Procedure for Subsize and Full-Size Charpy Impact Specimen ...

311
NUREG/CR-6379 ORNL-6888 An Improved Correlation ' Procedure for Subsize and Full-Size Charpy Impact Specimen Data Prepared by M. A. Sokolov, D. J. Alexander Oak Ridge National Laboratory Prepared for U.S. Nuclear Regulatory Commission

Transcript of Procedure for Subsize and Full-Size Charpy Impact Specimen ...

NUREG/CR-6379 ORNL-6888

An Improved Correlation '

Procedure for Subsize and Full-Size Charpy Impact Specimen Data

Prepared by M. A. Sokolov, D. J. Alexander

Oak Ridge National Laboratory

Prepared for U.S. Nuclear Regulatory Commission

AVAllAElLlTY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited In NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW.. Lower Level, Washington. DC 20555-0001

2. The Superhtendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington, DC 20402-9328

3. The Natlonal Technical lnformatlon Service, Springfield. VA 221 61-0002

Although the llstlng that follows represents the majority of documents cited in NRC publications, it is not in- tended to be exhaustlve.

Referenced documents avallable for inspection and copying for a fee from the NRC Public Document Room Include NRC correspondence and internal NRC memoranda: NRC bulletins, circulars, information notices, in- spection and investlgatlon notices; licensee event reports: vendor reports and correspondence: Commission papers: and appllcant and licensee documents and correspondence.

The following documents In the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports. NRC-sponsored conference proceedings. international agreement reports. grantee reports, and NRC booklets and brochures. Also available are regulatory guides. NRC regula- tions In the Code of Federal Regulatlons, and Nuclear Regulatory Commission Issuances.

Documents available from the Natlonal Technlcal Information Service Include NUREG-series reports and tech- nical reports prepared by other Federal agencies and reports prepared by the Atomic E n e r ~ Commission, forerunner agency to the Nuclear Regulatory Commlssion.

Documents available from public and special technical libraries include all open literature items, such as books, journal artlcles. and transactions. Federal Regisrer notices. Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference pro- ceedings are available for purchase from the organization sponsoring the publication cited.

Slngle copies of NRC draft reports are available free. to the extent of supply. upon written request to the Office of Administration, Dlstributlon and Mall Services Section. U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

Copies of Industry codes and standards used in a substantive manner in the NRC regulatory process are main- talned at the NRC Library. Two White Flint North, 11545 Rockville Pike, Rockville. MD 20852-2738. for use by the publlc. Codes and standards are usually copyrighted and may be purchased from the originating organiia- tlon or, If they are American Natlonal Standards. from the American National Standards Institute. 1430 Broad- way, New York, NY 10018-3308.

I 1

I DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neitherthe United Statesdovemment noranyagencythereof, norany oftheiremployees, makesanywarranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus;product, or process disclosed in this report, or representsthat its use by such third party would not infringe privately owned rights.

I

il

! I

NUREG/CR-6379 ORNL-6888

An Improved Correlation Procedure for Subsize and Full-Size Charpy Impact Specimen Data

Manuscript Completed June 1995 Date Published: March 1997

Prepared by M. A. Sokolov, D. J. Alexander

Oak Ridge National Laboratory Managed by Lockheed Martin Energy Research Corporation

Oak Ridge National Laboratory Oak Ridge, TN 37831-6285

M; G. Vassilaros, NRC Project Manager

Prepared for Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code L1098

Abstract The possibility of using subsize specimens to monitor the properties of reactor pressure vessel steels is receiving increasing attention for light-water reactor plant life extension. This potential results from the possibilii of cutting samples of small volume from the internal surface of the pressure vessel for determination of the actual properties of the operating pressure vessel. In addition, plant life extension will require supplemental data that cannot be provided by existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy specimens offers an attractive means of extending existing surveillance programs. Using subsize Charpy V-notch-type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens, and the development of correlations for transition temperature and upper-shelf energy (USE) level between subsize and full-size specimens. Five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and USES. The effects of specimen dimensions, including notch depth, angle, and radius, have been studied. The correlations of transition temperatures determined from different types of subsize specimens and the full-size specimens are presented. A new procedure for transforming data from subsize specimens is developed. The transformed data are in good agreement with data from full-size specimens for materials that have USE levels less than 200 J.

iii NUREGKR-6379

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their empioyees, make any warranty, express or impIied, or as~mes any legal liabili- ty or respomiility for the accuracy, completeness, or usefulness of any information, appa- ratus, product, or process disdosed, or represents that its use would not infringe privately owned rights. Refmnce herein to any specific commercial product, p m e s , or sem'ce by trade name, trademark, manufacturer, or otherwise does not necessariymmthte or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessar- ily state or reflect those of the United States Government o r any agency thereof.

.

Contents Page

Abstract ................................................................................... Table of Contents ............................................................................ List of Figures ............................................................................... ListofTables ................................................................................ Foreword ................................................................................... Acknowledgments ............................................................................ Introduction ................................................................................. Materials .................................................................................... Specimen Designs ........................................................................... Testing Procedure ............................................................................ EffectsofSpecimen Dimensions ................................................................ Correlation of Absorbed Energy Between Full-Size and Subsize Specimens ............................. Correlation of Transition Temperature of FullSize and Subsize Specimens ............................. Normalization of Data from Subsize Specimens .................................................... Summaryand Conclusions ..................................................................... References ................................................................................. Appendix A - A 533 Grade B Wide Plate, LT Orientation ............................................. Appendix B -A 533 Grade B Wide Plate, TL Orientation .............................................

iii

V

vi

vii

ix xv

1

I

1

3

8

12

24

28

29

37

A-I

B-I

Appendix C - A 508, As Quenched .............................................................. C-I

Appendix D -A 508, Quenched and Tempered at 599°C ............................................ D-1

Appendix E -A 508, Quenched and Tempered at 677°C ............................................ E-I

Appendix F -A 508, Quenched and Tempered at 704°C ............................................ F-I

Appendix G - HSST Plate 02, Quarter Thickness, TL Orientation ...................................... G-I

Appendix H -HSST Plate 02, Half Thickness, TL Orientation .......................................... H-I

Appendix I -HSST Plate 14, Quenched and Tempered at 950°C ...................................... Appendix J - 15Kh2MFA, Forging 103672 ......................................................... J-I

1-1

AppendixK-HSSlWeld72W .................................................................. K-I

V NUREGER-6379

Page

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Dimensions of subsiie specimens used in this study ........................................... 4

Full-size and subsize specimens used in this study ............................................ 5

Comparison of notch dimensions of full-size and subsize specimens used in this work: (a) full size. (6) type 1. (c) type 2. (4 type 3. and (e) type 4 ...................................... Absorbed energy versus test temperature for type 3 specimens from HSST Plate 02. quarter-thickness location. with 0.8-, 1.0-, and 1.7-mm V-notch depths ............................

6

9

Absorbed energy versus test temperature for type 3 specimens from HSST Plate 02. quarter-thickness location. with 0.25- and 0.1 O-mm V-notch root radii ............................. 10

Absorbed energy versus test temperature for type 1 subsize specimens from HSST Plate 02. quarter-thickness location. with 30 and 45" V-notch angles ...................................... 10

Absorbed energy versus test temperature for type 4 subsize specimens from HSST Plate 02. quarter-thickness location. tested at 22- and 20-mm span ....................................... 11

Absorbed energy versus test temperature for types 3 and 5 specimens of weld 72W tested at 40- and 20-mm span .............................................................. 11

Absorbed energy versus test temperature for types 3 and 5 specimens of HSST Plate 02. half-thickness location. tested at 40- and 20-mm span ......................................... 12

Absorbed energy versus test temperature for type 4 specimens of weld 72W tested at impact velocities of 5.5 and 2.25 m/s ...................................................... 13

Absorbed energy versus test temperature for type 3 specimens of HSST Plate 02. quarter-thickness location. tested at impact velocities of 5.5 and 2.25 m/s .......................... 13

Definition of specimen dimensions .......................................................... 15

Correlation of upper-shelf energies of full-size and type 1 subsie specimens ....................... 18

Correlation of upper-shelf energies of fuil-size and type 2 subsize specimens ....................... 18

Correlation of upper-shelf energies of full-size and type 3 subsiie specimens ....................... 19

Correlation of upper-shelf energies of full-size and type 4 subsize specimens ....................... 19

The ratio of upper-shelf energy (USE) of full-size specimens to USE of type 1 specimens asafunctionofyieldstrength .............................................................. 20

The ratio of upper-shelf energy (USE) of full-size specimens to USE of type 2 specimens as a function of yield strength ............................................................... 20

The ratio of upper-shelf energy (USE) of full-size Specimens to USE of type 3 specimens as a function of yield strength .............................................................. 21

NUREGER-6379 vi

.....

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

The ratio of upper-shelf energy (USE) of full-size specimens to USE of type 4 specimens as a function of yield strength .............................................................. 21

Load versus displacement record showing the definitions of the various load points .................. 23

Stress-temperature diagram showing the effect of specimen size on transition temperature ........... 25

Correlation of transition temperatures determined with data from full-size specimens and normalized data from type 1 subsize specimens ............................................... 26

Correlation of transition temperatures determined with data from full-size specimens and normalizeddatafromtype2subsizespecimens .............................................. 26

Correlation of transition temperatures determined with data from full-size specimens and normalized data fiom type 3 subsize specimens .............................................. 27

Correlation of transition temperatures determined with data from full-size specimens and normalized data from type 4 subsize specimens .............................................. 27

Temperature correction for subsize specimens as a function of nominal fracture volume .............. 28

Comparison of Charpy curve for full-size specimens of A 508, as-quenched, with data from subsize specimens normalized by the proposed procedure ................................. 30

Comparison of Charpy curve for full-size specimens of A 508, quenched and tempered at 599"C, with data from subsize specimens normalized by the proposed procedure ................. 30

Comparison of Charpy curve for full-size specimens of A 508, quenched and tempered at 677"C, with data from subsize specimens normalized by the proposed procedure ................. 31

Comparison of Charpy curve for full-size specimens of A 508, quenched and tempered at 704"C, with data from subsize specimens normalized by the proposed procedure ................. 31

Comparison of Charpy curve for full-size specimens of HSST Plate 02, T-L orientation, quarter thickness, with data from subsize specimens normaliied by the proposed procedure .......... 32

Comparison of Charpy curve for full-size specimens of HSST Plate 14, quenched and tempered at 950°C, with data from subsize specimens normalized by the proposed procedure ................. 32

Comparison of Charpy curve for full-size specimens of 15Kh2MFAwith data

Comparison of Charpy curve for full-she specimens of HSSl weld 72W with data

Comparison of Charpy curve for full-size specimens of A 533 wide plate, L-T orientation, with data from subsize Charpy specimens normalized by the proposed procedure ................... 34

from subsize specimens normalized by the proposed procedure .................................

from subsize Charpy specimens normalized by the proposed procedure ...........................

33

33

Comparison of Charpy curve for full-size specimens of A 533 wide plate, T-L orientation, with data from subsize Charpy specimens normalized by the proposed procedure ................... 34

vii NUREGER-6379

Tables Page

Test matrix and mechanical properties of materials for subsize Charpy specimen evaluation ........... 2

Comparison of different normalization factors for upper-shelf energy as ratios of differentspecimendimensions ............................................................. 15

3 Upper-shelf energies obtained for materials for subsize Charpy specimen evaluation ................ 1 7

4 Effects of changes in percent shear on values of transition temperatures at 41 and 68 J for normaliied data from type 3 specimens of HSST Plate 02 ................................... 23

1

2

NUREGER-6379 vi i

Foreword

The work reported here was performed at the Oak Ridge National Laboratory (ORNL) under the Heavy-Section Steel Irradiation (HSSI) Program, W. R. CoMn'n, Program Manager. The program is sponsored by the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). The technical monitor for the NRC is M. G. Vassilaros.

This report is designated HSSl Report 14. Reports in this series are listed below

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

F. M. Haggag, W. R. Com'n, and R. K. Nanstad, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Irradiation Effects on Strength and Toughness of 7hree-Wre Series-Arc Sfainless Sfeel Weld Overlay Cladding, USNRC Report NUREGER-5511 (ORNL/TM-l1439), February 1990.

L. F. Miller, C. A. Baldwin, F. W. Stallman, and F. B. K. Kam, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Neutron Exposure Paramefers forthe Mefallurgical Tesf Specimens in the Sixfb Heavy-Seciion Sfeel Irradiation Series, USNRC Report NUREG/CR-5409 (ORNLA?vl-11267), March 1990.

S. K. Iskander, W. R. Cowin, and R. K. Nanstad, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Resu/fs of Crack-Amesf Tesfs on Two Irradiated High-Copper Welds, NUREGER-5584 (ORNL/TM-11575), December 1990.

R. K. Nanstad and R. G. Berggren, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Irradiation Effects on Charpy lmpact and Tensile Properties of Low Upper-Shelf Welds, HSSI Series 2 and 3, NUREG/CR-5696 (ORNLA?vl-lI 804), August 1991.

R. E. Stoller, Martin Marietta Energy Systems, Inc., Oak Ridge Natl.Lab., Oak Ridge, Tenn., Modeling the Influence of lrradiation Temperafure and Displacemenf Rafe on Radiation-Induced Hardening in Ferritic Sfeels, USNRC Report NUREGER-5859 ( O R N m 1 2 0 7 3 ) , August 1992.

R. K. Nanstad, D. E. McCabe, and R. L. Stvain, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Chemical Composifion RTNDT Deferminations for Midland Weld W-70, USNRC Report NUREG/CR-5914 (ORNL-6740), December 1992.

R. K. Nanstad, F. M. Haggag, D. E. McCabe, S. K. Iskander, K. 0. Bowman, and B. H. Menke, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., lrradiafion Effects on Fracfure Toughness of Two High-Copper Submerged-Arc Welds, USNRC Report NUREG/CR-5913 (ORNLA?vl-l2156Nl), October 1992.

S. K. Iskander, W. R. Comh, and R. K. Nanstad, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Crack-Amesf Tesfs on Two lrradiafed Higb-Copper Welds, USNRC Report NUREGER-6139 (ORNL/TM-12513), March 1994.

R. E. Stoller, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., A Comparison of fhe Relative lmporfance of Copper Precipifafes and Poinf Defects in Reacfor Pressure Vessel Embrimemenf, USNRC Report NUREGlCR-6231 (ORNL/TM-681 I), December 1994.

D. E. McCabe, R. K. Nanstad, S. K. Iskander, and R. L. Swain, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Unirradiafed Maferial Properties of Midland Weld W-70, USNRC Report NUREGKR-6249 (ORNL/TM-12777), October 1994.

P. M. Rice and R. E. Stoller, Lockheed Martin Energy Systems, Oak Ridge Natl. Lab., Oak Ridge, Tenn., Microsfrucfural Characferization of Selecfed AEANCSB Model FeCuMn Alloys, USNRC Report NUREGER-6332 (ORNL/TM-12980), to be published.

b NUREGER-6379

12. J. H. Giovanola and J. E. Crocker, SRI International, Fracture Toughness Testing wifh Cracked Round Bars: Feasibility Sfudy, USNRC Report NUREGlCR-6342 (ORNUSub/94-DHK60), to be published.

13. F. M. Haggag and R. K. Nanstad, Lockheed Martin Energy Systems, Oak Ridge Natl. Lab., Oak Ridge, Tenn., Effecfs of Thermal Aging and Neufron Irradiation on the Mechanical Propetties of Three-Wre Sfainless Sfeel Weld Overlay Cladding, USNRC Report NUREGER-6363 ( O R N ~ 1 3 0 4 7 ) , to be published.

14. This report.

The HSSl Program includes both follow-on and the direct continuation of work that was performed under the Heavy-Section Steel Technology (HSST) Program. Previous HSST reports related to irradiation effects in pressure vessel materials and those containing unirradiated properties of materials used in HSSl and HSST irradiation programs are tabulated below as a convenience to the reader.

C. E. Childress, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Fabrication History of the Firsf Two 12-in.-ThickA-533 Grade B, Class I Sfeel Plafes ofthe Heavy-Section Sfeel Technology Program, ORNL-4313, February 1969.

T. R. Mager and F. 0. Thomas, Westinghouse Electric Corporation, PWR Systems Division, Pittsburgh, Pa., Evaluation by Linear Hastic Fracture Mechanics of Radiation Damage fo Pressure Vessel Sfeels, WCAP-7328 (Rev.), October 1969.

P. N. Randall, TRW systems Group, Redondo Beach, Calif., Gross Sfrain Measure of Fracture Toughness of Sfeels, HSSTP-TR-3, Nov. 1 , 1969.

L. W. Loechel, Martin Marietta Corporation, Denver, Colo., The Effecfof Testing Variables on the Transition Temperafure in Sfeel, MCR-69-189, Nov. 20,1969.

W. 0. Shabbits, W. H. Pryle, and E. T. Wessel, Westinghouse Electric Corporation, PWR Systems DM'sion, Pittsburgh, Pa., Heavy-Section Fracfure Toughness Propedes ofA533 Grade B Class I Sfeel Plafe and Submerged Arc Weldmenf, WCAP-7414, December 1969.

C. E. Childress, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Fabrication History of the Third and Fourth ASTM A-533 Sfeel Plafes of the Heavy-Section Sfeel Technology Program, ORNL-4313-2, February 1970.

P. B. Crosley and E. J. Ripling, Materials Research Laboratory, Inc., Glenwood, Ill., Crackhesf Fracfure Toughness OfA533 Grade B Class 7 Pressure Vessel Sfeel, HSSTP-TR-8, March 1970.

F. J. Loss, Naval Research Laboratory, Washinflon, D.C., Dynamic Tear Tesf Investigations of the Fracfure Toughness of Thick-Section Sfeel, NRL-7056, May 14,1970.

T. R. Mager, Westinghouse Electric Corporation, PWR Systems DM'sion, Pittsburgh, Pa., Posf-Irradiation Testing of 2T Compacf Tension Specimens, WCAP-7561 , August 1970.

F. J. Wrtt and R. G. Berggren, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Size Effecfs and Energy Disposition in lmpacf Specimen Testing ofASTMA533 Grade B Sfeel, ORNLKM-3030, August 1970.

D. A. Canonico, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Transifion Temperafure Considerations for Thick-Wall Nuclear Pressure Vessels, ORNLKM-3114, October 1970.

T. R. Mager, Westinghouse Electric Corporation, PWR Systems Division, Pittsburgh, Pa., Fracfure Toughness Characferizafion Sfudy ofA533, Grade B, Class 7 Sfeel, WCAP-7578, October 1970.

NUREGlCR-6379 X

W. 0. Shabbits, Westinghouse Electric Corporation, PWR Systems Division, Pittsburgh, Pa., Dynamic Fracture Toughness Properties of Heavy-Secfion A533 Grade B Class 7 Steel Plate, WCAP-7623, December 1970.

C. E. Childress, Union Carbide Cop. Nuclear Diq., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Fabrication Procedures and Acceptance Data for ASTMA-533 Welds and a I&in.-ThickASTMA-533 Plate of the Heavy-Section Steel Technorogy Program, ORNL-W313-3, January 1971.

D. A. Canonico and R. G. Berggren, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Tensile and lmpact Properties of Thick-Section Plate and Weldments, ORNLKM-3211 , January 1971.

C. W. Hunter and J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., Fracture and Tensile Behavior of Neutron-Irradiated A533-B Pressure Vessel Steel, HEDL-TME-71-76, Feb. 6,1971.

C. E. Childress, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Manual forASTMA533 Grade B Class 7 Steel (HSST Plate 03) Provided to &e lnternational Atomic Energy Agency, ORNLKM-3193, March 1971.

P. N. Randall, TRW Systems Group, Redondo Beach, Calif., Gross strain Crack Tolerance ofA533-B Steel, HSSTP-TR-14, May 1 , 1971.

C. L. Segaser, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Feasibility Study, lrradiation of Heavy-Section Steel Specimens in the South Test Facility of the Oak Ridge Research Reactor, ORNUTM-3234, May 1971.

H. T. Corten and R. H. Sailors, University of Illinois, Urbana, Ill., Relationship Between MaferiaIFracture Toughness Using Fracture Mechanics and Transition Temperature Tesfs, T&AM Report 346, Aug. 1 , 1971.

L. A. James and J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., Heavy-Section Steel Technology Program Technical Report No. 27, The Effect of Temperature and Neufron lmadiation Upon the Fatigue-Crack Propagation Behavior ofASTMA533 Grade B, Class 7 Steel, HEDL-TME 72-1 32, September 1972.

P. B. Crosley and E. J. Ripling, Materials Research Laboratory, Inc., Glenwood, Ill., Crackhest in an Increasing K-Field, HSSTP-TR-27, January 1973.

W. J. Stelzman and R. G. Berggren, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Radiation strengthening and Embrimemenf in Heavy-Section Steel Plates and Welds, ORNL-4871 , June 1973.

J. M. Steichen and J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., High sfrain Rate Tensile Propetties of lrradiatedASTMA533 Grade B Class 7 Pressure Vessel Steel, HEDL-TME 73-74, July 1973.

J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., The Irradiation and Temperature Dependence of Tensile and Fracture Properties ofASTMA533, Grade B, Class 7 Steel PIafe and Weldment, HEDL-TME 73-75, August 1973.

J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., Some Comments Related to the Effect of Rate on &e Fracture Toughness of IrradiatedASTMA553-B Steel Based on Weld strengfb Behavior, HEDL-SA 797, December 1974.

J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., The Irradiated Fracture Toughness ofASTMA533, Grade B, Class 7 Steel Measured wifh a Four-lnch-Thick Compact Tension Specimen, HEDL-TME 75-1 0, January 1975.

J. G. Merkle, G. D. Whitman, and R. H. Bryan, Union Carbide Corp. Nuclear Div., Oak Ridge Natl. Lab., Oak Ridge, Tenn., An Evaluation of the HSST Program Infermediate Pressure Vessel Tests in Terms of Light- Water-Reactor Pressure Vessel Safety, ORNUTM-5090, November 1975.

xi NUREGER-6379

J. A. Davidson, L. J. Ceschini, R. P. Shogan, and G. V. Rao, Westinghouse Electric Corporation, PWR Systems Division, Pittsburgh, Pa., The Irradiated Dynamic Fracture Toughness ofASTMA533, Grade B, Class 7 Steel Plate and Submerged Arc Weldment, WCAp-8775, October 1976.

J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., Tensile Propedies of Irradiated and Uninadiated Welds of A533 Steel Plate andA508 Forgings, USNRC Report NUREGICR-1158 (ORNUSUB-79/50917/2), July 1979.

J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., The Ductile Fracture Toughness of Heavy=Section Steel Plate, USNRC Report NUREG/CR-0859, September 1979.

K. W. Carlson and J. A. Williams, Hanford Eng. Dev. Lab., Richland, Wash., The Effect of Crack Length and Side Grooves on the Ductile Fracture Toughness Pmpedies ofASTMA533 Steel, USNRC Report NUREG/CR-1171 (ORNUSUB-79/50917/3), October 1979.

G. A. Clarke, Westinghouse Electric Corp., PWR Systems Division, Pittsburgh, Pa., An Evaluation ofthe Unloading Compliance Procedure for J-Integral Testing in the Hot Cell, Final Repod, USNRC Report NUREG/CR-1070 (ORNUSUB-7394/1), October 1979.

P. B. Crosley and E. J. Ripling, Materials Research Laboratory, Inc., Glenwood, Ill., Development of a Standard Test for Measuring K/a with a Modiied Compact Specimen, USNRC Report NUREGER-2294 (ORNUSUB-81/7755/1), August 1981.

H. A. Domian, Babcock and Wilcox Company, Alliance, Ohio, Vessel V-8 Repair and Preparation of Low Upper- Shelf Weldment, USNRC Report NUREGICR-2676 (ORNUSUB/81-85813/1), June 1982.

R. D. Cheverton, S. K. Iskander, and D. G. Ball, Union Carbide Corp. Nuclear Div., Oak Ridge Natl. Lab., Oak Ridge, Tenn., PWR Pressure Vessel Integrity During Overcooling Accidents: A Paramefric Analysis, USNRC Report NUREG/CR-2895 ( O R N W 7 9 3 1 ) , February 1983.

J. G. Merkle, Union Carbide Corp. Nuclear Dv., Oak Ridge Natl. Lab., Oak Ridge, Tenn., An Eicamination of the Size Effects and Data Scaffer Observed in Small Specimen Cleavage Fracture Toughness Testing, USNRC Report NUREG/CR-3672 (ORNUllvl-9088), April 1984.

W. R. Corwin, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Assessment of Radiation Effects Relating fo Reactor Pressure Vessel Clad&g, USNRC Report NUREGER-3671 (ORNL-6047), July 1984.

W. R. CoMn'n, R. G. Berggren, and R. K. Nanstad, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Charpy Toughness and Tensile Properties of a Neutron Irradiated Stainless Steel Submerged- Arc Weld Cladding Overfay, USNRC Report NUREGICR-3927 (ORNL/TM-9709), September 1984.

J. J. McGowan, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Tensile Propetties of Irradiated Nuclear Grade Pressure Vessel Plate and Welds for the Fourth HSST Irradiation Series, USNRC Report NUREG/CR-3978 (ORNVmn-9516), January 1985.

J. J. McGowan, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Tensile Propetties of Irradiated Nuclear Grade Pressure Vessel Welds for the Third HSST Irradiation Series, USNRC Report NUREGER-4086 (ORNLKf~l-9477)~ March 1985.

W. R. CoMn'n, G. C. Robinson, R. K. Nanstad, J. G. Merkle, R. G. Berggren, G. M. Goodwin, R. L. Swain, and T. D. Owings, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Effects of Stainless Steel Weld Oveday Cladding on the Siructural Integrity of Flawed Steel Plates in Bending, Series 7, USNRC Report NUREGKR-4015 (ORNm-9390) , April 1985.

NU REGER-6379 x i

W. J. Stelzman, R. G. Berggren, and T. N. Jones, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., ORNL Characferization of Heavy-Section Sfeel Technology Program PIafes 01,02, and 03, USNRC Report NUREGKR-4092 (ORNL/TM-9491), April 1985.

G. D. Whitman, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Hisforical Summary of the Heavy-Secfion Sfeel Technology Program and Some Relafed Aciivifies in tighf-Wafer Reactor Pressure Vessel Safefy Research, USNRC Report NUREG/CR489 (ORNL-6259), March 1986.

R. H. Btyan, B. R. Bass, S. E. Bolt, J. W. Bryson, J. G. Merkle, R. K. Nanstad, and G. C. Robinson, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Test of 6-in.-Thick Pressure Vessels. Series 3: lnfermediafe Test Vessel V-8A - Tearing Behavior of Low Upper-Sbeff Material, USNRC Report NUREG-CR4760 (ORNL-6187), May 1987.

D. 6. Barker, R. Chona, W. L. Foumey, and G. R. Irwin, University of Maryland, College Park, Md., A Repf i on the Round Robin Program Conducfed to Evaluafe the Proposed ASTM Sfandard Test Me&od for Defermining the Plane Sfrain Crack Arresf Fracfure Toughness, KIa, of Ferritic Maferials, NUREGER-4966 (ORNUSUBf79-7778/4), January 1988.

L. F. Miller, C. A. Baldwin, F. W. Stallman, and F. B. K. Kam, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Neulron Exposure Paramefers forthe Metallurgical Test Specimens in the F i Heavy- Secfion Sfeel Technology lrradiation Series Capsules, NUREG/CR-5019 (ORNUTM-l0582), March 1988.

J. J. McGowan, R. K. Nanstad, and K. R. Thorns, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Characferization of lrradiafed Currenf-Practice Welds andA533 Grade B Class I Plate for Nuclear Pressure Vessel Service, USNRC Report NUREGER-4880 (ORNL-6484Nl and V2), July 1988.

R. D. Cheverton, W. E. Pennell, G. C. Robinson, and R. K. Nanstad, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Impact of Radiafion Embrimemenf on lnfegri& of Pressure Vessel Supporfs for Two PWR Planfs, USNRC Report NUREG/CR-5320 (ORNL/TM-10966), February 1989.

J. G. Merkle, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., An Overview of the Low-Upper-SheF Toughness Safefy Margin Issue, USNRC Report NUREG/CR-5552 (ORNUTM-l1314), August 1990.

R. D. Cheverton, T. L. Dickson, J. G. Merkle, and R. K. Nanstad, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Review ofReacfor Pressure Vessel Evaluation Repofifor Yankee Rowe Nuclear Power Sfation (YAEC No. 1735), USNRC Report NUREG/CR-5799 (ORNL/TM-11982), March 1992.

xi NU REGICR-6379

Acknowledgments

We would like to thank R. K. Nanstad for his encouragement and help in the planning of this project. The mechanical testing was conducted by J. J. Henry,Jr., and E. T. Manneschmidt. The authors appreciate the helpful reviews of the draft manuscript by F. M. Haggag and R. L. Klueh. We are very grateful for the efforts of J. L. Bishop in the preparation of the manuscript. We also appreciate the technical edih'ng by K. Spence and the final report preparation by Eric White.

The authors are grateful for the financial support of the Heavy-Section Steel Irradiation Program at ORNL by the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission. This research was supported in part by an appointment to the ORNL Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education.

xv NU REGKR-6379

Introduction

The possibility of using subsize specimens to monitor the properties of reactor pressure vessel (RPV) steels is receiving increasing attention for light-water reactor (LWR) plant life extension. Annealing of Soviet-built reactors'** resulted in significant recovery of irradiation embrittlement and the extension of plant life. This suggests that annealing of RPVs might be a very attractive way to extend the plant life for some U.S. LWRs."' However, practical implementation of annealing includes some regulatory aspects. One of these is extension of the surveillance program, so that properties of the RPV can be monitored after annealing. Machining subsiie specimens from previously tested Charpy surveillance specimens or reconstitution of specimens from broken halves are the most feasible ways to resolve this problem. Additionally, subsize specimens could be used in performance experiments to study the general behavior of RPV steels after reirradiation. Such experiments usually require simultaneous irradiation of a large number of specimens at the same conditions, as well as intermediate annealing of a portion of them after the first cycle of irradiation and after the second reirradiation. Another application for using subsize specimens is also associated with annealing. The subsize specimens can be used to confirm the beneficial effects of vessel annealing by cutting pieces of small volume from the inside surface of the vessel before and after annealing5l6 and periodically during continued operation of the annealed vessel. In the last case, this could be an alternative to the standard surveillance program.

