STRUCTURE & FOUNDATION FOR OUTDOOR KIOSK ...

76
PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA SURYA 2 MWP –RU II DUMAI Work Order No.: WO- 001/PPI30220/2020-S0 No. Dokumen: DMAI-PLTS-CIV-CAL-003 14 HALAMAN CIVIL STRUCTURE & FOUNDATION FOR OUTDOOR KIOSK CALCULATION 0 7/1/2021 Issued for Construction AO WRA MB C 17/11/2020 Issued for Approval AO WRA MB B 14/10/2020 Issued for Review AO WRA MB REV TANGGAL URAIAN Dibuat Diperiksa Ditinjau Disetujui PT SINERGI ERA CEMERLANG PPI

Transcript of STRUCTURE & FOUNDATION FOR OUTDOOR KIOSK ...

PEMBANGUNAN PEMBANGKIT

LISTRIK TENAGA SURYA 2 MWP –RU

II DUMAI

Work Order No.: WO-

001/PPI30220/2020-S0

No. Dokumen:

DMAI-PLTS-CIV-CAL-003 14 HALAMAN

CIVIL

STRUCTURE & FOUNDATION FOR OUTDOOR KIOSK CALCULATION

0 7/1/2021 Issued for Construction AO WRA MB

C 17/11/2020 Issued for Approval AO WRA MB

B 14/10/2020 Issued for Review AO WRA MB

REV TANGGAL URAIAN

Dibuat Diperiksa Ditinjau Disetujui

PT SINERGI ERA CEMERLANG

PPI

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 2 dari 14

TABEL REVISI

HalamanRevisi

HalamanRevisi

B C 0 1 B C 0 1

1 21

2 22

3 23

4 24

5 25

6 X 26

7 27

8 X 28

9 29

10 30

11 31

12 X X 32

13 33

14 34

15 35

16 36

17 37

18 38

19 39

20 40

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 3 dari 14

CATATAN REVISI

Rev. Hal. Ulasan Implementasi

(Y/T)Keterangan

C - Penambahan daya dukung tanah masing-

masing CPT Y

- Revisi jarak antar kolom menjadi 3 m Y

-

Penambahan perhitungan baseplate, anchor

bolt, endplate connection, gusset plate

connection

Y

0 - Revisi tabel Y

- Penambahan screenshot member di Staad Y

- Revisi tabel parameter beban gempa Y

- Revisi perhitungan baseplate Y

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 4 dari 14

DAFTAR ISI

1 Pendahuluan .............................................................................................................................................. 5

1.1 Ruang Lingkup ................................................................................................................................... 5

1.2 Definisi ............................................................................................................................................... 5

1.3 Singkatan ........................................................................................................................................... 5

1.4 Dokumen Referensi ........................................................................................................................... 6

1.5 Bahasa dan Satuan ........................................................................................................................... 7

2 Parameter Umum ...................................................................................................................................... 7

2.1 Kuat Material ...................................................................................................................................... 7

2.2 Berat Jenis Material ........................................................................................................................... 8

2.3 Daya Dukung Tanah Ijin Pondasi Dangkal ........................................................................................ 8

2.4 Stabilitas Pondasi .............................................................................................................................. 9

2.5 Kriteria Desain ................................................................................................................................... 9

2.6 Gambaran Umum Struktur ............................................................................................................... 10

3 Kombinasi Pembebanan.......................................................................................................................... 10

3.1 Beban Terfaktor ............................................................................................................................... 10

3.2 Beban Tidak Terfaktor ..................................................................................................................... 11

4 Desain Perhitungan ................................................................................................................................. 11

5 Kesimpulan .............................................................................................................................................. 12

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 5 dari 14

1 Pendahuluan

PT Pertamina Power Indonesia (selanjutnya disebut sebagai “Klien”) Melimpahkan kontrak pelaksanaan

pekerjaan Pembangunan Pembangkit Listrik Tenaga Surya 2 Mwp – RU II Dumai yang mencakupi

pekerjaan: Pengadaan barang, Konstruksi, Pemasangan dan Komisioning. PT Sinergi Era Cemerlang

(selanjutnya disebut “Kontraktor”) merupakan pelaksana dalam Pembangunan Pembangkit Listrik Tenaga

Surya 2 MWp – RU II Dumai.

1.1 Ruang Lingkup

Dokumen ini mencakup structure & foundation for outdoor kiosk calculation yang dilaksanakan di PT

Pertamina RU II Dumai.

1.2 Definisi

Klien PT Pertamina Power Indonesia

Kontraktor PT Sinergi Era Cemerlang

Proyek Pembangunan Pembangkit Listrik Tenaga Surya 2 Mwp – RU II Dumai

Quality Assurance Jaminan mutu yang ditetapkan sebagai kerangka pelaksanaan

Quality Control Tindakan atau aktifitas yang dilakukan untuk memastikan barang atau jasa telah

memenuhi persyaratan yang telah ditentukan. Aktifitas ini mencakup

pengawasan, Inspeksi, pengujian, peninjauan desain, dll.

Subkontraktor Pihak ketiga yang dilimpahkan pekerjaan oleh kontraktor untuk melaksakan

pekerjaan dalam ruang lingkup proyek

Vendor / Supplier Perusahaan yang menjual atau menyediakan barang atau jasa

1.3 Singkatan

EPC Engineering, Procurement and Construction

QA Quality Assurance

QC Quality Control

CPT Cone Penetration Test

SEC PT Sinergi Era Cemerlang

PPI PT. Pertamina Power Indonesia

ACI American Concrete Institute

AISC American Institute of Steel Construction

ASTM American Society for Testing and Materials

UBC Uniform Building Code

ASCE American Society for Civil Engineers

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 6 dari 14

SNI Standar Nasional Indonesia

D Beban mati

Lr Beban hidup atap beban hujan

P Tekanan angin

E Beban Gempa

Vs Gaya geser dasar

Ss Parameter percepatan respon spektral MCE untuk

periode pendek

Fa Koefisien situs untuk periode pendek

S1 Parameter percepatan respon spektral MCE untuk

periode panjang (t = 1s)

Fv Koefisien situs untuk periode panjang (t = 1s)

R Faktor modifikasi respon

Wt Berat dari equipment atau struktur

fc' Kuat tekan beton

fy Kuat leleh baja

Qc Daya dukung tekan ijin

Qt Daya dukung tarik ijin

Ha Daya dukung lateral ijin

γ Berat jenis

1.4 Dokumen Referensi

Dokumen standar nasional maupun internasional, serta dokumen referensi lainnya yang dicantumkan di

bawah ini harus ditaati dalam pelaksanaan Proyek Pembangkit Listrik Tenaga Surya (PLTS) di Pertamina

RU II Dumai.

Tabel 1.1 – Dokumen Referensi

Document No. Description

SNI 03-1726-2002 Tata Cara Perencanaan Ketahanan Gempa untuk

Bangunan Gedung

SNI-2847-2002 Standar Nasional Indonesia Persyaratan Bangunan

Beton Bertulang

PPIUG 1983 Peraturan Pembebanan Indonesia untuk Gedung

ASCE 07/5 Minimum Design Loads for Buildings and Other

Structures

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 7 dari 14

Document No. Description

AISC LRFD Manual of Steel Construction : Load Resistance Factor

Design

ACI 318-02 Building Code Requirements for Structural Concrete

and Commentary

DMAI-PLTS-CIV-RPT-001 Soil Investigation Report

DMAI-PLTS-CIV-DS-004 Spesifikasi Engineering Design for Civil and Structure

1.5 Bahasa dan Satuan

Bahasa yang digunakan di dalam laporan ini adalah Bahasa Indonesia, sementara system satuan yang

digunakan merujuk pada sistem satuan internasional (S.I Units).

2 Parameter Umum

2.1 Kuat Material

Kualitas material yang akan digunakan di dalam perhitungan dan desain pada laporan ini adalah sebagai

berikut:

No Material Simbol Nilai Satuan

1. Beton struktur

Kuat tekan silinder umur 28 hari fc’ 21 MPa

2. Beton non struktur Kuat tekan silinder umur 28 hari fc’ 12.5 MPa

3. Baja tulangan ASTM A615 Kuat leleh tulangan ulir grade 60 fy 400 MPa . Kuat leleh tulangan polos grade 40 fy 240 MPa

5. Wiremesh ASTM A185

Kuat leleh fy 490 MPa

6.Baut angkur ASTM A307 grade C atau ASTM F-1554 Gr. 36

Kuat leleh fy 235 MPa Kuat tarik Fu 400 MPa

7. Baja Struktur ASTM A36 Kuat leleh Fy 235 MPa

Kuat Tarik Fu 400 MPa 8. Baut Struktur ASTM A325

Kuat tarik nominal Fntb 620 MPa Kuat geser nominal Fnvb 372 MPa Tegangan tarik ijin Ft 300 MPa Tegangan geser ijin Fv 140 MPa

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 8 dari 14

2.2 Berat Jenis Material

Berat jenis material yang akan digunakan di dalam perhitungan dan desain pada laporan ini adalah sebagai

berikut:

No Material Simbol Nilai Satuan

1 Beton bertulang γc 23.56 kN/m3

2 Beton polos γpc 21.99 kN/m3

3 Baja γs 76.97 kN/m3

4 Tanah γso 18.85 kN/m3

5 Air γw 9.81 kN/m3

2.3 Daya Dukung Tanah Ijin Pondasi Dangkal

Berdasarkan hasil perhitungan pada Dokumen No. DMAI-PLTS-CIV-RPT-001 “Laporan Investigasi

Tanah oleh PT Geosindo Utama”, daya dukung tanah ijin pondasi dangkal pada kedalaman 0.5 m

untuk masing-masing titik CPT adalah sebagai berikut:

CPT Qall

(kN/m2)

S01 63.1

S02 74.9

S03 52.8

S04 45.7

S05 85.1

S06 145.1

Dari nilai di atas, daya dukung tanah ijin yang digunakan adalah sebagai berikut:

Deskripsi Simbol Nilai Satuan Catatan

Daya dukung tanah ijin kondisi

tetapQall-p 45 kN/m

2 CPT S04

Daya dukung tanah ijin kondisi

sementara Qall-t 59.85 kN/m

2 = 1.33 Qall-p

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 9 dari 14

2.4 Stabilitas Pondasi

Stabilitas pondasi harus direncanakan sedemikian rupa sehingga nilai faktor keamanan tidak boleh kurang

dari nilai di bawah ini:

Deskripsi Guling Gelincir Angkat

Untuk beban tetap 2.0 2.0 1.2

Untuk beban sementara 1.5 1.5 1.1

2.5 Kriteria Desain

Pondasi akan didesain dengan kriteria sebagai berikut:

1. Beban yang dipertimbangkan adalah beban mati, beban air hujan, beban gempa, dan beban angin.

2. Kombinasi beban tidak terfaktor akan digunakan untuk pengecekan defleksi, story drift, daya dukung

pondasi, pengecekan stabilitas guling, dan pengecekan stabilitas gelincir dengan metoda tegangan

ijin.

3. Kombinasi beban terfaktor akan digunakan untuk pengecekan kekuatan struktur dan desain

sambungan metoda LRFD dan menghitung beton bertulang metoda desain kuat ultimit.

4. Beban gempa dihitung berdasarkan standar SNI-03-1726-2012 dengan parameter kegempaan dari

http://puskim.pu.go.id/ sebagai berikut:

5. Beban angin menggunakan tekanan sebesar 25 kg/m2 untuk jarak lokasi > 5 km dari pantai dan 40

kg/m2 untuk jarak lokasi < 5 km berdasarkan standar PPIUG 1983.

6. Defleksi ijin dibatasi maksimum sebesar L/240 beam.

7. Story drift dibatasi maksimum sebesar H/200 untuk kolom.

8. Perhitungan desain struktur menggunakan software Staad Pro.

9. Perhitungan desain pondasi menggunakan software Mat3D.

Work O

WO-001/PPI3

2.6 Gam

Berikut ini a

3 Kom

Kombinasi

Kondisi sem

3.1 Beb

Kombinasi b

LRFD. Berik

No.

101 1.4

102 1.2

103 1.2

104 1.2

105 1.2

106 0.9

107 0.9

108 1.2

109 1.2

Order No.:

30220/2020-S0

mbaran U

adalah gamb

mbinas

beban terfak

mentara berla

ban Terfa

beban terfak

kut ini adalah

4 Dead

2 Dead + 0.5

2 Dead + 0.5

2 Dead + 1.0

2 Dead + 1.0

9 Dead + 1.0

9 Dead + 1.0

2 Dead + 0.5

2 Dead + 0.5

PEM

TEN

0REV 0

Umum Str

aran umum s

si Pemb

ktor dan tida

aku untuk ko

ktor

ktor digunaka

h kombinasi

Kombinas

5 Lr + 1.0 WX

5 Lr + 1.0 WZ

0 EQX

0 EQY

0 EQX

0 EQY

5 WX

5 WZ

BANGUNA

NAGA SUR

STRUC

OUTD

ruktur

struktur outd

bebana

ak terfaktor

ombinasi beb

an dalam pe

pembebana

si Beban

X

Z

AN PEMB

RYA 2 MW

CTURE & F

OOR KIOS

door kiosk:

an

harus dipert

ban yang me

engecekan ke

n terfaktor ya

BANGKIT L

WP –RU II D

FOUNDATIO

SK CALCUL

timbangkan

libatkan beba

ekuatan stru

ang digunak

Kon

Perm

Sem

Sem

Sem

Sem

Sem

Sem

Sem

Sem

LISTRIK

DUMAI

ON FOR

LATION

untuk kondis

an angin dan

ktur dan des

an:

ndisi

manen

entara

entara

entara

entara

entara

entara

entara

entara

Tanggal

Hal 1

si tetap dan

n beban gem

sain sambun

l : 7/1/2021

0 dari 14

sementara.

mpa.

ngan metode

.

e

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 11 dari 14

3.2 Beban Tidak Terfaktor

Kombinasi beban tidak terfaktor digunakan untuk pengecekan defleksi, story drift, dan daya dukung pondasi.

Berikut ini adalah kombinasi pembebanan tidak terfaktor yang digunakan:

No. Kombinasi Beban Keterangan

201 Dead + Lr Permanen

202 Dead + 0.6 WX Sementara

203 Dead + 0.6 WZ Sementara

204 Dead + 0.7 EQX Sementara

205 Dead + 0.7 EQY Sementara

206 0.6 Dead + 0.7 EQX Sementara

207 0.6 Dead + 0.7 EQY Sementara

208 Dead + 0.25 WX Sementara

209 Dead + 0.25 WZ Sementara

4 Desain Perhitungan

Desain perhitungan struktur merujuk pada lampiran A dan desain perhitungan pondasi merujuk pada

Lampiran B.

