Single Stage Amplifier

52
Small Signal Model 1 SEL 4283 Analog CMOS IC Design Single Stage Amplifiers

Transcript of Single Stage Amplifier

Small Signal Model 1

SEL 4283 Analog CMOS IC DesignSingle Stage Amplifiers

Small Signal Model 2

Small Signal Model 3

Small Signal Model 4

Small Signal Model 5

Single Stage Amplifiers 6

Types of Amplifier

Most CMOS amplifiers are transconductance amplifier• large input resistance• fairly large output resistance

If load resistance is high, CMOS transconductance amplifier is essentially a voltage amplifier.

Type Gain = Output/Input

Ideal Rin

Ideal Rout

Voltage Av = vout/vin ∞ 0Current Ai = iout/iin 0 ∞Tranconductance

Gm = iout/vin ∞ ∞

Transresistance

Rm = vout/iin 0 0

Single Stage Amplifiers 7

Characterization of AmpLarge signal static characterization

• plot of output versus input (transfer curve)• large signal gain• output and input swing limits

Small signal static characterization• AC gain• AC input resistance• AC output resistance

Small signal dynamic characterization• bandwidth• noise• power supply rejection

Large signal dynamic characterization• slew rate• nonlinearity

When designing amplifier, we need to optimize for some performance parameters.

The parameters trade performance with each other

Single Stage Amplifiers 8

Components of CMOS Voltage Amp

Single Stage Amplifiers 9

MOSFET Single Transistor Amp Configurations

Two categories of amplifier• noninverting

input and output in phase common gate common drain

• inverting input and output out of phase

common source common source with degeneration

(also called source follower)

Common Source with Source Degeneration

Single Stage Amplifiers 10

Inverter as AmpInverter circuits

• inverters are also common source amps

Single Stage Amplifiers 11

Active Load CS AmpIV plot

Single Stage Amplifiers 12

Active Load CS Amp – cont.Voltage Transfer Characteristic (VTC)

Single Stage Amplifiers 13

Active Load CS Amp – cont.Spice code for VTC

* simulation file for 0.25 micron CS amp

vvdd vdd 0 2.5* dc analysisvin in 0.dc vin 0 2.5 0.1.print dc v(out)

M2 out out vdd vdd CMOSP L=1u W=1uM1 0 in out 0 CMOSN L=1u W=2u

.include TSMC_SCN025Parameters.txt*.model CMOSN nmos level=1 VTO=0.43 KP=115u LAMBDA=0.06 GAMMA=0.4 PHI=0.3*.model CMOSP pmos level=1 VTO=-0.4 KP=30u LAMBDA=0.1 GAMMA=0.4 PHI=0.3.end

Single Stage Amplifiers 14

Active Load CS Amp – cont.Large-signal voltage swing

• max output voltage vIN = 0 vOUT(max) = VDD - |VTP|

• min output voltage vIN = VDD

M1 linear, M2 sat assume |VTP| = VTN, ignore λ

2

2

21

2

21

2

VvVvVVv

VvvVvv

TOUTDDPOUT

TDDOUTN

TGSPPDSN

TGSNDSNN

N

PTDDOUT VV(minv

1

11)

Single Stage Amplifiers 15

Active Load CS Amp – cont.Small-signal characteristics

• small-signal model assume low-frequency input signal – all

capacitors ignored!

• to find voltage gain gm1vin + vout/rds1 + gm2vout + vout/rds2 = 0

gm1vin + gds1vout + gm2vout + gds2vout = 0• voltage gain

WLKLWK

gg

gggg

vv

P

N

m

m

mdsds

m

in

out

21'

21'

2

1

221

1

ILW

KVILW

Kg DDSDm'' 212

Single Stage Amplifiers 16

Active Load CS Amp – cont.Small-signal characteristics

• small-signal model for output resistance

• to find output resistance vout/rds1 + gm2vout + vout/rds2 = iout

gds1vout + gm2vout + gds2vout = iout

• output resistance ggrrgggi

vRmm

dsdsmdsdsout

outout

2221

221

111

Single Stage Amplifiers 17

Active Load CS Amp – cont.