The main issue for the feasibility of using subsize Charpy V-notch ( C w specimens to determine properties of RPV steels is the correlation of transition temperature and upper-shelf energy (USE) behveen subsiie and full-size specimens. This study analyzed different published approaches to the use of subsiie CVN specimens. Five different geometries of subsize specimens from 11 material conditions were selected for testing and evaluation. The effects of specimen size and notch dimensions, including depth, angle, and root radius, on the correlation with data from full-size specimens have been studied.

Materials Four types of RPV steels were studied: American Society for Testing and Materials (ASTM) A 533 grade B class 1 plates (one of them after quenching and tempering at 950°C), specially heat-treated steel with ASTM A 508 class 2 chemical composition, a Russian ring forging 15Kh2MFA, and a submerged-arc weld. All of these RPV steels have been studied previously at Oak Ridge National Laboratory using standard specimens under different tasks of the Heavy-Section Steel Technology (HSST) and Heavy-Section Steel Irradiation (HSSI) Programs. The materials were selected so as to have a relativelywide range of transition temperatures and USEs as measured with standard full-size Charpy specimens, as well as a range of yield strengths. Typically, the properties of many RPV steels in the as-produced state are quite similar. To increase the range of properties, some steels were studied in the quenched-only or quenched-and-tempered conditions. As a result, the USEs varied from 73 to 330 J, the transition temperatures varied from -46 to 58"C, and the yield strengths varied from 410 to 940 MPa. Table 1 lists the types and properties of the different materials.

Specimen Designs The Standard Tesf Mefhod for Nofched Bar lmpad Testing of Mefallic Maferials, ASTM E 23-93a: allows the use of subsize specimens when the amount of material available does not permit making the standard impact test specimens, but "the results obtained on different sizes of specimens cannot be compared directly." Therefore, the use of subsize specimens recommended by ASTM E 23 requires correlating them with standard specimens. According to ASTM E 23, the length, notch angle, and notch root radius for subsiie specimens are the same as for full-size specimens, which restn'cts the range of possible subsiie specimen dimensions. A key feature of subsize specimens for RPV applications is the ability to use halves of broken full-size surveillance specimens. As a result, several attempts have been made to develop subsize impact specimens with a geometry acceptable for nuclear application; see, for example, refs. 6 and 8 through 15. Specimens were varied in all dimensions and are as small as 1 x 1 x 20 mm.'4i15 However, there are some limitations on the dimensions of subsiie specimens for RPV materials.

1 NUREGER-6379

z C

Q R

z zi

2 w

Material and condition

A 533 wide plate, LT orientation

A 533 wide plate, TL orientation

A 508, asquenched

Upper-sheH DBTT,? Yield energy' strength

(J) ("'I (MPa)

330 -43 422

244 -46 41 0

' 115 58 634

3x 4 Type 4b

X

X

X

X

X

X

X

X

X

X

5 % 5 Type Sb

X

X

HSST" Plate 02, TL orientation, quarter thickness

HSST" Plate 02, TL orientation, half thickness

HSST" Plate 014, quenched and tempered at 950°C

141 3 432

114 15

73 -34 940

~ ~

HSST" weld 72W 136 -28 500

Table 1. Test matrix and mechanical properties of materials for subsire Charpy specimen evaluation

Type Ib Type 2b 5 x I 3.3x 3*3

5 x 5 Type 3'

X I x X

X I x X

A 508, quenched and tempered at 599°C I 102 I 40 I 697 X

A 508, quenched and tempered at 677°C I 116 I 18 I 605 X N

A 508, quenched and tempered at 704°C I 164 I -32 I 500 x -- I --x X

X

X

1 SKMMFA, melt 103672 I 181 I -40 I 630 X

X

First, the specimens should be large enough to be tested on commercially produced equipment in hot-cell conditions. For example, the USE of 1 x 1 x 20 mm specimens could be as low as 0.16 J (ref. 15) for steel with a standard specimen USE equal to 200 J. It would be even smaller for low upper-shelf materials, where the USE on standard specimens could decrease to - 70 J due to irradiation. For 1- by l-mm cross-section specimens, the USE might be less than 0.1 J, and in the transition region, it would be much less than 0.1 J.

ASTM E 23 requires that the specimen be broken within 5 s after removal from the conditioning medium. A reduction of size resulting in a significant increase in the surface area to volume ratio may lead to excessive temperature losses prior to impact.

Another important limitation in decreasing specimen size is the extent of the microstructural inhomogeneities. For example, a study of a special heat of A 508 0.25 mm wide. Investigation of Midland Nuclear Power Plant RPV weld metal1* showed that the cross section of individual weld passes could be several millimeters. Testing of full-size Charpy specimens gives average properties of the material, but test results from very small subsize specimens may be dependent on the location of the specimens within the material.

indicated that carbon segregates in slender bands about

Thus, the lower bound for the cross-sectional dimensions of subsize specimens for irradiated RPV steels may be limited to about 3 mm. The length of a subsize specimen should be no longer than one-half of the standard Charpy specimen (to allow for machining from a broken specimen). Taking into account all the above mentioned considerations, five designs of subsize specimens were selected for the present study (see Figures 1 and 2). The type 1 specimen has a length of 25.4 mm, 5- by 5-mm cross section, with a 30" notch 0.8 mm deep and a root radius of 0.08 mm. Two type 1 specimens could be machined from one broken full-size Charpy specimen. The type 2 specimen has a length of 25.4 mm, 3.33- by 3.33-mm cross section, with a 30" notch 0.5 mm deep and a root radius of 0.08 mm. Eight type 2 specimens could be machined from one broken full-size Charpy specimen. One advantage of choosing types 1 and 2 specimens is the accumulated experience of using these subsize specimens in the United and J a ~ a n ' ~ ' ' ~ ~ ~ for studies of fusion reactor materials. The type 3 specimen has a length of 27 mm, 5- by 5-mm cross section, with a 45" notch 1 mm deep and a root radius of 0.25 mm. This type of subsize specimen has exactly the same geometry as the smallest ASTM E 23 subsiie specimen but is half as long. Two type 3 specimens could be machined from one broken full-size Charpy specimen. Experience with this type of subsize specimen has been accumulated in RussiaZ6 for RPV steels. The type 4 specimen has a length of 26 mm, 3- by 4-mm cross section, with a 60" notch 1 mm deep and a root radius of 0.1 mm. Up to 12 type 4 specimens could be machined from one broken full-size Charpy specimen. Experience with this type of subsiie specimen has been accumulated in E ~ r o p e ~ * " ~ and Russia' for different low-alloy steels including RPV steels. The type 5 specimen has a length of 55 mm, 5- by 5-mm cross section, with a 45" notch 1 mm deep and a root radius of 0.25 mm. This type is the smallest subsize specimen recommended by ASTM E 23. A major disadvantage of this design is that it is not possible to make this type of subsize specimen from a broken full-size Charpy specimen. Nevertheless, specimens of this design were studied for two materials. Details of notch differences are shown in Figure 3.

Testing Procedure All subsize specimens were tested on a specially modified pendulum-type instrumented impact machine.'2 The modified anvils supported the types 1 and 3 subsize specimens so that their relative position with respect to the pendulum was the same as that for the full-size specimen; that is, the center of percussion of the pendulum was maintained at the center of the point of impact, with the specimen just touching the striker with the pendulum hanging free. The types 2 and 4 subsize specimens were tested using the same anvils, resulting in the center of the point of impact being slightly lower and further ahead than the center of percussion of the pendulum when hanging free. Similarly, for type 5 subsize specimens tested using the full-size anvils, this offset was 2.5 mm. These offsets were estimated to produce errors of less than 0.1 J (ref. 26). The span (minimum distance between the radii of the anvils) was 20 mm for types 1,2, and 3 specimens and 22 mm for the type 4 specimen. The thickness of the ASTM E 23 striker was reduced to 4 mm to allow clearance of the specimen halves between the anvils. The radii of the striker and the anvils, however, were maintained in accordance with ASTNl E 23. The type 5 specimens were tested at the full capacity of the machine [407 J (300 ft-lb)] and an impact velocity of 5.5 m/s (18 Ws). All other subsize specimens were tested at a lower potential energy [69 J (51 ft-lb)], with a corresponding reduction of the impact veloc'rty to 2.25 m/s (7.4 ftls).

3 NUREGER-6379

il

ORNL-WG 95M-5230

T(PE I

R 0.08 mm R 0.003 in

. 1 .OOO in - 25.4 mm

jVF I 0.25 mm R 0.010 in

IYPE4 ,$\60”/-, \ I j V R 0.08 mm

R 0.003 in I

Span 20 mm 0.8 mm 0.030 in 1

0.197 in 5.0 rnrn

5.0 rnm

Span 20 mrn 0.5 mm 0.020 in

0.131 in 3.33 mm

3.33 mm

Span 20 mrn 1.0mm 0 . 3 9

0.197 in 5.0 mm

‘1 5.0mm - tr n

Span 22 rnm 1.0 mm 0.039 in

0.157 in 4.0 mm

3.0 mm

TYPE 5 1.0 mm 0.039 in Span 40 mm A.45?.

0.197 in

1 1 f y R 0.25 mm

R 0.01 0 in

5.0 m 55.0 mm

2.165 in

NUREGER-6379

Figure 1. Dimensions of subsize specimens used in this study.

4

- ----- . I , . . . . , . . : -..,

TYPE1 I 5.0 x 5.0 x 25.4mm

30° notch, 0.8mm depth 0.08mm root radius

TYPE 2 3.3 x 3.3 x 25.4mm

30" notch, 0.5mm depth 0.08mm root radius -

TYPE 3 5.0 x 5.0 x 27.0mm

4 5 O notch, 7 .Omm depth 0.25mm root radius

TYPE 4 3.0 x 4.0 x 26.0mm

60° notch, 1 .Omm depth 0.1 mm root radius

FULL SEE 10.0 x 10.0 x 55.0mm

450 notch, 20mm depth , 025mmrootradius

YP18323

i l

Figure 2. Fullsize and subsize specimens used in this study.

5 NUREGKR-6379

I

I i i

I Y

I i I

I E

I !

i

NUREG/CR-6379

500 pm 4OX

500 pm 4OX Figure 3. Comparison of notch dimensions of full-size and

subsize specimens used in this work: (a) full size, type 1, (4 type 2, (4 type 3, and (4 type 4-

6

, 500pm 40X Figure 3 (continued)

7 NUREGER-6379

, 500pm , 40X

Figure 3 (continued)

The impact data for each material condition and specimen type were fitted with a hyperbolic tangent function to obtain transition temperatures and USES:

us t- LS f- us - LS t& Y = 2 2 - C '-1

where T is test temperature (in "C), and US, LS, Tm, and C are fitting parameters. Parameters US and LS can be upper- and lower-shelf values of energy, lateral expansion, or percent shear; Tm is the temperature at the middle of the transition range (in "C), and C is half of the transition zone width (in "C). A11 hyperbolic tangent analyses for full-size specimens were conducted with the lower shelves fixed at 2.7 J and 0.061 mm for energy and lateral expansion, respectively. All hyperbolic tangent analyses for subsize specimens were conducted with the lower shelves fixed at 0.1 J and 0.0 mm for energy and lateral expansion, respectively. Upper and lower shelves of percent shear fracture were always fixed at 100 and 0%, respectively. Appendices A through K contain the Charpy impact results.

Effects of Specimen Dimensions One objective of the study was to clarify the effects of specimen dimensions on the Charpy impact results. Analyses of these effects will be used in the development of a methodology for estimation of the ductile-to-brittle transition temperature (DBTT) and USE of full-size specimens using test data from subsize specimens.

The CVN dimensions-depth, angle, and root radius-play an important role in the transition behavior due to changes in the stress concentration under the notch. Most obvious is the effect of notch depth (a) on the USE. The sensitivity of USE to the V-notch depth was studied on type 3 specimens of HSST Plate 02 (see Figure 4). One set of specimens was made with a notch 1.7 mm deep (0.065 in.), and a second set was made with a notch 0.8 mm deep (0.030 in.). The results were compared with results for the'common 1 .O-mm (0.039-in.) notch depth.

NUREGER-6379 8

ORNL-DWG96-3753 TEMPERATURE [OF)

-300 -200 -100 0 100 200 300 400 35 1 1 I I 1 I I

25.0

22.5 0 0

-e------

- 17.5 25 -

- 15.0 5

00 E 0 ........... 0 ......... 0 ........ :: 10.0 z

0 - 7.5

- L - 3 20 -

a - 12.5 > . a

>- (3

15 - W

W

10 - - 5.0

- 2.5

0.0

5 -

I I I I I -200 -150 -100 -60 0 50 100 150 200 250

TEMPERATURE (OC)

Figure 4. Absorbed energy versus test temperature for type 3 specimens from HSST Plate 02, quarter-thickness location, with 0.8-, 1.0-, and 1.7-mm V-notch depths.

Increasing the depth significantly reduced the USE (from 31 J for a = 0.8 mm to 13 J for a = 1.7 mm). The temperatures a t the middle of the transition region, Tm: were -31, -6, and -19°C for specimens with notch depths of 0.8,l .O, and 1.7 mm, respectively. These changes in transition temperature are mainly due to changes in the USE rather than due to the effect of the notch depth on the transition behavior.

The effect of the notch root radius can be seen when comparing data from HSST Plate 02 type 3 specimens with 0.25- and 0.1 0-mm notch radii (see Figure 5). For this particular experiment, specimens of 0.8-mm notch depth were used. Sharpening of the notch led to an increase of transition temperature by - 20°C and a decrease of the USE by - 5 J. These data agree with other observations of notch dimension effects on impact data.'5m26

The effect of notch angle was studied on two sets of HSST Plate 02 type 1 specimens with 45 and 30" angles (see Figure 6). This change in the notch angle did not result in any effect on transition temperature or USE.

Another parameter is the distance between the anvil supports (span). Figure 7 shows Charpy curves of HSST Plate 02 type 4 specimens tested with spans of 22 and 20 mm. No difference was observed in the transition region. Data from specimens with the shorter span possibly indicated a slightly higher energy on the upper shelf, but this difference could be due to scatter in the data. However, there is a mechanism that may explain higher energies for specimens tested with the shorter span (20 mm). The smaller subsize specimens tested on the upper shelf usually do not fracture completely, but bend around the tup until they are forced out past the anvils. With a shorter span, the specimens must be bent further and scraped against the anvils for a longer time until they can be pushed out. This will result in a longer tail on the end of the loaddeflection curve, which will be reflected in slightly higher absorbed energies, as the data tend to show. In the transition region, the specimens do break completely, so no extra force is required to push the specimen through the anvils. In this case, no effect of span would be expected, and no effect is observed (see Figure 7).

Another example of the effect of span on impact properties is given by a comparison of data from types 3 and 5 subsize specimens. The only difference between these specimens is that type 3 specimens have one-half the span of type 5. The impact curves of types 3 and 5 specimens of weld 72W are presented in Figure 8. Figure 9 presents

9 NUREGER-6379

NUREGCR-6379

25 0

U

0 - - Y u

-

-

2 0

- e IS 5 e - > (3 IY

w 10 g

- 5

I I I I I

TEMPERATURE PC)

0 0 U -

25 - 0

- 3 20 -

- 10 -

5 -

I I

Figure 5. Absorbed energy versus test temperature for type 3 specimens from HSST Plate 02, quarter-thickness location, with 0.25- and 0.1O-mm V-notch root radii.

20

- e 15 A 5 > QY IY

W 10 g

- 5

0

ORNL-DWG 96-3755 * TEMPERATURE (OF)

-200 -100 0 100 200 300 400 SO0 1 I 1 I 1 1 1 25 35 I

10

0

10

8 -

I I 1 I I I

HSST Plate 02. Type 4 - 7

- 6 COMBINED CURVE

o n

Figure 7. Absorbed energy versus test temperature for type 4 subsize specimens from HSST Plate 02, quarter- thickness location, tested at 22- and 20-mm span.

TEMPERATURE m) ORNL-DWG 96-3757 -300 -200 -100 0 100 200 500 400 500

30 I 1 1 I I 1 I 1 I HSSI WELD 72W

0 SPAH 20 mm COHBIHED CURVE

U 15.0 c. 0

0 -P 20 On/ U

w 10

0

Q 0 1 I I

0

I

12.5 J 1 ; >-

w z 10.0 g 7.5

5.0 i 2.5 - 0.0 -200 -150 -100 -50 0 50 100 150 200 250 500

TEMPERATURE PC)

Figure 8. Absorbed energy versus test temperature for types 3 and 5 specimens of weld 72W tested at 40- and 20mm span.

11 NUREG/CR-6379

-200 -100 0 100 200 500 400 500 I 1 1 I I I I 1 so

HSST PLATE 02 - 0 SPAN 40 0 SPAN 20 mm

COMBINED M V E - 0 0

20 - - 7

> a 15 w z W

- - - a

10 - - -

5 - - t 0

-150 -100 -60 0 80 100 I S 0 200 250 500

Figure 9. Absorbed energy versus test temperature for types 3 and 5 specimens of HSST Plate 02, half-thickness location, tested at 40- and 20mm span.

20.0

17.5

- IS.0 0,

12.5 e * w z

I

Y

10.0 g 7.5 w

5.0

2.6

0.0

the impact curves of types 5 and 3 specimens of HSST Plate 02. The type 5 specimens were cut from the half-thickness region in the plate, whereas the full-size Charpy specimens were taken from both the quarter- and half-thickness locations. The impact properties were slightly different at these two depths in the plate (see Table 1). The type 3 specimens were cut from the broken halves of tested type 5 specimens. In both examples in Figures 8 and 9, these results did not show any difference between types 3 and 5 specimens. These materials have fairly low USES, and the 5- by 5 m m specimens break even on the upper shelf, so no effect of span is observed.

Fie type 4 specimens of weld 72W were tested at an impact veloc'ty of 5.5 m/s (1 8 Ws), while 13 were tested at 225 m/s (7.4 Ws), the usual impact velocity for subsiie specimens in this study (see Figure 10). The same experiment was repeated on two sets of HSST Plate 02 type 3 specimens. Figure 11 presents Charpy data for these sets with 12 specimens in each. The results in Figures 10 and 11 show no sensitivity of impact properties to the increase of impact velocity from 2.25 to 5.5 m/s.

.

Correlation of Absorbed Energy Between Full-Size and Subsize Specimens

I

The absence of standardized procedures for subsize specimen testing results in different approaches to correlation of data between subsiie and standard specimens. Generally, existing correlations of USE data can be divided into two approaches. One method widely used in Europe5~',"" consists of establishing an empirical ratio of the USE of full-size to USE of subsize (USF,,,J specimens based on large numbers of tests. The second approach, often used by North American1213*19P~27 and Ja~anese'~*~'*" researchers, consists of correlation of the ratio between the USE of full-size and subsiie specimens with the ratio of different geometrical parameters of full-size and subsize specimens:

NUREGER-6379

USE, size - f( geometric parameters),,

USE,,, f(geometric parameters),,, -

12

TEMPERATURE PF) ORNL-DWG 96-3759

0 -150 -125 -I00 -7S -50 -25 0 25 50 75 100 125

10

0 150

8

1 I I 1 I I 1

[HSST Plate 02, ~ y p e 3 I

- 6 3 > (3

z 8 w 4

2

-200 -150 -100 -50 0 50 100 150 200 250 I 1 I I I I 1 1 I I

HSSI WELD 72W. TYPE 4

0 v,, = 5.50 m/s COMBMEO CURVE

I I I I I I I

> 7

6

5 9

4 %

a S W

I U

> a

I W

2

1

Figure 10. Absorbed energy versus test temperature for type 4 specimens of weld 72W tested at impact velocities of 5.5 and 2.25 mls.

0 0 0

26 -

'3 20

a z 15

- > 0 W W

-

10 -

5 -

1 I I -200 -150 -100 -50 0 50 I00 150 200 :

TEMPERATURE PC)

25

20

Figure 11. Absorbed energy versus test temperature for type 3 specimens of HSST Plate 02, quarter-thickness location, tested at impact velocities of 5.5 and 2.25 mls.

NUREG/CR-6379

TEMPERATURE (OF1 ORNL-DWG 96-3760

30 1 o VI, - 2.26 m/s 0 Vlmp - 6.60 m/s

13

In other words, the ratio of geometrical parameters can be used as a normalization factor (NF) to determine USE of full-size specimens based on the results of testing subsize specimens:

USE,,,, = M; x USE,,, . (3)

The published ratios of geometric parameters of full-size to subsize specimens or NFs are described below.

Corwin et al.’ZP compared two NFs. The first factor was equal to the ratio of the fracture area (Bb) of the full-size specimen to that of the subsize specimen, where B is the width and b is the depth of the ligament below the notch of the specimen (see Figure 12 and Table 2). The second was equal to the ratio of the nominal fracture volume (FV) [(f3b)y of the full-size to the subsize specimen. R was shown that use of the NF (Bb)= gave good correspondence. Normalization by Bb gave poor agreement for USE data.

Lucas et nominal R/ as Bb2.

also used an NF equal to the ratio of the N of full-size to subsize specimens, but expressed the

Louden et a1.2‘ suggested an NF equal to the ratio of B b 2 W of full-size to subsize specimens, where L is the span and & is the elastic stress concentration factor,= which is dependent on ligament size b and notch radius R. The present study has shown (see Figures 8 and 9) that Charpy data, including USE, of specimens tested at spans that differed by a factor of two (20 and 40 mm) did not depend on span. However, the USE depends on ligament size b (see Figure 4) and notch radius R (see Figure 5), which might support using &. Nevertheless, it is not clear how an elastic stress concentration factor can be related to behavior on the upper shelf, where fracture is taking place in a ductile manner dominated by plastic strain.

Kumar et al.m.p.29 have developed an interesting approach to predict the USE of full-size specimens by using both notched and precracked subsize specimens. They suggest that this allows a separation of the USE into energies for crack initiation and crack propagation. This approach is based on the assumption that the energy for crack initiation normalized by N of the specimen is equal for full-size and subsie specimens. Energy for crack initiation can be determined from the difference between the USE of notched specimens (USE) and precracked specimens (USEJ, that is:

- [USE - USEp] - [USE - USED] (4)

where W is equal to Bff. In addition, it was found that the ratio of the USE of notched specimens to the USE of precracked specimens (USEJ did not depend on specimen size, namely:

[E] p fillsize =[%I subsize - (5)

Thus, Kumar et al. claimed that knowledge of USE and USE, of subsiie specimens allowed the use of Equations (4) and (5) to determine the USE of full-size specimens. Examination shows, however, that Equations (4) and (5) are dependent and can be transformed into one equation:

NUREGER-6379

USE USE

14

ORNL-BWG 95M-5240

Geometric parameter, Bb BbYLK, (Bb)=/LK, Bbz (Bb)" Bbz/Q (Bb)=/Q Bb2/QK,

G.P.

5.63 5.8 7.12 7.33 7.54 7.76 11.9 * G*P.fUlISlZJG.P*type 1 3.77

8.52 15.6 16 24.2 24.8 25.6 26.3 33.1 G .P.fullSlza/G'P'typ* 2

4 2.8 2.8 8 8 8 8 5.7 ~

z G.P.f"lI*lZJG.P.,pe3

A G.P.fUlISlZJG.P.,pe4 8.9 C 13 14.6 23.7 26.5 22.3 24.9 22.3

" I (Bb)"/QK,

12.3

33.9

5.7

24.9

I-L _I a

Figure 12. Definition of specimen dimensions.

Table 2. Comparison of different normalization factors for upper-shelf energy as ratios of different specimen dimensions

which is the same as Lucas et precracked specimens.

Kayano et aI.l4 have proposed an NF that incorporates not only FV but elastic (KJ and plastic (Q) stress concentration factors as well. For the plastic stress concentration factor, the following expression based on slipline field theory for a notched specimenm was used:

proposed previously for a nominal FV of Bb2 and does not require testing of

Q = I + - n - 8 2 0

where €I is the notch angle in radians. Some uncertainty remains as to the exact value of Q in CVN testing?'*= Slipline field theory also assumes elastic-perfectly plastic behavior and neglects work hardening, which is clearly not a valid assumption for most materials. In addition, slipline field theory can only be used when fracture occurs exactly at the point of general yielding. This will apply only at one specific temperature for a given material, not over the whole transition regime. In any case, implementation of Q, as in Eq. 0, includes the effect of notch angle on USE. However, the results of the present study did not show such a dependence over the limited range of notch angles examined.

In the present work, different NFs described above, as well as modifications by the authors, were implemented in the analysis of the data (see Table 2). Table 3 summarizes the results of measured USE values for full-size and subsize Specimens of the steels investigated in the present study. For all types of subsize specimens, a linear dependence between the USE of full-size and subsize specimens is obsewed except for two points with USEs of full-size specimens higher than 200 J. Values of USE higher than 200 J for full-size specimens require special consideration. Specimens tested in the upper-shelf region show large amounts of plastic deformation at the support points. These features are associated with the specimen squeezing between the anvils. All interactions between the specimen and the anvils will require additional energy as reflected by the.absorbed energy value.33*34 Specimens with high USE values will have significant amounts of energy associated with the anvil interactions in addition to the fracture process at the notch. Further investigations need to be performed to analyze these data. Forthe purposes of this study, analysis of USE data was limited to data below 200 J for full-size specimens.

Figures 13 through 16 present the correlation observed for the USE from full-size specimens to the USE from subsize specimen types 1 through 4 as well as ratios of USL,,,, to USL, for each type of subsize specimen. Comparison of the ratios obtained with the NFs in Table 2 shows that no single factor can be considered as universal for any specimen geometry, although an NF based on the FV of specimens, namely (Bbir)lul,sba/(Bb2)subsfre, gives the closest estimation for each geometry, but these estimations are slightly higher than empirical ratios for each specimen geometry. An implementation of elastic or plastic stress concentration factors did not improve the correspondence. Based on this observation, a decision was made to use the obtained empirical ratios (see Figures 13-16) as USE normalization factors (NF& for each specific geometry. There is no obvious effect of the yield strength on the empirical ratios of USEs, as Figures 17 through 20 show.

Since no single known existing correlation procedure would work for data from different subsize specimens, a new correlation was developed. It was assumed that the fracture process could be partitioned into low-energy brittle and high-energy ductile modes and that different correlation procedures should be'applied to each component of the fracture process. On the lower shelf where fracture occurs by a low-energy cleavage mechanism, it is reasonable to assume a constant value of absorbed energy per unit of fracture surface area or:

NUREGER-6379 16

i

USbP 2 USEru,, .It. US~UII SIX. usby, 1

(J) (J) US& (J) Material

A 533 wide plate, LT orientation 330 34.6 9.5 8.6

A 533 wide plate, TL orientation 244 34.3 7.1 8.9

A 508, quenced and tempered at 102 21.1 4.8 5.3

A 508, as quenched * 115 21.6 5.3 6.1

599°C

A 508, quenced and tempered at 116 26.2 4.4 6.8 677°C

at 704°C

HSST" Plate 02, TL orlentation, 141 29.3 4.8 6.7 quarter thickness

HSSTO Plate 02, TL orlentation, 114 half thickness

HSST" Plate 014, quenched and 73 15.1 4.8 5.6 tempered at 950°C

1 5Kh2MFAI melt 103672 181 29.2 6.2 8.3

HSSlb weld 72W 136 23.7 5.7 7.7 i S S T = Heavy-Sectlon Steel Technology Program.

A 508, quenched and tempered 164 37.3 4.4 9.3

i

dXb usEtYp.4 USEfUII .Ix. " L b S

USEjUIl .It*

U S L , (J) USE, s (J) U S L ,

38.4 28.4 11.6 7.7 42.9

27.4 35.9 6.8 7.2 33.9

18.9 17.6 6.5 5.5 20.9

19.2 15.0 6.8 5.1 20.0

17.1 17.2 6.7 6.5 17.8

17.6 24.6 6.7 7.5 21 :9

21 .o 26.7 5.3 6.3 29.4

20.3 5.6

13.0 13.9 5.3 4.5 16.2

21.8 24.5 7.4 7.8 23.2

17.7 22.5 6.0 5.9 23.1 'I

I

Table 3. Upper-shelf energies obtained for materials for subsize Charpy specimen evaluation

NUREGiCR-6379

I I I I I I 1 - 175 225

200

- 175 -I

E 150 3

- ; 125

5 100

M VI

1 3

7 5 -

so

25

0

- - - - - -

- -

1

225

200

1 2=

I I 1 I 1 1 I I 1 1 175

l m i - -

I I I 1 I 1 1 I I 0 5 10 15 20 25 30 35 40 45 50

SUBSIZE USE, (J1

0 1 0

Figure 13. Correlation of upper-shelf energies of full-size and type 1 subsize specimens.

- 175 2 E 150 2 w 125 fi y 100 -I 3 L L 7 5 -

50

25

- -

- -

- -

1 1 0 0 5 W

-I s" 50 L

1 I I I I I 0 2 4 6 8 10 12 14

SUBSIZE USE (JI

0 1 0

Figure 14. Correlation of upper-shelf energies of full-size and type 2 subsize specimens.

18

S U B S I Z E USE (f t - lbl ORNL-DWG96-3763

175

250

225

200

I 175 2

150

125 3

5; 3 100 -I 3 L L 7 5 -

225 - 200

- 175 7

: 150 - 3

E 125 - VI

100 -1 2 h. 7 5 -

50

25 -

- - -

Y

-

-

I 1 I I I I 1 I

- - - - - -

150

I I 1 1 I I 1 0 5 10 1s 20 25 30 35 40 0 1

0 S U B S I Z E U S E (J)

Figure 15. Correlation of upper-shelf energies of full-size and type 3 subsize specimens.

ORNL-DWG 96-3764 S U B S I Z E USE (ft-lbl

0

25 50 1 0 I I I I I

S U B S I Z E U S E W l 0 2 4 6 8 10

Figure 16. Correlation of upper-shelf energies of full-size and type 4 subsize specimens.

19

175

150

125 f 4.8 k W

100 UJ 3 W

7s : I .-I -I 3

50 ~r

25

0

NUREGER-6379

! I

NUREGER-6379

R 7 -

a

Ln 3

- m 0

lJ.7 6 -

m > - A 4 -

w' a

3 -

2 -

1 -

3

YIELD STRENGTH fk. s. I . 1 ORNL-DWG 96-3765 60 7 0 80 ' 90 100 110 120 130 140

I 1 I I I I I I 10

- 7 4 0

- 6 w- 0 (I)

0 3 - 5 h

0 0 - - 4 4

w"

AVERAGE .I LI

N 5 - 0 0 0

>

- 3 cn 3

8 gl

1 I I I I 400 so0 600 700 800 900 lo00

YIELD STRENGTH RIP01

0 1 0

Figure 17. The ratio of upper-shelf energy (USE) of full-size specimens to USE of type 1 specimens as a function of yield strength.

