionandtheareasurroundingLakeVictoriaexperienceatropicalclimate.

265SIMLESASIMLESA

CHAPTER 15

TheareaontheslopesofMtKenyaandMtElgonexperienceatemperateclimate.Atotalof18.4%ofthelandishigh-andmedium-potential,8.5%issemi-aridand53%isaridland.Twentypercentofthelandisveryarid(Adimo2017).Forty-ninepercentofthelandisagricultural.TheagriculturesectoristhemaindriverofKenya’seconomyandlivelihoodsforthemajorityofKenyans.Thesectorcontributes26%directlytothegrossdomesticproduct,andafurther25%indirectlythroughlinkageswithagrobasedandassociatedindustries(KALRO2017).

Maizeisadaptabletoawiderangeofclimateconditions,andisthemostextensivelygrowncropinKenya.Dependingonvariety,maizeisgrowninareaswithaslowas750 mmrainperyeartoareaswithashighas2,200 mmrainperyear(Kogoetal.2019).Seventy-fivepercentofthecropisproducedbysmall-scalefarms(lessthan25acres)locatedinallareasofKenyawherefarmingiscarriedoutand25%bylarge-scalefarmslocatedmainlyinTransNzoia,Nakuru,BungomaandUasinGishucounties(Kirimi2012).Maizegrowingaccountsfor56%ofcultivatedlandinKenya(Chumo2013).Itisgrownby98%ofruralfarmhouseholds(GovernmentofKenya2011)andhasapercapitaconsumptionof88 kgperyear(Ariga,Jayne&Njukia2010).Maizeproductionbyruralfarmhouseholdshasmosttypicallybeenintercroppedwithlegumeswithlittleornocroprotation(Michenietal.2015).

ThemostimportantlegumesinKenya,basedonproductionvolume,havebeencommonbeans,pigeonpea,cowpeaandsoybean,inorderofdecreasingimportance.Legumesarearichsourceofprotein,typicallyeatenwithmaize,andhavesupplementedcerealcarbohydratestoimprovethenutritionprofileofKenyandiets.Legumeandmaizecroppingsystemshavealsocomplementedoneanother.Forinstance,beanshavebeenharvestedearlierthanmaize,providingasourceoffoodandincomebeforemaizeisreadyforconsumption.In2010–14,maizeandbeansproductionsatisfied90%and86%ofdemand,withthebalancebeingimported.Pigeonpeaandcowpea,however,exceededconsumptionvolumesby75%and60%respectively.Asthemostimportantcropsintermsofproductionvolume,andamainsourceoffoodandincomeforsmallholderfarmersinKenya,maizeandlegumesprovideagoodentrypointforimprovinglandproductivity,foodsecurityandwelfareoffarmers.

AverageyieldsofmaizeandbeansinKenyain2010were1.6 t/haformaizeand0.5 t/haforbeans(Oumaetal.2013).Theseyieldswereespeciallylowrelativetotheirpotentialyieldsofover6.0 t/haforformanydrought-tolerantmaizevarieties(Abateetal.2015)and2.5 t/haforbeans(Karanjaetal.2008;Michenietal.2015).Theyieldgaphasbeenattributedtolowadoptionofimprovedvarietiesandagronomicpractices,decliningsoilfertilityandpoorlydistributedrainfall,amongotherfactors(Murichoetal.2011).In2011,67%offarmersfromwesternandeasternKenyaSIMLESAclustersplantedhybridmaizewhile31%plantedlower-yieldingrecycledseed.Forty-fourpercentoffemalefarmersand28%ofmalefarmersfromthesamecommunitiesplantedrecycledmaizeseedthathadbeenrecycledbywomenandmenfor11and8.5seasons,respectively(Murichoetal.2011).Mostofthehybridseedplantedbyfarmerswereolder,less-productivehybridvarietiesthanmorerecentlydevelopedandreleasedvarieties.

In2010,priortotheirinvolvementintheSIMLESAprogram,manyhouseholdspractisedmanagementstrategieswithlittleproductionpotential.Averagefertiliserandseedrateswere40%and47%ofrecommendedlevels,respectively.Farmersnormallydidnotapplyfertiliseronlegumes.Only1%ofthefarmerspractisedzerotillageontheirfarms.ThemajorproductionconstraintsreportedbyhouseholdsfromwesternKenyain2011wererelatedtomarketsandsoilfertility,suchashighpricesoffertiliser,lackofavailabilityoffertiliserattherighttimeandlackofcredittobuyfertiliser.

SIMLESA266

SECTION 3: Highlights from country initiatives

IneasternKenya,farmersrankeddroughtandseed-relatedconstraintsasthemostimportantmaizeproductionconstraints.About54.3%ofhouseholdswhereSIMLESAactivitieswerecarriedouthadadailypercapitaexpenditurebelowtheinternationallydefinedpovertylineofUS$1perday(Murichoetal.2011).TheKenyaSIMLESAprogramevaluatedtheseproductionfactorstoidentifyopportunitiesforproductiongainsanddeveloptargetedstrategiestosupportadoption.In2017,thepovertylevels(AnswersAfrica2017)werethesameas2011becauseSIMLESAandotherKALRO-developedtechnologieshadnotbeenscaledoutwidelyenoughtohaveanimpactonproductivitiesandtheincomesoffarmingcommunities.

MaizeistheleadingsourceofcarbohydratesandlegumesaretheleadingsourceofproteintotheKenyanpopulation.However,mostfarmerspractisemixedfarming,wheredifferentcropsandlivestockareraisedonthesamefarm.Thetypesofcropsgrownandlivestockkeptdependverymuchontheagroecologies,butthenumberofdifferentcropsgrownandlivestocktypeskeptareusuallylarge.ThisisexemplifiedbyKALROKitaleresearchintheMandateregion,whichfoundthat34differentcrops,withmanydifferentvarietiesorcultivars,weregrownandninedifferentlivestocktypeskept(Nkongeetal.1997).Manyofthecropsandlivestocktypesareoflittlenationaleconomicvalue.

Somecropsaregrownforexportpurposesandothersforlocalconsumption.Livestockproductionismainlyforlocalconsumption.

Crops grown mainly for exportTeaistheleadingexportearnerforthecountry.Itisgrowninabout110,000 hainthewesternandeasternhighlandsofKenya,wherethereisadequaterainfallandlowtemperatures.Sixtypercentoftheteaisproducedbyabout260,000small-scalefarmers,whilelarge-scaleteaestatesproducethebalance(SmartFarmerKenya2017).

Horticulturalcrops,mainlyvegetables(spinach,cabbages,broccoliandkales),fruits(lemons,grapes,orangesandpineapples)andflowers(rosesandorchids)arethesecond-largestagriculturalenterpriseintermsofforeignexchangeearningsforKenya.About70%ofthetotalrevenueisaccountedforbyflowersalone.

CoffeeinKenyaistypicallygrownonrichvolcanicsoilsthatarelocatedatelevationsofbetween1,500mand2,100ontheslopesofMtKenyaandMtElgon.Asof2015,coffeeexportsfromKenyamadeupapproximately20%ofthecountry’stotalexportearnings.

Crops grown mainly for local consumptionIrishpotatoisthesecondmostimportantcropinKenyaaftermaize,intermsofconsumption.Itisgrownbymorethan800,000farmersgeneratingmorethan50 billionKenyanshillings(KSh)tothecountrywithinthelocalmarket(SokoDirectory2017).Thecropisproducedmainlyin13countiesofKenya,includingBomet,Bungoma,Elgeiyo-Marakwet,Kiambu,Meru,Nakuru,Narok,Nyandarua,Nyeri,Taita-Taveta,TransNzoia,UasinGishuandWestPokot(PotatoFarminginKenya2017).Thesecountieshaveatemperateclimatesuitableforpotatogrowing,withrainfallof850–1,200 mmperyearandaltitudesof1,500–2,800 mabovesealevel.

WheatisthesecondmostimportantcerealgraininKenyaaftermaize.WheatfarminginKenyaislargelydoneforcommercialpurposesonalargescale.Kenyaisself-sufficientinthehardvarietiesofwheat,butisanetimporterofthesoftervarieties.WheatismainlygrownintheRiftValley,inareaswithaltitudesrangingbetween1,200 mand1,500 mabovesealevel,andannualrainfallvaryingbetween800 mmand2,000 mm,withupto2,500 mmonhighergrounds(Shawiza2016).

267SIMLESASIMLESA

CHAPTER 15

RiceisKenya’sthirdstaplecerealaftermaizeandwheat.RicefarminginKenyaisestimatedat33,000–50,000 Mt,whileconsumptionis180,000–250,000 t.About95%ofriceinKenyaisgrownunderirrigationinpaddyschemesmanagedbytheKenyaNationalIrrigationBoardineasternKenyaandNyanzaprovinces.Theremaining5%israinfed.

Livestockandcropssectorscontribute46%and54%respectivelytotheagriculturalgrossdomesticproduct.InKenya,mostmeatandmilkproductionisfromcattle,goatsandsheepand,toasmallextent,camels.Poultryformeatandeggproductionisalsoanimportantsectorandbothindigenousandcommercialchickensarekept.

Exoticdairycattleformilkproductionarekeptbybothsmall-scalefarmersandlarge-scalefarmerswhoproduce80%and20%ofthemilkrespectively.Approximately90%oftheredmeatconsumedinKenyacomesfrompastoralistswhokeepmostoftheindigenouscattle,sheep,goatsandcamels(Farmer&Mbwika2012).

What did SIMLESA do?

Program objectivesToidentifypracticestoenhancehouseholdmaizeandlegumeproductionsystems,theInternationalMaizeandWheatImprovementCenter(CIMMYT)andregionalnetworkswithfinancialsupportfromACIARformulatedaCASIresearchprogram.Theaimoftheprogramwastoincreasetheproductivityofmaizeandlegume-basedfarmingsystemsunderrainfedconditionsby30%andreducethedownsideriskby30%inatleast100,000householdsinKenyainonedecade.

Theprogramevaluatedthreeprinciplesofconservationagriculture:

• minimumsoildisturbance

• cropresidueretentiononthesoilsurface

• croprotation.

Minimumtillageandresidueretentiononthesoilsurfacehavereducedsoilerosionfromrainwaterandwindandimprovedsoilmoistureretention,alleviatingtheadverseeffectofloworpoorlydistributedrainfallforfarmersinKenya(Moetal.2016).Croprotationhasminimisedthebuild-upofdiseaseandinsectpestsinthesoilandincreasedsoilfertility.Itisusedtoreducepestsanddiseasesincroppingsystemsandgivebetterdistributionofnutrientsinthesoilprofile.Farmersoptedtogrowmaizeandlegumesasintercropsinsteadofrotationasawayofintensification,duetothesmallsizesoftheirfarms.Thus,maizewasintercroppedwithlegumeseveryseason.

Toachievetheprogram’ssettargets,researchandscaling-outactivitieswereplannedandimplementedunderfivebroadthemes:

• evaluatethedynamicsandperformanceofCASIoptionsformaize–legumeproductionsystems,valuechainsandimpactpathways

• testandadaptproductive,resilientandscalableCASIoptionsforsustainablesmallholdermaize–legumeproductionsystems

• increasetherangeofmaize,legumeandfodder/foragevarietiesavailabletosmallholderfarmers

• supportanddevelopmentoflocalinnovationplatformsforscalingout

• buildresearchcapacity.

SIMLESA268

SECTION 3: Highlights from country initiatives

Program sitesEmbu,MeruandTharakaNithicountiesineasternKenyaandBungomaandSiayacountiesinwesternKenyawereidentifiedasthemajormaizeandlegumeproductionareaswiththegreatestpotentialforincreasedyield.Strategicpartnershipswereestablishedandhistoricproductiondatawerecollectedtocharacterisethemaizeandlegumeproductionsystemsintheseregionsandidentifytargetcommunities.

AbaselinestudywasconductedusingprimarydatafromfarminghouseholdsandsecondarydatafromMinistryofAgricultureLivestockandFisheriesandotherdevelopmentorganisations.Collectionofprimarydatainvolvedathree-stagesamplingproceduretoselectthestudyhouseholds.First,thedistrictswerepurposivelyselected.Second,administrativedivisionswererandomlysampled.Intheselecteddivisions,88villagesweresampled,proportionatetothenumberofvillagesinthedivision.Forthesampledvillages,arandomsampleofhouseholdswasselectedproportionaltothenumberofhouseholdsinthevillages.Intotal,613householdscomprising494male-headedhouseholdsand119female-headedhouseholdsweresampled.Enumeratorsweretrainedandinvolvedinthecollectionofprimarydatathroughface-to-facepersonalinterviewsofhouseholdheadsor,intheirabsence,seniorhouseholdmemberswellversedinfarmingactivities.AstructuredquestionnairewasusedunderthesupervisionofsocioeconomistsfromtheKenyaAgriculturalResearchInstitute’sKakamegaandEmbucentres.

Datawerecollectedregardingdemographicandsocioeconomicprofilesofthehouseholds,resourceendowments,adoptionofmaizeandlegumevarieties,cropandlivestockproductionsystems,andinputandoutputmarkets.Thedatawereanalysedbysimpledescriptivestatistics(percentages,crosstabulationsandmeans)todiscerngeneralcharacteristicsofthedatausingtheStatisticalPackageforSocialScientists(SPSS).Non-parametricanalysisofthevariableswasdonetotestsignificanceacrossthedifferentcomparisongroupsusingchi-squareandt-tests.FactorandclusteranalysismethodswereusedtoestablishfarmtypologiesusingR-software.

Fourclustersineachoftheregions(easternandwesternKenya)wereselectedasresearchsitesbasedonareviewofhistoricproductiondataandhouseholdsurveys.Kyeni(Embucounty)andMweru(Merucounty)inhumidareaswereidentifiedineasternKenya.Twoothersites,Mariani(TharakaNithicounty)andMworoga(Merucounty)wereearmarkedfortrialsinsubhumidecologiesinthesameregion.Likewise,BumulaandKanduyiinBungomacountyinhumidzones,andKaremoandLiganwainSiayaCountyinthesubhumidareawereidentifiedinwesternKenya(Figure15.1).

Intheseeightclusters,communitieswerefurthercharacterisedthroughkeyinformantdiscussionsinvolving302femaleand301malefarmers.Theselectedsiteshadmaizeandlegumesasmajorenterprisesandgoodpotentialforagriculture,withwell-drainedsoilsandrelativelyhighrainfallof1,100–1,600 mmperyear,althoughpoorlydistributed(Jaetzoldetal.2005a,2005b,2006).OtherregionsineasternandwesternKenyahadabimodalrainfallpatternandtwocroppingseasonsperyear.Thesitesweredenselypopulatedandthemajorityoffarmerspractisedmixedfarming.

269SIMLESASIMLESA

CHAPTER 15

Bungoma

Kakamega

Siaya

Meru

TharakaEmbu

Kenya SIMLESA trial sitesSIMLESA trial counties

Figure 15.1 SIMLESA trial sites in western and eastern Kenya

ImplementationTheKenyaSIMLESAprogramcommencedimplementationin2010.Atthisstage,discussionswereheldwithfarmersandotherkeystakeholders,includingprovincialadministration,MinistryofSocialServices,KenyaSeedCompany,KilimoSalamaCropInsuranceCompanyandOrganicAfrica(aninputstockist).Thediscussionswerefocusedonexplainingtheobjectivesandestablishingrolesandresponsibilitiesforparticipatoryfieldresearchactivities.

The2010baselinesurveyincludedinformationoncroptypesandvarietiesgrown,accesstoagriculturalinputsandservices,broadsystemicconstraintsandoptionsforfieldtesting.Thesedataestablishedbenchmarksagainstwhichtheprogressofprograminterventionscouldbeevaluated.ThesurveyfindingswerediscussedinmeetingswithresearchandextensionpartnersfromtheMinistryofAgriculture,farmersandcommunityleaders.Farmers’viewsweresolicitedandincludedintheresearchagenda.Possiblesolutionstoagriculturalconstraintswerediscussedandagreeduponinaparticipatorymanner.Farmersandotherstakeholdersagreedtointroduceandtestnewandmore-productivemaize,legumeandpasturevarietiesunderparticipatoryvarietyselectiontrials,inwhichfarmersselectedpreferredvarietiesusingtheirowncriteria.

Maizeandlegumevarietiesweretestedasintercrops,apracticewhichwasalreadypopularamongthefarmersandunderadditionalCASIpractices.Sixfarmersperclusterwereinitiallyidentifiedbyotherfarmerstohostexperimentalplotsontheirfarms.TheexperimentalplotsweretobeusedforvarietyandCASIsystemtesting,demonstrations,exchangevisitsandforlearningpurposesbyotherfarmerswithinandbeyondthesites.Toaddressnonagronomicchallenges,otherstakeholdersalongthevaluechainwereincludedasmembersofinnovationplatforms.

SIMLESA270

SECTION 3: Highlights from country initiatives

Participatory variety selectionsMore-productivenewlyreleasedandpre-releasemaize,legumeandfoddervarietieswereidentifiedfromthenationalresearchprograms(DroughtTolerantMaizeforAfrica,InternationalMaizeandWheatImprovementCenter,InternationalCropsResearchInstituteforSemiAridTropics,InternationalLivestockResearchInstitute,TropicalLegumes2,seedcompaniesandEgertonUniversity)inaparticipatorymannerwithfarmers.Atotalof47maize5,39legume6and12fodder7varietiesweretestedundertheparticipatoryvarietyselectionapproach.Multiplecropswereevaluatedinparticipatoryvarietyselectiontrials.Theseincludedmaizevarietiesunderintercropswithcommonbean,pigeonpea,soybean,peanutandcowpea.TheseweretestedunderCASIsystemsinfarmers’fields.FertiliserwasappliedaccordingtoKALROrecommendations.Trialswerecarriedoutbyfarmerswithsupportfromresearchandextensionproviders.Evaluationswerecarriedoutseparatelybyfemaleandmalefarmers,andreportscompiled.Researchersconductedseparateevaluations.Dataweretriangulatedtoidentifythebest-performingvarieties.Thesamestudieswereconductedonresearchstations.

Thevarietiespreferredbyfarmerswereusedbyresearchersandseedcompaniestoproduceseedfollowingwell-definedseedroadmaps,whichprovidedneccessaryagreementswithseedcompaniesontheamountofseedtobeproducedforfarmerswithinaspecifiedperiod(Table15.7).Basicseedwasproducedbyresearchersandgiventoseedcompaniestomultiplyseedforfarmers.

Testing CASI optionsFourCASItreatmentswereselectedbyfarmers,researchersandextensionstafffortesting(Table15.1).

1. Zerotillagethatinvolvednolandtillage,onlymakingseedandfertiliserholesatspecifiedspacing.Weedswerecontrolledusingherbicides.Over75%ofthecropresidueswereleftonthesurfaceoftheplotsattheendoftheseason.

2. Zerotillage+Desmodiumthatinvolvednolandtillage,onlymakingseedandfertiliserholesatspecifiedspacing.Desmodiumwasinterplantedtocontrolweedsandprovidefodderforlivestock.Over75%ofthecropresidueswereleftonthesurfaceoftheplotsattheendoftheseason.

3. Furrowsandridgesthatinvolvedmakingfurrowsandridgesatthestartwithlittlemaintenanceinthefollow-upseasons.Weedswerecontrolledusingherbicides.Over75%ofthecropresidueswereleftonthesurfaceoftheplotsattheendoftheseason.

4. Conventionaltillagethatinvolvedploughing,harrowingandatleasttwostagesofhandweedingtocontroltheweeds.Allcropresidueswereremovedfromtheplotsattheendoftheseason.

5 Maize varieties tested under participatory variety selection KALROEmbu:KH500–39E,KH500–38E,KH631Q,Embu225,Embu226,EmbuSynthetic,KDV1,KDV5,KDV6,DK8033,MZ1202(H529),12ML1,Pioneer2859W,Pioneer30G19

KALROKakamega:KSTP94,KH633A,IRWS303,KAKSUT2,KM0403,H520,H624,KM0221,KH533A,GAF4,DH014,KM0111,KM0311,KM1001,H527,KM0404,KM0406;commercialvarieties:DK8031,H513,DH04,WH105,WH505;farmers’varieties:NyaUganda,Obabari,Sipindi,Duma49,Nambanane,Panadol,DK8031,H614,Duma43,H624,H513

6 Legume varieties tested under participatory variety selection KALROEmbu:bean(KATB9,KATB1,KATX56,KATX69,Embean14,KK8,KK15,Embean7,Embean118,Chelelang,KKRII05/Cal130,Ciankui,Tasha,KATRM-01,KKRII05/cal14B);pigeonpea(KAT60/8,ICEAP00554,00040,00850,00557,KAT60/8,CPL87091);cowpea(K80,M66,KVU-27–1);farmers’varieties:bean(Mwitemania);pigeonpea(Kendi,Ndombolo)

KALROKakamega:bean(KK8,kk071,kk072,kk15,kk20,Emben14,KATB9,KATB1,KATX56,KATX69,KKRosecoco,KKRedBean16);soybean(SB19,SB25,SB3,EAI3600);peanut(ICGV-SM99568,ICGV-SM-12991,ICGV-SM-90704);farmers’varieties:beans(Nyaseje,Rosecoc);peanut(RedValencia)

7 Fodder varieties tested under participatory variety selectionSorghum(E6518),vetch,Calliandra calothyrsus,Morus alba(mulberry),Leucaena trichandra,Brachiaria decumbens(Basilisk),Brachiaria brizantha(Toredo),Brachiaria brizantha (Piata),green-leafDesmodium,silver-leafDesmodium,Dolichos lablab,dual-purposecowpea

271SIMLESASIMLESA

CHAPTER 15

Recommendedratesoffertiliserwereappliedinalltreatments.Formaize,60 kg Nand60 kg P205wereappliedperhectare.Forlegumes,20 kg Nwasappliedperhectare.

Table 15.1  Tillage methods selected by farmers for testing

Tillage method

Land preparation

Weed control

Residue management

Example

Zerotillage onlyseedandfertiliserholesmade

herbicidesusedasneeded

over75%retainedonsoilsurface

Furrowsandridges

furrows/ridgesmadeatthestartandmaintainedthereafterwithminimalrepairs

herbicidesusedasneeded

over75%retainedonsoilsurface

ZerotillageandDesmodium intercrop

onlyseedandfertiliserholesmade

herbicidesusedatfirstseasonbeforeplanting

over75%ofmaizeandbeanresidueretainedonsoilsurface,Desmodiumfedtolivestock

Conventionaltillage

landdugbyhandfollowedbyplantingofseedandfertiliser

twohandweedingsessions

allresidueremovedandfedtolivestock

SIMLESA272

SECTION 3: Highlights from country initiatives

Adoption monitoring of SIMLESA technologiesAdoptionoftechnologiesandpracticesinSIMLESAwasevaluatedthroughsurveyscarriedoutbytheAdoptionPathwaysProjectincollaborationwithSIMLESAscientists.TheAdoptionPathwaysProjectwassupportedbytheAustralianInternationalFoodSecurityCentre.In2012–13,thefirstadoptionsurveywascarriedout.TheobjectiveofthesurveywastoestimatethenumberoffarmerswhohadheardofandadoptedSIMLESAtechnologiesorpracticessince2010.Asnowball/chainsamplingtechniquewasused.Themethodstartedbyinterviewingfirst-generationfarmers(i.e.hostfarmers),membersofinnovationplatformsandagriculturalextensionofficersinSIMLESAclusters.Thefirst-generationfarmersandagriculturalextensionofficersprovidedalistofsecond-generationfarmers(i.e.farmerstheyhadtrainedinissuesrelatedtoSIMLESAactivities,orwhohadparticipatedinthefielddaysorvisitedexperimentalplots,andwerepractisingSIMLESAtechnologies).Thesecond-generationfarmerssuppliedalistofotherfarmerswhowereimplementingSIMLESAactivities.Atotalof4,503farmerswereinterviewed.Asecondadoptionstudywasundertakeninlate2015ineasternKenya,withintheprogramsitesinthethreecountiesofEmbu,MeruandTharakaNithi.Atotalof100femaleand76malefarmerswereinterviewed.

Capacity buildingBuilding credentials

Researchersandpartnersweretrainedindifferentareasanddisciplinesaslistedbelow.Trainingwasconductedbytheprogramlocally,whileothersessionswereheldinTanzania,ZimbabweandbytheAgriculturalResearchCouncilofSouthAfrica.Apartfromshortcourses,oneKenyanreceivedsupporttoenrolinanMasterofScienceandthreeKenyansreceivedsupporttoenrolinPhDprogramsandconductSIMLESAresearch.OfthethreePhDprograms,onestudentsuccessfullygraduatedinJuly2015.

Gender mainstreaming

Fourfemaleandtwomalescientistsweretrainedinfourgendermainstreaming workshopsin2011and2012.Eachtrainingtookaweek,onaverage,andincludedafieldpractical.Scientiststrainedothersand,withthetrainees,recordedgender-responsive andgender-sensitivedataduringplanning,implementationandevaluationof technologies.Documentationoffivegenderstudycasesofgoodpracticewascarried out(CIMMYT-ACIAR2013).

Monitoring and evaluation training

Fourresearchersbuilttheircapacityinmonitoringandevaluationinfourtrainingworkshopsin2011and2012.ThetrainingswerecarriedoutinKenyaandTanzaniaandlastedaboutthreedayseach.Researchersusedtheiracquiredskillstodevelopgender-responsivekeyperformanceindicatorsthatwereusedtomonitortheprogressofSIMLESAprogramimplementation.

273SIMLESASIMLESA

CHAPTER 15

APSIM model training

TwoofficersweretrainedoncropsystemsresearchinfarmtypologymodellingandtheAgriculturalProductionSystemssIMulator(APSIM)model.Cropsimulationmodelswereusedtocalibratedatafromtargetedareastoassesstheproduction,profitabilityandriskinessofcertainidentifiedproductionstrategies.DataforthecalibrationoftheAPSIMmodelwereobtainedfromexistingnationalclimaticdatabases,andsupportedbysoilandcultivarinformation.

What did we learn?Baseline survey and farming systems characterisationOfthe613householdsthatwereinterviewed,119werefemale-headedand494weremale-headed.Farmingwasthemainoccupation(74.2%)ofthehouseholdheads.Theaveragefarmsizeinthefivecounties(Embu,Meru,TharakaNithi,BungomaandSiaya)was1.20 ha/householdandthisdidnotdiffersignificantlybetweenthecounties.Thecropsgrownbymostfarmersweremaizeandlegumes.About76%ofthesurveyedhouseholdsfedcropresiduestotheirlivestockand65%usedlivestockmanureontheirfarms.Thisflowofresourcesacrosscropandlivestocksystemsrequiredanintegratedapproachtocropandlivestockresearch.

Thethreemostimportantmaizeproductionconstraintsreportedbythesurveyedhouseholdswerehighfertiliserprices,droughtandhighpricesofimprovedseeds.Thisinformedongoingresearchintoalternativesourcesofcropnutrients,high-yieldinganddrought-tolerantmaizeandlegumevarietiesandstrategiestoincreaseaccesstoaffordableseed(e.g.community-basedseedproduction).

ThestatisticsthatsummarisetheentireSIMLESAresearchareapopulationprovided abroadunderstandingofhouseholdproductionsystemsinKenya(Table15.2). Householdtypologiesweredevelopedtounderstandthediversityandmajorsources ofsocioeconomicdisparityamongthepopulationofSIMLESAfarmers.Householdsfellintooneofsixfarmtypologiesbasedonfactorsidentifiedfrombaselinesurveydataandfocusgroupdiscussions(Figure15.2)(Wilkus,Roxburgh&Rodriguez2019).Asaresult ofthefactorandclusteranalysismethodusedtoestablishtypologies,householdswithinafarmtypologyhadsimilarsocioeconomiccharacteristics.Thesesimilaritiessuggest thathouseholdswithinthesametypologywouldbenefitfromsimilartechnologies. CASItechnologieswerethereforeevaluatedanddevelopedforspecifictypologiesthatcouldbetargetedwhenpromotingtechnologies.

SIMLESA274

SECTION 3: Highlights from country initiatives

Table 15.2  Household characteristics in Kenya

Cluster variables Frequencies (%) or cluster medians (standard deviations)

1 2 3 P-valuea

Western Kenya

Farmsize(ha) 3.0(3.9) 1.5(1.1) 1.3(1.3) >0.000***

Householdsize(adultmaleequivalent)

4.5(2.0) 2.4(0.7) 2.5(1.4) >0.000***

Sheeporgoats(head) 4(3.7) 1(1.3) 2(2.3) >0.000***

Householdassets(KSh1,000) 44(115) 19(35) 11(17) >0.000***

Sampledpopulation(%) 40 40 20 -

Female-headed(%) 18 16 30 0.118

Reliantoncropping(%) 23 24 23 0.950

Reliantonoff-farmwork(%) 71 78 82 0.083.

Reliantonnon-croppingfarming(%) 31 24 23 0.222

Ageofhouseholdhead(years) 53(14) 42(14) 58(15) 0.653

Highesteducationofhouseholdhead(years)

8(3.9) 8(2.9) 2(2.1) >0.000***

Householdincome(KSh1,000) 143(913) 60(325) 37(203) 0.000***

Eastern Kenya

Farmsize(ha) 1.5(1.4) 2.1(1.3) 5.4(3.7) >0.000***

Householdsize(adultmaleequivalent)

2(0.7) 3.6(1.4) 3.5(1.5) >0.000***

Maizearea(ha) 0.2(0.2) 0.1(0.2) 0.6(1.1) >0.000***

Sheeporgoats(head) 3(1.7) 3(2.0) 8(3.6) >0.000***

Cattle(TLU) 0.5(0.5) 1.4(0.7) 1.4(1.0) >0.000***

Sampledpopulation(%) 60 29 11 -

Female-headed(%) 23 17 9 0.036*

Reliantoncropping(%) 51 51 59 0.759

Reliantonoff-farmwork(%) 66 66 44 0.047*

Reliantonnon-croppingfarming(%) 26 26 35 0.434

Ageofhouseholdhead(years) 45(15) 52(12) 54(14) >0.000***

Highesteducationofhouseholdhead(years)

7(4) 8(4) 7(4) 0.865

Householdincome(KSh1,000) 67(211) 134(1,789) 225(440) 0.027*

Notes:TLU=tropicallivestockunit.1TLUisequivalenttolivestockweightof250 kg.Theconversionfactorvariesaccordingtothelivestocktype:1ox=1.12TLU,1coworheifer=0.8TLU,1sheep=0.09TLU,1goat=0.07TLU,1horse=1.3TLU,1mule=0.90TLU,1donkey=0.35TLU.a=ANOVAtest(*,**,***forP-value<0.05,0.01and0.001respectively).

275SIMLESASIMLESA

CHAPTER 15

Figure 15.2  Heat map of the characteristics and livelihood strategies of farmer groups from western (clusters W1, W2 and W3) and eastern Kenya (clusters E1, E2 and E3)

Theintensityofcolourindicatesthevalueofthefarmsystemvariableforahouseholdgrouprelativetoothergroups (0–1,lighttodark,respectively).Threetypesoffarmingsystemvariableswereused:foodavailabilitylevels(black),socialmobilityfactors(orange)andsourcesofincomegeneration(blue).Foodavailabilityvariableswerethemedianvaluesforlandarea,tropicallivestockunitsandconsumptionequivalentswithineachgroup.Thesocialmobilityfactorsweremedianeducationlevel(yearsofformaleducation),proximitytomarkets(walkingminutes)andtheprobabilityofbeingamale-headedhouseholdwithinthegroup.Incomegenerationcomponentsweremedianincomelevelsfromcropsales,off-farmactivities andothernon-cropfarmsales. Source:Wilkus,Roxburgh&Rodriguez2019

Hou

seho

ld c

lust

er

Land

are

a

Scale

Live

stoc

k ow

ned

Cons

umpt

ion

equi

vale

nt

Educ

atio

n

Prox

imity

to m

arke

ts

Prob

abili

ty o

f mal

e-he

aded

hou

seho

ld

Crop

inco

me

Off

-far

m in

com

e

Oth

er in

com

e

W3

W2

1.00

0.750.50

0.25

0

E1

E2

W1

E3

SIMLESA276

SECTION 3: Highlights from country initiatives

Participatory variety selection trialsFarmersidentified14preferredmaizevarieties(Table15.3)inparticipatoryvarietyselectiontrialsfromthe47varietiestested.Farmerspreferredvarietiesfordifferentreasons,andfemaleandmalefarmersdidnotalwaysrankvarietiesthesameway.

Table 15.3  Maize varieties selected and endorsed by farmers

Variety Hybrid/OPV Source Reasons for selection

Eastern Kenya

PHB30G19  hybrid PioneerSeedCompany

highyields(>5 t/ha),doublecobs, well-filledgrainsandlowearplacement

PHBP2859W hybrid PioneerSeedCompany

earlymaturity(approximately120days),highyields(>5 t/ha),drought-tolerant

KH500–39E hybrid KALRO highyields(4.5–5 t/ha),well-filledcobs,heavygrains,goodhuskcover

KH500–38E hybrid KALRO moderatelyhighyields(4.5–5t/ha)

H529 hybrid KenyaSeedCompany

highyields(>4.5 t/ha),goodroastingandcookingqualities 

DK8031 hybrid Monsanto highyields(>4.5 t/ha)

Emb225 OPV KALRO highyields(>4 t/ha),earlymaturing,drought-tolerant,goodroastingquality

Emb226  OPV KALRO earlymaturing

KDV1 OPV KALRO earlymaturing,drought-tolerant,highyields

KDV5 OPV KALRO earlymaturing(upto90 days),highyields(>4.0 t/ha),drought-tolerant

KDV6 OPV KALRO earlymaturing(<95 days),highyields(>4.0 t/ha),drought-tolerant

Western Kenya

H520 hybrid KenyaSeedCompany

highyields,bigcobs,notdented,whitekernels

KH633A hybrid KALRO earlymaturing

KSTP94 OPV KALRO tolerancetostrigaweed,highyield

Note:OPV=open-pollinatedvariety

Farmersendorsed24legumevarieties(Table15.4)fromthe42varietiestested.Criteriaforendorsingagivenvarietyincludedearly/mediummaturity,graincolour,highgrainyieldandlevelofdisposal(consumption/marketing).

277SIMLESASIMLESA

CHAPTER 15

Table 15.4  Legume varieties endorsed by farmers

Variety Legume type

Source Reason for selection/preference

Chelalang bushbean EgertonUniversity

highyields,earlymaturing

KKRosecoco194

bushbean KALROKakamega

highyields,toleranttorootrot,appealingcolour

Ciankui bushbean EgertonUniversity

earlymaturing,highyields,fastcooking

Tasha bushbean EgertonUniversity

earlymaturing,disease-andinsect-tolerant

KKRedBean16

bushbean KALROKakamega

highyields,toleranttorootrot,appealingcolour

KK8 bushbean KALROKakamega

highyields,toleranttorootrot

KK15 bushbean KALROKakamega

highyields,toleranttorootrot,goodforfoodsecuritybecauseoflowmarketability

Embean14 bushbean KALROEmbu highyields,earlymaturity,goodtaste,verymarketable

KATX69 bushbean KALROKatumani

highyields,withstandsheavyrains,marketable

Ndombolo pigeonpea local(Meru)variety

highyields

Kendi pigeonpea local(Meru)variety

highlydrought-tolerant,cooksfast,highyields,withstandsheavyrains,marketable

KAT60/8 pigeonpea KALROKatumani

highyields,withstandsheavyrains

ICEAP00554 pigeonpea ICRISAT highyields,withstandsheavyrains,marketable

ICEAP00850 pigeonpea ICRISAT highyields,withstandsheavyrains

ICEAP00040 pigeonpea ICRISAT earlymaturity,highyields

ICPL87091 pigeonpea ICRISAT large-seeded,highyields,withstandsheavyrains

ICGV99568 peanut ICRISAT largegrain,goodforroasting,goodtaste

ICGV90704 peanut ICRISAT largegrain,goodforroasting

ICGV12991 peanut ICRISAT goodforbutterprocessing

SB19 soybean CIAT highyields,doesnotlodge

M66 cowpea KALROKatumani

dualpurpose,highyields,goodforintercropping,highlydrought-tolerant,cooksfast

M80 cowpea KALROKatumani

dualpurpose,resistanttoaphids,highlydrought-tolerant,marketable

KVU-27–1 cowpea KALROKatumani

dualpurpose,moderatelyresistanttoaphids,highlydrought-tolerant,marketable

Testingoffodder/foragecropsforfeedinglivestockstartedin2015withtheaimofprovidingalternativestomaizeandlegumecropresidues.Outof12foddervarietiesthatweretestedandpromoted,sevenvarietieswerepreferredbyfarmers(Table15.5).Fromthesetofpreferredvarieties,threedifferentBrachiariavarietiesweredistributedto54womenand27menfarmersineasternKenyabyDecember2016.PreliminaryBrachiaria feedingtrialsbyfarmersshowedincreasedmilkproductionfrom0.5l/dayto1.5l/day.BiomassyieldsforBrachiariagrasseswere50%morethanthatofNapiergrass.

SIMLESA278

SECTION 3: Highlights from country initiatives

Table 15.5  Fodder varieties endorsed by farmers

Variety Type Source Reason for selection/preference

Brachiaria decumbens (Basilisk)

fodder ILRI highbiomass,easytocarrycomparedtoNapier,highmilkincrease,goodinsoilconservation

Brachiaria brizantha (Toredo)

fodder ILRI highbiomass,easytocarrycomparedtoNapier,highmilkincrease,goodinsoilconservation

Brachiaria brizantha (Piata)

fodder ILRI highbiomass,easytocarrycomparedtoNapier,highmilkincrease

Calliandra calothyrsus fodder KALRO 3 kgoffreshCalliandrahadthesameeffectas1 kgofdairymealinmilkproduction(Paterson,Kiruiro&Arimi1999)

Leucaena trichandra fodder KALRO milkincreasewhenfedtodairycattle,palatableandlikedbyanimals,easilyadaptable,drought-tolerant

Morus alba(mulberry) fodder KALRO milkincreasewhenfedtothedairycattle,palatable,likedbyanimals,easilyadaptable,drought-tolerant

Desmodium fodder KALRO substituteformaizeresidue,increasedmilkproduction

Resultsfrommaize,legumeandfoddervarietiesselectedandendorsedbyfarmersshowedthatfarmers’preferencesarehighlyvariableandcouldnotbesatisfiedbyafewvarieties.Yield,earlymaturity,droughttolerance,insect-anddisease-tolerance,colourofgrain,volumeofgrainthatfillsa50 kgor90 kgbag,cookingqualities,tasteandmarketabilitywerecharacteristicsthatdifferentfarmersvaluedwhenselectingvarieties.Farmersdidnotvaluecharacteristicsthesameway.Femaleandmalefarmers’selectioncriteriawerenotalwayssimilar.Whilewomentendedtovaluequalitiesthatimpactedtheenduser,liketaste,cookingandroastingqualitiesandgraincolourmorethanyield,menweremoreconcernedwithyieldasittranslatedtohigherreturns.Fodderforagespecieswereequallyappreciatedbyfemaleandmalefarmersfortheirfastgrowthratesandhigherbiomass.

CASI practices endorsed by farmersIrrespectiveofmanagementpractice,maizeandbeansyieldsoftheSIMLESAprogramparticipantsandneighboursofparticipantsweresignificantlyhigher(4.5 t/haand 2.0 t/harespectively)thanyieldsofnontrialfarmers(1.6 t/haand0.5 t/harespectively).Thiswasattributedtotheuseofmore-productivenewlyreleasedvarieties,correctratesoffertilisers,correctseedrates,timelycontrolofweedsandcontrolofdiseaseandinsectpests.Thisincreaseinyieldrepresented300%formaizeand400%forbeansintheSIMLESAclustersandtheneighbouringfarms.

Maizeandbeanyieldsobtainedunderzerotillage,furrowsandridgesandconventionaltillagewerenotsignificantlydifferent(Figures15.3and15.4).

279SIMLESASIMLESA

CHAPTER 15

Figure 15.3  Average annual maize grain yield under different tillage practices in eastern Kenya SIMLESA sites, 2010–16

Conventional tillage Furrows/tillage Zero tillage

-1

0

1

2

3

4

5

6

2010 2011 2012 2013 2014 2015 2016

Gra

in y

ield

(t/h

a)

Conventional tillage Furrows/tillage Zero tillage

0

0.5

1.0

1.5

2.0

2.5

3.0

2010 2011 2012 2013 2014 2015 2016

Bean

yie

ld (t

/ha)

Figure 15.4  Average annual bean yield under different tillage practices in eastern Kenya SIMLESA sites, 2010–16

SIMLESA280

SECTION 3: Highlights from country initiatives

Returnsonlabour,andthereforeprofitability,CASIpracticesweresignificantlyhigherthanconventionaltillage.LabourcostsassociatedwithzerotillageandfurrowsandridgeswereUS$800–$1,200/ha(Figure15.5).ConventionaltillageineasternKenyainvolvedhanddiggingbeforeplantingfollowedbytwohandweedingsessions.InCASIsystems(zerotillageandfurrowsandridges),herbicidesreplacedhanddiggingandweeding.Thecostoffurrowsandridgeswereonlysignificantlyhigherthanzerotillageinthefirstseason(2010),whenthefurrowswerenewlymade.However,yieldlevelsunderzerotillagecomparedtofurrowsandridgeswerenotsignificantlydifferentforeachseasonfrom2010to2016.Althoughtheyieldsofmaizefordifferenttillagemethodswerenotsignificantlydifferent,farmersrealisedmuchhigherreturnsfromzerotillageandfurrowsandridgesduetotheirhigherlabourcostsaving.