Characteristics

• voltage gain is not a function of bias current linearity quite good

• gain is a weak function (square root) of transistor sizes

must change W1/W2 by considerable amount to increase gain

WLKLWK

vv

P

N

in

out

21'

21'

Single Stage Amplifiers 18

Exercise 3-1 For CS amp with resistive load

a) prove that voltage gain vout/vin = -gm1(RL||rds1)b) prove that Rout = RL||rds1c) in terms of linearity, explain why this amp is

worse than active load CS amp

vIN

R L

M 1

VDD

vOUT

Single Stage Amplifiers 19

Exercise 3-2 For diode-connected pMOS circuit

a) prove that input resistance Rin =

b) rederive the voltage gain equation for the active load CS amp by replacing M2 with its equivalent resistance

R in

M 2

VDD

grm

ds2

21

vIN M 1

VDD

vOUT vIN

R L

M 1

VDD

vOUT

M 2

Single Stage Amplifiers 20

Exercise 3-3 For active load CS amp TSMC 0.25 μm circuit with parameters

The circuit is biased with VIN = 0.7 V.a) calculate gm1

b) repeat for gm2c) calculate voltage gaind) calculate rds1

e) calculate rds2

f) calculate Rout

VT0 (V)

K’ (A/V2)

(V-

1)NMOS 0.43 115 x

10-60.06

PMOS -0.4 -30 x 10-6

-0.1vIN M 1

VDD = 2.5 V

vOUT

M 2

mm

LW

12

1

1

mm

LW

11

2

2

CS Amp with Current Source Load IV plot

vIN M 1

VDD = 2.5 V

vOUT

M 2

mm

LW

12

1

1

mm

LW

12

2

2

VB = 1.2 V

Single Stage Amplifiers 21

CS Amp with Current Source Load – cont.

VTC

vIN M 1

VDD = 2.5 V

vOUT

M 2

mm

LW

12

1

1

mm

LW

12

2

2

VB = 1.2 V

Single Stage Amplifiers 22

CS Amp with Current Source Load – cont.

Spice code for VTC

vIN M 1

VDD = 2.5 V

vOUT

M 2

mm

LW

12

1

1

mm

LW

12

2

2

VB = 1.2 V* simulation file for 0.25 micron CS amp using level 49 model

vvdd vdd 0 2.5* dc analysisvin in 0.dc vin 0 2.5 0.01.print dc v(out)

M2 out vb vdd vdd CMOSP L=1u W=2uM1 out in 0 0 CMOSN L=1u W=2uvvb vb 0 1.2

.include TSMC_SCN025Parameters.txt*.model CMOSN nmos level=1 VTO=0.43 KP=115u LAMBDA=0.06 GAMMA=0.4 PHI=0.3*.model CMOSP pmos level=1 VTO=-0.4 KP=30u LAMBDA=0.1 GAMMA=0.4 PHI=0.3.end

Single Stage Amplifiers 23

CS Amp with Current Source Load – cont.

Large-signal voltage swing• max output voltage

vIN = 0 M2 always on

vOUT(max) = VDD

• min output voltage vIN = VDD

vOUT should be very small» M1 linear, M2 sat

assume |VTP| = VTN, ignore λ

Single Stage Amplifiers 24

vIN M 1

VDD = 2.5 V

vOUT

M 2

mm

LW

12

1

1

mm

LW

12

2

2

VB = 1.2 V

221

222

1111

21

2

21

2

VVVvVVv

VvvVvv

TDD BOUT

TDDOUT

TSGDS

TGSDS

VVVVVVVv TBDDTDDTDDOUT 2

1

22min

VVVVVVV TBDDTDDTDD 2

1

22

vOUT cannot exceed VDD

CS Amp with Current Source Load – cont.

Small-signal characteristics• small-signal model

• to find voltage gaingm1vin + vout/rds1 + vout/rds2 = 0gm1vin + gds1vout + gds2vout = 0

• voltage gain

Single Stage Amplifiers 25

IILWK

II

ILWK

ggg

vv

DD

N

DD

DN

dsds

m

in

out 1212

1

1'

2121

1

1'

21

1

IVIg DS

DS

DSds

1

CS Amp with Current Source Load – cont.

Small-signal characteristics• small-signal model

• to find output resistance, set vin = 0 gm1vin = 0

• output resistance

Single Stage Amplifiers 26

212121

11

IggrrRDdsds

dsdsout

Exercise 3-4 For CS amp with current source load with TSMC 0.25 μm parameters

The circuit is biased such that the DC voltage for vOUT is 1.3 V.a) calculate the DC value for input vINb) calculate gm1

c) calculate rds1

d) calculate rds2

e) calculate voltage gainf) calculate Rout

Single Stage Amplifiers 27

VT0 (V)

K’ (A/V2)

(V-

1)NMOS 0.43 115 x

10-60.06

PMOS -0.4 -30 x 10-6

-0.1vIN M 1

VDD = 2.5 V

vOUT

M 2

mm

LW

12

1

1

mm

LW

12

2

2

VB = 1.2 V

CS Amp with Push-Pull Load Digital inverter circuit IV plot

Single Stage Amplifiers 28

vIN M 1

VDD = 2.5 V

vOUT

M 2 mm

LW

12

2

2

mm

LW

11

1

1

CS Amp with Push-Pull Load – cont.