ORNL-DWG 96-3766 YIELD STRENGTH k s . I . )

6 0 70 80 90 100 110 120 130 140 1 1 I I I 1 I I 30.0 30.0

25.0

22.5

20.0

17.5

15.0

4 25.0 0

.I .a -

22.5 = v) 3

G 20.0

N - m 17.5

W u) 3 15.0

12.5 1 0 4 12.5

10.0 I 1 I 1 I I 110.0 400 500 600 700 800 900 1000

YIELD STRENGTH (MPa) Figure 18. The ratio of upper-shelf energy (USE) of full-size

specimens to USE of type 2 specimens as a function of yield strength.

20

YIELD STRENGTH (k.s. I . ) ORNL-DWG 96-3767 60 70 80 90 100 110 120 130 140 12 I 12

1 I 1 1 I I I I

- AVERAGE -

0 - 0 0 0 0

0 - 8 0

1 - 9 g - 8 w" - 7 t

-6 4

a n a

m 3

m * - 1 e

w

5 4l I I I I I

400 500 600 700 800 900 IO00 YIELD STRENGTH CMPo)

2

Figure 19. The ratio of upper-shelf energy (USE) of full-size specimens to USE of type 3 specimens as a function of yield strength.

ORNL-DWG 96-3768 YIELD STRENGTH at. s. I . 1

90 100 110 120 130 140 I 1 I 1 1 I I 1 40

6 0 70 80 40 I

lrVPE1 -t 30 0

0 - n g 25

w m 3 \e 20

w'

N P - - 5 15

v) = IO

1 35 -I 30

5 l - 1 5

400 500 600 700 800 900 1000

YIELD STRENGTH (MPa)

0

Figure 20. The ratio of upper-shelf energy (USE) of full-size specimens to USE of type 4 specimens as a function of yield strength.

21 NUREGER-6379

' I

and thus

where

In the transition region there is a competition between brittle and ductile fracture. It is assumed that the percent of shear on the fracture surface can be used as a measure of the amount of ductile fracture in the transition region.

Based on these considerations, the following expression is proposed for normalizing the absorbed energy (E) of subsize specimens:

where NFbllttle is a normalization factor for the brittle mode of fracture from Equation (10) and is equal to 3.77,8.52, 4.00, and 8.90 for types 1 , 2,3, and 4 subsize specimens, respectively. NFductne is a normalization factor for the ductile mode of fracture and is equal to 5.1 , j8.3,6.3, and 21.3 for types 1,2,3, and 4 subsize specimens, respectively (see Figures 13 through 16). SHEAR is the percent of shear fracture on the fracture surface measured, in general, visually. In some cases, fracture surfaces of broken subsize specimens were difficult to interpret. In these cases, the procedure proposed by Nanstad and SokoloP for estimation of shear fracture from analysis of instrumented impact traces of full-size specimens was used:

where F,, Fa, Fw, and F, are characteristic points on the load versus displacement trace as shown in Figure 21. It was assumed that the same approach could be used for subsize equations.

Visual determination of the percent of shear fracture requires an interpretation of the appearance of the fracture surface, a process that is subjective and may vary from person to person. This variability may lead to some uncer- tainty in values of the transition temperature determined with the normalization process in Equation (1 1). To estimate how serious a problem this might be, data from HSST Plate 02 type 3 specimens were examined. The original data were normalized and analyzed to determine the transition temperatures at energy levels of 41 and 68 J (T,,, and TW1 respectively). Then the percent shear data were modified, first by adding 10% to each data point, and then by subtracting 10% from each data point The lower- and upper-shelf levels were kept at 0 and 1 OO%, respectively, in both cases. The energy levels from the subsize specimens were then normalized with the

NUREGER-6379 22

OANL-DWG 95M-5239

T41J

TW

20

15

h

v 5

0" n 10

-I

5

0

Transition temperature ("C)

As-measured As-measured As-measured shea? + IO%* - 10%'

-28 -30 -26

-2 -5 1

I I I I

0 0.25 0.50 0.75 1 .oo DISPLACEMENT (mm)

Figure 21. Load versus displacement record showing the definitions of the various load points.

Table 4. Effects of changes in percent shear on values of transition temperatures at 41 and 68 J for normalized data from type 3 specimens of HSST Plate 02

'Normalization performed with asmeasured percent shear. *Normalization performed with percent shear +lo%. cNormaliiation performed with percent shear -1 0%.

23 NUREGCR-6379

altered shear values, in both cases. The results of these changes in the shear values are shown in Table 4. Changing of the shear values by +lo% results in very small changes in the transition temperatures, showing that the normalization procedure is not overly sensitive to changes in the measured value of percent shear.

Correlation of Transition Temperature of Full-Size and Subsime Specimens

The effect of specimen size on the DBTT can be explained as suggested by Davidenkov.= The yield stress (ay) depends on temperature, increasing as the temperature decreases, while the cleavage fracture stress (u,) is assumed to be temperature independent (see Figure 22). The intersection of these curves determines the DBTT. The size effect can be explained by a statistical theory of strength, whose mathematical interpretation was given by Weibull.* It is based on the assumption that brittle failure is determined by the value of the local stress in the piece at the point where the most critical structural defect is located. Using the theory of probability, Weibull established the dependence of the brittle strength on the volume of the specimen. For the same states of stress but various dimensions of the specimens, the brittle fracture stress changes as V1'm, where V is the volume of the specimen and m is a constant of the material. The scatter obtained will be larger for smaller specimens. The dependence of brittle fracture on the volume of specimens for different types of tests has been experimentally

The above discussion is illustrated in Figure 22. The dependence of yield stress on temperature can be expressed as:

oy = AeclT ,

where A and c are constants, and T is temperature in Kelvin. According to W e i b ~ I l , ~ ~ ~ ~ the dependence of the brittle fracture stress on volume is:

of = zv-l'm (1 4)

where 2 and m are constants. If we define the DBTT as the temperature at which uy is raised so that it equals a, (see Figure 22), then:

C - DBlT = zv-llm

Taking the natural logarithm of Equation (1 5) results in:

1 DBTT = R - S h V '

where R and S are constants.

Thus, Equation (16) describes, in general, the shff of DBTT to lower temperatures due to a reduction in size. However, different notch geometries result in different stress distributions under the notch for different subsize

NUREGER-6379 24

ORNL-DWG 96-3769

I- u)

i t 1 1 I 1 I I

I DBTTd8lZ.8 ; DBTTrutl-rlra TEMPERATURE

Figure 22. Stress-temperature diagram showing the effect of specimen size on transition temperature.

specimens, which does not allow the use of Equation (16) for a quantitative account of size effects in notched impact tests. Nevertheless, it suggests the establishment of an empirical correlation:

DBTTkU,, = DBTT,,, + M ,

where DBTT,,,,,,k, and DBTT,,, are transition temperatures for full-size and subsiie specimens, respectively, and M is a shfi of DBTT due to specimen size. A similar approach has been used in refs. 6,11, and 19.

The following procedure was used to determine the temperature correction, M. Absorbed energy values from subsize specimens were normalized by Equation (1 1). These data were then fit with a hyperbolic tangent function [see Equation (I)] to determine temperatures at 41 J (T4,& 68 J (Td, and at the middle of the transition zone (Tm). Figures 23 through 26 summarize the comparison of transmon temperatures for full-size and different subsiie specimens. Transition temperatures at 50% shear (TA were also included in the analysis. The data show a linear correspondence of transition temperatures. The following equations were obtained for the different subsiie specimens:

DBTT,, size = DBTT,, + 30 (zk28) "C,

DBTT,, size = DBTT,, + 53 (h24) "C,

25 NUREGlCR-6379

31

-200 - 1 0 0 0 100 200 300 1 I 1 1 150 - ,

,- , , - u s - 0, 100 - 0 In

I-

P 50 - P I-

i (0

-

0 - I-

3

ci

.o I- -50 - W

u) I -I -100 - T f U I I 1 l X O - TSclb.120 + 308 “’ -I

, 0 - 0

0 0 ,

+/- 20

I I I I I

----- z - -150

ORNL-DWG 96-3771

- 300 ii 0, 3 0

200 c” F r I-

100 I Y c 0 In I-

- - O & - I Y c 0 R t LI N v)

-I

lL

-100

H

-200 3 150

W

-I -I

i?

I I I 1 , 1 150 0

100 - -

50 - -

- 0

0 0

-100 - 0‘ Trull-slre = Tubolaa + 53, ec) +/- 2u --e-- -

I I I I I -150 -150 -100 -50 0 50 100

NUREGER-6379

i 300 i.2 e. 3 0

200 c” 1

I- 100 p

I Y c 0 Lo

I-

0 - - 0

Y c

5;

t; -200 3

c w N

I -I

Lr

-100

150

Figure 24. Correlation of transition temperatures determined with data from full-size specimens and normalized data from type 2 subsize specimens.

26

-200 -100 0 IO0 200 300 I 1 I I i 300 I50

-

-

-

-

i (D

i t

w N u)

I -I -100

w

200

100

- 0

-100

-200

150

G 100 0,

s 0 W

I- C 50 I

I- i a,

c” O -

i P

I- -50 w

7 -I -100 -I 3 LL

-150

s - I .U L 0 W I-

-200 -100 0 100 200 300 I 1 1 0- 1 300 - I

0 . 0 G:

- 200 t-”

- 100 5

0, L - 0

i= r - I-

I U L 0

la t-”

- 0 E U L 0 n

- c

0 w v)

I J

0 - -100

0 c! - - Tlull-slze - TaIklalze + 38. */- 20

I 1 I I 1 LL

----- - -200 9

- n - I U L 0 n

t-

i l I I 1 I 1 I LL -150 ’

-150 -100 -50 0 50 100 I50

SUBSIZE Tr)ljr T,, Tnrl T5ox PCl

Figure 25. Correlation of transition temperatures determined with data from full-size specimens and normalized data from type 3 subsize specimens.

27 NUREGlCR-6379

DBTT,,,, = DBTTtype3 + 34 (rt20) "C, (20)

and

DBTT,,,, = DBTTw, + 38 (k30) "C,

where the numbers in parentheses are &2a intervals.

Figure 27 shows the dependence of the temperature-size correction, M, taken from Equations (18)-(21), on the nominal N, Bb2, for the subsize specimens used in this work. The solid line is a tit to the data:

0. 70

60

2 50

P z 0 40 I- u w a: 0 u w v)

M

a 30

fl 20

10

0

M = 98 - 15.1 x In @b2) . (22)

NOMINAL FRACTURE VOLUME Bb2 oRNL-DWG 96-37/4 0 0.006 0.010 0.011 0.020 0.025 0.030 0.055 0.040 '1 120

100 200 so0 400 so0 600

- loo

z E

- 6 0 g 0 0

N v)

a

- 4 0 w U

100 200 so0 400 so0 600 700

0 TYPE 2 0 TYPE 3 A TYPE 4

loo 2

ao 5

e

z E

60 g 0 0

N v)

a

40 w U

20

0 700

NOMINAL FRACTURE VOLUME Bb2 h m 5 ) Figure 27. Temperature correction for subsize specimens as a

function of nominal fracture volume.

The form of this fit is suggested by Equation (16), and the equation was forced to give a correction factor of 0 for the full-size specimen. The trend agrees, in general, with the scheme for the effects of specimen size on the DBlT based on the statistical theory of strength (see Figure 22). Deviations from this dependence reflect the constraint effects of different notch dimensions, but the form of the dependence may be used as guidance to estimate size corrections for subsize specimens.

Normalization of Data from Subsize Specimens The normalization procedure described above was tested with the data from the ten materials used in the present work (see Appendices Athrough K). The absorbed energies for subsize specimens were normalized by Equation (1 1).

NUREGER-6379 28

Test temperatures were then shiffed forward by size adjustment values from Equations (1 8)-(21) for the corresponding subsize specimens. Data from subsize specimens normalized by this procedure correspond very well with the mean and 95% confidence intervals from full-size specimens, as Figures 28 through 35 show. The normalization did not produce a good match on the upper-shelf regime for materials with USES greater than 200 J for full-size specimens, as Figures 36 and 37 show. Excessive deformation at the anvils and the failure of subsize specimens of tough materials to fracture completely when tested on the upper shelf are factors that led to the poor agreement. If the data are restn'cted to materials with full-size USE levels less than 200 J, the present method for normalizing data from subsize specimens can give good correlations with data for full-size Charpy specimens.

Examination of the standard deviations reported for Equations (18)-(21) shows that the type 3 specimen has the smallest value, suggesting that this specimen is the best of the four types examined for determining the DBlT, since it results in the smallest error. It was also noted that this specimen was more likely to fracture completely when tested in the upper-shelf regime, whereas the other subsiie specimens tended to wrap around the tup rather than fracture in this regime. This failure to fracture on the upper shelf is exacerbated for materials with high USE levels and accounts for the poor agreement found for materials with upper-shelf levels of over 200 J, as measured with full-size specimens. The types 1 and 2 subsize specimens have relatively short notch depth to specimen width ratios (aNv) of 0.16 and 0.15, respectively. The type 3 specimen has a relatively deeper notch, with aMI = 0.2. This relatively deeper notch will encourage fracture on the upper shelf. The type 4 specimen has a value of aMI = 025, but the specimen thickness is only 3 mm as compared to 5 mm for type 3. The greater thickness of the type 3 specimen will increase the transverse constraint developed in this specimen as compared to the thinner type 4 specimen, and again encourage fracture. Thus, of all the specimens tested, the type 3 specimen seems to be the best, although it is the largest of the subsize specimens. If a smaller specimen is desired, it might be useful to consider a geometry with a relatively deeper notch (aMI greater than 025) to encourage fracture on the upper shelf and improve the correlation with full-size specimens.

Summary and Conclusions Five types of subsize specimens from ten materials were studied in the present work. The principal results are as follows:

1. Subsize Charpy specimens may be useful for studies when material availabili is limited. The broken halves of surveillance specimens can be remachined into subsize specimens to extend current surveillance programs and to monitor annealing response. The small specimen recommended by ASTM E 23 is too long for such an application.

2. It was found that (1) an increase in the notch depth decreases the USE but has l i e effect on the DBlT, (2) a decrease of the notch root radius reduces the USE and increases the DBTT, (3) variation of notch angle from 30 to 45" while keeping the remaining dimensions identical does not result in any effect on transition temperature or USE, and (4) span and impact velocity (in the ranges studied) do not affect the USE and DBTT.

3. The following equation is proposed for normalizing impact energy values from subsize Charpy specimens (E):

..

where NFm, is a normalization factor equal to the ratio of the area of the fracture surface of the full-size specimen to the area of the fracture surface of the corresponding subsize specimen; NF,,, is an empirical normalization factor equal to 5.1 , 18.3,6.3, and 21 -3 for types 1 , 2,3, and 4 subsize specimens, respectively; and SHEAR is the percent of shear fracture on the fracture surface.

29 NUREGER-6379

ORNL-DWG 96-3775 TEMPERATURE PF)

L

3 >- W

Z W .6

NUREGER-6379

0 200 400 600 800 ' 1 7 5

120

150

100

125 c.

80 P

t 60 &

z W

L) 100

6 Is

40 W

20 25

0 0 -100 0 100 200 300 400 so0

TEMPERATURE PC) Figure 28. Comparison of Charpy curve for full-size specimens

of A 508, asquenched, with data from subsize specimens normalized by the proposed procedure.

TEMPERATURE C'F) ORNL-DWG 96-3776 -100 0 100 2 0 0 ' 300 400 500 600 700

150 1 t I 1 1 I ,,-.I----- 1 1

1 s -#'

/-- .e 1-1 A - TEMPERED 599%

CUu-SltE M A N OURPT CURVE

SUBSIZE TYPE 1 CHARPY DATA SUBSIZE TYPE 2 CHARPY DATA WSSIZE TYPE 5 CHARPY DATA SUBSIZE TYPE 4 CHARPY DATA

0 0 A

2s

0 -100 -50 0 50 100 150 200 250 300 350

100

20

TEMPERATURE PC) Figure 29. Comparison of Charpy curve for full-size specimens

of A 508, quenched and tempered at 599"C, with data from subsize specimens normalized by the proposed procedure.

30

TEMPERATURE PFI ORNL-D\VG 96-37 -too 0 100 200 300 400 500 600

I I I I I 1 1 1

1 120

I 9 75 w " I

- 40

----- FULL-SIZE 05% C I ON PRED. VALUE 0 SUESUE TYPE 1 CHARPY DATA

0 SUBSUE TYPE 5 CHARPY DATA 0 SUBSIZE TYPE 2 CHARPY DATA 20 -

0 100 150 200 260 300 350

Figure 30.

225

200

178

TEMPERATURE PC) Comparison of Charpy curve for full-size specimens of A 508, quenched and tempered at 677"C, with data from subsize specimens normalized by the proposed procedure.

c. e t r Q W 2 w

1 Y

a

NUREG/CR-6379

TEMPERATURE PF1 ORNL-Dh'G 96-3778 -200 -100 0 100 200 300 400 500 600

1 50

' 126 * 0

2 w

I

8

P

0 , r /

I50

too

FULL-SIZE 95% CI OM PRED. VAL= 50

2s A SUBSfZE TYPE 4 CHARPY DATA

A- - 0- 0 -150 -100 -50 0 SO 100 150 200 250 300 350

TEMPERATURE eC1 Figure 31. Comparison of Charpy curve for full-size specimens of

A 508, quenched and tempered at 704"C, with data from subsize specimens normalized by the proposed procedure.

31

'i7

NUREGER-6379

TEMPERATURE (OF) ORNL-DWG 96-3799 -100 0 100 200 300 400 500 600

HSST PLATE 02

FULL-SIZE 95% C I ON PRED. VALUE 0 SUBSIZE TYPE 1 CHARPY DATA 0 SUBSIZE TYPE 2 CHARPY DATA

TEMPERATURE 60 Figure 32. Comparison of Charpy curve for full-size specimens of

HSST Plate 02, T-L orientation, quarter thickness, with data from subsize specimens normalized by the proposed procedure.

140

120

TEMPERATURE PF) -200 -100 1 0 100 200 300 400

r l 1 I I 1 1 I I

HSST PLATE 14. QUENCHED h TEMPERED @ 95OoC/5 h t '

ORNL-1 IWG 964780 500 600

4 0

o

*.e--------

----- FULL-SIZE 95% CI ON PRED. VALUE 0 0

SUBSIZE TYPE 1 CHARPY DATA SUBSIZE TYPE 2 CHARPY DATA

50 100 150 200 250 300

40

20 1 350 0

TEMPERATURE

Figure 33. Comparison of Charpy curve for full-size specimens of HSST Plate 14, quenched and tempered at 950°C, with data from subsize specimens normalized by the proposed procedure.

32

Y z W

ORNL-DbYG 35-57E.t. TEMPERATURE (OF) -100 0 100 200 300 400 500

I 1 1 I 1 I

175 I I 1 1 1 I I 1 I ____________________----_-- - /e-- 0 ~HSSI WELD 72w I 8 ,/‘ 0

150 - 8 0 , -

A 0 0 0

0 SUBSIZE TYPE 1 CHARPY DATA 0 SUBSIZE TYPE 2 CHARPY DATA

100 150 200 250 300 TEMPERATURE PC)

120

Figure 34. Comparison of Charpy curve for full-size specimens of 15Kh2MFA with data from subsize specimens normalized by the proposed procedure.

ORNL-DWG 96-37$2

- 80 e

125

I U.

- 3 100 b

Ei 60 g > (3

W W z

W

z 75

40 50

20 25

0 0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PC)

Figure 35. Comparison of Charpy curve for full-size specimens of HSSl weld 72W with data from subsize Charpy specimens normalized by the proposed procedure.

33 NUREGlCR-6379

TEMPERATURE PFI ORNL-DWG 96-3783 -100 0 I O 0 200 500 400 500

I 1 I I 1 1 1 400

TEMPERATURE PC) Figure 36. Comparison of Charpy curve for full-size specimens of

A 533 wide plate, L-T orientation, with data from subsize Charpy specimens normalized by the proposed procedure.

ORNL-DWG 96-3784

350

300

250

3,200

NUREGER-6379

s el (I % 150 w

100

50

TEMPERATURE PF) -I00 0 IO0 200 300 400 SO0

1 I I I 1 1 I

A 5338 WIDE PLATE . 1-1

FULL-SIZE 95% CI ON PRED. VALUE 0 SUBSIZE TYPE 1 CHARPY DATA 0 SUBSIZE TYPE 2 CHARPY OATA 0 SUBSIZE TYPE 3 CHARPY OATA A SUBSIZE TYPE 4 CHARPY DATA

I I I I I 0 -100 -50 0 50 100 150 200 250 2

TEMPERATURE PC)

250

200

> (3 a

100 W

50

Figure 37. Comparison of Charpy curve for full-size specimens of A 533 wide plate, T-L orientation, with data from subsize Charpy specimens normalized by the proposed procedure.

34

- , - .

4. The empirical correlations between the D B l T of full-size and the different subsize specimens were determined as follows:

DBTT,,, size = DBTT,, + 30 (h28) "C

DBTT,,, size = DBTTme + 53 (h24) "C

DBTT,,, size = DBTT*, + 34 (h20) "C

and

DBTT,,,,,, = DBTTme, + 38 (h30) "C

where the numbers in parentheses are Qa intervals. Further understanding of the shif€ in the D B l T as a function of specimen size needs to be pursued.

Results obtained from the subsize specimens as well as the empirical correlations can be used for development of an ASTM standard practice for impact testing of subsize specimens for supplementary surveillance data in nuclear applications.

5.

35

Ref e re n c es

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

A. D. Amayev, A. M. Kryukov, and M. A. Sokolov, 'Recovery of the Transition Temperature of Irradiated W E R - 4 4 0 Vessel Metal by Annealing," pp. 369-79 in Radiation Embrifiiement of Nuclear Reactor Pressure Vessel Steels: An International Review (Fourth Volume), ASTM STP 1170, ed. L. E. Steele, American Society for Testing and Materials, Philadelphia, 19932

A. M. Kryukov and M. A. Sokolov, 'Investigation of Material Behavior Under Reirradiation After Annealing Using Subsize Specimens," pp. 41 7-23 in Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, ASTM STP 1204, ed. W. R.CoMn'n, F. M.Haggag, and W. L.Server, American Society for Testing and Materials, Philadelphia, 1993:

W. L. Server, 'Review of In-Service Thermal Annealing of Nuclear Reactor Pressure Vessels," pp. 979-1 008 in Effects of Radiation on Maferials: TweM International Symposium, ASW STP 870, ed. F. A. Garner and J. S. Pemn, American Society for Testing and Materials, Philadelphia, 1985.'

T. R. Mager, Feasibility and Methodology for Thermal Annealing of an Embrifiied Reactor Vessel, Vol. 2, EPRl NP-2712, Electric Power Research Institute, Palo, Alto, Calif,, November 1982.

R. Ahlstrand, E. N. Klausnitzer, D. Lange, C. Leitz, D. Pastor, and M. Valo, 'Evaluation of the Recovery Annealing of the Reactor Pressure Vessel of NPP Nord (Greifswald) Units I and 2 by Means of Subsize Impact Specimens," pp. 31243 in Radiation Embrimemenf of Nuclear Reactor Pressure Vessel Steels: An International Review (Fourth Volume), ASTM STP 1170, ed. L. E. Steele, American Society for Testing and Materials, Philadelphia, 1993:

A. D. Amayev, V. 1. Badanin, A. M. Kryukov, V. A. Nikolayev, M. F. Rogov, and M. A. Sokolov, 'Use of Subsize Specimens for Determination of Radiation Embrittlement of Operating Reactor Pressure Vessels," pp. 424-39 in Small Specimen Test Techniques Applied fo Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, ASTM STP 1204, ed. W. R. CoMn'n, F. M. Haggag, and W. L. Server, Amencan Society for Testing and Materials, Philadelphia, 1993:

Standard Test Mefhod for Notched Bar Impact Testing of Mefallic Maferials, ASTM E 23-93a, American Society for Testing and Materials, Philadelphia, 1993.'

M. Grounes, "Review of Swedish Work on Irradiation Effects in Pressure Vessel Steels and on Significance of Data Obtained," pp. 224-59 in Effects of Radiafion on Sfrucfural Mefals, ASTM STP 426, American Society for Testing and Materials, Philadelphia, 1967.1'

C. Curll, "Subsize Charpy Correlation with Standard Charpy," Mater. Res. Stand., 91-94 (February 1961):

R. C. McNicol, "Correlation of Charpy Test Results for Standard and Nonstandard Size Specimens," Weld. Res. Suppl., 385-93 (September 1965).*

E. Klausnitzer, H. Kristof, and R. Leistner, 'Assessment of Toughness Behavior of Low-Alloy Steels by Subsize Impact Specimens," pp. 3-37 in Transactions offhe 86h Infernational Conference on Structural Mechanics in Reactor Technology, Brussels, August 1985, Vol. G, International Association for Structural Mechanics in Reactor Technology, 1986.' I

37 NUREGKR-6379

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

W. R. CoMn’n and A. M. Hougland, “Effect of Specimen Size and Material Condition on the Charpy Impact Properties of 9Cr-1Mo-V-Nb Steel,” pp. 325-38 in The Use of Small-scale Specimens for Testing Irradiated Material, ASTM STP 888, ed. W. R. CoMn’n and G. E. Lucas, American Society for Testing and Materials, Philadelphia, 1986.*

G. E. Lucas, G. R. Odette, J. W. Sheckherd, P. McConnell, and J. Perrin, “Subsized Bend and Charpy V-Notch Specimens for Irradiated Testing,” pp. 304-24 in The Use of Small-scale Specimens for Testing lrradiafed Material, ASTM STP 888, ed. W. R. Corwin and G. E. Lucas, American Society for Testing and Materials, Philadelphia, 1986.*

H. Kayano, H. Kurishia, A. Kimura, M. Narui, M. Yamazaki, and Y. Suzuki, “Charpy Impact Testing Using Miniature Specimens and Its Application to the Study of Irradiation Behavior of Low-Activation Ferritic Steels,” J. Nucl. Mater. 179-181 , 425-88 (1991):

H. Kurishita, H. Kayano, M. Narui, M. Yamazaki, Y. Kano, and 1. Shibahara, “Effects of V-Notch Dimensions on Charpy Impact Test Results for Differently Sized Miniature Specimens of Ferritic Steel,” Mater. Trans. JIM 34(1 l), 1042-52 (1993):

M. P. Manahan and C. Charles, “A Generalized Methodology for Obtaining Quantitative Charpy Data from Test Specimens of Nonstandard Dimensions,” NucL Techno/. 90,245-59 (May 1990):

M. P. Manahan, “Determination of Charpy Transition Temperature of Ferritic Steels Using Miniaturized Specimens,” J. Mater. Sci. 25,3429-38 (1 990).*

R. K. Nanstad, D. E. McCabe, R. L. Swain, and M. K. Miller, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Chemical Composition and RT,,, Determinations for Midland Weld W-70, USNRC Report NUREGER-5914 (ORNL-740), December 19924-

D. J. Alexander and R. L. Klueh, “Specimen Size Effects in Charpy Impact Testing,” pp. 179-91 in Charpy lmpact Test Factors and Variables, ASTM STP 1072, ed. J. M. Holt, American Society for Testing and Materials, Philadelphia, 1990:

A S. Kumar, F. A. Gamer, and M. L. Hamilton, “Effect of Specimen Size on the Upper-Shelf Energy of Ferritic Steels,” pp. 487-95 in Effects of Radiation on Materials: 14th lntemational Symposium (Volume lo, ASTM STP 1046, ed. N. H. Packan, R. E. Stoller, and A. S. Kumar, American Society for Testing and Materials, Philadelphia, 1990’

B. S. Louden, A. S. Kumar, F. A. Garner, M. L. Hamilton, and W. L. Hu, ‘The Influence of Specimen Size on Charpy Impact Testing of Unirradiated HT-9,” J. Nucl. Mater. 155-157,662-67 (1988):

A. S. Kumar, B. S. Louden, F. A. Garner, and M. L. Hamilton, “Recent Improvements in Size Effects Correlations for DBlT and Upper-Shelf Energy of Ferritic Steels,” pp. 47-61 in Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Planf Life Extension, ASTM STP 7204, ed. W. R. Corwin, F. M. Haggag, and W. L. Server, American Society for Testing and Materials, Philadelphia, 1993.’

W. R. CoMn’n, R. L. Klueh, and J. M. Viek, ”Effect of Specimen Size and Nickel Content on the Impact Properties of 12 Cr-1 M O W Ferritic Steel,” J. Nucl. Mafer. 122-123,34348 (1984):

F. Abe, T. Noda, H. Araki, M. Okada, M. Narui, and H. Kayano, “Effect of Specimen Size on the Ductile-Brittle Transition Behavior and the Fracture Sequence of 9Cr-W Steels,” J. NucL Mater. 150, 292-301 (1 987):

NUREGER-6379 38

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

E. N. Klausnitzer and G. Hofmann, “Reconstituted Impact Specimens with Small Inserts,” pp. 76-90 in Effecfs of Radiation on Maferials: 15fb lnfemafional Symposium, ASTM STP 1125, ed. R. E. Stoller, A. S. Kumar, and D. S. Gelles, American Society for Testing and Materials, Philadelphia, 1992.’

N. H. Fahey, “Effects of Variables in Charpy Impact Testing,” Mafer. Res. Stand. 1,872-76 (November 1961):

G. E. Lucas, G. R. Odette, J. W. Sheckherd, and M. R. Krishnadev, “Recent Progress in Subsized Charpy Impact Specimen Testing for Fusion Reactor Materials Development,” Fusion Technol. 10, 728-33 (1986):

H. Neuber, Theory of Nofcb Sfresses, Springer, Berlin, 1958.‘

A. S. Kumar, S. T. Rosinski, N. S. Cannon, and M. L. Hamilton, “Subsize Specimen Testing of a Nuclear Reactor Pressure Vessel Material,” pp. 147-55 in Effecfs of Radiafion on Maferials: 16fb lnfemafional Symposium, ASTM STP 1175, ed. A. S. Kumar, D. S. Gelles, R. K. Nanstad, and E. A. Little, American Society for Testing and Materials, Philadelphia, 1993.’