Figure 15.5 Labour costs of different tillage practices in eastern Kenya

Theaveragecropwateruseefficiencyforthethreetillagemethodsisshownin Figure15.6.ThefirstyearofexperimentationdidnothavemulchesontheCASIplots.ThismaybewhyCASItreatmentsdidnothaveanadvantageovertheconventionaltillagepracticeonmoisturecapture.EnhancedcropwateruseefficiencieswereobservedlaterundertheCASItreatments,duringsubsequentyearsofthestudy.ThisiswhenadequateresidueshadaccumulatedundertheCASItreatmentsandthereforemoremoistureretentionwasachieved.Allseasonsfrom2011recordedsignificantlyhighercropwateruseefficiency(above7.0 kg/ha/mm)forthefurrowandridgetreatmentcomparedto lessthan6.1 kg/ha/mmforconventionalandzerotillagesystems.Relatedstudiesshowedthatutilisationofresourcesbycropsisgreatlyaffectedbyweedswhenthecropandweedscompeteforlight,nutrientsandmoisture.BetterweedcontrolundertheCASItreatments,usingpre-andpost-emergenceherbicides,mighthavegreatlyimproved cropwateruseefficiency.

Theeffectofthreetillagepracticesonsoilmoistureat0–15 cmsoildepthatharvesttimewastestedforsixseasonsinthesemi-aridareasofeasternKenya.Inthefourthseason,thetillagemethodswerealreadysignificantlydifferentfromeachother,withthefurrowsandridgesretainingthehighestamountofmoisture.

0

200

600

400

800

1000

1200

1400

Labo

ur c

ost (

US$

/ha)

Conventional tillage Zero tillage Furrows/ridges

2010 2016

281SIMLESASIMLESA

CHAPTER 15

Figure 15.6 Effect of tillage practices on crop water use efficiency in eastern Kenya

Maizeandlegumesonfurrowsandridgesweremoretoleranttodroughtthaninzerotillageorconventionalpractice.Thiswasexplainedbythehigheraveragemoisturelevelsoffurrowsandridgescomparedtozerotillageorconventionalpractices.Residualmoisturecouldbeexploitedbygrowingashort-maturingandless-water-demandingcrop,suchascowpea,leadingtoincreasedproductivity.

Furrowsandridgeshadsignificantlylowerbulkdensitythaneitherzerotillageorconventionaltillage(Figure15.7).Lowerbulkdensityincreasedcropyield.

Mai

ze w

ater

use

effi

cien

cy (k

g/ha

/mm

)

Conventional tillage Furrow/ridges Zero tillage

2010 2011 2012 2013 2014 2015 20163.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Figure 15.7  Effect of tillage practice on soil bulk density in eastern Kenya, 2010 and 2016

0

0.2

0.6

0.4

0.8

1.0

1.2

1.4

Soil

bulk

den

sity

(kg/

m3 )

Initial (2010) Furrows/ridges(2016)

Zero tillage(2016)

Conventional tillage(2016)

1.21.0 1.0 1.0

y = - 0.04x + 1.15R² = 0.3883

Tillage practice/time

SIMLESA282

SECTION 3: Highlights from country initiatives

FarmersexpressedpositiveimpressionsofallthreeCASIpracticesthatwereevaluatedinfarmers’experimentalplots.Preferencestendedtodependonthegenderofthefarmer.FemalefarmerspreferredzerotillageovertheotherCASIpracticesbecauseitdecreasedlabourdemand.Incontrast,malefarmerspreferredfurrowsandridgesovertheotherCASIoptionsbecauseitperformedthebestunderdrierconditions.

What was the impact?

Innovation platformsBy2014,thenumberofinnovationplatformshadgrownto13andthestakeholderswhoweremembershadgrowntomorethan40.Theinnovationplatformsthatweredevelopedcontributedtohighlevelsoffarmerinvolvementinresearchandknowledge-sharing.Farmerswereinvolvedfromtheinitialstageofprogramimplementationintheidentificationoffarmingchallengesandopportunities,andinselectingfarmerstoactashostsforagronomictrials.Afterestablishingtrials,farmersandmembersofthelocalinnovationplatformswereinstrumentalinconductingseasonalmonitoringandevaluationwiththeaimofquantifyingtheeffectsofCASIpracticesoncropperformance,soilfertilityimprovementandweedmanagement.FarmersarrangedandhostedfielddaysforwiderscalingoutofSIMLESAtechnologiesandknowledgeaswellastrainingotherfarmersonCASIprinciplesandpractices.FarmerssharedinformationonthebenefitsofCASIpractices.

Thepartnershipsdevelopedundertheinnovationplatformscontributedto:

• exchangeofagriculturalknowledgefromresearchtofarmers

• ongoingmanagementandevaluationoftechnologies(i.e.adaptivelearning)

• scalingoutofcropsandlivestocktechnologies

• exchangeofsupply-and-demandinformationbetweenfarmersandinputandoutputmarkets.

Thesefunctionsofsocialnetworksfacilitatedrapidcommunitymobilisation,networking,synergycreationandself-driveninterventions.Withintheinnovationplatformframework,farmersandotherstakeholdersactedasagentsofchange,fillingthegapofthelimitedextensionservicesandincreasingawarenessofimprovedtechnologies,increasedadoption,increasedscalingoutandproductivity.Dialoguewithintheinnovationplatformframeworkincreasedcommunityvisioningwithsettargetsforimprovedproductivityandmarketing,andcreatedopportunitiesforproducerstospearheadfielddays,educationtoursandotherscaling-outactivities.

ScalingoutoftechnologiesandpracticesinSIMLESAwascarriedoutthroughdemonstrations,farmerfielddays,exchangevisits,agriculturalshows,innovationplatforms,partnerextensionsystems,seedroadmaps,partnernon-governmentorganisations,faith-basedorganisations,community-basedorganisationsandselectedpartnersthroughcompetitivegrantsystems.ThevariouscomponentsthatwerescaledoutareshowninTable15.6.Mostofthesettargetswereexceeded.

283SIMLESASIMLESA

CHAPTER 15

Table 15.6  Scaling out of SIMLESA technologies and activities

Research aspect Target by 2016 Achieved

Numberoffarmersreached 11,500farmers 7,000women;11,000men

NumberoffarmerswhoadoptedSIMLESAtechnologies 958women; 4,082men

2,066women;1,401men

Numberofmaize–legumefarmingcommunitiesselected

48 51

Numberofcommunitiescharacterisedonsocioeconomicandbiophysicalprofiles

15 72

Numberoflong-termtrialsestablished 2 5

Numberofbest-betoptionstested 4 6

Numberofbest-betoptionsselectedforscalingout 2 3

Numberoffarmerstryingoutconservationagriculture-basedexperimentsontheirownfieldsdocumented

340 2,669women;1,766men

Numberofnewmaizevarietiesidentifiedandevaluated notarget 47

Numberofnewmaizevarietiesendorsedthroughparticipatoryvarietyselectionprocedures

3 14

Amountofseedofnewmaizevarietiesproducedanddistributedtopartners

0.15 t 8.25 t

Numberofnewlegumevarietiesidentifiedandevaluated

notarget 42

Numberofnewlegumevarietiesendorsedthroughparticipatoryvarietyselectionprocedures

 2 23

Amountofseedofnewlegumevarietiesendorsedthroughparticipatoryvarietyselectionprocedures

0.3 t 12.71 t

Numberofnewfoddervarietiesidentifiedandevaluated

notarget 12

Numberofnewfoddervarietiesendorsedbyfarmers notarget 7

Numberofseedcompaniesthecountryteamworkingwith

notarget 8

Numberofinnovationplatformsformed 8 13

Numberoffunctionalinnovationplatforms 8 11

Numberoffarmersreachedbyinnovationplatforms(approximate)

notarget 1,600

Numberoffarmersreachedthroughfielddays 12,000 11,497women;7,405men

Numberofexchangevisitsconducted approx.6 4

Numberofstakeholdersparticipatinginexchangevisits 149women; 191men

156women; 169men

SIMLESA284

SECTION 3: Highlights from country initiatives

Development of seed road mapsToprovideenoughquantitiesofseedofthemaizeandlegumevarietiesselectedbyfarmers,scientistsfromKALROagreedonseedroadmapswithseedcompaniesandprovidedthemwithbasicseedtomultiplyforfarmers.TheamountofseedproducedthroughtheseedroadmapsisshowninTable15.7.TheseedcompaniesthatparticipatedinseedroadmapsandthevarietiestheymultipliedareshowninTable15.8.

Table 15.7  Seed road maps showing the type and amount of seed produced

2010–11 2011–12 2012–13 2013–14 2014–15

Breederseedproduction

EML1:40 kg EML1:450 kg 1.16 t

Pre-basicandbasicseedproduction

EML2:200 kgEML3:200 kg

EML1:4.5 tEML2:2 tEML3:2 t

EML1×EML2:6 t

1.2 t pre-basic1.8 tbasicAllbyKSU

Certifiedseedproduction

Production:17 tofKH500-39Ein

March2014

55 t•25 t(Freshco)

•30 t(KSU)

Maize:breederseed

0.375 t 0.125 t 3.672 t 1.0 t 0.045 t

Maize:certifiedseed

1.5 t 12.4 t 0.436 t 162 t 202 t

Legumes:breederseed

0.684 t 0.630 t 1.212 t

Legumes:certifiedseed

29.4 t

Table 15.8 Key seed companies and partners

Seed company Seed multiplied

MogotyoPlantations KH500-39Emaize

FreschoSeedCompany KH500-39E,KH633A,KH631Q,KDV6maizevarieties

KALROSeedUnit KH500-39Emaize,KSTP94maizeandlegumeseed

KenyaSeedCompany HB520maizevariety

BubayiProductsLimited KK8beanvariety

LeldetSeedCompany Peanut

WesternSeedCompany KK8andKK15beanvarieties

OneAcreFund KK8andKK15beanandSB191soybeanvarieties

ICRISAT Peanutbreederseed(1.0 t)giventoKALRObyICRISAT

Acompetitivegrantsystemapproachwasadoptedtoexploitthecomparativeadvantagesofpartnerstoreachhighernumbersandensurethatatleast100,000householdswerereachedbySIMLESAtechnologiesandpracticesinonedecadefromthestartoftheprogram.Fourpartnerswerecompetitivelyselectedoutof29thatexpressedinteresttoscaleoutSIMLESAtechnologies(Table15.9).

285SIMLESASIMLESA

CHAPTER 15

Table 15.9 Targets to be reached by partners in the competitive grant system

Partner Technologies to scale out Coverage Targets

NationalCouncilofChurchesofKenya

newmaizeandlegumevarieties

Embu,Kitui,MeruandTharakaNithicounties

• 30,000householdsreachedout• 10,500householdsapplyingthetechnologiesontheirfarmsbyMay2018

agri-innovationplatforms KituiandTharakaNithicounties

• 2agri-innovationplatformsestablishedbyMay2018

informationsets Embu,Kitui,MeruandTharakaNithicounties

• 30,000informationsets(brochures,SMS,billboards,radiotranscriptsandoutreachprograms,audiovisualcontentandprograms)byMay2018

MediaeCompany

SIMLESAsustainableintensificationoptions

filmingforcontenttobecarriedoutinEmbu,Kakamega,Kitale,Kitui,Machakos,Meru,TharakaNithiandUasinGishucounties

• intensificationoptionsairedonCitizenTVinShambaShapeUpSeries7covering5,000,000farmhouseholdsthroughoutKenyawith400,000expectedtobenefitdirectlybyApril2018

EgertonUniversity

newlegumeandmaizevarietiesandconservationagriculture-basedtechnologiesandpractices

Busia,Kakamega,SiayaandVihigacounties

• atleast30,000householdsandusersreachedwith7,500applyingontheirfarmsbyAugust2018

• atleast30,000informationsets(brochures,SMS,billboards,radiotranscriptsandoutreachprograms,TVcontentandprograms)developedanddisseminated

• atleast350nextuserpartnerstaffengagedandsupportingtheprocessesabove

FreschoKenyaLimited

maizevarieties(KDV6,KDV1,KH500-33A,KH500-39E,KH500Q,KH600-14E);beans(KATX56,KATB1);sorghum(Gadam,Seredo);greengrams(N26);cowpea(K80/M66);Dolichos lablab(DL1002)

Embu,Meru,TharakaNithi,Bungoma,KakamegaandSiayacounties

• reach30,000householdswithdistributionoffreesamplesofmaizeandlegumevarietiesforfarmerstotryontheirfarms

• reach36,000farmersinfarmers’fairsandfielddays

• target80%ofthefarmersandhouseholdstoembraceandcontinuewiththetechnologiesandfarmingmethods

Mobile phone system for the delivery of information to farmers and agribusinessesMobilephonenumbersofrecipientsofSMSmessageswerecollectedandenteredinto anExcelspreadsheetandloadedintotheestablishedwebsitebeingmanagedfromAustraliabytheQueenslandAllianceforAgricultureandFoodInnovation.Aninitialtargetof2,000farmersfromwesternKenyawereloadedandtested.Thenumberoffarmersinthenetworkwasincreasedprogressivelyto20,000recipientswhoreceivedandsentmessages.

SIMLESA286

SECTION 3: Highlights from country initiatives

Adoption rates of SIMLESA technologiesTheadoptionsurveycarriedoutin2012–13foundthattheadoptionofCASIpracticesinprogramsitesineasternKenya(4,503households)increaseddramaticallyfromlessthan1%whentheprogrambeganin2010to58%in2013forzerotillageand38%forfurrowandridgetillagesystems.Thesurveyalsoestablishedthatmorewomenwereadoptingzerotillagepracticesthanmen,whilemoremenwereadoptingfurrowandridgepractices.Atleast50%ofthehostfarmerswereplantingnewvarietiesbeyondtheexploratorytrialplots.Amongthelegumes,71%offarmersweregrowingEmbean14,whichwasmorepopularamongfemalefarmers.Itspreferredattributesweregoodtaste,highyieldsandgoodpricecomparedtoothervarieties.

By20168,anumberoffarmersbeyondthetargetedSIMLESAhouseholdshadheardofandadoptedSIMLESAtechnologiesandpracticesbasedonknowledgegainedfromSIMLESAparticipants.Adoptionpatternssuggestedthatthemostcommonandeffectiveapproachesofdisseminatingprogramtechnologiesandpracticeswerevisitstodemonstrationsites(96.6%ofrespondents),attendingfielddays(73.7%)andexchangevisits(39.2%).ThemostpopularcropswereDK8031,KDV6maizevarietiesandEmbean14beanvariety,knownby44.3%,20.7%and15.5%ofrespondents,respectively.Furrowsandridges,residuereturnandfertiliserusewereknownby30.4%,18.7%and13.4%ofrespondents,respectively.

What should we do next?

SIMLESAhouseholdsrealisedthepotentialbenefitsofthemore-productivetechnologiesandpractices.However,thesebenefitshavenotbeenfullyrealisedbythebroadercommunity.Themaintaskthatweneedtoengagewithbetween2020and2030istoscaleouttheproventechnologiesatcorridorandhigherlevelsusingapproachesthathavebeenfoundtobeeffective,suchasdemonstrations,fielddaysandexchangevisits.

CurrentseedsuppliesarealsotoolowtomeetdemandifthehouseholdsthatwerereachedbySIMLESAwishtoadoptimprovedvarieties.Futureeffortswillneedtoaddressthissupplyconstraint.Optionsincludemultiplicationbyfarmersorbyseedcompanies.

FarmersandotherpartnerscanbesupportedastheycontinuetoapplySIMLESAtechnologiesandpracticesontheirfarms.LeafletsandbookletsaboutSIMLESA-developedtechnologiesandpracticescanalsosupportwiderknowledgedissemination.Thiscanachievethedesiredimpactandimprovethestandardoflivingoffarmersandotherstakeholdersalongthemaize–legumeandfoddervaluechains.

TheeffectofCASIpractices,includinglaboursaving,wateruseefficiencyandsoilbulkdensity,resultedinhigherproductivityandwereenvironmentallyfriendly.ThiswillenableKenyatotransitiontoclimate-smartagriculturalresearchforhigherproductivityandsustainabilityandsupporttheClimateSmartAgricultureStrategy.On-stationtrialsshouldcontinueforlongertoaccumulateadequatedatatoconfidentlydefinetheeffectsofCASI.

8 During2018,theresultsofafinaladoptionandbenefitssurveyestimatedsubstantiallygreaterlevelsofadoptionthanin2012or2016.

287SIMLESASIMLESA

CHAPTER 15

ReferencesAbate,T,Mugo,S,Groote,H&Regassa,MW2015,DT Maize,QuarterlybulletinoftheDroughtTolerant

MaizeforAfricaProject,vol.4,no.3,CIMMYT,Kenya,https://repository.cimmyt.org/xmlui/bitstream/handle/10883/4477/57029-2015%20v4(3).pdf.

Adimo,O2017,Description of cropping systems, climate, and soils of Kenya,viewed12December2017, http://www.yieldgap.org/kenya.

AnswersAfrica2017,Poverty in Kenya statistics, rate and facts you should know,viewed15October2017,https://answersafrica.com/poverty-kenya.

ArigaJ,Jayne,TS&Njukia,S2010,Staple food prices in Kenya,COMMESAAfricanAgriculturalMarketsPolicyConference,Maputo,25January2010.

Muheebwa,AR&Chiche,Y2015,Best practices and lessons learnt: Case studies on gender mainstreaming in the sustainable intensification of maize-legume cropping systems for food security in Eastern and Southern Africa (SIMLESA) Programme,ASARECA,Entebbe,Uganda.

Chumo,MK2013,Determining factors that affect maize production in turbo constituency, Kenya,viewed 26December2017,http://erepository.uonbi.ac.ke/handle/11295/56008.

Farmer,E&Mbwika,J2012,End market analysis of Kenyan livestock and meat: a desk study,USAID.

GovernmentofKenya2011,Kenya feed the future multiyear strategy,viewed23April2013,http://Kenya.usaid.gov/sites/default/filesKenyaFTFMulti-Yearstrategy.pdf.

Jaetzold,R,Schmidt,H,Hornetz,B&Shisanya,C2005a,Farm management handbook of Kenya,vol.II,2ndedn,partA:WestKenya,subpartA1:WesternProvince:Nairobi.

——2005b,Farm management handbook of Kenya,vol.II,2ndedn,partA:WestKenya,subpartA2:NyanzaProvince:Nairobi.

——2006,Farm management handbook of Kenya,vol.II,2ndedn,partA:WestKenya,subpartC1:EasternProvince:Nairobi.

Karanja,DR,Mulwa,D,M’Ragwa,L&Rubyogo,J2008,Grow improved beans for food and income,KARIinformationbrochureseries13/2008.

KenyaAgriculturalandLivestockResearchOrganization2017,Strategic plan 2017–2021,KALRO,Nairobi,Kenya,ISBN:978-9966-30-032-4.

KenyaMaizeDevelopmentProgram(KMDP)II2011,Annual report,KenyaMaizeDevelopmentProgram.

Kirimi,L2012,History of Kenya maize production, marketing and policies,TegemeoInstituteofAgriculturalPolicyandDevelopment,EgertonUniversity.

Kogo,BK,Kumar,L,Koech,R&Kariyawasam,C2019,‘ModellingclimatesuitabilityforrainfedmaizecultivationinKenyausingamaximumentropy(MaxENT)approach’,Agronomy,vol. 9.doi:10.3390/agronomy9110727.

Micheni,A,Kanampiu,F,Kitonyo,O,Mburu,DM,Mugai,E,Makumbi,D&Kassie,M2015,‘On-farmexperimentationonconservationagricultureinmaize–legumebasedcroppingsystemsinKenya:wateruseefficiencyandeconomicimpacts’,Experimental Agriculture,vol.52,no.1,pp.51–68,doi: 10.1017/S0014479714000556.

Mo,F,Wang,JY,Xiong,YC,Nguluu,SN&Li,FM2016,‘Ridge-furrowmulchingsysteminsemiaridKenya:apromisingsolutiontoimprovesoilwateravailabilityandmaizeproductivity’,European Journal of Agronomy,vol.80,pp.124–136.

Muricho,G,Kassie,M,Odendo,M&Ouma,J2011,Characterization of maize–legume farming systems and farm households in Kenya: analysis of technology choice, resource use, gender, risk management, food security and poverty profiles,CIMMYT,Nairobi,Kenya.

Nkonge,C,Walela,B,Ngeny,JMA&Rees,DJ1997,‘Areviewoftheagro-ecologicalzonation,productionpracticesandconstraintsoftheKitaleNationalAgriculturalResearchCentreMandatearea’,inDJRees,CNkonge&JWaandera(eds),A review of practices and constraints in the north Rift Valley provinces, Kenya, Kitale,KenyaAgriculturalResearchInstitute,ISBN:9966-879-36-6.

Ouma,E,Dickson,L,D,Matonyei,T,Agalo,J,Were,BA,Too,E,Augustino,O,Gudu,S&Peter,K2013,‘EnhancingmaizegrainyieldinacidsoilsofwesternKenyausingaluminiumtolerantgermplasm’,Journal of Agricultural Sciences and Technology,vol.A3,pp.33–46.

SIMLESA288

SECTION 3: Highlights from country initiatives

Paterson,RT,Kiruiro,E&Arimi,HK1999,‘Calliandra calothyrsusasasupplementformilkproductionintheKenyahighlands’,Tropical Animal Health and Production,vol.31,no.2,pp.115–126.

PotatoFarminginKenya2017,viewed27December2017,https://softkenya.com/kenya/potato-farming-in-kenya.

Shawiza2016,The status of wheat industry in Kenya,SokoDirectory,viewed5January2018,https://sokodirectory.com/2016/12/status-wheat-industry-kenya.

SPSSInc.Released2009.PASWStatisticsforWindows,Version18.0.Chicago:SPSSInc.

SmartFarmerKenya2017,viewed30December2017,https://smartfarmerkenya.com/tea-farming-in-kenya.

SokoDirectory2017,viewed25December2017,https://sokodirectory.com/2017/11/status-potato-farming-kenya-contribution-economy.

Wilkus,EL,Roxburgh,CW&Rodriguez,D(eds)2019,Understanding household diversity in rural eastern and southern Africa,AustralianCentreforInternationalAgriculturalResearch:Canberra,ACT.

Worldometer2017,viewed12December2017,http://www.worldometers.info/population/countries-in-africa-by-population.

289SIMLESA

16 Sustainable intensification of maize and legume farming systems in TanzaniaJohn Sariah, Frank Mmbando, Lameck Makoye & Bashir Makoko

Key points

• ScalingoutSIMLESAtechnologiesthroughinnovationplatformsincreased thenumberoffarmersusingimprovedseedsofmaizeandlegumesfrom30–40%to85%.

• Adoptionofaconservationagriculture-basedsustainableintensification(CASI)technologypackageincreasedyieldsformaizefrom1.5 t/hato4.5 t/haandlegumesfrom0.38 t/hato1.5 t/ha.

• CropresiliencetoclimatevariabilityincreasedwithCASIduetoimprovementsinnaturalsoilfertility(increasedsoilorganiccarbonfrom2.55%to3.23%)andstructure(increasedsoilwaterholdingcapacityfrom20.69%to22.23%).

• TheCASItechnologypackagereducedlabourtimeby50%andincreasedprofitsby33%comparedtofarmers’conventionalpractices.

SIMLESA290

SECTION 3: Highlights from country initiatives

Introduction

Tanzaniahasatotalareaof94.5 Mhaofland,ofwhich44 Mhaisclassifiedassuitableforagriculture.Oftheavailablearableland,only10.1 Mha(23%)iscurrentlyundercultivation.AgricultureinTanzaniaismainlyrainfedandisdominatedbysmallholderfarmerscultivatingonsmallareasofland,averaging2.5 ha.About70%ofTanzania’scropareaiscultivatedbyhandhoe,20%byoxploughand10%bytractor.Foodcropproductiondominatestheagricultureeconomy,with85%oftheannuallycultivatedlandunderfoodcrops.Womenrepresentthemajorityoftheagriculturallabourforce.

TheagriculturesectorinTanzaniafacesvariouschallenges.Majorconcernsfor agricultureinTanzaniaaredecreasinglabourandlandproductivity.Majorproductivityconstraintsincludelimitedaccesstoagriculturaltechnology,lowsoilfertilityandclimatechange(Makuvaroetal.2017).A2011SIMLESAbaselinesurveyreportedyieldsaslowas1–2 t/haformaizeand0.5 t/haforpigeonpeaduringthe2010croppingseason.Overcomingthesechallengestoreducepovertyhasbeendeclaredatopgovernmentpriority(PolicyForum2016).

Effortsthatsupportsmallholderfarmershavebeenviewedasaneffectivewaytodriveeconomicgrowthandcombatpoverty,basedonthesignificantsharethatimpoverishedhouseholdproductionsystemscontributetothenationalagriculturesector.Higherfarmproductivityandmorediversifiedfarmproduceareexpectedtoreducetheneedtopurchasesupplementaryfoodstuffsandofferthepossibilityofsellingsurplusforcash.Conservationagriculturehasthepotentialtoachievethesebenefitsasitaimsatminimisingsoildisturbance,soilwaterandnutrientlosses,thereforepreservingmanyoftheecologicalfunctionsofnaturalecosystemsthatsupportcropproduction(Gilleretal.2009).Benefitsofconservationagriculturecanmultiplywhencombinedwithsustainableintensificationpracticeslikeimprovedvarietiesandgoodagronomy.Thisproductionsystemisalsoknownasconservationagriculture-basedsustainableintensification(CASI).

CASIoffersanumberofpotentialbenefitsforfarmerssuchassoilimprovementthroughnitrogenfixation,increasedorganicmatterthroughcropresiduedecompositionandreducedincidenceandseverityofdisease,weedandinsectpopulationdamage.Italsoimprovesmicroandmacro-organismactivitiesandsoilstructure.Theseareallimportantfactorsforcropgrowthandestablishment(Derpsch2008).EmpiricalstudieshaveshownthatCASIhasbenefitsacrossawiderangeofagroecologicalconditions(Thierfelder&Wall2011).Manystudieshavehighlightedthepotentialofconservationagriculture,especiallywhencomplementedwithsustainableintensificationpracticesasCASI,inaddressinglivelihoodsecuritychallengeswhileimprovingsoilandwatermanagement(Kassametal.2009).CASIhasbeenincreasinglypromotedinTanzaniabymanyinternationalandnationalorganisationsasameansforsmallholdersineasternandsouthernAfricatoavoidsoildegradationandenhanceproductivity(Mazvimavi&Twomlow2009).

TheSIMLESAprogramconductedseveralon-farmstudiestoidentifymajorproductionconstraintsandmanagementpracticesthatenhancemaize–legumecroppingsystemperformanceinTanzania.Thestudiescoveredfivedistricts:Karatu,Mbulu,Mvomero,KilosaandGairo.Thebaselinesurveyconductedin2010revealednumerousproductionconstraints.Theseincludedunimprovedseeds,pooragronomicpractices,cropdiseases,insectinfestations,lowsoilfertility,moisturestress,weedslikeStriga,unreliableinputandoutputmarkets,lackofcreditfacilitiesandpoorinfrastructure(SIMLESA2016–18;Sariahetal.2019).

291SIMLESASIMLESA

CHAPTER 16

SIMLESAstartedtopromoteCASItechnologiesin2010,basedontheconstraintsobservedinthebaselinesurvey.TheCASItechnologiesthatwerepromoted,inconjunctionwithimprovedvarietiesandpropercropmanagement,included:

• zerotillage

• cropresidueretention

• maize–legumeintercropping

• useofherbicideforweedcontrol.

On-farmandon-stationagronomyinterventionstudiesunderSIMLESAidentified specificsetsoftechnologiesandintensificationpracticesthatincreasedproductivitybymorethan50%.Theuseofimprovedcropvarieties,properagronomicpracticesandconservationagricultureimprovedthemaizeyieldsfrom1.5 t/habaselinelevelsto4–6 t/haandlegumeyieldsfrom0.5 t/hato2 t/ha.Fourimprovedmaizeandlegumevarieties,recentlydevelopedandreleasedwithsupportfromSIMLESA,increasedavailabilityofbetter-performingcropvarieties.Theseimprovedtechnologiesreachedfarmersthroughinnovationplatforms,shortmessageinformation,nationalagriculturalshows(commonlyknownasNANENANE),nationalagribusinessexpos,anddifferentmediaandscaling-outpartnersundertheSIMLESAcompetitivegrantscheme.

Theadoptionrateofthesetechnologieswerefairlyconsistentbetweenmale-andfemale-headedhouseholds,rangingfrom42%inMbuludistrictto54%inKilosadistrict.Theseeffortshavepotentiallong-termimpact,giventheenhancedcapacityofNationalAgriculturalResearchSystemresearcherandextensionthatresultedfromSIMLESAtraining.Inaddition,thisprogramsupportedonePhDandsevenMScstudents,andtworesearchinstituteswereendowedwithtwovehiclesandlabequipmenttobolsterresearch.Ninety-eightfarmers(24femaleand74male)alsobenefiteddirectly,gainingknowledgeofCASImanagementpracticesthroughshortcourses.

What did SIMLESA do?

Toaddressproductionconstraints,SIMLESAconductedon-farmandon-stationstudies.On-farmstudieswereconductedinfivedistrictsofTanzania:Karatu,Mbulu,Mvomero,KilosaandGairowith10trialsitesineachdistrict.On-stationstudieswereconductedattheSelianAgriculturalResearchInstituteandtheIlongaResearchStation.Theon-farmstudieswereconductedinhigh-andlow-productionpotentialenvironmentsinthenorthernandeasternzonesofTanzaniaformorethanfourconsecutivecroppingseasons,beginningin2010(Sariahetal.2019).

Thetechnologiesevaluatedthroughon-farmexploratoryandon-stationtrialswere:

1. CASI:characterisedbyminimumsoildisturbance,useofherbicide(mainlyglyphosate),cropresidueretention,useoffertilisers(basalandtopdressing),useofimprovedcropvarieties,intercroppingofmaizeandlegumesandpropercrophusbandry.

2. Conventionalpractice:similartoconservationagriculture,excepttillageispractisedasmaximumsoildisturbance,withouttheuseofherbicideorcropresidueretention.

3. Farmers’practice:suboptimalornouseatalloffertilisersdependingontheindividualfarmer’sdecision,poorplantpopulation,poorweedandpestmanagement,soildisturbancebyoxenorhandhoe,nocropresidueretention.

SIMLESA292

SECTION 3: Highlights from country initiatives

Program sitesKaratu

KaratuisoneofthefivedistrictsintheArusharegionofTanzania.Itsgeographicalcoordinatesare3°20’S,35°40’Eandthedistrictmeasuresabout3,300 km2.Landuseisclassifiedintoarable(102,573 ha),pasture(155,808 ha)andforest,bushandtreecover(61,218 ha).Thepopulationisestimatedat178,434(92,895menand85,539women)aggregatedinto33,000households.Basedonrelief,landphysiographyanddrainagepattern,Karatucanbecategorisedintothreezones—uplands,midlandsandlowlands—withanaltituderangingfrom1,000mto1,900 mabovesealevel.Rainfallinthedistrictisbimodal.TheshortrainseasonlastsfromOctobertoDecemberandthelongrainsoccurfromMarchtoJune.Rainfallmayrangefromlessthan400 mmintheEyasiBasintoover1,000 mminthehighlands,withrainzonesclassifiedassemi-arid(300–700 mm/year)andsubhumid(700–1,200 mm/year).Rainfallintensitycanbeveryhigh,causingerosion,particularlyduringtheonsetoftherainyseasonwhensoilsarebare.Soilfertilityislowtomoderate.Agricultureinthehighlandsusedtobeveryproductivebutinrecentyearscropyieldshavedeclined,mainlyduetounreliablerainfall(erraticprecipitationandlowerannualtotals)andpoorsoilfertility.

Mbulu

MbuluisoneofthefivedistrictsoftheManyararegionofTanzania.Mbuluislocatedinnorth-easternTanzania,3°51’S,35°32’E.Thealtituderangesfrom1,000mto2,400 mabovesealevel.Thedistrictcontainssemi-aridandsubhumidclimatesthatreceiveannualrainfallof<400 mmand>1,200 mm,respectively.ThelongrainyseasonextendsfromMarchtomid-MayandtheshortrainyperiodextendsfromNovembertoDecember.Relativehumidityrangesfrom55%to75%andmeanannualtemperaturerangesfrom15°Cto24 °C.LivelihoodsinbothKaratuandMbuludistrictsdependoncropandlivestockkeeping.Thefarmingsystemismaize–legumeintercropping.Themajorcerealcropsgrowninthesetwodistricts(KaratuandMbulu)aremaize,wheatandbarley.The majorlegumecropsarepigeonpea,commonbean,chickpeaandgreengram(Douwe &Kessler1997).

Kilosa,MvomeroandGairoaredistrictsintheMorogororegionofeasternTanzania.RainfallhasabimodalpatternwithamainseasonthatbeginsinMarchandendsinJuneandshortrainsthatoccurfromOctobertoDecember.Theaverageannualrainfallvariesfromyeartoyearandbetweenecologicalzones.Anaveragerainfallof1,000–1,400 mmiscommoninthesouthernfloodplains,whileGairointhenorthaverages800–1,100 mm.Themountainforestareascanreceiveupto1,600 mmannually.ThroughoutKilosa,thedryperiodextendsfromJunetoOctober.Theaverageannualtemperatureis25 °CinKilosatownwithextremesinMarch(30 °C)andJuly(19 °C).Livelihoodsinthesedistrictsdependmainlyonmaize,legumes,vegetables,sweetpotato,oilseedproductionandlivestockkeeping.Thedominantcroppingsystemismaize–legumeintercropping (Paavola2004).

Selian Agricultural Research Station

SelianAgriculturalResearchStationislocatedat3°24’S,36°47’Eatanaltitudeof 1,250 mabovesealevelandthesoiltypemolisol.Rainfallusedtobebimodalbuthasrecentlybeenunimodal,withaverageannualrainfallreaching1,500 mm.SelianAgriculturalResearchStationhasminimumtemperaturesofabout20 °Candmaximumtemperaturesofabout25 °C.

293SIMLESASIMLESA

CHAPTER 16

Ilonga Research Station

IlongaResearchStationislocatedat6°47’Sand37°2’Eatanaltitudeof498 mabove sealevel,withminimumtemperaturesofabout25 °Candmaximumtemperaturesofabout35 °C.Themainsoiltypeiseutopicfluvisolsandtherainfalltypeusedtobebimodal.However,therainfallpatternismorerecentlyunimodal,withaverageannualrainfallof1,059 mm.

Program objectivesOn-farm trials1. Characterisemaize–legumeproduction,inputandoutputvalue-chainsystems,impact

pathwaysandidentifybroadsystemicconstraintsandoptionsforfieldtesting.

2. Testanddevelopproductive,resilientandsustainablesmallholdermaize–legumecroppingsystemsandinnovationsystemsforlocalscalingout.

3. Increasetherangeofmaizeandlegumevarietiesforsmallholdersthroughacceleratedbreeding,regionaltestingandrelease.

On-station trials1. Determinethelong-terminfluenceofdifferenttillagepracticesanddifferentfertiliser

levelsonsoildynamicsandmaizeandpigeonpeacropyieldsunderintercroppingsystems.

2. Determinethelong-terminfluenceofdifferenttillagepracticesonyieldsofdifferentratooningregimesofpigeonpeaandmaize.

Researcher and extension capacity building

Theprogramfacilitatedcapacitybuildingforresearchersandextensionthroughlong-termandshort-termtraining,reachingatotalof148trainees(Table16.1).

Table 16.1  Course and number of trainees by gender

Training course Participants

Gendermainstreaming 27(17male,10female)

Monitoringandevaluationtrainingoftrainers 3(3male,0female)

Principlesofconservationagriculture 25(17male,8female)

Weedmanagement 26(21male,5female)

Datamanagement 29(22male,7female)

Innovativeplatforms 10(7male,3female)

Climatevariability 5(4male,1female)

APSIM 3(3male,0female)

Statisticalanalysis 20(12male,8female)

Total 148 (106 male, 42 female)

SIMLESA294

SECTION 3: Highlights from country initiatives

What we foundCharacterisation of maize–legume production and input and output value-chain systems and impact pathwaysTheaverageyieldsforvariouscropsduring2010were:

• drymaize:1,198 kg/ha

• drylegumes:– commonbean:413 kg/ha– pigeonpea:385 kg/ha– peanut:389 kg/ha– cowpea:148 kg/ha.

TheaverageyieldformaizevarietieswasrelativelyhigherinKaratuandMbuludistrictscomparedtoMvomeroandKilosa.

Resultsfurthershowthatfloods,pooragronomicpractices,poorgenotypes,droughtandinaccessibilityofagriculturalinputs—bothintermsofavailability,costsinvolvedandtiming—werethemostimportantlimitingfactorsincropproductionformaize–legumefarmingsystemsinTanzania.Themainmeansoftransportationamonghouseholdsalsoindicatedthathouseholdsrequiredconsiderabletimetoacquiregoodsandservices.Averagewalkingdistancetothenearestvillagemarketwasabout6.6 minutes.Themainmeansoftransporttotheselocalmarketswasonfoot(46%)andbicycle(11%).

Household characteristicsAtthehouseholdlevel,themajorityofsurveyedhouseholdsweremale-headed(82%).Mbuludistrictreportedthehighestproportionofthemale-headedhouseholds(Table16.2).Theaverageageofthehouseholdheadwasabout47years,althoughKaratufarmerswereolder(51years)thanotherdistricts.Theaveragelevelofformaleducationforthehouseholdheadswasaboutsevenyears,buthouseholdsinMbuluhadslightlymoreyearsofeducationonaverage(7.4years).Theaveragesizeofthesurveyedhouseholdswasaboutfivemembers.Mbuluhadthesmallestfamilysizeoffourmembers,whileKaratuhadthelargestfamilysizeofsixmembers.Themajority(about80%)ofthehouseholdheadsweremarried,whileabout5%weredivorcedorseparatedand7%werewidowers.

Land ownershipLandwasthebasicproductiveassetbysmallholderfarmersinthesurveydistricts.Descriptiveanalysisofthisimportantassetrevealedthattheaveragelandholding amongthesurveyedhouseholdswasabout2.7 ha(Table16.3).Anaverageof2.1 ha wascultivatedwhile0.8 hawasleftuncultivated.Kilosahadthelargestaveragelandholding(3.9 ha).

295SIMLESASIMLESA

CHAPTER 16

Table 16.2 Household demographics

Characteristic District Average (n = 410)

Karatu (n = 114)

Mbulu (n = 96)

Kilosa (n = 105)

Mvomero (n = 49)

Gairo (n = 46)

Male-headedhouseholds(%) 82.5 85.4 81.0 77.6 84.6 82.2

Ageofhouseholdhead(years) 50.9 47.3 47.0 46.2 44.5 47.2

Householdsize(number) 6.0 4.3 5.2 5.5 6.6 5.5

Educationofhouseholdhead(years)

6.8 7.4 6.7 7.1 6.0 7.3

Marital status

Married(%households) 82.5 80.2 77.1 73.5 84.8 79.6

Divorced/separated (%households)

2.7 2.0 17.2 10.2 4.3 7.3

Widow/widower (%households)

3.8 4.1 3.8 10.2 4.3 5.2

Nevermarried(%households) 13.2 15.6 1.9 6.1 6.5 8.7

Table 16.3  Land ownership at district level

Land category District Average (n = 410)

Karatu (n = 114)

Mbulu (n = 96)

Kilosa (n = 105)

Mvomero (n = 49)

Gairo (n = 46)

Totalfarmsize(ha) 2.1(3.3) 1.5(2.2) 3.9(3.0) 2.8(3.3) 3.4(4.7) 2.7(3.8)

Cultivated(ha) 1.6(2.7) 1.4(1.3) 3.2(2.3) 1.3(2.4) 2.8(4.7) 2.1(2.2)

Uncultivated(ha) 0.6(1.3) 0.4(1.6) 0.7(1.4) 1.1(1.7) 1.3(2.0) 0.8(1.3)

Rentedin(ha) 0.02(1.7) 0.3(0.3) 1.5(2.4) 0.7(1.2) 2.0(2.8) 0.9(2.1)

Rentedout(ha) 0.01(0.0) 0.0(0.2) 0.2(0.7) 0.5(1.2) 0.2(1.5) 0.2(0.1)

Note:Numbersinparenthesesarestandarddeviation. Source:SIMLESA2016–18

Technology adoptionThemostwidelyadoptedmanagementpracticesweremaize–legumeintercropping(96%)followedbycropresidueretention(52%),herbicideuse(38%)andcroprotation(34%).ZerotillagewastheleastadoptedCASIpractice(adoptedbyabout25%ofsampledhouseholds).