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 12 dari 14

5 Kesimpulan

Berikut ini adalah hasil desain struktur outdoor kiosk berdasarkan perhitungan pada lampiran A dan B:

Struktur (Lampiran A)

Pengecekan UC Ratio:

Member Profile UC Ratio Clause L/C Remark

Kolom H150X150X7X10 0.242 Eq. H1-1b 302 < 1…OK

Rafter H200X100X5.5X8 0.108 Eq. H1-1b 303 < 1…OK

Eave H150X75X5X7 0.01 Eq. H1-1b 301 < 1…OK

Beam H150X75X5X7 0.032 Eq. H1-1b 301 < 1…OK

Pengecekan story drift maksimum kolom:

δmax = 12.52 mm < 20.875 mm…OK (LC 204 D + 0.7 EQX, Node 13)

Pengecekan defleksi maksimum rafter:

δmax = 16.23 mm < 20.83 mm…OK (LC 204 D + 0.7 EQX, Beam 9)

Pengecekan defleksi maksimum beam:

δmax = 1.229 mm < 12.5 mm…OK (LC 203 D + 0.6 WZ, Beam 19)

6

18

4

2216

11

2

2014

9

5

127

17

3

10

21

15

1

8

19

136

4

1218

2

1016

5

7

21

14

3

20

1711

1

19

159

138

Load 201

3.000m

3.000m5.000m

4.175m

Load 1

0.181

0.0104

0.174

0.01680.0122

0.0551

0.226

0.01680.0104

0.0733

0.197

0.0741

0.0551

0.0104

0.177

0.108

0.0168

0.0122

0.242

0.0741

0.0168

0.0104

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 13 dari 14

Pondasi (Lampiran B)

Dimensi dan tulangan pondasi:

Ukuran telapak = Lebar 1.1 m x Panjang 1.1 m x Tebal 0.30 m

Ukuran pedestal = Lebar 0.35 m x Panjang 0.35 m x Tinggi 0.75 m, TOC +0.3 m

Tulangan lentur pondasi = D13-200 mm untuk tulangan atas dan bawah

Tulangan aksial pedestal = 8 D13

Tulangan geser pedestal = D10-150mm

Pengecekan Daya Dukung dan Stabilitas Pondasi:

Kondisi Permanen

Daya Dukung 32.67 kN/m2 < 45 kN/m

2 OK

Guling 5.56 > 2.0 OK

Sliding 32.87 > 2.0 OK

Kondisi Sementara

Daya Dukung 45.33 kN/m2 < 59.85 kN/m

2 OK

Guling 1.76 > 1.5 OK

Sliding 11.38 > 1.5 OK

PEMBANGUNAN PEMBANGKIT LISTRIK

TENAGA SURYA 2 MWP –RU II DUMAI

Work Order No.:

WO-001/PPI30220/2020-S0REV 0

STRUCTURE & FOUNDATION FOR

OUTDOOR KIOSK CALCULATION

Tanggal : 7/1/2021

Hal 14 dari 14

Desain koneksi outdoor kiosk adalah sebagai berikut:

__________________________________________________________________________________________________________

DESAIN STRUKTUR KIOSK

LAMPIRAN A

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A

__________________________________________________________________________________________________________

LAMPIRAN A - DESAIN STRUKTUR KIOSK

A.1 GAMBARAN STRUKTUR KIOSK

Asumsi model staad pro:

- Tumpuan kolom berupa tumpuan jepit

- Sambungan rafter dan eave ke kolom berupa sambungan momen

- Sambungan beam ke kolom berupa sambungan pin

Kolom

Rafter

Eave

Beam

A.2 PEMBEBANAN

A.2.1 Beban Mati (D)

Dimensi umum struktur :

Lf Jarak antar frame = 3 m

Lc Jarak antar kolom dalam satu frame = 5 m

h Tinggi struktur = 4.175 m

Lco Panjang kolom = 4.175 m

Lrf Panjang rafter = 2.65 m

Lev Panjang eave = 0.65 m

Lb Panjang beam = 3 m

nc Jumlah kolom = 6 ea

nrf Jumlah rafter = 6 ea

nev Jumlah eave = 6 ea

nb Jumlah beam = 4 ea

Profile

H150X150X7X10

H200X100X5.5X8

H150X75X5X7

H150X75X5X7

Beban mati terdiri dari berat sendiri struktur utama,berat struktur sekunder (seperti purlin, girt, sagrod),

dan berat atap. Berat sendiri struktur dihitung secara otomatis dengan kontingensi 10% oleh program

StaadPro melalui perintah Selfweight -1.1 Load Definition.

Gambar A.2 Model Staad Pro Struktur Rencana

Gambar A.1 - Struktur Kiosk

Member

3.000m

3.000m5.000m

4.175m

Load 1

X

Y

Z

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 2

__________________________________________________________________________________________________________

wc = 31.5 kg/m

wrf = 21.3 kg/m

wev = 14.00 kg/m

wb = 14.00 kg/m

Wag Berat lembaran atap/dinding galvalume = 10 kg/m2

= 0.1 kN/m2

Wap Berat purlin/girt dan sagrod = 10 kg/m2

= 0.1 kN/m2

Wd Beban mati atap/dinding = Wag + Wap

= 0.2 kN/m2

Dae Beban mati atap pada rafter dan eave = (Lf/2 + 1) x Wd

= (3/2 + 1) x 0.2

= 0.50 kN/m

Dam = Lf x Wd

= 3 x 0.2

= 0.6 kN/m

Dke Beban mati dinding pada kolom tepi = (Lf/2 + Lc/2) x Wd

= (3/2 + 5/2) x 0.2

= 0.8 kN/m

Dkm Beban mati dinding pada kolom tengah = Lf x Wd

= 3 x 0.2

= 0.6 kN/m

Berat kolom per meter untuk profile

H150X150X7X10

Berat rafter per meter untuk profile

H200X100X5.5X8

Berat eave per meter untuk profile

H150X75X5X7

Berat beam per meter untuk profile

H150X75X5X7

Beban mati atap pada rafter dan eave

tengah

Gambar A.3 Beban Mati pada Model Staad Pro Struktur Rencana

-0.800 kN/m

-0.500 kN/m

-0.600 kN/m

-0.500 kN/m

-0.600 kN/m

-0.800 kN/m-0.800 kN/m

-0.600 kN/m

-0.500 kN/m

-0.500 kN/m

-0.500 kN/m

-0.600 kN/m

-0.500 kN/m

-0.600 kN/m

-0.600 kN/m

-0.800 kN/m

-0.500 kN/m

-0.500 kN/m

Load 3

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 3

__________________________________________________________________________________________________________

A.2.2 Beban Hidup Atap (Lr)

Lr Beban hidup atap miring = 20 kg/m2

= 0.2 kN/m2

Lae = (Lf/2 + 1) x Lr

= (3/2 + 1) x 0.2

= 0.50 kN/m

Lam = Lf x Lr

= 3 x 0.2

= 0.6 kN/m

Beban hidup atap pada rafter dan eave

tepi

Beban hidup atap pada rafter dan eave

tengah

Gambar A.4 Beban Hidup pada Model Staad Pro Struktur Rencana

-0.500 kN/m-0.500 kN/m

-0.600 kN/m-0.600 kN/m

-0.500 kN/m

-0.500 kN/m

-0.500 kN/m-0.500 kN/m

-0.600 kN/m

-0.600 kN/m

-0.500 kN/m

-0.500 kN/m

Load 4

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 4

__________________________________________________________________________________________________________

A.2.3 Beban Angin (W)

Beban angin dihitung berdasarkan standar PPUIG 1983:

P Tekanan angin = kg/m2

= kN/m2

α Kemiringan atap =o

Koefisien angin untuk gedung tertutup:

Cd1 =

Cd2 =

Cd3 =

Ca1 = 0.02 x α - 0.4

=

Ca2 =

40

-0.4

0.392

Koefisien angin untuk dinding vertikal

sejajar dengan arah angin

Koefisien angin untuk atap segitiga

dengan kemiringan α < 65o di pihak angin

-0.10

Koefisien angin untuk atap segitiga untuk

semua α di belakang angin

0.9

-0.4

15

Koefisien angin untuk dinding vertikal di

pihak angin

Koefisien angin untuk dinding vertikal di

belakang angin

-0.4

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 5

__________________________________________________________________________________________________________

Angin Arah X:

P1 = P x Cd1

= kN/m2

P2 = P x Cd2

= kN/m2

P3 = P x Cd3

= kN/m2

P4 = P x Ca1

= kN/m2

P5 = P x Ca2

= kN/m2

F1e Gaya akibat tekanan P1 pada kolom tepi = P1 x Lc/2

= 0.354 x 5/2

= 0.890 kN/m

F2e Gaya akibat tekanan P2 pada kolom tepi = P2 x Lc/2

-0.157 x 5/2

-0.390 kN/m

F3e Gaya akibat tekanan P3 pada kolom tepi = P3 x Lf/2

= -0.157 x 3/2

= -0.240 kN/m

F3m = P3 x Lf

= -0.157 x 3

= -0.470 kN/m

F4e Gaya akibat tekanan P4 pada rafter tepi = P4 x (Lf/2 + 1)

= -0.04 x (3/2 + 1)

= -0.100 kN/m

F4m = P4 x Lf

= -0.04 x 3

= -0.120 kN/m

F5e Gaya akibat tekanan P5 pada rafter tepi = P5 x (Lf/2 + 1)

= -0.157 x (3/2 + 1)

= -0.390 kN/m

F5m = P5 x Lf

= -0.157 x 3

= -0.470 kN/m

Gaya akibat tekanan P3 pada kolom

tengah

Gaya akibat tekanan P4 pada rafter

tengah

0.354

Tekanan angin untuk dinding vertikal di

belakang angin -0.157

Tekanan angin untuk dinding vertikal

sejajar dengan arah angin

Tekanan angin untuk dinding vertikal di

pihak angin

Gambar A.5 Sketsa Beban Angin Arah X

-0.157

Gaya akibat tekanan P5 pada rafter

tengah

-0.040

Tekanan angin untuk atap segitiga untuk

semua α di belakang angin -0.157

Tekanan angin untuk atap segitiga

dengan kemiringan α < 65o di pihak angin

Load

P1

P2

P3

P3

P4

P5

LfLc

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 6

__________________________________________________________________________________________________________

Angin Arah Z:

P1 = kN/m2

P2 = kN/m2

P3 = kN/m2

P4 = kN/m2

P5 = kN/m2

F1e Gaya akibat tekanan P1 pada kolom tepi = P1 x Lf/2

= 0.354 x 3/2

= 0.530 kN/m

F1m = P1 x Lf

= 0.354 x 3

= 1.060 kN/m

F2e Gaya akibat tekanan P2 pada kolom tepi = P2 x Lf/2

= -0.157 x 3/2

= -0.240 kN/m

Gambar A.7 Beban Angin Arah Z pada Model Staad Pro Struktur Rencana

Tekanan angin untuk dinding vertikal di

pihak angin

0.354

Tekanan angin untuk dinding vertikal di

belakang angin

-0.157

Gambar A.6 Beban Angin Arah X pada Model Staad Pro Struktur Rencana

Tekanan angin untuk atap segitiga

dengan kemiringan α < 65o di pihak angin

Gaya akibat tekanan P1 pada kolom

tengah

Tekanan angin untuk dinding vertikal

sejajar dengan arah angin

-0.157

-0.040

Tekanan angin untuk atap segitiga untuk

semua α di belakang angin

-0.157

Load

P3

P3

P2

P1 P4

P5

LfLc

0.390 kN/m-0.240 kN/m

0.100 kN/m

-0.470 kN/m

0.100 kN/m

0.120 kN/m

0.890 kN/m-0.240 kN/m0.390 kN/m

0.240 kN/m

0.120 kN/m

0.100 kN/m

0.390 kN/m

0.390 kN/m

0.470 kN/m

0.100 kN/m0.470 kN/m

0.470 kN/m

0.890 kN/m0.240 kN/m

0.390 kN/m

0.390 kN/m

Load 8

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 7

__________________________________________________________________________________________________________

F2m = P2 x Lf

= -0.157 x 3

= -0.470 kN/m

F3e Gaya akibat tekanan P3 pada kolom tepi = P3 x Lc/2

= -0.157 x 5/2

= -0.390 kN/m

F4e Gaya akibat tekanan P4 pada rafter tepi = P4 x (Lf/2 + 1)

= -0.04 x (3/2 + 1)

= -0.100 kN/m

F4m = P4 x Lf

= -0.04 x 3

= -0.120 kN/m

F5e Gaya akibat tekanan P5 pada rafter tepi = P5 x (Lf/2 + 1)

= -0.157 x (3/2 + 1)

= -0.390 kN/m

F5m = P5 x Lf

= -0.157 x 3

= -0.470 kN/m

A.2.4 Beban Gempa (EQ)

Percepatan batuan dasar pada periode 0.2 detik Ss = 0.281 g

Percepatan batuan dasar pada periode 1 detik S1 = 0.210 g

Kelas Situs = Tanah Teguh (D)

Faktor kepentingan Ie : 1.25

RX : 3

RZ : 4.5

Perhitungan beban gempa mengacu pada standar yang telah ditetapkan SNI 1726-2012. Berdasarkan

SNI 03-1726-2012, lokasi pembangunan solar panel di Dumai memiliki parameter desain seismik

sebagai berikut:

Gambar A.8 Beban Angin Arah Z pada Model Staad Pro Struktur Rencana

Gaya akibat tekanan P4 pada rafter

tengah

Gaya akibat tekanan P5 pada rafter

tengah

Gaya akibat tekanan P2 pada kolom

tengah

Koefisien reduksi gempa arah X untuk struktur

kantilever

Koefisien reduksi gempa arah Z untuk moment resisting

frame system

0.530 kN/m

0.100 kN/m

1.060 kN/m

0.100 kN/m

0.120 kN/m

0.530 kN/m

0.240 kN/m

0.120 kN/m

0.100 kN/m

0.390 kN/m

0.390 kN/m

0.470 kN/m

0.100 kN/m0.470 kN/m

0.470 kN/m

0.240 kN/m

0.390 kN/m

0.390 kN/m

Load 9

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 8

__________________________________________________________________________________________________________

Koefisien situs pada periode 0.2 detik Fa =

= 1.58

Koefisien situs pada periode 1 detik Fv =

= 1.98

SMS = Fa x Ss

= 0.444

SM1 = Fv x S1

= 0.416

SDS = 2/3 x SMS

= 0.296

SD1 = 2/3 x SM1

= 0.277

Parameter respons spektrum percepatan pada

periode 0.2 detik

(0.281 - 0.25)/(0.5 - 0.25) * (1.4 - 1.6)

+ 1.6

(0.21 - 0.3)/(0.4 - 0.3) * (1.6 - 1.8) +

1.8

Gambar A.10 Koefisien situs pada periode panjang, Fv

Gambar A.9 Koefisien situs pada periode pendek, Fa

Parameter respons spektrum percepatan pada

periode 1 detik

Parameter respons spektrum percepatan pada

periode 0.2 detik dengan redaman 5%

Parameter respons spektrum percepatan pada

periode 1 detik dengan redaman 5%

Kelas Situs

Mapped Risk-Targeted Maximum Considered Earthquake (MCER

) Spectral Response Acceleration Parameter at Short Period,

T=0.2 second, SsSs ≤ 0.25 Ss = 0.5 Ss = 0.75 Ss = 1.0 Ss = 1.25

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.2 1.2 1.1 1.0 1.0

D 1.6 1.4 1.2 1.1 1.0

E 2.5 1.7 1.2 0.9 0.9

F SSb

Fa = 1.58

Ss =0.281

Kelas SitusMapped Risk-Targeted Maximum Considered Earthquake (MCER

) Spectral Response Acceleration Parameter at 1 second, S1

S1 ≤ 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 = 0.5

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.7 1.6 1.5 1.4 1.3

D 2.4 2 1.8 1.6 1.5

E 3.5 3.2 2.8 2.4 2.4

F SSb

Fv = 1.98

S1 =0.210

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 9

__________________________________________________________________________________________________________

Parameter periode pendekatan untuk struktur lain Ct =

x = 0.75

Tinggi pedestal di atas tanah z = 0.3 m

Tinggu struktur di atas tanah hn = 4.475 m

Periode fundamental pendekatan struktur T = Ct hnx

= 0.150 s

Koefisien geser dasar X Csx = SDS x Ie / RX

= 0.123

Koefisien geser dasar maksimum X Csxmax = SD1 Ie / ( RX T )