A. P. Green and B. B. Hundy, “Initial Plastic Yielding in Notch Bend Tests,” J. Mecb. Pbys. Solids 4, 128-44 (1956):

J. F. Knott, Fundamentals of Fracfure Mechanics, Butterworths, London, 1973’

R. Sandstrom and Y. Bergstrom, “Relationship Between Charpy V Transition Temperature in Mild Steel and Various Material Parameters,” Mafer. Sci. 18,177-86 (1984).*

T. Naniwa, M. Shibaike, M. Tanaki, H. Tani, H. N. Shiota, and T. Shiraishi, “Effects of the Striking Edge Radius on the Charpy Impact Test,” pp. 67-80 in Charpy lmpacf Test Facfors and Variables, ASTM STP 1072, ed. J. M. Holt, American Society for Testing and Materials, Philadelphia, 1990.*

R. K. Nanstad and M. A. Sokolov, “Charpy Impact Test R e s u b on Five Materials and NlST Verification Specimens Using Instrumented 2-mm and 8-mm Strikers,” pp. 111-39 in Pendulum lmpacf Machines: Procedures and Specimens for Verification. ASTM STP 1248, ed. T. A. Siewert and A. K. Schmieder, American Society for Testing and Materials, Philadelphia, 1995.’

N. N. Davidenkov, The Problems of lmpacfin Maferial Science, Academy of Science of U.S.S.R., 1938 (in Russian)?

W. Weibull, “A Statistical Theory of the Strength of Materials,” p. 151 in Proceedings offhe Royal Swedisb lnsfifufe for hgineenng Research, 1939.’

W. Weibull, “A Survey of ‘Statistical Effects’ in the Field of Material Failure,” Appl. Mecb. Rev. 5(1 l), 449-51 (1952).’

N. Davidenkov, E. Shevandin, and F. Wrttmann, ‘The Influence of Size on the Brittle Strength of Steel,” J. Appl. Mecb., 63-67 (March 1947).*

*Available in public technical libraries.

f’Available for purchase from National Technical Information Service, Springfield, VA 221 61.

39 NUREGER-6379

APPENDIX A

A 533 GRADE B WIDE PLATE, LT ORIENTATION

A- 1 NUREGKR-6379

SET NAME: CE 23 LT NOTE: LAYER 5

IDEN!C (DEG C) (DEG F) (J)

- TEMPERATURE ENERGY

(FT-LB) EXPANSION (MM) (IN)

SHEAR (PERCENT)

CE2301 CE2307 CE2310 CE2312 CE2308 CE2302 CE2316 CE23 0 6 CE2305 CE2311 CE2314 CE2315 CE23 03 CE2318 CE2317 CE2320 CE2321 CE2309 CE2319

-75.0 -50.0 -25.0 -25.0 -25.0 0.0 0.0 0.0 23 .O 23.0 23.0 50.0 100.0 150.0 150.0 200.0 200.0 250.0 300.0

-103.0 -58.0 -13.0 -13.0 -13.0 32.0 32.0 32.0 73.4 73.4 73.4 122.0 212.0 302.0 302.0 392.0 392.0 482.0 572.0

8.00 19-01 67.03 82.04 64.03 114.05 146.07 127.06 170.08 176.08 180.08 248.11 315.14 318.15 323.15 339.15 340 -16 320.15 323.15

5.90 14.02 49 -44 60.51 47.23 84.12 107 -73 93.71 125.44 129.87 132.82 183.00 232.44 234.65 238.34 250.15 250.89 236.13 238.34

0.00 0.30 0.94 1.17 0.97 1.60 1.80 1.65 2.01 1.96 2 -24 2.31 2.01 2.01 1.70 1.68 1.50 1.52 1.65

0.000 0.012 0.037 0.046 0.038 0.063 0.071 0.065 0.079 0.077 0.088 0.091 0.079 0.079 0.067 0.066 0.059 0.060 0.065

0.0 10.0 28.0 25.0 21.0 20.0 46.0 38.0 65.0 50.0 77.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 19

SET NAME: CE 24-LT NOTE: LAYER

IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

CE2411 CE2401 CE2413 CE2414 CE2404 CE2407 CE2405 CE2406 CE2415 CE2416 CE2403 CE2412 CE2409 CE2402 CE242 0 CE2421 CE2418 CE2417 CE2419

-75.0 -50.0 -50.0 -25.0 -25.0 -25.0 0.0 0.0 0.0 23.0 23.0 23 .O 50.0 150.0 150.0 200.0 200.0 250.0 300.0

-103.0 -58.0 -58.0 -13.0 -13.0 -13.0 32.0 32.0 32.0 73.4 73.4 73.4 122.0 302.0 302.0 392.0 392.0 482.0 572.0

10.00 36.02 45.02 105.05 91.04 72.03 122.06 111.05 145.07 163.07 166.08 162.07 219.10 285.13 305.14 342.16 326.15 337.15 341.16

7.38 26.56 33.21 77.48 67.15 53.13 90.02 81.91 107.00 120.28 122.49 119.54 161.60 210.30 225.06 252.36 240.55 248.67 251.62

0.13 0.48 0.71 1.42 1.30 1.04 1.75 1.50 1.93 2.03 2.11 2 -18 2.29 1.98 1.55 1.63 1.60 1.68 1.65

0.005 0.019 0.028 0.056 0.051 0.041 0.069 0.059 0.076 0.080. 0.083 0.086 0.090 0.078 0.061 0.064 0.063 0.066 0.065

0.0 18.0 13.0 30.0 27.0 21.0 45.0 52.0 50.0 40.0 52.0 75.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 19

N UREGER-6379 A-2

SOURCE: ANALYSIS SET ANALYSIS SET NAMES: CE-21-LT,CE-22-LT,CE - - 23 LT AND CE - - 24 LT

SET NAME: CE 21-LT NOTE: LAYER i

EXPANSION SHEAR TEMPERATURE ENERGY (FT-LB) (MM) (IN) (PERCENT) IDENT (DEG C) (DEG F) (J)

CE2116 CE2104 CE2108 CE2112 CE2107 CE2110 CE2105 CE2115 CE2101 CE2102 CE2109 CE2113

. CE2106 CZ2114 CE2111 CE212 0 CE2103 CE2118 CE2121 CE2119 CE2117

-75.0 -50.0 -25.0 -25.0 -25.0 0.0 0.0 0.0 23.0 23.0 23.0 50.0 50.0 75.0 100.0 150.0 150.0 200.0 200.0 250.0 300.0

-103.0 -58.0 -13.0 -13.0 -13.0 32.0 32.0 32.0 73.4 73.4 73.4 122.0 122.0 167.0 212.0 302.0 302.0 392.0 392.0 482.0 572.0

6.00 15.01 47.02 79.04 60.03 121.06 161.07 153.07 179.08 166.08 177.08 284.13 263.12 353.16 341.16 343.16 347.16 340 -16 331.15 339.15 335.15

4.43 11.07 34.68 58.29 44.27 89.29 118.80 112.90 132.08 122.49 130.61 209.56 194.07 260.48 251.62 253.10 256.05 250.89 244.24 250.15 247.20

0.08 0.23 0.76 1.17 0.97 1.60 2.06 1.88 2.31 2.01 2 -11 2 -11 2.13 2 -13 1.83 2.06 1.93 1.80 1.57 1.70 1.70

0.003 0.009 0.030 0.046 0.038 0.063 0.081 0.074 0.091 0.079 0.083 0.083 0.084 0.084 0.072 0.081 0.076 0.071 0.062 0.067 0.067

0.0 13.0 18.0 24.0 18.0 47.0 52.0 48.0 70.0 60.0 62.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NCTMBER OF SPECIMENS: 21

SET NAME: CE-22-LT NOTE: LAYER 2

TEMPERA= ENERGY EXPANSION IDENT (DEG C ) (DEG F) (J) (FT-LB) (a) (IN)

SHEAR (PERCENT)

CE2214 CE2208 CE2215 CE2216 CE2203 CE2211 CE2212 CE2204 CE2201 CE2202 CE2209 CE2206 CE2207 CE2218 CE2213 CE2219 CE2220 CE2221 CE2217

-75.0 -50.0 -25.0 -25.0 -25.0 0.0 0.0 0.0 23.0 23.0 23.0 50.0 100.0 150.0 150.0 200.0 200.0 250.0 300.0

-103.0 -58.0 -13.0 -13.0 -13.0 32.0 32.0 32.0 73.4 73.4 73.4 122.0 212.0 302.0 302.0 392.0 392.0 482.0 572.0

9.00 17.01 48.02 50.02 59.03 123.06 110.05 110.05 145.07 179.08 153.07 229.10 262.12 303.14 310.14 321.15 322.15 346.16 304.14

6.64 12.54 35.42 36.89 43.54 90.76 81.17 81.17 107.00 132.08 112.90 168.98 193.33 223.58 228.75 236.87 237.60 255 -31 224.32

0 -10 0.25 0.74 0.76 0.86 1.63 1.50 1.42 1.75 2.08 1.80 2.29 2.06 1.80 1.65 1.52 1.52 1.63 1.42

0.004 0.0 0.010 11.0 0.029 23.0 0.030 20.0 0.034 23.0 0.064 25.0 0.059 30.0

18.0 0.056 0.069 50.0 0.0’82 70.0 0.071 55.0 0.090 100.0 0.081 100.0 0.071 100.0 0.065 100.0 0.060 100.0 0.060 100.0 0.064 100.0 0.056 100.0

NUMBER OF SPECIMENS: 19

A-3 N UREG/CR-6379

SOURCE: CE 21 LT,CE-22-LT,CE-23-LT AND CE-24-LT PNALYSIS SETS - -

MEAN IMPACT CURVE

I I I I I I I

Y VARIABLE: ENERGY MODEL PWXTERS LOWER SHELF ENERGY [HELD FIXED] : 2 - 7 (J) , 2.0 (FT-La) MID-TRANSITION TEMPERATURE: 18.0 (DEG C) 64.4 (DEG F)

UPPER SHELS ENERGY: 329.7 (J) ,243.2 (FT-LB) WSITIOX ZONE WIDTH: 121.8 (C DEG),219.2 (F DEG)

UPPER SHELF ENERGY: 329.7 (51,243.2 (FT-LB) TEMPERA- E41 (J) ,3.0.2 (FT-LB) ENERGY] : -43 -5 (DEG C) , -45.3 'TEMPERA= E68 (J) ,50.2 (FT-LB) ENERGY] :-24.3 (DEG C),-ll.7 NOTE: NONE MODEL SET NL??: 4

n

400

350

300

- 250 2 >- cl 200 E W z W 150

100

50

TEMPERATURE (OF1 -2005 -100 0 100 200 300 400 500 600

I I 1 I I 1 1 1 I A 5 3 3 E WIDE PLATE, L-T ORIENTATION

-

- 0 8 s 8~ 0

0 0 0

0

250

200 A

150 >-

a I 4

- 4;

a Cr W z

100

0

NU REG/C R-6379

-100 -50 0 ~~ ~~

50 100 150 200 250 300 350

TEMPERATURE PC)

(DEG F) (DEG F)

0 CHARPY DATA 1 5 0

SOURCE: CE - - 21 LT,CEw22_LT,CE-23-LT AND CE - - 24 LT ANALYSIS SZTS

Y VARIABLE: EXPANSION MODEL PAFSJETERS LOWER SHELF EXPANSION [HELD FIXED1 : 0.061 (MM) ,0.0024 (IN)

TRANSITION ZONE WIDTH: 46.7 (C DEG),84.l (F DEG) UPPER SILF EXPANSION: 1.872 (MM) , 0.0737 (IN)

MID-TRANSITION TEMPERATURE:-26.8 (DEG C),-16.3 (DEG F)

UPPER SHELF EXPANSION: 1.872 (MM) ,0.0737 (IN) NOTE: NONE MODEL SET NAME: 3

TEMPERATURE [OF) -200 -100 0 100 200 300 400 500 600

3.0

WIDE PLATE, L-T ORIENTATION

2.5 0. to

0.08 - E 2.0 E -

0.06 t;

c

z 0

z < II X

- v

z

03 z < a E 1.0 0.04

1.5

0.5 0.02

0.0 0.00 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PC)

A-5 NUREGER-6379

SOURCE: CE - 21-LT,CE-22-LT,CE-23-LT AND CE-24-LT ANALYSIS SETS

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 95.2 (C DEG),171.4 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE: 8 - 4 (DEG C) t47.1 (DEG F)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 5

TEMPERATURE PFj -200 -100 0 100 200 300 400 500 600

120

I WIDE PLATE, L-T ORIENTATION

100

i= 80 z W u

4 60

K 4 W I

E

CI 40

20

100 150 200 250 300 350 0 -150 - 1 Q O -50 0 50

TEMPERATURE V'Cl

NUREGER-6379 A-6

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WP-LT.Tl

SET NAME: WP LT.Tl NOTE: WIDE PBTE L-T ORIENTATION - TYPE 1 IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

TEMPERATURE ENERGY EXPANSION SHEAR

CL3 CL4 CL2 CL5 CL6 CL7 CL8 CL9 CLlO CL14 CLll CL12 CL13

-100.0 -87.5 -75.0 -62.5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 50.0 100.0

-148.0 -125.5 -103.0 -80.5 -58.0 -35.5 -13.0 9.5 32.0 54.5 77.0 122.0 212.0

0.95 1.76 2.85 9.36 15.32 13.15 24.81 28.20 25.08 31.73 35.39 37.42 31.73

0.70 1.30 2.10 6.90 11.30 9.70 18.30 20.80 18.50 23.40 26.10 27.60 23.40

0.00 0.00 0.08 0.38 0.66 0.51 0.89 0.91 0.91 0.97 1.02 0.99 1.02

0.000 0.000 0.003 0.015 0.026 0.020 0.035 0.036 0.036 0.038 0.040 0.039 0.040

0.0 5.0 5.0 30.0 40.0 40.0 65.0 80.0 85.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 13

A-7 NU REGK R-6379

SOURCE: WP LT.Tl ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

-

LOWER SHELF ENERGY [HELD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE: -37.2 (DEG C) I -34.9 (DEG F) TRANSITION ZONE WIDTH: 81.8 (C DEG),147.3 (F DEG) UPPER SHELF ENERGY: 34.7 (J),25.6 (FT-LB)

UPPER SHELF ENERGY: 34.7 (J) ,25.6 (FT-LB) NOTE: NONE MODEL SET NAME: 4

45

40

. 35

. 1

- I 1 I 1 1 1 1 I 1

- 30 A533B, WIDE PLATE, LT, TYPE 1 I 0

- 0

NUREGER-6379

-200 -100 0 100 200 300 400 500 600

- 0

so - -

25 - >.

-

-

0 CHARPY DATA MEAN IMPACT CURVE

I 1 1 I 1 -150 -100 -50 0 50 100 150 200 250 300 350

A-8

25

- I ]

20 I

$z c,

>

w z w

15

10

5

0

, . . . . . . e-.-- .:. .:;. . .. - .

SOURCE: WP-LT.Tl ANALYSIS SET

-200 -100 0 100 200 300 400 500 600 1.2. 1 1 1 1 I 1 1 I 1

(WIDE PLATE, LT, TYPE 1 1 o n 0 - 1.0 - e

- E 0.8 -

e 0.6 -

- E Y

z

(I) z =-x Q 15 0.4 -

0 -

- 0.2 -

0 GHARPY DATA MEAN IMPACT CURVE

1 I 1 1 1 I 1 I 0.6 -150 -100 -50 0 50 100 150 200 250 366

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.oooo (IN) MID-TRANSITION TEMPE.RATURE:-50.8 (DEG C),-59.4 (DEG F) TRANSITION ZONE WIDTH: 60.1 (C DEG),108.1 (F DEG) UPPER SHELF EXPANSION: 0.988 (MM),O.O389 (IN)

UPPER SHELF EXPANSION: 0.988 (MM),0.0389 (IN) NOTE: NONE MODEL SET NAME: 6

0.04

- 0.03 f

z - E z x W

0.02 2

0.01

0.00 350

A-9 NUREGER-6379

SOURCE: WP LT.T1 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

-

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: -37.1 (DEG C) , -34.9 (DEG F) TRANSITION ZONE WIDTH: 74.9 (C DEG),134.9 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TWERATmE [ 50 (PERCENT) ,50 (PERCENT) SHEAR] : -37.1 (DEG C) , -34.9 (DEG F) NOTE: NONE MODEL SET NAME: 7

TEMPERATURE PFI -200 - -100 0 100 200 300 400 500 600

120

100

- I- 80 z Lrl 0

g 60

K 4 W 5 40

E

20

IWIDE PLATE. LT, TYPE 1 1

0 CHARPY DATA MEAN IMPACT CURVE

0

TEMPERATURE PC1

NUREGER-6379 A-l 0

, . . .

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WP-LT.T2

SET NAME: WP LT.T2 NOTE: WIDE PEATE TYPE 2 SPECIMENS IN THE L-T ORIENTATION IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

TEMPERATURE ENERGY EXPANSION SHEAR

CL3 4 -137.5 -215.5 0.27 0.20 0.00 0.000 0.0 CL3 2 -125.0 -193 - 0 0.54 0.40 0.00 0.000 0.0 CL4 6 -125.0 -193.0 0.41 0.30 0.00 0.000 0.0 CL3 3 -112.5 -170.5 2.44 1.80 0.10 0.004 5.0 CL45 -112.5 -170.5 1.49 1.10 0.03 0.001 0.0 CL3 1 -100.0 -148.0 2.71 2.00 0.13 0.005 5.0 CL3 5 -87.5 -125.5 3.93 2.90 0.28 0.011 10.0 CL3 6 -75.0 -103.0 4.75 3.50 0.36 0.014 20.0 CL3 7 -62.5 -80.5 5.97 4.40 0.41 0.016 50.0 CL3 8 -50.0 -58.0 7.46 5.50 0.61 0.024 TJNKNOWN CL3 9 -37.5 -35.5 6.64 4.90 0.53 0.021 UNKNOWN CL4 0 -25.0 -13.0 7.32 5.40 0.61 0.024 UNKNOWN CL4 1 0.0 32.0 8.68 6.40 0.64 0.025 TJNKNOWN CL4 3 50.0 122.0 8.54 6.30 0.74 0.029 100.0 CL42 100.0 212.0 8.81 6.50 0.71 0.028 100.0 CL4 4 150.0 302.0 8.81 6.50 0.76 0.030 100.0

NUMBER OF SPECIMENS: 16

A-1 1 NUREG/CR-6379

SOURCE: W-LT.T2 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-80.0 (DEG C),-112.1 (DEG F) TRANSITION ZONE WIDTH: 8 8 . 0 (C DEG),158.5 (F DEG) UPPER SHELF ENERGY: 8.6 ( J ) , 6 . 3 (FT-LB)

UPPER SHELF ENERGY: 8 . 6 (J) ,6 .3 (FT-LB) NOTE: NONE MODEL SET NAME: 0

- 7

0 h 0 0 u - 6

A - 5

e - 4 )

I 4

> CY [r

- 3 w z w

- 2

a -

3 = - >- Q fx W z w 4 -

2 -

0 CHARPY DATA MEAN IMPACT CURVE

I I 1 I 1 1 I I

IA533E WIDE PLATE. LT ORIENTATION, TYPE 2

- 1

NU REG/C R-6379 A-I 2

SOURCE: WP LT.T2 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

-

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),o.OOOO (IN) MID-TRANSITION TEMPERATURE:-72.6 (DEG C) I -98.6 (DEG F) TRANSITION ZONE WIDTH: 77.6 (C DEG),139.7 (F DEG) UPPER SHELF EXPANSION: 0.704 (MM) ,0.0277 (IN)

UPPER SHELF EXPANSION: 0.704 (MM),O.O277 (IN) NOTE: NONE

* MODEL SET NAME: 9

TEMPERATURE PFI -300 -200 -100 100 200 300 400 500 600

WIDE PLATE, LT, TYPE 2

0.7

- E 0.6 - z 0.5 - cn Z 0.4 - < Q

E v

E

15 0.3 -

0.2 - I O e l t 9b

0.025

0.020 z

cI1 z 0.015 2

x Lrl

Ef

0.010

0.005 0 CHARPY DATA MEAN IMPACT CURVE

01 I I I 1 1 I 1 1 0.0 I 0.000

-200 -150 -100 -50 0 50 100 150 200 250 300 350 TEMPERATURE PCt

A-1 3 NUREG/CR-6379

SOURCE: W-LT.T2 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE:-62.0 (DEG C),-79.5 TRANSITION ZONE WIDTH: 43.0 (C DEG),77.4 (F DEG UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 8

120

100

i= 80 z W u K W & 60

02 4 W $j 40

20

TEMPERATURE PFI -300 -200 -100 0 100 200 300 400

DEG F)

500 600

I WIDE PLATE, LT, TYPE 2 1 n n u " v

~

I 0 CHARPY DATA MEAN IMPACT CURVE

1 I I 1 I I 1 I 0 -200 -150 -100 -56 0 SO 100 150 206 250 300 350

TEMPERATURE C'Cl

NUREGER-6379 A-I 4

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WP-LT.T3

SET NAME: WP LT.T3 NOTE: WIDE PZTE TYPE 3 SPECIMENS, L-T ORIENTATION

IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

CL17 -117.5 -179.5 0.68 0.50 0.00 0.000 0.0 CL16 -104.0 -155.2 0.95 0.70 0.00 0.000 0.0 CL18 -92.0 -133.6 7.59 5.60 0.30 0.012 10.0 CL19 -79.4 -111.0 10.30 7.60 0.51 0.020 20.0 CL2 0 -62.5 -80.5 14.64 10.80 0.74 0.029 30.0 CL2 1 -50.0 -58.0 18.03 13.30 0.74 0.029 45.0 CL2 2 -37.5 -35.5 17.90 13.20 0.86 0.034 55.0 CL23 -25.0 -13.0 23.73 17.50 0.89 0.035 80.0 CL2 4 -12.5 9.5 20.47 15.10 0.84 0.033 75.0 CL25 0 .0 32.0 19.93 14.70 0.81 0.032 75.0 CL2 9 25.0 77.0 29.96 22.10 0.89 0.035 100.0 CL2 8 50.0 122.0 28.88 21.30 0.97 0.038 100.0 CL2 6 100.0 212.0 28.74 21.20 1.04 0.041 100.0

NUMBER OF SPECIMENS: 13

A-15 NUREGER-6379

SOURCE: WP LT.T3 ANALYSIS SET - Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED] : 0.1 (J) , 0 .1 (FT-LB) MID-TRANSITION TEKPERATURE:-57.4 (DEG C),-71.3 (DEG F) TRANSITION ZONE WIDTH: 113.3 (C DEG) ,204.0 (F DEG) UPPER SHELF ENERGY: 28.4 (J),20.9 (FT-LB)

UPPER SHELF ENERGY: 28.4 (J),20.9 (FT-LB) NOTE: NONE MODEL SET NAME: 1

I 1 I 1 I 1 I

I A5338 WIDE PLATE, LT ORIENTATION, TYPE 3 I - I 35

3 b

25

CI

2 20 > 0 E

w 15

10

5

25

09 I 1 I 1 1 I I 1

f '

n

I 0 CHARPY DATA I i5 MEAN IMPACT CURVE] I

0 -150 -100 -50 0 50 100 150 200 250 300 350'

TEMPERATURE PC)

NUREGER-6379 A-1 6

SOURCE: W-LT.T3 ANUYSIS SET

Y VARIABLE: EXPANSION . MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.Oooo (IN) MID-TRANSITION TEMPERATURE:-80.8 (DEG C),-113.4 (DEG F) TRANSITION ZONE WIDTH: 47.3 (C DEG) ,85.1 (F DEG) UPPER SHELF EXPANSION: 0.895 (MM) ,0.0352 (IN)

UPPER SHELF EXPANSION: 0.895 (MM),0.0352 (IN) NOTE: NONE MODEL SET NAME: 2

1.2

1.0

I E 0.8 E Y

z e 0.6 0 z -z Q 5 0.4

0.2

0.0 -

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 600 1 - 1 1 I 1 I I I I

]WIDE PLATE, LT, TYPE 3 0

0

0 CHARPY DATA MEAN IMPACT CURVE

0.04

0.03 - z

i z X W

0.02 2

0.0 1

0.00

TEMPERATURE I°Cl

A-1 7

I 1

NUREGER-6379 I j

i

i j

SOURCE: WP LT.T3 ANALYSIS SET - Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT) MID-TRANSITION TEMPERATURE:-43.7 (DEG C),-46.7 (DEG F) TRANSITION ZONE WIDTH: 91.6 (C DEG),165.0 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 3

120

100

20

TEMPERATURE PFI -200 -100 0 . 100 -200 300 .400 500 600

1 I 1 I I 1 I 1 1

IWIDE PLATE, LT, T Y P E - q

0 CHARPY DATA MEAN IMPACT CURVE

0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

I 1 I 1 I 1 1 I

NUREGER-6379 A-18

SOURCE: ANALYSIS SET ANALYSIS SET NAME: W-LT.T4

SET NAME: W-LT.T4 NOTE: WIDE PLATE, L-T ORIENT., TYPE 4

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-JJB) (MM) (IN) (PERCENT)

CL55 CL54 CL5 6 CL5 3 CL57 CL52 CL58 CL5 1 CL59 CL5 0 CL4 9 CL48 CL47 CL6 0 CL6 1

-100.0 -87.5 -87.5 -75.0 -75.0 -62.5 -62.5 -50.0 -50.0 -37.5 -25.0 0.0 25.0 100.0 150.0

-148.0 -125.5 -125.5 -103.0 -103.0 -80.5 -80.5 -58.0 -58.0 -35.5 -13.0 32.0 77.0 212.0 302.0

0.60 1.52 0.60 3.34 2.94 4.43 3.99 4.43 5.14 7.10 6.35 7.35 7.17 8.31 7.93

0.44 1.12 0.44 2.46 2.17 3.27 2.94 3.27 3.79 5.24 4.68 5.42 5.29 6.13 5.85

0.00 0.05 0.00 0.30 0.25 0.41 0.33 0.41 0.41 0.66 0.64 0.69 0.76 0.76 0.74

0.000 0.002 0.000 0.012 0.010 0.016 0.013 0.016 0.016 0.026 0.025 0.027 0.030 0.030 0.029

0.0 0.0 5.0 25.0 20.0 45.0 45.0 45.0 60.0 80.0 75.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 15

A-1 9 NUREGER-6379

; I

SOURCE: WP LT.T4 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

-

LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMPERATURE: -63.2 (DEG C) , -81.7 (DEG F) TRANSITION ZONE WIDTH: 68.4 (C DEG),123.1 (F DEG) UPPER SHELF ENERGY: 7.7 (3) ,5.7 (FT-LB)

UPPER SHELF ENERGY: 7.7 (J) ,5.7 (FT-LB) NOTE: NONE MODEL SET NAME: 6

a -

I 1 - 7 IA533B WIDE PLATE, LT ORIENTATION, TYPE 4 I - 6 0

0

NUREGICR-6379

10 1 1 1 I 1 1 I

0

7-

W Z w 4 -

0 CHARPY DATA - MEAN IMPACT CURVE

1 I I I I 1 -150 -100 -50 0 50 100 150 200 250 300 350

A-20

CI - 5

s - 4 k

I 51

2. (3 LT - 3 w z W

- 2

- i

0

SOURCE: WP LT.T4 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

-

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOoO (IN) MID-TRANSITION TEMPERATURE:-59.5 (DEG C),-75.0 (DEG F) TRANSITION ZONE WIDTH: 63.4 (C DEG),114.1 (F DEG) UPPER SHELF EXPANSION: 0.739 (MM),O.O291 (IN)

UPPER SHELF EXPANSION: 0.739 (MM),O.O291 (IN) NOTE: NONE MODEL SET NAME: 5

0.8

I I 1 1 1 1 1 I - 0.035

0 0 - - 0.030 -

A-21

0.9 , U

0.7 - -

-

Z 0.4 - -

-

0 CHARPY DATA - MEAN IMPACT CURVE

I I I 1 I 1 -150 -100 -50 0 50 100 150 200 250 300 350

NUREGER-6379

0.025 CI c

0.020 z - - s z

0.015 2 x W

0.010

0.005

0.000

SOURCE: WP - LT.T4 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT) MID-TRANSITION TEMPERATURE: -54.3 (DEG C) , -65.7 (DEG F) TRANSITION ZONE WIDTH: 62.9 (C DEG) ,113.2 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 4

-200 -100 0 TEMPERATURE C?l 100 200 SO0 400 500 600

120

100

c 80 z W u CT W & 60

111 4 W $ 40

20

1 1 I 1 1 I 1 1 1

I WXDE PLATE. LT. TYPE 4 1

i I 0 CHARPY DATA

MEAN IMPACT CURVE

rn 1 1 I 1 I 1 - 1 1 U 0 -150 -100 -50 Q 50 100 123 200 250 '

TEMPERATURE PCI

NUREGICR-6379 A-22

300 350

APPENDIX B

A 533 GRADE B WIDE PLATE, TL ORIENTATION

B-1 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAMES: CE-24-TL,CE-23-TL,CE-22-TL AM) CE 21 TL - - SET NAME: CE 24-TL NOTE: LAYER 4

DENT (DEG C) (DEG F) TEMPERATURE

~

CE2431 -100.0 -148.0 CE2440 -75.0 -103.0 CE2433 -50.0 -58.0 CE2444 -50.0 -58.0 CE2446 -25.0 -13.0 CE2438 -25 - 0 -13.0 CE2443 -7.0 19.4 CE2434 -7.0 19.4 CE2450 -7.0 19.4 CE2432 0.0 32.0 CE2442 0.0 32.0 CE2435 23.0 73.4 CE2447 23.0 73.4 CE2448 50.0 122.0 CE2449 50.0 122 * 0 CE2437 75.0 167.0 CE243 9 75.0 167.0 CE2445 100.0 212.0 CE2441 150.0 302.0 CE243 6 200.0 392.0

ENERGY EXPANSION SHEAR

5.00 3.69 0.03 0.001 0.0 12.01 8.85 0.25 0.010 0.0

(J) (FT-LB) (MM) (IN) (PERCENT)

40.02 29.52 0.64 0.025 3.0 44.02 32.47 0.66 0.026 13.0 79.04 58.29 1.17 0.046 23.0 88.04 64.94 1.24 0.049 16.0 107.05 78.96 1.52 0.060 43.0 109.05 80.43 1.68 0.066 45.0 114.05 84.12 1.60 0.063 42.0 107.05 78.96 1.47 0.058 52.0 111.05 81.91 1.55 0.061 43.0 154.07 113.64 1.98 0.078 67.0 172.08 126.92 2 -11 0.083 76.0 180.08 132.82 2 -13 0.084 100.0 206.09 152.01 2.31 0.091 100.0 183.08 135.04 2 -16 0.085 100 * 0 189.09 139.46 2 -21 0.087 100.0 202.09 149.06 2.13 0.084 100.0 204.09 150.53 2.11 0.083 100.0 276.13 203.66 1.93 0.076 100.0