Theproportionoffarmersadoptingthesemanagementpracticesvariedbydistrict.Adoptionofmaize–legumeintercroppingrangedfrom94%inKaratuandMbuluto98%inKilosaandMvomero(Table16.4).Adoptionofcropresidueretentionwasmorevariableacrosstheresearchsites,rangingfrom39%inGairoto76%inMvomero.Herbicideusealsovariedacrosssites,aslowas12%inMbuluandashighas57%inMvomero.Adoptionofcroprotationwasalsorelativelylow(22%)inMbuluandrelativelyhigh(47%)inMvomero.Few(about25%)ofthesampledfarmershadadoptedzerotillageatthehouseholdlevel.Thiswasvariableacrossdistricts,withKaratureportingthehighest(about47%)andMvomeroreportingthelowest(about10%).

SIMLESA296

SECTION 3: Highlights from country initiatives

Table 16.4  Adoption of CASI practices at household level

CASI practice District Average (n = 410)

Karatu (n = 114)

Mbulu (n = 96)

Kilosa (n = 105)

Mvomero (n = 49)

Gairo (n = 46)

Zerotillage 46.5 25.0 17.1 10.2 26.1 25.0

Maize–legumeintercropping 94.0 93.8 98.2 98.0 96.8 96.2

Croprotation 33.5 22.0 33.3 46.9 32.6 33.7

Residueretention 39.6 47.4 59.0 75.5 39.1 52.1

Herbicideuseinzerotillage 27.4 12.3 55.2 57.1 39.1 38.2

Note:CASI=conservationagriculture-basedsustainableintensification Source:SIMLESA2016–18

About48%ofthesamplehouseholdsadoptedatleastoneCASIpractice(Table16.5). Theadoptionraterangedfrom42%inMbuludistrictto54%inKilosadistrict.Resultsshowthatfemale-headedhouseholdswereslightlymorelikelytoadoptthan male-headedhouseholds.

Table 16.5 Adoption of at least one CASI practice, by gender

District Male-headed household

(n = 331)

Female-headed household

(n = 79)

Average (n = 410)

Karatu 47.8 50.0 48.9

Mbulu 40.2 42.8 41.5

Kilosa 52.9 55.0 53.9

Mvomero 52.6 45.5 49.1

Gairo 38.4 57.1 47.8

Average 46.4 50.1 48.2

Note:CASI=conservationagriculture-basedsustainableintensification Source:SIMLESA2016–18

Number of adoptersTheestimatednumberofadoptersoftheCASIpractices(maize–legumeintercrop,zerotillage,croprotation,residueretentionandherbicideuse)forthe2015–16seasonisshowninTable16.6.Resultsrevealthattheestimatednumberofadoptersforthefivedistrictswasabout12,046farmers.Kilosadistricthadthehighestnumberofadopters(about3,579),followedbyGairo(about2,844)andKaratu(about2,844)districts.MvomeroandMbuludistrictshad1,829and1,049adopters,respectively.

297SIMLESASIMLESA

CHAPTER 16

Table 16.6  Estimated number of adopters of CASI practices, 2015–16

District Sample size Number of respondents

adopting at least one component

of CASI

Adoption rates Projected number of adopters

Male Female Total Male Female Total Male Female Total Male Female Total

Karatu 94 20 114 45 10 55 47.8 50.0 48.9 2,245 500 2,745

Mbulu 82 14 96 33 6 39 40.2 42.8 41.5 887 162 1,049

Kilosa 85 20 105 45 11 56 52.9 55.0 53.9 2,112 1,467 3,579

Mvomero 38 11 49 20 5 25 52.6 45.5 49.1 1,044 785 1,829

Gairo 39 7 46 15 4 22 38.4 57.1 47.8 1,979 865 2,844

Total 338 72 410 158 39 197 46.4 50.1 48.2 7,686 3,666 12,046

Note:CASI=conservationagriculture-basedsustainableintensification Source:SIMLESA2016–18

Farmers’ sources of informationFarmers’mainsourcesofinformationaboutCASIpracticeswereSIMLESAdemonstrations(34%),fellow/neighbouringfarmers(25%)andextensionservices(11%)(Figure16.1).Othersourcessuchasradio/TVandinnovationplatformsalsoplayedasignificantroleininformationtransfer.

Figure 16.1 Farmers’ sources of information about CASI practices

0

25

20

30

35

40

Perc

enta

ge

15

10

5

Karatu Mbulu Kilosa Mvomero Gairo Mean

Sites

SIMLESA demo plots Fellow farmer Extension services

Radio/TV broadcasting Innovation platform

SIMLESA298

SECTION 3: Highlights from country initiatives

On-farm testing of sustainable and resilient climate-smart technologiesCASIandconventionalpracticesincreasedyieldsfromfarmers’practice.Yieldsincreasedtwofoldforpigeonpeaandthreefoldtofourfoldformaize,comparedtothebaselineyieldrepresentedbythefarmers’practice(Figures16.2and16.3).

Pige

onpe

a bi

omas

s yi

eld

(t/h

a)

(a)

FP CASI

Low potential zone

CONV0

0.8

1.0

1.2

0.2

1.4

1.6

1.8

0.6

0.4

Pige

onpe

a bi

omas

s yi

eld

(t/h

a)

(b)

FP CASI

High potential zone

CONV0

0.8

1.0

1.2

0.2

1.4

1.6

1.8

0.6

0.4

FP = Farmers’ practice; CASI = conservation agriculture-based sustainable intensification; CONV = Conventional agriculture

Figure 16.2 Average pigeonpea yield for four seasons for (a) low-potential and (b) high-potential environments in northern Tanzania

Mai

ze y

ield

(t/h

a)

(a)

FP CASI

Low potential zone

CONV0

2

3

4

5

6

7

1

Mai

ze y

ield

(t/h

a)

(b)

FP CASI

High potential zone

CONV0

2

3

4

5

5

8

7

1

FP = Farmers’ practice; CASI = conservation agriculture-based sustainable intensification; CONV = Conventional agriculture

Figure 16.3  Average maize yield for four seasons for (a) low-potential and (b) high-potential environments in northern Tanzania

299SIMLESASIMLESA

Thereweresignificantdifferences(P < 0.05)betweentheCASIsystemandconventionalpracticeforbothpigeonpeaandmaizeyieldsinhigh-potentialenvironments(Figures16.2band16.3b).ThiswasattributedmainlytorelativelyhighermoistureatdifferenttimesofcropdevelopmentinCASIplotsduetosoilcoverandrainfall.Inlow-potentialenvironments,thepigeonpeayieldwashigherintheCASIsystemthanconventionalpractice,althoughnotsignificantly.Incontrast,maizeyieldswerehigherinconventionalagriculturethantheCASIsysteminthelow-potentialenvironment.ThereasonforlowmaizeyieldunderCASIinlow-potentialenvironmentwasduetohightermiteinfestationcausedbyearlyonsetofdrought.Underdryconditions,termiteactivitytypicallybecomessevere.Termitespreferentiallyattackeddriedmaizecropsoverpigeonpea,becausepigeonpeastayedgreenforalongerperiodoftimebeyondmaizematurity(Figure16.4).

Figure 16.4 Alternating rows of maize (matured and dried) and pigeonpea

ThetimespentonvariousoperationsintheCASIplotswasalmost20%lesscomparedtootherpractices(Table16.7).CASIhasbeenshowntobeatimesavingtechnology.CASIshowedsevenfoldincreaseinnetbenefitsoverconventionalpractice(Table16.8).Thesoilanalysisresultsindicateslightlyimprovedsoildynamicsintermsofincreasedsoilmoistureretention,soilorganicmatterandtotalnitrogeninCASIcomparedtoconventionalpractice(Table16.9).ThissuggeststhatpractisingCASIoveralongerperiodoftimewillchangethesoilconditionsinfavourofcropgrowthanddevelopmentandincreaseresiliencetoclimatechange.Inaddition,CASIincreasedorganiccarbonandmoistureretentioncomparedtofarmers’practiceandconventionalagriculturepracticesinthetwocontrastingenvironments(high-productionpotentialenvironmentrepresentedbyRhotiaandBargishsitesandlow-productionpotentialenvironmentrepresentedbyBashayandMasqaroda)(Table16.9).ThisindicatesthesuperiorityofCASIpracticesoverotherpractices,regardlessoftheenvironment.

CHAPTER 16

SIMLESA300

SECTION 3: Highlights from country initiatives

Table 16.7  Average time over four seasons spent in different activities for different practices

Practice Herbicide application (hour/ha)

Ploughing (hour/ha)

Weeding (hour/ha)

Total (hour/ha)

Farmers’practice – 13.6 91.8 105.4

Conventionalpractice

– 13.3 100.2 113.5

CASI 9.9 – 74.9 84.7

Note:CASI=conservationagriculture-basedsustainableintensification

Table 16.8  Average farm partial budget for different practices for different communities in Tanzania

Costs/revenue for inputs and outputs across different practices

Conventional practice

CASI Farmers’ practice

Costofcultivation(US$/ha) 109.4 0 109.4

Costoffertiliserbasal(100 kg DAP/ha)+topdressing(100 kg N/ha)

168.8 168.8 0

Costoffertiliserapplication(US$/ha) 28.1 28.1 0

Costofherbicide(US$/ha) 0 18.8 0

Costofherbicideapplication(US$/ha) 0 28.1 0

Costofweeding(US$/ha) 234.4 78.1 234.4

Costofmaizestover(US$/ha) 0 31.3 0

Total variable costs (US$/ha) 540.6 353.1 343.8

Gross yield of maize (t/ha) 4.5 5.0 2.0

Grossrevenuefrommaize(US$) 1,2 1,3 427.1

Grossrevenuefromstover(US$/ha) 31.2 62.5 20.5

Gross yield of pigeonpea (t/ha) 1.6 1.8 0.8

Grossrevenueofpigeonpea(US$/ha) 842.1 947.4 28

Total revenue (US$) 2,027.4 2,324.9 519.2

Net benefit (US$) 1,486.7 1,971.8 175.5

Note:CASI=conservationagriculture-basedsustainableintensification

301SIMLESASIMLESA

CHAPTER 16

Table 16.9  Soil dynamics analysis of four communities hosting exploratory trials for four seasons

Location Practice At sowing

MC (%) pH EC (mS/cm)

OC (%) TN (%) AP (mg/kg)

K (cmol(+)/

kg)

Rhotia farmers’practice

26.02 7.00 0.074 1.548 0.160 11.480 1.300

conventionalpractice

26.10 6.98 0.070 1.574 0.172 13.034 1.360

CASI 29.40 7.06 0.068 1.908 0.200 11.312 2.380

Bashay farmers’practice

24.60 6.98 0.058 0.989 0.116 8.992 4.140

conventionalpractice

23.96 7.02 0.070 0.936 0.106 10.088 1.520

CASI 24.30 7.04 0.066 1.428 0.148 9.286 1.600

Masqaroda farmers’practice

16.23 7.30 0.098 0.958 0.082 10.720 0.404

conventionalpractice

16.60 7.40 0.106 0.930 0.088 11.280 0.484

CASI 17.56 7.22 0.098 1.222 0.106 13.280 0.326

Bargish farmers’practice

14.40 6.78 0.072 1.210 0.092 2.960 0.458

conventionalpractice

18.91 7.16 0.152 1.562 0.110 6.280 0.804

CASI 19.89 7.20 0.118 1.794 0.120 3.840 0.640

Notes:MC=moisturecontent;EC=exchangablecation;OC=organiccarbon;TN=totalnitrogen;AP=assimilatedphosphorus;K=potassium;CASI=conservationagriculture-basedsustainableintensification.

SIMLESA302

SECTION 3: Highlights from country initiatives

Adoption of CASI increases resilience to climate changeInasituationofclimatevariability,CASItechnologyperformedbettercomparedtoconventionalandfarmers’practices.Withalternatingseasonsofgoodandbad weather(Figure16.5),CASIperformedbetterinboth,provingresiliencetoclimatevariabilityandchanges.

Improved technology CASI

CASI = conservation agriculture-based sustainable intensification

Farmers’ practice

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2010 2011 2012 2013

Mai

ze g

rain

yie

ld (t

/ha)

Figure 16.5 Response of different practices in varied seasons, 2010–13

Influence of tillage practices on different fertiliser rates and soil dynamics on yields of maize and pigeonpea TheinfluenceoftillagepracticesongrainyieldswasclearbetweenCASIandconventionalpractice.TheSelianAgriculturalResearchStationsitereceivedrainfallforthreemonthsonly(March–May)(Figure16.7).AllthefertiliserratesintheCASIsystemyieldedsignificantly(P < 0.05)highercomparedtothesameratesinconventionalpractice(Table16.10).OnereasonfortheobserveddifferenceswasrelativelyhighconservedmoistureintheCASIsystem(Figure16.6),whichwasefficientlyutilisedbyplantsandreflectedingrainyields(Table16.10).

ThehighestmaizegrainyieldwasrealisedunderCASIpracticesanddifferedsignificantlyfromconventionalpractice(P < 0.05)(Table16.9).ThissuggeststhatfertiliseruseefficiencywasgoodunderCASIduetorelativelyhighsoilmoisturecontentatdifferentstagesofcropdevelopmentandalsohighorganicmatterbuild-upduetodecompositionofcropresiduesovertime(Table16.9).

TherewasasignificantdifferenceamongthefertiliserleveltreatmentsunderCASI.Thehighest(100 kg N/ha)levelgavethehighestyields.However,the60 kg N/hadidnotdiffersignificantlyfrom40 kg N/ha(P> 0.05)(Table16.8).Thissuggeststhatmicrodosingfertiliserapplicationatarateof40 kg N/haismoreeffectivethan60 kg N/ha.The40 kg N/harateproducedsignificantlyhigher(P<0.05)yieldsof2.653 t/hathan10 t  farmyardmanureperhectare,whichyielded2.083 t/ha.Thewaythemanurewasstored andappliedshouldbeconsidered,becausesomeofnutrientsmighthavebeenlost intheprocess.

303SIMLESASIMLESA

Table 16.10  Mean grain yield for maize in CASI and conventional practice for four seasons at Selian Agricultural Research Station

CASI Conventional practice

Fertiliser levels Grain yield (t/ha) Fertiliser levels Grain yield (t/ha)

100 kgN/ha 3.190a 100 kgN/ha 2.753bc

60 kgN/ha 2.820b 60 kgN/ha 2.440c

40 kgN/ha 2.653bc 40 kgN/ha 2.093d

10 tFYM/ha 2.083d 10 tFYM/ha 1.657e

0 kgN/ha 1.670e 0 kgN/ha 1.430e

Notes:CASI=conservationagriculture-basedsustainableintensification;Mean=2.279,LSD(0.05)=0.342,CV(%)=7.07. FYM=Farmyardmanurefromcattle;LSD=leastsquaresdifference;CV=coefficientofvariation.Figuresfollowedby differentlettersdiffersignificantly.

0

10

20

15

25

30

35

Moi

stur

e co

nten

t (%

)

5

Planting Flowering Grain filling

26

2220

3129

26

Conventional practice CASI

CASI = conservation agriculture-based sustainable intensification

Figure 16.6 Average soil moisture level at different stage of plant development at Selian Agricultural Research Station

0

100

50

150

200

250

Aver

age

rain

fall

(mm

)

Oct Nov Dec January Feb March April May Jun

Figure 16.7 Average monthly rainfall at Selian Agricultural Research Station

CHAPTER 16

SIMLESA304

SECTION 3: Highlights from country initiatives

Effect of tillage and cropping system on growth parameters in the intercropping systemTheeffectoftillageandcroppingsystemsongrowthparametersofmaizeforthe2016seasonatIlongaareasshowninTable16.11.ResultsshowthattherewasaslightvariationinplantheightandshootweightunderCASIcomparedtoconventionalpractice,buttheydidnotdiffersignificantly.Thereasonmightbethattheseriouscropresiduedamagefromhighinfestationoftermitestowardstheendofthewetseasonsignificantlyreducedthemoistureconservationthatcouldotherwiseberealised.PigeonpeagrainyieldunderCASIwassignificantlyhigherthanyieldsunderconventionalpractice.

Phenologyvariedacrosstreatments.Therewasasignificantdifference(P≤0.05)betweenthetwotillagesystemsindaysto50%emergence.SeedsunderCASIemergedsignificantlyearlierthanthoseinconventionalpractice(Table16.12).ThismighthavebeenattributedtothehighinfiltrationrateinCASIduetothepresenceofmulch,highporosityduetomicrobialactivities,andhighorganicmatterfrompreviousorganicmatteraccumulationfrommulchdecomposition(asopposedtorun-offinconventionalpractice).

Table 16.11  Effect of CASI and conventional practice tillage systems on growth parameters of maize, Llonga, 2016

Treatments 50% emergence

Plant height (cm)

Shoot weight (t/ha)

Tillagesystems CASI 5.75b 123.83 0.56

conventionalpractices 6.58a 89.17 0.20

Standarderror± 0.0589 11.2696 0.09

Notes:CASI=conservationagriculture-basedsustainableintensification;figuresfollowedbydifferentlettersdiffersignificantly.

Table 16.12  Effect of CASI and conventional practice tillage systems on growth parameters of pigeonpea, Llonga, 2016

Treatments 50% emergence

50% flowering

Plant height (cm)

100 seed weight

(g)

Grain yield (t/ha)

Tillagesystems CASI 8.58a 136.5a 215.0a 13.03a 1.57a

conventionalpractices

9.08a 138.5a 186.75a 12.75a 1.41b

Standarderror± 0.27 0.81 7.0497 0.087 0.027

Notes:CASI=conservationagriculture-basedsustainableintensification;figuresfollowedbydifferentlettersdiffersignificantly.

305SIMLESASIMLESA

Yield across maize varieties VarietiesCKH10692andSelianH308performedrelativelybetteracrossalltestingsites inMbulu,especiallyBargishUa.Theyieldperformancesrangedfrom5.36 t/hato8.94 t/ha(Figure16.8).Thesevarieties(CKH10692andSelianH308)wereselectedforMbulu.Ingeneral,allvarietiesperformedhighest(>8.0 t/ha)inBargishUaoverthelocalcontrol,whichproducedamaximumofabout7 t/ha.InKaratu,theyieldsrangedfrom4.0 t/ha to6.0 t/ha(Figure16.9).

0

76

89

10

Yiel

ds (t

/ha)

54321

CKH10692 LISHEH2 QSC/KILMA173 SELIAN H308 MERUHB513 614Check

Sites

Bargish Antsi BargishUa Daudi Masqaroda Tlawi

Figure 16.8 Yield of maize varieties, Mbulu

0

6

7

Gra

in y

ield

s (t

/ha)

5

4

3

2

1

Sites

Selian H308 Selian H208 SC 627 CHECK IF 510 ZM 538 ZM 536

Bashay G.Arusha K.Simba G.Lambo Kansay K.tembo

Figure 16.9  Yield of maize varieties, Karatu

InKilosa,among10varietiesthatwereevaluated,SelianH208,TAN250,TAN600andZM525hadthehighestyields(Table16.13).Thesewereselectedbyfarmersforwiderscalingoutintheeasternzone.

CHAPTER 16

SIMLESA306

SECTION 3: Highlights from country initiatives

Table 16.13  Maize grain yield mean performance, Kilosa

Variety Yield (t/ha)

LISHEH2 2.93

SELIANH208 3.09

SITUKAM1 2.68

TAN254 2.66

TAN250 3.07

TANH600 3.77

TMV-1 2.86

ZM309 2.38

ZM523 2.73

ZM525 3.28

LSD (0.05) 0.71

CV (%) 24

Note:LSD=leastsquaresdifference;CV=coefficientofvariation.

Productionandmaintenanceofbreederseedswasundertakentoensuresustainableavailabilityoftheselectedmaizevarieties.Theproductionandmaintenanceofbreeders’seedswasdoneatSelianandIlonga,whilethecertifiedseedswereproducedbyASA,SATEC,MERUAGRO,TanseedInternationalandKrishnaSeed(Tables16.14and16.15).

Table 16.14 Production amount of pigeonpea breeders’ seeds, 2011–14

Variety Target production per year (kg)

Actual production per year (kg)

2011 2012 2013 2014

ICEAP00557 100 300 45 600 200

ICEAP00554 100 250 43 500 490

ICEAP00932 100 270 41 550 0

ICEAP00053 100 280 49 350 550

Mali 100 320 85 750 1,400

Tumia 100 250 80 1,150 1,150

Total 600 1,770 343 3,900 3,790

Table 16.15 Production of maize breeders’ seeds and certified seeds for Selian H208

Grade 2011 2012 2013

Breeders’seedproduction(SARI)

SelianH208:• Parent1(70 kg)• Parent2(30 kg)• Parent3(120 kg)

SelianH208:• Parent1(70 kg)• Parent2(30 kg)• Parent3(120 kg)

Foundationseedproduction(ASA)

SelianH208:• Parent1(400 kg)• Parent2(200 kg)• Parent3(1,200 kg)

SelianH208:• Parent1(6 t)• Parent2(3 t)• Parent3(3 t)

SelianH208:• Parent1(12 t)• Parent2(5 t)• Parent3(2t)

Certifiedseedproduction SelianH208:20 t SelianH208:350 t SelianH208:750 t

307SIMLESASIMLESA

CHAPTER 16

What did we learn?

Obstacles,constraintsandpotentialsexistwithinfarmingcommunities,includingtheneedforimprovedtechnology.CASIwasabletosolvethechallengesfacingthefarmingcommunities.Theextensiveexposureoffarmerstoimprovedtechnologiesthroughdemonstrationplots,fielddays,farmerexchangevisits,extensionmaterials,media (TV,radio),includingtheSMSplatform,significantlycontributedtoincreasedadoptionoftheimprovedmaizeandlegumeproductiontechnologiesinTanzania.

Beforetheprogram,meanmaizeyieldwasabout1.5 t/ha.UndertheCASIsystemstheyieldincreasedtoanaverageof4–6 t/haforthemajorityofadoptingfarmerswhereSIMLESAtrialswereconducted.Thisproductivitywasaresultoffarmersadoptingimprovedseeds,properagronomicpracticesandemployinginnovationsystemsunderSIMLESA.

Capacitybuildingofresearchersandextensioncontributedtoasignificantlyimprovedqualityofthenationalstaffandcontributedtoincreasedworkefficiency.

DuringthefouryearsofSIMLESAimplementations,farmerslearnedandadoptedimprovedtechnologiesthatwerecompatiblewiththeirfarmingsystems.Adoptedtechnologiessavedtimeandlabour.Farmerswerewillingtoinvestinagriculturaltechnologiesthataddressedclimaticchallenges.

SIMLESA successes in Tanzania

• OfthefarmerstargetedunderSIMLESA,48%adoptedatleastoneofthemostpreferredSIMLESAtechnologies(intercroppingofimprovedmaizeandlegumeunderpropermanagement).

• TheSIMLESAtechnologiesintroducedCASI,includingtheuseofimprovedcropvarieties,andproperagronomicpractices.Thesetechnologieswereproventobepracticalandproductivemethodsforincreasingyieldsofmaizefrom2.5 t/hatoanaverageyieldof6 t/haobservedinSIMLESAinterventionsinvariouscommunitiesinhigh-andlow-potentialenvironments.Pigeonpeayieldincreasedfrom0.5 t/hato2 t/ha.

• SIMLESAtechnologiesshowedresiliencetoclimatevariability.TheyieldsfromtheCASIinterventionremainedaboveothercommonpractices,anddemonstratedhighprofitabilityandtimesavingcomparedtotheothertestedtechnologies.

• Thedownsideriskoftotalcroplossdroppedsignificantlywiththeintroductionofdrought-tolerantvarietiescoupledwithproperagronomicpracticesand CASIpractices.

SIMLESA308

SECTION 3: Highlights from country initiatives

Conclusions

UsingadoptionmonitoringdatacollectedfromsmallholderfarmersinthenorthernandeasternzonesofTanzania,thestudyanalysedtheadoptionofCASIpractices.About48%ofthesamplehouseholdsadoptedatleastoneCASIpractice.Maize–legumeintercroppingwasthemostpopularcomponentofCASItobeadoptedbyfarmers,followedbycropresidueretention,zerotillageandcroprotation.HerbicideuseinzerotillageasacomponentofCASIwasadoptedtheleastbythesampledhouseholds.

TheestimatednumberofadoptersoftheCASIpractices(maize–legumeintercrop,zerotillage,croprotation,residueretentionandherbicideuse)forthe2015–16seasonwasabout12,046farmers.SomeimpedimentstocompleteadoptionofCASIpracticesincludedcompetitionforcropresiduesbetweensoilhealthandlivestock(Rodriguezetal.2017),andlabourdemands.Farmers’practiceandconventionalagricultureinTanzaniawaslabour-intensive,withthemajorityoffarmerscultivatingbyhandhoeandonly10%usingtractors.AlthoughCASIdecreasedlabourtime,labourtimestillremainedhigh.Laboursavingsmayneedtobemoresubstantialforfarmerstoexperimentwithnewtechnologies.

AdoptionofCASIhasbeendirectlycorrelatedwithgender,farmsize,ageandexposuretothetechnology.Householdtypologiesmayprovideausefultoolforidentifyingtargetcommunitiesforagiventechnology.On-farmexperimentationanddemonstrationsofvarioustechnologieshasalsobeeneffectiveatpromotingadoptionofnewtechnologies.Effectivemeansofpromotingadoptionoftheimprovedtechnologiesbasedontheadoptionmonitoringstudieswastheon-farmtrialsanddemonstrations(participatoryvarietyselection)establishedonfarms.Farmerssawimprovedproductivity,timesavings,increasedyield(twofoldtofourfold)andfinancialgains(11-fold).Involvingfarmersandotherkeystakeholdersinnewimprovedagriculturaltechnologydisseminationwascrucialforadoptionandsustainability.

Tocopewithever-changingagriculturalenvironmentandproductiontechnologies,capacitybuildingforagriculturalpractitionerswasapriority.Thelong-andshort-termtrainingcapacitybuildingdonethroughtheSIMLESAprogramcontributedsignificantlytothesuccessoftheprogram.

309SIMLESASIMLESA

CHAPTER 16

ReferencesDerpsch,R2008,‘No-tillageandconservationagriculture:aprogressreport’,inTGoddard,

MAZaebisch,YTGan,WEllis,AWatson&SSombatpanit(eds),No till farming systems, WorldAssociationofSoilandWaterConservation,Bangkok,Thailand,pp.1–554.

Douwe,J&Kessler,J1997,Towards better use of environmental resources: a planning document of Mbulu and Karatu districts, Tanzania,MbuluDistrictCouncilTanzania.

Giller,KE,Witter,E,Corbeels,M&Tittonell,P2009,‘ConservationagricultureandsmallholderfarminginAfrica:theheretics’view’,Field Crops Research,vol.1,pp.23–34.

Kassam,A,Frederich,T,Shaxson,F&Pretty,J2009,‘Thespreadofconservationagriculture:justification,sustainabilityanduptake’,International Journal of Agricultural Sustainability, vol.7,pp.292–320.

Makuvaro,V,Walker,S,Munodawafa,A,Chagonda,I,Masere,P,Murewi,C&Mubaya,C2017,‘Constraintstocropproductionandadaptationstrategiesofsmallholderfarmersinsemi-aridcentralandwesternZimbabwe’,African Crop Science Journal,vol.25,no.2,pp.221–235.

Mazvimavi,K&Twomlow,S2009,‘SocioeconomicandinstitutionalfactorsinfluencingadoptionofconservationfarmingbyvulnerablehouseholdsinZimbabwe’,Agricultural Systems, vol.101,pp.20–29.

Paavola,J2004,Livelihoods, vulnerability and adaptation to climate change in the Morogoro region, Tanzania,CentreforSocialandEconomicResearchontheGlobalEnvironment,WorkingPaperEDM.

PolicyForum2016,Reducing Poverty Through Kilimo Kwanza,https://www.policyforum-tz.org/reducing-poverty-through-kilimo-kwanza.

Rodriguez,D,deVoil,P,Rufino,MC,Odendo,M,vanWijk,MT2017,‘Tomulchortomunch? Bigmodellingofbigdata’,Agricultural Systems,vol.153,pp.32–42.

Sariah,J,Florentine,L,Makoye,L,Mmbando,F,Ngatoluwa,R&Titi,U2019,EnhancingresilienceandsustainabilityonAfricanfarms:keyfindingsandrecommendationforTanzania,SIMLESAProjectCountrySynthesisReport,ACIAR.

SIMLESA2016–18,SIMLESATanzaniaannualreports.

Thierfelder,C&Wall,PC2011,‘ReducingtheriskofcropfailureforsmallholderfarmersinAfricathroughtheadoptionofconservationagriculture’,inABationo,BWaswa,JMOkeyo, FMaina&JMKihara(eds),Innovations as key to the green revolution in Africa,SpringerScienceandBusinessMediaB.V.

310

17 Identifying and out-scaling suitable CASI practices for cropping systems in MalawiSarah E. Tione, Donald Siyeni, Grace T. Munthali, Samson P. Katengeza, Kenneth Chaula, Amos Ngwira, Donwell Kamalongo, Geckem Dambo, Justus Chintu, Esnart Yohane, Florence Kamwana, Cyprian Mwale & Pacsu Simwaka

Key points

• ThroughSIMLESA,Malawiidentifiedandpromotedsuitablemaizeandlegumevarieties,andout-scalingoptionsofconservationagriculture-basedsustainableintensification(CASI)ofcroppingsystemsacrossdifferentagroecologicalzones.

• Theidentifiedcroppingsystemswerefoundtohavethepotentialtohedgefarmerswellagainstclimateandeconomicrisks.

• CASItechnologiesprovideanavenuethroughwhichMalawicanincreaseproductivityandreducefoodinsecurityacrossdifferentsocioeconomicgroups.

• Capacitybuildingandknowledgemanagementwerecentraltosustainingprogramachievementsbeyondtheimplementationperiod.

311SIMLESASIMLESA

CHAPTER 17

Introduction

ThefrequentoccurrenceofdroughtandfloodsinthenewmillenniumhasgreatlyaffectedagriculturalproductionandproductivityinMalawi.Inresponse,thegovernmentofMalawiintensifiedeffortsfocusingonsustainableagriculturalproductionpractices.Onemajorpolicyactionistheintensivepromotionofconservationagriculturethroughdifferentprogramsandprojects.OnesuchprogramisSIMLESA.Thisregionalprogramwasestablishedin2010withthegoalofreducingfoodinsecuritythroughintensifiedsustainableagriculturalproductionsystems.

ThischapterreviewstheimplementationandassociatedimpactsoftheSIMLESAprograminMalawi.Itfurtheridentifiesout-scalingoptionsthatextendbeyondtheprogramperiodtosustaintheidentifiedconservationagriculture-basedsustainableintensification(CASI)croppingsystemsofdifferentagroecologicalzones.EmpiricalevidenceindicatesthatSIMLESAidentifiedandpromotedCASIsystemswiththepotentialtohedgeagainstclimaticandeconomicrisks,therebysustainingmaizeproductionbothathouseholdandnationallevels.SIMLESApromotioneffortscontributedtotheadoptionofCASIpracticesthatimprovedmaizeproductivityand,consequently,productionatthehouseholdlevel.Toachieveintensiveandextensiveout-scalingoftheCASIsystems,SIMLESAleveragedvariousstrategies,strengtheningexistinginnovationplatformsandestablishingnewpartnerships.Toenhanceadoption,thepolicyrecommendationwastopromoteacommunityapproachtofieldmanagementandvalue-chainapproachininputandoutputmarkets.Knowingthatthereisnosilverbulletsolutiontoallthecomplexproblemsintheagriculturesector,Malawiwillcontinuetocarryoutsystemicresearchinagricultureandcapacitybuildingatalllevelsofthevaluechain.

What was the situation before 2010?Malawiisalandlockedcountrylocatedinthesouth-easternpartofAfricaalongtheGreatEastAfricanRiftValley.ItsharesitsboundarieswithZambiatothenorth-west,Tanzaniatothenorth-eastandMozambiquetothesouth,south-westandsouth-east.Thecountrycoversatotalareaof118,484 km2ofwhich94,276 km2issuitableforagriculture(GovernmentofMalawi2002).Theweatherconditionsofthemainlysubtropicalcountryincludeawet/rainyseasonbetweenNovemberandApril,adryandcoldseasonbetweenMayandJulyandadryhotseasonbetweenAugustandOctober.Asof2017,thepopulationestimatewas17.6 millionwithapopulationdensityof186people/km2.Ofthetotalpopulation,80%livedinruralareasand50.7%ofthecountrywasimpoverished(GovernmentofMalawi2018;WorldBank2016).ThisputMalawiamongtheleast-developedcountriesintheworld.

AgriculturalproductionhasrepresentedamajorindustryinMalawisinceindependencein1964,utilisingthemajorityoflandareaandgeneratingmajorreturnsforthenationaleconomy.In2010,cultivatedlandaccountedfor56%oftotallandarea(GovernmentofMalawi2010).In2016,agriculturecontributed28%ofthecountry’sgrossdomesticproduct(GovernmentofMalawi2016b;WorldBank2016).Thesectorhascontributeddirectlytodomesticlevelsoffoodavailabilityandindirectlythroughexportactivities.Themajorfoodcropsgrownaremaize,riceandcassava,whiletobacco,tea,sugarcaneandcottonarecashcropsmainlyfortheexportmarket(GovernmentofMalawi2016b,2016c).Legumeproductionalsorepresentsasubstantialshareofagriculturalproductionactivitiesandisthemainsourceoffoodandincomeinthedomesticmarket(GovernmentofMalawi2016a).

SIMLESA312

SECTION 3: Highlights from country initiatives

Productionofthesecropshasinvolvedbothsmallholderandestatefarmers (GovernmentofMalawi2016b,2016c).Exceptforteaandsugarcane,smallholderfarmershaveproducedalmost90%ofthecropsunderunimodalrainfedconditions(GovernmentofMalawi2016b).Notwithstandingthisdiversityoffoodcrops,maizehasbeenmostdominantinMalawiproductionsystems,grownnationallyandtreatedasthenation’sfoodsecuritycrop.Maizeproductionhasaccountedfor90%ofthelandcultivatedbysmallholderfarmers(Denningetal.2009),wheresmallholderfarmersholdalmost 60%ofthetotalcultivatedland(GovernmentofMalawi2002).Malawihadapersistentnationaldeficitinmaizefromthenewmillenniumuntil2004–05(Figure17.1).Lowlevelsofmaizeproductionhavebeenattributedtolowsoilnutrientlevelsandin-seasondroughtamongotherfactors.

Maize production National requirement

0

1

2

3

4

5

2001

-02

2002

-03

2003

-04

2004

-05

2005

-06

2006

-07

2007

-08

2008

-09

2009

-10

2010

-11

2011

-12

2012

-13

2013

-14

2014

-15

2015

-16

Prod

ucti

on (M

t)

Drought effect

El-Nino effect

Input subsidy

Figure 17.1 Maize production and national food requirement

Source:GovernmentofMalawi2016a

Climate risk

LargedependenceonrainfedmaizeandtobaccoproductionunderunimodalrainfallconditionshasmadeMalawi’seconomyespeciallyvulnerabletoclimateshocks.Dilley(2005)reportedthat5.5%oflandand12.9%ofthepopulationfacedapersistentriskoftwoormorenaturalhazards.Thisanalysisconcurswithgovernmentrecordsindicatingthat,inthepast100years,Malawirecordedatleast20incidencesofdroughtaswellasfloodsandstorms.Theserecordsshowthefrequentoccurrenceofdroughtandfloodsinthenewmillennium,citing1999–2000,2002–03,2004–05,2007–08and2015–16asproductionseasonsaffectedbydroughtwhile2014–15wasaseasonaffectedbyfloods(WorldBankGroup,UnitedNations&EuropeanUnion2016).Apartfromthesephenomena,thevolatilityofaveragerainfallandtemperatureacrosstheyearsalsoaffectedoverallagriculturalplanningandproduction(Figure17.2).Theseoccurrences,coupledwithnutrientdepletionandlownutrientsoilinput(Weberetal.2012),havegreatlyaffectedmaizeproductionandfoodsecurityagendasovertheyears.

313SIMLESASIMLESA

CHAPTER 17

Figure 17.2 Average rainfall and temperature, 1991-2015

Source:WorldBankGroup2017

Government subsidy program

Inlightoflowmaizeproductionlevelsandsoilnutritionconstraints,thegovernmentofMalawiimplementedtheFarmInputSubsidyProgramsince2004–05toencourageinvestmentinfarminputs.Theprogramsubsidisedone50 kgbagofbasalandtop-dressingfertilisereachandupto10 kgofimprovedseed.Theprogramtargeted,atmost,45%ofresource-poorfarmersregisteredwiththeMinistryofAgriculture(CentreforDevelopmentManagement2017).

Coupledwithgoodweatherconditionsandextensionservices,theimprovedsoilnutrientlevelsthroughtheFarmInputSubsidyProgramledtoimprovedmaizeproductionandtheachievementofnationalfoodself-sufficiency(Denningetal.2009;Dorward&Chirwa2011).DespiteimprovementsfromtheFarmInputSubsidyProgram,maizeproductioncontinuedtoshowevidenceofcertainvulnerabilities(Figure17.1).Forinstance,nationalproductiondroppedconsiderablyin2014and2015.ThishasbeenattributedtofloodsanddroughtassociatedwithElNiño(WorldBankGroup,UnitedNations&EuropeanUnion2016).Thisillustratesthelimitationsofsubsidiesinhedgingagainstdrought(Holden&Mangisoni2013;Holden&O’Donnell2015).Consideringtheimportanceofmaizeintheeconomy,thevulnerabilityofagriculturetoclimateshockseasilytranslatestonationalfoodandeconomicrisks.

Variousavenueshavebeenexploredtoaddressthesechallenges,includingagriculturesectordevelopmentfortechnologiesthatcanenhancecropproductivityandyieldstabilitythroughdroughtresilience,increasednutrientintakeandnutrientmaintenance.In2010,thegovernmentofMalawilaunchedtheAgricultureSectorWideApproachasthesectorinvestmentplanfor2011–15.Oneofthekeypriorityareasoftheinvestmentplanwassustainableagricultureandlandandwatermanagement,withafocusonsustainablelandandwaterutilisation.Inalignmentwiththispriority,MalawiparticipatedintheSIMLESAprogram:Phase1in2010–14andPhase2in2015–18.

Mean rainfall Mean temperature

60

70

80

90

100

21.8

22.2

22.6

23.0

1991 1997 2003 2009 2015

Mea

n ra

infa

ll (m

m)

Mean tem

perature (ºC)

SIMLESA314

SECTION 3: Highlights from country initiatives

Conservation agriculture

BeforetheAgricultureSectorWideApproach,thegovernmentofMalawihadbeenpromotingsustainablemanagementofagriculturallandandwatersince2000,aftertheintroductionofSasakawaGlobal2000(Ngwira,Thierfelder&Lambert2013).UndertheSasakawainitiative,thefocuswasondenserplantpopulations,specificherbicidesusedforcontrollingweedsandfertilisationguidelines(Ngwira,Thierfelder&Lambert2013).Thisresultedinincreasedmaizeyieldbutlimitedsoilnutrientmanagement(Ito,Matsumoto&Quinones2007).After2007,therewasmorefocusonconservationagriculture,whichisbasedonthreebasicprinciples:

1. minimalmechanicalsoildisturbance

2. permanentsoilcoverbyorganiccropresiduesand/orcovercrops

3. diversifiedcroprotationsorassociationswithlegumes(FoodandAgricultureOrganization2015).

Theideawastopromoteasustainablecroppingsystemthatmayhelpreversesoildegradation,stabiliseandincreaseyieldandreducelabourtime.

AccordingtoNgwira,ThierfelderandLambert(2013),conservationagriculturemanagementpracticesalsohelptoimproverainfallinfiltrationasawayofimprovingwateruseefficiency,reducingsoilerosion,increasingsoilbiologicalactivityandreducinglabourhoursperunityieldandhectare.Priorto2010,thebaselinereportfromsampledfarmhouseholdsinthesixdistrictstargetedtoimplementSIMLESA,compiledbyMulwaetal.(2010),showedthatfarmersdidnotvaluetheuseofcropresiduesinMalawi(Figure17.3).Thepercentageofhouseholdsreportedtohavebeenpractisingreducedorminimumtillagewasalmostzeroinalldistricts,comparedtoothertechnologies.Toincreaseproductionandimprovesoilnutrientmanagement,SIMLESAinMalawifocusedonCASImanagementpracticesinlinewiththethreeprinciplesoutlinedabove.

Figure 17.3 Technology use in Malawi, 2010

Source:Mulwaetal.2010

Maize–legume intercropping Maize–legume rotation

Reduced tillage Crop residue retention

0

20

40

60

80

100

Perc

enta

ge o

f far

mer

s

Lilongwe(n = 322)

Kasungu(n = 138)

Mchinji(n = 70)

Salima(n = 91)

Balaka(n = 157)

Ntcheu(n = 107)

Total(n = 885)

315SIMLESASIMLESA

CHAPTER 17

Therestofthischapterisorganisedintofoursections.First,wepresenttheimplementationofSIMLESAinMalawiinlinewiththeoverallobjectivesoftheprogram.Thenextsectionhighlightslessonslearnedfromexploratorytrialsconductedin Malawi—bothon-stationandon-farm—andfarmers’experiences.Next,wepresenttheestimatedimpactsobtainedfromprogrammonitoringreportsandotherempiricalpapers.Thechapterconcludeswithoptionsforout-scalingsuitableconservationagriculturepracticesanddiscusseskeyprioritiesforsustainingagriculturalproductivityandproductioninMalawi.

What did SIMLESA do?