= 0.769

Koefisien geser dasar minimum Csmin = 0.044 SDS Ie 0.01

= 0.02

Koefisien geser dasar yang digunakan CsX = 0.123

Koefisien geser dasar Z Csz = SDS x Ie / Rz

= 0.082

Koefisien geser dasar maksimum Z Cszmax = SD1 Ie / ( RZ T )

= 0.513

Koefisien geser dasar minimum Csmin = 0.044 SDS Ie 0.01

= 0.02

Koefisien geser dasar yang digunakan Csz = 0.082

Geser Dasar Seismik (V)

Geser dasar seismik, V, dalam arah yang ditetapkan harus sesuai dengan persamaan berikut :

V = Cs x W

keterangan : Wt = Berat seismik total

Cs = Koefisien respons seismik

Lco Panjang kolom = 4.175 m

Lrf Panjang rafter = 2.65 m

Lev Panjang eave = 0.65 m

Lb Panjang beam = 3 m

nc Jumlah kolom = 6 ea

nce Jumlah kolom tepi = 4 ea

ncm Jumlah kolom tengah = 2 ea

nrf Jumlah rafter = 6 ea

nrfe Jumlah rafter tepi = 4 ea

nrfm Jumlah rafter tengah = 2 ea

nev Jumlah eave = 6 ea

neve Jumlah eave tepi = 4 ea

nevm Jumlah eave tengah = 2 ea

nb Jumlah beam = 4 ea

wc = 31.5 kg/m

wrf = 21.3 kg/m

wev = 14.0 kg/m

wb = 14.0 kg/m

Dae Beban mati atap pada rafter dan eave = 0.50 kN/m

Dam = 0.60 kN/m

Dke Beban mati dinding pada kolom tepi = 0.80 kN/m

Dkm Beban mati dinding pada kolom tengah = 0.60 kN/m

Beban mati atap pada rafter dan eave

tengah

Berat beam per meter untuk profile

H150X75X5X7

Berat kolom per meter untuk profile

H150X150X7X10

Berat rafter per meter untuk profile

H200X100X5.5X8

Berat eave per meter untuk profile

H150X75X5X7

0.0488

Parameter kuadratik periode pendekatan untuk

struktur lainnya

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 10

__________________________________________________________________________________________________________

Ws Berat sendiri struktur (kontingensi 10%) =

=

= 1485 kg

= 14.6 kN

Wd Beban mati atap dan dinding =

=

= 26.85 kN

Wt Berat seismik total = Ws + Wd

= 41.45 kN

Vx Geser dasar seismik X = Csx * Wt

= 0.123 * 41.45

= 5.10 kN

Vz Geser dasar seismik Z = Csz * Wt

= 0.082 * 41.45

= 3.40 kN

nc Jumlah kolom = 6 ea

EQX Beban gempa arah X = Vx/ nc

= 5.1 / 6

= 0.85 kN

EQZ Beban gempa arah Z = Vz/ nc

= 3.4 / 6

= 0.57 kN

1.1 x (Lco x nc x wc + Lrf x nrf x wrf +

Lev x nev x wev + Lb x nb x wb)

1.1 x (4.175 x 6 x 31.5 + 2.65 x 6 x

21.3 + 0.65 x 6 x 14 + 3 x 4 x 14)

(Lco x nce x Dke + Lco x ncm x Dkm +

Lrf x nrfe x Dae + Lrf x nrfm x Dam)

(4.175 x 4 x 0.8 + 4.175 x 2 x 0.6 +

2.65 x 4 x 0.5 + 2.65 x 2 x 0.6)

Gambar A.11 Beban Gempa Arah X

0.850 kN

0.850 kN

0.850 kN

0.850 kN

0.850 kN

0.850 kN

0 570 kNDMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 11

__________________________________________________________________________________________________________

Gambar A.12 Beban Gempa Arah Z

0.570 kN

0.570 kN

0.570 kN

0.570 kN

0.570 kN

0.570 kN

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 12

__________________________________________________________________________________________________________

A.3 PENGECEKAN STRUKTUR

A.3.1 Hasil Unity Check Ratio Struktur

Berdasarkan pengecekan struktur metoda LRFD, berikut ini adalah hasil UC Ratio:

Beam L/C

1 302

2 302

3 302

4 304

5 302

6 302

7 201

8 303

9 9

10 303

11 201

12 303

13 201

14 201

15 201

16 201

17 201

18 201

19 301

20 301

21 301

22 301

Summary:

L/C

302

303

201

301

Profile

H150X150X7X10

H150X150X7X10

H150X150X7X10

H150X150X7X10

H150X150X7X10

Eq. H1-1b < 1…OK

Profile

H150X75X5X7 0.017 Eq. H1-1b < 1…OK

H150X75X5X7 0.017

RemarkUC Ratio Clause

Eq. H1-1b < 1…OK

0.226 Eq. H1-1b < 1…OK

0.242

Eq. H1-1b < 1…OK

0.108 Eq. H1-1b

H150X150X7X10

0.073 Eq. H1-1b < 1…OK

H200X100X5.5X8

H200X100X5.5X8

0.108 Eq. H1-1b < 1…OK

0.055 Eq. H1-1b < 1…OKH200X100X5.5X8

0.074 Eq. H1-1b < 1…OK

H150X150X7X10

H200X100X5.5X8

H150X75X5X7

0.197 Eq. H1-1b < 1…OK

0.181 Eq. H1-1b < 1…OK

0.177 Eq. H1-1b < 1…OK

0.174 Eq. H1-1b < 1…OK

H200X100X5.5X8

H150X75X5X7

0.01 Eq. H1-1b < 1…OK

0.055 Eq. H1-1b < 1…OK

H200X100X5.5X8

H200X100X5.5X8

0.074 Eq. H1-1b < 1…OK

0.012 Eq. H1-1b < 1…OK

H150X75X5X7

H150X75X5X7

0.012 Eq. H1-1b < 1…OK

0.01 Eq. H1-1b < 1…OK

0.01 Eq. H1-1b < 1…OK

H150X75X5X7

H150X75X5X7

0.01 Eq. H1-1b < 1…OKH150X75X5X7

< 1…OK

Member

Kolom

Rafter

Eave < 1…OK

UC Ratio Clause Remark

0.242

H150X75X5X7

0.017 Eq. H1-1b < 1…OKH150X75X5X7

0.017 Eq. H1-1b

0.017 Eq. H1-1b

< 1…OK

0.012 Eq. H1-1b

Beam H150X75X5X7 < 1…OK

0.181

0.0104

0.174

0.01680.0122

0.0551

0.226

0.01680.0104

0.0733

0.197

0.0741

0.0551

0.0104

0.177

0.108

0.0168

0.0122

0.242

0.0741

0.0168

0.0104

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 13

__________________________________________________________________________________________________________

A.3.2 Pengecekan Story Drift dan Defleksi

Kolom

Tinggi kolom rata-rata h = 4175 mm

Story drift δall = h / 200

= 20.88 mm

Defleksi maksimum kolom δmax = 12.52 mm < 20.875 mm…OK

(LC 204 D + 0.7 EQX, Node 13)

Rafter

Bentang rafter L = 5000 mm

Defleksi ijin δall = L / 240

= 20.83 mm

Defleksi maksimum rafter δmax = 16.23 mm < 20.83 mm…OK

(LC 204 D + 0.7 EQX, Beam 9 Node 20)

6

18

4

2216

11

2

2014

9

5

127

17

3

10

21

15

1

8

19

136

4

1218

2

1016

5

7

21

14

3

20

1711

1

19

159

138

Load 201

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 14

__________________________________________________________________________________________________________

Beam

Bentang beam L = 3000 mm

Defleksi ijin δall = L / 240

= 12.5 mm

Defleksi maksimum beam node i ∆i = 2.838 mm

(LC 203 D + 0.6 WZ, Beam 19, Node 15)

Defleksi maksimum beam node j ∆j = 1.609 mm

(LC 203 D + 0.6 WZ, Beam 19, Node 13)

Defleksi maksimum aktual beam δmax = ∆i - ∆j

= 1.229 mm < 12.5 mm…OK

A.4 PENGECEKAN PONDASI

A.4.1 Daya Dukung Pondasi Ramming Post

Berikut ini adalah daya dukung ijin pondasi dangkal pada kedalaman 0.5 m:

Qall-t 59.85 kN/m2

CPT S04

Daya dukung tanah ijin

permanen

Satuan

Daya dukung tanah ijin

sementara

kN/m2

CatatanDeskripsi Simbol

Qall-p

Nilai

45

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 15

__________________________________________________________________________________________________________

A.4.2 Support Reaction

z Tinggi pondasi di atas tanah = 300 mm

Lp Panjang pedestal = 350 mm

Bp Lebar pedestal = 350 mm

hp Tinggi pedestal = 750 mm

Lf Panjang footing = 1100 mm

Bf Lebar footing = 1100 mm

hf Tebal footing = 300 mm

Dead 0.00

Lr 1.96

Ds 7.00

Load CombAxial

Shear in

Z axis

Mom about

X axis

0.44

0.49

Berikut ini adalah support reaction yang akan digunakan untuk mendesain pondasi kiosk menggunakan

Mat3D:

Shear in

X dir

Mom about Z

axis

kN kN kN.m kN kN.m

0.00 -4.28 -6.14

0.00 0.00 0.31

0.00 0.00 0.43 0.68

0.00 0.000.00 0.00

2.79

0.00

EQ Y -0.40 0.00 0.00 -0.57 -1.38

-0.67 0.94

EQ X 0.00 -0.85 3.55 0.00

Wind Y -1.46 0.00

Wind X -0.72

Load

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN A - Halaman 16

__________________________________________________________________________________________________________

LAMPIRAN B

DESAIN PONDASI MENGGUNAKAN MAT3D

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN B

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:18 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

SUMMARY REPORT

PROJECT INFORMATION

Project Name:

Project Number: JOB-231-CTR-013

Client:

Project Location

Foundation Description

DESIGN CODE ACI 318 - 2014 INPUT UNITS SI OUTPUT UNITS SI

CONCRETE PARAMETERS: REINFORCING STEEL PARAMETERS:

Compressive Strength (N/sq mm) 21 Yield Strength (N/sq mm) 400

Unit Weight (kN/cu m) 23.56 Unit Weight (kN/cu m) 76.97

Pier Concrete Cover - X Dir (mm) 40 Modulus of Elasticity (kN/sq mm) 200

Pier Concrete Cover - Z Dir (mm) 40 Pier Min Rebar Spacing (mm) 75

Footing Side Concrete Cover - X Dir (mm) 50 Footing Min Rebar Spacing (mm) 150

Footing Side Concrete Cover - Z Dir (mm) 50 Footing Max Rebar Spacing (mm) 450

Footing Top Concrete Cover (mm) 50 Consider Pier Vertical Bar Spacing Limit Yes

Footing Bottom Concrete Cover (mm) 75

SOIL PARAMETERS: REBAR PARAMETERS:

Unit Weight (kN/cu m) 18.85 Max Long Bar Size 16

Allowable Net Bearing Capacity (kN/sq m) 45 Min Long Bar Size 13

Bearing Capacity Method Linear Soil Pressure Max Tie Bar Size 13

Soil Type Cohesive Min Tie Bar Size 10

Ultimate Cohesion c 18.96 Max Ftg Bar Size 13

Ultimate Adhesion Ad 9 Min Ftg Bar Size 10

Allowable Increase in Soil Pressure due to Short Term Loads (%) Temp & Shrinkage Steel Ratio 0.0018

Wind 33 Earthquake 33 Test 0

Min Stability Ratio 1.5

Safety Factor against Lateral Forces 1.5 BUOYANCY CRITERIA:

Safety Factor against Uplift 1.1

Percent Neglected Overburden 100 Consider Buoyancy: No

Percent Neglected Soil Cover 100 Consider soil for buoyancy: No

Consider Sliding Along Resultant No Water table below grade (mm) 0

MINIMUM FOUNDATION CRITERIA:

Depth of Footing Below Grade (mm) 750

Minimum Soil Cover (mm) 450

Grade Elevation (mm) 0

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:18 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

SUMMARY REPORT

PIER/BASE PLATE DESIGN INFORMATION

P1

X Dim (mm) 350.00

Z Dim (mm) 350.00

Height above grade (mm) 300.00

X Offset (mm) 550.00

Z Offset (mm) 550.00

Requested Reinft. Ratio 0.0050

Provided Reinft. Ratio 0.0084

Long Bar Size (mm) 13

Bars in X Dir 3

Bars in Z Dir 3

Total Long Bars 8

Tie Bar Size (mm) 10

Total No. of Ties 7

Major Tie Spacing (mm) 170

FOOTING DESIGN INFORMATION MATERIAL QUANTITIES

X Dim (mm) 1100.00 Concrete Cubic Meters (CM) 0.37

Z Dim (mm) 1100.00 Reinforcing Steel Kilograms (KG) 30.64

Thickness (mm) 300.00 Formwork Square Meters (SM) 2.04

Excavation Cubic Meters (CM) 2.32

Top Steel

Governing No of Bar Bar Area Area Moment Direction

Combination Bars Size Spac Prov Req

(mm) (mm) (sq cm/m) (sq cm/m) (kN m/m)

6 : 0.9Dead + 0.9Ds + EQX 5 13 200 6.03 0.03 0 X

3 : 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 5 13 200 6.03 0.18 -1 Z

Bottom Steel

Governing No of Bar Bar Area Area Moment Direction

Combination Bars Size Spac Prov Req

(mm) (mm) (sq cm/m) (sq cm/m) (kN m/m)

4 : 1.2Dead + 1.2Ds + EQX 5 13 200 6.03 5.4 1 X

3 : 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 5 13 200 6.03 5.4 3 Z

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:22 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

DETAIL REPORT

PROJECT INFORMATION

Project Name:

Project Number: JOB-231-CTR-013

Client:

Project Location

Foundation Description

DESIGN CODE ACI 318 - 2014 INPUT UNITS SI OUTPUT UNITS SI

CONCRETE PARAMETERS: REINFORCING STEEL PARAMETERS:

Compressive Strength (N/sq mm) 21 Yield Strength (N/sq mm) 400

Unit Weight (kN/cu m) 23.56 Unit Weight (kN/cu m) 76.97

Pier Concrete Cover - X Dir (mm) 40 Modulus of Elasticity (kN/sq mm) 200

Pier Concrete Cover - Z Dir (mm) 40 Pier Min Rebar Spacing (mm) 75

Footing Side Concrete Cover - X Dir (mm) 50 Footing Min Rebar Spacing (mm) 150

Footing Side Concrete Cover - Z Dir (mm) 50 Footing Max Rebar Spacing (mm) 450

Footing Top Concrete Cover (mm) 50 Consider Pier Vertical Bar Spacing Limit Yes

Footing Bottom Concrete Cover (mm) 75

SOIL PARAMETERS: REBAR PARAMETERS:

Unit Weight (kN/cu m) 18.85 Max Long Bar Size 16

Allowable Net Bearing Capacity (kN/sq m) 45 Min Long Bar Size 13

Bearing Capacity Method Linear Soil Pressure Max Tie Bar Size 13

Soil Type Cohesive Min Tie Bar Size 10

Ultimate Cohesion c 18.96 Max Ftg Bar Size 13

Ultimate Adhesion Ad 9 Min Ftg Bar Size 10

Allowable Increase in Soil Pressure due to Short Term Loads (%) Temp & Shrinkage Steel Ratio 0.0018