VTC

Single Stage Amplifiers 29

vIN M 1

VDD = 2.5 V

vOUT

M 2 mm

LW

12

2

2

mm

LW

11

1

1

Level 1 model

Level 49 model

CS Amp with Push-Pull Load – cont.

Spice code for VTC* INVL49 sub-circuit.subckt INVL49 in out vddM2 out in vdd vdd CMOSP L=1u W=2uM1 out in 0 0 CMOSN L=1u W=1u.include TSMC_SCN025Parameters.txt.ends INVL49

* INVL1 sub-circuit.subckt INVL1 in out vddM2 out in vdd vdd CMOSP L=1u W=2uM1 out in 0 0 CMOSN L=1u W=1u.model CMOSN nmos level=1 VTO=0.43 KP=115u LAMBDA=0.06 GAMMA=0.4 PHI=0.3.model CMOSP pmos level=1 VTO=-0.4 KP=30u LAMBDA=0.1 GAMMA=0.4 PHI=0.3.ends INVL1

xL49in outL49 vdd INVL49xL1 in outL1 vdd INVL1

vvddvdd 0 2.5vin in 0.dc vin 0 2.5 0.01.print dc v(outL49) v(outL1).end

Single Stage Amplifiers 30

vIN M 1

VDD = 2.5 V

vOUT

M 2 mm

LW

12

2

2

mm

LW

11

1

1

ports"in out vdd" of INVL1 connected to

"in outL1 vdd" respectively

CS Amp with Push-Pull Load – cont.

Large-signal voltage swing• max output voltage

vIN = 0 M2 always on

vOUT(max) = VDD

• min output voltage vIN = VDD

M2 off vOUT(min) = 0

Single Stage Amplifiers 31

vIN M 1

VDD = 2.5 V

vOUT

M 2 mm

LW

12

2

2

mm

LW

11

1

1

CS Amp with Push-Pull Load – cont.

Small-signal characteristics• small-signal model

• to find voltage gaingm1vin + vout/rds1 + gm2vin + vout/rds2 = 0gm1vin + gds1vout + gm2vin + gds2vout = 0

• voltage gain

Single Stage Amplifiers 32

ILWK

LWK

Igggg

vv

D

PN

Ddsds

mm

in

out 1221

2

2'

1

1'

21

21

CS Amp with Push-Pull Load – cont.

Small-signal characteristics• small-signal model

• to find output resistance, set vin = 0 gm1vin = gm2vin = 0

• output resistance

Single Stage Amplifiers 33

212121

11

IggrrRDdsds

dsdsout

Exercise 3-5 For push-pull CS amp with TSMC 0.25 μm parameters

The circuit is biased such that the DC voltage for vOUT is 1.3 V.a) calculate the DC value for input vIN

b) calculate gm1

c) calculate gm2

d) calculate rds1

e) calculate rds2

f) calculate voltage gaing) calculate Rout

Single Stage Amplifiers 34

VT0 (V)

K’ (A/V2)

(V-

1)NMOS 0.43 115 x

10-60.06

PMOS -0.4 -30 x 10-6

-0.1

vIN M 1

VDD = 2.5 V

vOUT

M 2 mm

LW

12

2

2

mm

LW

11

1

1

Summary of CS amps

Single Stage Amplifiers 35

Type AC Voltage Gain Rout

Resistive load -gm1(RL||rds1) RL||rds1

pMOS active load

-gm1/gm2 1/gm2

Current source load

-gm1/(gds1 + gds2) 1/(gds1 + gds2)

Push-pull -(gm1 + gm2)/(gds1 + gds2)

1/(gds1 + gds2)

Single Stage Amplifiers 36

Source Follower Amp Also known as common drain amp IV plot

Single Stage Amplifiers 37

vIN = 2.5 V

vIN = 2 V

vIN M 1

VDD = 2.5 V

vOUTR S 10 kΩ

mm

LW

18

1

1

Source Follower Amp – cont.