Local project partnersSIMLESAactivitiesweredesignedandimplementedwithintheframeworkofexistingregionalagriculturaldevelopmentefforts.TheDepartmentofAgriculturalResearchServicesundertheMinistryofAgriculturewastheleadinstitutioninMalawi,supportedbytheInternationalMaizeandWheatImprovementCenter(CIMMYT)andtheQueenslandAllianceforAgricultureandFoodInnovation.Thedepartmentcollaboratedwithotherinstitutionswithinthecountry,boththroughdirectimplementationofprogramactivitiesandinnovationplatforms.Thecollaboratinginstitutionsincludedseedproducers,agrodealers,associationsofsmallholderfarmerslikeNationalSmallholderFarmers’AssociationofMalawiandnon-governmentorganisationsthatpromotedconservationagriculturesuchasTotalLandCareandtheCatholicDevelopmentCommissioninMalawi.TheLilongweUniversityofAgricultureandNaturalResourcesplayedakeyroleinadoptionandmonitoringstudiesthroughtheAdoptionPathwayssisterproject.

Project sitesInlinewiththeresearchandfarmerpracticeobjectivesoftheprograms,Malawiselectedsixdistrictsintwoagroecologicalzones:lowandmid-altitudezones(Figure17.4).Themid-altitudedistrictswereLilongwe,MchinjiandKasungu.Thelow-altitudedistrictswereSalima,BalakaandNtcheu.Themid-altitudeareashavefavourablerainfallpatternsandgoodsoilsformaizeandlegumeproduction.Thealtitudeisbetween760mand1,300 mabovesealevelandthedistrictstypicallyreceive600–1,000 mmofrainfallperannumwithannualminimumandmaximumtemperaturesof16–18 °Cand26–28 °C(Kanyama-Phiri,Snapp&Wellard2000).Thelow-altitudeareasincludedthelakeshoreandrainshadowareasthattendtoreceivelowaveragerainsformaizeandlegumeproduction.Thisregionspansaltitudesof200–760 mabovesealevel,tendtoreceive500–600 mmofrainfallperannumwithannualminimumandmaximumtemperaturesof18–20 °Cand28–30 °C(Kanyama-Phiri,Snapp&Wellard2000)

SIMLESA316

SECTION 3: Highlights from country initiatives

Figure 17.4  (a) SIMLESA districts and (b) agroecological zones based on elevation

Sources:(a)LandResourcesDepartment—MappingUnit2012;(b)LandResourcesDepartment—MappingUnit1998

Ineachofthetargeteddistricts,theprogramalsotargetedoneextensionplanningareaandonesection(administrativeunitsinthedistrict)toconducttheexploratorytrials.Withineachsection,theprogramselectedsixfarmerstohostexploratorytrialsfordemonstrationsforaperiodoffouryears(2010–14).Thesefarmerswerereferredtoas‘hostfarmers’.Thecommunitiesidentifiedhostfarmersfromsixdifferentvillagesthroughopenforumdiscussions.Thehostfarmerslivedwithina1 kmradiusofeachotherforeaseofdatacollectionandmonitoring.Ahostfarmerwasonewhowasbelievedtobereceptive,innovative,representative,hardworkingandaccessiblebyfollowerfarmers,projectstaffandresearchers.Eachfarmerallocatedupto3,000 m2oftheirlandforalltheexploratorytrials,whichcovereduptosixplotseachmeasuring20 m×25 m(500 m2).

Lakes

SIMLESA districts<250 m elevation

250 to 650 m elevation>650 m elevation

(b)(a)

BalakaNtchea

Salima

Kasungu

Michinji

Lilongwe

317SIMLESASIMLESA

CHAPTER 17

Adoption monitoring and identification of social constraintsToenhancetheunderstandingofCASIoptionsformaize–legumeproductionsystems,socialscientistscollectedhousehold-leveldataandconductedcomplementary value-chainstudies.Specifically,householdadoptionmonitoringsurveyswereconductedin2013and2015.TheinterviewswerewithfarmerswithintheproximityofhostfarmerstoassesstheirknowledgeanduseoftheCASIsystemsdemonstratedbythehostfarmers.Theadoptionmonitoringsurveysusedasnowballingmethodofsampling,startingwiththehostfarmer,thenfarmerswholearnedfromeachhostfarmer,orfollowerfarmers.Thesesurveysgaveanoverviewoffarmerawarenessanduptakeofthetechnologies.Complementarystudiesincludedassessingthemaize–legumeinputandoutputvaluechains,agrodealersurveysandimpactpathways(using2013and2015surveydata).

Long-term CASI trialsLong-termtrialswereintroducedtounderstandcropresponsesbeyondoneseasonaltrialandunderstandsoileffects.ThetrialsevaluatedthemajorcomponentsofCASI:

1. minimalmechanicalsoildisturbance

2. permanentorganicsoilcoverbycropresiduesand/orcovercrops

3. diversifiedcroprotationsorassociationswithlegumes.

Thetreatments(Table17.1)wereimplementedinbothlow-andmid-altitudeagroecologicalzones.Theon-stationtrialswereconductedattheChitalaresearchstation,locatedinthelow-altitudedistrictofSalima.Inaddition,36on-farmexploratorytrialswereconducted,sixineachofthesixSIMLESAdistricts.ThesetrialswereimplementedinSIMLESAPhase1(2010–14)andmodifiedinSIMLESAPhase2(2015–18).ThemodificationwastheinclusionofdifferentmaizeandlegumevarietiesbasedontheexperiencesofSIMLESAPhase1.

Table 17.1 Treatments for on-farm trials in different agroecologies of Malawi

Low-altitude agroecology site treatments Mid-altitude agroecology site treatments

Farmerscheck:soiltillage,cropresiduesburnedorburied

Farmerscheck:soiltillage,cropresiduesburnedorburied

Minimumtillage+basins(15 cm×15 cm)+maize–pigeonpeaintercropping

Minimumtillage+dibblesolemaize,noherbicides

Minimumtillage+dibblemaize–pigeonpeaintercropping

Minimumtillage+dibblesolemaizewithherbicides

Minimumtillage+dibblesolemaize Minimumtillage+dibblemaize–soybeanrotation

Minimumtillage+dibblemaize–peanutrotation Minimumtillage+dibblesoybean–maizerotation

Minimumtillage+dibblepeanut–maizerotation

SIMLESA318

SECTION 3: Highlights from country initiatives

SIMLESAprovidedthefarmerswithhybridseed,fertiliserandherbicidesforthetrials.Toensurepropermanagementofthetrials,theprogramtrainedagricultureextensionworkersintheidentifiedsectionstomonitorandadvisethefarmers.Eachcommunityestablishedaresearchcommitteetoensurepropermanagementofthetrials.Thecommitteesalsoactedascommunitymonitoringinstitutionsbymonitoringperformance,recordingtrialobservationsatagreedupontimepoints,organisingexchangevisitsduringtheseasonandcommunicatingissuesandconcernsregardingtrialmanagementtoextensionworkersorotherprojectpersonnel.

TotesttheeffectofCASIsystemsonreducingseasonaldownsiderisks,researchersfromChitedzeResearchStationincollaborationwiththeQueenslandAllianceforAgricultureandFoodInnovationusedtheAgriculturalProductionSystemssIMulator(APSIM)model.Soilcharacteristics,includingsoilnutrientuptake,maintenanceofnutrients,waterinfiltrationandresiliencetopestattack,werealsoevaluatedtocompareCASIandconventionalfarming(Table17.2).

Table 17.2  Initial chemical soil characterisation of trial sites, 2010–11

Threshold values

pH Organic carbon (%)

Organic matter (%)

Nitrogen (%)

Phosphorus (µg/g)

Range for critical values

District Extension planning area

5.5–7.5 0.88–2.35 1.50–4.0 0.09–0.15 19.0–25.00

Ntcheu Nsipe 6.57 0.47 0.81 0.04 69.89

Balaka Rivirivi 6.33 0.85 1.46 0.07 74.04

Salima Tembwe 5.84 0.98 1.69 0.08 166.40

Kasungu Mtunthama 6.14 0.67 1.15 0.06 93.56

Mchinji Kalulu 5.28 0.55 0.96 0.05 83.38

Lilongwe Mitundu 5.39 1.04 1.79 0.09 41.05

Varietal trialsBreedersattheDepartmentofAgriculturalResearchServicestogetherwithseedcompanies,theInternationalCropsResearchInstitutefortheSemi-AridTropics,theInternationalInstituteforTropicalAgricultureandnon-governmentorganisationpartnersdidaninventoryofpotentialdrought-tolerantmaizeandlegumevarieties.ThevarietiesidentifiedformaizewereMalawiHybrid(MH)26,MH30,MH31,MH32andMH38.Underlegumes,theidentifiedvarietiesinMalawiwereNasoko,TikoloreandMakwachaforsoybean;Mwaiwathualimi,Chitedzepigeonpea1andChitedzepigeonpea2forpigeonpea;Sudan1andIT82E-16forcowpea;andCG7,Chitala,KakomaandNsinjiroforpeanut.

BreedersalsodevelopedandreleasedpeanutvarietiesofVirginiaandSpanishgenotypes.Theevaluationofbothgenotypesindicatedthattheywerehigh-yielding,resistanttorosettedisease(amajorchallengeinlegumeproduction)andhadmediumseedsize.Themajordifferencewasinthematurityperiod.ThematurityperiodoftheVirginiagenotypewasmediumdurationwhilethatoftheSpanishgenotypewasshortduration.

319SIMLESASIMLESA

CHAPTER 17

Breedersfurtherconductedon-stationtrialsfortheevaluatedvarietiesunderCASIsystemstocompareproductionresultswithconventionalfarmingmethods.Thesetrialsevaluatedtheleveloftolerancetodroughtandmaizenitrogencontent.Basedontheidentifiedandreleasedvarieties,seedcompaniesassistedinthemultiplicationofpre-basicandbasicseedofbothmaizeandlegumes.Theultimateobjectivewastomaketheidentifiedseedavailabletofarmers.

Knowledge-sharing platformsTocreateaknowledge-sharingplatform,hostfarmerswereencouragedtosharetheirexploratoryresultswithfellowfarmersintheirsectionsthroughfielddaysandfarmer-to-farmerexchangevisits.Toscaleouttechnologies,SIMLESAalsofacilitatedfarmerexchangevisits,demonstrations,farmerfieldschools,andfarmbusinessschoolsandcapacitybuildingforextensionworkers.Inlinewiththis,SIMLESAestablishedsixlocalinnovationplatforms,oneforeachoftheselecteddistricts.Theseplatformsweredevelopedtobringtogetherfarmers,seedproducers,agrodealers,non-governmentorganisationsandextensionworkers.Mainlytheplatformswereformedtohelpmobiliseresourcesandincreaseaccesstomarketinformation.

Capacity buildingSIMLESAsupportedbothlong-termandshort-termtraining,withinandoutsideMalawi.Theprogramcontributedtothecapacitybuildingofscientists,extensionagentsandfarmersintheuseofCASImanagementoptions,extensionmethodologies,gendermainstreaming,useofmodellingtoolsandscientificwriting,withtheattainmentofcertificates,mastersanddoctoraldegrees.

What did we learn?

Yield gainsTheexploratorytrialsfromPhase1foundthatconservationagricultureproducedhigheraveragemaizeyieldwhencomparedtoconventionalfarmingintreatmentone.Tables17.3and17.4indicatedifferencesinmaizeyieldsacrossthemid-altitudeandlow-altitudedistricts.Fromthisdata,weobservedthattheaverageyieldsoftheCASIsystemwerehigherthantheconventionalsystem.

Table 17.3  Average maize yields by cropping system in low-altitude districts, 2010–11 to 2013–14 cropping seasons

Cropping system 4-year mean yield

(kg/ha)

Yield increase

(%)

Conventionalpractice 2,397 0

CASI:basins,maize–pigeonpeaintercrop 2,824 18

CASI:dibblestick,maize–pigeonpeaintercrop 2,628 8

CASI:dibblestick,maizesole 2,718 12

CASI:dibblestick,maize–peanutrotation 3,286 33

Note:CASI=conservationagriculture-basedsustainableintensification

SIMLESA320

SECTION 3: Highlights from country initiatives

Table 17.4  Average maize yields by cropping system in mid-altitude districts, 2010–11 to 2013–14 cropping seasons

Cropping system 4-year mean yield

(kg/ha)

Yield increase

(%)

Conventionalpractice 3,7981 (2,943)2

0(0)

CASI+solemaize+noherbicide 3,889 2(32)

CASI+solemaize+herbicides 4,088 7(39)

CASI+herbicides+maize–soybeanrotation 4,434 17(51)

Notes:1.Conventionalyieldestimatedinthetrialplot.2.Resultsinparenthesisarecalculatedmaizeyieldsfromplotsnexttotheexploratorytrialsunderfarmermanagement

withouttheinfluenceofresearchers.

Percentagecomparisonsforconventionalpracticeareinparenthesis;CASI=conservationagriculture-basedsustainableintensification.

ThisconcurswithNgwira,ThierfelderandLambert(2013),whoreportedthatmaizeyieldbiomassinMalawiincreasedby2.7 Mg/haunderCASImanagementofamonocropandby2.3 Mg/haunderCASIforamaize–legumeintercropwhencomparedtoconventionalmethodsinthe2009–10productionseason.Ngwira,Aune&Mkwinda’s(2012)on-farmevaluationsinBalakaandNtcheudistrictsalsoindicatedpositiveyieldchangesfromCASIsystems.Theirstudyreportedapositiveeffectonmaizeyieldwithanaverageyieldof4.4 Mg/haobservedinCASIsystemscomparedto3.3 Mg/hawithconventionalpracticeduringthedryproductionseasonsof2009–10and2010–11.SummaryyieldresultsfromthefirstfouryearsofSIMLESAinbothagroecologicalzoneshavebeenreportedelsewhere(Nyagumboetal.2016).Yieldincreaseswerehighestinmaize–peanutrotationsystems(33%)inthelowlandswhilethemaize+soybeanrotationenableda17%increaseinmaizeyieldsinthemid-altitudes.

Performance across agroecological zonesDespitepositiveaverageresultsunderCASI,variableimpactshavebeenreportedacrossagroecologicalzonesfrompriorstudies.Forexample,Gilleretal.(2009)informedanassessmentofconditionsunderwhichCASIisbestsuitedtoSIMLESAhouseholds.TheexploratorytrialsdemonstratedhighlevelsofyieldvariabilityforagivensetofCASImanagementpracticesacrosssites.Differencesinyieldswereattributedtotheonsetofplantingrains,varietychoice,rainfalldistribution,soilqualityandplotmanagement.

ThesetofCASImanagementpracticeswiththegreatestyieldbenefitdependedonthespecificsiteattributes.Inthelowlanddistricts,CASIplusrotationandCASIplusbasinsyieldedsuperiorgrainyieldsinyearswithmid-seasondryspells(Tables17.3and17.4).Thebasinshadawaterharvestingeffectwhilerotationhadasoilnitrogen-fixingeffect.Incontrast,basinsperformedpoorlyinseasonswithabove-normalaveragerainfallandgoodrainfalldistribution.Withbasins,excessrainresultedinwaterloggingthatdecreasedmaizeyields(Nyagumboetal.2016).SimilarobservationshavebeenhighlightedbyNyamangaraetal.(2014)inZimbabwe.InSalimaandNtcheu,thegeneralperformanceofCASIplusbasintechnologywaspoorbecauseofwaterloggingandinfestationofwirewormacrossallseasons.However,CASIandrotationwerehighlyeffectiveinSalimabecauseofweedmanagement,consideringthatthesoilsinthisareaarepoorandsusceptibletowitchweed(Striga asiatica)infestation(Berner,Kling&Singh1995).

321SIMLESASIMLESA

CHAPTER 17

Inmid-altitudeareas,technologiesthatperformedbetterwereCASIplusherbicidesandCASIplusrotation,becauseoftheirabilitytosuppressweeds.ThisisinlinewiththeobservationsofNicholsetal.(2015).Apartfromclimaticconditionsinthisregion,fieldobservationsshowedthatfarmers’experiencesincropvarietyandplantingtimepositivelyinfluenceddifferencesinyields.Mostfarmersfromthemid-altitudeareasweremoreexperiencedinmaizeproductionunderconventionalfarmingthanthosefromlow-altitudeareas.

Farmers’ preferenceFarmers’preferenceswerealsoevaluatedacrosstrialsitestoidentifypracticesforsite-specificrecommendations.Theirpreferenceswereevaluatedbasedonlabour,timeandcost(savingpotential)measuresinlinewithliteraturethatthesefactorscanalsosignificantlyinfluenceadoptiondecisions(Gilleretal.2009;Ngwiraetal.2014).Focusgroupdiscussionswereconductedduringfielddemonstrations,farmerfieldschools,fielddaysornationalandinternationalexchangevisits(farmersinMozambiquevisitedMalawianfarmersin2015)tosolicitfarmerpreferencesinthechoiceoftechnologies.Table17.5presentsasummaryofthepreferredtechnologiesfromthefocusgroupdiscussions.

Table 17.5  Technologies preferred by farmers in SIMLESA districts

District CASI + legume–maize intercropping

CASI + legume–maize

rotation

CASI + basin + herbicides + sole maize

CASI + sole maize minus

herbicides

CASI + sole maize + herbicides

Balaka √ √

Ntcheu √ √

Lilongwe √ √

Mchinji √ √

Kasungu √ √

Salima √ √

Note:CASI=conservationagriculture-basedsustainableintensification

FarmersmostlypreferredCASIpracticesthatallowedforintercroppingmaizeandlegumes.Althoughrotationanduseofherbicidesgavehigheryieldsandwerepreferredduringtrials,farmersreportedlimitedaccesstolandandcapitalasmajorchallengesaffectinguptakeofthesehigh-performingtechnologies.

Dissemination pathwaysTheevaluationofdisseminationmodalitiessuggeststhatpartnershipwithnon-governmentorganisationsandgovernmentprogramsandprojectsinmountingdemonstrationsandhostingfielddaysassistedinachievingintensiveandextensivedisseminationofCASItechnologies.Atthesametime,innovationplatformsplayedakeyroleintechnologyadoptionanduse.Furthermore,theinvolvementoflocalleaderswasinstrumentalintechnologyadoptionthroughenforcementofby-lawsthatprotectresidueuseinconservationagricultureagainstcompetingneeds.Oftenfarmersreportedfree-rangegrazingoflivestock,wildfiresandhuntingofmiceasreasonsfornotmulchingtheirfieldsintime.Wherelocalleadersenforcedby-laws,theareasweresuccessfulinthemanagementofCASIsystems.Thissuggeststhatacommunityapproachoffersmajoradvantageswhenout-scalingCASIsystemsthroughinnovationplatforms.

SIMLESA322

SECTION 3: Highlights from country initiatives

Thevalue-chainreviewstudyformaizeandlegumeproductionfrom2013foundthatcollectivepurchasingandmarketingwasoneofthekeystrategiesthatproducersappliedtoenhanceeconomiesofscale.However,theagrodealersstudyin2015showedlimitedeffortbyagrodealerstotakecost-effectiveopportunitiesthatexistamongsmallholderfarmersinacquiringinputsandsellingoutputs.Together,theseresultshelpedtoidentifypromisingmanagementpracticesforscalingout(Table17.6).

Table 17.6  Scalable technologies

Agroecology Scalable technology Crop varieties

Lowaltitude • useofplantingbasins/minimumtillage• useofstress-tolerantcropvarieties• maize–peanutrotation• maize–pigeonpeaintercrop

Maize:MH26Peanut:Kakoma&ChitalaPigeonpea:MwaiwathualimiCowpea:IT18E-16

Midaltitude • maize–soybeanrotationincludinginoculation• improvedmaizeandlegumevarietiesthat withstandmultiplestresses• flatplanting

Maize:MH26&MH27Soybean:Nasoko

What was the impact?

SIMLESAactivitiesincreasedadoptionofCASItechnologiesandoverallcropyieldatthehouseholdlevel.Evidencepresentedhereshows:

1. theprogramcontributedtothedevelopmentandadoptionofuser-preferredmaizeandlegumeconservationagriculturetechnologies

2. adoptionincreasedinon-farmproduction.

Weusefindingsfromadoptionmonitoringsurveysin2013and2015andstudiesfromtheAdoptionPathwaysproject.

Adoption of CASI technologiesBy2013,allsampledfarmerswereawareoftheCASItechnologiesdemonstratedbySIMLESAandabout63%hadtriedthemaseitherSIMLESAhostfarmersorfollowerfarmers.Ofthosethattried,78%hadadoptedthesetechnologies.Minimumtillage(basins)wasthemostpreferredandadoptedtechnology.MinimumtillagepracticesbecamemorecommonaftertheimplementationofSIMLESAcomparedtoreducedtillagein2010.Onaverage,32%offarmersindicatedtheywerepractisingminimumtillagein2013(Figure17.5).

By2015,95%oftheinterviewedfarmershadtriedCASItechnologies,anincreasefrom 63%in2013.Themostwidelyadoptedtechnologieswereresidueretention/mulching(24%);useofimprovedseedandherbicides(17%)andacombinationofminimumtillageandrotation(13%)(Figure17.6).Furthermore,13%ofinterviewedfarmerspreferredandadoptedcroprotationwhile11%adoptedzero/minimumtillageby2015.Between2013and2015,farmerscontinuedtointensifyuseofminimumtillageorresidueretentionbutwithanemphasisoncombiningthetechnologies.Female-headedhouseholdsweremorelikelytoadoptacombinationofminimumtillageandcroprotationthanmale-headedhouseholds.Alternatively,male-headedhouseholdsweremorelikelytoinvestinherbicidesandhybridseeds(Figure17.6).

323SIMLESASIMLESA

Minimum tillage Herbicides

Improved maize varieties Improved legume varieties

0

20

40

60

80

100

Perc

enta

ge o

f far

mer

s

Lilongwe(n = 150)

Kasungu(n = 132)

Mchinji(n = 160)

Salima(n = 44)

Balaka(n = 44)

Ntcheu(n = 63)

Total(n = 543)

Figure 17.5 Technology adoption, 2013Source:GovernmentofMalawi2013

0 5 10 15 20 25

Percentage

Use of hybrid seed

Zero tillage Maize-legume intercropping Crop rotation Residue retention

Herbicide use in zero tillage Combinations

Use of hybrid seed

Combinations

Herbicide use in zero tillage

Residue retention

Crop rotation

Maize–legume intercropping

Zero tillage

(b)(a)

Female-headed households

Male-headed households

17%

11%

13%24%

17%

13%

5%

Figure 17.6 Technology adoption by (a) total sample and (b) gender of household head, 2015

Note:‘Combinations’meansthefarmersarepractisingminimumtillagewithmulchandrotations. Source:GovernmentofMalawi2015

CHAPTER 17

SIMLESA324

SECTION 3: Highlights from country initiatives

Ofthetotalsamplein2015,52%ofthehouseholdshadstoppedusingatleastoneoftheCASImanagementpracticesintheearlystagesofadoption.Themostcommonlyreportedreasonsfordisadoptioninboth2013and2016includedlackofequipment/inputsandcashconstraints(Figures17.7and17.8).ThesereasonsareconsistentwithobservationsbyGilleretal.(2009).

0 5 10 15 20 25

Percentage of farming households

Difficult to obtain mulch/Lack ofadequate supply

Lack of seed

Lack of inputs

Lack of cash

Need more labour

Legume production decreases

Maize production decreases

Tried out other crop and varieties

Increase pest and disease

Livestock feed shortage

Shortage of extension workers

Lack of land

Grass resistant to herbicides

Destroys natural fertility

Figure 17.7 Reasons for disadoption of technologies, 2013

Source:GovernmentofMalawi2013

0 20 40 60 80 100

Percentage of farming households

Lack of skill to use technologies

Told by fellow farmers that it is not increasing yieldsLack of cash for herbicides

Lack of equipment (DS, rippers)

75

41

79

68

4

27

72Other

Livestock feed shortage

Increase pest and disease

Cash constrained

Labour shortage

Lack of herbicides

Lack of equipment

Low productivity

(b)(a)

92%

1.5%2%

3% 1.5%

Rank 1

Rank 2

Rank 3Labour shortage

39

Figure 17.8  Disadoption of technologies by (a) overall main reason and (b) ranked reasons, 2015

Source:GovernmentofMalawi2015

325SIMLESASIMLESA

CHAPTER 17

Impact on yield and incomeMaizeproductivityhasincreasedsinceSIMLESAwasimplemented(Figure17.9). Zero/minimumtillageincreasedyieldsbyanaverageof67%whileadoptionofimprovedmaizeandlegumevarietiesincreasedyieldsbyanaverageof68%and67%respectivelyin2013.ThestoryoftheMpomolafamilyincasestudyattheendofchapter(page328)isoneofmanycasesofincreasedmaizeproductionwhenfarmerspractisedconservationagriculturetechnologies.

Figure 17.9 Average change in maize yield (2010–13)

Source:GovernmentofMalawi2013

0 20 40 60 80 100 120

Minimum tillage + sole crop

Minimum tillage + intercrop

Minimum tillage + rotation

Minimum tillage + herbicides

Minimum tillage + herbicides + intercrop

Minimum tillage + herbicides + rotationMinimum tillage + herbicides + intercrop

Use herbicides

MH26

MH27

Nasoko

Mwaiwathualimi

Chitala

Percentage change in yield

SIMLESA326

SECTION 3: Highlights from country initiatives

Figure 17.10 Cumulative run-off at different rates of nitrogen and crop residuesSource:SIMLESAfarmtrials

Days after sowing

0

200

300

400

500

600

0 20 40 60 80 100 120 140 160 180

Cum

ulat

ive

rain

fall

and

run-

off

(mm

)

100

Cumulative rainfall

CP-0N-0M

CP-120n-0M CA-120n-0M

CA-0n-8M CA-120n-8M

FarmerssuggestedthatyieldchangesweretheresultofimprovedsoilnutrientandnutrientmaintenancefromusingCASIsystems.Farmersalsoindicatedthatamidchangingrainfallpatterns,CASIsystemsretainedmoisturetoalleviatedroughtstress.Empiricalresearchvalidatedthefarmers’perceptionsofreducedrisk.BasedonAPSIMresults,adoptionofacombinationofdifferentrecommendedconservationagriculturetechnologiesdecreaseddownsiderisksby16%.Amongtheconservationagriculturemanagementpractices,cropresidueretentioncontributedmosttoriskreductionbysubstantiallyreducingtheamountofrun-offthatcancontributetolanddegradationorsoilerosion(Figures17.10and17.11).Cropresiduesalsomaintainedbiodiversityandhelpedtoreducethebuild-upofpestsanddiseases.Legume–maizerotation/intercroppingimprovedsoilnutrientsbyfixingnitrogen.

327SIMLESASIMLESA

CHAPTER 17

TheseresultsconcurwithKassie,Teklewold,Marenyaetal.(2015),whoreportedpositiveimpactsofadoptingCASIpracticessuchasmaize–legumediversificationandminimumtillageonincreasedfoodsecurityandreductioninyieldriskandcostofriskinMalawi.TheestimatedimpactwashighestwithsimultaneousadoptionoftheentiresetofCASIpractices.Specifically,theyreportedanincreasedmaizeyieldof850 kg/haonplotswithcropdiversificationandminimumtillagecomparedtothoseonconventionalmethods.ThestudyfurtherreportedthatadoptingacombinationofsustainableintensificationpracticestogetherwithcomplementaryinputssuchasimprovedseedscouldraisemaizenetincomeinMalawiby117%.Estimatedresultsindicatethattheincomeeffectisnotonlyfromincreasedyieldbutalsofromreducedintensityoffertiliserandchemicalpesticides.KankwambaandMangisoni(2015)alsoreportedhigherandconsistentfarmoutputandincomesinhouseholdswhoadoptedCASIpracticescomparedtonon-adoptinghouseholds.

PhysicalevidenceofimprovedincomefromthefieldisprovidedbyacaseofonehostfarmerinLilongwe(mid-altitudearea)whoattributedherfamily’snewironsheethousewithproceedsfromincreasedproductionafteradoptingaCASIsystem(Figure17.12).GiventhatsmallholderfarmersinMalawifacerecurrentlowandunstablecropyieldduetoweathershocksandlownutrientintake(Weberetal.2012),thesefindingssuggestthatjointadoptionofcropdiversificationandminimumtillagecanhedgeagainstincomeandclimaticriskexposure.SeethecasestudybelowformoresuccessstoriesonCASIsystemsandmaizeproductioninMalawi.

Figure 17.11 Extractable soil water at different rates of nitrogen and crop residues

Source:SIMLESAfarmtrials

Days after sowing

0

80

120

160

200

240

0 20 40 60 80 100 120 140 160 180

Extr

acta

ble

soil

wat

er a

nd

rain

fall

(mm

)

40

Rainfall

CP-0N-0M

CP-120n-0M CA-120n-0M

CA-0n-8M CA-120n-8M

SIMLESA328

SECTION 3: Highlights from country initiatives

Case study: Through SIMLESA, CASI increases maize production in Malawi ChrissySamsonMpomolahailsfromBalakadistrict,whichislocatedinthelowlandsofMalawi.IfChrissywastochooseamethodoffarmingforherwholefarm,itwouldbetheCASIsystemoflandmanagement,withnoridges,maizeintercroppedwithpigeonpeaandherbicideapplied(onlyglyphosate)forweedcontrol.Why?‘Becausetheworkisnotsodifficultandthuslaboursaving.Weleavetheresidueontheground,andthecropthatgrowshasagoodstandandyieldsmore,’shesays.‘Ithinkthisisaprofitablefarmingmethod,andmyneighboursalwaysadmiremycropstand.’

ChrissyandAfikiMpomolaareamarriedcouplewithsixchildren,threeofwhomarealsomarried.Chrissyisafull-timefarmerwithabout30years’farmingexperience.Herfamilyownsatotalof4.2 acres(1.7 ha).Thecouplemainlyproducemaizeforfoodself-sufficiencyandpeanutforfoodandincome.Theyalsogrowcottonandpigeonpeaascashcrops,whicharesuitableforthisagroecologicalzone.

BeforeshejoinedSIMLESA,Chrissy’shouseholdwasconstantlychallengedbyclimateshocks,includingpersistentdryspells,seasonaldroughtsandintenserainfall,whichresultedinlowproductivityandleftherhouseholdchronicallyfoodinsecure.ThankstoSIMLESA,shestartedpractisingCASImanagementinherownfieldandnowherchronicfoodshortagehasturnedintosurplustosell,eveninpoorrainfallseasons.

Chrissysays,‘Beforethe2013–14productionseason,usingconventionalfarmingpractice,weusedtogetfourtofivebagsofmaizeonourlandbutnowwearegettingabout20bags.’Theyieldincreaseisfourfoldtofivefold.

Ontherecommendationofextensionworkersandanopenforumcommunityvote,theMpomolafamilyhostedallsixSIMLESAtreatments.Becauseofthis,Chrissyhasfollowerfarmerswhoimitatewhatshehasdoneonherfarm.AliceMpochera,Chrissy’sneighbour,sayssheadmiresChrissy’sCASIcrop,and,althoughshedoesnotknowmuchaboutthetechnology,shecanseethatthecropstandonChrissy’sfarmappearstohaveahigheryieldthanherfield.Alicesaysshewouldbeinterestedinlearningmoreabouttheimprovedfarmingmethodsusedbyherneighbour.

329SIMLESASIMLESA

CHAPTER 17

What should we do next?

ThesustainabilityofagriculturalproductivityandproductioninMalawidependsonintensiveandextensiveuseofCASIpracticessuchastheonesSIMLESApromoted.WithincreasingpopulationdensityinMalawi,improvinglandproductivityisthekeytothetwinproblemsofincreasingproductionforfoodsecurityandsustainingsoilnutrition.Inthissection,wepresenttheout-scalingoptionsandkeyprioritiesforMalawi,basedonthelessonslearnedfromexploratorytrialsandfarmers’evaluationsofthetechnologies.

ExistinginnovationplatformsandnewpartnershipscanbebothstrengthenedandestablishedtoprovidetheinstitutionalcapacityforscalingouttechnologiesbeyondSIMLESA.Specificareasforimprovementandobservedchallengesencounteredintheprograminclude:

• inadequatepublishedextensionmaterials/guidesdistributedtoextensionworkers,whichlimitedthedeliveryofknowledgetothefarmers

• inefficiencyinmarketingsystems.

Theresultssurroundingdisadoptionfurthersuggesttheneedtoestablishandstrengthenlocalinstitutionsandprovidefarmerswithcredibleandtimelyinformationoncapitalsources,creditfacilities,businessdevelopmentandmanagementskills.Ingeneral,thiscallsforavalue-chainapproachtothedevelopmentofagriculturesystems.Withthisapproach,serviceproviderscanbeequippedwithbetterskillstosupplyfarmerswithqualityandtimelyinformationwhilefarmersrespondwithtimelydecisions.

Kassie,Teklewold,Jaletaetal.(2015)reportedotherkeyfactorsthatcreatedbarrierstolong-termadoption,includingtheexistingcapacityforinstitutionalsupportintheformofextensionservicesandskillsofextensionagentsontheadoptionofCASIpracticesinMalawi.Furthermore,Marenyaetal.(2015)showedthatinputsubsidiesandstrongextensionservicesenhancetheadoptionofCASIpractices.Theresultsimplythatkeepingdownthecostsofcomplementaryinputs,suchasinorganicfertiliser,improvedseed,herbicidesandequipment,andenhancingextensionservicesarekeytoincreasingadoptionofCASIpractices.GiventhatthegovernmentofMalawihasbeenimplementingtheFarmInputSubsidyProgram,integratingtheSIMLESApracticeswiththeFarmInputSubsidyProgramhaspotentialtodrivethecountry’sfoodsecurityagendabeyondtheareasinitiallytargeted.Generally,theselessonsindicatethecomplexityofproblemsinMalawithatrequireholisticsolutions.

Innovationplatformsmightbeafeasibleandpromisingvalue-chain-basedavenueforaddressingthesechallenges.Innovationplatformscansupportpartnershipsamongdifferentplayerstoholisticallysupportfarmerstoaccessinputs,credit,transportationandextensionsupport.Throughtheseplatforms,farmerscanengageinforwardingcontractsorstructuredmarketsandavoidspotmarkets.Innovationplatformscanalsopresentanopportunitytolobbythegovernmenttoinvestinmarketinginfrastructureandinstitutepoliciesthatpromotefarmingasabusiness.

Futureeffortscanalsoworktoensureequitablebenefitsacrossdemographicgroups.Differencesintheconservationagriculturetechnologiesadoptedbymale-headed

SIMLESA330

SECTION 3: Highlights from country initiatives

householdsandfemale-headedhouseholdsmightreflectgapsinaccesstoresourcesandproductioncapabilitiesbetweenthesehouseholds.Althoughenhancingequalaccesstoresourceswouldsignificantlycontributetoincreasedproductionamonggendergroups,Gilbertetal.(2002)andKassie,Stageetal.(2015a)reportedthatthefoodinsecuritygapwouldremainwithoutappropriatepoliciestoaddressdifferencesinreturnstoresources(e.g.improvedlabour-useefficiency).Thus,reducinggendergapsinadoptionbenefitsfromCASIpracticeswouldhaveamajorimpactonfoodsecurity,especiallyamong female-headedhouseholds(Kassie,Stageetal.2015).

Key prioritiesKeyprioritiesinsustainingagriculturalproductionthroughCASIcroppingsystemsinclude:

• continuallyandsystemicresearch.Knowingthatthereisnosinglesolutiontoallthecomplexproblemsinagriculture,Malawiwillcontinueconductingsystemicresearch.ThisisbecauseamongthetechnologiesorimprovedfarmingpracticestriedinSIMLESA,thereisnosilverbullet,onlyashoppinglistwithchoicesdependingon,notonlyecologicalfactors,butalsosocioeconomiccharacteristics.Thatis,goingbeyondadisciplinaryapproachtoaninterdisciplinaryapproachinresearch.

• Embeddingtheinnovationplatformsintogovernmentagriculturalpolicytofacilitatelegalandsocialrecognition.Thisisonewayofensuringthattheinnovationplatformsefficientlyassistinresourcemobilisationandcontractagreements.InMalawi,thereisaneedforinnovativeinstitutionalarrangementandpolicyalignmenttotransformagriculture.

• Enhancedprivate–publicpartnershipsasawayoffacilitatingscalingoutandscalingupofCASIpracticesamongfarmers.

• Enhanceknowledgemanagement.ReferringtothewordsofthephilosopherGeorgeBerkeley,‘Ifatreefellintheforestandno-oneistheretohearit,diditmakeasound?’Thereisaneedtopackageinformationforvarioususersifthesefindingsaretobeofimpact.

• continuallyresearchonlabour-andland-savingtechnologiesinlinewithnewchallengesthatmightarise.Maize–legumeintercroppingisvitalforacountrylikeMalawi,duetoincreasedlandpressurefrompopulationgrowth.

• Facilitateshort-termandlong-termtraining.Theneedtocontinuallytrainandbuildcapacityatalllevelsremainsvitalamidnewchallengesandnewmethodologiesfordealingwiththesechallenges.

331SIMLESASIMLESA

CHAPTER 17

ReferencesBerner,D,Kling,J&Singh,B1995,‘Strigaresearchandcontrol:aperspectivefromAfrica’,Plant Disease,

vol.79,no.7,pp.652–660.

CentreforDevelopmentManagement2017,Evaluation of the 2016/2017 Farm Input Subsidy Programme (FISP),MinistryofAgriculture,IrrigationandWaterDevelopment,Lilongwe,Malawi:DFID.

Denning,G,Kabambe,P,Sanchez,P,Malik,A,Flor,R,Harawa,R,Nkhoma,P,Zamba,C,Banda,C&Magombo,C2009,‘InputsubsidiestoimprovesmallholdermaizeproductivityinMalawi:towardanAfricangreenrevolution’,PLOS Biology,vol.7,no.1.

Dilley,M2005,Natural disaster hotspots: a global risk analysis,vol.5,WorldBankPublications.

Dorward,A&Chirwa,E2011,‘TheMalawiagriculturalinputsubsidyprogramme:2005/06to2008/09’,International Journal of Agricultural Sustainability,vol.9,no.1,pp.232–247.

FoodandAgricultureOrganization2015,What is conservation agriculture?,FoodandAgricultureOrganization,viewed18September2017,http://www.fao.org/ag/ca/1a.html.

Gilbert,R,Komwa,M,Benson,T,Sakala,W,Kumwenda,J,Chavula,K,Chilimba,A,Kabambe,V,Mughogho,S&Sizilande,B2002,A comparison of best-bet soil fertility technologies for maize grown by Malawian smallholders,MinistryofAgricultureandIrrigation,Lilongwe,Malawi.

Giller,KE,Witter,E,Corbeels,M&Tittonell,P2009,‘ConservationagricultureandsmallholderfarminginAfrica:theheretics’view’,Field Crops Research,vol.114,no.1,pp.23–34.

GovernmentofMalawi2002,Malawi national land policy,MinistryofLandsPhysicalPlanning&Survey:GovernmentofMalawi.

——2010,Malawi state of environment and outlook report: environment for sustainable economic growth,MinistryofNaturalResources,EnergyandEnvironment,Lilongwe,Malawi.

——2013,SIMLESA 2013 adoption monitoring report,InternationalMaizeandWheatImprovementCenterandDepartmentofAgriculturalResearchServices,Malawi.

——2015,SIMLESA 2015 adoption monitoring report,InternationalMaizeandWheatImprovementCenterandDepartmentofAgriculturalResearchServices,Malawi.

——2016a,Agricultural production estimates Survey database,MinistryofAgriculture,IrrigationandWaterDevelopment,Lilongwe,Malawi.

——2016b,Annual economic report 2016,MinistryofFinance,EconomicPlanningandDevelopment,Lilongwe,Malawi.

——2016c,National agriculture policy,MinistryofAgriculture,IrrigationandWaterDevelopment,Lilongwe,Malawi.

——2018,2018 population and housing census preliminary report,NationalStatisticsOffice,Malawi.

Holden,S&Mangisoni,J2013,Input subsidies and improved maize varieties in Malawi: -What can we learn from the impacts in a drought year?,CLTSWorkingPapers 7/13,NorwegianUniversityofLifeSciences,CentreforLandTenureStudies,revised10October2019.

Holden,S&O’Donnell,CJ2015,Maize productivity and input subsidies in Malawi: a state-contingent stochastic production frontier approach, WorkingPaperSeries 02–2015,NorwegianUniversityofLifeSciences,SchoolofEconomicsandBusiness.

Ito,M,Matsumoto,T&Quinones,MA2007,‘Conservationtillagepracticeinsub-SaharanAfrica:theexperienceofSasakawaGlobal2000’,Crop Protection,vol.26,no.3,pp.417–423.

Kankwamba,H&Mangisoni,J2015,Are sustainable agricultural practices improving output and incomes of smallholder farmers in Malawi?,InternationalAssociationofAgriculturalEconomistsConference,Milan,Italy,9–14August2015.

Kanyama-Phiri,G,Snapp,S&Wellard,K2000,Towards integrated soil fertility management in Malawi: incorporating participatory approaches in agricultural research,ManagingAfrica’sSoils,no.11,InternationalInstituteforEnvironmentandDevelopment(IIED),London.