Wind 33 Earthquake 33 Test 0

Min Stability Ratio 1.5

Safety Factor against Lateral Forces 1.5 BUOYANCY CRITERIA:

Safety Factor against Uplift 1.1

Percent Neglected Overburden 100 Consider Buoyancy: No

Percent Neglected Soil Cover 100 Consider soil for buoyancy: No

Consider Sliding Along Resultant No Water table below grade (mm) 0

MINIMUM FOUNDATION CRITERIA:

Depth of Footing Below Grade (mm) 750

Minimum Soil Cover (mm) 450

Grade Elevation (mm) 0

APPLIED LOADS

P1

Load Axial Shear X Mom Z Shear Z Mom X

Case (kN) (kN) (kN m) (kN) (kN m)

1 - Dead 0.00 0.00 0.00 0.00 0.00

2 - Ds 7.00 0.00 0.00 0.43 0.68

3 - Lr 1.96 0.00 0.00 0.31 0.49

4 - Wind X -0.72 -0.67 2.79 0.94 0.44

5 - Wind Y -1.46 0.00 0.00 -4.28 -6.14

6 - EQX 0.00 -0.85 3.55 0.00 0.00

7 - EQY -0.40 0.00 0.00 -0.57 -1.38

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:22 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

DETAIL REPORT

UNFACTORED (ALLOWABLE) LOAD COMBINATIONS

P1

Load Axial Shear X Mom Z Shear Z Mom X

Comb (kN) (kN) (kN m) (kN) (kN m)

1 Dead + Ds + Lr 8.96 0.00 0.00 0.74 1.17

2 Dead + Ds + 0.6Wind X 6.57 -0.40 1.67 0.99 0.94

3 Dead + Ds + 0.6Wind Y 6.12 0.00 0.00 -2.14 -3.00

4 Dead + Ds + 0.7EQX 7.00 -0.60 2.49 0.43 0.68

5 Dead + Ds + 0.7EQY 6.72 0.00 0.00 0.03 -0.29

6 0.6Dead + 0.6Ds + 0.7EQX 4.20 -0.60 2.49 0.26 0.41

7 0.6Dead + 0.6Ds + 0.7EQY 3.92 0.00 0.00 -0.14 -0.56

8 Dead + Ds + 0.25Wind X 6.82 -0.17 0.70 0.67 0.79

9 Dead + Ds + 0.25Wind Y 6.64 0.00 0.00 -0.64 -0.86

FACTORED (ULTIMATE) LOAD COMBINATIONS

P1

Load Axial Shear X Mom Z Shear Z Mom X

Comb (kN) (kN) (kN m) (kN) (kN m)

1 1.4Dead + 1.4Ds 9.80 0.00 0.00 0.60 0.95

2 1.2Dead + 1.2Ds + 0.5Lr + Wind X 8.66 -0.67 2.79 1.61 1.50

3 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 7.92 0.00 0.00 -3.61 -5.08

4 1.2Dead + 1.2Ds + EQX 8.40 -0.85 3.55 0.52 0.82

5 1.2Dead + 1.2Ds + EQY 8.00 0.00 0.00 -0.05 -0.56

6 0.9Dead + 0.9Ds + EQX 6.30 -0.85 3.55 0.39 0.61

7 0.9Dead + 0.9Ds + EQY 5.90 0.00 0.00 -0.18 -0.77

8 0.9Dead + 0.9Ds 6.30 0.00 0.00 0.39 0.61

9 1.2Dead + 1.2Ds + 0.6Wind X 7.97 -0.40 1.67 1.08 1.08

10 1.2Dead + 1.2Ds + 0.6Wind Y 7.52 0.00 0.00 -2.05 -2.87

BEARING CAPACITY - LINEAR SOIL PRESSURE METHOD

Load Max All Ecc Ecc Moment Moment Rem

Comb Pressure Pressure Z Dir X Dir Z axis X axis

(kN/sq m) (kN/sq m) (cm) (cm) (kN-m) (kN-m)

1 Dead + Ds + Lr 32.67 45.01 6.74 0.00 0.00 1.95

2 Dead + Ds + 0.6Wind X 36.52 59.85 7.50 4.72 1.25 1.99

3 Dead + Ds + 0.6Wind Y 45.33 59.85 20.15 0.00 0.00 5.25

4 Dead + Ds + 0.7EQX 35.76 59.85 4.20 6.91 1.86 1.13

5 Dead + Ds + 0.7EQY 23.18 59.85 0.95 0.00 0.00 0.25

6 0.6Dead + 0.6Ds + 0.7EQX 24.81 59.85 4.20 11.51 1.86 0.68

7 0.6Dead + 0.6Ds + 0.7EQY 16.31 59.85 4.45 0.00 0.00 0.71

8 Dead + Ds + 0.25Wind X 31.18 59.85 5.56 1.95 0.52 1.49

9 Dead + Ds + 0.25Wind Y 28.85 59.85 5.75 0.00 0.00 1.53

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:22 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

DETAIL REPORT

STABILITY RATIO / SLIDING SAFETY FACTOR

Load S.R. S.R. All Sliding Sliding All Remarks

Comb Z Dir X Dir S.R. FS - Z FS - X FS

1 Dead + Ds + Lr 5.56 100.00 1.50 32.87 100.00 1.50

2 Dead + Ds + 0.6Wind X 4.78 5.93 1.50 24.47 60.50 1.50

3 Dead + Ds + 0.6Wind Y 1.76 100.00 1.50 11.38 100.00 1.50

4 Dead + Ds + 0.7EQX 8.61 4.17 1.50 56.56 40.88 1.50

5 Dead + Ds + 0.7EQY 33.63 100.00 1.50 100.00 100.00 1.50

6 0.6Dead + 0.6Ds + 0.7EQX 8.61 2.60 1.50 94.27 40.88 1.50

7 0.6Dead + 0.6Ds + 0.7EQY 8.06 100.00 1.50 100.00 100.00 1.50

8 Dead + Ds + 0.25Wind X 6.48 14.07 1.50 36.58 100.00 1.50

9 Dead + Ds + 0.25Wind Y 6.25 100.00 1.50 38.00 100.00 1.50

FOOTING DESIGN INFORMATION

X Dim (mm) 1100.00

Z Dim (mm) 1100.00

Thickness (mm) 300.00

Top Steel

Governing No of Bar Bar Area Area Moment Direction

Combination Bars Size Spac Prov Req

(mm) (mm) (sq cm/m) (sq cm/m) (kN m/m)

6 : 0.9Dead + 0.9Ds + EQX 5 13 200 6.03 0.03 0 X

3 : 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 5 13 200 6.03 0.18 -1 Z

Bottom Steel

Governing No of Bar Bar Area Area Moment Direction

Combination Bars Size Spac Prov Req

(mm) (mm) (sq cm/m) (sq cm/m) (kN m/m)

4 : 1.2Dead + 1.2Ds + EQX 5 13 200 6.03 5.4 1 X

3 : 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 5 13 200 6.03 5.4 3 Z

PUNCHING SHEAR

P1

Control Net Ult Punch. All Rem

Comb Load Stress Stress

(kN) (kN/sq m) (kN/sq m)

3 : 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 14.85 33.03 1141.54

MAXIMUM SHEAR - X DIRECTION

Load Left Max Shear All Rem

Comb Dist Shear Stress Stress

(m) (kN) (kN/sq m) (kN/sq m)

1 1.4Dead + 1.4Ds 0.17 2.00 8.96 570.77

2 1.2Dead + 1.2Ds + 0.5Lr + Wind X 0.93 -3.26 14.58 570.77

3 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 0.17 1.64 7.35 570.77

4 1.2Dead + 1.2Ds + EQX 0.93 -3.63 16.23 570.77

5 1.2Dead + 1.2Ds + EQY 0.17 1.65 7.40 570.77

6 0.9Dead + 0.9Ds + EQX 0.93 -3.20 14.31 570.77

7 0.9Dead + 0.9Ds + EQY 0.93 -1.23 5.48 570.77

8 0.9Dead + 0.9Ds 0.93 -1.29 5.76 570.77

9 1.2Dead + 1.2Ds + 0.6Wind X 0.93 -2.55 11.41 570.77

10 1.2Dead + 1.2Ds + 0.6Wind Y 0.17 1.58 7.07 570.77

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:22 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

DETAIL REPORT

MAXIMUM SHEAR - Z DIRECTION

Load Bottom Max Shear All Rem

Comb Dist Shear Stress Stress

(m) (kN) (kN/sq m) (kN/sq m)

1 1.4Dead + 1.4Ds 0.93 -3.14 14.06 570.77

2 1.2Dead + 1.2Ds + 0.5Lr + Wind X 0.93 -4.05 18.13 570.77

3 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 0.17 8.69 38.87 570.77

4 1.2Dead + 1.2Ds + EQX 0.93 -2.69 12.05 570.77

5 1.2Dead + 1.2Ds + EQY 0.17 2.10 9.40 570.77

6 0.9Dead + 0.9Ds + EQX 0.93 -2.02 9.04 570.77

7 0.9Dead + 0.9Ds + EQY 0.17 1.92 8.57 570.77

8 0.9Dead + 0.9Ds 0.93 -2.02 9.04 570.77

9 1.2Dead + 1.2Ds + 0.6Wind X 0.93 -3.24 14.50 570.77

10 1.2Dead + 1.2Ds + 0.6Wind Y 0.17 5.19 23.23 570.77

PIER/BASE PLATE DESIGN INFORMATION

P1

X Dim (mm) 350.00

Z Dim (mm) 350.00

Height above grade (mm) 300.00

X Offset (mm) 550.00

Z Offset (mm) 550.00

Requested Reinft. Ratio 0.0050

Provided Reinft. Ratio 0.0084

Long Bar Size (mm) 13

Bars in X Dir 3

Bars in Z Dir 3

Total Long Bars 8

Tie Bar Size (mm) 10

Total No. of Ties 7

Major Tie Spacing (mm) 170

PIER ULTIMATE LOAD CAPACITIES

P1

Load Axial Axial Mom X Mom X Mom Z Mom Z Rem

Comb Load Capa. Capa Capa

(kN) (kN) (kN m) (kN m) (kN m) (kN m)

1 1.4Dead + 1.4Ds 12.83 696.20 1.40 75.38 0.33 18.00

2 1.2Dead + 1.2Ds + 0.5Lr + Wind X 11.26 229.48 2.71 54.71 2.29 46.24

3 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 10.52 87.05 7.78 64.45 0.27 2.26

4 1.2Dead + 1.2Ds + EQX 11.00 275.03 1.20 29.61 2.91 71.97

5 1.2Dead + 1.2Ds + EQY 10.60 1086.48 0.60 56.93 0.27 25.00

6 0.9Dead + 0.9Ds + EQX 8.25 208.04 0.90 22.76 2.91 73.45

7 0.9Dead + 0.9Ds + EQY 7.85 667.12 0.91 76.10 0.20 17.25

8 0.9Dead + 0.9Ds 8.25 696.20 0.90 75.38 0.21 18.00

9 1.2Dead + 1.2Ds + 0.6Wind X 10.56 338.73 1.89 59.93 1.37 43.73

10 1.2Dead + 1.2Ds + 0.6Wind Y 10.12 170.11 4.41 73.98 0.26 4.40

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:22 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

DETAIL REPORT

SELF WEIGHTS AND APPLIED EXTERNAL LOAD

No. Load Combination Load Elem Soil Mat App Axial Tot Axial Buoyant

Weight Weight Weight Load Load Load

kN kN kN kN kN kN

1 Dead + Ds + Lr 2.16 9.22 8.55 8.96 28.9 0

2 Dead + Ds + 0.6Wind X 2.16 9.22 8.55 6.57 26.51 0

3 Dead + Ds + 0.6Wind Y 2.16 9.22 8.55 6.12 26.07 0

4 Dead + Ds + 0.7EQX 2.16 9.22 8.55 7 26.94 0

5 Dead + Ds + 0.7EQY 2.16 9.22 8.55 6.76 26.7 0

6 0.6Dead + 0.6Ds + 0.7EQX 1.3 5.53 5.13 4.2 16.16 0

7 0.6Dead + 0.6Ds + 0.7EQY 1.3 5.53 5.13 3.96 15.92 0

8 Dead + Ds + 0.25Wind X 2.16 9.22 8.55 6.82 26.76 0

9 Dead + Ds + 0.25Wind Y 2.16 9.22 8.55 6.64 26.58 0

SOIL BEARING RESULTS - LINEAR SOIL PRESSURE METHOD

No. Load Combination Max Min X Comp Z Comp Area in % in

Bearing Bearing Len Len Comp Comp

kN/sq m kN/sq m m m sq m

1 Dead + Ds + Lr 32.668 15.103 1.1 1.1 1.21 100

2 Dead + Ds + 0.6Wind X 36.521 7.294 3.557 2.24 1.21 100

3 Dead + Ds + 0.6Wind Y 45.328 0 1.1 1.045 1.15 95.042

4 Dead + Ds + 0.7EQX 34.766 9.764 2.585 3.746 1.21 100

5 Dead + Ds + 0.7EQY 22.437 21.688 1.1 1.1 1.21 100

6 0.6Dead + 0.6Ds + 0.7EQX 23.818 2.899 1.771 4.278 1.21 100

7 0.6Dead + 0.6Ds + 0.7EQY 15.572 10.74 1.1 1.1 1.21 100

8 Dead + Ds + 0.25Wind X 31.182 13.05 7.288 2.555 1.21 100

9 Dead + Ds + 0.25Wind Y 28.851 15.075 1.1 1.1 1.21 100

BEARING PRESSURE CALCULATION FOR UNFACTORED LOAD COMBINATION 3

Eccentricity condition: Ecc in Z direction greater than Kern distance

Eccentricity - Z direction = Ecc,z = 201.461 mm

Eccentricity - X direction = Ecc,x = 0 mm

Total Axial Load = P = 26.07 kN

Footing length = Lx = 1.1 m

Footing width = Lz = 1.1 m

Mat Area A = Lx * Lz = 1.21 sq m

Soil overburden = S = 0 kN/sq m

Gross bearing pressure = Gbp = (2 * P)/((3 * (Lz/2 - Ecc,z) * Lx) 45.328 kN/sq m

Net soil bearing = Nbp = Gbp - S = 45.328 kN/sq m

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:22 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

DETAIL REPORT

STABILITY RATIO CALCULATIONS

No. Load Combination Overturn Resist SRx Overturn Resist SRz

Mom - X Mom - X Mom - Z Mom - Z

kNm kNm kNm kNm

1 Dead + Ds + Lr 0 10.815 100 1.947 10.815 5.556

2 Dead + Ds + 0.6Wind X 1.674 9.922 5.928 1.987 9.5 4.78

3 Dead + Ds + 0.6Wind Y 0 9.256 100 5.248 9.256 1.764

4 Dead + Ds + 0.7EQX 2.191 10.289 4.696 1.131 9.737 8.607

5 Dead + Ds + 0.7EQY 0 9.603 100 0.167 9.687 58.009

6 0.6Dead + 0.6Ds + 0.7EQX 2.191 6.394 2.918 0.679 5.842 8.607

7 0.6Dead + 0.6Ds + 0.7EQY 0 5.708 100 0.536 5.708 10.658

8 Dead + Ds + 0.25Wind X 0.697 9.814 14.072 1.488 9.638 6.477

9 Dead + Ds + 0.25Wind Y 0 9.537 100 1.527 9.537 6.246

Note: Stability ratio values greater than 100 are displayed as 100.