VTC

Single Stage Amplifiers 38

vIN M 1

VDD = 2.5 V

vOUTR S 10 kΩ

mm

LW

18

1

1

Source Follower Amp – cont.

Spice code for VTC

Single Stage Amplifiers 39

* simulation file for TF of source follower

Mn Vdd In Out 0 CMOSN L=1u W=8uRS Out 0 10k

vIN In 0vVdd Vdd 0 2.5

* dc analysis.dc vIN 0 2.5 0.1.print dc v(Out)

.include TSMC_SCN025Parameters.txt*.model CMOSN nmos level=1 VTO=0.43 KP=115u LAMBDA=0.06 GAMMA=0.4 PHI=0.3*.model CMOSP pmos level=1 VTO=-0.4 KP=30u LAMBDA=0.1 GAMMA=0.4 PHI=0.3.end

vIN M 1

VDD = 2.5 V

vOUTR S 10 kΩ

mm

LW

18

1

1

Source Follower Amp – cont.

Large-signal voltage swing• max output voltage

vIN = VDD VT > VT0 due to body effect! M1 is sat because VDS > VGS – VT

» VDD – vOUT > VDD – vOUT – VT

to find vOUT(max)

for TSMC 0.25 μm tech with KN’ = 115 μA/V2, VT0 = 0.43 V, and ignoring body effect (VT = VT0)

vOUT(max) = 1.5 V for the sample circuit• min output voltage

vIN = 0 M1 off

vOUT(min) = 0Single Stage Amplifiers 40

VvVR

vTOUTDD

S

OUT (max)2(max) 21

vIN M 1

VDD = 2.5 V

vO UTR S 10 kΩ

mm

LW

18

1

1

Source Follower Amp – cont. Small-signal characteristics

• small-signal model

• to find voltage gain

• voltage gain

Single Stage Amplifiers 41

gm 1vgs1vgs1

+

- rds1vin

+

-

R S

vout

gm bs1vbs1 gm 1(vin-vout) rds1

R S

vout

gm bs1vout

R S

vout

rds1 1/(gm bs1+gm 1)gm 1vingm 1vin rds1

vout

(gm bs1+gm 1)vout

R S

ggrRvgvmmbs

dsSinmout11

111

111

11

11

1

111

1

1111

ggg

gggR

gggrRg

vv

mbsm

m

mmbsdsS

m

mmbsdsSm

in

out

V

gg

SBF

mmbs

22

vIN M 1

VDD = 2.5 V

vOUTR S 10 kΩ

mm

LW

18

1

1

Source Follower Amp – cont.

Small-signal characteristics• small-signal model

• output resistance

Single Stage Amplifiers 42

gm 1vgs1vgs1

+

- rds1

RS

gm bs1vbs1 gm 1vout rds1

R S

vout

gm bs1vout

vout

iout iout

1/gm 1 rds1

vout

1/gm bs1

iout

R S vIN M 1

VDD = 2.5 V

vO UTR S 10 kΩ

mm

LW

18

1

1

ggggggR

ggrRRmmbsm

mbsmdsS

mbsmdsSout

111111111 1

111

111

Source Follower Amp – cont.

Characteristics

• gain < 1• gain not linear

depends on VOUT since VSB = VOUTcan be resolved by using current sink to bias the source follower

• small output resistance

Single Stage Amplifiers 43

1

111

1gg

gvv

mbsm

m

in

outV SBF

22

gRm

out11

1

Exercise 3-6 For CD amp with TSMC 0.25 μm parameters

The circuit is biased with VIN = 2 V.a) calculate VOUT (can ignore but do not ignore

body effect)b) calculate gm1

c) calculate gmbs1

d) calculate voltage gaine) calculate Rout (ignore )

Single Stage Amplifiers 44

VT0 (V)

K’ (A/V2)

γ (V0.5)

|φF| (V)

NMOS 0.43 115 x 10-6

0.4 0.3

vIN M 1

VDD = 2.5 V

vOUTR S 10 kΩ

mm

LW

18

1

1

CS Amp with Source Degeneration IV plot

Single Stage Amplifiers 45

vIN = 2.5 V

vIN = 2 V

vIN M 1

VDD = 2.5 V

R S 440 Ω

mm

LW

18

1

1

R L 1.3 kΩ

vOUT

CS Amp with Source Degeneration – cont.

VTC

Single Stage Amplifiers 46

vIN M 1

VDD = 2.5 V

R S 440 Ω

mm

LW

18

1

1

R L 1.3 kΩ

vOUT

CS Amp with Source Degeneration – cont.