Kassie,M,Stage,J,Teklewold,H&Erenstein,O2015,‘GenderedfoodsecurityinruralMalawi:whyiswomen’sfoodsecuritystatuslower?’,Food Security,vol.7,no.6,pp.1299–1320.

Kassie,M,Teklewold,H,Jaleta,M,Marenya,P&Erenstein,O2015,‘UnderstandingtheadoptionofaportfolioofsustainableintensificationpracticesineasternandsouthernAfrica’,Land Use Policy,vol.42, pp.400–411.

SIMLESA332

SECTION 3: Highlights from country initiatives

Kassie,M,Teklewold,H,Marenya,P,Jaleta,M&Erenstein,O2015,‘ProductionrisksandfoodsecurityunderalternativetechnologychoicesinMalawi:applicationofamultinomialendogenousswitchingregression’,Journal of Agricultural Economics,vol.66,no.3,pp.640–659.

LandResourcesDepartment—MappingUnit1998,Elevation—Malawi,GovernmentofMalawi,Lilongwe,Malawi.

LandResourcesDepartment—MappingUnit2012,SIMLESA Districts,GovernmentofMalawi,Lilongwe,Malawi.

Marenya,P,Kassie,M,Jaleta,M,Rahut,D&Erenstein,O2015, Adoption of conservation agriculture under alternative agricultural policy and market access indicators: evidence from eastern and southern Africa,InternationalAssociationofAgriculturalEconomistsConference,Milan,Italy,9–14August2015.

Mulwa,C,Chikwekwete,P,Munyaradzi,M,Kassie,M,Mandula,B&Kabuli,A2010,Characterization of Maize-Legume Farming Systems and Household Socio-Economic and Risk Profiles in Malawi: Baseline survey report for the project: Sustainable Intensification of maize-legume Farming Systems for Food Security in Eastern and Southern Africa (SIMLESA), InternationalMaizeandWheatImprovementCenterandDepartmentofAgriculturalResearchServices,Malawi.

Ngwira,A,Johnsen,FH,Aune,JB,Mekuria,M&Thierfelder,C2014,‘AdoptionandextentofconservationagriculturepracticesamongsmallholderfarmersinMalawi’,Journal of Soil and Water Conservation,vol.69,no.2,pp.107–119.

Ngwira,AR,Aune,JB&Mkwinda,S2012,‘On-farmevaluationofyieldandeconomicbenefitofshorttermmaizelegumeintercroppingsystemsunderconservationagricultureinMalawi’,Field Crops Research,vol.132(supplementC),pp.149–157.

Ngwira,AR,Thierfelder,C&Lambert,DM2013,‘ConservationagriculturesystemsforMalawiansmallholderfarmers:long-termeffectsoncropproductivity,profitabilityandsoilquality’, Renewable Agriculture and Food Systems,vol.28,no.4,pp.350–363.

Nichols,V,Verhulst,N,Cox,R&Govaerts,B2015,‘Weeddynamicsandconservationagricultureprinciples: areview’,Field Crops Research,vol.183(supplementC),pp.56–68.

Nyamangara,J,Nyengerai,K,Masvaya,E,Tirivavi,R,Mashingaidze,N,Mupangwa,W,Dimes,J,Hove, L&Twomlow,S2014,‘Effectofconservationagricultureonmaizeyieldinthesemi-aridareasofZimbabwe’,Experimental Agriculture,vol.50,no.2,pp.159–177.

Nyagumbo,I,Mkuhlani,S,Pisa,C,Kamalongo,D,Dias,D&Mekuria,M2016,‘Maizeyieldeffectsofconservationagriculture-basedmaize-legumecroppingsystemsincontrastingagro-ecologiesofMalawiandMozambique’,Nutrient Cycling in Agroecosystems,vol.105,no.3,pp.275–290.

Weber,VS,Melchinger,AE,Magorokosho,C,Makumbi,D,Bänziger,M&Atlin,GN2012,‘Efficiencyofmanaged-stressscreeningofelitemaizehybridsunderdroughtandlownitrogenforyieldunderrainfedconditionsinsouthernAfrica’,Crop Science,vol.52,no.3,pp.1011–1020.

WorldBank2016,Malawi socio-economic data,viewed11September2017,https://data.worldbank.org/country/malawi.

WorldBankGroup2017,Climate change knowledge portal—for development practitioners and policy makers,WorldBankGroup,viewed19December2017,https://climateknowledgeportal.worldbank.org.

WorldBankGroup,UnitedNations&EuropeanUnion2016,Malawi drought 2015–2016: post-disaster needs assessment,WorldBank,Washington,DC.

333SIMLESA

18 The sustainable intensification of agriculture in MozambiqueDomingos Dias, Nhantumbo Nascimento, Isabel Sitoe, Isaiah Nyagumbo & Caspar Roxburgh

Key points

• Theuseofconservationagriculture-basedsustainableintensification(CASI)technologiesinMozambiqueincreasedmaizeandlegumeyieldsbyupto 37%comparedtocurrentfarmerpractices.

• Theuseofmechanisedanimaltractionandwinterpreparationoffieldswasapotentialstrategyforlabourreductionandimprovedtimelinessofoperations,particularlyinfemale-headedandlabour-constrainedhouseholds.

• Theapplicationofmaizeresidueshadmorepositiveeffectsinlowrainfallconditions,andcoulddepressyieldsinunfertilisedhighrainfallenvironments.

• Uptakeofimprovedvarietiesandcroppingsystemscontinuestobenegativelyimpactedbylowinput/outputmarketincentivestofarmers.

• Innovationplatformsandotherfarmer-drivenstrategiescreatedopportunitiesfortheuptakeoftechnologies.By2018,morethan38,000farminghouseholdswerereached.

• ResultsfromlaboratoryanalysisoffiveyearsofcontinuousmaizecroppingsystemsunderCASIpracticesinSussundengashoweda0.12%(+/- 0.10)gainintotalcarboninthe0–5 cmsoillayer.Thisequatestoapproximately124,000 Mt C/yearinputacrossallSIMLESAfarmersinManica.

• TofosteragricultureproductivitythroughCASI,policymakersshould:

– includeprovenCASIstrategiesatalllevelsofpolicyconversations

– investintheincubationofnewbusinessopportunities,includingdemandcreation

– facilitateinvestmentfundstosupportacquisitionofmachinerybyagribusinesses

– investintrainingforlargecohortsoftechnicianstomainstreamsmallholdermechanisation

– investintheestablishmentandmaintenanceoflargenetworksofcommunity-baseddemonstrationplotsandfarms

– initiatefundsandseedcapitaltocatalyseprivateinvestmentsinscalingCASI.

SIMLESA334

SECTION 3: Highlights from country initiatives

Introduction

TheaveragemaizeyieldinMozambiqueislowat0.85 t/haandhighlyvariable.Despitetheampleavailabilityofland,goodsoilfertility,researchandextensioncapacity,theagricultureinfrastructureisweak.Agricultureischaracterisedbyfrequentdroughtsandfloods,pooraccesstoseedofimprovedvarieties,restrictedaccesstofertilisersanduseofunsustainablesoilmanagementpracticescoupledwithdysfunctionalagriculturalmarketsandweakresearchandextensionservices.

Toimprovecropyieldsamongsmallholders,ACIARandtheInternationalMaizeandWheatImprovementCenter(CIMMYT),inpartnershipwiththeInstitutodeInvestigaçãoAgráriadeMoçambique(IIAM),implementedSIMLESAin2010.Best-bettechnologiesweretested,includingtheuseofconservationagriculture-basedsustainableintensification(CASI)practices,whichhadastrongpotentialtoenhanceyieldsandsustainfoodsecurity.CASIpracticeswereappliedandthebestfitwereselectedbyfarmersandout-scaledbythreemajorscalingpartnersandinnovationplatformsincentralMozambique.Intheproject,34varieties(11maize,4bean,5pigeonpea,6cowpeaand8soybean)weresuppliedtosmallholderfarmersthroughparticipatoryvarietyselectiontrialsforlegumesandmother–babytrialsformaize.InnovationplatformswereestablishedineachofthesixSIMLESAcommunities,locatedinfourdistrictsandthreeprovincesofMozambique(Figure18.1).

Figure 18.1 Location of SIMLESA communities in central Mozambique

Maniamba

Marrupa

Maua

UlongweFingoe

Zumbo

Mazoi

Moatize

Cheba Morrumbala

Marromeu

Vila Fontes

V. Paiva de And

Sussundenga

ChibabavaEspungabera

Malvernia

Massinga

Chokwe

Magude

Manhica

Marracuene

Moamba

Mazeminhama

Ricatla

Vilanculos

Panda NhacoongoInharrime

Inhambane

Xai-Xai

Maputo

Dondo

Namacura

Mocuba

Gurue

Moma

Angoche

Nametil

RibaueMalemaMutualiCuamoe

Mecanhelas

ErregoAlto Molocue

Muecate

Mocimboa da Pra

MuedaMacomia

Montepuez

ChiureOcua Namapa

Monapo

Nacala

NamarroiTete

Quelimane

Beira

Chimoio

Nampula

PembaLichinga

MeoulaTete: Angonia Ciphole & Cabanco, Domue, Chikudu, Nsendeza, Chabuni, Nchenga, Dzatumbee, Kalinthulo

Manica: Manica Chinhamdombwe, Mavonde, Vanduzi, Macadera, Pina , Messica

Manica: Gondola Macate, Marera, Zembe, Matsinho

Manica: Sussundenga, Rotanda Sussundenga-sede, Munhinga, Muoha, Dombe, Chichira, Chimbua, Rotanda-sede, Messambuzi

Sofala: Gorongosa Canda-sede, Vunduzi

335SIMLESASIMLESA

CHAPTER 18

Preliminaryresultsshowedthatmorethan38,000farmersweredirectlyengagedingroundactivitiesthroughinnovationplatformsandreachedouttosome100,000farmers.CASIandotherbest-managementpracticesincreasedmaizeyieldsby37%,cowpeayieldsby33%andsoybeanyieldsby50%acrossfarmsinSussundenga(Manicaprovince)andmaizeyieldsby46%inAngonia(Teteprovince).ThiswaswellabovethetargetsetbytheMinistryofAgricultureofa7%inyieldincreaseabovecurrentbaseyields.Keylessonsfrommonitoringandevaluationactivitiessuggestthatimprovedtimelinessandmanagement,includingfertilitymanagementandweeding,werekeyproductivityfactorsthatneedattentioninfuture.

What was the situation in 2010?

Mozambiquehasavarietyofregionalcroppingpatternsdrivenbyagroclimaticzonesrangingfromarid,semi-aridandsubhumid(mostlyinthecentralandthenorthernagroecologicalregions)tothehumidhighlands(mostlythecentralprovinces).Themostfertileareasareinthenorthernandcentralprovinces,whichhavehighagroecologicalpotentialandgenerallyproduceagriculturalsurpluses.

Atleastthreeagroecologicalzones(AEZ)canbeidentifiedineachofthefourprovincesincentralMozambique(InstitutoNacionaldeInvestigaçãoAgronómica1997):

• Manica(AEZR4,R6,R10)

• Sofala(AEZR5,R4,R6)

• Tete(AEZR6,R7,AEZ)

• Zambezia(AEZR7,R5,R8,R10).9

Withthelargemajorityofagriculturalproductionbeingrainfed,weathervariabilityisamajorfactorindeterminingcropperformance.ThemaingrowingseasonstartswiththefirstrainsinSeptemberinthesouthandDecemberinthenorth.Thereisalsoaminorgrowingseason,basedonresidualsoilmoisture,fromMarchtoJuly,accountingforapproximately10%oftotalcultivatedarea.Thereareabout36 Mhaofarableland,suitableforagriculture.Maizeisthemostwidelygrowncrop,occupyingsome1.4 Mhaandproducing1.2 Mtannually,butthisishighlyvariablefromyeartoyear.Despiteampleland,soilfertilityislow,withsouthernprovinceshavingpoorersoilsandmoreerraticrainfall,andbeingsubjecttorecurrentdroughtsandfloods.

Mozambiqueisoneoftheworld’spoorestcountries,despiteitsgreatpotential.Itsagricultureischaracterisedbylowsoilfertility,frequentdroughtsandfloods,useofunimprovedvarieties,pooraccesstogood-qualityseedofimprovedvarieties,restrictedaccesstofertilisersanduseofunsustainablesoilmanagementpracticescoupledwithdysfunctionalagriculturalmarketsandweakresearchandextensionservices.Toimprovecropyieldsamongsmallholders,CIMMYTinpartnershipwithIIAMimplementedSIMLESAin2010,aresearchinitiativefromACIARaimedatpromotingsustainableintensificationofmaize–legumecroppingsystemsforfoodsecurityineasternandsouthernAfrica.TheuseofCASImanagementandadoptionofbestpracticeswasconsideredtohavegreatpotentialtoboostyieldsandsustainfoodsecurity.

9 AtleastthreeagroecologicalzonescanbeidentifiedineachoneofthefourprovincesincentralMozambique:Manica(AEZ-R4,AEZ-R6andAEZ-R10),Sofala(AEZ-R5,AEZ-R4andAEZ-R6),Tete(AEZ-R6,AEZ-R7andAEZ-R10)andZambezia(AEZ-R7,AEZ-R5,AEZ-R8andAEZ-R10).

SIMLESA336

SECTION 3: Highlights from country initiatives

What did SIMLESA do?

IIAMstaffdirectlytargeted27,000householdsinsixcommunitieswithtwocontrastingagroecologiesofthefollowingprovinces:• Manica:Sussundenga-sede,Muoha(AEZ4),ChinhandombweandRotanda(AEZ10)• Sofala:Canda-SedeinGorongosa(AEZR4)• Tete:ChipoleandCabangoinAngonia(AEZR10).

Overtheseven-yearperiod(since2010),36on-farmCASIexploratorytrialscoveringmorethan38,057householdswereconducted(Table18.1).Apartfromtheexploratorytrials,871participatoryvarietyselectionandmother–babytrialswereconductedacrossallSIMLESAtargetcommunities.AfterthereviewofSIMLESA-1,theIIAMconcentrateditseffortsonscalingoutearliersuccessesbydevelopinglocally-relevantinnovationplatformsforCASI.ThescalingoutofCASItechnologiesincentralMozambiquewasmainlyconductedduringSIMLESA-2throughacompetitivegrantschemewithlocalpartnersandtargetedManicaandTeteprovinces.

Table 18.1  Results from on-farm trials in Mozambique comparing yields in conservation agriculture to conventional maize production and the number of households impacted

Location Maize yields under conventional

practices (kg/ha)

Maize yields under CASI

(kg/ha)

Estimated number of households impacted

National teams

Scaling partners

Sussundenga,Manica,Rotanda(Manica)

1,497 2,063 27,000 50,000

Angonia(Tete) 3,600 4,200 11,057 50,000

Total 38,057 100,000

Note:CASI=conservationagriculture-basedsustainableintensification

Evaluating the benefits of local CASI packagesExploratorytrialsduringSIMLESAPhase1comparedlocallyadaptedCASIsystems(no-till,fertiliserapplication,legumerotation,newmaizeandlegumevarieties)withconventionalsystems(continuousmaize,deeptillage).Onaverage,CASIincreasedmaizeyieldsby37%,cowpeayieldsby33%andsoybeanyieldsby50%acrossfarmsinSussundengaandGorongosa(Table18.2)(Nyagumboetal.2016).Thiswaswellabovethe7%yieldincreasetargetsetbytheMinistryofAgriculture.

Table 18.2  Sussundenga and Gorongosa (low-potential area) yield increase in six years of CASI practices

Cropping systems Maize grain yield (kg/ha) % increase

Conventionalpractice 1,497a 0.0

CASI+jabplanter 1,784b 19.2

CASI+basins 1,789b 19.5

CASI+basinsmaize–cowpeaintercrop 1,802b 20.4

CASI+basinsmaize–cowpearotation 2,063c 37.8

Notes:CASI=conservationagriculture-basedsustainableintensification;figuresfollowedbydifferentlettersdifferssignificantly.

337SIMLESASIMLESA

CHAPTER 18

Whenon-farmimpactofvariousconservationagriculturepackageswerecomparedwithconventionalsystems,allwithsameleveloffertiliserinnorth-westMozambique,only onesiteobservedsignificantincreasesinyieldfromCASIusingthedibble-stickmethod.Inthisregion,yieldsincreasedfrom3,066 kg/ha(conventionalproduction)to3,145 kg/ha(dibblestick,solemaize),representingonlya2.5%yieldincrease(Table18.3)(Nyagumboetal.2016).

Table 18.3  Maize yields across CASI practices for two communities in Angonia, Mozambique

Cropping system Maize grain yield (kg/ha)

Kabango Chiphole Overall mean

Farmers’check(i.e.flathoepreparedseedbed) 3,712 2,579 3,066

CASI+basins+solemaize 3,622 2,510 3,145

CASI+dibblestick+maizesole 4,182 3,091 3,636

CASI+dibblestick+maize–beanrotation 4,043

CASI+dibblestick+maize–beanintercrop 3,881

CASI+basins+maizerotation 2,549

CASI+basins+maize–beanintercrop 2,424

LSD(0.05)=574

df=20

CV=37.7%

N=120

LSD(0.05)=282

df=20

CV=39.5%

N=120

LSD(0.05)=316

df=20

CV=39.7%

N=144

Notes:CASI=conservationagriculture-basedsustainableintensification;LSD=leastsquaresdifference;df=degreesoffreedom;CV=coefficientofvariation.

Duetothedetrimentaleffectoftermitesonresidueretentionandmaizelodging,theprojectevaluatedvariousmethodsoftermitecontrolsuitablefortheconditionsofthesitesinMozambique.Fieldstudiesin2011–12and2012–13foundthattermiteactivitycouldbereducedthroughapplicationoffipronil(1.5 g a.i./ha)butthattermitecontroldidnotincreasemaizeyieldsintheshortterm(Nyagumboetal.2015).Thepresenceofsurfaceresiduesdecreasedtheincidenceofmaizelodgingfromtermiteactivity.

Theprojectfoundthatbyreducingtheconstraintoflabouravailability,mechanisedCASIpracticesimprovedtimelinessofplanting,whichledtoreductionsinmaizeyieldvariability(Nyagumboetal.2017).Finally,twoon-stationintensificationtrialsweretestedduringSIMLESAPhase2and,whilethesedataareavailable,moreseasonsareneededtoproducerecommendations.

AsurveyoffarmersinMacatedistrictconductedbytheQueenslandAllianceforAgricultureandFoodInnovation(QAAFI)foundwidevariabilityinon-farmimplementationofpromotedCASIsystemsin2013(Roxburgh2017).SowingdensitieswerefoundtovarywidelyonfarmsandmosthouseholdswerenotusingfertiliserintheirCASIsystems.Modellinganalysisfoundthattherewerepotentialyieldgains(120%)simplybyfocusingonbestagronomicpracticessuchasweedingandpopulationdensitieswhenimplementingCASIsystems.WorkdoneinRotandaandMacate(Manica)byQAAFIalsorecommendedastepwiseintensificationapproach,withgoodagronomicmanagementasthefirststep.

SIMLESA338

SECTION 3: Highlights from country initiatives

Selecting improved maize and legume seed varietiesTheSIMLESAprogramactivitiesidentified22legumeand12maizevarietiesfromIIAM,DroughtToleranceMaizeforAfrica–CIMMYTandTropicalLegumesIIprojects.Theimprovedseedwasmadeavailabletohouseholds.From2012to2014,64motherand228babyvarietydemonstrationswereevaluated.Demonstrationplots,hostfarmersandextensionofficersallincreasedtechnologyawareness.Anestimated7,436and5,295householdswereusingimprovedmaizeandlegumevarieties,respectively,by2016.HouseholdersestimatedthattechnologiespromotedbySIMLESAincreasedtheiryieldbyanaverageof19%(male-headedhouseholds)and20%(female-headedhouseholds).

Approximately360maizegenotypeswereevaluatedthrough15regionaltrialsacrossrepresentativeenvironments.Thebestentrieswereselectedforevaluationinadvancedtrialstofast-trackimprovedvarietyrelease.Atotalof183maizemotherandbabytrials(Table18.4)andlegumeparticipatoryvarietyselectiontrials(Table18.5)wereevaluatedinthreeyearsacross24sitesinvolving183farmers.SixmaizevarietieswerereleasedwiththesupportoftheSIMLESAprogramin2011(onehybridandthreeopen-pollinatedvarieties)andin2013(onehybridandoneopen-pollinatedvariety).Fromtheparticipatoryvarietyselectiontrials,atotalof24legumevarietieswerereleased(eightcommonbean,threecowpea,fourpigeonpeaandninesoybean).Allwerereleasedin2011.Theseedofreleasedvarietiesweremultipliedbyseedcompaniesandsoldincommunities,aswelldistributedforscaling-upvarietyandCASIdemonstrationplots.

Table 18.4 Number of trials conducted under the mother–baby trial design, 2012–14

Type of trial 2012 2013 2014 Total

Mother 16 24 24 64

Baby 54 72 102 228

Demonstration 0 24 24 48

Farmerfields 62 108 138 308

Table 18.5  Number of participatory selection trials conducted for legume varieties, 2012–14

Legume type Number of trials and host

farmers

Number of harvested

trials

Number of varieties

Number of sites

Soyabean 219 202 32 22

Cowpea 208 198 16 24

Pigeonpea 136 126 8 14

Total 563 526 56 60

339SIMLESASIMLESA

CHAPTER 18

Preliminary scaling-out activities and resultsThroughthecompetitivegrantschemeaimedatscalingoutSIMLESA-1CASItechnologiesinManicaandTete,implementedbypartnersInstitutoSuperiorPolitécnicodeManica(ISPM),AGRIMERCandManicaFarmersUnion(UCAMA),SIMLESA-2reachedafurther100,000households.Resultsfromthefirstyearofthecompetitivegrantschemeactivities,i.e.the2016–17croppingseason(Table18.1),showthattargetedhouseholdswereprovidedwithspecialisedassistanceinimplementingCASIsystems.Thiswasachievedthroughanetworkofon-farmdemonstrationplots,fielddays,businessdevelopmentsupportandinputloans,SMSpilotingsystemswithtailoredCASItechnologicalinformationpackages,andawarenesscreationcampaignsconductedthroughtheradio.Thisinterventionledtoanaverageestimatedmaizeyieldincreaseof19%and21%inparticipatinghouseholdsinTeteandManicaprovince.

Assessing downside risk from CASI adoption

AteamofresearchersatIIAM,incollaborationwithQAAFIandCIMMYTresearchers,alsousedexperimentalresultsfromadditionalon-farmtrialsconductedinSussundengaandAngoniatoassesstheimpactofvariousconservationagriculturecomponentsonmaizeyieldsandyieldstability.Fulladoptionofminimumtillage,residueretentionandcroprotationdecreasedthefrequencyofmaizeyieldsbelowthe25thpercentileforimprovedpracticeby37%forManicaand9%forTete,comparedtotheconventionalcontrolwiththesamelevelofinputs(i.e.improvedseedandfertiliser)(Figure18.2).

Grain yield (kg/ha)

Manica Tete

Grain yield (kg/ha)

CASI CASI with basins Conventional cultivation

0

0.2

0.4

0.6

0.8

1.0

0 6,000 12,000 0 6,000 12,000

Yiel

d di

stri

buti

on

CASI = conservation agriculture-based sustainable intensification

Figure 18.2  On-farm maize yield distributions in Tete and Manica provinces for full adoption of CASI with and without planting basins vs conventional tillage with local fertiliser recommendations and improved seed

SIMLESA340

SECTION 3: Highlights from country initiatives

Results of modelling residue management interaction with soil type

Modellinganalyses(64years)wereconductedtosimulatetheeffectofcarbon-richresiduesonnitrogen-deprivedsoilsincentralMozambique.TheVanduzidistrict,inagroecologicalzone4(AEZ4)withaverageannualrainfallof834 mm(1951–2015)was thesimulationsite.Maize–legumesystemsmanagedunderCASIatdifferentlevelsof nitrogensupplyweresimulatedforthreesoilsofcontrastingwaterholdingcapacity:

• sandyclayloamtexturedredferralsol(cSaCL)

• lowlandsandyloamtexturedGleysol(SaL)

• drierfinesandytexturedarenosols(fSa).

Resultsfromthemodellingexercisesindicatethatresidueswereonlybeneficialtomaizeyieldsonthelowwaterholdingcapacityfinesandysoils(fSa),althoughlegumeyieldsincreasedonallsoiltypes.

Simulationsalsoshowedthatinunfertilised(0 kg N/ha)andlimitednitrogen-application(23 kg N/ha)systems,theapplicationandretentionofcarbon-richresiduesreducedmaizeyieldsby42.4%in80–85%oftheseasonsinthecSaCL.Theyieldreductionwasmostlydrivenbylossesinbothnutrientuseefficiencyandwateruseefficiency,whichrangedbetween6–20%and33%respectively.Benefitsfromwateruseefficiencyduetoresidueapplicationwereonlyobservedinthedriest20%ofthesimulatedseasonsforthetwonitrogen-applicationlevels.Thesameresultswerealsoobservedonthesandyloamtexturedsoils(SaL),commoninthelowlandspacesofthecatena.

Positiveyieldresponses(40.5–55.9%)frommulchedsoilsweresimulatedinlessthan20%oftheseasonsinunfertilisedandlownitrogen-appliedcSaCLandSaLmaizesystems.Athighnitrogen-applicationlevels(92 kg N/ha),simulationsindicatedmaizeyieldbenefitsofalmost50%fromapplicationofcarbon-richresiduesin20%ofseasonsonhighwaterholdingcapacitysoils.Thesebenefitswereonlyattainedduringthedriestyears.Incontrast,cowpeayieldwasimproved29%,72%and99%byresidueapplicationinunfertilisedplotsoffSa,SaLandcSaCLrespectively.Nevertheless,benefitsfromresidueapplicationdecreasedwithincreasednitrogenapplicationabove23 kg N/hainallsoils.Inthedrierandlowwaterholdingcapacityfinesandysoil(fSa),positiveresponsestoresidueapplicationweresimulatedin85–90%oftheseasonsforbothmaizeandcowpea.

Intermsofresourceproductivity,maizewasmoreresponsivetonitrogenapplication,especiallyonthewetandhighwaterholdingcapacitysandyloamsoil.Here,maizeresponsetonitrogenapplicationwasattributedtobetternitrogenuptakeandtranslocationefficiencyduetohighin-cropmoistureregimes.InthedrierfSa,poorsoilwateravailabilityledtopoornitrogenuptakeandconsequentlylowermaizenutrientuseefficiencyandyields.

Model-assistedfieldtrialsalsoshowedthat,intherainfednitrogen-deprivedsystemsofcentralMozambique,theoverallperformanceofmaize–legumecroppingsystemsmanagedunderCASIisgovernedbytwocriticalinteractions:

1. croptypeandsoilwaterholdingcapacityinducedresidueresponse

2. residuemodified,nitrogen-drivenwateruseefficiencyandnutrientuseefficiencytrade-off.

341SIMLESASIMLESA

CHAPTER 18

Therefore,understandingthesetworesponsesisthekeytovalidatinglocallyfeasibleresourcemanagementstrategiesthatarecrucialtoeffectivelytailorCASIsystemsforsmallholderhouseholdsincentralMozambique.Tofine-tuneresidueandfertiliserallocationatthefieldlevel,asetofrulesbasedonexistingsoilwaterholdingcapacitygradientsintheregionareproposed:

• InhighwaterholdingcapacitysoilsandAEZR4,R5,R7andR10,whereincropsoilmoistureisnotalimitingfactor,highcarbon:nitrogenratioresiduesshouldbeusedtoimprovetheperformanceofthesolelegumecropduringthelegumephaseoftherotationratherthanappliedintoanunfertilisedcerealcropwherethesoilmoistureadvantagesprovidedbyresidues(wateruseefficiencyincrements)donotcompensatefortheyieldlossesduetoN-immobilisationinmostoftheseasonsexceptinthe driestyears.

• Highcarbon:nitrogenratioresiduesonlyofferasignificantyieldadvantagetomaizeindrierenvironments(AEZR6andR8)andacrosslowwaterholdingcapacitysoils.Inthesesoils,poorsoilmoisturedelaysresiduedecompositionandsignificantlyimprovesin-croprainfallcapture,generatingmoisturebenefitsthatsurpassthenegativeimpactsfromnitrogenimmobilisationonmaizeyield.

• Bestresponsesfrominorganicnitrogenfertiliserarelikelytobeattainedinwetandhighwaterholdingcapacityenvironmentswherethereisenoughmoistureforthecroptoefficientlyusethesuppliedinorganicnitrogenfertiliser.Thisisbecause,indryandlowwaterholdingcapacitysoils,poorsoilmoistureregimesreducecropNuptakeleadingtopoorresponsestoinorganicnitrogenapplication.

• Forwetandhighwaterholdingcapacitysoils,thebeneficialeffectsofapplyingcropresiduesonthelegumecroparelikelytobeobservedonthesubsequentyearsofcerealcrop.

Residual effects from carbon-rich residue application on maize and cowpea

LowC:Nresidueapplicationandretentionincontinuousmaizeshowedoverallmaizeyieldpenaltiesrangingbetween0%and40%incontinuousmaizecroppingsystems.However,thepenaltiesdifferedacrossresiduelevelsandwerelargelyovercomebyincreasingN-applicationlevels.Nevertheless,gainsfromhighcarbon:nitrogenratioresidueapplicationincontinuousmaizesequencesweresimulatedinthelowestrainfallseasonsforthehighwaterholdingcapacitycSaCLsoil.Thesebenefitswereonlyattainedinlessthan25%oftheseasonsfor0 kg N/haand23 kg N/haandlessthan35%with92 kg N/ha.Ontheotherhand,penaltiesfromresidueapplicationandretentionincontinuousmaizesystemsweresimulatedinalmost75%oftheseasons,for0 kg N/haand23 kg N/hafertilisationlevels.Thisindicatesthattheuseofresiduesmightbemorebeneficialduringthelegumephaseofthelegume–maizesequence,ratherthanapplyingthecropresiduesonthemaizecrop.

SIMLESA342

SECTION 3: Highlights from country initiatives

What did we learn?

Evidence for increased environmental sustainabilityCropresidueretention(akeycomponentofCASIinMozambique)hasbeenwidelyadoptedbysmallholderhouseholds.Previously,burningofcropresiduesbeforeplantingwascommonpractice(Woldemariam2012),leadingtocarbonemissionsandlossofsoilsurfacecover.

Householdsarenowawareoftheimportanceofresidueretention,soilcover,noburningandzerotillageamongotherCASIpractices.Resultsfromsurveysshowedthatabout25%ofinterviewedhouseholdsareusingresidueretentionand7%areusingherbicides.ResultsfrommorelocalisedQAAFIsurveysindicateaveragesurfacecoveratsowingisnow61%intheMacatedistrictofManicaprovince.However,benefitsfromresidueretentioninthesystemprovedtobecrop-andsoil-dependentacrosssites.

ArecentreviewconcludedthatCASIpreventsthelossofsoilorganiccarbonthrougherosionbutsoilorganiccarbonincreasesareinconsistentacrossexperimentsinAfrica(Thierfelderetal.2017).ResultsfromlaboratoryanalysisofSIMLESAcontinuousmaizecroppingsystemstrialsinChimoioidentifieda0.12%(+/- 0.10)gainintotalcarboninthe0–5 cmsoildepthlayerafterfiveyears(Table18.6).Thisequatestoapproximately124,000 Mt C/yearinputacrossallSIMLESAfarmersinManica.

Table 18.6  Soil carbon and nitrogen changes, Chimoio, Mozambique

Treatment Soil depth (cm)

Total carbon (%) mean (s.e.)

Total nitrogen (%) mean (s.e.)

Continuousmaize+minimumtillage+residueretention

0–5 1.06(0.05) 0.08(0.00)

5–15 1.08(0.06) 0.08(0.01)

15–30 0.95(0.04) 0.07(0.00)

Continuousmaize+conventionaltillage+residueremoval

0–5 0.94(0.01) 0.08(0.00)

5–15 0.92(0.01) 0.07(0.00)

15–30 0.91(0.03) 0.08(0.00)

Note:s.e.=standarderror

Improvements to gender equality RaisingawarenessofgenderequalitywascriticaltoadoptionoftechnologiesunderSIMLESA.Duetotheinitiallackofcapacitytomainstreamgender,28stakeholdersweretrainedatregional,nationalandlocallevelstoreachacommonunderstandingofgendermainstreamingandimplementitcorrectlyinthecountry.Thesetrainingscontributedtoincreasedawarenessamongresearchers,extensionofficers,participatinghouseholdsandotherpartnersofgenderintegrationinagriculturalprograms.

Improvementsmadeingenderequalityincluded:• equalopportunitiesformen,womenandyouthintermsofaccesstoinformation,

markets,participationindemonstrations,trialsandfielddays• provisionofleadershiptraininginlocalagriculturalinnovationplatformsandother

scalingframeworks• improvedaccesstoinputs,creditandmarkets• betterincomethroughinnovationplatforms.

343SIMLESASIMLESA

CHAPTER 18

Allkeyactivitiesweregendermainstreamedbytakingintoaccountgenderandusinggender-sensitiveindicators.Forinstance,theSIMLESAprojectdevelopedstrategiesthatallowedfortheparticipationofbothmenandwomeninallactivities(e.g.demonstrationsandfielddays),theevaluationofthetechnologywasmadeinrecognitionofpreferencesofmenandwomen,andequalopportunitiesformenandwomenweremadeavailableintermsofaccesstoinputsandmarkets.

TheseimprovementsingenderequalityaredocumentedinvariousSIMLESAreports(Manjichi&Dias2015;Dias,Nyagumbo&Nhantumbo2011;Quinhentos&Mulima2016).Forinstance,astudyconductedwithamemberofSussundengainnovationplatformshowedthatwomenwhowereengagedinafarmers’associationwereempoweredandhadincreasedproductionandincome,aswellasimprovedhouseholdnutrition.Yields,nutrition,incomeandsocialharmonyalsoincreasedformenandwomeninvolvedinSIMLESA,becausewomenhadtheopportunitytoincreasetheirincome.Additionally,womenreportedimprovementsinproductionduetoparticipationindemonstrationplotsandfielddaysandincreasedaccesstonewinformationandknowledgeovertheproject’slifetime.

Anotherimprovementingendermainstreamingwasrecognisingthatwomen,menandyouthhavedifferentaccesstovaluechainnodes.Thereisthereforeaneedtocollectdatadisaggregatedbygenderalongthevaluechainandconductriskanalysisstudiesinordertoincreasetheadoptionoftechnologies.Theconcerns,needsandchallengesofmen,womenandyouthwerecollected,documentedandincorporatedinpolicyrecommendations.Intheseexercises,legumespreferredbywomenwerescaledupinrecognitionoftheidentifiedneedtoimprovehouseholdfoodsecurity,nutritionandoverallwellbeing.Gender-disaggregateddataalsoallowedtheprojecttofosterwomen’sleadershippositionsatlocalandregionalagriculturalinnovationlevels.

SIMLESAPhase1endedin2014and,basedontheexperiencesofthisphase,agenderstrategywasdevelopedforSIMLESAPhase2.Thisstrategyincludedeffortstoincreasethecapacitytointegratemenandwomen’sneeds,preferencesandaspirationswhensettingpriorities,offeringthepotentialtoimprovethelivesandlivelihoodsofmenandwomeninMozambique.

SIMLESAgreatlycontributedtotheconceptofgenderinMozambique’sagriculturalresearchprogramming,whichspilledovertootherprograms.

Improvements and knowledge acquired for the private sector Theprivatesectorisanimportantactorinthemaize–legumevaluechain.DifferentprivatesectorpartnersweremembersoftheSIMLESAinnovationplatform.Somewereengagedinproduction,someinprocessingandothersinmarketinginputsandoutputs.SomeexamplesofpartnersincludeseedcompaniesthatmultiplyandsellseedproducedunderthecontributionofSIMLESA,andprivatecompaniesthatscaledoutdemonstrationstoreachmorefarmers.

Theapproachofworkingwithprivatecompanieswasinnovativeinthesensethattheywerenotonlyengagedinthediscussionsatthelocallevel,butalsoattheregionallevel.Privatepartnerscouldattendregionalmeetingswheretheywereabletomeetmultidisciplinaryteamsandvisitfarms.Inadditiontothesemeetings,theycouldalsoattendexchangevisitswheretheyhadtheopportunitytounderstandmoreaboutseedbusinessesinothercountries.Thus,theycouldnotonlyincreasetheirbusinessconnectionswithothercountriesbutalsounderstandmoreaboutthechallengesandopportunitiesoftheagriculturesectorineasternandsouthernAfrica.

SIMLESA344

SECTION 3: Highlights from country initiatives

Anotherbenefittotheprivatesectorwastrainingonhowtodefineandusetheseedroadmap.UnderSIMLESA,theprivatesectorcouldplantheirproductionandsalesforthenextseason.TheywereaskedtoestimatetheamountofseedtheywerewillingtoreceivefromSIMLESAthatwouldbemultipliedandsoldinthenextseason.Thiswasnewformanyofthepartners,sotheyhadtheopportunitytolearnalotfromengagingwithSIMLESAscientists.Thisincreasedtheirbusinessskillsandmayhavebenefitedtheirperformance.

Theprivatesectorwasalsotrainedintheimportanceofrecordkeeping,becauseSIMLESAneededrecordsofwhatwasbeingdonebythepartnersintermsofquantitiessoldbyvariety.Inthebeginning,mostoftheinformationtheprivatesectorprovidedwasincomplete.Whentheystartedtounderstandtheimportanceofthisdata,thequalityofthedataimproved.

Despitealltheseimprovements,SIMLESAMozambiquerecognisesthatattractingtheprivatesectortotheSIMLESAinnovationplatformswasachallenge(Manjichi&Dias2015)andeffortsshouldbemadetohavemoreprivatecompaniesworkingwithSIMLESA.

Key messages Throughoutthelastnineyearsofresearchtrials,innovationplatformsandscalingoutwithcompetitivegrantschemepartners,theIIAMteamidentifiedclearmessagesforhouseholds,extensionofficers,policyworkersandagribusiness.

Households

ImprovedmaizeandlegumevarietiesandCASIpracticeshaveapositiveeffectonyield.Encouraginghouseholdstoadoptanduseimprovedmaizevarietiesthataretoleranttoextremeweatherconditions,suchasdrought,butalsogivegoodyieldsinotheryearsunderoptimalconditionswerethekeymessagesdeliveredtohouseholds.HouseholdswerealsoabletoselectvarietiesandCASIpracticesthattheypreferredandthataresuitabletotheirlocalconditionsinordertoimproveyield,soilfertilityandreduceerosion.Modelsimulationresultssuggestthatresiduesaremostbeneficialtolegumeyieldsbutmaynegativelyimpactmaizeyieldsonsandiersoils.

Extension officers

Extensionofficerswereadvisedtoworkmorecloselywithhouseholdsandaidbothmenandwomen.Theywerealsoadvisedtosupportlinkagestoinputsupplyandmarkets,andimprovetheconnectionbetweentheinnovationplatformsandextensionagentstoimprovedeliveryofinformation.

LabourconstraintsprovedtobeasignificantbarriertoadoptionofCASIpractices,particularlytheapplicationofresidues.ThereisaneedtoeducatehouseholdsonhowtopreparefieldsandsowusingCASIpractices.Themeritsofimprovedplantingtechniques(inlinewithSIMLESACASIpackages)needtobereiterated.Residuesweremostbeneficialtolegumeyieldsbutmaynegativelyimpactmaizeyieldsonsandysoilswithoutsufficientfertiliserintheshortterm.

FertiliserandseedsuppliersmustbeconnectedwithhouseholdsadoptingCASIpracticessothattimelypurchaseofinputscanoccur.Thisrequiresstrategicsharingofmarketinformationwithhouseholdsduringthegrowingseasonattimeswhenfertiliserapplicationswouldbemostrewarding.

345SIMLESASIMLESA

CHAPTER 18

Policy

ASIMLESAprogramforum,NationalPolicyForumonSustainableIntensificationBasedonConservationAgricultureSIMLESA-OYE,washeldon8 March 2019atIIAMheadquartersinMaputo.Thethemewas‘Policyforumonintensificationbasedonconservationagriculture’.TheeventwasofficiallyopenedbyHerExcellencyDeputyMinisterofAgricultureandFoodSecurity,DrLuisaMeque,assistedbyIIAM’sgeneraldirector,DrOlgaFafetine.TheeventwasalsoattendedbythefirstregionalSIMLESAcoordinatorandCIMMYTrepresentative,DrMuluguettaMekuria,aswellasthenationalcoordinatorinMozambique,DomingosDias.TheforumwasalsoattendedbyIIAMtechnicians,MinisterofAgricultureandFoodSecuritytechnicaldirectorates,directorsofregionalzonalcentres,SIMLESAprogramcollaborators,cooperationpartners,competitivegrantrecipientsandacademicinstitutions.Theeventwasattendedby60guests.Theobjectiveofthepolicyforumwastofindmechanismstoincreasecapacitytorespondtotheneedsoffarmersandthecountrywithagriculturaltechnologiesappropriateforthevariousagroecologicalzoneswithaviewtoincreaseproduction,productivityandincomegeneration.ThespecificobjectivesweretosharetheoverallresultsofSIMLESAresearchoverthelast10yearswithpolicymakersandotheractorsandstakeholdersintheagriculturesector,andalsotosharetheinformationandpolicydocumentsrelevantforthedevelopmentoftheagriculturalresearchintheSIMLESAcontextwithdecision-makers.