SLIDING RESISTANCE CALCULATION - X DIRECTION - UNFACTORED LOAD COMBINATION 3

Effective footing width = Lz = 1.1 m

Effective footing length = Lx = 1.1 m

Footing thickness in soil = h = 0.3 m

Soil cover = h1 = 0.45 m

Soil unit weight = Y = 18.85 kN/cu m

Passive Pressure at the p1 = Yh1 = 8.482 kN/sq m

top of the base

Passive Pressure at the p2 = Y(h + h1) = 14.138 kN/sq m

bottom of the base

Passive resistance R1 = 0.5*Lz*h*(p1+p2) = 3.732 kN

Cohesion c = 18.96 kN/sq m

Adhesion B = 9 kN/sq m

Cohesive resistance R2 = 2*c*Lz*h = 12.514 kN

Adhesive resistance R3 = B*Lx*Lz = 10.89 kN

Total lateral resistance R = R1+R2+R3 = 27.136 kN

Total applied lateral load S = 0 kN

Sliding Factor of Safety FS,slid = R/S = 100

Note: Sliding factor of safety value greater than 100 is displayed as 100.

SLIDING RESISTANCE CALCULATION - Z DIRECTION - UNFACTORED LOAD COMBINATION 3

Effective footing width = Lx = 1.1 m

Effective footing length = Lz = 1.1 m

Footing thickness in soil = h = 0.3 m

Soil cover = h1 = 0.45 m

Soil unit weight = Y = 18.85 kN/cu m

Passive Pressure at the p1 = Yh1 = 8.482 kN/sq m

top of the base

Passive Pressure at the p2 = Y(h + h1) = 14.138 kN/sq m

bottom of the base

Passive resistance R1 = 0.5*Lx*h*(p1+p2) = 3.732 kN

Cohesion c = 18.96 kN/sq m

Adhesion B = 9 kN/sq m

Cohesive resistance R2 = 2*c*Lx*h = 12.514 kN

Adhesive resistance R3 = B*Lx*Lz = 10.89 kN

Total lateral resistance R = R1+R2+R3 = 27.136 kN

Total applied lateral load S = 2.138 kN

Sliding Factor of Safety FS,slid = R/S = 12.692

Note: Sliding factor of safety value greater than 100 is displayed as 100.

Dimensional Solutions Mat3D Version 6.5.0 Date 1/7/2021

Foundation Name Time 2:45:22 PM

Designed By: PT. SYNERGY ENGINEERING Engineer Checker

Filename: Outdoor Kiosk Foundation Dumai Rev. 0.m3d

DETAIL REPORT

FACTORED LOADS - SOIL BEARING VALUES

No. Load Combination Max X Min X Max Z Min Z

Bearing Bearing Bearing Bearing

kN/sq m kN/sq m kN/sq m kN/sq m

1 1.4Dead + 1.4Ds 31.171 31.171 38.316 24.025

2 1.2Dead + 1.2Ds + 0.5Lr + Wind X 36.345 17.52 41.333 12.532

3 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 26.321 26.321 71.129 0

4 1.2Dead + 1.2Ds + EQX 37.285 16.15 32.842 20.593

5 1.2Dead + 1.2Ds + EQY 26.428 26.428 28.13 24.727

6 0.9Dead + 0.9Ds + EQX 30.606 9.471 24.632 15.445

7 0.9Dead + 0.9Ds + EQY 19.749 19.749 22.982 16.516

8 0.9Dead + 0.9Ds 20.038 20.038 24.632 15.445

9 1.2Dead + 1.2Ds + 0.6Wind X 32.008 20.713 36.347 16.374

10 1.2Dead + 1.2Ds + 0.6Wind Y 25.993 25.993 48.649 3.338

BEAM SHEAR STRESS - X DIRECTION

No. Load Location Shear Shear Allowable Location Shear Shear Allowable

Combination Crit Sect Crit Sect Stress Stress Near Supp Near Supp Stress Stress

m kN N/sq mm N/sq mm m kN N/sq mm N/sq mm

1 1.4Dead + 1.4Ds 0.172 2.003 8.963 570.769 0.172 2.003 8.963 570.769

2 1.2Dead + 1.2Ds + 0.5Lr + Wind X 0.928 -3.257 14.576 570.769 0.928 -3.257 14.576 570.769

3 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 0.172 1.642 7.347 570.769 0.172 1.642 7.347 570.769

4 1.2Dead + 1.2Ds + EQX 0.928 -3.401 15.218 570.769 0.928 -3.401 15.218 570.769

5 1.2Dead + 1.2Ds + EQY 0.172 1.662 7.438 570.769 0.172 1.662 7.438 570.769

6 0.9Dead + 0.9Ds + EQX 0.928 -2.971 13.297 570.769 0.928 -2.971 13.297 570.769

7 0.9Dead + 0.9Ds + EQY 0.928 -1.233 5.518 570.769 0.928 -1.233 5.518 570.769

8 0.9Dead + 0.9Ds 0.928 -1.288 5.762 570.769 0.928 -1.288 5.762 570.769

9 1.2Dead + 1.2Ds + 0.6Wind X 0.928 -2.549 11.408 570.769 0.928 -2.549 11.408 570.769

10 1.2Dead + 1.2Ds + 0.6Wind Y 0.928 -1.58 7.071 570.769 0.928 -1.58 7.071 570.769

BEAM SHEAR STRESS - Z DIRECTION

No. Load Location Shear Shear Allowable Location Shear Shear Allowable

Combination Crit Sect Crit Sect Stress Stress Near Supp Near Supp Stress Stress

m kN N/sq mm N/sq mm m kN N/sq mm N/sq mm

1 1.4Dead + 1.4Ds 0.928 -3.142 14.059 570.769 0.928 -3.142 14.059 570.769

2 1.2Dead + 1.2Ds + 0.5Lr + Wind X 0.928 -4.052 18.133 570.769 0.928 -4.052 18.133 570.769

3 1.2Dead + 1.2Ds + 0.5Lr + Wind Y 0.172 8.686 38.871 570.769 0.172 8.686 38.871 570.769

4 1.2Dead + 1.2Ds + EQX 0.928 -2.693 12.05 570.769 0.928 -2.693 12.05 570.769

5 1.2Dead + 1.2Ds + EQY 0.172 1.933 8.652 570.769 0.172 1.933 8.652 570.769

6 0.9Dead + 0.9Ds + EQX 0.928 -2.02 9.038 570.769 0.928 -2.02 9.038 570.769

7 0.9Dead + 0.9Ds + EQY 0.172 1.748 7.823 570.769 0.172 1.748 7.823 570.769

8 0.9Dead + 0.9Ds 0.928 -2.02 9.038 570.769 0.928 -2.02 9.038 570.769

9 1.2Dead + 1.2Ds + 0.6Wind X 0.928 -3.241 14.502 570.769 0.928 -3.241 14.502 570.769

10 1.2Dead + 1.2Ds + 0.6Wind Y 0.172 5.19 23.226 570.769 0.172 5.19 23.226 570.769

ALLOWABLE BEAM SHEAR STRESS - X DIRECTION - FACTORED LOAD COMBINATION 1

AT A CRITICAL SECTION

Concrete comp strength = fc' = 21 N/sq mm

Approx effective depth = d = 200 mm

Footing width = Lz = 1.1 m

Footing thickness = Df = 0.3 m

Shear strength reduction factor = f = 0.75

Critical section location = l = 0.172 m

__________________________________________________________________________________________________________

LAMPIRAN C

DESAIN SAMBUNGAN

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN C

_________________________________________________________________________________________

LAMPIRAN C - DESAIN SAMBUNGAN

C1. DESAIN BASEPLATE

C1.1 SPESIFIKASI MATERIAL

Structural Steel (ASTM A36, JIS 3101 SS400)

Fu Steel ultimate tensile strength = 400.00 MPa

Fy Steel yield strength = 235.00 MPa

Fb Steel bending strength = 155.00 MPa

Ft Steel tension strength = 141.00 MPa

Fv Steel shear strength = 94.00 MPa

Bolt (ASTM A-325 with Heavy Hex Nuts ASTM A-563 and Washer ASTM F-436)

Fntb Nominal tensile stress of bolt = 620.00 MPa

Fnvb Nominal shear stress of bolt = 372.00 MPa

Anchor Bolt (ASTM F-1554 with Heavy Hex Nuts ASTM A-563 and Washer ASTM F-844)

Futa Specified tensile / shear stress of anchor bolt = 400.00 MPa

Fya Anchor bolt yield strength = 235.00 MPa

Welding (AWS D1.1, E70XX)

Fuw Ultimate welding strength = 480.00 MPa

Fyw Yield welding strength = 400.00 MPa

Concrete (Cement Type 1)

fc' Compressive strength of concrete = 21.00 MPa

C1.2 DIMENSI BASEPLATE

Ukuran Baseplate :

Kolom : H150X150X7X10

D = 150 mm

Bf = 150 mm

tw = 7 mm

tf = 10 mm

Amember = 40.14 cm2

= 4014 mm2

Ukuran Baseplate :

B = 300 mm

N = 300 mm

tb = 16 mm

Ukuran pedestal :

PB = 350 mm

PN = 350 mm

Konfigurasi baut angkur :

na = 4 ea

da = 16 mm

dh = 18 mm

s = 220 mm

N

B

PN

PB

Bf

Ds

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 2

_________________________________________________________________________________________

C1.3 COMPRESSION STRENGTH CHECK

C1.3.1 Concrete Bearing Limit Check

Factor of safety for concrete bearing strength

cc = 2.31 (ASD, AISC 360-16 Sect J8)

Basic equation :

(AISC 360-16 Eq. J8-2)

with shall not exceed 2.00

Where, Pp : Nominal bearing strength of concrete

fc' : Concrete compressive strength = 21 MPa

A1 : Base plate area = B x N = 90000 mm2

A2 : Pedestal area = PB x PN = 122500 mm2

= 1.17 < 2.00

Therefore,

Pp / c = (0.85*21 x 90000 x 1.17) / 2.31

= 811.364 kN

C1.3.2 Base Plate Yielding Limit Check

Factor of safety for plate's yielding limit

yp = 1.67 (ASD, AISC 360-16 Sect J4)

Basic equation :

(AISC, 2005)

With respect to given plate thickness, the equation shall be modified :

Where,

Pa,y : Compressive strength based on plate's yielding limit

tb : the thickness of base plate = 16 mm

Fy : yield strength of base plate material = 235 MPa

B : Base plate's length = 300 mm

N : Base plate's width = 300 mm

l : base plate cantilever dimension, equal to max value of m, n, and n'

m = (B - 0.95D) / 2 = 78.75 mm

n = (N - 0.8Bf) / 2 = 90.00 mm

n' = ((D*Bf)^0.5)/4 = 37.50 mm

( conservatively taken as = 1.00)

l = max (m, n, n')

= max (78.75 , 90 , 37.5)

= 90.00 mm

Therefore,

Py = 200.13 kN

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 3

_________________________________________________________________________________________

C1.3.3 Base plate bending Check

Safety factor for bending b =

Mpa = (Fyp x B x tb2 x 1/4) / b

= Nmm

Pressure at Bottom Plate fp(ax) = Mpa x 2 / (B x m2)

= N/mm2

Pb = fp(ax) x B x N

= N

= kN

C1.3.4 Bearing Stress of Cantilever Base Plate Check

Distance bolt to edge base plate bedge = 40 mm

Bolt arm z = N - (2 x bedge)

= 220 mm

Effective width of plate Beff = [0.5*z - tw*0.5]*2

= mm

Safety factor for bending b =

Mpa = (Fyp x Beff x tp2 x 1/4) / b

= Nmm

fp(ax) = Mpa x 2 / (Beff x m2)

= Nmm

Pc = fp(ax) x Beff x N

= N

= kN

C1.3.5 Govern Compressive Strength

Based on previous calculation,

Pp : Nominal bearing strength of concrete = 811.364 kN

Py : Compressive strength based on plate's yielding limit = 200.13 kN

Pb : Compressive strength based on plate's bending check = 261.40 kN

Pc : Compressive strength based on plate's cantilever check = 4495.96 kN

Pa : Govern compression strength = Max (Pp, Py, Pc, Pc) = 200.13 kN

C1.4 SHEAR STRENGTH CHECK

C1.4.1 Member Shear Strength Check

Factor of safety for element in shear

vm = 1.67 (ASD, AISC 360-16 Sect J4-2)

V1 = 0.6 * Fy * Ag / v (ASD, AISC 360-16 Equation J4-3)

Where, Fy : Yield strength of member = 235.00 MPa

Ag : Member cross-sectional gross area = 4014 mm2

Therefore,

V1 = 0.6 x 235 x 4014 / 1.67

= 338.91 kN

1.67

2701796

2.90

261398

261.40

Moment Capacity Plate at Bending Plane

Allowable Compression of base plate

213.00

4495.96

1.67

1918275

70.36

4495958

Moment Capacity Plate at Bending Plane

Allowable Compression of cantilever

base plate

Pressure at Bottom Cantilever Plate

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 4

_________________________________________________________________________________________

C1.4.2 Welding Shear Strength Check

Factor of safety for welding in shear

w = 2.00 (ASD, AISC 360-16 Table J2.5)

Welding specification :

Weld electrode : (AWS D1.1, E70XX)

tw : Welding thickness = 6 mm

V2 = Fnw * Awe / w (ASD, AISC 360-16 Equation J2-4)

Where, Fnw : Nominal stress of the weld metal

Fnw = 0.60 FEXX (1.0 + 0.5 sin1.5

) (ASD, AISC 360-16 Equation J2-5)

= 360.00 MPa

Lw : Welding length = 2Bf + 2(Bf-tw) + 2(D-2tf)

= 846 mm

Awe : Effective area of the weld = Lw * tw

= 5076 mm2

Therefore,

V2 = Fnw * Aw / w

= 360 x 5076 / 2

= 913.68 kN

C1.4.3 Base Plate Shear Strength Check

C1.4.3.1. Base plate shear yielding

Factor of safety for element in shear

vp = 1.50 (ASD, AISC 360-16 Sect J4-2)

V31 = 0.60 * Fy * Ag / v (ASD, AISC 360-16 Equation J4-3)

Where, Fy : Yield strength of member = 235.00 MPa

Ag : Base plate cross-sectional gross area

Ag = Min (B,N) * tb = 4800 mm2

Therefore,

V31 = 0.60 x 235 x 4800 / 1.5

= 451.20 kN

C1.4.3.2. Base plate shear rupture

Factor of safety for base plate rupture

r = 2.00 (ASD, AISC 360-16 Sect J4-2)

V32 = 0.60 * Fu * An / r (ASD, AISC 360-16 Equation J4-4)

Where, Fu : Ultimate strength of member = 400 MPa

An : Base plate cross-sectional nett area

An = (Min(B,N) - bolt area) * tb

= (Min(B,N) - na/2*dh) * tb = 4224 mm2

Therefore,

V32 = 0.60 x 400 x 4224 / 2

= 506.88 kN

Lw

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 5

_________________________________________________________________________________________

C1.4.3.3. Govern value of base plate shear strength

V31 = 451.20 kN

V32 = 506.88 kN

V3 = Min (T31, T32)

= 451.20 kN

C1.4.4 Anchor Bolt Shear Strength Check

Factor of safety for bolt in shear

b = 2.00 (ASD, AISC 360-16 Sect J3-6)

V4 = 0.6 * Ase,v * futa / b (ASD, ACI 318-14 Eq. 17.5.1.2b)