NUMBER OF SPECIMENS: 20

SET MlME: CE 23-TL NOTE: LAYER 7

IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

CE2333 CE2346 CE2339 CE2347 CE2336 CE2337 CE2331 CE2348 CE2341 CE2349 CE2334 CE2350 CE2340 CE2332 CE2338 CE2344 CE2345 CE2343 CE2342 CE2335

-75.0 -50.0 -50.0 -25.0 -25.0 -2.0 -2.0 -2.0 0.0 0.0 23.0 23.0 50.0 50.0 75.0 75.0 100.0 150.0 150.0 200.0

-103.0 -58.0 -58.0 -13.0 -13.0 28.4 28.4 28.4 32.0 32.0 73.4 73.4 122.0 122.0 167.0 167.0 212 * 0 302.0 302.0 392.0

10.00 17.01 39.02 36.02 80.04 116.05 119.05 128.06 102.05 112.05 150.07 155.07 192.09 201.09 195.09 212 -10 201.09 206.09 296.13 320 -15

7.38 12.54 28.78 26.56 59.03 85.60 87.81 94.45 75 -27 82.64 110.68 114.37 141.68 148.32 143.89 156.43 148.32 152.01 218.42 236.13

0.18 0 -28 0.61 0.66 1.12 1.60 1.68 1.52 1.47 1.60 1.80 1.91 2 -26 2.39 2 -18 2 -21 2 -16 2.03 2 -26 1.57

0.007 0.011 0.024 0.026 0.044 0.063 0.066 0.060 0.058 0.063 0.071 0.075 0.089 0.094 0.086 0.087 0.085 0.080 0.089 0.062

0.0 0.0 11.0 11.0 27.0 42.0 45.0 43.0 31.0 40.0 66.0 53.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

~~

NUMBER OF SPECIMENS: 20

NUREGKR-6379 B-2

. . . . - I - _ - . ., s

- . I - . - . , . . . . . . -

SET NAME: CE 22-TL NOTE: LAYER 5

TEMPERATURE ENERGY IDENT (DEG C) (DEG F) (J) ( FT- LB )

EXPANSION SHEAR (MM) (IN) (PERCENT)

CE2233 CE2242 CE2243 CE2247 CE2248 CE2244 CE2237 CE2238 CE2234 CE2235 CE223 6 CE2231 CE2249 CE2250 CE2241

CE2246 CE2245 CE2240 CE2239

CE223 2

-75.0 -50.0 -50.0 -25.0 -25.0 -2.0 -2.0 -2.0 0.0 0.0 23.0 23 . O 50.0 50.0 75.0 75.0 100.0 150.0 150.0 200.0

-103.0 -58.0 -58.0 -13.0 -13.0 28.4 28.4 28.4 32.0 32.0 73.4 73.4 122.0 122.0 167.0 167.0 212.0 302.0 302.0 392.0

7.00 11.01 16.01 46.02 52.02 97.04 97.04 119.05 89.04 95.04 146.07 156.07 176.08 178.08 197.09 207.09 194.09 236.11 241.11 272.12

5.17 8.12 11.81 33.94 38.37 71.58 71.58 87.81 65.67 70.10 107.73 115.11 129.87 131.35 145.37 152.74 143.15 174.14 177.83 200.71

0.13 0.23 0.28 0.71 0.74 1.45 1.42 1.65 1.30 1.45 1.93 1.83 1.95 2.08 2.21 2.21 2.18 1.96 1.91 2.01

0.005 0.009 0.011 0.028 0.029 0.057 0.056 0.065 0.051 0.057 0.076 0.072 0.077 0.082 0.087 0.087 0.086 0.077 0.075 0.079

0.0 0.0 0.0 13 .O 18.0 33.0 37.0 43 .O 33.0 38.0 62.0 50.0 79.0 92.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 20

SET NAME: CE 21-TL NOTE: LAYER i

TENPERATERE ENERGY EXPANSION SHEAR IDENT (DEG C ) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

CE2134 CE2131 CE2143 CE213 2 CE2149 CE213 5 CE2144 CE2147 CE213 8 CE2141 CE2140 CE2150 CE2145 CE2137 CE2146

-75.0 -50.0 -50.0 -25.0 -25.0 -2.0 -2.0 -2.0 0.0 0.0 23 .O 23.0 50.0 50.0 75.0

-103.0 -58.0 -58.0 -13.0 -13.0 28.4 28.4 28.4 32.0 32.0 73 -4 73.4 122.0 122.0 167.0

3.00 7.00 9.00 55.03 70.03 91.04 104.05 113.05 88.04 95.04 154.07 163.07 176.08 179.08 208 -09

2.21 5.17 6.64 40.58 51.65 67.15 76.74 83 -38 64.94 70.10 113.64 120.28 129.87 132.08 153.48

0.08 0.10 0 -15 0.86 0.99 1.42 1.63 1.57 1.24 1.45 2.03 2.03 2 -16 2.11 2.24

0.003 0.004 0.006 0.034 0.039 0.056 0.064 0.062 0.049 0.057 0.080 0.080 0.085 0.083 0.088

0.0 0.0 0.0 13 .O 22.0 29.0 38.0 33.0 26.0 34.0 59.0 52.0 92.0 86.0 100. 100.0 CE2133 75.0 167.0 225.10 166.03 2.16 0.085 100.0 CE213 6 100.0 212.0 198.09 146.10 2.11 0.083

CE2142 150.0 302.0 208.09 153.48 2.13 0.084 100.0 0.072 100.0 CE2148 150.0 302.0 222.10 163.81 1.83

CE213 9 200.0 392.0 290.13 213.99 1.65 0.065 100.0

NUMBER OF SPECIMENS: 20

B-3 NUREGER-6379

SOURCE: CE - - 24 TL,CE-23-TL,CE-22-TL AND CE-21-TL ANALYSIS SETS

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY IEZLD FIXED1 : 2 -7 (J) 2.0 MID-TRANSITION TEMPERATURE: 10 0 (DEG C) r 5 0 . 0 (DEG F)

UPPER SHELF m R G Y : 243 -0 (J) ,179 -2 (FT-LB)

(FT-LB)

TRANSITION ZONE WIDTH: 134.9 (C DEG) ,242.8 (F DEG)

UPPER SHELF ENERGY: 243 . O (J) ,179.2 (FT-LB) TEMPERATmZE 141 (J),30.2 (FT-LB) ENERGY] :-46.1 (DEG C),-50.9 (DEG F) TEMPERATURE [68 ( J ) , 5 0 . 2 (FT-LB) ENERGYI:-23.2 (DEG C),-9.8 (DEG F) NOTE: NONE MODEL SET NAME: 8

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 600

400

A5338 WIDE PLATE, T-L ORIENTATION 1 350 250

300

200

250 a (9 200 1 50 >

W z W 150 100

100

50

50

0 0 -150 -100 -50 0 50 10Q 150 200 250 300 350

TEMPERATURE ( O C )

NUREGER-6379 B-4

SOURCE: CE - - 24 TL,CE-23-TL,CE-22-TL AND CE-21-TL ANALYSIS SETS

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED1 : 0.061 (MM) ,0.0024 (IN)

TRANSITION ZONE WIDTH: 71.8 (C DEG),129.2 (F DEG) UPPER SHELF EXPANSION: 2.104 (MM) , 0 .0828 (IN) MID-TRANSITION TEMPERATURE:-19.2 (DEG C),-2.6 (DEG F)

UPPER SHELF EXPANSION: 2 .lo4 (MM) , O .0828 (IN) NOTE: NONE MODEL SET NAME: 7

_. - -150 -100 -5a 0 50 100 150 200 250 300 350

TEMPERATURE [OF) -200 -100 0 100 200 300 400 500 600

0.00

3.0

2.5

2 2,0 E v

z

co z -=x 0,

1.5

15 1.0

0.5

0.0

_ _ _ I I I 1 I 1 I 1 I

I WIDE PLATE. T-L ORIENTATION I

- 0 CHARPY DATA

MEAN IMPACT CURVE

I I 1 I I I 1

0. IO

0.08 c

z 0

z < X

- - 0.06

a 0.04

0.02

8-5 NUREGER-6379

E l

SOURCE: CE 24 TL,CE 23 TL,CE 22 TL AND CE 21 TL ANALYSIS SETS

Y VARIABLE: SHEAR MODEL PARAMETERS

- - - - - - - -

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 81.8 (C DEG) ,147.3 (F DEG) UPPER SHELF SHEAR [HELD FIXED] : 100 (PERCENT)

MID-WSITION TEMPERATURE: 8.6 (DEG C ) ,47.6 (DEG P)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 6

120

100

F: 80 z W u 8 g 60

CiZ cz W

40

20

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600

I 1 1 1 I I I I I I I I WIDE PLATE, T-L ORIENTATION I

0 CHARPY DATA MEAN IMPACT CURVE

I I 1 1 1 I 1 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE mi

NUREGER-6379 B-6

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WP-TL.Tl

SET NAME: WP TL.Tl NOTE: SUB-SIZE CORREL PROG. - WIDE PLATE, T-L OREINT. - TYPE 1

IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) TEMPERATURE ENERGY EXPANSION SHEAR

(PERCENT)

CT3 5 CT3 6 CT3 4 CT3 8 CT7 CT3 9 CT4 0 CT4 1 CT4 2 CT4 3 CT4 6 CT44

' CT45 cT3 3

-100.0 -87.5 -75.0 -62.5 -62.5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 100.0 200.0

-148.0 -125.5 -103.0 -80.5 -80.5 -58.0 -35.5 -13.0 9.5 32.0 54.5 77.0 212.0 392.0

0.81 0.95 8.13 6.24 UNKNOWN 10.44 18.57 20.07 18.71 24.81 30.91 33.35 29.42 37.69

0.60 0.70 6.00 4.60

7.70 13.70 14.80 13.80 18.30 22.80 24.60 21.70 27.80

0.00 0.00 0.25 0.23 0.71 0.41 0.86 0.91 0.86 1.02 0.99 1.04 0.99 0.58

0.000 0.000 0.010 0.009 0.028 0.016 0.034 0.036 0.034 0.040 0.039 0.041 0.039 0.023

0.0 0.0 15.0 10.0 40.0 35.0 60.0 60.0 70.0 80.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 14

8-7 NU R EGER-6379

SOURCE: WP TL.T1 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

-

LOWER SHELF ENERGY [HELD FIXED] : 0.1 (J) 0.1 (FT-LB) MID-TRANSITION TEMPERATURE : -3 0.7 (DEG C) -23.3 (DEG F) TRANSITION ZONE WIDTH: 101.6 (C DEG) ,182.8 (F DEG) UPPER SHELF ENERGY: 34.3 (J) ,25.3 (FT-LB)

UPPER SHELF ENERGY: 34.3 (J),25.3 (FT-LB) NOTE: NONE MODEL SET NAME: 7

45

40

35

30

i o

5

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600

1 I 1 1 I I I I I

IA533B WIDE PLATE, T L ORIENTATION, TYPE 1 I 0

0

J 0 CHARPY DATA MEAN IMPACT CURVE

5

NUREGER-6379 B-8

SOURCE: WP-TL.Tl ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPEZATURE:-55.9 (DEG C) , -68.7 (DEG F) TRANSITION ZONE WIDTH: 59.1 (C DEG),106.4 (F DEG) UPPER SHELF EXPANSION [HELD FIXED]: 1.000 (MM),O.O394 (IN)

UPPER SHELF EXPANSION: 1.000 (MM),0.0394 (IN) NOTE: NONE MODEL SET NAME: 9

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600

1 I I 1 1 1 I 1 1 1.2 I

0

IWEDE PLATE, TL, TYPE 1 1

1.0 - 0.04 -

- 0.03 2 z - z co z z - 0.02 ;;I x W

- 0.01

0 CHARPY DATA MEAN IMPACT CURVE

0.06 -150 -100 -50 0 50 100 150 2aa 250 300 350

TEMPERATURE PCl.

B-9 NUREGER-6379

SOURCE: WP TL.T1 ANALYSIS SET - Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHE2LR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE:-37.6 (DEG C),-35.7 (DEG F) TRANSITION ZONE WIDTH: 83.2 (C DEG),149.7 (F DEG) UPPER SHELF SHEAR [HELD 'FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 0

120

100

c 80 z u u E W & 60

CK U W I U) 40

20

0

NUREGiCR-6379

TEMPERATURE C'FI I' -200 -100 0 100 200 300 400 500 600

1 I I 1 1 I 1 1 1

IWIDE PLATE, TL, TYPE 1 I

0 CHARPY DATA MEAN IMPACT CURVE -

I 1 I I 1 I I 1 - -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

B-10

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WP-TL.T2

SET NAME: WP TL.T2 NOTE: WIDE P ~ T E TYPE 2 SPECIMENS IN THE T-L ORIENTATION

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

CT2 -125.0 -193.0 0.14 0.10 0.00 0.000 0.0 CT15 -112.5 -170.5 0.14 0.10 0.00 0.000 0.0 CT3 -112.0 -169.6 2.03 1.50 0.13 0.005 0.0 CT1 -100.0 -148.0 1.49 1.10 0.00 0.000 0.0 CT16 -100.0 -148.0 0.95 0.70 0.03 0.001 0.0 CT4 -87.5 -125.5 2.44 1.80 0.15 0.006 5.0 CT5 -75.0 -103.0 4.47 3.30 0.3'0 0.012 15.0 CT6 -62.5 -80.5 5.02 3.70 0.43 0.017 40.0 CT7 -50.0 -58.0 7.59 5.60 0.53 0.021 UNKNOWN CT8 -37.5 -35.5 8.95 6.60 0.66 0.026 UNKNOWN CT9 -25.0 -13.0 7.32 5.40 0.51 0.020 UNKNOWN CTlO -12.5 9.5 8.41 6.20 0.64 0.025 UNKNOWN CTll 0.0 32.0 9.08 6.70 0.71 0.028 UNKNOWN CT12 50.0 122.0 9.36 6.90 0.79 0.031 100.0 CT13 100.0 212.0 8.54 6.30 0.69 0.027 100.0 CT14 150.0 302.0 8.81 6.50 0.71 0.028 100.0

NUMBER OF SPECIMENS: 16

B-11

f 1

1 1 1 1

NUREGER-6379

SOURCE: W-TL.T2 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED] : 0.1 (J) I 0.1 (FT-LB) MID-TRANSITION TEMPERATURE:-72.3 (DEG C) I-98.2 (DEG F) TRANSITION ZONE WIDTH: 62.9 (C DEG),113.3 (F DEG) UPPER SHELF ENERGY: 8.9 (J) I 6.5 (FT-LB)

UPPER SHELF ENERGY: 8.9 (J) ,6.5 (FT-LB) NOTE: NONE MODEL SET NAME: 3

TEMPERATURE [OF) -200 -100 0 100 200 300 400 500 600

1 1 1 1 I I I 1 1 12

- 8 A5338 WIDE PLATE, TL ORIENTATION, TYPE 21

10 - 0 - 7

I

0 0 0 v

8 - - = - f!

- 5 c ‘ 2 > k

>

W z

I CI

Cl 6 - 1)c

z W W - 4 E

- 3 w

- 2

I 0 CHARPY DATA -- - 1 MEAN IMPACT CURVE

1 I I 1 I I I 0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE (OCI

NUREGER-6379 B-I 2

SOURCE: WP TL.T2 ANALYSIS SET -

0.8

0.7

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED] : 0.000 (MM) ,O.OOOO (IN) MID-TRANSITION TEMPERATURE : -68 - 3 TRANSITION ZONE WIDTH: 59.4 (C DEG),106.9 (F DEG) UPPER SHELF EXPANSION: 0.693 (MM),0.0273 (IN)

(DEG C) , -9 1.0 (DEG F)

UPPER SHELF EXPANSION: 0.693 (MM),0.0273 (IN) NOTE: NONE MODEL SET NAME: 2

1 1 1 1 1 1 1 1 -1 11.035 WIDE PLATE, TL. TYPE 2

- 0.030 -' 0

0 0 -

0.9 I

U -

-

-

-

I - 0 CWRPY DATA MEAN IMPACT CURVE

I I 1 1 1 1 I -150 -100 -50 0 50 1Q0 150 200 250 300

B-13

0,025 c. c

0.020 Z - z z

0.015 2 X W

0.010

0.005

0.600 35Q

NUREGER-6379

SOURCE: WP TL.T2 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

-

LOWER SHELF SHEAR [HELD FIXED] : 0 , (PERCENT) MID-TRANSITION TEMPERATURE: -58.8 (DEG C) , -73.8 (DEG F) ,

TRANSITION ZONE WIDTH: 37.0 (C DEG),66.6 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 1

120

too

2 ao z W u cc W & 60

fr Q: W I ((J 40

2 0

a -

N UREGER-6379

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 I 1 1 I 1 I 1 1

\WIDE PLATE, TL, TYPE 2 I

0 CHARPY DATA MEAN IMPACT CURVE -

SO -100 -50 0 - 50 100 150 200 -250 300 350 TEMPERATURE PCl

B-14

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WP TL.T3A - SET NAME: WP TL.T3A NOTE: WIDE PZATE, T-L ORIENTATION, TYPE 3

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

CT50 CT4 9 CT48 CT51 CT52 CT53 CT54 CT60 CT5 9 CT55 CT58 CT56 CT62 CT61

-125.0 -112.5 -100.0 -87.5 -75.0 -62.5 -50.0 -25.0 0.0 25.0 50.0 100.0 100.0 150.0

-193.0 -170.5 -148.0 -125.5 -103.0 -80.5 -58.0 -13.0 32.0 77.0 122.0 212.0 212.0 302.0

0.81 1.22 7.59 7.59 10.17 11.93 14.37 18.57 22.51 30.37 34.44 38.64 28.74 36.20

0.60 0.90 5.60 5.60 7.50 8.80 10.60 13.70 16.60 22.40 25.40 28.50 21.20 26.70

0.00 0.00 0.33 0.33 0.51 0.58 0.66 0.86 0.84 0.97 0.97 0.74 0.84 0.76

0.000 0.000 0.013 0.013 0.020 0.023 0.026 0.034 0.033 0.038 0.038 0.029 0.033 0.030

0.0 0.0 5.0 5.0 10.0 20.0 50.0 55.0 75.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 14

B-15 NUREGER-6379

SOURCE: WP_TL.T3A ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED] : 0.1 ( J ) ,O. 1 (FT-LB) MID-TRANSITION TEMPERATURE:-31.8 (DEG C) ,-25.2 (DEG F) TRANSITION ZONE WIDTH: 154.9 (C DEG),278.8 (F DEG) UPPER SHELF ENERGY: 35.9 ( J ) , 2 6 . 5 (FT-LB)

UPPER SHELF ENERGY: 35.9 ( J ) , 2 6 . 5 (FT-LB) NOTE: NONE MODEL SET NAME: 5

45

40

35

50 - 25

2 >. Q E W 20 z LI

15

io

5

0

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 600

1 1 1 1 1 1 1 1 I I ]A5336 WIDE PLATE, TL ORIENTATION, TYPE 3 -

0

25

P 20 I

4; c,

>

W z W

15

10

0 CHARPY DATA MEAN IMPACT CURVE

-150 -100 -50 0 50 t oo i50 2aa z i o 300 350’ TEMPERATURE (OC)

NUREGER-6379 B-16

SOURCE: WP TL.T3A ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

-

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPEXATURE:-79.5 (DEG C),-111.2 (DEG F) TRANSITION ZONE WIDTH: 70.9 (C DEG),127.6 (F DEG) UPPER SHELF EXPANSION: 0.853 (MM),0.0336 (IN)

UPPER SHELF EXPANSION: 0.853 (MM),O.O336 (IN) NOTE: NONE MODEL SET NAME: 7

0.0

1.2

1.0

- E 0.8 E Y

z 0 H 0.6 a z < P 5 0.4

0.2

4 1 I 1 I 1 1 1 1 - 1 0.00

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600

I I I 1 I 1 I I I

0 0

U

0 0

0 CHARPY DATA MEAN IMPACT CURVE

0.04

0.03 p z - i z

X W

0.02 2

0.0 1

B-17 NUREGER-6379

SOURCE: WP_TL.T3A ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF S H W [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: -34.2 (DEG C) , -29.5 (DEG F) TRANSITION ZONE WIDTH: 93.4 (C DEG) ,168.2 (F DEG) UPPER SHELF SHEAR: 101 (PERCENT)

UPPER SHELF SHE3.R: 101 (PERCENT) NOTE: NONE MODEL SET NAME: 8

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

120

100

iz ao z W c3

& 60

c1: 4 W 5 40

El

20

0 -

NUREGER-6379

I I I I I 1

- I 0 CHARPY DATA

MEAN IMPACT CURVE

1 I 1 1 1 1 I 1 50 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

B-I 8

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WP-TL.T4

SET NAME: WP TL.T4 NOTE: SUB-SIZE CORRELATION PROG., WIDE PLATE, T-L ORIENT., TYPE 4

ENERGY EXPANSION SHEAR TEMPERATURE IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

CT2 7 CT2 6 CT2 1 CT2 8 CT25 CT29 CT2 0 CT3 0 CT24 CT19 CT23 CT18 CT17 CT22 CT3 1

-100.0 -87.5 -75.0 -75.0 -62.5 -62.5 -50.0 -50.0 -37.5 -25.0 -12.5 0.0 25.0 100.0 150.0

-148.0 -125.5 -103.0 -103.0 -80.5 -80.5 -58.0 -58.0 -35.5 -13.0 9.5 32.0 77.0 212.0 302.0

0.20 0.33 2.36 1.57 3.53 2.56 4.37 4.81 6.03 6.40 7.86 6.47 6.85 7.43 7.36

0.15 0.24 1.74 1.16 2.60 1.89 3.22 3.55 4.45 4.72 5.80 4.77 5.05 5.48 5.43

0.00 0.00 0.20 0.13 0.23 0.20 0.41 0.43 0.53 0.58 0.69 0.61 0.64 0.71 0.79

0.000 0.000 0.008 0.005 0.009 0.008 0.016 0.017 0.021 0.023 0.027 0.024 0.025 0.028 0.031

0.0 0.0 10.0 5.0 30.0 10.0 45.0 55.0 75.0 80.0 100.0 80.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 15

B-19 NUREG/CR-6379

I I i

1 i I i i 1 i j

i

I i

, I I i I

1

i 1 *i

E I

i I , ! b

!

SOURCE: WP TL.T4 ANALYSIS SET

Y VARIABLE: ENERGY MODEL P-TERS

-

LOWER SHELF ENERGY MID-TRANSITION TEMPERATURE:-58.1 (DEG C),-72.6 TRANSITION ZONE WIDTH: 53.7 (C DEG) ,96.7 (F DEG) UPPER SHELF ENERGY: 7.2 (J),5.3 (FT-LB)

[HELD FIXED] : 0.1 (J) ,O. 1 (FT-LB) (DEG F)

UPPER SHELF ENERGY: 7.2 (J) ,5.3 (FT-LB)

MODEL SET NAME: 1 NOTE: NONE

8 -

1 1 1 1 I I I 1 I

- 6 0 ' 0 0

NUREGlCR-6379

9

0 7 -

6 - A

I A 5 3 3 B WIDE PLATE, TL ORIENTATION. TYPE 4 I a >. (!I E w 4 - z W

0 CHARPY DATA MEAN IMPACT CURVE -

I I 1 1 I I -150 -100 -50 0 50 100 156 200 250 300 350

B-20

- 5

c.

- 4 y

- 3 E

c1

>.

W z W

t

- 2

- 1

0

_ _ _ _ _ *_- - - - ..,~ \ - . I ' . , - - .... .

SOURCE: WP TL.T4 ANALYSIS SET -

0.8

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TR7U?SITION TEMPERATURE:-54.1 (DEG C) ,-65.3 (DEG F) TRANSITION ZONE WIDTH: 56.3 (C DEG),101.3 (F DEG) UPPER SHELF EXPANSION: 0.694 (MM) ,O. 0273 (IN)

UPPER SHELF EXPANSION: 0.694 (MM) ,0.0273 (IN) NOTE: NONE MODEL SET NAME: 0

1 I 1 1 1 1 1 1 -J 0.035

WIDE PLATE, TL, TYPE 4

- 0.030 , 0 - I

0.9 I

0.7 - 0

0 - ^E 0 . 6 - E z 0.5 - - - 0 03 z 0.4 - < - 0

H

E 0.3 - - 0.2 -

- 0 CHARPY DATA MEAN IMPACT CURVE 0.1 -

I 1 I I I 1 0.0 -150 -100 -50 0 50 100 150 200 250 300

B-21

0.025 c) c - -

0.020 z

cn z 0.015 2

x W

Ef

0.010

0.005

0.000 350

NUREGER-6379

SOURCE: WP-TL.T4 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED J : 0 (PERCENT) MID-TRANSITION TEXPERATURE:-48.4 (DEG C) , -55.2 (DEG F) TRANSITION ZONE WIDTH: 45.8 (C DEG),82.4 (F DEG) UPPER SHELF SHEAR [HELD FIXED J : 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 9

I 1 I 1 I I 1 1 I

IWIDE PLATE, TL, TYPE 41

1

n n n - v u v

i

120

- I 0 CHARPY DATA

MEAN IMPACT CURVE

I 1 I I I 1 I 1

100

c1: 4 W I (D 40

20

a -

NUREGER-6379

TEMPERATURE PCl

B-22

APPENDIX C

A 508, AS QUENCHED

c-I NUREGjCR-6379

I

E I i

i ! i

I i

i I

1

I I I 1

1

!

i

i i 'i

. i

I I

1 'I

t i

I

I

I

!

1 I

1

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 508-QUEN.F .

SET NAME: 508-QUEN.F NOTE: A508, QUENCHED ONLY, FUU-SIZE

IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

7SC-8 7sc-18 7SC-10 7SC-14 7SC-22 7SC-20 7SC-12 7SC-16

21.0 43.0 66.0 99.0 104.0 110.0 121.0 177.0

69.8 109.4 150.8 210.2 219.2 230.0 249.8 350.6

21.00 29.00 47.00 64.00 86.00 103.00 103.00 108.00

15.49 21.39 34.67 47.20 63.43 75.97 75.97 79.66

0.20 0.48 0.69 0.93 1.22 1.45 1.47 1.57

0.008 0.019 0.027 0.037 0.048 0.057 0.058 0.062

~~

NUMBER OF SPECIMENS: 8

NUREGER-6379 c-2

0.0 15.0 30.0 75.0 80.0 95.0 100.0 100.0

AXALYSIS SET: 508-QUEN.F

'i VS-lIABLE: ENERGY T3-m REGRESSION NOT CONVERGING AFTER 13 ITERATION(S) XODEL PAXUMETERS LGWER SHELF ENERGY [HELD FIXED] : 2.7 (J) 2.0 (FT-LB) MID-TRANSITION TEMPERATURE: 76.7 (3EG C) ,170.0 (DEG F) TRANSITION ZONE WIDTH: 110.1 (C DEC),198.2 (F DES) UPPER SHELF ENERGY: 115.6 (J),85.3 (FT-LB)

UPL)ER SHELF ENERGY: 115.6 (J),85.3 ('T-LB) T ~ N P ~ R A ~ [ d l (J) ,30.2 (FT-LB) ENEZGYI: 58.3 (DEG C),137.0 (DEG F) TEMPERATURE [68 (J) ,50.2 (FT-LB) ENEZGYI : 85.4 (DEG C) ,185.7 (DEG F)

120

100

80

> (3 60 K W z W

40

20

a

TEMPERATURE {OF). -200 -100 0 100 200 300 400 500 600

1 I 1 1 I I 1 I I

A508, QUENCHED ONLY, FULL-SIZE

0 CHARPY DATA MEAN IMPACT CURVE

80

70

h

f! 1

50 v

>

u z

40 e 30

20

i o

I I I 1 I I I I ~ ~ 0

TEMPERATURE ("C)

N O Z : A508, QUENCHED ONLY, FULL-SIZE KOEEL SET NAME: 508-QT33N.F

c-3 NUREG/CR-6379

ANALYSIS SET: 508-QUEN-F

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED] : 0.061 (MM) ,0.0024 (IN)

TRANSITION ZONE WIDTH: 107.9 (C DEG),194.2 (F DEG) UPPER SHELF EXPANSION: 1.659 (NM) ,0.0653 (IN)

MID-TRANSITION TEMPE==: 77 - 8 (DEG C) ,172.1 (DEG F)

UPPER SHELF EXPANSION: 1.659 (MM) ,O. 0653 (IN) TEMPERATURE [O. 89 (MM) ,O. 035 (IN) EXPANSION] : 79.9 (DEG C) ,175

I I

1 I 1 I I I I 0.00 -150 -100 -50 0 50 100 150 200 250 SO0

1.75

0.00 350

1.50

1.25

z Ei

E v 1.00 i

(" 2 0.75 tl X W

0.50

0.25

-200 -100 TEMPERATURE iaFI

0 100 200 300 400 500 600 I I 1 I I I I I I

A508 QUENCHED ONLY I

MEAN IMPACT CURVE I

. 8 (DEG F)

0.06

0.05

0.02

0.01

TEMPERATURE ("C)

NOTE: A508, QUENCHED ONLY, FULL-SIZE MODEL SET NAME: 508-QUEN.FE

NUREG/CR-6379 C-4

DATA SOURCE: ANALYSIS SET ANALYSIS SET: 508 QvEN.F Y VARIABLE: SHEAR- MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 78.3 (DEG C) ,173 (DEG F) TRANSITION ZONE WIDTH: 62.6 (C DEG),112.6 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR]: 78.3 (DEG C) ,173 (DEG F)

120

100

f: 80 z W V 11:

60

cr 4 W 6 40

20

0

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

I 1 1 I 1 I 1 I 1

IA508. QUENCHED ONLY I

REMARK: A508, QUENCHED ONLY, FULL-SIZE MODEL SET NAME: 508-QUEN.FS

c-5

- 0 CHARPY DATA

MEAN IMPACT CURVE

I I 1 I I I 1

TEMPERATURE (')C)

NUREG/CR-6379

, SOURCE: ANALYSIS SET ANALYSIS SET NAME: A508QUEN.Tl

SET NAME: A508QUEN.Tl NOTE: A508 QUENCHED ONLY, TYPE 1

IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

761D 761C 766A 766B 761B 718D 766D 766C 756A 756B 756C 7 18A

. 756D 718C 76lA 76lA 7 18B

-75.0 -50.0 -25.0 -12.5 0.0 0.0 12.5 25.0 37.5 50.0 62.5 75.0

' 100.0 150.0 200.0 200.0 250.0

-103.0 -58.0 -13.0 9.5 32.0 32.0 54.5 77.0 99.5 122.0 144.5 167.0 212.0 302.0 392.0 392.0 482.0