Policyrecommendationsincluded:

• increasethenumberofextensionofficersortheircapacitytoreachmorefarmers

• bringextensionservicesclosertohouseholdsandaidbothmale-andfemale-headedhouseholds(thelackofcashandaccesstocreditservices,accesstoinputandoutputmarketsareaconstrainttoadoptionoftechnologies,andmarketsaredistantfromthevillages)

• improvethelinkagebetweenproducersandsuppliersinthevalue-chainprocess:

– intensifythedisseminationofinformationontheproposedlawofagricultureingeneralandparticularlyCASI

– reactivatethecoursesonagriculturalmechanisationinuniversities,highereducationandtechnical-professionalinstitutions

– improvecommunicationwithfarmers

– reachmorefamiliesduringtechnologytransfer

– enablegreaterdiffusionofinformationgeneratedbytheSIMLESAprogram

– createmechanismstofacilitatetheavailabilityofinformationfromtheSIMLESAprogram

– adoptSIMLESAasadevelopmentfocusindistricts

– involvethegovernmentintheimplementationofprivatesectorprojects

– reducefarmers’expectationsoftheexistenceofresourcesoutsidetheircommunitiesandenhancestabilitythroughlocalsustainabilityandresiliency

– generatenewtechnologiestocopewiththeeffectsofclimatechange

– encouragefarmerstouseandpurchasegood-qualityseed

– providesmartincentivestosupportfarmers

– studythepossibilityofmaintainingCASIonfarmsaftertheSIMLESAprogramends

– providetheMinistryofAgriculturewithrelevantinformationontheCASIsystem

SIMLESA346

SECTION 3: Highlights from country initiatives

– raiseawarenessamongfarmersaboutthevalueofpurchasingimprovedseed

– identifyregionstoinvestinimprovedseedproduction

– scaleinandoutproductionmethodstoyouthwithsomelevelofeducationtoallowthemtosharetheirknowledgewithothers

– invitepoliticianstoparticipateinagriculturalandscientificforumstohelpthemunderstandfarmers’concerns

– intensifytheuseofsmartincentivestoremovemarketbarriers

– createacreditsystemtomanagetheseedproductionsector

– addressseedproblemsacrosscommunitieslikeaccess,quantityandqualityaswellashighprices

– improvecerealandlegumesilos.

Inputmarkets(e.g.fertiliser,seeds,herbicides)mustfunctioneffectively.Poorroadinfrastructureinruralareascontinuestobeasignificantproblem,affectingmanyaspectsofagriculturaldevelopment.Illiteracyinruralareascontinuestobeabarriertoextensionefforts,particularlyinknowledge-sharingthroughinformationandcommunicationtechnology.Ensuringradiocommunicationsandtelecommunicationnetworkcoverageinruralareaswillbeessentialtoconnectinghouseholdstomarketsandinformationtohelpthembettermanagetheircrops.

Agribusiness

Householdsareincreasinglyinterestedinanddemandingherbicides.Thereareopportunitiesinherbicidemarketingusingavillage-basedadviserapproachtoexpandherbicidebusinessesatlocalandvillagelevels.

What was the impact?

Incollaborationwithlocalcompetitivegrantschemes,wescaledoutmaize–legumetechnologiestoreachafurther100,000farmers.Resultsfromthefirstyearofthecompetitivegrantschemeactivities(season2016–17)showedthat38,057farmerswerehelpedtoadoptCASIsystems(intheformofdemonstrations,fielddays,businessdevelopmentandloans,SMSpilotingsystemswithtechnologicalpackages,trainingandotheractivitiesandawarenesscreation).

Thegranteesworkedtoincreasequantitiesofseedatvillagelevel.In2017,theyproduced12 tofsoybeanseed(Glycine max),12 tofcowpeaseed(Vigna unguiculata)and15 tofcommonbeanseed(Phaseolus vulgaris).Thedegreeofcommunityparticipationwassatisfactoryinallpartners,whichcontributedtotheachievementofplannedobjectives.However,theremustbeastronglinkwithotherlocalactorstoacceleratescaling-outtechnologiesandincreasesynergiesthatcouldbecreatedbyinputsuppliers,marketsandtechnicalassistanceinknowledgedissemination.Theparticipationofyouthisadimensionthatdeservesemphasis,astheyarethefuturefarmers.Accordingtolocalinformation,youthworkontheirparents’fieldsonholidays,weekendsorintheafternoonsafterschool.Thissituationispositive,asitshowsthatparentshaveopportunitiestoeducatetheirchildren.

347SIMLESASIMLESA

CHAPTER 18

Immediateimpactsinclude:

• increasedproductivitythroughimprovedinputuseinsoilmanagementpractices(currently,yieldsaverage800 kg/haandthiscouldincreaseto1,600 kg/hathroughadoptionofimprovedinputs)

• lesstimeandlabourspentoncontrolofweedsduetoherbicideefficiency

• reduceddistancestravelledlookingforinputsandoutputmarkets

• farmersaccessedbetterpricesfortheirproducethroughpricenegotiations,andstoringproduceinsilosandwarehousestoallowittobesoldduringperiodsofscarcity

• farmers’cooperativesbecameseedproducerswithnon-governmentagricultureandmarketsupport(e.g.AGRIMERC)

• improvedfarmers’technicalassistancethroughvillage-basedagentsandagrodealerswhobecomepublicextensionsupportpromoters

• 1,563newentriesintheSMSdatabase,takingthetotaltoalmost1,800farmers

• asignedcontractwiththeYouthEmploymentProgramtoreach5,000youthinManica,SofalaandZambeziathroughSIMLESA’sSMSprogram.

What should we do next?

TherearestillanumberofchallengesandopportunitieswithinthemaizeandlegumevaluechaininMozambiquewhich,ifcarefullyhandled,canimprovethefunctionalityofthechain.

Recentvalue-chainstudies(Cachombaetal.2013)showthat,ontheinputside,gapsinclude:

• ashortageofimprovedseedoflegumesinthemarket

• hightransportcostsofseedsandfertilisers

• lackofincentivesforseedproduction

• lackofmicrocreditincommunities

• lackofinformationaboutandmarketaccesstofertiliser,pesticidesandherbicides.

Ontheoutputside,gapsinclude:

• alackofqualitygradingsystem(mainlyforlegumes)

• poororganisationsoffarmers

• poorrisk-mitigationmechanisms

• poorstorageinfrastructure

• seasonalityofgrainsupplyforprocessing

• poorprocessingactivities

• poorroadnetwork

• poorinformationflow

• highlyseasonalpriceswithinandacrosstheyears

• lackofvalue-addedproducts,particularlyinthelegumesector

• lowqualityofproductsavailableinthemarket

• poorstoragefacilities.

SIMLESA348

SECTION 3: Highlights from country initiatives

Therearehugeopportunitiesforthemaizeandlegumevaluechain(Cachombaetal.2013).Ontheinputside,opportunitiesinclude:

• goodenvironmentforseedproduction(policy,landandlabour)

• existenceofportsforimportingfertilisers

• awarenessofimprovedseedbyfarmers.

Ontheoutputside,opportunitiesinclude:

• favourableweathertoproducearangeofcrops

• donorsandgovernmentinterestedininvestinginthissubsector

• manyfarmersengagedinmaizeandlegumeproduction

• nationalandinternationalmarketsforlegumes

• amarketinformationsystemformaizeandlegumes

• beansbeingthemain(vegetable)sourceofproteinsandvitaminsforhumansinthecountry

• highdemandformaizeprocessing

• useoflegumesinthepoultryindustry.

Somecompanies,suchasVanduziandDanmoz(bothinManica,closetoBeiraport),demonstratedthepotentialtotakeadvantageofMozambique’sfavourableclimatetoproducehigher-valueproductsandexportthemoverseas.

AnotheropportunityisthatManicaprovince’sagroecologyisfavourableforproductionofanumberofcrops.ThiscanbeconfirmedbythefactthatmanysmallholdermaizehouseholdsinManicaprovincepractisesomeformofhorticulturalproduction.Additionally,climateanalysesindicatethatavocadosandmacadamiascouldbewidelygrownandhavethepotentialtobeharvestedearlierthankeycompetitivemarketsoverseas.Ifoutputmarketswereproperlyfostered(initiallyinkeydomesticmarketssuchasVilanculos,whilesimultaneouslyprovidingadequateassistanceforhouseholdsinseedsandpestanddiseasecontrol),thepotentialtoincreasecommercialagriculturalproductionandimprovelivelihoodscouldbesubstantial.

MaizemillingcompaniesalsoprocuredmaizeOPVZM523,releasedwiththeassistanceofSIMLESA,asaprimaryrawmaterial.InAngonia,thepresenceofthenearbyMalawianmaizeandsoybeanmarketofferscommercialopportunities,aspricesareveryattractive.Also,AbilioAntunes,asuccessfulpoultryproducer,isabletobuymorethan5,000 tsoybean/yearinAngonia,wherethecropissuccessfullygrown.Thepresenceofanewlargemaizebuyer,bigwarehousecompaniesandgrainbuyers(ExportTradingGroup),isapromisingmeansofboostingadoptionofnewCASItechnologies.

OtherexamplesoftheopportunitiesavailableareprocessingcompanieslikeDECAinChimoioandEscoladoPovoinUlóngue(Angonia)thatbuymaizefromhouseholds,processitintoflourandsellitaturbanandexportmarkets.TheexistenceofpoultryindustriesinManicaandTeteprovincesandasoybeanprocessingcompanyinChimoioareotherexampleofopportunitiestoincreasesoybeanproduction.

TradersandbuyersoflegumesindicatethattheproductionofpigeonpeainMacatedistrictisrelativelylowcomparedtotheirdemand.Theexistenceoftradersandbuyersofpigeonpeaintheseareaspresentanopportunityforhouseholdstoincreasepigeonpeaproductionasacashcrop.Additionally,companiessuchasLUTEARIthatprovidemaizeandpigeonpeaseedincredittohouseholdsandthenbuytheproductionprovidesagreatopportunitytodevelopthisvaluechain.

349SIMLESASIMLESA

CHAPTER 18

From2017,SIMLESAscaling-outpartnersworkedinmaizeandlegumeseedproductionand,inpartnershipwithagrodealers,soldtheseedtohouseholds.Thisincreasedtheavailabilityofseedandprovidesanopportunitytoincreaseproductionandproductivityinyearstocome.

ReferencesCachomba,I,Nhantumbo,A,Manjichi,A,Mutenje,M&Kassie,M2013, Maize and legume input and output

value chains in central Mozambique: opportunities and constraints for smallholder farmers,AgriculturalResearchInstituteofMozambique.

Dias,D,Nyagumbo,I&Nhantumbo,N2011,Initiating sustainable agricultural systems through conservation agriculture in Mozambique: preliminary experiences from SIMLESA,InstitutodeInvestigaçãoAgráriadeMoçambique.

InstitutoNacionaldeInvestigaçãoAgronómica1997, Características das Regiões Agroecológicas de Moçambique,InstitutoNacionaldeInvestigaçãoAgronómica,Maputo,Moçambique.

Nyagumbo,I,Mkuhlani,S,Mupangwa,W&Rodriguez,D2017,‘PlantingdateandyieldbenefitsfromconservationagriculturepracticesacrossSouthernAfrica’,Agricultural Systems.vol. 150,pp. 21–33.

Nyagumbo,I,Mkuhlani,S,Pisa,C,Kamalongo,D,Dias,D&Mekuria,M2016,‘Maizeyieldeffectsofconservationagriculturebasedmaize–legumecroppingsystemsincontrastingagro-ecologiesofMalawiandMozambique’,Nutrient Cycling in Agroecosystems,vol. 105,pp. 275–290.

Nyagumbo,I,Munamati,M,Mutsamba,EF,Thierfelder,C,Cumbane,A&Dias,D2015,‘Theeffectsoftillage,mulchingandtermitecontrolstrategiesontermiteactivityandmaizeyieldunderconservationagricultureinMozambique’,Crop Protection,vol. 78,pp. 54–62.

Manjichi,A&Dias,D2015,Does gender matter? Findings from SIMLESA Mozambique,InstitutoSuperiorPolitécnicodeManica,MozambiqueandInstitutodeInvestigaçãoAgráriadeMoçambique.

Quinhentos,M&Mulima,E2016,Report on monitoring adoption of technologies promoted by SIMLESA in Mozambique.InstitutodeInvestigaçãoAgráriadeMoçambique.

Roxburgh,C2017,Drivers for high yield in rainfed cropping: A comparative analysis between Manica, Mozambique and Queensland,PhDthesis,QldAllianceforAgricultureandFoodInnovation,TheUniversityofQueensland,doi:10.14264/uql.2017.518.

Thierfelder,C,Chivenge,P,Mupangwa,W,Rosenstock,TS,Lamanna,C&Eyre,JX2017,‘Howclimate-smartisconservationagriculture(CA)?—itspotentialtodeliveronadaptation,mitigationandproductivityonsmallholderfarmsinsouthernAfrica,’Food Security,vol.9,no.3,pp.537–560.

Woldemariam,H,Cachomba,I,Menale,K&Mutenje,M2012,Characterization of maize–legume farming systems and farm households in Mozambique: analysis of technology choice, resource use, gender, risk management, food security and poverty profiles,Resultsofthebaselinesurveyconductedin2010undertheSustainableIntensificationofMaizeandLegumeSystems(SIMLESA)projectinMozambique,CIMMYT.

350

19 Promoting conservation farming for the sustainable intensification of maize–legume cropping systems in UgandaDrake N. Mubiru, Jalia Namakula, James Lwasa, William N. Nanyeenya, Ramsey Magambo, Godfrey A. Otim, Joselyn Kashagama & Milly Nakafeero

Key points

• Overgrazingandsoilerosionhasledtocompactedsoillayersandoftenbareground,inextremecases.

• Compactedsoillayershaveaffectedagriculturallandbyinhibitingrootgrowthandwatermovement,limitingwaterinfiltrationandretention.Thishasfacilitatedrun-offandmadeploughingdifficult.Agriculturalproductivityhasbeendirectlyaffected,resultinginyieldgaps.

• TheSIMLESAUgandaprogramfoundthatcompatiblemaize–beanintercroppingpatternsincreasedlabourandlanduseefficiencyandreducedsoildegradationduetoreducedsoilnutrientminingandsoilerosion.

• Maize–beanintercroppingsystemsimprovedthefood,nutritionandincomesecurityofsmallholderfarminghouseholdsinUganda.

• Acombinationofpermanentplantingbasinsandrip-linetillage,togetherwithimprovedseedandfertiliser,broughtmaizeandbeangrainyieldswithintheexpectedproductivitytargetsforSIMLESAhouseholds.

351SIMLESASIMLESA

CHAPTER 19

Introduction

TheUgandaSIMLESAprograminitiatedaprojecttoimprovemaize–legumefarmingsystemsbyaddressingdownsideproductionrisksassociatedwithclimatevariabilityandcommodityvalue-chainconstraints.Theoverallobjectiveoftheprojectwastoimprovelivelihoodsofmaize–legumeproducersbyaddressingpre-production,productionandpost-harvestchallenges.Keyactivitiesoftheprojectentailedevaluatingconservationagriculture-basedsustainableintensificationpractices(CASI)throughon-farmtrialswithfarmergroups,anddemonstratingandpromotingthoseproventobeeffectiveunderspecificconditions.Withtheaimofpromotingperformancethroughsynergies,crop–livestock–household–soil–weatherrelationshipswereevaluatedforspecificCASIpractices:minimumsoiltillage,soilmoistureretentionandsoilfertilityenhancement.Theproject,coordinatedbytheNationalAgriculturalResearchOrganization(NARO)in2012,wasimplementedintworuraldistricts:NakasongolaandLira.

Throughadiagnosticstudy,producers’challenges,constraintsandoperatingcircumstanceswereanalysed,settingthestagefortechnologyexposureandskillsimprovement.Themainchallengeswerefailuretoopenlandontime,unreliablerainfallanddecliningsoilfertility.Riplinesandpermanentplantingbasins,introducedbytheSIMLESAprogram,incombinationwithimprovedseedsandfertilisers,contributedtoenhancedbeangrainyieldsofupto1,000 kg/ha,adrasticimprovementfrombaselinesaslowas300 kg/ha.Maizegrainyieldsundertheseconditionsdoubledfromanaveragebaselineof3,000 kg/hato6,000 kg/ha.Theseinterventions,coupledwithprivatesectorandpolicymakerengagements,effectivelyreduceddownsideproductionrisks,andenhancedfoodandincomesecurityandsmallholderlivelihoods.

Thereispotentialforlong-termimpact.TechnologyexposureandskillsdevelopmentthroughtheUgandaSIMLESAprogramledtoenterprise,household,communityandvalue-chainleveladjustments.Theseincludeshiftsinenterprisemanagementandperformance,costreduction,laboursavings,demandforrelevantagriculturalinputsandservices,andgenerallivelihoodenhancement.

What was the situation in 2010?

Ugandaliesacrosstheequatorandextendsfromlatitude10°29’Sto40°12’Nandlongitude290°34’Eand350°0’W.ItislocatedineasternAfricaandhasatotalsurfaceareaof241,551 km2,withalandsurfaceof199,807 km2.Theremaining41,743 km2areswampsandopenwater,includingpartofLakeVictoria,thethird-largestlakeintheworld.Itisalsothesourceoftheworld’slongestriver—theNile.By2015,Ugandahadapopulationof34.9 millionpeople,withanannualpopulationgrowthrateof3.03%andanaveragepopulationdensityof174 people/km2(UBOS2015).

Uganda’sgeographyinfluencesitsclimate.Themeanannualrainfallspatiallyvariesfrom510 mmto2,160 mm(Komutunga&Musiitwa2001).Thereisadefinedbimodalrainfallpatterninthesouthandaunimodalpatterninthenorth,abovelatitude30°N.Thetemperatureacrossthecountryishighlyinfluencedbyaltitudinalvariations,whichrangefrom610 mabovesealevelintheRiftValleyto4,324 mabovesealevelonMtElgon(Wortmann&Eledu1999).However,seasonalvariationinmeanmonthlymaximumtemperatureshashistoricallyremainedatorbelow6°C(Komutunga&Musiitwa2001).Thecountryhasadiverseagriculturalproductionsystemwith10agriculturalproductionzones(GovernmentofUganda2004).

SIMLESA352

SECTION 3: Highlights from country initiatives

Thezonesaredeterminedbysoiltype,climate,topographyandsocioeconomicand culturalfactors,andcontributetothediversityoffarmingsystemsacrossthecountry(Mubiruetal.2017).Duetothedifferentzonalcharacteristics,theagriculturalproductionzonesexperiencevaryinglevelsoflanddegradationandvulnerabilitytoclimate-relatedhazards,whichhaveincludeddrought,floods,storms,pestsanddisease(Government ofUganda2007).

Duetodiverseagriculturalproductionsystems,thecountryhasvariedcropenterprises,includingbanana,rootcrops,cerealsandlegumes,amongothers.Amongthecerealsandlegumes,maizeandbeansaremajorstaplefoodsformuchofthepopulation,andareamajorsourceoffoodsecurity.Theyhaveplayedanimportantroleinhumanandanimalnutritionandconstitutedamajorshareofmarketeconomies(Goettschetal.2016;Namugwanyaetal.2014;Sibikoetal.2013;Pachico1993).Atthehouseholdlevel,household-sourcedmaizeandbeanshaveservedasastaplefoodsupplyingproteins,carbohydrates,mineralsandvitaminstoresource-constrainedruralandurbanhouseholdswithrampantshortagesofthesedietaryelements.Theannualpercapitamaizeconsumptionhasbeenestimatedtobe28 kg,andbeanconsumption58 kg(Soniia&Sperling1999).Reportedly,thedietaryintakeforthemostresource-constrainedhouseholdsinUgandacomprises70%carbohydrates.Thisismainlyfrommaize,supplying451 kcal/person/dayand11 gprotein/person/day.Beansprovideabout25%ofthetotalcaloriesand45%oftheproteinintakeinthedietsofmanyUgandans(NARO2000).

DespitetheimportanceofmaizeandbeansinUganda,availabledatafromtheFood andAgricultureOrganizationStatisticalDatabase(FAOSTAT)indicatethattheyieldof maizeiscurrentlystagnantat2.5 t/hacomparedtoapotentialyieldof4–8 t/ha(Otungeetal.2010;Semaana2010;RegionalAgriculturalExpansionSupport2003),withtheopen-pollinatedvarietiesbeingonthelowerendcomparedtohybridvarieties.TheactualmeanbeangrainyieldinUgandais500 kg/hacomparedtopotentialyieldof1.5–3 t/ha(Namugwanyaetal.2014).

Land degradationInUganda,landdegradationhashadsignificantimpactsonsmallholderagroecosystems,includingdirectdamageandlossofcriticalecosystemservicessuchasagriculturalland/soilandbiodiversity(Mubiruetal.2017).Poorlandmanagement,includingovergrazingandsoilerosion,hasproducedcompactedsoillayersandbaregroundinextremecases(Figure19.1)(Mubiruetal.2017).Mubiruetal.(2017)furtheridentifiedhandhoeing(Figure19.2),themaintillagepracticeappliedonmostfarmlandsinUganda,asamajorcontributingfactortosoilcompaction.Handhoeingonlydisturbsthefirst15–20 cm—orsometimesaslittleas5 cm—ofthetopsoiland,ifdoneconsistentlyandregularly,canpotentiallyproducerestrictivelayersbelow0–20 cmofthetopsoil.Soilcompactionhasaffectedagriculturallandinseveralways,byinhibitingrootandwatermovement(Coyne&Thompson2006;Brady&Weil1996,p. 224),limitingwaterinfiltrationandretentionfacilitatingrun-off,resultinginmoisturestressandmakingploughingdifficult(Coyne&Thompson2006).

Moisturestressarisingfrompoorlandmanagementhasbeencompoundedbyclimatechangeandvariability.Recently,erraticweatherpatternsthatimpactnegativelyonsoilmoisturecontenthaveledtoeitherreducedcropyieldsortotalcropfailure(Mubiruetal.2012;Mubiru,Agona&Komutunga2009).Onthesocioeconomicside,limiteduseofgood-qualityagro-inputssuchasimprovedseedandfertiliser,andrudimentarymeansofproduction,arewidelyregardedasamajorimpedimentstoincreasedoutputandproductivity(MinistryofAgriculture,AnimalIndustryandFisheries2010).Thecombinedeffectofthesefactorshasdirectlyaffectedagriculturalproductivityandcontributedtotheyieldgapbetweenpotentialoutputandfarmeroutputs.

353SIMLESASIMLESA

CHAPTER 19

Figure 19.1  Bare land patches interspersed with shrubs in Nakasongola district

Photo:JamesLwasa,2013

Figure 19.2 Hand hoeing in Uganda

Photo:DrakeN.Mubiru,2014

SIMLESA354

SECTION 3: Highlights from country initiatives

Productive and sustainable practices, tactics and strategiesCASIofferslandmanagementtechnologypackageswiththepotentialtohelpfarmersproducecompetitivelyandprofitablyandmeetmarketexpectations.Thetechnologypackagespresentanopportunitytodisturbthesoilaslittleaspossible,keepthesoilcoveredasmuchaspossibleandpermitmixingandrotationofcrops.Thesepracticesareexpectedtosupportsoilmoistureconservationandminimisesoilerosionfromwindandwaterwhiletheleguminouscovercropsinconservationfarmingsystemsfixnitrogen,therebyimprovingthefertilitystatusofthesoilandpromotingeconomywithnitrogenousfertilisers(Calegari2001;Calegari&Alexander1998).Thesetechnologypackageshaveaddressedthesoilandwatermanagementconstraintsfacedbysmallholderfarmers(Mupangwa,Twomlow&Walker2007).Inmaize–legumecroppingsystems,CASIfarmingcanmakeanenormouscontributiontowardssustainablefoodproductionatarelativelylowcosttothefarmers,whileconservingsoilandwater.

CASIstrategiesforsustainableproductionandadaptationtoclimatechangeincludeutilisationofoptimumseedingratesandintercropping.Whenthequalityofseed,plantnutrientsandsoilmoistureareensured,theotherhighlyimportantfactoristheamountofradiantenergyreachingtheplantcanopy.AccordingtoJohnson(1980),thefactorthatsetstheupperlimitonpotentialyieldisthequantityofenergythatcroptissuescapturefromthesun.Ithasthereforebeenimportanttodeterminetheoptimumseedingrateforaplantpopulationwithaclosedcanopyearlyinthegrowthperiod.

Inordertoincreaselandproductivityandenhancesustainablecropproduction,farmershavetakendiversecroppingsystemapproaches(Hauggaard-Nieson,Ambus&Jensen2001).Thecroppingsystemshavetypicallybeenshapedbysoiltypes,climate,topography,andsocioeconomicandculturalfactors.Onecommoncroppingsystemamongsmallholdersisintercropping.Intercroppingisdefinedasatypeofmixedcroppingwheretwoormorecropsaregrowninthesamespaceatthesametime(Andrew&Kassam1976).Smallholderfarmerspractiseintercroppingforvariousreasons,includingdiversificationandreducingproductionriskstoaverttotalcropfailureintheeventofunsuitableclimaticconditions.Thispracticealsohastheadvantageofcateringforthestarchandproteinneedsofhouseholds,especiallyamongresource-poorfarmers.Judiciousintercropping,whichentailsgrowingsuitableandcompatiblecropstogether,increasesproductivitythroughmaximumutilisationofland,labourandcropgrowthresources(Craufard2000;Marshal&Willy1983;Quayyum,Ahmed&Chowdhury1999).Ithasalsobeenobservedthatyieldsfromintercroppingareoftenhigherthaninsolecroppingsystems(Lithourgidisetal.2006)duetoefficientutilisationofresourcessuchaswater,lightandplantnutrients(Lietal.2006).

Smallholderfarmershavethepotentialtoimproveruralfoodsecurity,livelihoodsandadaptationtoclimatechangethroughadoptionofappropriateCASIpractices.Barrierstoadoptioncan,however,besubstantialandlimituptakeofpracticesthatoffermaximumeconomicreturns(Parvan2011;Wreford,Ignaciuk&Gruere2017).SIMLESAUgandaaddressedtheneedtoidentifyappropriateCASIpracticesandsupportuptakeandadoption.

355SIMLESASIMLESA

CHAPTER 19

What did SIMLESA do?

Toaddressproductionconstraints,theUgandaSIMLESAprogramfirstidentifiedCASIpracticesthatincreasedyieldsandreduceddownsideproductionrisks.TheprogramcarriedoutdemonstrationsandpromotedCASIpracticesandotherclimatechangeadaptationtechnologies.Relationshipsbetweencrop,livestock,household,soilandweatherwereexploitedthroughminimumsoiltillagebyuseofherbicides,andsoilmoistureretentionbycoveringsoilwithcropresidues.Soilfertilitywasimprovedthroughjudicioususeofchemicalandorganicfertilisersandcroprotations.Toaddressmarket-relatedlimitationsonuptakeandadoption,thesecondaimoftheUgandaSIMLESAprojectwastoidentifycommodityvalue-chainconstraints.

Project objectivesTheprojectgoalwastounlockthepotentialofthemaize–legumeproductionsystemasastrategyforaddressingfoodandnutritionsecurity,incomesandlong-termenvironmentalmanagementthroughimprovedproductivity.Theoverallobjectiveoftheprojectwastoimprovelivelihoodsofmaizeandlegumeproducersbyaddressingpre-production,productionandpost-harvestchallengesofthecommodityvaluechains.

Thespecificobjectiveswereto:

• evaluateproductionconstraintsandopportunitiestoincreaseproductionthroughCASIpractices

• evaluateandovercomevalue-chainconstraints.

Project sitesTheproject,whichcommencedin2012,wasimplementedintworuraldistricts:NakasongolaincentralUgandaandLirainthenorth(Figure19.3).Thetwodistrictswerecomprisedprimarilyofsmallholderfarmerswithacombinedpopulationof623,100in2016(UgandaBureauofStatistics2015).Nakasongoladistrict,inanagropastoralsetting,islocatedinwhatisknownasthecattlecorridorofUganda.Thecorridorcutsacrossthecountry,fromsouth-westernUganda,throughthecentre,tonorth-easternUganda.Agriculture(crops,livestockandfisheries)hasbeenbyfarthemostimportantactivityinthedistrict,employingabout90%ofthepeople(Magunda&Mubiru2016;Nanyeenyaetal.2013).Althoughthemajorityofproductionactivitieshavebeenforsubsistence,Liraislargelycrop-orientedandislocatedinahigherpotentialproductionzoneinnorthernUganda(Nanyeenyaetal.2013).Liraischaracterisedbyacontinentalclimatemodifiedbythelargeswampareassurroundingthesouthernpartofthedistrict.ThemajoreconomicactivityinLiraisagriculture(crops,livestockandfisheries).

SIMLESA356

SECTION 3: Highlights from country initiatives

Wabinyonyi SC

Kalongo SC

Aromo SC

Lira SC

Lira

LIRA

Nakasongola

NAKASONGOLA

0 60 120 180 24030km

SIMLESA project districts

Cattle corridorLakes

Figure 19.3 Uganda SIMLESA program sites: Lira and Nakasongola districts and the cattle corridor

Source:GeographicInformationSystems,NationalAgriculturalResearchLaboratories,Kawanda

357SIMLESASIMLESA

CHAPTER 19

Site selectionDiagnosticsurveyswereconductedintheimplementingdistrictstounderstandtheproducers’challenges,constraintsandoperatingcircumstancesinordertosetthestagefortechnologyexposureandskillsimprovement.Inthesamplingprocedures,eachdistrictwasdividedintotwobroadzonesdependingonagriculturalpotentialbasedonsoil,climateandmajorcommunitylivelihoodsources.Fromthese,twosubcountieswereselectedtorepresenthigh-andlow-potentialproductionareas.InLira,AromoandLirasubcountiesweresampledashigh-andlow-potentialareas,respectively.InNakasongola,KalongoandWabinyonyisubcountiesweresampledashigh-potentialandlow-potentialareas,respectively.

Assessing the biophysical state of soilsBaregroundcoveragedatawasincludedintheprojectsiteevaluationsasaproxyforextremelanddegradation.SupportedbytheSIMLESAprogram,NAROscientistsevaluatedtheextentofbaregroundinNakasongola,oneoftheprojectsites.DatawerecollectedbyaninitialphysicalsurveyusingGPStoestimatethespatialextentofafewbaregrounds.Thesedatawerethenusedtolocatethesamefeaturesonasatelliteimageofalltheresearchsitesfromafairlydrymonth.Thesepointswereusedtodevelopdigitalsignaturesforsearchingsimilarfeaturesintherestoftheimageandgeneratingcoveragestatisticsusinggeographicinformationsystemtools(Mubiruetal.2017).

Intensification of sustainable productionCoveringthesoilwithliveordeadvegetalmaterialsisoneofthreeprinciplesofCASIproductionsystems.Covercropsareplantsgrowntoimprovethequalityandproductivityofthesoilbyenhancingorganicmatterbuild-upandsoilmoistureconservation,whichallimprovethesoilbiologyanditshealth.WithsupportfromSIMLESA,fivepigeonpea(Cajanus cajan)elitelines(ICEAP00850,ICEAP00540,ICEAP00557,KAT60/8andICEAP00554)wereacquiredfromtheInternationalCropsResearchInstitutefortheSemi-AridTropicsandplantedattheNationalAgriculturalResearchLaboratories(NARL)—Kawandain2015.Thesewereevaluatedforperformanceandtheseedwasmultipliedforupscaling.Atthefloweringstage,a0.25 m2quadrantplacedatfourrandompositionswithineachplotwasusedtodeterminetheaccumulatedabove-grounddrymatter.

Pigeonpeausedascovercropsprovidedmultipurposebenefitssuchasimprovingthequalityandproductivityofthesoil,suppressingweedsandprovidingnutrient-richpigeonpeagrain,whichdirectlybenefitedthefarmers(Odeny2007;Upadhyayaetal.2006;Valenzuela&Smith2002).

SIMLESA358

SECTION 3: Highlights from country initiatives

Maize–bean intercropping patternsThreeseasonsofmaize–beanintercroppingtrialswereconductedwithfarmergroupstodeterminetheoptimummaize–beanintercroppingpatterns(Figure19.4).Themaizeandbeanseedsweredrilledusingconventionalmethods.

T1: 2maizerows+1beanrow in-between

T2: 2 maizerows+2beanrows in-between

T3: 1maizerow+1beanrowwithin themaizerow

T4: 2 maizerows+1beanrowwithinthe maizerow+1beanrowin-between

T5: Maizeonly(control)

Figure 19.4 Maize–bean intercropping patterns

359SIMLESASIMLESA

CHAPTER 19

Maize and bean seeding ratesPermanentplantingbasinsandriplines,widelyusedinsouthernAfrica(ZambiaandZimbabwe),wererecentlyintroducedinUgandaasnewtillagemethodsundertheumbrellaofCASI.Thetwotillagepracticescanenhancethecaptureandstorageofrainwaterandallowprecisionapplicationandmanagementoflimitednutrientresources,reducingtheriskofcropfailureduetoerraticrainfall.

Trialstodetermineoptimummaizeandbeanseedingratesusingpermanentplantingbasinswereconductedfortwoseasons(2013Aand2013B)atNARL–KawandaincentralUgandaandNgettaZonalAgriculturalResearchandDevelopmentInstitute(NgettaZARDI)innorthernUganda.Theseedingratetrialsunderriplineswerealsoconductedfortwoseasons(2013Aand2013B)atNgettaZARDI.InUganda,riplinesweremadeusingoxen.Duetotheheavyclaysoilsinthecentralregion,animaldraughtpowerwasrarelyused(edsOmoding&Odogola2005).

Basins,dugbeforetheonsetofrains,weredesignatedusingplantinglinesanddiggingplantingbasins.Thebasinswere35 cmlong×15 cmwide×15 cmdeep,withaspacingof75 cmbetweenrowsand70 cmwithinrowsfromcentre-to-centreofthepermanentplantingbasin.Availablecropresidueswerelaidbetweenrowstocreateamulchcover.Themaizeseedingrateswere3seeds/basin(57,144plants/ha),4seeds/basin(76,192plants/ha),and5seeds/basin(95,240plants/ha).Theseedingratesforbeanswere6seeds/basin(114,286plants/ha),8seeds/basin(152,381plants/ha)and10seeds/basin(190,476plants/ha).Thecontroltreatmentswere3seeds/basinformaizeand6seeds/basinforbeans.

Riplineswerealsopreparedbeforetheonsetofrainsbyanoxrippersetatadepthof15 cm.Maizewasseededatthreespacingswith1seed/hill:60 cm×25 cm(66,667plants/ha),65 cm× 25cm(61,538plants/ha)and75 cm×25 cm,(53,333plants/ha).Beanswerealsoseeded(with2seeds/hill)atthreespacings:60 cm×10 cm(333,333plants/ha);65 cm×10 cm(307,692plants/ha)and75 cm×10 cm(266,667plants/ha).Anopen-pollinatedLong5maizevarietyandaNABE15beanvarietywereused.Themaizeandbeangrainyieldsweredeterminedbyharvestingthewholeplot.

Comparison of tillage methodsThreetillagemethodswerecompared:conventionalfarmerpractice,permanentplantingbasinsandriplines.

Underconventionalfarmerpractice,plantingholesformaizeweredesignatedbyplantinglinesanddiggingwithahandhoeataspacingof75 cmbetweenrowsand60 cmwithinrows.Therowswereseededwith2seeds/hole(44,444plants/ha).Inthecaseofbeans,spacingwas50 cm×10 cm,seededwith1seed/hole(200,000plants/ha).

Thepermanentplantingbasinsweredesignatedasmentionedearlier.Thebasinswereseededwith3maizeseeds/basin(57,143plants/ha)and6beanseeds/basin(114,286plants/ha).

Theriplinesweredesignatedasmentionedearlier.Maizewasseededwith1seed/hillataspacingof75 cm×25 cm(53,333plants/ha).Beanswereseededwith2seeds/hillataspacingof75 cm×10 cm(266,667plants/ha).

SIMLESA360

SECTION 3: Highlights from country initiatives

Business model analysisThebusinessmodelanalysis,fundedbyACIARundertheSmallResearchandDevelopmentActivityproject,wasconductedinNakasongolain2015.ThestudyfocusedontheroleofsmallruralenterprisesincontributingtotheadoptionandscalingupofarangeoftechnologiesdevelopedbytheUgandaSIMLESAprogramtosupportadoptionofCASIpractices.Theprojectinvolveddisseminatingprovenagriculturaltechnologiesthatrangedfromcomplexandknowledge-intensivetosimplerule-of-thumbapproaches.Thesetechnologiesincludedminimumtillage,integratedsoilfertilitymanagement,useofimprovedseedandwaterharvesting.

Impact assessmentTheimpactassessmentwascarriedouttoexaminetransformationstosocietyasaresultofprojectinterventions.Specifically,thestudy:

• assessedtheenterpriseperformance(yield)responseduetotheinterventions

• determinedhouseholdandsocietallivelihoodtransformations

• examinedprojectspillovereffects.

What did we learn?

Improved understanding of socioeconomic conditionsThediagnosticsurveyshelpedtounderstandproducers’challenges,constraintsandoperatingcircumstances.Farmers’challengesinthemaize–legumevaluechainsweregroupedintothreecategories:pre-production,productionandpost-harvest.Table19.1showsthemainchallenges/constraintsinthethreecategories,indescendingorderofimportance.

Table 19.1  Challenges faced by farmers along the maize–legume commodity value chains, Nakasongola and Lira

Maize Legume

Pre-production constraints (descending order of importance)

failuretoopenlandontimeshiftsinseasons/prolongeddrought

shiftsinseasons/prolongeddrought lackofgood-qualityseed

poor-qualityseed failuretoopenlandontime

lackofagro-inputsupplies lackofreliableagro-inputsupplies

Production constraints (descending order of importance)

weedinfestation weedinfestation

cropdamagebypests cropdamagebypests

decliningsoilfertility decliningsoilfertility

cropdamagebydiseases cropdamagebydiseases

Post-harvest constraints (descending order of importance)

poorstorage poorstorage

exploitativemarkets exploitativemarkets

361SIMLESASIMLESA

CHAPTER 19

Themainchallengeinthepre-productionphaseformaizewasfailuretoopenlandontime.Thiswasfollowedinimportancebyshiftsinseasonsand/orprolongeddroughts.Thequalityofmaizeseedandpooraccesstoagro-inputswerealsoissuesofconcern.

Intheproductionphase,themainchallengewasweedinfestationfollowed,indecliningorderofimportance,bycropdamagebypests,decliningsoilfertilityandcropdamagebydiseases.Afterharvest,farmersreportedthattheyfacedchallengesinstorageandfindinggoodmarketsfortheirmaizeproduce.

Inthecaseoflegumes,themainchallengeduringthepre-productionphasewasreportedasshiftinseasonsand/orprolongeddroughts.Thiswasfollowed,indecliningorderofimportance,bylackofgood-qualityseed,failuretoopenlandontime,andpooraccesstoagro-inputs.Intheproductionandpost-harvestphases,theissuesaswellastheirlevelofimportancewerethesameasreportedformaize.

Thedifferencesintheimportanceofchallengesexperiencedduringthepre-productionphasebetweenmaizeandlegumes(forexample,failuretoopenlandontime)canbeattributedtotheacreageusedforbothcrops.Inlegumeproduction,lessacreageisusedamongsmallholders.Formaize,alargeracreageisrequired.Theunderlyinginputandconstrainttoopeninglandontimeisthelabourrequirementsforlandpreparation.Thisgreatlylimitstheacreage,asmostfarmersuseahandhoeforopeninglandasopposedtomechanisedservices(edsOmoding&Odogola2005).Themostimportantchallengeinthepre-productionphaseforlegumeswasshiftsinseasonsand/orprolongeddrought.Thiswasonlyofmoderateimportanceinmaize.Itcouldbearguedthat,sincemaizetakeslongerinthefieldthanlegumes,ithasachancetorecoverfromerraticrainfalloncetherainsstabilise.Thismaynotbethecaseforlegumes,whichtakeashorterperiodtomature.However,incaseofashortenedrainyperiod,whichisuncommonthesedays,thelegumewouldsurvive,unlikemaize,whichtakeslongertomature.

Lackofgood-qualityseedwasthesecondmostlimitingfactorforlegumeproductionaftershiftsinseasons/prolongeddroughts.Mostfarmersreportedthathigh-yieldinganddrought-,disease-andpest-tolerantbeanvarietieswererareintheirproductionsystems.Unlikelegumes,poor-qualityseedwastheissueinmaize.Whereitiseasytoidentifyseedsofdifferentlegumevarieties,especiallybeansandpeanut,thisisnotthecaseformaize.Therefore,inanunregulatedmarket,suchasthatprevailinginUganda,farmersoftenendedupbuyingmaizeseedofinferiorvarietiesdisguisedassuperiorvarieties.Theviabilityofmaizeseedgenerallycanalsobeeasilycompromisedbyunsuitableenvironmentalconditionscomparedtolegumeseed.Accordingtodocumentedevidence,maizeseedgenerallystaysgoodforonlyoneyearwhereasbushbeanseedlastsfortwoyears(Savonen2003).Theissueoflackofreliableagro-inputsupplieswasofequalimportanceforbothmaizeandlegumes.Thingslikefertilisers,pesticidesandchemicalstocontroldiseasesareoftenunavailableorinaccessibleandwhenavailablethepricesareprohibitive(Okoboi,Muwanga&Mwebaze2012).