Where, futa : Specified shear stress of anchor bolt, as a function of fya

fya : Specified yield strength of anchor bolt, obtained from ASTM F1554 Grade 36

futa = 1.9 * fya = 400.00 MPa

Ase,v : Effective cross-sectional area of anchor in shear

Ase,v = na * 0.75 (da - (0.9473 / nt)2

= 1751.36 mm2

nt = 11 threads/in

= 0.4 threads/mm

na = 4 ea

Therefore,

V4 = 0.6 x 400 x 1751.36 / 2

= 210.163 kN

C1.4.5 Govern Shear Strength

Considering shear strength of each connection element, then :

V = Min (V1, V2, V3, V4)

= Min (338.91 , 913.68 , 451.2 , 210.16)

= 210.16 kN

Governed compression capacity C = 200.13 kN

Governed shear capacity V = 210.16 kN

Maximum Support reaction kombinasi beban tidak terfaktor adalah sebagai berikut:

Kondisi Fx (kN) Fy (kN) Fz (kN) Mx (kNm) Mz (kNm)

Max Fx 201 D + LR 0 8.918 -0.632 -1 0

Min Fx 202 D + 0.6 WX -1.794 6.733 -0.785 -1.054 2.837

Max Fy 201 D + LR 0 8.962 -0.735 -1.162 0

Min Fy 207 0.6 D + 0.7 EQZ 0 3.923 -0.143 -0.562 0

Max Fz 202 D + 0.6 WX -0.401 6.572 0.994 0.94 1.674

Min Fz 203 D + 0.6 WZ 0 6.125 -2.144 -3.01 0

Max Mx 201 D + LR 0 8.962 0.735 1.162 0

Min Mx 203 D + 0.6 WZ 0 6.785 -1.904 -3.296 0

Max My 201 D + LR 0 8.918 -0.632 -1 0

Min My 204 D + 0.7 EQX -0.595 7.286 -0.376 -0.594 2.484

Max Mz 202 D + 0.6 WX -1.794 6.733 -0.785 -1.054 2.837

Min Mz 201 D + LR 0 8.918 -0.632 -1 0

0 8.962 0.994 1.162 2.837

-1.794 3.923 -2.144 -3.296 0

Gaya tekan maksimum di support Cmax = 8.96 kN < C = 200.13 kN…OK

Gaya geser maksimum di support Vmax = 2.14 kN < V = 210.16 kN…OK

Max

Min

Kombinasi Beban

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 6

__________________________________________________________________________________________

C2. DESAIN ANCHOR BOLT

C2.1 SPESIFIKASI MATERIAL

Structural Steel (ASTM A36, JIS 3101 SS400)

Fu Steel ultimate tensile strength = MPa

Fy Steel yield strength = MPa

Fb Steel bending strength = MPa

Ft Steel tension strength = MPa

Fv Steel shear strength = MPa

Bolt (ASTM A-325 with Heavy Hex Nuts ASTM A-563 and Washer ASTM F-436)

Fntb Nominal tensile stress of bolt = MPa

Fnvb Nominal shear stress of bolt = MPa

Anchor Bolt (ASTM F-1554 Grade 36 with Heavy Hex Nuts ASTM A-563 and Washer ASTM F-844)

Futa Specified tensile / shear stress of anchor bolt = MPa

Fya Anchor bolt yield strength = MPa

Welding (AWS D1.1, E70XX)

Fuw Ultimate welding strength = MPa

Fyw Yield welding strength = MPa

Concrete (Cement Type 1)

fc' Compressive strength of concrete = MPa

Anchor Bolt F-1554 :

- Anchor bolt end type = Headed

- Anchor marking = M16 = 5/8 "

- Anchor bolt diameter, da = 15 7/8 mm

- Thread per inch = 11 ea

- Tensile strength material, futa = minimum (1.9 fya,860) Mpa

futa = 446.5 MPa

- Gross Area anchor bolt, Ag = 197.93 mm2

Length of Anchor L = 300 mm

Number of threads per inch nth = 11.00 ea (ASTM F-1554)

Number of threads per mm nth = 0.40

Anchor effective section area Ase = 0.25 x x (da-(0.9743/nth))2

(ASTM A307) = 141.85 mm2

Anchor embedment depth minimum hef = 12*da mm (ASCE Anchor Bolt Report)

= 200.00 mm

Concrete thickness ha = 750 mm

372.00

400.00

235.00

480.00

400.00

21.00

400.00

235.00

155.00

141.00

94.00

620.00

hef

F

da

L

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 7

__________________________________________________________________________________________

C2.2 MINIMUM SPACING AND EDGE DISTANCE

C2.2.1 Minimum Spacing Distance

For Non- torqued cast-in achors, ls = 4 * da (ACI 318-14M, Sect 17.7.1)

= 4 * 15.875

= mm

Use Is = mm

C2.3 TENSION CAPACITY CALCULATION

C2.3.1 Check Steel Strength in Tension

Tension reduction factor t,c = 0.75

Anchor's nominal strength in tension Nsa = t,c x Ase x futa (ACI 318-14M, Eq 17.4.1.2)

Where, futa shall not less than 1.9 fya

futa = 1.9 x 235

= Mpa

futa shall not exceed 860 Mpa

fu = MPa … (< 1.9 fya)

Then, futa = Mpa

Thus, the anchor's nominal strength Nsa = 0.75 x 141.85 x 446.5

= kN

C2.3.2 Check Concrete Tensile Breakout Resistance

Projected concrete failure area

Assumed that pedestal is wide, then ANC = ANC0

Modification factors

Modification factors for edge effect, ed, p = 1.00 (assumed ca > 1.5 le)

c, p = 1.25 (cast in anchor)

cp, p = 1.00 (assumed ca > 1.5 le)

kc = 10.00 (cast in anchorage)

a = 1.00 (normal weight concrete)

Condition 1 if hef < mm or hef > mm

Concrete Tensile Breakout Nb1 = (ACI 318M-14, Eq. 17.4.2.2a)

= 10 x 1 x (21^0.5) x (200^1.5)

= 129614.81 N

= 129.61 kN

446.50

47.5

279.4 635.0

63.50

65.00

446.5

400.00

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 8

__________________________________________________________________________________________

Condition 2 if hef mm and hef mm

Concrete Tensile Breakout Nb2 = (ACI 318M-14, Eq. 17.4.2.2b)

= 122243.07 N

= 122.24 kN

Case applied le = 200.00 mm (Condition 1)

Nb = 129.61 kN

Tension reduction factor t,c = 0.75

Concrete Tensile Breakout Resistance Ncb = t,c x (ANC/ANC0) x ed x c x cp) x Nb

= 0.75 x (1.00) x 1 x 1.25 x 1 x 129.61

= 121.51 kN

C2.3.3 Check Pull Strength of Anchor in Tension

Tension reduction factor t,c = 0.75

Modification factor c = 1.00 (assumed to crack in service)

Nut thickness m = 15.48 mm

Width of Nuts S = 26.99 mm

Net bearing area of nut (hexagonal) Abrg = [ 3/2 x S2] - [0.25 x x da

2]

= 432.93 mm2

Pullout strength of single hook anchor Np = 8 * Abrg * fc' (ACI 318M-14, Eq. 17.4.3.4)

= 72732.63 N

= 72.73 kN

Nominal pullout strength Npn = t,c x c x Np (ACI 318M-14, Eq. 17.4.3.1)

= 54.55 kN

C2.3.4 Check Nut Thread Strength

Nut dia. = Anchor dia. Hence, Nut used = M16

Thread area, An = 145.81 mm2

(ASTM A-563M)

Proof load, pn = 610.00 kN (ASTM A-563M)

279.4 635

Nut strength is checked by multiplying thread stress area by proof load test provided in ASTM A563

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 9

__________________________________________________________________________________________

Nominal pullout strength of nut, Npnut = t,c * An * pn

= 66706.32 N

= 66.71 kN

C2.3.5 Govern Tension Strength

Govern Tension Resistance Nr = min ( Nsa, Ncb, Npn, Npnut)

= min (47.5, 121.51, 54.55, 66.71)

= 47.50 kN

C2.4 SHEAR CAPACITY CALCULATION

C2.4.1 Check Anchor Shear Strength

Shear reduction factor, v,b = 0.75

Anchor's nominal strength in tension Vsa = v,b x 0.6 x Ase x futa (ACI 318-14M, Eq 17.5.1.2b)

Where, futa shall not be taken greater than the less of 1.9 fya and 860 Mpa

1.9 fya = 446.50 Mpa … < 860 Mpa

Thus, futa = 446.50 MPa

Thus, the anchor's nominal strength Vsa = 0.75 x 0.6 x 141.85 x 446.5

= 28.50 kN

C2.4.2 Check Concrete Breakout Strength in Shear

Projected concrete failure area

Using the minimum edge distance, le = 65.00 mm

ca1 = 65.00 mm

1.5 ca1 = 97.50 mm

ca2 is assumed similar to ca1, ca2 = 65.00 mm

Since ca2 < 1.5 ca1, then : Avc = 1.5 ca1 (1.5 ca1 + ca2)

= 15843.75 mm2

Avc0 = 4.5 ca12

= 19012.50 mm2

Thus, AVC/AVC0 = 0.83

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 10

__________________________________________________________________________________________

Modification factors

Modification factors for edge effect, ed, V = 0.7 + 0.3 (ca2 / 1.5 ca1)

= 0.90 (c a2 < 1.5 c a1 )

c, V = 1.00 (assumed to crack in service)

h, V = 0.70 (h a < 1.5 c a1 )

Basic concrete break out strength, Vb

Vb is determined as the smaller value between Vb1 and Vb2

Vb1 = (ACI 318M-14, Eq. 17.5.2.2.a)

= 20377.27 N

= 20.38 kN

Vb2 = (ACI 318M-14, Eq. 17.5.2.3)

= 8885.49 N

= 8.89 kN

Vb is the smaller value

Vb = min (Vb1 , Vb2)

= 8.89 kN

Therefore, nominal concrete breakout strength

t,c = 0.75

Vcb =

(ACI 318M-14, Eq. 17.5.2.1a)

= 3.50 kN

C2.4.3 Check Concrete Pryout in Shear

Shear reduction factor v,s = 0.70

Reduction Factor kcp = 2.00 (because le > 2.5 mm)

Concrete pryout in shear Ncp = Ncb

= 121.51 kN

Concrete pryout in shear Vcp = v,c * kcp * Ncp (ACI 318M-14, Eq. 17.5.3.1a)

= 0.7 x 2 x 121.51

= 170.12 kN

C2.4.4 Govern Shear Resistance

Govern Shear Resistance Vr = min ( Vsa, Vcb, Vcp)

= 3.50 kN

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 11

__________________________________________________________________________________________

C2.5 COLUMN ANCHOR BOLT INTERACTION OF TENSILE AND SHEAR

Interaction formula

< 1.2 (ACI 318M-14, Eq. 17.6.3)

Nua + Vua < 1.2

47.50 3.50

Maximum Support reaction kombinasi beban terfaktor adalah sebagai berikut:

301 1.4 D

302 1.2 D + 0.5 LR + 1.0 WX

301 1.4 D

307 0.9 D + 1.0 EQZ

302 1.2 D + 0.5 LR + 1.0 WX

303 1.2 D + 0.5 LR + 1.0 WZ

302 1.2 D + 0.5 LR + 1.0 WX

303 1.2 D + 0.5 LR + 1.0 WZ

301 1.4 D

304 1.2 D + 1.0 EQX

302 1.2 D + 0.5 LR + 1.0 WX

301 1.4 D

Jumlah baut angkur na = 4

Jumlah angkur yang menerima tarik nt = 2

Jarak antar baut s = mm

Gaya tarik terfaktor maksimum di support Nu = kN

Nua = Nu/na + (Mu/(0.5s))/nt

= 0/4 + (5.422/0.11/2)

= kN < Nr = 47.5 kN…OK

Gaya geser terfaktor maksimum di support Vu = kN

Nua = Vu/na

= kN < Nr = 3.5 kN…OK

Pengecekan interaksi tarik dan geser :

24.6 + 0.90 < 1.2

47.5 3.5

0.52 + 0.26 < 1.2 …OK

0.78 < 1.2 …OK

Kondisi Kombinasi Beban Fx (kN) Fy (kN) Fz (kN) Mx (kNm) Mz (kNm

Min Fx -2.99 8.638 -1.261 -1.683 4.728

Max Fx 0 10.2 -0.526 -0.831 0

Min Fy 0 5.904 -0.186 -0.774 0

Max Fy 0 10.2 -0.526 -0.831 0

Min Fz 0 7.919 -3.618 -5.088 0

Max Fz -0.668 8.665 1.611 1.496 2.79

Min Mx 0 9.019 -3.128 -5.422 0

Max Mx -0.668 8.665 1.611 1.496 2.79

Min My -0.85 8.743 -0.451 -0.712 3.549

Max My 0 10.2 -0.526 -0.831 0

Min Mz 0 10.2 -0.526 -0.831 0

Max Mz -2.99 8.638 -1.261 -1.683 4.728

220

0

Gaya tarik terfaktor maksimum per baut

angkur

24.65

3.62

Gaya geser terfaktor maksimum per baut

angkur 0.90

Min -2.99 5.904 -3.618 -5.422 0

Max 0 10.2 1.611 1.496 4.728

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 12

_________________________________________________________________________________________

C3. MOMENT CONNECTION BEAM SH 200 x 100 x 5.5 x 8

16 mm thk plate

SH 200 x 100 x 5.5 x 8 SH 200 x 100 x 5.5 x 8

6 ea M16 bolt

Beam : SH 200 x 100 x 5.5 x 8 Beam : SH 200 x 100 x 5.5 x 8

- h1 = 200 mm - h2 = 200 mm

- bf1 = 100 mm - bf2 = 100 mm

- tw1 = 5.5 mm - tw2 = 5.5 mm

- tf1 = 8 mm - tf2 = 8 mm

- A1 = 27.16 cm2 - Fy2 = 235 Mpa

- S1 = 184 cm3 - Fu2 = 400 Mpa

- Fy1 = 235 Mpa

- Fu1 = 400 Mpa

Lp

a

b

c

Bp

M

V

T

R2

MV

T

R2

d

M

V

T

R2

R1

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 13

_________________________________________________________________________________________

End Plate : Weld E70XX Electrode :

- tp = 16 mm - w = 6 mm

- Lp = 220 mm - Fu = 480 Mpa

- Bp = 120 mm - Fv = 144 Mpa

- Fy = 235 Mpa

- Fu = 400 Mpa

Bolt A-325 :

- db = 16 mm a = 55 mm

- Ft = 300 Mpa b = 55 mm

- Fv = 140 Mpa c = 55 mm

- n = 6 ea d = 55 mm

C3.1 Tension Capacity (T)

a. Allowable Tension of Beam Member (T1)

T1 = A x 0.6 Fy

Where:

A = Cross section area of the member

A = cm2

Fy = Mpa

T1 = kN

b. Allowable Tension of Bolts (T2)

T2 = Ft x Ab x n = kN

c. Allowable Tension of Bolt Bearing on Endplate (T3)

An = tp x ( Lp - n/2 x ( db + 1/8 x 25.4 ) ) = mm2

T3a = 2 x 0.5 x Fu x An = kN

Ag = tp x Lp = mm2

T3b = 0.6 x Fy x Ag = kN

T3 = Min (T3a,T3b) = kN

d. Allowable Tension of Weld (T4)

Effective thickness of weld (te):

te = 0.707 w = mm

Length of weld (Le):