1.50 7.33 1.38 2.03 15.27 5.50 3.32 8.60 15.68 14.20 13.96 18.82 19.51 21.83 20.99 20.98 21.10

1.11 5.41 1.02 1.50 11.26 4.06 2.45 6.34 11.57 10.47 10.30 13.88 14.39 16.10 15.48 15.48 15.56

0.00 0.18 0.00 0.00 0.41 0.15 0.03 0.13 0.56 0.41 0.41 0.66 0.69 0.89 0.89 0.89 0.79

0.000 0.007 0.000 0.000 0.016 0.006 0.001 0.005 0.022 0.016 0.016 0.026 0.027 0.035 0.035 0.035 0.031

0.0 5.0 0.0 0.0 20.0 0.0 5.0 5.0 50.0 45.0 40.0 80.0 100.0 100.0 100.0 100.0 100.0

~~

NUMBER OF SPECIMENS: 17

NUREGKR-6379 C-6

SOURCE: ASO8QUEN.Tl ANALYSIS SET

" -150 -100 -50 0 50 100 150 200 250 300

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED] : 0.1 (J) ,0.1 (FT-LB) MID-TRANSITION TEMPERATURE: 27.4 (DEG C),81.4 (DEG F) TRANSITION ZONE WIDTH: 141.4 (C DEG) ,254.6 (F DEG) UPPER SHELF ENERGY: 21.6 (J) ,15.9 (FT-LB)

UPPER SHELF ENERGY: 21.6 (J),15.9 (FT-LB) NOTE: A508, QUENCHED ONLY, TYPE 1 MODEL SET NAME: 2

0.0 350

-200 -100 0 TEMPERATURE PFI 100 200 300 400 500 600

25

20

5

-1- ~ 1 I 1 I I I I 1

LA508, QUENCHED ONLY, TYPE 1 1

0 i i 0 CHARPY DATA I

17.5

15.0

12.5 -P

10.0 t I 4

2. (3 II: 7.5 w z W

5.0

2.5 MEAN IMPACT CURVE

n 1 I 1 I 1 I

c-7 NUREGER-6379

SOURCE: A508QUEN.Tl ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: 51.3 (DEG C),124.3 (DEG F) TRANSITION ZONE WIDTH: 126.8 (C DEG),228.2 (F DEG) UPPER SHELF EXPANSION: 0.872 (MM),O.O343 (IN)

UPPER SHELF EXPANSION: 0.872 (MM) ,0.0343 (IN) NOTE: A508, QUENCHED ONLY, TYPE 1 MODEL SET NAME: 3

-200 -100 0 100 200 300 400 500 600 1.0 I I I 1 I I 1 1 1

0 0 - lA508, QUENCHED ONLY, TYPE 1 I

- 0.0 0 -

- - E

0.6 - z

a z

- I2 2 0.4 - 1:

-

- (1.2 -

0 CWtRPY DATA - MEAN IMPACT CURVE

I 1 I 0.0

0.035

0.030

CI

0.025 f

z -

0.620 z < Q w

0.015 x

0.010

0.005

0.606

NU REG/C R-6379 C-8

SOURCE: A508QUEN.Tl ANALYSIS SET

cc W 4 60 Cr 4 W I

- -

ffl 40 - -

20 - - I 0 CHARPY DATA

MEAN IMPACT CURVE

1 1 I 1

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 55.0 (DEG C) ,131.0 (DEG F) TRANSITION ZONE WIDTH: 77.7 (C DEG),139.9 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT),50 (PERCENT) SHEAR]: 55.0 (DEG NOTE: A508, QUENCHED ONLY, TYPE 1 MODEL SET NAME: 4

C) ,131.0 (DEG

c-9 NUREGKR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A508QUEN.T2

SET NAME: A508QUEN.T2 NOTE: A508, QUENCHED ONLY (TYPE 2 SPECIMEN)

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) . (FT-LB) (MM) (IN) (PERCENT)

762A 762B 747D 762C 747c 762D 747B 771lA 747A 7711B 7711C 774A

. 7711D

~~

-75.0 -62.5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 37.5 50.0 100.0 200.0

-103.0 -80.5 -58.0 -35.5 -13 0 9.5 32.0 54.5 77.0 99.5 122.0 212.0 392.0

0.92 0.46 1.83 0.72 3.46 3.06 4.42 3.71 5.69 6.28 5.76 5.76 5.95

0.68 0.34 1.35 0.53 2.55 2.26 3.26 2.74 4.20

4.25

4.39

4,. 63

4.25

0.00 0.00. UNKNOWN 0.00 0.15 0.10 0.18 0.20 0.30 0.41 0.33 0.38 0.33

0.000 0.000

0.000 0.006 0.004 0.007 0.008 0.012 0.016 0.013 0.015 0.013

0.0 0.0 0.0 0.0 5.0 10.0 10.0 15.0 80.0 100.0 75.0 100.0 100.0

NUMBER OF SPECIMENS: 13

NUREGER-6379 c-1 0

Yi, . _. "- 2;; ;-, :;. . ,

SOURCE: A508QUEN.T2 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED] : 0.1 (J) , 0.1 (FT-LB) MID-TRANSITION TEMPERATURE: -16.7 (DEG F) TRANSITION ZONE WIDTH: 90.4 (C DEG),162.7 (F DEG) UPPER SHELF ENERGY: 6.1 (J) ,4.5 (FT-LB)

(DEG C) , 2 - 0 UPPER SHELF ENERGY: 6.1 (J) , 4 - 5 (FT-LB) NOTE: A508, QUENCHED ONLY, TYPE 2 MODEL SET NAME: 7

6 t TEMPERATURE (OF)

,-2,W -1:O lyO 2yO 3 y O 4yO 5yO 6 y O

0

5 -

CI

> a fx

A508, QUENCHED ONLY, TYPE 2 2 4 -

:3-

2 -

0 CHARPY DATA MEAN IMPACT CURYE

1 -

6 -150 -100 -50 0 50 100 150 200 250 300

1 I I 1 1 I

TEMPERATURE ( O C I

c-11

il

NUREGKR-6379

SOURCE: A508QUEN.T2 ANALYSIS SET

0.30 E Y

z 0.25

((J z 0.20 < &

E

15 0.15

0.10

0.05

Y VARIABLE: EX?ANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM) ,O.OOOO (IN) MID-TRANSITION TEMPERATURE: 0.0 (DEG C),32.0 (DEG F) TRANSITION ZONE WIDTH: 69.1 (C DEG),124.4 (F DEG) UPPER SHELF EXPANSION: 0.369 (MM),O.O145 (IN)

UPPER SHELF EXPANSION: 0.369 (MM),O.O145 (IN) NOTE: A508, QUENCHED ONLY, TYPE 2 MODEL SET NAME: 6

- -

-

- -

-

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 , I I I I I I I 0.0175 0.45 1

0.35 O - 4 O t 0 1 0.0150

0

[A508.- QUENCHED ONLY. TYPE 2 1

0.01 25 r ) c

0.0100 z - - i z

0.0075 2 x w

0.0050

0 CHARPY DATA 0.6025 MEAN IMPACT CURVE

NU REG/C R-6379 c-I2

SOURCE: A508QUEN.T2 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE: 19.3 (DEG C),66.8 (DEG F) TRANSITION ZONE WIDTH: 16.9 ( C DEG) ,30.4 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [ 50 (PERCENT) ,50 (PERCENT) SHEAR] : 19.3 (DEG C ) ,66.8 (DEG F) NOTE: A508 QUENCHED ONLY, TYPE 2 MODEL SET NAME: 5

120

100

i l ao z W 0

& 60

K 4 W I

ti

u) 40

20

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 I 1 1 1 I I I I

I A508, QUENCHED ONLY, TYPE 2 I

I

0

0 CHARPY DATA MEAN IMPACT CURVE

0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

C-13 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A508QUEN.T3

SET NAME: A508QUEN.T3 NOTE: A508 QUENCHED, SPECIMEN TYPE 3

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) ( M w (IN) (PERCENT)

7 11D -100.0 -148.0 1.08 0.80 0.00 0.000 0.0 711C -75.0 -103.0 2.30 1.70 0.00 0.000 0.0 711B -50.0 -58.0 2.58 1.90 0.00 0.000 0.0 71lA -37.5 -35.5 3.66 2.70 0.03 0.001 0.0 77D -25.0 -13.0 3.39 2.50 0.00 0.000 0.0 77c -12.5 9.5 3.66 2.70 0.03 0.001 5.0 77B 0.0 32.0 8.00 5.90 0.23 0.009 15.0 77A 12.5 54.5 7.59 5.60 0.25 0.010 25.0 719B 37.5 99.5 10.17 7.50 0.43 0.017 60.0 7 17A 50.0 122.0 9.63 7.10 0.33 0.013 45.0 719A 75.0 167.0 10.85 8.00 0.46 0.018 50.0 7 17B 100.0 212.0 15.32 11.30 0.64 0.025 100.0

. 719C 100.0 212.0 14.24 10.50 0.71 0.028 100.0 717D 150.0 302.0 17.49 12.90 0.74 0.029 100.0 719D 150.0 302.0 14.91 11.00 0.56 0.022 100.0 717C 200.0 392.0 16.95 12.50 0.74 0.029 100.0

NUMBER OF SPECIMENS: 16

NUREGER-6379 C-I 4

SOURCE: A508QUEN.T3 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMPERATURE: 32.2 (DEG C) ,90.0 (DEG F) 'JXANSITION ZONE WIDTH: 195.1 (C DEG),351.3 (F DEG) UPPER SHELF ENERGY: 17.6 (J) ,13.0 (FT-LB)

UPPER SHELF ENERGY: 17.6 (J) ,13.0 (FT-LB) NOTE: A508, QUENCHED ONLY, TYPE 3 MODEL SET NAME: 8

20.0

17.5

15.0

- 12.5 a > 0 10.0 a W z W 7.5

5.0

2.5

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 600

I 1 I ---I I 1 1 I 1

A508, QUENCHED ONLY, TYPE 3 I

0 CHARPY DATA MEAN IMPACT CURVE

n n 1 1 I I 1 1 1

12.5

10.0 P

b I

-?J

7.5 >. a K W z

5.0

2.5

-. - 0.0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PC)

c-15

SOURCE: A508QUEN.T3 ANALYSIS'SET

-200 -100 0 100 200 300 400 500 600 1 - I I I 1 I I [ 0.9 * 1

A508, QUENCHED ONLY, TYPE 3 0.8 - I -

0 0 0.7 - 0

- E 0 . 6 - E - Y

z 0.5 - 63 z 0.4 - U

-

- 0.2 -

- 0 CHARPY DATA MEAN IMPACT CURVE

I I I

- 0.1 -

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: 3 8 . 3 (DEG C),101.0 (DEG F) TRANSITION ZONE WIDTH: 115.5 (C DEG),208.0 (F DEG) UPPER SHELF EXPANSION: 0.696 (MM),O.O274 (IN)

UPPER SHELF EXPANSION: 0.696 (MM),O.O274 (IN) NOTE: A508, QUENCHED ONLY, TYPE 3 MODEL SET NAME: 9

0.035

0.030

0.025 m c - -

0.020 z z z 0.015 2

X W

0.010

0.005

0.000

NUREGER-6379 C-16

SOURCE: A508QUEN.T3 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 46.7 (DEG C) ,116.0 (DEG F) TRANSITION ZONE WIDTH: 105.2 (C DEG),189.4 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] : 46.7 (DEG NOTE: A508, QUENCHED ONLY, TYPE 3 MODEL SET NAME: 0

120

100

80 z W 0

& 60 6 K 4 W

40

20

TEMPERATURE .PFI -200 -100 0 100 200 300 400 500 600

1 I 1 1 1 I 1 I 1

C) ,116.0 (DEG F)

I A508, QUENCHED ONLY, l%PEq

O O

f /

0 CHARPY DATA MEAN IMPACT CURVE

1 I 1 1 I I 0 -i50 -100 -50 0 50 100 150 200 25Q

TEMPERATURE PCl

C-17

300 350

NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A508QUEN.T4

SET NAME: A508QUEN.T4 NOTE: A508 QUENCHED, TYPE 4

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

757F 7763 7573 757D 757c 776D 757B 776C 757A 776B 767A 77 6A 7 67B 767F 767C 7673 767D 776F

-50.0 -50.0 -37.5 -25.0 -12.5 -12.5 0.0 12.5 25.0 25.0 37.5 37.5 50.0 75.0 100.0 150.0 200.0 250.0

-58.0 -58.0 -35.5 -13.0 9.5 9.5 32 .-0 54.5 77.0 77.0 99.5 99.5 122.0 167.0 212.0 302.0 392.0 482.0

1.91 0.27 1.19 0.53 0.53 1.59 2.70 2.97 3.35 3.16 2.30 3.16 2.96 4.70 5.29 5.10 5.22 5.63

1.41 0.20 0.88 0.39 0.39 1.17 1.99 2.19 2.47 '

2.33 1.70 2.33 2.18 3.47 3.90 3.76 3.85 4.15

0.03 0.00 0.13 0.00 0.00 0.00 0.18 0.23 0.20 0.23 0.15 0.23 0.25 0.41 0.46 0.48 0.48 0.43

0.001 0.000 0.005 0.000 0.000 0.000 0.007 0.009 0.008 0.009 0.006 I

0.009 0.010 0.016 0.018 0.019 0.019 0.017

NUMBER OF SPECIMENS: 18

NU REGER-6379 C-I 8

~~

0 . 0 0 . 0 0 . 0 0.0 0.0 0.0 20.0 30.0 50.0 30.0 20.0 40.0 40.0 80.0 100.0 100.0 100.0 100.0

SOURCE: A508QUEN.T4 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [.HELD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE: 24.9 (DEG C) ,76.8 (DEG F) TRANSITION ZONE WIDTH: 154.6 (C DEG),278.3 (F DEG) UPPER SHELF ENERGY: 5.5 (J) ,4.1 (FT-LB)

UPPER SHELF ENERGY: 5.5 (J) ,4 .1 (FT-LB) NOTE: A508, QUENCHED ONLY, TYPE 4 MODEL SET NAME: 3

TEMPERATURE (OF) -200 -100 0 100 200 300 400 500 600

7 1 1 1 1 1 I 1 1 1 -le

A508, QUENCHED ONLY, TYPE 41 6 1 -

0 CHARPY DATA MEAN IMPACT CURVE

I I I 1 I 1 1 A

-150 - iaa -512 a sa ioa 150 200 256 300 350' TEMPERATURE ( O C I

c-19 NUREGER-6379

SOURCE: A508QUEN.T4 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: 36.9 (DEG C) ,98.3 (DEG F) TRANSITION ZONE WIDTH: 114.4 (C DEG),205.9 (F DEG) UPPER SHELF EXPANSION: 0.475 (MM) ,0.0187 (IN)

UPPER SHELF EXPANSION: 0.475 (MM) ,0.0187 (IN) NOTE: A508, QUENCHED ONLY, TYPE 4 MODEL SET NAME: 2

I 1 I I I I 0.0'' 4 M I -150 -100 -50 0 50 100 150 200 250 300

0 . 6

0.5

'5 0.4 E Y

z 2 0.3 ul z U Q E 0.2

0.1

0.QOQ 350

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600 I 1 1 I 1 1, 1 I 1

I A508, QUENCHED ONLY, TYPE 4 I

J 0 CHARPY DATA MEAN IMPACT CURVE

0.020

0.015 - z

i z

x W

0.010 2

0.005

NUREGER-6379 c-20

SOURCE: A508QUEN.T4 ANALYSIS SET

0- I 1 1 1 1 I I I

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT) MID-TRANSITION TEMPERATURE: 47.7 (DEG C),117.9 (DEG F) TRANSITION ZONE WIDTH: 96.9 (C DEG),174.3 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] : 47.7 (DEG C) ,117.9 (DEG F) NOTE: A508, QUENCHED ONLY, TYPE 4 MODEL SET NAME: 1

120

100

c 80 z W 0 cr u & 60

E 4 W I u) 40

20

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 I I 1 I 1 I 1 1

I A508, QUENCHED ONLY, TYPE 4 1

0 CHARPY DATA MEAN IMPACT CURVE

c-21 NUREGER-6379

APPENDIX D

A 508, QUENCHED AND TEMPERED AT 599°C

D-1 NU REG/C R-6379

SOURCE: AN?&YSIS SET ANALYSIS SET NAME: 508-llOO.F

SET NAME: 508-llOO.F NOTE: A508, QUENCHED & TENT- @ 1100 F

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LBl (rn) (m) (PERCENT)

~

3 SC-2 0 -18.0 -0.4 3SC-8 21.0 69.8 3SC-10 66.0 150.8 3SC-14 104.0 219.2 3SC-22 110.0 230.0 3SC-12 121.0 249.8 3SC-16 149.0 300.2 3SC-18 204.0 399.2

10.00 39.00 51.00 65.00 99.00 75.00 96.00 97.00

~-

7.38 0.13 0.005 0.0 28.76 0.30 0.012 0.0 37.62 0.69 0.027 30.0 47.94 1.09 0.043 65.0 73.02 1.42 0.056 100.0 55.32 1.17 0.046 85.0 70.81 1.47 0.058 100.0 71.54 1.52 0.060 100.0

NUMBER OF SPECIMENS: 8

NUREGER-6379 D-2

ANALYSIS SET: 508 l l O O . F

Y VARIABLE: ENERGY MODEL PARAMETERS

-

LOWER SHELF ENERGY [HELD FIXED] : 2.7 (J) , 2 . 0 (FT-LB) MID-TRANSITION TEMPERATURE: 59.6 (DEG C) ,139.2 (DEG F) TRANSITION ZONE WIDTH: 164.8 (C D E G ) , 2 9 6 . 6 (F DEG) UPPER SHELF ENERGY: 1 0 1 . 9 (J) ,75.2 (FT-LB)

UPPER SHELF .ENERGY: 1 0 1 . 9 (J) I 75.2 (FT-LB) TEMPERATURE 141 (J) , 3 0 . 2 (FT-LB) ENERGY] : 40.5 (DEG C) , 1 0 4 . 8 (DEG F ) TEMPERATURE [68 (J) ,50.2 (FT-LB) ENERGY] : 86.6 (DEG C) ,187.8 (DEG F )

TEMPERATURE (TI -200 -100 0 100 200 300 400 500 600

120 1 I 1 1 1 I 1 1 1 I 4 I I A 5 O 8 , QUENCHED+ 1 1 OOF. FULL-SIZE I

* 2

E Z W

40

- 60 h

50 e s

I - v

>

Id z

- 40

- 30

- 20 20 -

I 0 CHARPY DATA i o - MEAN IMPACT CURVE

I 1 I 1 1 I 1 1 I 0 0 -150 -100 -50 0 50 100 150 200 250 300 550

TEMPERATURE ("CI

NOTE: A508, QUENCHED 6c TEMPERED Q 1100 F, FULL-SIZE MODEL S E T NAME: 508-1100.F

D-3 NUREGER-6379

ANALYSIS SET: 508-1100.F

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXEC - : 0.061 (MM).,0.0024 (IN) MID-TRANSITION TEMPERA*: 72.8 (DEG C) ,163.0 (DEG F) TRANSITION Z O h WIDTH: 117.8 (C DEG) ,212.1 (F DEG) UPPER SHELF EXPANSION: 1.545 (MM),0.0608 (IN)

UPPER SHELF EXPANSION: 1.545 (MM) , 0 .0608 (IN) TEMPERATURE E0.89 (MM) ,0.035 (IN) EXPANSION] : 79.7 (DEG C) ,175.5 (DEG F)

TEMPERATURE ("FI -200 -100 0 100 200 300 400 500 600

1-75 I 1 1 I 1 I 1 1 1 I I I A 5 0 8 QUENCHED+ 1 1 1 OF I

1.25 - ^E E Y

1.00 - z 0

VJ 5 0.75 - Q X W

!-I

0.50 -

0.

0.

1 - 0 . 0 CHARPY DATA 0.25 -

MEAN IMPACT CURVE

I I I 1 I 1 I 1 1 -150 -100 -50 0 50 100 150 200 250 300 350

0.00 0.

TEMPERATURE ("C)

NOTE: AS08, QUENCHEDi-llOOF, FULL-SIZE MODEL SET NAME: 508-1300.FE

NUREGKR-6379 D-4

06

01

00

. . . . * . . I , . ..

i l

DATA SOURCE: ANALYSIS SET

Y VARIABLE: SHEAR- ANALYSIS SET: 508 1100.F

MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 82.3 (DEG C) ,180.1 (DEG F) TRANSITION ZONE WIDTH: 69.2 (C DEG),124.6 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT),50 (PERCENT) SHEAR]: 82.3 (DEG C),180.1 (DEG F)

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

120

100

7 80 Z w u U

60

20 0 CHARPY DATA

MEAN IMPACT CURVE

n I 1 1 1 I " -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCI

REMARK: A508, QUENCHED t TEMTERED @ 1100 F MODEL SET NAME: 508-1100.FS

D-5 NUREGER-6379

: I

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081100.Tl

NOTE: A508 QUENCHED+ilOOF, TYPE 1 SET NAME: A5081100.Tl

TEMPERATURE ENERGY IDENT (DEG C) (DEG F) (5)

338A -75.0 -103.0 0.85

321D -50.0 -58.0 3.61 338C -37.5 -35 . 5 7.00 321C -25.0 -13.0 11.31 339D -25.0 -13.0 4.83

321B 0.0 32.0 10.07 339A 12.5 54.5 8.51 3 19A 25.0 77.0 11.73 319B 50.0 122.0 14.44 339B 75.0 167.0 20.20 319C 100.0 212 . 0 21.44 319D 125.0 257 0 20.70 339c 200.0 392.0 21.68 321A 250.0 482.0 18.25

338B -62.5 -80.5 3.35 '

338D -12.5 9.5 11.19

0.63 2.47 2.66 5.16 8.34 3.56 8.25 7.43 6-28 8-65 10.65 14.90 15.81 15.27 15.99 13.46

EXPANSION SHEAR (MM) (IN) (PERCENT)

0 - 0 0 0.000 0 .0 0.00 0.000 0.0 0.03 0,001 0.0 0.13 0.005 0.0 0.30 0.012 5.0 0.13 0.005 0.0 0.41 0.016 10.0 0.23 0.009 5.0 0.20 0.008 15.0 0.33 0.013 10.0 0.43 0.017 ' 45.0 0.66 0.026 80.0 0.74 0.029 100.0 0.76 0.030 100.0 0.89 0.035 100.0 0.74 0.029 100.0

NUMBER OF SPECIMENS: 16

NUREGER-6379 D-6

SOURCE: A5081100.Tl ANALYSIS SET

-200 -100 0 100 200 300 400 500 600 2 5 - 1 I 1 1 I 1 1 1 I - I A508, QUENCHED+i 1 OOF, TYPE 1 I

0 - 20 - -

3 15 - - - > a z - 5 w 10 -

-

0 CHARPY DATA - MEAN IMPACT CURVE

1 I 1

Y VARIABLE: ENERGY MODEL PARAMETERS LOWEX SHELF ENERGY (HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMPERATURE: 3.7 (DEG C),38.7 (DEG F) TRANSITION ZONE WIDTH: 161.3 (C DEG),290.3 (F DEG) UPPER SHELF ENERGY: 21.1 (J),15.6 (FT-LB)

UPPER SHELF ENERGY: 21.1 (J),15.6 (FT-LB) NOTE: NONE MODEL SET NAME: 8

17.5

15.0

12.5 P

I 4

>. <3 U 7.5 w z W

10.0

5.0

2.5

0.0

0

D-7 NUREG/CR-6379

SOURCE: A5081100.Tl ANALYSIS SET

Y VARIABLE: EXPANSION MODEL P-TERS LOWER SHELF EXPANSION [HELD FIXED] : 0.000 (MM) ,O.OOOO (IN) MID-TRANSITION TEMPEXATURE: 33.6 (DEG C) ,92.6 (DEG F) TRANSITION ZONE WIDTH: 161.5 (C DEG),290.6 (F DEG) UPPER SHELF EXPANSION: 0.833 (MM),O.O328 (IN)

UPPER SHELF EXPANSION: 0.833 (MM),0.0328 (IN) NOTE: NONE MODEL SET NAME: 7

TEMPERATURE PFI ,

-200 -100 0 100 200 300 400 500 600 1.0 1 1 1 1 1 I 1 1 1 I

I A508, QUENCHED+ 1 1 OOF, TYPE 1 I 0

0.630

0.025 -

6.8 .

- E

0 . 6 . z z E 6.020 - cn z z

U - 0.015 x 2 0.4 a - 5 W

- 0.010

0.2 - 0 CHARPY DATA - 0.005

MEAN IMPACT' CURVE

1 1 I I I Q.0 Q.000 -150 -100 --50 0 50 100 150 200 250 300 350

TEMPERATURE PCI

NUREGER-6379 D-8

SOURCE: A5081100.Tl ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAIETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 52.5 (DEG C) ,126.6 (DEG F) TRANSITION ZONE WIDTH: 65.2 (C DEG) ,117.4 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT),50 (PERCENT) SHEAR]: 52.5 (DEG NOTE: NONE MODEL SET NAME: 6

120

100

80 Z W 0

& 6 0 6 fz 4 W I VJ 40

20

-200 -100 0 TEMPERATURE PFl

100 200 300 400 500 600

I

C) ,126.6 (DEG F)

1 1 I I I 1 1 ~~~~ I 1

A508, QUENCHED+i IOOF, TYPE 1 I

n 0s MEAN IMPACT CURVE I I W

01 1 1 1 I I I -150 -160 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

D-9 NUREGER-6379

i 'I

1

I

i 1 I I I

i

1 i ! i 4 h i 1 1

I ! 1 1 I I

i E i

I 1 i I

i I 1 i i i i f ! ! i i .i

1 i

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081100.T2

SET NAME: A5081100.T2 NOTE: A508 QUENCHED+llOOF, TYPE 2

TEMPERATURE ENERGY EISW?SION SHEAR IDENT (DEG C) (DEG F) (J) (=-=I (W (IN) (PERCENT)

3 17B -100 0 -148 . 0 0.20 0.15 0.00 0.000 0.0 3 9A -75.0 -103.0 0.46 0.34 0.00 0.000 0.0 338A -62.5 -80.5 2.03 1.50 0.00 0.000 0.0 3 9D -50.0 -58.0 0.99 0.73 - 0 , o o 0.000 0 .0 338B -37.5 -35 . 5 2.75 2.03 0.05 0.002 5.0 39B -25.0 -13 . 0 2.62 1.93 0.08 0.003 10.0 338C -12.5 9.5 3.59 2.65 0.15 0.006 20.0 . 39c 0.0 32.0 2.36 1.74 0.05 0.002 10.0 338D 12.5 54.5 4.49 3.31 0.25 0.010 60.0 310C 25.0 77.0 4.73 3.49 0.28 0.011 45.0 3 17A 37.5 99.5 4.04 2.98 0.23 0.009 50.0 3 10A 50.0 122.0 4.87 3.59 0.33 0.013 75.0 310D , 100.0 212.0 4.80 3.54 0.36 0.014 100.0 3 17C 150.0 302.0 5.45 4.02 0.43 0.017 100.0

100.0 3 10B 200.0 392.0 5.69 4.20 0.43 0.017

NUMBER OF SPECIMENS: 15

NUREGKR-6379 D-1 0

SOURCE: A5081100.T2 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FI.XED]: 0.1 ( J ) , O . l (FT-I;B) MID-TRANSITION TEMPERATURE:-21.5 (DEG C) ,-6.7 (DEG F) TRANSITION ZONE WIDTH: 134.2 (C DEG),241.6 (F DEG) UPPER SHELF ENERGY: 5.4 ( J ) , 4 . 0 (FT-LB)

UPPER SHELF ENERGY: 5.4 (J),4.0 (FT-LB) NOTE: NONE MODEL SET NAME: 6

TEMPERATURE [OF) -200 -100 0 100 200 300 400 500 600

7

6

5

A

2 4 > a 11: g 3

2

1

1 1 1 1 1 1 1 I 1 -

IA508. QUENCHED+iiOOF. TYPE 21

-Ao

O A

n

0 CHARPY DATA - MEAN IMPACT CURVE

0

TEMPERATURE { O C l

D-11 NU REG/C R-6379

SOURCE: A5081100.T2 ANALYSIS SET

0.0

Y VAR32BLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-lRAi?SITION TEMPERATURE: 16.9 (DEG C) ,62.4 (DEG F) TRANSITION ZONE WIDTH: 106.6 (C DEG),191.9 (F DEG) UPPER SHELF EXPANSION: 0.414 (MM) ,0.0163 (IN)

UPPER SHELF EXPANSION: 0.414 (MM),O.O163 (IN) NOTE: NONE MODEL SET NAME: 5

1 I 1 1 1 1 I 0.0006

0.5

0.4

- E g 0.3 E ;;I 0.2

5

z

a z

0.1

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 600

1 1 1 1 1 1 1 1 1 1 I A508, QUENCHED+ 1 1 OOF, TYPE 2 I

- 0.0175 -I 0.0150 1 0.0125 9 -

z 6.0106

z < Q 0.0075 x W

0.0050

I 0 CHARPY DATA 1 0.0025 I MEAN IMPACT CURVE1 I

NUREGER-6379 D-12

SOURCE: A5081100.T2 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE: 26.5 (DEG C),79.7 (DEG F) TRANSITION ZONE WIDTH: 95.8 (C DEG),172.5 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PkCENT) SHEAR]: 26.5 (DEG C) ,79.7 (DEG F) NOTE: NONE MODEL SET NAME: 4

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

120 I I 1 1 1 ' 1 1 I 1

100 -

E 8 0 - W 0

& 60 tr 4 W $ 4 0 -

3 -

2o t

I A508, QUENCHED+ I 1 OOF, TYPE 2

- 0 CHARPY DATA

MEAN IMPACT CURVE

0 -f50 -100 -50 0 50 I00 i50 200 250 300 350

TEMPERATURE PCl

D-13 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081100.T3

SET NAME: A5081100.T3 NOTE: A508 QUENCHED+llOOF, TYPE 3

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (IN) (PERCENT)

321D 3 17B 317C 3 17A 3 17D 313D 313C 313B 313A 320A 320B 320C 320D 321B 321A 321C

-125.0 -100.0 -87.5 -75.0 -62.5 -50.0 -37 . 5 -25.0 -12 . 5 0.0 25.0 50.0 100 . 0 150.0 200.0 250.0