Inregardtomarkets,whenfarmersdonothavepropergrainstorage,theyareforcedtoselltheirproducewhensupplyisstillveryhighandcanbeexploitedbyshrewdtraders.Severalworkers(Salami,Kamara&Brixiova2010;WorldBank2008)havestatedthatlowproductivityamongsmallholderfarmersstemsfromlackofaccesstomarkets.

SIMLESA362

SECTION 3: Highlights from country initiatives

The biophysical state of soilsBaregroundcoverageinNakasongola,duetoextremecasesofsoilcompaction, was187 km2(11%)ofthe1,741 km2ofarableland(Table19.2andFigure19.5) (Mubiruetal.2017).

Table 19.2  Spatial distribution of different land cover classes in Nakasongola

Class Area (km) Cover (%)

Openwater 233 7.9

Vegetated 1,527 51.7

Bareground 187 6.3

Seasonalwetland 915 31.0

Cloudcover 48 1.6

Permanentwetland 46 1.6

Total 2,956 100

Source:Mubiruetal.2017

Figure 19.5  Spatial distribution of bare grounds in Nakasongola and surrounding areas

Source:Mubiruetal.2017

water

bareground

vegetated

Nakitoma

KakoogeKalongo

KalungiNakasongola TC

Migeera

Nabisweera

Lwabyata

Lwampang

Wabinyonyi

363SIMLESASIMLESA

CHAPTER 19

Intensification of sustainable agricultural productionGenerally,allpigeonpeaelitevarietiesyieldedsignificantly(P < 0.05)moreabove-grounddrymatterthanthenaturalfallow(Figure19.6).Thiscanpotentiallyenhanceorganicmatterbuild-upandsoilmoistureconservation.Inthatregard,theintroducedpigeonpeaelitevarietieswerepromotedformultipurposeimprovedfallows.

Figure 19.6  Above-ground dry matter yield of pigeonpea elite varieties compared to natural fallow

Note:MeansaredifferentaccordingtotheLSDmethod(P < 0.05)ifdifferentlettersappearabovethebars.

IntercroppingAsameansofintensifyingmaize–beanproduction,theUgandaSIMLESAprogramevaluatedmaize–beanintercroppingpatternstoestablishtheoptimumpatterns.Theoptimumintercroppingpatternswerethenpromoted,targetingmainlyruralhouseholdswithsmalllandholdings.Inalltreatments,intercroppingdidnotaffectmaizeyield.Therewerenosignificantyielddifferencesbetweenmaizeplantedasasolecropcomparedtomaizeyieldinallmaize–beanintercroppingpatterns.However,thereweresignificantdifferencesinbeangrainyieldamongthedifferentintercroppingpatterns,leadingtosignificantdifferencesinthecombinedrevenuefrommaizeandbeans.Fromaneconomicpointofview,theoptimummaize–beanintercroppingpatternswereT1(twomaizerowswithonebeanrowin-between)andT3(onemaizerowwithonebeanrowwithinthemaizerow).Thesetwoprovidedamplespacingforthebeans,probablyleadingtobetterperformance.Maizeplantedasasolecropofferedtheleasteconomicreturns,indicatingthatforsmallholdersitisnotprofitabletogrowmaizeasasolecrop(Table19.3).

0

10

30

20

40

50

60

Abov

e-gr

ound

dry

mat

ter

yiel

d (t

/ha)

Cover crops

Naturalfallow

ICEAP00850

ICEAP00540

ICEAP00557

ICEAP00554

KAT 60/8

c

aab

bc

a

ab

SIMLESA364

SECTION 3: Highlights from country initiatives

Intechnologyverificationmeetings,farmersoverwhelminglyconfirmedtheincreasedeconomicreturnsfromintercroppingmaizeandbeansasopposedtomonocropping(SIMLESA2014).DanielKato,thechairpersonofWantabyaEastFarmers’Group,Wabinyonyisubcounty,Nakasongola,explicitlystated,‘Intercroppingmaizewithbeanshasincreasedfarmoutputsasweareabletoharvestbothmaizeandbeansfromonefieldandinoneseason,moreoverusingthesamelabour’.Otherworkers(Ahmad&Rao1982;Grimesetal.1983;Kalra&Gangwar1980;Seran&Brintha2009)alsounderscoredtheeconomicbenefitsofintercroppingcompatiblecrops.

Table 19.3 Maize–bean intercropping patterns, their attributes, grain yield and accruing revenue

Maize–bean intercropping pattern

Attributes Maize grain yield (kg/ha)

Bean grain yield (kg/ha)

Combined revenue from maize and beans (US$/ha)

Comments

T1:2maizerows+1beanrowin-between

easytoestablish

5,942a 257a 1,700a Thespacingfromonebeanrowtoanotheris75 cm.Thisamplespacingcouldhavehelpedthebeancroptoperformwell.

T2:2maizerows+2beanrowsin-between

easytoestablish

5,703a 151b 1,552b Thespacingfromonebeanrowtoanotheris25 cm.Thislimitedspacingcouldhaveledtothepoorperformanceofthebeancrop.

T3:1maizerow+1beanrowwithinthemaizerow

easytoestablish

5,601a 277a 1,631ab Thispatternwith75 cminter-rowspacingalsoprovidesamplespacingleadingtogoodperformanceofthebeancrop.

T4:2maizerows+1beanrowwithinthemaizerow+1beanrowin-between

noteasytoestablish(needmorelabour)

5,486a 125b 1,476bc Thispatternleadstoovercrowding,whichcouldhaveaffectedtheperformanceofthebeancrop.

T5:Maizeonly(control)

easytoestablish

5,702a – 1,426c Thiscroppingsystemofferstheleasteconomicreturns.

Notes:Differentletterswithineachcolumnindicatestatisticaldifferencesamongtreatments,usingtheLSDmethod.Commodityprices(2017):US$0.25/kgmaize;US$0.83/kgbean.

365SIMLESASIMLESA

CHAPTER 19

Optimum seeding ratesAtbothNARL–KawandaandNgettaZARDI,therewerenoseason×seedingrateinteractions,indicatingthateffectsofseedingratesonyieldwereindependentofseasons.Inthatregard,yieldforeachseedingratewasaveragedacrossseasons.

However,atNARL–KawandaincentralUganda,thereweresignificantyielddifferences(P < 0.05)fromthedifferentmaizeseedingrates.Permanentplantingbasinsplantedwith3seeds/basin(57,144plants/ha)hadsignificantlylowergrainyieldthanbasinsplantedwith4seeds/basin(76,192plants/ha)and5seeds/basin(95,240plants/ha).However,thegrainyieldsrealisedfrombasinsplantedwith4seeds/basinand5seeds/basinwerenotsignificantlydifferent.Therewasa27%increaseingrainyieldfromthe3seeds/basintothe4seeds/basin.ThedifferentmaizeseedingratesperformedsimilarlyatNgettaZARDIinnorthernUganda,fortwoseasonsin2013(Table19.4).

Table 19.4  Maize seeding rates and grain yield, Ngetta ZARDI and NARL–Kawanda, average of two seasons (2013A and 2013B)

Station Seeds/basin Yield (t/ha)

NARL–Kawanda 3 4.43b

4 5.64a

5 6.39a

NgettaZARDI 3 2.40a

4 2.67a

5 2.89a

Note:Differentlettersonyielddataforeachstationindicatestatisticaldifferencesamongtreatments,usingtheLSDmethod.

TheNARL–Kawandasite,withheavytexturedsoilsandmediumorganicmatterwithinabimodalrainfallregime,isrepresentativeofareasbelowlatitude30°N.TheNgettaZARDIsite,withlighttexturedsoilsandloworganicmatterwithinaunimodalrainfallregime,isrepresentativeofareasabovelatitude30°N.Itcanthereforebetentativelyconcludedthat,inUganda,forareasbelowlatitude30°N,aseedrateof4maizeseeds/basin(76,192plants/ha)isoptimalwhileinareasabovelatitude30°Naseedrateof3maizeseeds/basin(57,144plants/ha)isoptimal.Thedifferenceinthebest-performingseedingratesbetweenthetwoagroecologies(KawandavsNgetta)couldbeattributedtothedifferencesinsoilmoistureregimes,soiltypesandfertility.WhilethesoilsatKawandaareheavyintextureandhaveahigherorganicmattercontent,thesoilsatNgettaZARDIarelightandhavealowerorganicmattercontent(GovernmentofUganda1960).

Bean plant population in permanent planting basins Atbothexperimentalsites,NARL–KawandaandNgettaZARDI,therewerenosignificantyielddifferencesamongthedifferentseedingrates(Table19.5).Astheseedingrateincreasedfrom6to10seeds/basin,itislikelythatcompetitionamongtheplantsfornumerousresources,especiallylight,alsoincreased.Severalworkers(Ghaffarzadeh,Garcia&Cruse1994,1997)haveobservedthatthepotentialforstresscouldbeincreasedwhencropscompeteamongthemselves.Theyfurtherarguedthatcompetitionforresourcesmightdevelopasaresultofrootgrowthpatternsand/ordifferentresourcedemands.Althoughtheyonlymentiontherootgrowthpatterns,observationsfromourstudyindicatethattheabove-groundplantarchitecturalarrangementalsoconfersseriouscompetitionamongtheplants,limitingtheirproductionpotential.

SIMLESA366

SECTION 3: Highlights from country initiatives

Table 19.5  Bean seeding rates and grain yield, NARL–Kawanda and Ngetta ZARDI, average of two seasons (2013A and 2013B)

Station Seeds/basin Yield (t/ha)

NARL–Kawanda 6 0.556a

8 0.681a

10 0.664a

NgettaZARDI 6 2.58a

8 2.43a

10 2.75a

Note:Differentlettersonyielddataforeachstationindicatestatisticaldifferencesamongtreatments,usingtheLSDmethod.

Maize and bean seeding rate in rip linesRiplinesdidnothaveanyobservableimpactonyield,regardlessofseedingrates,crop(maizeandbeans)andseason(Table19.6).Sincetherewaslittledifferenceinyields,thecostsofinputs(seedandfertiliser)playedamoredirectroleindeterminingthepreferablemanagementstrategy.Thelowestplantpopulation(widestinter-rowspacing)requiredtheleastamountofinputsandthereforewouldbeconsideredoptimal.Inthatregard,the75 cminter-rowspacingofriplinesforbothmaizeandbeanswithintra-rowspacingof25and10 cm,respectively,werepromoted.

Table 19.6  Effect of varying maize and bean seeding rates using rip lines on maize and bean grain yield at Ngetta ZARDI, average of two seasons (2013A and 2013B)

Inter-row spacing (cm) Maize yield (t/ha) Bean yield (t/ha)

60 3.14a 1.63a

65 2.45a 1.58a

75 2.99a 1.57a

Note:Differentlettersonyielddataforeachstationindicatestatisticaldifferencesamongtreatments,usingtheLSDmethod.

Comparison of tillage methodsBeangrainyieldsincreasedfromaslowas300 kg/hato834 kg/hawithCASItechnologies(riplinesandpermanentplantingbasins)introducedbytheSIMLESAprogram,incombinationwithimprovedseedsandfertilisersand/ormanureandoptimumseedingrates(Table19.7).However,theseyieldswerestillwellbelowtheyieldpotentialofbeansinUgandaof2,000 kg/ha(Sebuwufuetal.2012).

Maizegrainyieldincreasedfromanaverageof3,000 kg/hato4,442 kg/ha(Table19.7).Thiswasalsowellbelowtheyieldpotentialforhybridmaizerangesof5,000–8,000 kg/ha(Semaana2010).

Acombinationofpermanentplantingbasinandrip-linetillagetogetherwithimprovedseedandfertiliserbroughtmaizeandbeangrainyieldswithintheexpectedproductivityrangeforbothcropsinUganda.

367SIMLESASIMLESA

CHAPTER 19

Table 19.7 Average bean and maize grain yields as a response to different tillage practices

Tillage practice Bean yield Maize yield

(kg/ha) SE (kg/ha) SE

Conventional 359c ±138 1,536b +879

Conventional+fertiliser 560abc ±138 2,481ab +879

Permanentplantingbasin 512abc ±138 3,328ab +918

Permanentplantingbasin+fertiliser 784ab ±138 4963a +918

Ripline 438bc ±148 2,086b +963

Ripline+fertiliser 884a ±148 3,921ab +963

Notes:YieldmeansforaparticularcropfollowedbythesameletterarenotsignificantlydifferentaccordingtoLSDatP=0.05.SE=standarderror. Source:Mubiruetal.2017

Business modelsThroughbusinessmodelling,itwasobservedthatprivateentrepreneurshiphadpotentialtocontributesignificantlytotheadoptionandscalingofresearchtechnologies.However,uptakewasseentobelimitedbythecapacityoftheprivatesectortoexpanditsbusinessatthelocallevel.Adoptionandscalingcouldbeenhancedbythebundlingofgoodsandservices,accessingfinance,offeringinformationonmarketsandinputsources,enhancingentrepreneurshipskills,promotingcollectiveactionandprovidingeffectivesupportserviceswithinanenvironmentthatisconducivetothedevelopmentofsmallruralenterprises.Public–privatecollaborationatthesubcountylevelwasbelievedmostlikelytobeaugmentedthroughestablishingmultistakeholderinnovationplatformsasamechanismforinformationsharing,providinglocalsupportservicesandlinkingtoupstreamvalue-chainstakeholders,amongothers.

What was the impact?

Duringthesurveyperiod,Ugandahadanestimated7.2 Mhaofarablelandundercropproduction,whichislessthan50%ofthearableland,estimatedat16.8 Mha(NationalEnvironmentManagementAuthority2007).Pessimisticforecastsindicatethattheavailablearablelandforagriculturewillrunoutinmostpartsofthecountrybyaround2022.Withsuchgrimstatistics,thecountrycannotaffordtoloseanyarableland.ItisthereforeimperativethatUgandaembracessustainablelandmanagementtoreversethistrendoflanddegradation.

TechnologyexposureandskillsdevelopmentthroughtheUgandaSIMLESAprogramledtoenterprise,household,communityandvalue-chainleveladjustments.Theseincludeshiftsinenterprisemanagementandperformance,costreduction,laboursavings,demandforrelevantagro-inputsandservices,andlivelihoodenhancementingeneral.Specifically,60%offarmersexhibitedknowledgeofCASIfarminganditsprinciples.OfthetechnologiesbeingpromotedbytheUgandaSIMLESAprogram,croprotation,useofherbicidesandpesticides,andintercroppingwerehighlyrecognisedashavingthelargestimpact.Aspectsoffoodsecurityandtheneedtoincreasefarmers’yieldsweredrivenbythesetechnologies,whiletheabilityoffarmerstousesmallpiecesoflandwithhigherreturnswasaproxyindicatorofimpact.

SIMLESA368

SECTION 3: Highlights from country initiatives

MechanisationservicesmarkedlycontributedtotheadoptionofpromotedCASItechnologiesandfacilitatedtheneedforfarminputssuchasimprovedseedsandchemicals(e.g.herbicidesandpesticides).Otherbenefitsrangingfrombiologicalresponsesintheformofyieldsandfooddiversityduetoweedsuppression,fertilityenhancementandmoistureretentionwereattained.Forinstance,maizegrainyieldsrosefromanaverageof2,000 kg/hato5,000 kg/haandpeanutfromanaverageof250 kg/hato875 kg/haperseason.Thisinturnhadapositivefinancialimpact.Forinstance,in2016thesellingpriceformaizewasUS$0.22/kgandtheincreaseingrossmarginwasnotedatUS$650/ha.Forpeanut,theincreaseingrossmarginwasnotedataroundUS$928/ha.Theincreasedaggregatemaizeproductionvolumeattractednewproducedealersinthearea.Theincreasedneedforquickshellingandincreasedstoragemadesomefarmersacquiremotorisedmaizeshellersanddoshellingasabusiness.Allthingsconsidered,itisimportanttonotethat,althoughproductivityincreasesweresignificant,theactualyieldsremainbelowthepotential.

Table19.8showsthebenefitsalongthecommodityvaluechains.Thelivelihoodbenefitstodirectandauxiliarybeneficiariesincludehigherincomes,betterhouseholdnutritionandhighercapacitytoaddresshouseholdwelfare,educationandhealthconcerns,andsocio-networks.

Table 19.8  Benefits from the Uganda SIMLESA program interventions along the commodity value chains

Pre-production Production Post-harvest Auxiliary

• reductionincostofopeningland

• expansioninsizeofenterprise

• timelyplantingafteronsetofrains

• useofimprovedcropvarieties

• productiveassets(e.g.land,oxen,ploughs)

• investmentinfarmpowersystems(e.g.oxen,ploughs,spraypumps)

• yieldenhancements

• profitability(grossmargins/acre)

• diversificationintovariedcropproduction(e.g.intercropping)

• crop–livestockintegration

• diversificationintolivestockproduction

• labour-useefficiency

• croppingsystems(intercroppingvsmonocropping)

• expansionofproducebuyers

• investmentandexpansionofprocessingcapacity(e.g.maizeshellers)

• producehandlingcapacity(e.g.cribs,collectivemarketing)

• storagepriceadvantage

• humancapitaldevelopment

• householdsubsistenceandschoolfeedingprograms

• domesticwellbeing(e.g.houseconstruction,solarpower,schoolfees)

• transportassets

• sociocapital

369SIMLESASIMLESA

CHAPTER 19

What should we do next?

ResearchAlthoughresearchhasdevelopedandevaluatedtechnologypackagesforintercropping,seedingratesandtillagemethods,thereisneedforsystematicquantification,contextualisationanddocumentationofcostsandbenefitsortrade-offsatthehouseholdlevel,inordertobetteridentifyopportunitiesandconstraintstoadoption.Value-chainstudiesthatextendbeyondthehouseholdcanalsoshedvaluableinsightintoconstraintsthatoperateatasystemiclevel,shapinghouseholdopportunitiesandrisks.

Undoubtedly,theUgandaSIMLESAprograminterventionsincreasedagriculturalproductivityamongsupportedfarmers;however,adoptionandscalingupisstilllow.Thisisattributabletoinadequateextensionservicesandsubstandardinfrastructure.Generally,thereispooraccessbysmallholderfarmerstoinformation,advisoryservicesandmodernagriculturalinputs.Tocircumventthis,theprojectintroducedtechnicalserviceunitsandagriculturalinnovationplatformsandproducedcommunicationmaterialssuchasbrochuresandaCASIimplementationguide.Movingforward,thereisaneedtogrowtheagriculturalinnovationplatformsandtechnicalserviceunitsthroughtechnicalandfinancialbackstoppingandalsoeffectivelydisseminatetheCASIfarminginformationgenerated.

Throughtheagriculturalinnovationplatforms,weexpectto:

• introduceinputcreditsystemsfrombigagro-inputcompaniestolocaldealers

• createlinkagesofpotentialagro-inputdealerstofinancialinstitutionsthatofferlong-termandfriendlyagriculturalloans

• createlinkagesandnetworkingbetweenindividualfarmers,farmergroupsandcooperatives/associationsasmajorproducersofrawmaterials

• strengthenfarmer,agro-inputdealer,traderandagro-processorlinkagestoengenderbettermarketopportunities

• introducetwo-wheeltractorsforfarmoperationsalongthecommodityvaluechain,forexamplepedestalsprayers,directseeders,small-scaleirrigation,shellingandmilling

• facilitateskillsdevelopment,especiallytargetingwomen(althoughwomenarenotthefinaldecision-makers,thetechnologiesandpracticespromotedhaveconsiderableimpactontheirwellbeing)

• promoteutilisationofinformationcommunicationtechnologies,especiallyamongtheyouth

• encourageverticaldiversificationintolivestocktoexploitthecrop–livestock–household–soil–weatherinteractions

• promotesustainablelandmanagementinterventionsatcatchmentlevel,includingsoilandwaterconservationmeasures,agroforestryandwoodlotsforclimatechangemitigation.

SIMLESA370

SECTION 3: Highlights from country initiatives

Case study: Heeding the call to transform from subsistence to commercial agriculture

Before2012,MrMugisha,amemberoftheBiyinzikaFarmerGroupinKalongosubcounty,Nakasongoladistrict,wasstrugglingtoproducemaizeona7-acrepieceofland.Heusedtoget2–3 t/habyrudimentarymeans,suchasahandhoeandusinglocallysavedseedwithoutapplicationoffertilisers.Beinganastutebusinessman,hesupplementedhismeagrefarmoutputsbypurchasingmaizegrainfromhisneighbours.Thishebulkedandsold,buthisbusinesswasstillstruggling.

MrMugishasaysthatwhentheSIMLESAprogramwasintroducedinhisvillage,itwasagodsend.HisgroupreceiveddemonstrationsonCASIfarmingpractices.TheSIMLESAteamthatranthedemonstrationsalsointroducedimprovedanddrought-tolerantseedvarieties,forexamplewater-efficientmaize(UH5053,PH5052)andNABE15beanvarieties.Theyalsoencouragedgroupmemberstousefertilisers.

MostofthepracticesundertheCASIframework(e.g.killingweedsusingherbicides,preparationofplantingbasinduringthedryseason,plantingmorethantwoseedsinthebasins,andapplicationoffertiliseronbeans)werealienand,attimes,seemedbizarre.Forsomeoneusedtoplantinginaweedandtrash-freegarden,plantinginafreshlysprayedgardenwithweedsstillstandingwasmorethancrazy.Andtowatchtheseedsgerminatingwhiletheweedsweredyingoff,andthecropgrowingluxuriouslytophysiologicalmaturity,wasnotonlypeculiarbutborderedonwizardly.

MrMugishahasabandonedhisoldwaysofgrowingmaizeandbeans,andnowexclusivelyemploysherbicidestoburndowntheweeds.Thishasnotonlyhelpedhimincreasehisacreagebuthasfreedupmoretimetobuildhisproducetradebusiness.

Seeingthetransformationinproductionandproductivity,MrMugisha,withsupportfromSIMLESA,constructeda10-tonnemaizestoragecrib.Duringthe firstseasonof2017,usingtheCASImethodsofpreparingbasinsduringthedry season,heplantedhismaizeearlyandwasamongthefirsttoharvest.GiventhatUgandawashitbyaseveredroughtin2016and millionsofacresofmaizeweredecimatedbythefallarmyworm(Spodoptera frugiperda),thedemandformaizegrainwasveryhigh.Hewasabletosellatapremiumprice.Hebulked13tonnes ofmaizegrainandsoldeachtonneatUS$389,givinghimatotalofUS$5,056. Thiswasnotasmallachievement,especiallyinacountrywherethepercapitaincomeisUS$419and28%ofthepopulationlivesbelowthepovertyline(UgandaBureauofStatistics2015).

Thisfieldwassprayedwithherbicidesimmediatelyafterplanting.Beanseedsaregerminatingwhiletheweedsaredyingoff.

Afieldoffieldbeansplantedinpermanentplantingbasinsnearingphysiologicalmaturity.

371SIMLESASIMLESA

CHAPTER 19

ReferencesAhmad,S&Rao,MR1982,‘Performanceofmaize–soybeanintercropcombinationinthetropics:resultsofa

multilocationstudy’,Field Crops Research,vol.5,pp.147–161.

Andrew,DJ&Kassam,AH1976,‘Theimportanceofmultiplecroppinginincreasingworldfoodsupplies’,inRIPapendick,PASanchez&GBTriplett(eds),Multiple cropping,AmericanSocietyofAgronomy,Madison,WI,USA,pp.1–10.

Brady,NC&Weil,RR1996,The nature and properties of soils,PrenticeHallInc.,NewJersey,USA.

Calegari,A(ed.)2001,‘Covercropmanagement’,Proceedings of the 1st World Congress on Conservation Agriculture,Madrid,Spain,1–5October2001.

Calegari,A&Alexander,I1998,‘TheeffectsoftillageandcovercropsonsomechemicalpropertiesofoxisolsandsummercropyieldsinsouthwesternParana,Brazil’,Advances in GeoEcology,vol.31,pp.1239–1246.

Coyne,MS&Thompson,JA2006,Fundamental soil science,ThomsonDelmarLearning,NewYork,USA.

Craufard,PQ2000,‘Effectofplantdensityontheyieldofsorghum-cowpeaandpearlmillet-cowpeaintercropsinnorthernNigeria’,Experimental Agriculture,vol.36,no.3,pp.379−395.

Ghaffarzadeh,M,Garcia,F&Cruse,RM1994,‘Grainyieldresponseofcorn,soybean,andoatgrowninstripintercroppingsystem’,American Journal of Alternative Agriculture,vol.9,pp.171–177.

——1997,‘Tillageeffectonsoilwatercontentandcornyieldinastripintercroppingsystem’,Agronomy Journal,vol.89,pp.893–899.

Goettsch,LH,Lenssen,AW,Yost,RS,Luvaga,ES,Semalulu,O,Tenywa,M&Mazur,RE2016,‘Improvedproductionsystemsforcommonbeanonphaeozemsoilinsouth-centralUganda’,African Journal of Agricultural Science,vol.11,no.46,pp.4797–4809.

GovernmentofUganda2007,Climate change: Uganda national adaptation programmes of action,MinistryofWaterandEnvironment,Kampala,Uganda.

GovernmentofUganda2004,Increasing incomes through exports: a plan for zonal agricultural production, agro-processing and marketing for Uganda,MinistryofAgriculture,AnimalIndustryandFisheries,Entebbe,Uganda.

GovernmentofUganda1960,Uganda soil memoirs,NARO,Entebbe,Uganda.

Grimes,A,Quasem,AM,Uddin,MS,Jahiruddin,N&Mallik,RN1983,Performance of different cropping patterns in 1992–93 at the cropping system research site,Hathazari,Chittagong,RARS.

Hauggaard-Nieson,H,Ambus,P&Jensen,ES2001,‘Temporalandspatialdistributionofrootsandcompetitionfornitrogeninpea-barleyintercrops:afieldstudyemploying23Ptechniques’,Plant Soil, vol.236,pp.63–74.

Johnson,RR1980,‘Thecomponentsofhighyields:culturalpractices’,Crops Soils,vol.32,no.5,pp.10–13.

Kalra,GS&Gangwar,B1980,‘EconomicsofintercroppingofdifferentlegumeswithmaizeatdifferentlevelsofNunderrainfedconditions’,Indian Journal Agronomy,vol.25,pp.181–185.

Komutunga,ET&Musiitwa,F2001,‘Climate’,inJKMukiibi(ed.),Agriculture in Uganda,Volume1,GeneralInformation,FountainPublishers,Kampala,pp.21–32.

Li,L,Sun,JH,Zhang,FS,Li,XL,Yang,SC&Rengel,Z2006,‘Wheat/maizeorwheat/soybeanstripintercroppingI:yieldadvantageandinterspecificinteractionsonnutrients’,Field Crop Research,vol.71,pp.123−137.

Lithourgidis,AS,Vasilakoglou,IB,Dhima,KV,Dordas,CA&Yiakoulaki,MD2006,‘Forageyieldandqualityofcommonvetchmixtureswithoatandtriticaleintwoseedingratios’,Field Crop Research,vol.99,pp.106−113.

MAAIF(MinistryofAgriculture,AnimalIndustryandFisheries)2010,Agriculture for food and income security: Agricultural Sector Development Strategy and Investment Plan (DSIP), 2010/11–2014/15,MAAIF,Entebbe,Uganda.

Magunda,MK&Mubiru,DN2016,Biophysical and socio-economic assessments in Nakasongola District for improved sustainable land management,UnitedNationsDevelopmentProgram,Kampala,Uganda.

Marshal,B&Willy,RW1983,‘Radiationinterceptionandgrowthinanintercropofpearlmillet/groundnut’,Field Crops Research,vol.7,pp.141−160.

Mubiru,DN,Agona,A&Komutunga,E2009,‘Micro-levelanalysisofseasonaltrends,farmers’perceptionofclimatechangeandadaptationstrategiesineasternUganda’,International Conference on Seasonality,InstituteofDevelopmentStudies,UniversityofSussex,Brighton,UK,8–10July2009,availablefrom:http://www.event.future-agricultures.org.

SIMLESA372

SECTION 3: Highlights from country initiatives

Mubiru,DN,Komutunga,E,Agona,A,Apok,A&Ngara,T2012,‘Characterisingagrometeorologicalclimaterisksanduncertainties:cropproductioninUganda’,South African Journal of Science,vol.108,no.3–4, pp.108–118,doi:10.4102/sajs.v108i3/4.470.

Mubiru,DN,Namakula,J,Lwasa,J,Otim,GA,Kashagama,J,Nakafeero,M,Nanyeenya,W&Coyne,MS2017,‘Conservationfarmingandchangingclimate:morebeneficialthanconventionalmethodsfordegradedUgandansoils’,Sustainability,vol.9,p.1084,doi: 10.3390/su9071084.

Mupangwa,W,Twomlow,S&Walker,S2007,‘ConservationtillageforsoilwatermanagementinthesemiaridsouthernZimbabwe’,8th WaterNet/WARFSA GWP-SA symposium: IWRM from concept to practice,Lusaka,Zambia,31Octoberto2November2007,viewed10December2014,http://www.cgspace.cgiar.org/bitstream/handle.

Namugwanya,M,Tenywa,JS,Etabbong,E,Mubiru,DN&Basamba,TA2014,‘Developmentofcommonbean(Phaseolus vulgarisL.)productionunderlowsoilphosphorusanddroughtinsubSaharanAfrica:areview’,Journal of Sustainable Development,vol.7,no.5,pp.128–139.

Nanyeenya,NW,Mubiru,DN,Mutyaba,C&Otim,G2013,Maize-legume constraint diagnosis and situation analysis report–Nakasongola and Lira districts,NationalAgriculturalResearchLaboratories—Kawanda,Kampala,Uganda.

NationalAgriculturalResearchOrganization2000,Annual report,Entebbe,Uganda.

NationalEnvironmentManagementAuthority2007,State of the environment report for Uganda 2006/2007,NEMA,Kampala,Uganda.

Odeny,DA2007,‘Thepotentialofpigeonpea(Cajanus cajan(L.)Millsp.)inAfrica’,Natural Resources Forum, vol.31,pp.297–305.

Okoboi,G,Muwanga,J&Mwebaze,T2012,‘UseofimprovedinputsanditseffectsonmaizeyieldandprofitinUganda’,African Journal of Food, Agricultural Nutrition & Development,vol.12,no.7,pp.6932–6944.

Omoding,JOY&Odogola,WR(eds)2005,‘Developmentofanimaltraction,conservationagricultureandruraltransportinthecontextofmodernizingagricultureinUganda:strategyandpolicy’,Proceedingsofaninternationalworkshoponmodernizingagriculture:visionsandtechnologiesforanimaltractionandconservationagriculture,Jinja,Uganda,19–15May2002,FAO,Rome,Italy,vol.2,pp.1–8.

Otunge,D,Muchiri,N,Wachoro,G,Anguzu,R&Wamboga-Mugirya,P2010,Enhancing maize productivity in Uganda through the WEMA Project: a policy brief 2010,NationalAgriculturalResearchOrganisationofUganda/AfricanAgriculturalTechnologyFoundation,Entebbe,Uganda.

Pachico,D1993,‘Thedemandforbeantechnology’,inGHenry(ed.),Trends in CIAT commodities,CIATworkingdocumentno.128,InternationalCentreforTropicalAgriculture,Cali,Colombia,pp.60–70.

Parvan,A2011,‘Agriculturaltechnologyadoption:issuesforconsiderationwhenscaling-up’,The Cornell Policy Review,vol.1,no.1,http://www.cornellpolicyreview.com.

Quayyum,MA,Ahmed,A&Chowdhury,AK1999,‘Cropweedcompetitioninmaize+blackgraminsoleandintercroppingsystem’,Bangladesh Journal of Agricultural Research,vol.24,no.2,pp.249–254.

RegionalAgriculturalExpansionSupport2003,Maize market assessment and baseline study for Uganda,RegionalAgriculturalExpansionSupportProgram,Nairobi,Kenya.

Salami,A,Kamara,AB&Brixiova,S2010,Smallholder agriculture in East Africa: trends, constraints, and opportunities,WorkingPaperSeriesNo.105,AfricanDevelopmentBank,Tunis,Tunisia.

Savonen,C2003,How long do garden seeds last?,OregonStateUniversityExtensionServices,viewedonline 19September2017.

Sebuwufu,G,Mazur,R,Westgate,M&Ugen,M2012,‘ImprovingtheyieldandqualityofcommonbeansinUganda’,viewed11January2017,www.soc.iastate.edu/staff/.../CRSP.

Semaana,HR2010,Crop production handbook for good quality cereals, pulses and tuber crops,MinistryofAgriculture,AnimalIndustryandFisheries/SasakawaAfricaAssociation,Entebbe,Uganda.

Seran,TH&Brintha,I2009,‘Studyondeterminingasuitablepatternofcapsicum(Capsicum annumL.)—vegetablecowpeas(Vigna unguiculataL.)intercropping’,Kamataka Journal of Agricultural Science,vol.22,pp.1153–1154.

Sibiko,KW,Ayuya,OI,Gido,O&Mwangi,JK2013,‘Ananalysisofeconomicefficiencyinbeanproduction:evidencefromeasternUganda’,Journal of Economics and Sustainable Development,vol.4,no.13, www.iiste.org.

SIMLESA2014,2010–2014 Report,CIMMYT,Harare,Zimbabwe.

373SIMLESASIMLESA

CHAPTER 19

Soniia,D&Sperling,L1999,‘Improvingtechnologydeliverymechanisms:lessonsfrombeanseedsystemsresearchineasternandcentralAfrica’,Agriculture and Human Values,vol.16,pp.381–388.

UgandaBureauofStatistics2015,Statistical abstracts,Kampala,Uganda.

Upadhyaya,HD,Reddy,LJ,Gowda,CLL,Reddy,KN&Singh,S2006,‘Developmentofaminicoresubsetforenhancedanddiversifiedutilizationofpigeonpeasgermplasmresources’,Crop Science Journal,vol.46,pp.2127–2132.

Valenzuela,HR&Smith,J2002,CTAHR sustainable agriculture green manure crop series: pigeon pea,UniversityofHawaiiCooperativeExtensionService,SA-GM-8.

WorldBank2008,Uganda sustainable land management public expenditure review,reportno.45781-UG,AFTARSustainableDevelopmentDepartment,Countrydepartment1,Uganda,Africaregion.

Wortmann,CS&Eledu,CA1999,Uganda’s agroecological zones: a guide for planners and policy makers,InternationalCentreforTropicalAgriculture,Cali,Colombia.

Wreford,A,Ignaciuk,A&Gruere,G2017,Overcoming barriers to adoption of climate-friendly practices in agriculture,ISSN:1815–6797(online),http://dx.doi.org/10.1787/18156797.

374

20 CASI: a vital component of integrated soil fertility management in RwandaPascal Nsengimana Rushemuka, Emile Pacifique Rushemuka, Teilhard Ndayiramya, Zahara Mukakalisa & Michel Kabiligi

Key points

• Conservationagriculturepluscropintensificationleadstoagricultureproductivityforthecurrentgenerationandsoilhealthforfuturegenerations.

• Theyielddifferencebetweentillageagricultureandconservation agriculture-basedsustainableintensification(CASI)wasinsignificantintheinitialcroppingseasons.

• YieldlevelsshowedvaryingresponsestoproductioninputsfortillageagricultureandCASIacrossagroecologicalzones.

• TheenvironmentalbenefitsofCASIcanbeachievedwithoutyieldpenalties.

• IntegratingagroforestryintheCASIpackagetocontrolerosionandboostavailabilityofbiomassformulchandanimalfeediskeyforadoptionofCASIpractices.

• Thelarge-scaleadoptionofCASIrequiresmuchon-farmdemonstration efforttocreateapositiveperceptionamongpolicymakers,scientists,techniciansandfarmers.

375SIMLESASIMLESA

CHAPTER 20

Introduction

InthehighlandsofRwanda,agriculturalproductionisunderminedbysoilwatererosion,mainlyinthenorthandwest.Intheeast,itisconstrainedbyhighriskofcropfailureduetoscarcerainfall.Erosionanddryspellsareaggravatedbytillageagricultureonsteepslopesandtheloworganicmattercontentofsoils.

Toproducesustainably,Rwanda’ssoilsneedanincreasedorganiccarbonstock.ManyofRwanda’ssoilsalsoneedefficientuseoffertilisersandatleast50%needtheapplicationoflime.Sofar,erosioncontrolandorganicmattersupplyremaintheprincipalconstraintsonproductioninRwanda(MinistryofFinanceandEconomicPlanning2017).Erosioncontrolmeasures,suchasbenchterraces,arequiteexpensive(800–1,200labourdays/ha)anddonotresolvetheneedfororganicmatter(Roose&Ndayizigiye1997).

Conservationagriculture-basedsustainableintensification(CASI)practicesemployminimumtillage,mulching,croprotationandfertiliseruse(Vanlauweetal.2014).Thesepracticeshaveadvantagesforcost-effectiveerosioncontrol,soilorganiccarbonstock(Rodriguezetal.2017)andimprovementofsoilhealthandpestanddiseasecontrol(Midegaetal.2018).InRwanda,beforeSIMLESA,nostudywasundertakentotestthetechnicalfeasibilityandadoptionofCASIpracticesbyfarmers.ThispublicationpresentsSIMLESA’sachievementsinestablishingthevalueofCASItechnologiesinRwanda.

Thestudyaddressesthefollowingspecificobjectives:

• todemonstratetheeffectofCASIpracticescomparedtotillageagricultureonmaizeandbeanyieldsinrotation

• tocomparetheeffectsofdifferentsoilfertilityinputtreatmentsonmaizeand beanyields

• toidentifyCASIadoptiondriversinthreeagroecologicalzones.

MethodologyProject sitesInRwanda,SIMLESAactivitieswereimplementedinthreesiteslocatedinthreeagroecologicalzones.ThecharacteristicsoftheseagroecologicalzonesaresummarisedinTable20.1.

Table 20.1 Characteristics of SIMLESA intervention sites

Site Agroecological zone

District Altitude (m)

Rainfall (mm/year)

Site topography

Soil fertility

Gashora semi-aridlandsofBugesera

Bugesera 1,000–1,400 900 flat verygood

Runda CentralPlateau Kamonyi 1,400–1,800 1,200 hilly good

Cyuve volcaniclandsofBirunga

Musanze >2,000 >2,000 flat excellent

SIMLESA376

SECTION 3: Highlights from country initiatives

Experiment treatmentsAsplit-plotexperimentaldesignwasusedinfieldexperiments.ItconsistedofcomparingCASIandtillageagricultureblocksside-by-side(Table20.2)andrandomisedtreatmentsintheblocks.ThemainfactorswereCASIandtillageagriculturefarmingpractices.Eachfarmingpracticewassubdividedintothreetreatments:

• T1:manure

• T2:manureplusfertiliser

• T3:manureplusfertiliserplusbiofertiliser.

Thetrialplotwas5 m×5 m=25 m2.Atblocklevel,treatmentswererandomisedbutthesametreatmentwasalwaysside-by-side(split-plot)toeaseovertimegrowthcomparisonbytechniciansandfarmersthemselves.

Table 20.2  Split-plot experimental design

Tillage agriculture block CASI block

T2 T2

T1 T1

T3 T3

Note:CASI=conservationagriculture-basedsustainableintensification

Results and discussionFigure20.1presentsmaizeyields(cobs)underCASIandtillageagriculturefortwoconsecutivegrowingseasons(2017Aand2017B)atRunda.Inseason2017A,tillageagriculturewasstatisticallyhigherthanCASIacrossalltreatments.However,therewasnoobservabledifferencebetweenCASIandtillageagricultureinthefollowingseason.

ThesuperiorityoftillageagricultureoverCASIinthefirstseasoncouldbearesultofinefficientimplementationofCASItechnologiesorthefactthatthesoilwasstillpoorinsoilorganicmatterandnitrogen.

Duringthesecondgrowingseason,thedifferencebetweentillageagricultureandCASIwasreduced.MoreappropriateapplicationofthetechniquesbyfarmersandsubsequentimprovementofsoilpropertiesunderCASIcouldexplainthereducedperformancemarginforthepreviousseason.Duringthesecondseason,thedifferencebetweentreatmentswerenotsignificantwheremanurehadthesameeffectirrespectiveoftheadditionalamendments(manurecombinedwithfertilisersandmanurecombinedwithfertilisersandbiofertilisers).AnapparentsignificantdifferenceisalsoobservedinT3of2017BwhereyieldsundertillageagricultureweresignificantlyhigherthanthoseunderCASI.However,inalltreatmentsT3outperformedT2,andT2outperformedT1.

377SIMLESASIMLESA

CHAPTER 20

Figure 20.1 Maize yield (cobs) in Kamonyi, Runda, 2017A and 2017B

Notes:T1=manure;T2=manureandfertilisers;T3=manureandfertilisersandbiofertilisers;CASI=conservation agriculture-basedsustainableintensification.