Le = (h1 - 2 x tf1) x 2 = mm

Le =(bf1 - tw1) x 4 = mm

Le =(bf1 x 2) = mm

Total Le = mm

T4 = Le x te x Fv = kN

27.16

235.00

496.3

4.24

368.0

378.0

200.0

946.0

382.96

361.91

2600

1039.84

3520

496.3

577.9

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 14

_________________________________________________________________________________________

C3.2 Shear Capacity (V)

a. Allowable Shear of Beam Member (V1)

V1 = Aw x Fv

Where:

Aw = Area of web, tw x h

Aw = mm2

Fv = Mpa

V1 = kN

b. Allowable Shear of Bolts (V2)

V2 = Fv x Ab x n = 169 kN

c. Allowable Shear of Bolt Bearing on Endplate (V3)

An = tp x ( Lp - n/2 x ( db + 1/16 x 25.4 ) ) = mm2

V3a = 2 x 0.3 x Fu x An = kN

Ag = tp x Lp = mm2

V3b = 0.4 x Fy x Ag = kN

V3 = Min (V3a,V3b) = kN

d. Allowable Shear of Weld (V4)

Effective thickness of weld (te):

te = 0.707 w = mm

Length of weld (Le):

Le = (h1 - 2 x tf1) x 2 = mm

Le =(bf1 - tw1) x 2 = mm

Le =(bf1 x 2) = mm

Total Le = mm

V4 = Le x te x Fv = kN

C3.3 Moment Capacity (M)

a. Allowable Moment of Beam Member (M1)

M1 = Fb x Sx

Where:

Fb = 0.6 Fy

Sx = Section modulus of steel beam

= mm3

Fb = Mpa

M1 = kNm

3520

331

330.9

4.24

368.0

189.0

1100.00

100.00

110.00

2676

642

200.0

757.0

577.9

184000

141.00

25.94

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 15

_________________________________________________________________________________________

b. Allowable Moment of Bolts Arrangement (M2)

55

110

55

55 110 165

55

Center of Gravity Bolt

Y of centerline = Σ (N * y) / Σ N

= 110 mm (From Bottom)

The moment capacity of these bolts will be as follows :

The bolt group modulus in tension region

Z max = mm

Zb = Z2

= 54450 / 165

Z max

= mm

T = (1/4 * * db2) * Ft = kN

M2 = T x Zb = 60.3 x 330

= kNm

Row No. Number of Points, N Distance,

y(mm)N * y(mm

2)

1 0 0 0

2 2 55 110

Σ 6 660

3 2 110 220

4 2 165 330

1 2 165.0 54450

54450

Row No.Number of

bolt, N Distance, Z

N * Z2

mm2

165

330

60.3

19.9

y2

y

x

y3CL

T1

y1

y4

y5

M

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 16

_________________________________________________________________________________________

c. Allowable Moment of Endplate (M3)

Moment Capacity (Refer to AISC, Moment Connection - End Plate)

Pf = 29.0 mm

Minimum end plate width bp = bf1 + 1"

= bf1 + 25.4

= 125.4 mm

End plate width used Bp = 125 mm

Pe = Pf - ( db / 2 ) - 0.707 x w = 16.8 mm

tp = √ ( 6 Me / ( 0.75 Fy x bp ) ) Me = 0.75 Fy x bp x tp2 / 6

= 0.94 kNm

Ca = 1.13 for Fy = 34 ksi

= 235 Mpa

Cb = √ ( bf1 / bp ) = 0.89

Area of beam tension flange Af = bf1 x tf1

= 800 mm2

Area of beam web Aw = (Lp - 2 x (30 + tf1)) x tw1

= 968 mm2

αm = Ca x Cb x ( Af / Aw )1/3

x ( Pe / db )1/4

= 0.96

Me = αm x Ff x Pe / 4 Ff = 4 Me / ( αm x Pe )

= 234 kN

Moment capacity of end plate M3 = Ff x (Lp - 2 x 30 - tf1)

= 36 kNm

d. Allowable Moment of Weld (M4)

Ff = M / z

z = Lp - 2 x 30 - tf1 = 152 mm

Le = bf1 + (bf1 - tw1) = 195 mm

Ff = 118.8 kN

where Ff = Le x te x Fv

M4 = Ff x z / 1000 = 18.1 kNm

Distance from centerline of outer bolt to the nearest

surface of beam tension flange

PePf

T

C

Mz

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 17

_________________________________________________________________________________________

Overall Capacity :

Tension

T1 = kN Tall = kN kN

T2 = kN

T3 = kN

T4 = kN

Shear

V1 = kN Vall = kN kN

V2 = kN

V3 = kN

V4 = kN

Moment

M1 = kNm Mall = kNm kNm

M2 = kNm

M3 = kNm

M4 = kNm

Maximum beam end forces on connection at permanent condition:

Beam : 9

Node : 16

Load Combination : 201 D + LR

Tension force T = kN < Tall = 361.9 kN OK

Shear force V = kN < Vall = 110.0 kN OK

Moment force M = kNm < Mall = 18.1 kNm OK

Combined ratio of moment and tension compared to allowable stress:

T + M < 1

Tall Mall

0.00 + 2.16 < 1

361.9 18.1

0 + 0.12 < 1

0.120 < 1 OK

CapacityAllowable Capacity

Symbol Permanent Temporary

383.0 361.9 481.3

168.9

330.9

577.9

25.9 18.1 24.0

361.9

496.3

361.9

110.0 110.0 146.3

19.9

35.6

18.1

0

3.333

2.163

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 18

_________________________________________________________________________________________

Maximum beam end forces on connection at temporary condition:

Beam : 10

Node : 15

Load Combination : 203 D + 0.6 WZ

Tension force T = kN < Tall = 481 kN OK

Shear force V = kN < Vall = 146.3 kN OK

Moment force M = kNm < Mall = 24.0 kNm OK

Combined ratio of moment and tension compared to allowable stress:

T + M < 1

Tall Mall

0.00 + 2.28 < 1

481 24.0

0 + 0.095 < 1

0.095 < 1 OK

0

1.806

2.281

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 19

_________________________________________________________________________________________

C4. MOMENT CONNECTION BEAM SH 150 x 75 x 5 x 7 TO COLUMN WH 150 x 150 x 7 x 10

16 mm thk plate

SH 150 x 75 x 5 x 7

WH 150 x 150 x 7 x 10

2 ea M16 bolt

Beam : SH 150 x 75 x 5 x 7 Column : WH 150 x 150 x 7 x 10

- h1 = 150 mm - h2 = 150 mm

- bf1 = 75 mm - bf2 = 150 mm

- tw1 = 5 mm - tw2 = 7 mm

- tf1 = 7 mm - tf2 = 10 mm

- A1 = 17.85 cm2 - Fy2 = 235 Mpa

- S1 = 88.8 cm3 - Fu2 = 400 Mpa

- Fy1 = 235 Mpa

- Fu1 = 400 Mpa

Lp

a

b

c

Bp

M

V

T

R3

R1

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 20

_________________________________________________________________________________________

End Plate : Weld E70XX Electrode :

- tp = 16 mm - w = 6 mm

- Lp = 170 mm - Fu = 480 Mpa

- Bp = 95 mm - Fv = 144 Mpa

- Fy = 235 Mpa

- Fu = 400 Mpa

Bolt A-325 :

- db = 16 mm a = 52 mm

- Ft = 300 Mpa b = 66 mm

- Fv = 140 Mpa c = 52 mm

- n = 2 ea

C4.1 Tension Capacity (T)

a. Allowable Tension of Beam Member (T1)

T1 = A x 0.6 Fy

Where:

A = Cross section area of the member

A = cm2

Fy = Mpa

T1 = kN

b. Allowable Tension of Bolts (T2)

T2 = Ft x Ab x n = kN

17.85

235.00

251.69

120.64

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 21

_________________________________________________________________________________________

c. Allowable Tension of Bolt Bearing on Endplate (T3)

An = tp x ( Lp - n/2 x ( db + 1/8 x 25.4 ) ) = mm2

T3a = 2 x 0.5 x Fu x An = kN

Ag = tp x Lp = mm2

T3b = 0.6 x Fy x Ag = kN

T3 = Min (T3a,T3b) = kN

d. Allowable Tension of Weld (T4)

Effective thickness of weld (te):

te = 0.707 w = mm

Length of weld (Le):

Le = (h1 - 2 x tf1) x 2 = mm

Le =(bf1 - tw1) x 4 = mm

Le =(bf1 x 2) = mm

Total Le = mm

T4 = Le x te x Fv = kN

C4.2 Shear Capacity (V)

a. Allowable Shear of Beam Member (V1)

V1 = Aw x Fv

Where:

Aw = Area of web, tw x h

Aw = mm2

Fv = Mpa

V1 = kN

b. Allowable Shear of Bolts (V2)

V2 = Fv x Ab x n = 56 kN

c. Allowable Shear of Bolt Bearing on Endplate (V3)

An = tp x ( Lp - n/2 x ( db + 1/16 x 25.4 ) ) = mm2

V3a = 2 x 0.3 x Fu x An = kN

Ag = tp x Lp = mm2

V3b = 0.4 x Fy x Ag = kN

V3 = Min (V3a,V3b) = kN

4.24

272.0

280.0

150.0

702.0

428.8

2413

965.28

2720

383.5

383.5

256

255.7

750.00

100.00

75.00

2439

585

2720

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 22

_________________________________________________________________________________________

d. Allowable Shear of Weld (V4)

Effective thickness of weld (te):

te = 0.707 w = mm

Length of weld (Le):

Le = (h1 - 2 x tf1) x 2 = mm

Le =(bf1 - tw1) x 2 = mm

Le =(bf1 x 2) = mm

Total Le = mm

V4 = Le x te x Fv = kN

C4.3 Moment Capacity (M)

a. Allowable Moment of Beam Member (M1)

M1 = Fb x Sx

Where:

Fb = 0.6 Fy

Sx = Section modulus of steel beam

= mm3

Fb = Mpa

M1 = kNm

b. Allowable Moment of Bolts Arrangement (M2)

52

85

66

85 118

52

4.24

272.0

140.0

150.0

562.0

428.8

88800

141.00

12.52

y2

y

x

CL

T1

y1

y3

y4

M

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 23

_________________________________________________________________________________________

Center of Gravity Bolt

Y of centerline = Σ (N * y) / Σ N

= 85 mm (From Bottom)

The moment capacity of these bolts will be as follows :

The bolt group modulus in tension region

Z max = mm

Zb = Z2

= 27848 / 118

Z max

= mm

T = (1/4 * * db2) * Ft = kN

M2 = T x Zb = 60.3 x 236

= kNm

Row No. Number of Points, N Distance,

y(mm)N * y(mm

2)

3 2 118 236

1 0 0 0

2 2 52 104

1 2 118.0 27848

27848

Σ 4 340

Row No.Number of

bolt, N Distance, Z

N * Z2

mm2

118

236

60.3

14.2

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 24

_________________________________________________________________________________________

c. Allowable Moment of Endplate (M3)

Moment Capacity (Refer to AISC, Moment Connection - End Plate)

Pf = 27.0 mm

Minimum end plate width bp = bf1 + 1"

= bf1 + 25.4

= 100.4 mm

End plate width used Bp = 100 mm

Pe = Pf - ( db / 2 ) - 0.707 x w = 14.8 mm

tp = √ ( 6 Me / ( 0.75 Fy x bp ) ) Me = 0.75 Fy x bp x tp2 / 6

= 0.76 kNm

Ca = 1.13 for Fy = 34 ksi

= 235 Mpa

Cb = √ ( bf1 / bp ) = 0.86

Area of beam tension flange Af = bf1 x tf1

= 525 mm2

Area of beam web Aw = (Lp - 2 x (30 + tf1)) x tw1

= 620 mm2

αm = Ca x Cb x ( Af / Aw )1/3

x ( Pe / db )1/4

= 0.91

Me = αm x Ff x Pe / 4 Ff = 4 Me / ( αm x Pe )

= 227 kN

Moment capacity of end plate M3 = Ff x (Lp - 2 x 30 - tf1)

= 23 kNm

Distance from centerline of outer bolt to the nearest

surface of beam tension flange

PePf

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 25

_________________________________________________________________________________________

d. Allowable Moment of Weld (M4)

Ff = M / z

z = Lp - 2 x 30 - tf1 = 103 mm

Le = bf1 + (bf1 - tw1) = 145 mm

Ff = 88.57 kN

where Ff = Le x te x Fv

M4 = Ff x z / 1000 = 9.1 kNm

Overall Capacity :

Tension

T1 = kN Tall = kN kN

T2 = kN

T3 = kN

T4 = kN

Shear

V1 = kN Vall = kN kN

V2 = kN

V3 = kN

V4 = kN

Moment

M1 = kNm Mall = kNm kNm

M2 = kNm

M3 = kNm

M4 = kNm

CapacityAllowable Capacity

Symbol Permanent Temporary

251.7 120.6 160.5

56.3

255.7

428.8

12.5 9.1 12.1

120.6

383.5

120.6

75.0 56.3 74.9

14.2

23.4

9.1

T

C

Mz

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 26

_________________________________________________________________________________________

Maximum beam end forces on connection at permanent condition:

Beam : 15

Node : 15

Load Combination : 201 D + LR

Tension force T = kN < Tall = 120.6 kN OK

Shear force V = kN < Vall = 56.3 kN OK

Moment force M = kNm < Mall = 9.1 kNm OK

Combined ratio of moment and tension compared to allowable stress:

T + M < 1

Tall Mall

0.27 + 0.26 < 1

120.6 9.1

0.002 + 0.028 < 1

0.030 < 1 OK

Maximum beam end forces on connection at temporary condition:

Beam : 15

Node : 15

Load Combination : 204 D + 0.7 EQX

Tension force T = kN < Tall = 160 kN OK

Shear force V = kN < Vall = 74.9 kN OK

Moment force M = kNm < Mall = 12.1 kNm OK

Combined ratio of moment and tension compared to allowable stress:

T + M < 1

Tall Mall

0.15 + 0.14 < 1

160 12.1

9E-04 + 0.012 < 1

0.013 < 1 OK

0.149

0.451

0.142

0.267

0.811

0.256

DMAI-PLTS-CIV-CA-003_REV 0________________________________________________________________________________________

LAMPIRAN C - HALAMAN 27

________________________________________________________________________________________

C5. DESAIN SHEAR CONNECTION

C5.1 SPESIFIKASI MATERIAL

Structural Steel (ASTM A36, JIS 3101 SS400)

Fu Steel ultimate tensile strength 400 MPa

Fy Steel yield strength 235 MPa

Fb Steel bending strength 155 MPa

Ft Steel tension strength 141 MPa

Fv Steel shear strength 94 MPa

Bolt (ASTM A-325 with Heavy Hex Nuts ASTM A-563 and Washer ASTM F-436)

Fntb Nominal tensile stress of bolt 620 MPa

Fnvb Nominal shear stress of bolt 372 MPa

Anchor Bolt (ASTM F-1554 with Heavy Hex Nuts ASTM A-563 and Washer ASTM F-844)

Futa Specified tensile / shear stress of anchor bolt 400 MPa

Fya Anchor bolt yield strength 235 MPa

Welding (AWS D1.1, E70XX)

Fuw Ultimate welding strength 480 MPa

Fyw Yield welding strength 400 MPa

Concrete (Cement Type 1)

fc' Compressive strength of concrete 21 MPa

C5.2 CONNECTION TO BE CHECKED

Given beam to column shear connection design :