-193 . 0 -148.0 -125.5 -103.0 -80.5 -58.0 -35.5 -13.0 9.5 32.0 77.0 122.0 212.0 302.0 392.0 482.0

0.81 1.22 2.03 3.39 1.90' 4.75 5.56 5.97 6.91 8.13

11.93 13.15 14.78 15.19 14.51

8-13

0.60 0.90 1.50 2.50 1.40 3.50 4.10 4.40 5.10 6.00 6.00 8.80 9.70 10.90 11.20 10.70

0.00 0.00 0.00 0.00 0.00 0.08 0.13 0.18 0.20 0.30 0.28 0.51 0.56 0.71 0.66 0.66

0.000 0 .000 0.000 0.000 0.000 0.003 0.005 0.007 0.008 0.012 0.011 0.020 0 . 022 0.028 0.026 0.026

0 . 0 0 . 0 0 .0 0 .0 0.0 0.0 0.0 5.0 5.0 15.0 20.0 65.0 90.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 16

NUREGER-6379 D-14

SOURCE: A5081100.T3 AWALYSIS SET

-200 -100 0 100 200 300 400 500 600 I 1 1 1 I 1 1 I 1

I A508, QUENCHEDti i OOF, TYPE 3 I - 0

0 -

-

-

-

0 CHARPY DATA MEAN IMPACT CURVE

I 1 1 1 1 1 1 1 I

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TFANSITION TEMPERATURE:-2.1 (DEG C),28.2 (DEG F) TRANSITION ZONE WIDTH: 188.3 (C DEG),338.9 (F DEG) UPPER SHELF ENERGY: 15.0 (J),ll.l (FT-LB)

UPPER SHELF ENERGY: 15.0 (J),ll.l (FT-LB) NOTE: NONE MODEL SET NAME: 7

12

i o

c1

- 8 4 b >-

- 6 (3 K W z W

- 4

- 2

0

17.5

i5.0

12.5

A

2 10.0

g 7.5

> 0 K

W

5.0

2.5

0.0 - TEMPERATURE {"CI

D-I 5 NUREGER-6379

SOURCE: A5081100.T3 ANALYSIS SET

0.8 1 I 1 I 1 1 I I - 0

I A508, QUENCHED+ 1 1 OOF, TYPE 3 1 0.7 -

v V - 0.6 -

- z

a - 0.4 -

- 0.2 -

- 0 CHARPY DATA

MEAN IMPACT CURVE

I 1 I 1 -150 -100 -50 0 50 tm 150 200 250 300 350

Y VARIABLE: EXPANSION MODEL PARAMETERS LO- SHELF EXPANSION [HELD FIXED] : 0.000 (MM) ,O. 0000 (IN) MID-TRANSITION TEMPERATURE: 19.6 (DEG C) ,67.3 (DEG F) TRANSITION ZONE WIDTH: 138.6 (C DEG),249.5 (F DEG) UPPER SHELF EXPANSION: 0.670 (MM),O.O264 (IN)

UPPER SHELF EXPANSION: 0.670 (MM) ,0.0264 (IN) NOTE: NONE MODEL SET NAME: 8

0.030

0.025

CI

0.020 f - z E:

0.015 g < Q x LJ

0.010

0.005

a-ooo

NUREGER-6379 D-16

SOURCE: A5081100.T3 ANALYSIS SET

120 I I 1 1 1 1 I 1 1

A508, QUENCHED+i 1 OOF, TYPE 3 1 n 100 - n

Y

8 0 - - z W 0 a: w & 6 0 [1: 4 W 5 4 0 - -

- -

20 - - 0 CHARPY DATA

MEAN IMPACT CURVE

I 1 I 0 -150 -106 -50 0 50 106 150 200 250 300

YVARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 42.7 (DEG C) ,108.8 (DEG F) TRANSITION ZONE WIDTH: 74.1 (C DEG),133.3 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [ 5 0 (PERCENT),50 (PERCENT) SHEAR]: 42.7 (DEG C),lO8.8 (DEG F) NOTE: NONE MODEL SET NAME: 9

350

D-I7 NUREGER-6379

il

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081100.T4

SET N?ME: A5081100.T4 NOTE: A508 QUENCHED+llOOF, TYPE 4

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

313A 313B 313C 313D 3 11F 3 11E 3 11D 33A 3 11C 33B 3 11B 33c 33D 33E 33F 3 1lA

-75 . 0 -50.0 -37 . 5 -25 . 0 -12 . 5 0.0 12.5 25.0 37.5 50.0 62.5 75.0 100.0 150.0 200.0 250.0

-103.0 -58.0 -35.5 -13.0 9.5 32.0 54.5 77.0 99.5 122.0 144.5 167.0 212.0 302.0 392.0 482 . 0

0.39 0.66 0.66 1.98 1.79 4.79 4.60 2.32 3.10 3.16 6.14 4.72 6.01 4.60 5.04 5.04

0.29 0.49 0.49 1.46 1.32 3.53 3.39 1.71 2.29 2.33 4.53 3.48 4.43 3.39 3.72 3.72

0.00 0.00 0.00 .0.05 0.03 0.36 0.36 0.13 0.15 0.25 0.46 0.30 0.53 0.41 0.41 0.48

0.000 0.000 0.000 0.002 0.001 0.014 0.014 0.005 0.006 0.010 0.018 0.012 0.021 0.016 0.016 0.019

0.0 0.0 0.0 5.0 5.0 60.0 85.0 40.0 45.0 55.0 100.0 85.0 100.0 100.0 100.0 100.0

~

NUMBER OF SPECIMENS: 16

NUREGlCR-6379 D-I 8

_-. . . ~ * . . . r :. :. < -.

SOURCE: A5081100.T4 ANALYSIS SET

6 -

5 -

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [Hns FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-7.0 (DEG C),19.4 (DEG F) TRANSITION ZONE WIDTH: 111.5 (C DEG),200.8 (F DEG) UPPER SHELF ENERGY: 5.1 (J),3.7 (FT-LB)

UPPER SHELF ENERGY: 5.1 (J) ,3.7 (FT-LB)

MODEL SET NAME: 2 NOTE: NONE

1 I I I I 1 1 1 - 5 A508. QUENCHED+l 1OOF. TYPE 4

O O

- 4 h * U U

7

0

> 0 a

2 -

0 CHARPY DATA MEAN IMPACT CURVE

1 I 1 I 1 -150 -100 -50 0 50 100 150 200 2% 300

D-19

- E

k - 3 L

>- <3 E

Lrl - 2 Y

- 1

- 0 350

NUREG/CR-6379

SOURCE: A5081100,T4 ANALYSIS SET

Y VARIABLE: MPANSION MODEL PARAMETERS

Mlww SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: 22.5 (DEG C),72.5 (DEG F) TRANSITION ZONE WIDTH: 127.0 (C DEG),228,6 (F DEG) UPPER SHELF EXPANSION: 0,451 (MM),O.O178 (IN)

UPPER SHELF EXPANSION: 0.451 (MM) ,0.0178 (IN) NOTE: NONE MODEL SET NAME: 1

TEMPERATURE PFI -200 -100 0 100 200 300 400 SO0 600

0 .6

0.5

0.4 E Y

z

(IJ z Q

$I 0.3

25 0.2

a

0. 1

I 1 1 1 1 1 1 1 1 A508, QUENCHED+ll OOF, TYPE A

'0

0 0

0 0

I 0 CHARPY DATA 1 - MEAN IMPACT CURVE]

0.020

0.015 p z - z z x w

0.010 2

0.005

/ O * v 1 1 I I 1 1 0.000 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCi

NUREGER-6379 D-20

SOURCE: A5081100.T4 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 19.8 (DEG C) ,67.7 (DEG F) TRANSITION ZONE WIDTH: 111.0 (C DEG),199.8 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE 150 (PERCENT) ,50 (PERCENT) SHEAR]: 19.8 (DEG C) ,67.7 (DEG F) NOTE: NONE MODEL SET NAME: 0

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600

120

100

A I- 80 z W 0 6 B 60 rr 4 W

40

20

1 A508, QUENCHED+ 1 1 OOF, TYPE 4 {

0 CHARPY DATA - MEAN IMPACT CURVE

1 1 I I 1 I 0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

D-21 NUREGKR-6379

I

J .' 1 I

i I j

I !

I i

i

I I , <

APPENDIX E

A 508, QUENCHED AND TEMPERED AT 677°C

.I

E-1 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 508-1250.F

SET NAME: 508-1250.F NOTE: A508, QUENCHED & TEMPERED @ 1250 F

TEMPERATURE ENERGY EXPANSION IDENT (DEG C) (DEG F) (J) (FT-rn) (MM) (IN)

SHEAR (PERCENT)

5SC-20 10.0 5SC-8 23.0 5SC-16 38.0 5SC-22 38.0 5SC-14 43.0 5SC-10 66.0 5SC-18 93.0 5SC-12 121.0

50.0 73.4 100.4 100.4 109.4 150 . 8 199.4 249.8

32.00 45.00 71.00 77 . 00 99.00 99 . 00 111.00 122.00

23.60 33.19 52.37 56.79 73.02 73 . 02 81.87 89.98

0.43 0.64 1.04 1.19 1.45 1.45 1.68 1.68

0.017 0.025 0.041 0.047 0.057 0.057 0.066 0.066

5 .0 20.0 40.0 55.0 75.0 80.0 100.0 100.0

NUMBER O F SPECIMENS:

NUREGER-6379

8

E-2

ANALYSIS SET: 508-1250 .F

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED] : 2 . 7 (J) ,2.0 (FT-LB) MID-TRANSITION TEMPERATURE: 2 8 . 0 (DEG C) ,82.5 (DEG F) TRANSITION ZONE WIDTH: 6 0 . 7 (C DEG) , 1 0 9 . 2 ( F DEG) UPPER SHELF ENERGY: 115.8 ( J ) , 8 5 . 4 (FT-LB)

UPPER SHELF ENERGY: 115.8 (J) , 8 5 . 4 (FT-LB) TEMPERA= 1 4 1 (J) ,30.2 (FT-LB) ENERGY] : 17.9 (DEG C) ,64.2 (DEG F) T E M P E R A m [68 (J) ' 5 0 . 2 (FT-LB) ENERGY] : 3 2 . 8 (DEG C) , 9 1 . 0 (DEG F)

e

3 a o -

E >- a

z 60 w

40

20

0

TEMPERATURE (OF)

-200 -100 0 100 200 300 400 500 600

I ' I 1 I I 1 1 I ' 4 100

-

-

-

/ I I 1 I I I I I 0

lA508, QUENCHED+ 1250F. FULL-SIZE 1 0

- 0 CHARPY DATA

MEAN IMPACT CURVE

I - - -

c5

11 -660

e v

>- CD Ix LI

- 4 0

20 i NOTE: X 0 8 , QUENCHED & TEMPERED 0 1 2 5 0 F, FULL-SIZE MODEL SET NAME: 5 0 8 - 1 2 5 0 . F

E-3 NUREG/CR-6379

ANALYSIS SET: 508-1250.F .

Y VARIABLE: EXPANSION MODEL PARAMETERS LOmR SHELF EXPANSION [HELD FIXED] : 0.061 (MM) ,0.0024 (IN)

TRANSITION ZONE WIDTH: 51.1. (C DEG) ,92.0 (F DEG) UPPER SHELF EXPANSION: 1.654 (MM) ,0.0651 (IN)

MID-TRANSITION TEMPERATURE: 27.9 (DEG C),82.2 (DEG F)

UPPER SHELF EXPANSION: 1.654 (MM) ,0.0651 (IN) TEMPERATURE [0.89 (MM) ,0.035 (IN) EXPANSION] : 29.0 (DEG C) ,84.1 (DEG F)

1.75

1 I I 1 1 I 1 I

- 0.07 A 5 0 8 QUENCHED+ 1250F - ' O r )

NOTE: A508, QUENCHED+125,0F, FULL-SIZE MODEL SET NAME: 508-1250.53

-200 -100 0 100 200 300 400 500 600 2.00 I

1.50 - -

- Y

z 2 1.00 - - m Z

-

0.50 - -

0.25 0 CHARPY DATA - - MEAN IMPACT CURVE

1 I I 1 I -150 -100 -50 0 50 100 150 200 250 300 350

NU REGIC R-6379

0.06

0.05 v

z 0.04

z 4 IL

0.03 x W

0.02

0.01

0.00

E 4

._ . -* ,-+-

. .. ._

DATA SOURCE: ANALYSIS SET ANALYSIS SET: 508 1250.F Y VARIABLE: SHEAR- MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT) MID-TRANSITION TEMPERATURE: 37.5 (DEG C),99.5 (DEG F) TRANSITION ZONE WIDTH: 44.3 (C DEG),79.7 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR]: 37.5 (DEG C) ,99.5 (DEG F)

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 1 1 I I 1 1 1 1

I A508. QUENCHED+ 1 250F I 120

100

F 80

u 11: W & 60

U W

i5

a

40

20

D

9'" -

- cb

- 3

-

I 0 CHARPY DATA MEAN IMPACT CURVE

I I I 1 1 1 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE (DC)

REMARK: A508, QUENCHED+1250Ff FULL-SIZE MODEL SET NAME: 508-125O.FS

E-5 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME2 A5081250.Tl

SET NAME: A5081250.Tl NOTE: A508 QUENCHED+125OF, TYPE 1 SPEC.

IDENT (DEG C) (DEG F) (J) (FT-LB) TEMPERATURE ENERGY EXPANSION SHEAR

(MM) ( I N ) (PERCENT)

519C 519B 519D 519A 520A 59D 520B 52 OD 59c 520C 59B 57A 57B 57c 57D 59A

-125.0 -100.0 -87.5 -75.0 -62.5 -50.0 -37.5 -37.5 -25.0 -12.5 0.0 25.0 50.0 75.0 100.0 250.0

-193.0 -148.0 -125 . 5 -103.0 -80.5 -58.0 -35.5 -35.5 -13.0 9.5 32.0 77.0 122 . 0 167.0 212 . 0 482.0

1.06 4.12 7.44 5.79 3.54 10 . 14 1.59 13.21 19.17 12.41 24.91 18.43 30.26 26.90 23.86 23.81

0.78 3.04 5.49 4.27 2.61 7.48 1.17 9.74 14.14 9.15 18.37 13.59 22.32 19.84 17.60 17.56

0.00 0.00 0.18 0.08 0.03 0.28 0.00 0.56 0.69 0.43 0.81 0.64 0.86 0.79 0.94 0.76

0.000 0.000 0.007 0.003 0.001 0.011

0.022 0.027 0.017 0.032 0.025 0.034 0.031 0.037 0.030

0.000 ,

0 . 0 0 . 0 0.0 0.0 0.0 5.0 0.0 15.0 45.0 15.0 70.0 50.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 16

NUREGKR-6379 E-6

t

SOURCE: A5081250.Tl ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED] : 0.1 (J) ,0.1 (FT-LB) MID-TRANSITION TEMPERATURE:-28.7 (DEG C),-19.7 (DEG F) TRANSITION ZONE WIDTH: 114.9 (C DEG),206.9 (F DEG) UPPER SHELF ENERGY: 26.2 (J),19.4 (FT-LB)

UPPER SHELF ENERGY: 26.2 (J),19.4 (FT-LB) NOTE: A508, QLTENC€ED+125OF, TYPE 1 MODEL SET NAME: 7

35

30

25

A

2 20 > a 02

w 15

10

5

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 600

1 I 1 1 1 I 1 1 1 A508, QUENCHED+ 125OF, TYPE I

0

0% I 0 CHARPY DATA 1 MEAN IMPACT CURVE -

I I I 1 I 1 1 50 100 150 200 250 300

0

TEMPERATURE P C I

E-7

I I

I i i

NUREGER-6379 I

SOURCE: A5081250.Tl ANALYSIS SET

1.2 I 1 1 1 I 1 I I I

IA508, QUENCHED+i 250F, TYPE 1 -

1.0 - 0

0

- 0 0 - 0.8 - E Y

z 0 v) z a Q 5 0.4 -

H 0.6 - -

- 0 CHARPY DATA

0.2 - MEAN IMPACT CURVE

1 I I 1 1 1 0.0

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 ( M M . ) , O . O O O O (IN) MID-TRANSITION TEMPERATURE: -31.3 (DEG C) ,-24.4 (DEG F) TFUiNSITION ZONE WIDTH: 75.3 (C DEG),135.6 (F DEG) UPPER SHELF EXPANSION: 0.820 (MM) ,0.0323 (IN)

UPPER SHELF EXPANSION: 0.820 (MM) ,0.0323 .(IN) NOTE: A508, QUENCHED+125OF, TYPE 1 MODEL SET N m : 8

0.04

c.)

0.03 5 z

tn z

X W

- E

0.02 2

0.01

6-00

NUREGER-6379 E-8

SOURCE: A5081250,Tl ANALYSIS SET

Y VARUlBLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 2 . 8 (DEG C) , 37.0 (DEG F) TRANSITION ZONE WIDTH: 89.0 (C DEG),160.1 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT),50 (PERCENT) SHEAR]: 2.8 (DEG C) ,37.0 (DEG F) NOTE: NONE MODEL SET NAME: 0

TEMPERATURE [OF] -200 -100 0 100 200 300 400 500 6 0 0

120

100

80 z W 0

gj 60 5 U 4: W I ~n 40

20

IA608, QUENCHED+125OF, TYPE 1 1 n Y

0 f 0 CHARPY DATA

MEAN IMPACT CURVE

0 -150 -100 -50 0 50 100 150 200 250

TEMPERATURE PCl

E-9

300

!

350

NUREGKR-6379

SOURCE: ANALYSIS SET ANALYSIS SET N m : A5081250.T2

SET N m : A5081250.T2 NOTE: A508 QUENCHED+125OF, TYPE 2

TEMPERATURE ENESGY EXPANSION SHEAR IDENT . (DEG C) (DEG F) (J) (FT-LB) (IN) (PERCENT)

519D 59D 517A 59c 5 17B 59B 517C 59A

-62.5 -50.0 -37.5 -25 . 0 -12.5 0.0 12.5 25-0

-80 . 5 -58.0 -35.5 -13.0 9.5 32-0 54.5 77.0

~~ ~

519B -100.0 -148.0 0.99 519C -87.5 -125.5 0-39 519A -75 . 0 -103.0 0.60

3.53 3.34 4-42 5.38 6.85 6-4Q 7.78 6.28

0.73 0.29 0.44 2.60 2-46 3-26 3.97 5.05 4.72 5.74 4.63

0.00 0.00 0.00 0.18 0.15 0.25 0.30 0.48 0.46 0-53 0.38

0.000 0.000 0.000 0.007 0.006 0.010 0.012 0.03.9 0.018 0.021 0.015

0.0 0.0 0.0 10.0 10.0 10.0 60.0 100.0 80.0 100.0 70.0

517D 100 . 0 212." 6.21 4.58 0.46 0.018 100.0 513A 150.0 302.0 6.85 5.05 0.48 0.019 100.0

NTJMEER OF SPECIMENS: 13

NUREGER-6379 E-1 0

SOURCE: A5081250.T2 ANALYSIS SET

7 -

6 - CI

5 - 2 > a w 4 - z LI

3 -

2 -

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMPERATURE:-51.4 (DEG C) ,-60.5 (DEG F)

UPPER SHELF ENERGY: 6.8 (J),5.0 (FT-LB) TRANSITION ZONE WIDTH: 65.3 (C DEG),117.5 (F DEG)

UPPER SHELF ENERGY: 6.8 (J),5.0 (FT-LB)

MODEL SET NAME: 2 NOTE: NONE

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 BOO 600

91 1 1 1 I 1 I 1 1 i (A508, QUENCHED+i25OF, TYPE 21

0 i6

l t O L 0 CHARPY DATA - MEAN IMPACT CURVE

U - a I 1 I 1 1 I I IO -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE C'CI

E-1 I NUREGER-6379 . ! I

SOURCE: A5081250.T2 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED] : 0.000 (MM) ,O.OOOO (IN)

TRANSITION ZONE WIDTH: 58.6 (C DEG),105.5 (F DEG)' MID-TRANSITION TEMpERATURE:-41.4 (DEG C),-42-6 (DEG F)

UPPER SHELF EXPANSION: 0.474 (MM) , 0.0187 ( IN) UPPER SHELF EXPANSION: 0.474 (MM) ,0.0187 (IN) NOTE: NONE MODEL SET NAME: 1

0.6

0.5

0.4 E -

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 1 1 I 1 1 1 1 1

0 0.020

- 0.015 f -

z I ~ 5 0 8 . QUENCHED+ t 250~. TYPE 2 I z 2 a z X w

0 H 0.3 a z < a

- - o.aio 2

- 0.005 0.1 -

0 CHARPY DATA - MEAN IMPACT CURVE

1 I 1 I I I 1 0.000 -150 - f00 -50 0 50 t Q O t50 200 250 300 350

TEMPERATURE PC}

NUREGKR-6379 E-1 2

SOURCE: A5081250.T2 ANALYSIS SET

100

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATuRE:-27.2 (DEG C),-16.9 (DEG F) TRANSITION ZONE WIDTH: 20.2 (C DEG),36.3 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE 150 (PERCENT) ,50 (PERCENT) SHEAR]:-27.2 (DEG C) ,-16.9 (DEG F) NOTE: NONE MODEL SET NAME: 21 DESTINATION FILE NAME: 10 DESTINATION DIRECTORY PATH: C:\USER\ FILE NAME: 21 MODEL VARIABLES SAVED

1 1 1 I 1 I 1 I I

ASOB, QUENCHED+125QFt TYPE 2 I - h rn

Y v

i.= 8 0 - z W 0

& 60 E 4 w I

5

U) 40

20

-

-

-

0

0

00

- 0 CHARPY DATA - MEAN IMPACT CURVE

0 1 I I 1 1 1 1 1 -150 -100 -50 -0 50 100 150 200 250 300 350

TEMPERATURE PCl

E-I 3 NUREGER-6379

: I

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081250.T3

SET NAME: A5081250.T3 NOTE: A508 QUENCREDfl250F, SPECIMEN TYPE 3

IDENT (DEG C) (DEG F) (J) (FT-LB) TEMPERATURE ENERGY SHEAR

(PERCENT)

513D 513C 515A 517B 515B 515C 515D 517A 51lA 513B 513A 511D 511B 517C 511C

-125.0 -100.0 -87.5 -87.5 -75.0 -62.5 -50 . 0 -37.5 -25.0 0.0 25.0 50.0

' 100.0 150 . 0 200.0

-193 . 0 -148.0 -125.5 -125 . 5 -103.0 -80 . 5 -58 . 0 -35.5 -13.0 32.0 77.0 122.0 212.0 302.0 392.0

0.68 ,

2.44 6.78 2.71 5.97 6.78 9.90 8.95 11.39 12.34 12.88 15 . 32 17.63 16 . 27 18.30

0.50

5.00 2.00 4.40 5.00 7.30 6.60 8.40 9.10 9.50 11.30 13.00 12.00 13.50

1.80 0.00 0.00 0.15 0.00 0.15 0.25 0.38 0.38 0.48 0.56 0 .I61 0.66 0.79 0.86 0.86

0.000 0.000 0.006 0.000 0.006 0.010 0.015 0.015 0.019 0.022 0.024 0.026 0.031 0.034 0.034

0 . 0 0.0 0.0 0.0 5.0 5.0 5.0 5.0 35.0 40.0 70.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 15

NUREGKR-6379 E-14

SOURCE: A5081250.T3 ANALYSIS SET

22.5

20.0

17.5

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J) ,0.1 (FT-LB) MID-TRANSITION TEMPERATURE:-44.2 (DEG C),-47.5 (DEG F) TRANSITION ZONE WIDTH: 165.3 (C DEG) ,297.6 (F DEG) UPPER SHELF ENERGY: 17.2 (J),12.7 (FT-LB)

UPPER SHELF ENERGY: 17.2 (J),12.7 (FT-LB)

MODEL SET NAME: 3 NOTE: NONE

I I 1 1 I 1 1 1 1

- 15.0 A508, QUENCHED+t 250F, TYPE 3 - 1 0 - 0 - 125

-200 -100 0 100 200 300 400 500 600

0 15.0 -

- A

2 12.5 - >

-

-

- 0 CHARPY DATA

MEAN IMPACT CURVE

I 1 1 1 1 I I 1 ~

0 1 0.0

-150 -100 -50 0 50 100 150 200 250 300 350

E-I 5

CI e 10.0 I Cl 4; > W z W

7.5 2

5.0

2.5

0.0

NUREGER-6379

SOURCE: A5081250.T3 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: -29.3 (DEG C) , -20.7 (DEG F) TRANSITION ZONE WIDTH: 136.3 (C DEG),245.3 (F DEG) UPPER SHELF EXPANSION: 0.815 (MM),O.O321 (IN)

UPPER SHELF EXPANSION: 0.815 (MM),O.O321 (IN) NOTE: NONE MODEL SET NAME: 4

1 .o

0.8

- E ,E 0.6

0.2

TEMPERATURE C‘FI -200 -100 0 I ’ 100 200 300 400 500 600

1 1 I I 1 1 1 1 1 I I A508, QUENCHED+ 125OF, TYPE 3 I

9”

0 0

0.030

c)

0.025 f - z 0

z a 0.015 x W

6.020 2

0.010

I 0 CHARPY DATA 0.005 MEAN IMPACT CURVE

I I 1 1 1 I I 1 6.600 / &

0.6 -150 -100 -50 0 50 160 150 200 250 300 350

TEMPERATURE C‘CI

NUREGER-6379 E-1 6

SOURCE: A5081250.T3 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 3.2 (DEG C) ,37.8 (DEG F) TRANSITION ZONE WIDTH: 83.6 (C DEG),150.5 (F DEG) UPPER SHELF SHEAR [HELD FIXED] : 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] : 3.2 (DEG C) ,37.8 (DEG F) NOTE: NONE MODEL SET NAME: 5

120

too

i2 80 z W i J

6 60

II: 4 W I u) 40

20

TEMPERATURE PFJ -200 -100 0 100 200 300 400 500 600

1 I 1 1 1 . I I . I 1

1 AS08, QUENCHED+ 1250F, TYPE 3 [

0 / / I 0 CHARPY DATA 1

I MEAN IMPACT CURVE^ 0 -is0 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

I I 1 1 I 1 1

E-1 7 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAMES: TSP125T4 AND TSP125T4.Fm.l

SET NAME: TSP125T4 NOTE: SUB-SIZE CORRELATION PROG., TSP 1250 DEG. F/4 Horns, TYPE 4 ‘

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (m--) (MM) (IN) (PERCENT)

57E 57F 57D 511A 57c 5 11B 57b 511C 57A 511D 511E 511F 515A

-75.0 -62.5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 37.5 50.0 100.0 200.0

-103.0 -80.5 -58.0 -35.5 -13.0 9.5 32.0 54.5 77.0 99.5 122 . 0 212.0 392.0

1.13 0.39 1.19 3.88 3.69 4.08 3.62 6.59 6.78 6.26 6.33 5.95 5.88

0.83 0.29 0.88 2.86 2.72 3.01 2.67 4.86 5.00 4.62 4.67 4.39 4.34

0.00 0.00 0.00 ‘0.30 0.36 0.33 0.28 0.53 0.61 0.53 0.56 0.46 0.56

0.000 0.000 0.000 0.012 0.014 0.013 0.011 0.021 0.024 0.021 0.022 0.018 0.022

0 . 0 0.0 0.0 30.0 70.0 40.0 40.0 . 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 13

SET NAME: TSP125T4.FDL NOTE: NONE

IDENT (DEG C) (DEG F) (J) (FT-W (m) (IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

515D -50.0 -58.0 0.90 0.66 0.00 0.000 0.0 515C -25.0 -13.0 1.70 1.25 0.03 0.001 0.0 515E -12.5 9.5 0.30 0.22 0.00 0.000 0.0 515B 50.0 122 . 0 6.40 4.72 0.58 0.023 100.0 515F , 100.0 212.0 6.40 4.72 0.51 0.020 100.0 ~

NUMBER OF SPECIMENS: 5

NUREGER-6379 E-1 8

0

7

6

- 5 a

a

W 3

> a 4 W z

2

1

TEMPERATURE (5) -200 -100 0 100 200 300 400 500 600

1 1 1 1 1 1 1 1 1

1 A508, QUENCHED+ 125OF, TYPE 4 1

0

I 0 CHARPY DATA 1 MEAN IMPACT CURVE

1 1 I 1 1 1 0 --- -_ .__ 0 50 100 159 200

TEMPERATURE e C 1

E-1 9

250 300 33u

NUREGER-6379

SOURCE: TSP125T4 AND TSP125T4.m ANALYSIS SETS

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM) ,O.OOOO (IN) MID-TRANSITION TEMPERATURE: -9.6 (DEG C) ,14.7 (DEG F) TRANSITION ZONE WIDTH: 64.9 (C DEG) ,116.7 (F DEG) UPPER SHELF EXPANSION: 0.557 (MM),O.O219 (IN)

UPPER SHELF EXPANSION: 0.557 (MM) ,0.0219 (IN) NOTE: NONE MODEL SET NAME: 2

0.5

z E

25

E - 0.4 z

u) 5 0.3 n

0.2

0.1

TEMPERATURE PF) -200 -100 0 100 200 300 400 BOO 600

0.7 I 1 1 1 1 1 1 I 1 I I

-

-

-

-

-

0

0

A508, QUENCHED+ 125OF, TYPE 4 0 .6 1 I oo3&] 0-025

0.020 - S

z 0.015 0 H

- -

U L

0.010

0.005 0 CHARPY DATA

MEAN IMPACT CURVE - I o 1 I I 1 1 1 1 6.0 I Q.000

-150 -100 -50 0 50 100 150 200 250 300 350 TEMPERATURE P C I

NUREGKR-6379 E-20

- . ,I .-- . - A . . . .

SOURCE: TSP125T4 AND TSP125T4.mTL ANALYSIS SETS

Y VARIABLE: SaEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-4.4 (DEG C) ,24.1 (DEG F) TRANSITION ZONE WIDTH: 54.7 (C DEG) ,98.5 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] :-4.4 (DEG C) ,24.1 (DEG F) NOTE: NONE MODEL SET NAME: 3

20

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

120 I 1 1 I I . 1 1 1 1

- 0 CHARPY DATA

MEAN IMPACT CURVE -

1 IAS08, QUENCHED+125OF, TYPE 4 I

loo t 60

K U W I ~n 40

n n v

E-21

0

NUREGICR-6379

il 1

* j 1 i j 4 ! i

i 1 I i !

E

i i

I

I 1

I

t I i i i I !

I

I

i I

APPENDIX F

i i i I i i I i I

I I

i i

!