Spice code for VTC

Single Stage Amplifiers 47

* simulation file for TF of CS with degenerationMn Out In S 0 CMOSN L=1u W=8uRS S 0 440RL Vdd Out 1.3k

vIN In 0vVdd Vdd 0 2.5

* dc analysis.dc vIN 0 2.5 0.1.print dc v(Out)

*.include TSMC_SCN025Parameters.txt.model CMOSN nmos level=1 VTO=0.43 KP=115u LAMBDA=0.06 GAMMA=0.4 PHI=0.3.model CMOSP pmos level=1 VTO=-0.4 KP=30u LAMBDA=0.1 GAMMA=0.4 PHI=0.3.end

vIN M 1

VDD = 2.5 V

R S 440 Ω

mm

LW

18

1

1

R L 1.3 kΩ

vOUT

CS Amp with Source Degeneration – cont.

Large-signal voltage swing• max output voltage

vIN = 0 M1 off

vOUT(max) = VDD

• min output voltage vIN = VDD

VDS = vOUT – VS VGS – VT = VDD – VT – VS M1 linear if vOUT < VDD – VT

to find vOUT(min)

(1)

(2)

Single Stage Amplifiers 48

RvVRV

L

OUTDDSS

(min)

2(min)(min)(min)

1VvVVVVv

RvV SOUT

TSDDSOUTL

OUTDD

2

(min)(min)1vVVVVv S OUT

TDDSOUT

vIN M 1

VDD = 2.5 V

R S 440 Ω

mm

LW

18

1

1

R L 1.3 kΩ

vOUT

Single Stage Amplifiers 49

CS Amp with Source Degeneration – cont. Small-signal characteristics

• small-signal model

• to find voltage gain

(1)

(2)

voltage gain

gm 1vgs1vgs1

+

- rds1vin

+

-

R S

gm bs1vbs1 gm 1(vin-vs) rds1

R S

gm bs1vs

R L R Lvout vout

vs+

-vs+

-

vIN M 1

VDD = 2.5 V

R S 440 Ω

mm

LW

18

1

1

R L 1.3 kΩ

vOUT

vvgvvgvgRv

soutdssinmsmbsS

s 111

vgRvvvgvvg smbs

L

outsoutdssinm 111

RggRg

RRgRggRg

vv

Smbsm

Lm

SLdsSmbsm

Lm

in

out

11

1

111

111

CS Amp with Source Degeneration – cont. Small-signal characteristics

• small-signal model

• to find output resistance, 1st find Rx

(1)gds1(vout - vs) = gm1vs + gmbs1vs + ix (2)

Rx = vout/ix = rds1[ 1 + (gm1 + gmbs1 + gds1)RS ] ≈ (gm1 + gmbs1)RSrds1

• output resistance

Single Stage Amplifiers 50

RRrgg

RRrggRRR

LSdsmbsm

LSdsmbsmLxout

111

111

vIN M 1

VDD = 2.5 V

R S 440 Ω

mm

LW

18

1

1

R L 1.3 kΩ

vOUT

gm 1vgs1vgs1

+

- rds1

R S

gm bs1vbs1 gm 1vs rds1

RS

gm bs1vs

R L R Lvout vout

vs+

-vs+

-

iout ioutix

R x

vvgvgvgRv

soutdssmbsmS

ss 111

CS Amp with Source Degeneration – cont.

Characteristics

• if we ignore body effectgain ≈ -gm1RL/(1 + gm1RS)

much more linear, compared to CS amp however, gain is smaller vOUT(min) also much lower

• why more linear?if vIN ↑, ID ↑, voltage across RS ↑, VGS ↓, causing ID ↓

ID less sensitive to input changes

Single Stage Amplifiers 51

RggRg

vv

Smbsm

Lm

in

out

11

11

vIN

R L

M 1

VDD

vOUT

gain = -gm1(RL||rds1)

≈ -gm1RL

Exercise 3-7 For CS amp with source degeneration and TSMC 0.25 μm parameters

The circuit is biased with VIN = 1.5 V.a) calculate VOUT (can ignore both and body

effect)b) calculate voltage gainc) calculate Rout (do not ignore )

Single Stage Amplifiers 52

VT0 (V)

K’ (A/V2)

(V-

1)NMOS 0.43 115 x

10-60.06 vIN M 1

VDD = 2.5 V

R S 440 Ω

mm

LW

18

1

1

R L 1.3 kΩ

vOUT