Beam member : WF-150x75x5x7

D = 150 mm

Bf = 75 mm

tw = 5 mm

tf = 7 mm

Amember = 17.85 cm2

= 1785 mm2

Gusset plate size :

Lg1 = 163 mm

Lg2 = 143 mm

wg = 80 mm

tg = 9 mm

Spacings

lh = 35 mm

lu = 25 mm

L = 75 mm

k = 25 mm

Bolt configuration :

nb = 2 ea

nr = 1

db = 16 mm

dh = 18 mm

Lg1

wg

Lg2

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 28

________________________________________________________________________________________

C5.3 SHEAR STRENGTH CHECK

C5.3.1 Member Shear Strength Check

Factor of safety for element in shear

vm = 1.67 (ASD, AISC 360-16 Sect G.1)

V1 = 0.6 * Fy * Ag / v (ASD, AISC 360-16 Equation G2-1)

Where, Fy : Yield strength of member = 235.00 MPa

Ag : Member cross-sectional gross area

Ag = Amember - Aflange,bottom = 1785-525

= 1260 mm2

Therefore,

V1 = 0.6 x 235 x 1260 / 1.67

= 106.38 kN

C5.3.2 Gusset Shear Strength Check

C4.3.2.1. Gusset plate shear yielding

Factor of safety for gusset plate yielding

yp = 1.50 (ASD, AISC 360-16 Sect J4-2)

V21 = 0.6 * Fy * Ag / yp (ASD, AISC 360-16 Equation J4-3)

Where, Fy : Yield strength of member = 235.00 MPa

Ag : Gusset plate cross-sectional gross area at shear direction

Ag = wg * tg = 720 mm2

Therefore,

V21 = 0.6 x 235 x 720 / 1.5

= 67.68 kN

C4.3.2.1. Gusset plate shear rupture

Factor of safety for gusset plate in rupture

r = 2.00 (ASD, AISC 360-16 Sect J4-2)

V22 = 0.60 * Fu * An / r (ASD, AISC 360-16 Equation J4-4)

Where, Fu : Ultimate strength of member = 400.00 MPa

An : Gusset plate cross-sectional nett area at shear direction

An = (wg - bolt area) * tg

= (wg - nr*dh) * tg = 558 mm2

Therefore,

V22 = 0.60 x 400 x 558 / 2

= 66.96 kN

C4.3.2.3. Govern value of gusset plate shear strength

V21 = 67.68 kN

V22 = 66.96 kN

V2 = Min (V31, V32)

= 66.96 kN

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 29

________________________________________________________________________________________

C5.3.3 Welding Shear Strength Check

Factor of safety for welding in shear

w = 2.00 (ASD, AISC 360-16 Table J2.5)

Welding specification :

Weld electrode : (AWS D1.1, E70XX)

tw : Welding thickness = 5 mm

V3 = Fnw * Awe / w (ASD, AISC 360-16 Equation J2-4)

Where, Fnw : Nominal stress of the weld metal

Fnw = 0.60 FEXX (1.0 + 0.5 sin1.5

) (ASD, AISC 360-16 Equation J2-5)

= 240.00 MPa

Lw : Welding length = Lg1 (1 side only)

= 163 mm

Awe : Effective area of the weld = Lw * tw

= 815 mm2

Therefore,

V3 = Fnw * Aw / w

= 240 x 815 / 2

= 97.80 kN

C5.3.4 Bolt Shear Strength Check

Factor of safety for bolt in shear

b = 2.00 (ASD, AISC 360-16 Sect J3-6)

V4 = Fn * At / b

Where, Fn : Nominal shear stress of bolts

Fn is obtained from table J3.2 of AISC 360-16 = 372.00 MPa

At : Nominal unthreaded body area of bolt

At = nb [0.25 (db - 0.9473 / nt)^2] = 291.893 mm2

nt = 0.4 threads/mm (ASTM A325)

nr = 2 ea

Therefore,

V4 = 372 x 291.89 / 2

= 54.29 kN

Lg

1 SIDE GUSSET

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 30

________________________________________________________________________________________

C5.3.5 Govern Shear Strength

Considering shear strength of each connection element, then :

V = Min (V1, V2, V3, V4)

= Min (106.38 , 66.96 , 97.8 , 54.29)

= 54.29 kN

C5.4 TENSION STRENGTH CHECK

C5.4.1 Plate Tension Strength Check

C4.4.1.1. Gusset plate tensile yielding

Factor of safety for tensile yielding

yp = 1.67 (ASD, AISC 360-16 Sect J4-1)

T11 = Fy * Ag / yp (ASD, AISC 360-16 Equation J4-1)

Where, Fy : Yield strength of member = 235.00 MPa

Ag : Gusset plate cross-sectional gross area at tension direction

Ag = Lg2 * tg = 1287 mm2

Therefore,

T11 = 235 x 1287 / 1.67

= 181.10 kN

C4.4.1.2. Gusset plate tensile rupture

Factor of safety for tensile rupture

r = 2.00 (ASD, AISC 360-16 Sect J4-1)

T12 = Fu * An / r (ASD, AISC 360-16 Equation J4-2)

Where, Fu : Ultimate strength of member = 400.00 MPa

An : Gusset plate cross-sectional nett area at tension direction

An = (Lg2 - bolt area) * tg

= (Lg2 - nb*dh) * tg = 963 mm2

Therefore,

T12 = 400 x 963 / 2

= 192.6 kN

C4.4.1.3. Govern value of gusset plate shear strength

T11 = 181.10 kN

T12 = 192.6 kN

T1 = Min (T11, T12)

= 181.10 kN

C5.4.2 Welding Tension Strength Check

Factor of safety for welding in tension

wt = 1.88 (ASD, AISC 360-16 Table J2.5)

Welding specification :

Weld electrode : (AWS D1.1, E70XX)

tw : Welding thickness = 6 mm

T2 = Fnw * Awe / w (ASD, AISC 360-16 Equation J2-4)

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 31

________________________________________________________________________________________

Where, Fnw : Nominal stress of the weld metal

Fnw = 0.60 FEXX (1.0 + 0.5 sin1.5

) (ASD, AISC 360-16 Equation J2-5)

= 360.00 MPa

Lw : Welding length = Lg1 (1 side only)

= 163 mm

Awe : Effective area of the weld = Lw * tw

= 978 mm2

Therefore,

T2 = Fnw * Aw / w

= 360 x 978 / 1.88

= 187.28 kN

C5.4.3 Bolt Shear Strength Check (Tension to Connection Applied)

Factor of safety for bolt in shear

b = 2.00 (ASD, AISC 360-16 Sect J3-6)

T3 = Fn * At / b

Where, Fn : Nominal shear stress of bolts

Fn is obtained from table J3.2 of AISC 360-16 = 372.00 MPa

At : Nominal unthreaded body area of bolt

Ab = nb [0.25 (db - 0.9473 / nt)^2] = 291.893 mm2

nt = 0.4 threads/mm (ASTM A325)

nb = 2 ea

Therefore,

T3 = 372 x 291.89 / 2

= 54.29 kN

C5.4.4 Govern Tensile Strength

Considering shear strength of each connection element, then :

T = Min (T1, T2, T3, T4)

= Min (181.1 , 187.28 , 54.29)

= 54.29 kN

Governed tension capacity T = 54.29 kN

Governed shear capacity V = 54.29 kN

Maximum beam end force beam kombinasi beban tidak terfaktor adalah sebagai berikut:

Kondisi Fx (kN) Fy (kN) Fz (kN) Mx (kNm) Mz (kNm)

Max Fx 202 D + 0.6 WX 0.435 0.226 0 0 0

Min Fx 204 D + 0.7 EQX 0 0.226 0 0 0

Max Fy 201 D + LR 0 0.226 0 0 0

Min Fy 201 D + LR 0 -0.226 0 0 0

Max Fz 203 D + 0.6 WZ 0 0.226 0 0 0

Min Fz 203 D + 0.6 WZ 0 0.226 0 0 0

Max Mx 203 D + 0.6 WZ 0 0.226 0 0 0

Min Mx 203 D + 0.6 WZ 0 0.226 0 0 0

Max My 201 D + LR 0 0.226 0 0 0

Min My 201 D + LR 0 0.226 0 0 0

Max Mz 201 D + LR 0 0.226 0 0 0

Min Mz 201 D + LR 0 0.226 0 0 0

0.435 0.226 0 0 0

0 -0.226 0 0 0

Gaya tarik maksimum di beam Tmax = 0.00 kN < T = 54.29 kN…OK

Gaya geser maksimum di beam Vmax = 0.23 kN < V = 54.29 kN…OK

Kombinasi Beban

Max

Min

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN C - HALAMAN 32

__________________________________________________________________________________________________________

LAMPIRAN D

STAAD PRO INPUT

DMAI-PLTS-CIV-CA-003_REV 0__________________________________________________________________________________________________________

LAMPIRAN D

_________________________________________________________________________________________

LAMPIRAN D - STAAD PRO INPUTSTAAD SPACE

START JOB INFORMATION

ENGINEER DATE 7-Jan-21

END JOB INFORMATION

INPUT WIDTH 79

UNIT METER KN

JOINT COORDINATES

1 0 0 5; 2 0 0 0; 3 3 0 5; 4 3 0 0; 5 6 0 5; 6 6 0 0; 7 0 3.977 -0.6;

8 0 3.977 5.6; 9 3 3.977 5.6; 10 3 3.977 -0.6; 11 6 3.977 5.6; 12 6 3.977 -0.6;

13 0 4.175 5; 14 0 4.175 0; 15 3 4.175 5; 16 3 4.175 0; 17 6 4.175 5;

18 6 4.175 0; 19 0 5 2.5; 20 3 5 2.5; 21 6 5 2.5;

MEMBER INCIDENCES

1 1 13; 2 2 14; 3 3 15; 4 4 16; 5 5 17; 6 6 18; 7 14 19; 8 19 13; 9 16 20;

10 20 15; 11 18 21; 12 21 17; 13 13 8; 14 7 14; 15 15 9; 16 10 16; 17 17 11;

18 12 18; 19 13 15; 20 14 16; 21 15 17; 22 16 18;

DEFINE MATERIAL START

ISOTROPIC STEEL

E 2.05e+008

POISSON 0.3

DENSITY 76.8195

ALPHA 1.2e-005

DAMP 0.03

TYPE STEEL

STRENGTH RY 1.5 RT 1.2

END DEFINE MATERIAL

MEMBER PROPERTY JAPANESE

1 TO 6 TABLE ST H150X150X7X10

7 TO 12 TABLE ST H200X100X5.5X8

13 TO 18 TABLE ST H150X75X5X7

19 TO 22 TABLE ST H150X75X5X7

CONSTANTS

BETA 90 MEMB 1 TO 6

MATERIAL STEEL ALL

SUPPORTS

1 TO 6 FIXED

MEMBER RELEASE

19 TO 22 START MY MZ

19 TO 22 END MY MZ

DEFINE REFERENCE LOADS

LOAD R1 LOADTYPE Dead TITLE REF 1 SELFWEIGHT

SELFWEIGHT Y -1.1

LOAD R2 LOADTYPE Dead TITLE REF 2 DEAD

MEMBER LOAD

7 8 11 TO 14 17 18 UNI GY -0.5

9 10 15 16 UNI GY -0.6

1 2 5 6 UNI GY -0.8

3 4 UNI GY -0.6

LOAD R3 LOADTYPE Live TITLE REF 3 ROOF LIVE

MEMBER LOAD

7 8 11 TO 14 17 18 UNI GY -0.5

9 10 15 16 UNI GY -0.6

LOAD R5 LOADTYPE None TITLE REF 5 WIND WX

MEMBER LOAD

1 2 UNI GX 0.89

5 6 UNI GX 0.39

2 6 UNI GZ -0.24

4 UNI GZ -0.47

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN G - HALAMAN 2

_________________________________________________________________________________________

1 5 UNI GZ 0.24

3 UNI GZ 0.47

7 11 14 18 UNI Y 0.1

9 16 UNI Y 0.12

8 12 13 17 UNI Y 0.39

10 15 UNI Y 0.47

LOAD R6 LOADTYPE None TITLE REF 6 WIND WZ

MEMBER LOAD

2 6 UNI GZ 0.53

4 UNI GZ 1.06

1 5 UNI GZ 0.24

3 UNI GZ 0.47

7 11 14 18 UNI Y 0.1

9 16 UNI Y 0.12

8 12 13 17 UNI Y 0.39

10 15 UNI Y 0.47

END DEFINE REFERENCE LOADS

LOAD 1 LOADTYPE None TITLE EQX

JOINT LOAD

13 TO 18 FX 0.85

LOAD 2 LOADTYPE None TITLE EQZ

JOINT LOAD

13 TO 18 FZ 0.57

LOAD 3 LOADTYPE Dead TITLE D

REFERENCE LOAD

R2 1.0 R1 1.0

LOAD 4 LOADTYPE Live TITLE LR

REFERENCE LOAD

R3 1.0

LOAD 8 LOADTYPE None TITLE WIND WX

REFERENCE LOAD

R5 1.0

LOAD 9 LOADTYPE None TITLE WIND WZ

REFERENCE LOAD

R6 1.0

*UNFACTORED LOAD COMBINATION*

LOAD COMB 201 D + LR

3 1.0 4 1.0

LOAD COMB 202 D + 0.6 WX

3 1.0 8 0.6

LOAD COMB 203 D + 0.6 WZ

3 1.0 9 0.6

LOAD COMB 204 D + 0.7 EQX

3 1.0 1 0.7

LOAD COMB 205 D + 0.7 EQZ

3 1.0 2 0.7

LOAD COMB 206 0.6 D+ 0.7 EQX

3 0.6 1 0.7

LOAD COMB 207 0.6 D + 0.7 EQZ

3 0.6 2 0.7

LOAD COMB 216 D + 0.25 WX

3 1.0 8 0.25

LOAD COMB 217 D + 0.25 WZ

3 1.0 9 0.25

*FACTORED LOAD COMBINATION

LOAD COMB 301 1.4 D

3 1.4

LOAD COMB 302 1.2 D + 0.5 LR + 1.0 WX

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN G - HALAMAN 3

_________________________________________________________________________________________

3 1.2 4 0.5 8 1.0

LOAD COMB 303 1.2 D + 0.5 LR + 1.0 WZ

3 1.2 4 0.5 9 1.0

LOAD COMB 304 1.2 D + 1.0 EQX

3 1.2 1 1.0

LOAD COMB 305 1.2 D + 1.0 EQZ

3 1.2 2 1.0

LOAD COMB 306 0.9 D + 1.0 EQX

3 0.9 1 1.0

LOAD COMB 307 0.9 D + 1.0 EQZ

3 0.9 2 1.0

LOAD COMB 316 1.2 D + 0.5 WX

3 1.2 8 0.5

LOAD COMB 317 1.2 D + 0.5 WZ

3 1.2 9 0.5

PERFORM ANALYSIS

DEFINE ENVELOPE

201 TO 207 216 217 ENVELOPE 1 TYPE SERVICEABILITY

301 TO 307 316 317 ENVELOPE 2 TYPE STRENGTH

END DEFINE ENVELOPE

PARAMETER 1

CODE AISC UNIFIED 2010

METHOD LRFD

MAIN 200 ALL

KY 0.65 MEMB 19 TO 22

FYLD 235000 ALL

PERFORM ANALYSIS

CHECK CODE ALL

STEEL TAKE OFF ALL

PERFORM ANALYSIS PRINT LOAD DATA

FINISH

DMAI-PLTS-CIV-CA-003_REV 0

_______________________________________________________________________________________

LAMPIRAN G - HALAMAN 4