Figure20.2presentsbeanyieldsunderCASIandtillageagriculturefortwoconsecutivegrowingseasons(2017Aand201B)atRunda.Ingeneral,therewasnosignificantdifferencebetweenCASIandtillageagriculture.Asignificantdifferencewasobservedbetweenseasonsandtreatments.ThebenefitofCASIovertillageagriculturebecameapparentinthesecondgrowingseason.ThiswasduetotheresidualeffectofthemulchingofthelastseasonandbecausethefarmerwasmorefamiliarwiththeCASItechniques(e.g.mulchingandtimelyweedcontrol)andapplieditwithmorerigour thaninthefirstgrowingseason.

0

0.5

1.5

1.0

2.0

2.5

3.0

Bean

yie

ld (t

/ha)

T1 T2 T3 T1 T3T2

2017A 2017B

CASI Tillage agriculture

0

2

6

4

8

10

16

Mai

ze y

ield

(t/h

a) 12

14

T1 T2 T3 T1 T3T2

2017A 2017B

CASI Tillage agriculture

Figure 20.2  Bean yield in Kamonyi, Runda, 2017A and 2017B

Notes:T1=manure;T2=manureandfertilisers;T3=manureandfertilisersandbiofertilisers;CASI=conservation agriculture-basedsustainableintensification.

SIMLESA378

SECTION 3: Highlights from country initiatives

Figure20.3presentsmaizeyieldsunderCASIandtillageagricultureforonegrowingseason(2017B)inBugesera.ThefigureshowsthattherewasnosignificantdifferencebetweenCASIandtillageagriculture.AsignificantdifferencewasobservedbetweenT1andtherestoftreatments(T2andT3).ThissupportedtheideaofincludingfertiliseruseasafourthprincipleofCASI(Vanlauweetal.2014).ThesignificantimprovementofyieldswithfertiliserapplicationwasexplainedbythedepletedsoilsintheBugeserasite,whichrequiredamendmentsformaizeproduction.However,theeffectofbiofertiliserwasnotstaticallysignificant.Bugeseraproductionin2017AwasatotalfailureinbothCASIandtillageagricultureduetodrought.

Figure 20.3  Maize yield (cobs) in Bugesera, Gashora, 2017B

Notes:T1=manure;T2=manureandfertilisers;T3=manureandfertilisersandbiofertilisers;CASI=conservation agriculture-basedsustainableintensification.

Figure20.4presentsbeanyieldsunderCASIandtillageagriculturefortwogrowingseasons(2016Band2017B)inBugesera.ThefigureshowsthattherewasnosignificantdifferencebetweenCASIandtillageagriculture,orbetweentreatments.Beanproductionmighthavebeenlesssensitivetoinputsthanmaizebecausethecropwaslessnutrient-demanding(Roose&Ndayizigiye1997)andthesoilsofBugeseraweremorefertilecomparedtosoilsofRunda(Birasaetal.1990).

0

2

6

4

8

10

Mai

ze y

ield

(t/h

a)

12

14

T1 T2 T3

CASI Tillage agriculture

379SIMLESASIMLESA

CHAPTER 20

Figure 20.4  Bean yield in Bugesera, Gashora, 2016B and 2017B

Notes:T1=manure;T2=manureandfertilisers;T3=manureandfertilisersandbiofertilisers;CASI=conservation agriculture-basedsustainableintensification.

Figure20.5presentsmaizeyieldsunderCASIandtillageagricultureatCyuveforonegrowingseason(2017B).CASIwithmanurewasthebestoptioninCyuve.TherewasnosignificantdifferencebetweenCASIandtillageagriculture,orbetweentreatments.Therichvolcanicsoilsmayhaveprovidedadequatenutrientstosupportmaizeproduction.

0

2

6

4

8

10

Mai

ze y

ield

(t/h

a) 12

18

14

16

T1 T2 T3

CASI Tillage agriculture

0

0.5

1.5

1.0

2.0

2.5

3.5

Bean

yie

ld (t

/ha)

3.0

T1 T2 T3 T1 T3T2

2016B 2017B

CASI Tillage agriculture

Figure 20.5  Maize yield (cobs) in Musanze, Cyuve, 2017B

Notes:T1=manure;T2=manureandfertilisers;T3=manureandfertilisersandbiofertilisers;CASI=conservation agriculture-basedsustainableintensification.

SIMLESA380

SECTION 3: Highlights from country initiatives

Figure20.6presentsmaizeyieldsunderCASIandtillageagriculturefortwogrowingseasons(2016Band2017B)atCyuve.In2016B,therewasasignificantdifferencebetweenCASIandtillageagriculture.MaizeyieldswerehigherundertillageagriculturecomparedtoCASI.OnepossibleexplanationisthatfarmerswerenotyetusedtoCASItechniques(mainlymulchingandweeding).Therewasnosignificantdifferencebetweentreatments.Thisisnormal,asthesoiloftheregionwasrichenoughtoprovideadequatenutrients tothecrop.ThisisconsistentwithRushemukaetal.(2014),whofoundthatfertilesoils inRwanda(pH >6.0)canproducegoodyieldwithmanureandwithoutanyfertiliser. Thebestoptionforthisseasonwastillageagriculturewithmanureonly.

Interestingly,theoutcomeswerereversedin2017B,whenthebestoptionwasCASIwithmanureonly.YieldswereconsistentlyhigherunderCASIcomparedtotillageagricultureacrossalltreatments,andthedifferencewassignificantinthemanuretreatment.ThisisconsistentwithpreviousstudiesthatfoundthatCASIbenefitsimproveovertimeassoilpropertiesimprove(Rodriguezetal.2017).Intillageagriculture,ontheotherhand,yieldsdeclinedovertimeasthesoilwasexposedtoadegradingtillage.However,fieldtrialsshowthatthebenefitsofmanurecouldbeminorwhenCASIispractisedandsoilorganiccarboncontentisgoodtosecureoptimumcropproduction.ThisisconsistentwithRushemuka,Bock&Mowo(2014),whoindicatedthatinRwanda2%ofsoilorganiccarbonisenoughforoptimumcropproduction,whenotherfactorsareprovided.

Figure 20.6 Bean yield in Musanze, Cyuve, 2016B and 2017B

Notes:T1=manure;T2=manureandfertilisers;T3=manureandfertilisersandbiofertilisers;CASI=conservation agriculture-basedsustainableintensification.

0

0.5

1.5

1.0

2.0

2.5

3.0

Bean

yie

ld (t

/ha)

3.5

4.0

T1 T2 T3 T1 T3T2

2016B 2017B

CASI Tillage agriculture

381SIMLESASIMLESA

CHAPTER 20

What was the impact?

Identified and addressed knowledge gapsThepracticeofCASItechniquesinRwandawasonlyintroducedatresearchstations(Kabirigietal.2017).TheSIMLESAon-farmexperimentsreportedinthispublicationareamongthefewknownexamplesofengagementwithsmallholderproducers.Evidencefromthisshort-termstudyshowthatCASIandtillageagriculturetendtoperformsimilarly.ThefactthatCASIrequireslesslabour,atleastinthelongrun,suggeststhatCASIcouldbemoreadvantageousforfarmers.Underfertilesoilconditions,yieldswerehigherundertillageagriculturecomparedtoCASIinthefirstseason;however,thesituationreversedthesecondseason.ThissuggeststhatthebenefitsofCASIoccurfasterinfertilesoilsthanininfertilesoils:CyuvewasmorefertilethanBugeseraandBugeserawasmorefertilethanRunda(Birasaetal.1990).

ThebenefitsofCASIalsodependonthemanagementofthefieldbythefarmer.Themoreengagedandinformedthefarmer,thebettertheresults.Ingeneral,withouttheuseofherbicides,thebenefitsofCASIbecameapparentinthethirdgrowingseason.Atthisstage,thefarmerswereproficientinCASItechniques,theeffectofmulchonsoilpropertieswassignificant,weedcontrolwasmanageableandthebenefitsoftillagecompletelydisappeared(Figure20.7).Beanswereplantedin2017B,aftermaizeharvestin2017A.Thisfieldwaspreparedtoreceiveseedswithouttillage,butwaterandadditionalmulchwereneeded.

Figure 20.7 A field under CASI after bean harvest at Cyuve

SIMLESA382

SECTION 3: Highlights from country initiatives

TheseencouragingresultscansupportscalinguptheadoptionofCASIproductionsystems.However,additionaleffortsarerequiredtopromoteadoption.OutreachandextensioncanhelpinformfarmersonCASIprinciples.FarmershadmanyquestionsandconcernswhentheywerefirstintroducedtoCASI,including:

• Isitpossibletogrowcropswithoutcultivation?

• Howarewegoingtomanagetheweeds?

• Wherearewegoingtofindmulch?

Itwasnotonlyfarmerswhowereanxious,butalsoextensionagents,policymakersandscientists.Ingeneral,therewaswidespreadscepticismaroundCASIintheabsenceofempiricalsupport,trainingandimplementation/demonstrations.

ThetwofirstprinciplesofCASIweremostchallenging:no-tillage/minimumsoildisturbanceandpermanentsoilcover.Theuncertaintyoverminimumsoildisturbancewasfundamentalindegradedlands,wherefarmershistoricallypractiseddeeptillage(30–50 cmdeep)touprootalltherootsofDigitaria abyssinica(Hochst.exA.Rich)Stapf(Urwiriinthelocallanguage),awidespreadweedinthemanydegradedsoilsofRwanda.InRwanda,mostweedingiseitherbyhoeorhand,soweedmanagementrequirescarefulconsiderationoflabouravailability,especiallyasthescaleofproductionincreases.

ThequestionaboutmulchingalsoneedstobeconsideredinthecontextofthesocioeconomicconditionsofRwanda.Insmalllandholdings,evencropresiduesareutilisedforothercompetitiveuseslikefodderandfuel.TheproblemofusingmulchforothercompetitivepurposesiscommoninthehighlypopulatedregionsofAfrica(Rodriguezetal.2017).

Community networks that support adoption of CASISIMLESARwandawasabletocreatethreecommunitynetworksfromwhichlarge-scaleextensioncanstart.ThenetworksweremadebyfarmerswhocollaboratedwithSIMLESAduringfieldstrialsandconvertedtheirlandsforlarge-scalepracticesofCASI.TheywereenthusiasticandactivelyencouragedtheirneighbourstoalsoadoptCASI.Neighbourinvolvementwasfacilitatedbyexposure,astheywereabletowatchCASIpracticesalongthegrowingseasonsinthefieldsoftheirneighbours.Theyweresurprisedtoseevigorouscropsunderconservationagriculture(Figures20.8and20.9)andconcludedthattheywereexpendingunnecessaryenergybypractisingtillageagriculture.

ItisinthisframeworkthatSIMLESAgeneratedinterestinCASIanddemandforCASIinputsinRunda,BugeseraandCyuve.Also,becauseSIMLESAtechnicianshaveexperiencedthebenefitsofconservationagriculture,theyagreedtoexperimentwithitsadoptioninGatsibo(easternRwanda),Huye,Nyanza,NyaruguruandNyamagabedistricts(southernRwanda).

383SIMLESASIMLESA

CHAPTER 20

Figure 20.8  A field of climbing beans grown under CASI (left) and tillage agriculture (right) plots, Cyuve, 2017B

Figure 20.9 A field of bush bean grown under CASI after a season of maize, Runda, 2017A

SIMLESA384

SECTION 3: Highlights from country initiatives

What should we do next?

Forthelarge-scalepromotionofCASIinRwanda,thenextprioritiescanbe:

1. mainstreamCASIinthelongandmidtermstrategicplanningdocumentsunderVision2050

2. developanddisseminateausermanualforCASI,adaptedforRwanda

3. developandimplementacapacity-buildingprogram

4. promoteCASI,withintegrationofagroforestryasaprinciplecomponent

5. promoteappropriateuseofotherinputs

6. etablisharesearchprogramorintegratedresearchthatseekstounderstandandprovidequantitativedataontheeffectofCASIonsoilnutrientdynamics,pestmanagementandcropyields.

Mainstreaming CASI in Vision 2050InRwanda,theagriculturedevelopmentofthenext30years,afterthe20yearsoftheMillenniumDevelopmentGoals,willbegovernedbyVision2050.ForanyprogramtostandachanceofbenefitingfromthepoliticalandfinancialsupportofthegovernmentofRwanda,itwillneedtobeincorporatedasanimportantprogramintothisstrategicdocument.Vision2050willbealignedtotheglobalpolicyframeworkoftheSustainableDevelopmentGoals.

Development of a detailed user manual for CASI, adapted for RwandaAswithanychange,themovefromtillageagriculturetoCASIcannottobetakenforgranted.Itneedstheoriesandpractice.Thismeansthatitneedstobesupportedbyatheoryofchange(Thorntonetal.2017).ThiswouldimplythatanysuccessfulintroductionofCASIshouldbecircumscribedinatheoryofintegratedsoilfertilitymanagementandbeaccompaniedbyadetaileduserguidemanualaboutCASIprinciplesandpractices,adaptedtoRwandanagroecologicalzones,soilsandsocioeconomiccontext.AnexampleisFarming for the future: a guide to conservation agriculture in Zimbabwe(edsHarford,LeBretonandOldrieve2009).

Development of an important and intensive capacity-building programFormanydecadesandduringmanygenerations,Rwanda’sscholarsandfarmershavebeenexposedtotillageagriculturediscourseandtillagepractice.Theyhavelearnedthisatschoolthroughmainstreamedcurriculum,inpractice,throughthemediaandinprofessionalcourses.Theentrenchednatureofthesepracticescanposechallengestotheadoptionofnewtechnologies.Thereisaneedtochangethismindsetatpolicy,academic,professionalandfarmerlevels.Atthepolicylevel,theprioritycanbetorunawareness-raisingconferencesadvocatingfortheCASImodel.Attheacademiclevel,theprioritycanbetomainstreamCASIintoacademiccurriculums.Attheprofessionallevel,thereisaneedforprofessionaltraining.Atthefarmerlevel,thereisaneedforfielddemonstrations.

385SIMLESASIMLESA

CHAPTER 20

Promotion of CASI through its integration with agroforestryThemainjustificationforcultivation/tillagepracticesisthecontrolandmanagementofweeds.OneentrypointforCASIadoptionisasaninnovativesolutionforweedcontrol.Theuseofherbicidesappearstobeasolution,atleastatthebeginning,tofulfiltheprincipleofminimumsoildisturbance.Itisexpectedthat,withtimeandimprovementofsoilproperties,fieldswillmovefromthehardweeds,characteristicofdegradedlands,tosofterandfewerweeds,characteristicoffertilesoilsandeasilyuprootedbyhand.Inthelongrun,thetrendwillbeforlessornouseofpesticidesandlessneedoftillagemechanisation.

Anotherentrypointistheavailabilityofacost-effectiveandpermanentsourceofmulchforpermanentsoilcover.Theuseofcropresiduesasmulchingmaterialsinconservationagriculture-basedfarmsfacesstrongcompetition,astheyarealsousedasfodderbycattlekeepers(Rodriguezetal.2017).Inthiscontext,theintegrationofCASIwithagroforestryappearstobeapriority(Figure20.10).Thesynergismbetweenagroforestry(e.g.apermanentsourceofmulch)andCASI(e.g.mulchandminimumsoildisturbance)isexpectedtocontinuallyenrichthesoilorganicmatterandimprovephysical,chemicalandbiologicalsoilproperties.Theimprovementofsoilpropertiescontributesefficientlytoenvironmentallyfriendlysoilerosioncontrolandreducestheneedfortillage.Theenrichmentofsoilsinorganicmatterincreasesthewateruseefficiencybycropsand,inthelongrun,increasessoilresiliencetodrought.Thisreducestheeffectofdroughtoncropsduringdryspells(Rockström2003).Soilorganicmatteralsoincreasesthesoilcationexchangecapacityandsuppliesadditionalnutrients,improvingcropnutrientuseefficiencyand,inthelongrun,reducingtheneedformineralfertilisers(Gill&Meelu1982).Byimprovingbiologicalsoilproperties,agroforestryandCASIempowercrophealth,reducingtheneedforpesticides.Forinstance,itwasrecentlyshownthatecologicalpracticessuchasintercroppingandCASIsignificantlyreducedthepopulationofthefallarmyworm(Spodoptera frugiperda(J.E.Smith))(Midegaetal.2018).

Figure 20.10 Agroforestry is potentially a permanent source of mulch for CASI systems

SIMLESA386

SECTION 3: Highlights from country initiatives

Correct use of other inputs (varieties, fertilisers, lime and pesticide)Inadditiontotheconditionsdescribedabove,fertilisersandhigh-yieldingcropvarietiesmayconstituteimportantinputsforsustainableandproductiveagrosystems.However,theyneedtobeintroducedwithaclearunderstandingofthespecificbiophysicalenvironmentandsocioeconomiccontext(Rushemukaetal.2014).InthecontextofRwanda,themajorityofpotentialadopterswillalsopractiseagroforestryonnutrient-poorandacidicsoilsthatbenefitfromlimeandmanureamendments(Rushemuka&Bock2016).Whilethecountryhassufficientminesforlimestone,thelarge-scaleutilisationoflimeislimitedbythefactthattheminesarelocatedalongwayfromwherethelimeisneeded.Moreinvestmentintransportationisneeded.ItisexpectedthattheneedtosupplymanurewillbeovercomewiththeCASIsystem.

Ongoing research programsThemajorityofexistingagronomicresearchresultsthathavebeenwidelydisseminatedwereobtainedundertillageagriculturepractices.Conservationagriculture-relatedexperimentalresultsareinsufficient.Forinstance,theUnitedNations’FoodandAgricultureOrganizationrecognisesthatthereisalackofinformationontheimpactoftheintroductionofCASIonnutrientandwateruseefficiency,soilorganicmatterdynamics,controlofweedsandcropdiseaseandtheinteractionsbetweenthem.ResearchisneededtodevelopoptimalCASImanagementpracticesthatareadaptedtolocalneedsandconditions.Isotopictechniques(Nitrogen-15andCarbon-13)andothersoilsensorscanbeeffectivelyusedtotrackcarbon,waterandnutrientmovementandtheirdynamicsunderCASIindiverseagroecosystems.Likewise,CASIinRwandahasproducedmanybenefitsindifferentfieldsofsciencethatcouldconstituteinterestingfieldsofresearch.

Inflatareasofvolcanicregions,thereisnormallyaproblemofwaterlodging,whichnegativelyaffectscropgrowth.Usually,farmersmanagethisproblembyconstructingsoilridges.CASIhashadpositiveeffectsonsoildrainage/infiltration(Figure20.11).Theseeffectsonerosioncontrolandwateruseefficiencyneedtobequantifiedanddocumented.

Figure 20.11  Tillage agriculture and water lodging affected crop health (left); soil ridges for drainage (middle); CASI had a positive effect on soil drainage, water infiltration and plant vigour (right)

387SIMLESASIMLESA

CHAPTER 20

DuringSIMLESAfieldtrials,chickenswereobservedinCASIplots(Figure20.12)butwerenotobservedintillageagricultureplots.ThisisnottosuggestthatchickensshouldbeintegratedintoCASIsystems,butitisindicativethatCASIinducespositivedevelopmentofsoilinsects,earthwormsandmicro-organisms(bacteria,fungi,protozoa).Thissoilbiotaanditseffectsonvigourofcropsshouldalsobedocumented.

Figure 20.12 Chickens in maize plots are indicators of a good soil microbial activity under a soil conservation system at Runda (left) and Cyuve (right)

UnderCASI,crops(especiallymaize)showedexcellentvigourattheearlierstagebut, astheygrew,theyshowedsymptomsofnitrogenandphosphorus(Figure20.13)deficiencythatdidnotappearinsimilarplotsundertillageagriculture.ThissuggeststheneedforacarefulstudytounderstandthedynamicsofsoilnutrientsunderCASI.

Figure 20.13  Maize growth under CASI at Runda: very good maize growth at the beginning (left); nitrogen deficiency appearance at flowering (middle); phosphorus deficiency symptoms at maturity (right)

SIMLESA388

SECTION 3: Highlights from country initiatives

Anotherimportantobservationofsustainabilityisthefactthatwhilemaizecropsintillageagriculturewereseverelyattackedbyfallarmyworm,theincidencewasminimalunderCASIplotsinthesamefields(Figure20.14).ThepositiveeffectsofCASIwereprobablyduetothepush–pulleffectofmulchanditsinteractionwithsoilmicro-organisms(Midegaetal.2018).ThisimpliesthatthereisroomfortestingCASIasanintegratedpestmanagementpractice.

Figure 20.14 Fall armyworms severely damaged maize under conventional agriculture (left); less damage from fall armyworm to maize under CASI (right)

389SIMLESASIMLESA

CHAPTER 20

ReferencesBirasa,EC,Bizimana,I,Boucaert,W,Deflandre,A,Chapelle,J,Gallez,A,Maesschalck,G&Vercruysse,J1990,

Carte Pedologique du Rwanda,MinistryofAgricultureandAnimalResources,Kigali,Rwanda.

Gill,HS&Meelu,OP1982,‘Studiesonthesubstitutionofinorganicfertilizerswithorganicmanureandtheireffectonsoilfertilityinrice—wheatrotation’,Fertilizer Research,vol.3,pp.303–314.

Harford,N,LeBreton,J&Oldrieve,B(eds)2009,Farming for the future—a guide to conservation agriculture in Zimbabwe,ZimbabweConservationAgricultureTaskForce.

Kabirigi,M,Ngetich,FK,Mwetu,KK,Rushemuka,P,Wasige,EJ,Ruganzu,VM&Nabahungu,NL2017,‘Implicationsoftillagepractices,managementofsoilsurfaceandfertilizerapplicationonsustainabledrylandagriculture:acasestudyofeasternRwanda’,African Journal of Agricultural Research,vol.12, no.31,pp.2524–2532.

MinistryofFinanceandEconomicPlanning2017,Vision 2050,MinistryofFinanceandEconomicPlanning,Kigali.

Rockström,J2003,‘Resiliencebuildingandwaterdemandmanagementfordroughtmitigation’,Physics and Chemistry of the Earth, Parts A/B/C,vol.28,no.20,pp.869–877.

Rodriguez,D,deVoil,P,Rufino,MC,Odendo,M&vanWijk,MT2017,‘Tomulchortomunch?Bigmodellingofbigdata’,Agricultural Systems,vol.153,pp.32–42.

Roose,E,Ndayizigiye,F1997,‘Agroforestry,waterandsoilfertilitymanagementtofighterosionintropicalmountainsofRwanda’, Soil Technology,vol.11,pp.109–119.

Rushemuka,NP&Bock,L2016,‘Tailoringsoilfertilitymanagementinputstospecificsoiltypes:casestudyofapotexperimentinRwanda’,Nature & Fauna Journal,vol.30,no.1.

Rushemuka,NP,Bizoza,RA,Mowo,JG&Bock,L2014,‘Farmers’soilknowledgeforeffectiveparticipatoryintegratedwatershedmanagementinRwanda:towardssoil-specificfertilitymanagementandfarmers’judgmentalfertilizeruse’,Agriculture, Ecosystems & Environment,vol.183,pp.145–159.

Rushemuka,NP,Bock,L&Mowo,JG2014,‘SoilscienceandagriculturaldevelopmentinRwanda:exploringscientificfacts—a“review”’,Biotechnology, Agronomy, Society and Environment,vol.181,pp.142–154.

Thornton,PK,Schuetz,T,Förch,W,Cramer,L,Abreu,D,Vermeulen,S,Campbell,BM2017,‘Respondingtoglobalchange:atheoryofchangeapproachtomakingagriculturalresearchfordevelopment outcome-based’,Agricultural Systems,vol.152,pp.145–153.

Vanlauwe,B.Wendt,J.Gillerc,KE,Corbeels,M,Gerard,B&Nolte,C2014,‘Afourthprincipleisrequiredtodefineconservationagricultureinsub-SaharanAfrica:theappropriateuseoffertilizertoenhancecropproductivity’,Field Crops Research,vol.155,pp.10–13.

390

21 Lessons learned from country innovationsEric Craswell

Key points

• TheSIMLESAprojectengagedkeypolicymakersthroughaprogramsteeringcommitteethatsupportedthecountrycoordinatorsandprovidedpolicyadvice.

• Conservationagriculture-basedsustainableintensificationwasnurturedunderanenablingpolicyenvironment,particularlyinregardtothepriceofinputs.

• Interdisciplinarysystemapproachestoresearchprovidedthemosteffectiveapproach.

• Componenttechnologies,suchastheuseofherbicidestoreducetillage,fedintoinnovationplatformsthatprovidedafoundationforlarge-scaletransformationofagriculture.

• Oneofthekeystosuccesswasprivatesectorlinkagesthroughvaluechains,marketingofproduceandthesupplyofimprovedseeds.

• SIMLESAalsoprovidedvaluableinsightsintothesustainableintensificationofagricultureinnorthernAustraliabasedondiversifiedfarmingsystemsandsourcesofincomeinachangingclimate.

391SIMLESASIMLESA

CHAPTER 21

Introduction

FivecountriesineasternandsouthernAfrica,withthecooperationofAustraliaandseveralspilloverAfricancountries,collaboratedintheSIMLESAproject(Table21.1).LedbytheInternationalMaizeandWheatImprovementCenter(CIMMYT)andsupportedbyACIAR,organisationsineightcountriesofeasternandsouthernAfrica,andAustralia,collaboratedforeightyearsinresearchtodesign,testandscaleouttechnologiesforthesustainableintensificationofagriculture.SIMLESAactivitiesoccurredintwophases:2010–13and2014–18.

Table 21.1 Participating countries and institutions

Country Lead institution SIMLESA country coordinator

Ethiopia EthiopianInstituteofAgriculturalResearch

DrBedruAbdi

Kenya KenyaAgriculturalandLivestockResearchOrganization

CharlesNkonge

Tanzania DepartmentofResearchandDevelopment

DrJohnSariah

Malawi DepartmentofAgriculturalResearchServices

GraceTimanyechiMunthali

Mozambique InstitutodeInvestigaçãoAgráriadeMoçambique

DiasDomingos

Rwanda* RwandaAgricultureBoard DrPascalRushemuka

Uganda* NationalAgriculturalResearchOrganization

DrDrakeNMubiru

Botswana* DepartmentofAgriculturalResearch MrsMGRamokapane

Australia QueenslandAllianceforAgricultureandFoodInnovation

DrDRodriguez

*Spillovercountries

Theprinciplesofconservationagriculture-basedsustainableintensification(CASI)—retaincropresidues,minimisetillageandrotatecrops—underpinnedtheresearchanddevelopmentapproachesofalltheorganisations.ThestepwiseortransformationalnatureofsustainableintensificationtechnologyadoptionwasacentraltopicacrossallthecountriesintheSIMLESAprogram(Dimes,Rodriguez&Potgieter2015).TheCASIprinciplesprovidedtheframeworkforthestepwiseprojectactivities(Figure21.1).

ThischapterdrawsfromtherichtapestryofSIMLESAexperiencesinthepartnercountriesthathasbeencapturedinthepreviouschaptersinthisbook.Itwillhighlightthemainlessonslearnedfromtheproject.Additionalsourcematerialforthischapterincludesthematerialpresentedbycountryrepresentativesinthefinalreviewmeetingandoutcomesofannualdeliberationsoftheprogramsteeringcommittee,whichengagedresearchleadersfromtheparticipatingcountries,regionalorganisationsaswellasCIMMYTandACIARstaff.

SIMLESA392

SECTION 3: Highlights from country initiatives

Figure 21.1 Stepwise SIMLESA activities to promote CASI technologies

Notes:CASI=conservationagriculture-basedsustainableintensification;IP=Innovationplatforms;CGS=CompetitiveGrantsScheme

What did we learn?

Themajorityofthelessonslearned,asdiscussedbelow,derivefromtheexperienceoftheAfricancountriesinvolvedinSIMLESA.However,theAustralianexperienceisalsonotedbasedontheimportanceofreturnsoninvestmentfrominternationalagriculturaldevelopmentinitiatives,forexample,theDoingWellbyDoingGoodapproachadvocatedbyACIAR(Blight,Craswell&Mullen2014).

Project designTheprojectdesigntreatedtheprogramsteeringcommitteeasadistinctentitywithuniquefunctions.Majorprojectachievementsemergedoutofoperationsbytheprogramsteeringcommittee.ThecommitteemembersattendingtheannualmeetingsshowedtheirownershipoftheprojectthroughoutcommitteedeliberationswheretheyprovidedstrategicandtechnicaladviceandrecommendationstoACIAR.Thishigh-levelsupportfromwithinthecountriesprovidedSIMLESAcountrycoordinatorswithbackingfortheiractivitiesaswellasadirectpipelinetopolicymakers.Aprogrammanagementcommitteeeffectivelyhandledthemoreroutinemanagementissues.

• Identification of CASI options relevant to target agro-ecologies in each country

• Establishmentofon-stationandon-farmexploratorytrials

• Initiation of innovation platforms and partnerships for scaling• Midtermreview• Realisationoftheneedforsmartsequencingoftechnologies

• Scalable options rolled out• IncreasedscalingoutthroughIPsandpartnerships• EndofPhase1• Increasedemphasisonsustainability

• Accelerated scaling through CGS partnerships• Reducedemphasisonconventionalresearch• Someeffortsoncrop–livestockintegrationandsoilqualitystudies

2010-12

2012

2013-14

2015-17

393SIMLESASIMLESA

CHAPTER 21

Research paradigmResearchersfromacrossalltheSIMLESAcountriesidentifiedthefollowingcommonlessons:

• ThequestionsofinteresttoSIMLESArequiredsystemicresearchbasedonanunderstandingofmultipledisciplinesandhowtheyrelate.

• Thekeydeterminantoftheperformanceandsuccessfuladoptionofconservationagriculture-basedsustainableintensification(CASI)wasthesuitabilityofthetechnologyforthebiophysicalenvironment(soilsandclimate).

• SIMLESAparticipantsfoundthatthemosteffectiveapproachtosustainableintensificationwastodelineatetheagroecologiesthatwouldbenefitfromCASIandidentifythepracticesthatwouldbestbenefitsmallholdersinthecountries.

• ThekeyentrypointforCASIunderSIMLESAwastheimprovementofsoilorganiccarbonanditseffectsonsoilphysicalandbiologicalproperties.

• Theapproachofpromotingmanytechnologiesallowedfarmerstoadoptabasketoftechnologiesthatwasmostsuitabletotheiruniqueenvironment,risklevelsandgoals.

• OngoingresearchanddataanalysisisnecessaryforidentifyingemergingissuesandpromotionofthemostpromisingCASItechnologies.

Component technologiesExploratoryon-stationandon-farmtrialsprovidedthefollowinglessonsthatfedintothedeliberationsofinnovationplatforms:

• Herbicideapplicationobviatedtheuseoftractorordraughtanimalsforweedcontrol,whichminimisedgreenhousegasemissions.

• Residueretentionincreasedsoilcarbon.

• SoilbulkdensitydecreasedwithCASI.

• SoilorganiccarbonmarginallyincreasedwithCASIintheshorttimeframeoftheSIMLESAprogramatarateofincreasethatwaslikelytoproducesignificantchangeoveralongertimeframe.

InputsSustainableintensificationrequiredexternalinputstoaccountfortheincreasedharvests:

• Investmentsininputs,includingseedsandagrochemicals,wasoftenprohibitivelycostlyandunprofitableforthelargeproportionoffarmerswithverylowlevelsofexpendableincomewhosoldproduceatlowprices(extremelylowmaizeprices=$US0.083/kg).

• Increaseddemandforimprovedseedswasassociatedwithfrequentshortagesofdesiredvarieties(e.g.Embean14).

• UseoffertiliserwasakeyelementinCASItoredresssoilfertilitydecline.

• ThegreatestbenefitsofCASIoccurredwhenfarmersappliedseveralinputs(lime,fertilisersandgood-qualityseeds)incombination.

• Opengrazingreducedthebenefitsofresidueretentionforsoilqualityoutcomes.

SIMLESA394

SECTION 3: Highlights from country initiatives

Input and product markets• Farmersdidnothavereliablemarketstoselltheproductiongainsfromintensification.

• Spatialandtemporalvariabilityinsalesandadhocnegotiationsreducedthecertainlyofreturnsfromproductionwhilemarketingmodelsthatintegratedfarmersinvaluechainsincreasedcertainlyofreturnsfromproduction.

• UnreliablemarketsforinputslikenewseedvarietiesandbasicCASIequipmentandherbicidespromptedsomeSIMLESAfarmerstobecomeagrodealers.

• Thinmarketsandlowpricesweremostlikelyatharvesttime.

Innovation platformsContactwithstakeholderscanbeeffectivelyestablishedthroughinnovationplatforms(Table21.2):

• Agriculturalinnovationplatformscouldbesupportedthroughexchangevisitswithothersuccessfulplatforms.

• Agriculturalinnovationplatformsprovidedalinkforfarmerstofinancialinstitutions.

• Technicalserviceunitmodelsfacilitatedinnovationinagriculturalinnovationplatforms.

• Therewasaneedforinnovativeinstitutionalarrangementandpolicyalignmenttotransformagriculture.

• Agriculturalinnovationplatformswereagoodframeworktotackletheproblemsoftheagriculturesectorandforlarge-scaletransformationofagriculture.

• Mechanisationserviceproviders(spraying,rippingandshelling)workedeffectivelythroughinnovationplatforms.

Table 21.2 Agricultural innovation platforms established under SIMLESA

Country No. of sites

No. of agricultural innovation platforms

Levels of agricultural innovation platforms

Ethiopia 7 19 Woreda(District)/Community

Kenya 5 13 District/Community

Tanzania 5 10 District/Community

Malawi 6 6 District/Community

Mozambique 4 4 District/Community

Rwanda 4 4 Sector

Uganda 2 2 District

Total 33 58

395SIMLESASIMLESA

CHAPTER 21

Public–private partnershipsBoththepublicandtheprivatesectorenabledadoptionofCASItechnologies:

• Public–privatepartnershipsfacilitatedadoptionofCASItechnologies.

• Businessmodelanalysisrevealedthatprivateentrepreneurshiphadpotentialtocontributesignificantlytotheadoptionandscalingofresearchtechnologies.

Labour inputsIntensificationinvolvedenhancedlabourproductivity:

• Initiatives,suchasthoseoftheAgriculturalProductivityProgramforSouthernAfrica-Mechanization(APPSA-MEC),workedinparallelwithSIMLESAtoreducelabour-relatedchallenges.

• Resourceconservationincreasedaslabourcostsdeclined.

Constraints to productionProductionwaslimitedbyawiderangeoffactors:

• Uncertaindryspells,floodevents,diseasesandpestoutbreaksincreasedproductionrisks.

• Maizediseaseswerewidespread(e.g.maizelethalnecrosisdisease).

• Fallarmywormwasamajorpest.

• Strigaweedpresentedamajorchallengetomanyfarmers.

• Competingusesofcropresidue(e.g.firewoodforenergyandfeedforlivestock)acrossfarmingactivitieslimitedadoptionoftheCASIpracticeofprotectingthesoilsurfacewithcropresidues.

• Althoughayieldgapwasapparentformanyfarmers,constraintstobeanproductionwerenotidentified.

Extension/communicationsMultipleformsofmediawereusedtoachievewidespreadcommunicationofCASIbenefits:

• Thedisseminationmaterialsthatwereproducedincludedjournals,proceedingsandextensionmaterials.

• Theprojectintroducedtechnicalserviceunitsandagriculturalinnovationplatformstoengagedirectlywithendusers.

• Identifyingandimplementingaknowledgemanagementsystemthatsuitedalluserswasanongoingchallenge.

SIMLESA396

SECTION 3: Highlights from country initiatives

Policy engagementAnenablingpolicyenvironmentatthenationalandregionallevelswasneededto supportCASI:

• PolicyreformswererequiredtounderpinandenhanceallaspectsofCASI.

• Communicatingresearchresultstopolicymakersinvolvedrecastingfindingsinapoliticalcontextthatwasinitiallyunfamiliartosomeresearchers.

• PolicyrecommendationsthatenhanceinputaccessweremadetopromoteCASI.

• PricereliefthroughliftingofsometaxesinagriculturalinputswasshowntoincreasetheaffordabilityofCASItechnologies.

• Thearrivalofgovernment-subsidisedfertiliserstoolateintheplantingseasonwasafrequentprobleminsomeareas.

• Regionalpoliciesforthebulkpurchaseoffertiliserreducedthepriceoffertiliserbyalmost40%.

MechanisationMechanisationwasneededtoovercometheshortageofpowerasagricultureintensified:

• Zeroorfurrowtillageresultedinhighersoilmoistureforcrops,whichwasespeciallybeneficialinlowrainfallareas.

• Nosingleformofmechanisationwasidentified(animaltraction,two-andfour-wheeltractors)thatwouldsuitallofthediverseproductionsettingsandfarmerconditions.

• TechnologiespromotedbySIMLESAwereincorporatedintoagriculturaldevelopmentframeworksandmainstreamedintonationalagendas(e.g.MtandaowaVikundivyaWakulimaTanzania,thenationalfarmersorganisationofTanzania).

Competitive grants schemeAprogramofcompetitivegrantsschemes(Table21.3)enhancedthescalingoutof CASItechnologies:

• Withoutscaling-outpartnersSIMLESAtookfourseasonstoreach78communitiesbutunderthecompetitivegrantsschemeittookthreepartnersoneseasontoreachalmostthesamenumberofcommunities(64).

• Constantengagement,hands-ontraining,exposuretotechnologies,andtoolsandimplementsalongthecommodityvaluechainsstrengthenedandmadefarmergroupsmorecoherent.

• Backstoppingscaling-outpartnerswasakeytosuccess.

397SIMLESASIMLESA

CHAPTER 21

Post-harvestThesaleofmarketablesurplusesreliedonpost-harvesttransportandstorageoperations:

• Limitedaccesstosuitableimplementsoftendelayedpeanutshelling.

• Maizestoragecribsreducedpost-harvestlossesandprovidedfarmerswithawidersellingwindowforhighersalesprices.

Capacity buildingCapacitybuildingoccurredacrossallcountriesatalllevelsoftheSIMLESAprogram:

• Atthefarmerlevel,SIMLESAtargetedmen,womenandyouth.

• Atthefieldextensionworkerlevel,SIMLESAtargetedbothmenandwomen.

• Atthescientiststafflevel,SIMLESAtargetedyoungscientists.

Australian lessons learned• Sustainableintensificationofagricultureshowedgreatpotentialforproductioninthe

semi-aridtropicsofQueensland.

• Sustainableintensificationofagriculturewasabletobridgeyieldgapsandincreaseproductionefficienciesindrylandcroppingsystems.

• Investmentintransformativechangestotheagriculturesector(e.g.infrastructure)showedgreatpotentialtogenerateopportunitiestodiversifyfarmers’incomeundertheclimatechangescenariospredictedforAustralia.

SIMLESA398

SECTION 3: Highlights from country initiatives

Tabl

e 21

.3

Sele

cted

par

tner

s in

eac

h co

untr

y

Coun

try

Farm

er a

ssoc

iati

onIn

form

atio

n an

d co

mm

unic

atio

ns

tech

nolo

gy

Non

-go

vern

men

t or

gani

sati

on

Med

iaSe

edU

nive

rsit

yCh

urch

or

gani

sati

onLe

vel

Kenya

Second

arypa

rtne

rsesp.A

IPSecond

arypa

rtne

rs:

QAA

FI,M

ediaeLtd

Med

iaeLtd

Freshco

Seed

Co.

Egerton

NCC

KCo

unty

Malaw

iNAS

FAM

Second

arypa

rtne

rs:

QAA

FI,FRT

Farm

Rad

io

Trust

 Nationa

l

Mozam

biqu

eUCA

MA

ISPM

,QAA

FIAg

riMercODS

ISPM

Second

ary

partne

rsISPM

Nationa

l

Tanzan

iaMVIWAT

ASecond

arypa

rtne

rs:

QAA

FI,CAB

IRE

CODA

Second

ary

partne

rSA

TEC

Second

ary

partne

r:

Sokoine

University

Nationa

l

Ethiop

ia

Sevenscaling-ou

tpartners

(EastS

hewa,EastW

ollega,

Had

iya,Sidam

a,W

estA

rsi,West

Gojjamand

WestS

hewa)were

commission

edbecau

seofthe

ir

streng

thsinexten

sion

work.

Notes:FRT

=FarmRad

ioTrust;ISP

M-Institu

toSup

eriorPo

litécnicodeMan

ica;N

CCK=

Nationa

lCou

ncilofChu

rche

sKe

nya;ODS=Su

staina

blede

velopm

entg

oals;R

ECODA=Re

search,Com

mun

ityand

Organ

isationa

lDevelop

men

tOrgan

isation;QAA

FI=Que

enslan

dAllianceforAg

ricultu

reand

Foo

dInno

vatio

n;SAT

EC=Sub

aAg

roTrading

and

Eng

ineering

Co.Ltd.

399SIMLESASIMLESA

CHAPTER 21

ReferencesBlight,DG,Craswell,ET&Mullen,JD2013,Doing well by doing good: international agricultural research—how it

benefits Australia as well as developing countries,ReportoftheCrawfordFundDoingWellbyDoingGoodTaskForce,CrawfordFund.

Dimes,J,Rodriguez,D&Potgieter,A2015,‘Raisingproductivityofmaize-basedcroppingsystemsineasternandsouthernAfrica:step-wiseintensificationoptions’,inVOSadras,DFCalderini(eds),Crop physiology: applications for genetic improvement and agronomy,AcademicPress,Amsterdam,pp.93–110.