,i

i i

- 1

A 508, QUENCHED AND TEMPERED AT 704°C

F-1 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 508-1300.F

-46.0 -18 . 0 -18.0

4.4 16.0 23.0 66.0 121.0

-50.8 -0.4 -0.4

39.9 60.8 73.4 150.8 249 . 8

SET NAME: 508-1300.F NOTE: A508, QUENCHED & TEMPERED @ 1300 F

EXPANSION SHEAR TEMPERATURE ENERGY IDENT (DEG C) (DEG F) (J) (FT-W (MM) (IN) (PERCENT)

6SC-20 6SC-18 6SC-10 6SC-16 6SC-22 6SC-8 6SC-12 6SC-14

29.00 68.00 58.00 58.00 100 . 00 106.00 152.00 153.00

21.39 0.38 50.15 0.99 42.78 0.58 42.78 0.84 73.76 1.37 78.18 1.50

112.85 1.92 112.11 2.06

0.015 0.039 0.023 0.033 0 . 054 0.059 0.081 0.076

0.0 15.0 5.0 25.0 40.0 50.0 100.0 100.0

~~

NUMBER OF SPECIMENS: 8

NUREGER-6379 F-2

ANALYSIS SET: 508-1300.F

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED] : 2.7 ( J ) , 2 . 0 (FT-LB)

TRANSITION ZONE WIDTH: 129.5 (C DEG) ,233 .1 (F DEG) MID-TRANSITION TEMPERATURE: 5 . 7 (DEG C) ,42.2 (DEG F)

UPPER SHELF ENERGY: 163.5 ( J ) , 120 .6 (FT-LB) UPPER SHELF ENERGY: 163.5 ( J ) , 120 .6 (FT-LB) TEMPERATURE [41 (J) ,30.2 (FT-LB) ENERGY] :-32.0 (DEG C ) ,-25 TEMPERaTURE [68 (J) ,50.2 (FT-LB) ENERGY] : -6.6 (DEG C) ,20.0

175 , 1 1 I 1 I 1 1 1 -

150 - -

125 - c. 7 - io0 > a E

W

-

- 50 -

- 0 CHARPY DATA

MEAtl IMPACT CURVE

I I I I -150 -100 -50 0 5 0 100 150 200 250 300 350

6 (DEG F) (DEG F)

120

101)

h

- a o 11 I L, e v

-60 5 E w z W

40

20

0

TEMPERATURE PF)

NOTE: A508, QUENCHED & TEMPERED @ 1300 F, FUU-SIZE MODEL SET NAME: 508-1300.F

F-3 NUREGKR-6379

ANALYSIS SET: 508-1300.F

Y VARIABLE: EXPANSION MODEL PARAMETERS LOmR SHELF EXPANSION [HELD FIXED] : 0.061 (MM) 0.0024 (IN)

TRANSITION ZONE WIDTH: 106.6 (C DEG) 191.9 (F DEG) UPPER SHELF EXPANSION: 2.064 (MM) 0.0812 (IN)

MID-TRANSITION TEMPERATURE: 1.5 (DEG C) ,34-8 .(DEG F)

UPPER SHELF EXPANSION: 2.064 (MM) 0.0812 (IN) TEMPERATURE [O. 89 (MM) , 0'. 035 (IN) EXPANSION] : -7.7 (DEG C) 18.1 (DEG F)

I I I I I I I I 0.0

2.5

0.00

2. Q

^E ,E 1.5 Z 2 VJ Z 2 1.0 X W

0.5

TEMPERATURE {OF) -200 -100 0 100 200 3 Q O 400 500 600

I I I I I 1 I 1 I

I A 5 0 8 QUENCHED+ 1300F 1

0 CHARPY DATA MEAN IMPACT CURVE

0.08

CI I=

0.06 =

0.02

NOTE: A508, QUENCHED+1300Ff YL-SIZE MODEL SET NAME: 508-1300.FE

NU REG/C R-6379 F-4

DATA SOURCE: AN&YSIS SET ANALYSIS SET: 508 1300.F Y VARIABLE: S m - MODEL PARAMETERS LOWER SHELF SHFAR [HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE: 21.8 (DEG C),71.2 (DEG F) TRANSITION ZONE WIDTH: 62.8 (C DEG),113 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT),SO (PERCENT) SHEAR]: 21.8 (DEG C),71.2 (DEG F)

t 20

100

K 4 Lrl I v) 40

20

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

I 1 1 1 1 1 1 1 1 I I A508. QUENCHED+l300F 1

0 CHARPY DATA - MEAN IMPACT CURVE

0 -150 -100 -50 0 50 100 150 200 250 300 350

1 1 1 1 1 1 1 I TEMPERATURE (DC)

REMARK: A508, QUENCHED+13OOF, FULL-SIZE MODEL SET NAME: 508-1300.FS

F-5 NUREGICR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081300.Tl

SET NAME: A5081300.Tl NOTE: A508 QUENCHED+13OOF, TYPE 1 SPEC.

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MI (IN) (PERCENT)

611C 611B 611D 61lA 616A 69D 616B 616C 616D 620D 69C 620A 69B 69A 620C 620B

-137.5 -125.0 -112 . 5 -100.0 -87.5 -75.0 -62.5 -50.0 -37.5 -37 . 5 -25.0 -12.5 0.0 25.0 75.0 150.0

-215.5 -193.0 -170.5 -148.0 -125.5 -103.0 -80.5 -58.0 -35.5 -35.5 -13.0 9.5 32.0 77.0 167.0 302.0

0.46 1.84 4.77 5.84 2.05 8.13 27.01 23.92 3.61 19.25 36.28 34.49 33.90 37.65 36.74 34.25

0.34 1.36 3.52 4.31 1.51 6.00 19.92 17.64 2.66 14.20 26.76 25.44 25.00 27.77 27.10 25.26

0.00 0.00 0.08 0.13 0.00 0.20 0.89 1.04 0.23 0.76 1.02 1.02 0.99 0.91 0.97 0.91

0.000 0.000 0.003 0.005 0.000 0.008 0.035 0.041 0.009 0.030 0.040 0.040 0.039 0.036 0.038 0.036

0 . 0 0 . 0 0 .0 0 .0 0 . 0 0.0 50.0 50.0 10.0 45.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 16

NUREGER-6379 F-6

SOURCE: A5081300.Tl ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 ( J ) , O . l (MI-LB) MID-TRANSITION TEMPERATURE:-50.9 (DEG C) ,-59.5 (DEG F) TRANSITION ZONE WIDTH: 101.5 (C DEG),182.6 (F DEG) UPPER SHELF ENERGY: 37-3 (J),27.5 (FT-LB)

UPPER SHELF ENERGY: 37.3 (J) ,27.5 (FT-LB) NOTE: A508, QUENCHED+1300F, TYPE 1 MODEL SET NAME: 4

TEMPERATURE (OF1 -300 -200 -100 0 100 200 300 400 800 600

45 , 1 1 1 1 1 1 1 1 1

lA508, QUENCHEDt1300F, TYPE 1 I 40 L 35 - 30 - - 25 - a

a > 0

g 20 -

w 15 - to -

0 CHARPY DATA MEAN SMPAtT CURVE

V 0 1 I 1 1 1 I 1 1 -200 -150 -io0 -50 o 50 iao 150 200 250 300

TEMPERATURE [OC)

F-7

30

25

CI

fl 20 I

t cl

>

w z W

16

10

!!i

0 3

N UR EG/C R-6379

SOURCE: A5081300.Tl ANALYSIS SET

1.2

1.0

- E 0.8 E Y

z 0 I+ 0.6 u) z -x a 15 9.4

0.2

0.0

Y VARIABLE: EXPANSION TANH REGRESSION DIVERGING TANH REGRESSION DIVERGING MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN)

UPPER SHELF EXPANSION [HELD FIXED]: 0.960 (MM),0.0378 (IN)

MID-TRANSITION TEMPERATURE:-70.8 (DEG C) ,-95.4 (DEG F) TRANSITION ZONE WIDTH: 12.9 (C DEG),23.2 (F DEG)

UPPER SHELF EXPA?TSION: 0.960 (MM),O.O378 (IN) NOTE: A508, QUENCHEI)+13OOF, TYPE 1 MODEL SET NAME: 5

-300 -200 -100 0 100 200 300 400 500 600 1 I 1 1 1 I 1 1 1 1

I A S 0 8 . QUENCHED+lSOOF, TYPE 1 I 0 O0O - 0.04 -

n - 0 0

- - 0.03 z - 0

z : - z

x - W

- 0.02 2

- 0.01 - 0 O 0 CHARPY DATA - MEAN IMPACT CURVE 0

0 1,- I 1 1 1 1 1 1 1 I 0.00

NUREGlCR-6379 F-8

SOURCE: A5081300.Tl ANALYSIS SET

120

100

iz 8 0 - z W 0

5 60

CK 4 w 5 4 0 -

20

0

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-41.0 (DEG C) ,-41.8 (DEG F) TRANSITION ZONE WIDTH: 60.9 (C DEG),109.7 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT),50 (PERCENT) SHEAR]:-41.0 (DEG C),-41.8 (DEG F) NOTE: A508, QUENCHED+13OOF, TYPE 1 MODEL SET NAME: 6

-300 -200 -100 0 100 200 300 400 BOO 600 , I I I I 1 I 1 1 I

IA5081 QUENCHED+1300Fl TYPE 1 I n - r\ u v

-

- -

-

- - 0 CHARPY DATA - MEAN IMPACT CURVE

I, I 1 1 1 1 I

F-9 NUREGKR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081300.T2

SET NAME: A5081300.T2 NOTE: A508 QUENCHED+13OOF, TYPE 2

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (IN) (PERCENT)

615B 615C 641B 615A 615D 611D 617A 611C 617B 611B 617C 611A 6 17D 641A

-100 . 0 -87.5 -87.5 -75.0 -62.5 -50.0 -37.5 -25 . 0 -12.5 0.0 12.5 25.0 100.0 150.0

-148.0 -125.5 -125.5 -103.0 -80.5 -58.0 -35.5 -13.0 9.5 32.0 54.5 77.0 212.0 302.0

0.39 4.04 0.26 3.27 3.71 5.57 6.47 8.22 6.21 9.03 9.84 8.53 8.98 9.65

0.29 2-98 0.19 2.41 2.74 4.11 4.77 6.06 4.58 6.66 7.26 6.29 6.62 7.12

0.00 0.25 0.00 0-18 0-23 0.43 0.38 0.51 0.46 0.69 0.71 0.58 0.69 0.66

0.000 0.010 0.000 0,007 0.009 0.017 0.015 0.020 0.018 0.027 0.028 0.023 0,027 0.026

0.0 10.0 0.0 10.0 10.0 45.0 45.0 80.0 70.0 100.0 100.0 100.0 100.0 100.0

NUREGER-6379 F-10

SOURCE: A5081300.T2 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J) ,0.1 (FT-LB) MID-TRANSITION TEMPERATURE: -56.3 (DEG C) , -69 ..3 (DEG F) TRANSITION ZON33 WIDTH: 90.7 (C DEG) ,163.2 (F DEG) UPPER SHELF ENERGY: 9.3 (J),6.8 (FT-LB)

UPPER SHELF ENERGY: 9.3 (J) ,6.8 (FT-LB) NOTE: A508, QUENCHED+13OOF, TYPE 2 MODEL SET NAME: 9

12

10

8 A a > a 6 w z W

a

TEMPERATURE [OF) -200 -100 0 100 200 300 400 500 600

I 1 1 I 1 1 1 1 1 1 - I 8 IA508, QUENCHED+t 30OF, TYPE 2 I

0 0

0 CHARPY DATA MEAN IMPACT CURVE

I 1 I ! I 1 1 ' - 0 0 -156 -100 -50 0 50 160 150 260 250 300 356

TEMPERATURE {'Cl

F-11 NUREGICR-6379

SOURCE: A5081300.T2 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF FXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO MID-TRANSITION TEMPERATURE:-50.6 (DEG C),-59.0 (DEG F) TRANSITION ZONE WIDTH: 91.8 (C DEG),165.2 (F DEG) UPPER SHELF EXPANSION: 0.673 (MM),O.O265 (IN)

(IN)

UPPER SHELF EXPANSION: 0.673 (MM),0.0265 (IN) NOTE: A508, QUENCHED+13OOF, TYPE 2 MODEL SET NAME: 8

TEMPERATURE PFI -200 -100 0 I00 200 300 400 SO0 600

0.8 1 1 I 1 I 1 1 1 1 0.Q30

0.6 1 - E E 0.5 - Y

z 2 0.4 - v) z U b O-= -

0.2 -

0.f -

0.025

0.020 - z 0 i Y

IA508, QUENCHED+ 1300F. TYPE 2 1 1 0 . 0 1 5 g

U n . x w 0.010 i 0.005 0 CHARPY DATA

MEAN IMPACT CURVE - I I 1 I I I 1 1

0.006 0.6 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE, P C I

NUREGlCR-6379 F-I 2

. __--.- - - , I - . .. _ _ . . .. .

SOURCE: A5081300.T2 ANALYSIS SET

O A 1 I 1 I I I I I

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 62.7 (C DEG),112.9 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-39.2 (DEG C) ,-38.6 (DEG F)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE 150 (PERCENT) ,50 (PERCENT) SHEAR] :-39.2 (DEG C) ,-38.6 (DEG F) NOTE: A508, QUENCHED+1300F, TYPE 2 MODEL SET NAME: 7

120

100

e 4 W $J 40

20

TEMPERATURE en -200 -100 0 100 200 300 400 500 600

I I I 1 I . 1 1 1 1

A508, QUENCHED+ 131)OF, TYPE 2

- h n u Y

0 0 d 0 CHARPY DATA MEAN IMPACT CURVE -

F-13 NUREG/CR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081300.T3

SET NAME: A5081300.T3 NOTE: A508 QUENCHED+1300F, TYPE 3

IDENT (DEG C) (DEG F) (J) (FT-LB) (W (IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

613D 613C 613A 615A 613B 615B 615C 615D 617A 619B 617B 619A 617C 617D

-125.0 -100.0 -87.5 -87.5 -75.0 -62.5 -50.0 -37.5 -25.0 0.0 50.0 50.0 100.0 200.0

-193.0 -148.0 -125.5 -125.5 -103.0 -80.5 -58.0 -35.5 -13.0 32.0 122 . 0 122 . 0 212.0 392.0

0.95 3.12 0.81 9.76 10.98 12.47 9.49 11.80 16.'95 24.95 22.24 23.59 23.86 25.22

0.70 2.30 0.60 7.20 8.10 9.20 7.00 8.70 12.50 18.40 16.40 17.40 17.60 18.60

0.00 0.00 0.00 0.43 0.51 0.66 0.41 0.61 0.79 0.91 0.79 0.89 0.89 0.89

0.000 0.000 0.000 0.017 0.020 0.026 0.016 0.024 0.031 0.036 0.031 0.035 0.035 0.035

0.0 0.0 0.0 10.0 5.0 15.0 15.0 . 20.0 35.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 14

NUREGER-6379 F-14

-200 -100 0 100 200 300 400 500 600 1 1 1 1 I I 1 I I 30

I A508, QUENCHED+i 300F, TYPE 3 I - 25 - 0 0

0 -

- 20 - c) a - > 0 15 E W 2 W

- - - -

- 0 CHARPY DATA MEAN IMPACT CURVE

I 1 1 1 1

F-15

20.0

17-5

15.0 A

12.5 2 -P

I

Y

>

W z

10.0

7.5

5.0

2.5

0.0

NUREG/CR-6379

SOURCE: A5081300.T3 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWEX SHELF ENERGY [HELD FIXED): 0.1 (J) ,0.1 (FT-LB) MID-TRANSITION TEMPERATURE:-50.3 (DEG C) ,-58.5 (DEG F) TRANSITION ZONE WIDTH: 119.8 (C DEG),215.6 (F DEG) UPPER SHELF ENERGY: 24.6 (J),18.2 (FT-LB)

UPPER SHELF ENERGY: 24.6 (J),18.2 (FT-LB) NOTE: A508, QUENCHED+1300F, TYPE 3 MODEL SET NAME: 0

SOURCE: A!5081300.T3 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN)

TRANSITION ZONE WIDTH: 82.3 (C DEG) ,148.1 (F DEG) UPPER SHELF EXPANSION: 0.867 (MM),O.O341 (IN)

MID-TRANSITION TEMPEFUiTURE:-67.1 (DEG C) ,-88.8 (DEG F)

UPPER SHELF EXPANSION: 0.867 (MM),O.O341 (IN) NOTE: A508, QUENCHED+13OOF, TYPE 3 MODEL SET NAME: 1

1.2

1.0

- E 0.8 E Y

z

63 z 4 Q X w 0.4

0.6

0.2

TEMPERATURE [OF) -200 -100 ' 0 100 200 300 400 500 600

1 1 I I I I I I I I I A508, QUENCHED+ 1 300F, TYPE 3 I

- 4 0.04

0 7 0

- -- 1 z 0

z

x w

t; 0.02 2

0.0 1

I 0 CHARPY DATA MEAN IMPACT CURVE

/ & 1 I 1 1 1 1 I 1 I 0. 0

-150 - l Q Q -50 0 50 100 15Q 200 250 300 356- TEMPERATURE PCI

NUREG/CR-6379 F-16

b.00 _ _

SOURCE: A5081300.T3 ANALYSIS SET

100

F: a o -

a

z W 0

w & 60 II: 4 W $ 4 0 -

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR (HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMpERATURE:-22.2 (DEG C),-7.9 (DEG F) TRANSITION ZONE WIDTH: 42.8 (C DEG),77.1 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: A508, QUENCHED+1300F, TYPE 3 MODEL SET NAME: 2

TEMPERATURE (50 (PERCENT),sO (PERCENT) SHEAR]:-22.2 (DEG C),-7.9 (DEG F)

-

-

TEMPERATURE C'FI -200 -100 0 100 200 300 400 SO0 600

120 I 1 1 1 1 I 1 1 1 1

2o t

1 A508, QUENCHED+ 1300, TYPE 3 I n rn m Y v Y

-

-

- 0 CHARPY DATA

MEAN IMPACT CURVE - U

01 - A- 'I I 1 1 1 I I I -150 -100 -50 0 5 0 100 150 200 250 300 356

TEMPERATURE PCl

F-17 NUREG/CR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: A5081300.T4

SET NAME: A5081300.T4 NOTE: A508 QUENC!€IED+13OOF, TYPE 4

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (W (IN) (PERCENT)

67F 619A 67E 619B 64lA 67D 64- 619C 641C 67C 619D 67B 67A 619E 619F

-100.0 -87 5 -75.0 -62 . 5 -62.5 -50 0 -50 . 0 -37.5 -37.5 -25.0 -12 , 5

0.0 25.0 100.0 150.0

-148.0 -125.5 -103.0 -80.5 -80.5 -58.0 -58.0 -35.5 -35.5 -13 . 0

9.5 32.0 77.0 212.0 302.0

0.27 0.14 2.18 1.26 0.60 3.55 1.33 5.69 4.20 5.37 7.73 7.66 7 .61 6.97 7.16

0.20 0.10 1.61 0.93 0.44 2.62 0.98 4.20 3.10 3.96 5.70 5.65 5.61 5.14 5.28

0.00 0.00 0.13 0.00 0.00 0.28 0.05 0.46 0.33 0.46 0.61 0.61 0.61 0.66 0.74

0 ,000 0.000 0.005 0.000 0.000 0.011 ,

0.002 0.018 0 . 013 0 . 018 0.024 0.024 0.024 0.026 0.029

0.0 0.0 5.0 5.0 0.0 15.0 10.0 40.0 30.0 60.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 15

NUREGER-6379 F-18

- . ~ - . .. . . r . . - 1 . . ,-. ,

SOURCE: A5081300.T4 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMPERATURE:-42.8 (DEG C),-45.1 (DEG F) TRANSITION ZONE WIDTH: 46.0 (C DEG),82.8 (F DEG) UPPER SHELF ENERGY: 7.5 (J),5.5 (FT-LB)

UPPER SHELF ENERGY: 7.5 (J),5.5 (33-LB) NOTE: A508, QUENCHED+1300F, TYPE 4 MODEL SET NAME: 6

9

a

7

6 n

5 a a >- a

g 4 Lrl

3

2

1

TEMPERATURE PF1 -200 -100 0 100 200 300 400 BOO 600

I 1 I I 1 I I I I 1 - IA608, QUENCHED+ 1300F, TYPE 4 1 - l a

- - -

MEAN IMPACT CURVE

I I I 1 1 1 1 0

TEMPERATURE PC)

F-I 9 NUREGKR-6379

SOURCE: A5081300.T4 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE:-39.2 (DEG C) ,-38.6 (DEG F) TRANSITION ZONE WIDTH: 40.8 (C DEG),73.4 (F DEG) , ,

UPPER SHELF EXPANSION: 0.653 (MM) ,0.0257 (IN) UPPER SHELF EXPANSION: 0.653 (MM) ,0.0257 (IN) NOTE: A508, QUENCEfE1)+13OOF, TYPE 4 MODEL SET NAME: 5

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600

0.9 I 1 i 1 I 1 1 1 1 1 0.035

I 1,4508, QUENCHED+ i3OOF, TYPE 4 I 0.8

0 0.7 I 0.030 1

E 0.6 .

E E Y

0.5 .

((J Z 0.4 . U a 5 0.3 .

o-2

0.1

0.620 z

5 z 0.015 2

X W

0.010

0.005 0 CHARPY DATA MEAN IMPACT CURVE

I I 1 I 1 I 1 0.0 I -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PC}

NUREGER-6379 F-20

SOURCE: A!5081300.T4 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

fxlFJER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-31.7 (DEG C),-25,0 (DEG F) TRANSITION ZONE WIDTH: 35.2 (C DEG),63-4 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: NONE MODEL SET NAME: 4

TEMPERATURE [50 (PERCENT) ,SO (PERCENT) SHEAR] :-31.7 (DEG C) ,-25.0 (DEG F)

120

100

CI

I- 80 z W 0 a

60

n: 4 w I UJ 40

20

TEMPERATURE PO -200 -100 0 100 200 300 400 500 600

1 1 1 I 1 I 1. 1 I i

I I A508, QUENCHED+i 300, TYPE 4 I - n n

Y Y

0 CHARPY DATA - MEAN IMPACT CURVE I I

0 -150 -100 -50 0 5 0 100 150 200 250 300 350

TEMPERATURE PCl

- 1 1 1 1 I 1 1

F-21 NUREWCR-6379

APPENDIX G

HSST PLATE 02, QUARTER THICKNESS, TL ORIENTATION

G-1 NUREGiCR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 02-F

SET NAME: 02-F NOTE: PLATE 02 FULL-SIZE DATA

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (m) (IN) (PERCENT)

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 33 34 35 36 37 38 39 40 41 42

44 45 46 47 48 49 50 51 52 53

-4 3

-46.0 -18.0 -7.0 -7.0 -7.0 -7.0 -7 :o -7.0 -7.0 -7.0 -7.0 -7.0 10.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 38.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 93.0 121.0 149 . 0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 177.0 204.0 204.0

NUREGlCR-6379

-50.8 -0.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 50.0 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.8 69.8 100.4 150.8 150.8 150.8 150.8 150.8 150.8 150.8 150.8 150.8 150.8 150.8 199.4 249.8 300.2 300.2 300.2 300.2 300.2 300.2 300.2 300.2 300.2 300.2 300.2 350.6 399.2 399.2

10.20 31.20 21.70 24.40 27.10 27.10 29.80 32.50 33.90 35.90 36.60 40.70 52.90 52.90 55.60 56.90 58.30 58.30 62.40 67.80 69.20 70.50 78.90 80.70 107.10 108.50 111.20 112.30 112.50 113.90 122.00 127.40 127.40 130.20 130.30 139.60 141.00 130.20 132.90 132.90 135.60 138.30 138.30 139.60 143.70 143.70 149.10 151.90 145.10 127.40 130.20

7.52 23.01 16.01 18.00 19 . 99 19-99 21.98 23.97 25.00 26.48 27.00 30.02 39.02 39.02 41.01 41.97 43.00 43.00 46.02 50.01 51.04 52.00 58.19 59.52 78.99 80.03

82.83 82.98 84.01 89.98 93.97 93.97 96.03 96.11 102.97 104 . 00 96.03 98.02 98.02 100.01 102.01 102.01 102 . 97 105.99 105.99 109.97 112.04 107.02 93.97 96.03

82-02

G-2

UNKNOWN UNKNOWN 0.36 0.43 0.33 0.38 0.43 0.43 0.58 0.46 0.64 0.56 UNKNOWN 0.79 0.86 0.84 0.94 0.76 0.91 0.89 1.07 1.12 0.86 UNKNOWN 1.60 1.40 1.47 1.60 1.60 1.55 UNKNOWN 1.75 1.60 1.68 1.70 1.83 1.96 2.11 1.88 1.88 1.80 1.83 2.24 1.83 1.83 . 1.91 1.93 1.70 2.11 2.06 1.78

0.014 0.017 0.013 0.015 0.017 0.017 0.023 0.018 0.025 0.022

0.031 0.034 0.033 0.037 0.030 0.036 0.035 0.042 0.044 0.034

0.063 0.055 0.058 0.063 0.063 0.061

0.069 0.063 0.066 0.067 0.072 0.077 0.083 0.074 0.074 0.071 0.072 0.088 0.072 0.072 0.075 0.076 0.067 0.083 0.081 0.070

UNKNOWN UNKNOWN 30.0 20.0 20.0 20.0 20.0 20.0 30.0 20.0 20.0 20.0 20.0 40.0 40.0 40.0 40.0 35.0 40.0 30.0 40.0 40.0 30.0 35.0 80.0 85.0 80.0 90.0 85.0 80.0 85.0 100.0 100.0 100.0 90.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

204.0 204.0 204.0 204.0 204.0 204.0 204.0 204.0 204.0 232.0 260.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0 288.0

399.2 399 . 2 399. 2 399.2 399.2 399.2 399.2 399.2 399.2 449.6 500.0 550.4 550.4 550.4 550.4 550.4 550.4 550.4 550.4 550.4 550.4 550.4

130.20 135.60 136.30 136.90 138.30 141.00 142.40 146.40 157.30 139.00 140.30 119.30 132 . 90 134.20 139-40 142.40 143.70 146.40 146.40 149.10 150.50 151.90

96.03 100.01 100.53 100.97 102 . 01 104.00 105 . 03 107.98 116 02 102 . 52 103 48 87.99 98.02 98 98 102.82 105 . 03 105.99 107.98 107 . 98 109- 97 111.00 112.04

1.75 2.01 1.80 1.80 1.47 2.01 2.11 1.93 1.75 2.01 2.06 1.78 1.78 1.73 UNKNOWN 1.83 1.60 1.91 2.01 2.11 UNKNOWN 1.78

0.069 0.079 0.071 0.071 0.058 0.079 0.083 0.076 0 . 069 0.079 0.081 0.070 0.070 0.068

0.072 0.063 0.075 0.079 0.083

0.070

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 UNKNOWN 100.0 100.0 100.0 100.0 100.0 UNKNOWN 100.0

NUMBER OF SPECIMENS: 73

G-3 NUREG/CR-6379

! I

SOURCE: 02-F ANALYSIS SET

Y VARIABLE: ENERGY CONFIDENCE INTERVALS: MEAN AND PREDICTED VALUE MODEL PARAWETERS LOWER SHELF ENERGY [HELD FIXED]: 2.7 (J ) ,2 .0 (FT-LB) MID-TRANSITION TEMPERATURE: 26.5 (DEG 'C) ,79.6 (DEG F) TRANSITION ZONE WIDTH: 98.2 (C DEG),176.7 (F DEG) UPPER SHELF ENERGY: 140.6 (J),103.7 (FT-LB)

CONFIDENCE INTERVAL ON MEAN

CONFIDENCE INTERVAL ON PREDICTED VALUE

UPPER SHELF ENERGY: 140.6 (J),103.7 (FT-LB)

95 PERCENT: 138 TO 143.2 (5),101.8 TO 105.6 (FT-LB)

95 PERCENT: 125 TO 156.3 (J),92.2 TO 115.3 (FT-LB) TEMPERATURE E41 (J),30.2 (FT-LB) ENERGY]: 3.0 (DEG C),37.4 (DEG F) CONFIDENCE INTERVAL ON MEAN

CONFIDENCE INTERVAL ON PREDICTED VALUE 95 PERCENT:-0.3 TO 6.1 (DEG C),31.4 TO 43 (DEG F)

95 PERCm:-13.7 TO 15.7 (DEG C),7.4 TO 60.3 (DEG F) TEMPERATURE E68 (J),50.2 (FT-LB) ENERGY]: 23.9 (DEG C),75.0 (DEG F) CONFIDENCE INTERVAL ON MEAN 95 PERCENT: 21.4 TO 26.4 (DEG C),70.4 TO 79.5 (DEG F)

CONFIDENCE INTERVAL ON PREDICTED VALUE 95 PERCENT: 12.2 TO 35.3 (DEG C),54 TO 95.5 (DEG F)

NOTE: HSST PLATE 02, TL ORIENTATION, 1/4 THICKNESS MODEL SET NAME: 7

NUREGER-6379

TEMPERATURE PCI

G-4

il

DATA SOURCE: ANALYSIS SET ANALYSIS SET: 02 F Y VARIABLE: S H M MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT) MID-TRANSITION TEMPERATURE: 29.4 (DEG C),85 (DEG F) TRANSITION ZONE WIDTH: 87.2 (C DEG),157 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] : 29.4 (DEG C) ,85 (DEG F)

TEMPERATURE PF) -200 -100 0 iao 200 300 400 500 600

120

100

80 z W u

60

U 4 W 2 40

20 0 CHARPY DATA

MEAN IMPACT CURVE

0 -150 - io0 -50 a 50 100 150 200 250 300 350

TEMPERATURE PC)

REMARK: PLATE 02 FULL-SIZE DATA MODEL SET NAME: 02.FS

G-5 NUREGER-6379

DATA SOURCE: ANALYSIS SET ANALYSIS SET: 02 F

MODEL PARAMETERS Y VARIABLE: EXPAZSION LOWER SHELF EXPANSION [HELD FIXED]: 0.061 (MM),0.0024 (IN) MID-TRANSITION TEMPERATURE: 24.8 (DEG C) ,76.6 (DEG F) TRANSITION ZONE WIDTH: 98.5 (C DEG),177.3 (F DEG) UPPER SHELF EXPANSION: 1.892 (MM) ,0.0745 (IN)

UPPER SHELF EXPANSION: 1.892 (MM),O.O745 (IN) TEMPERATURE c0.89 (MM),O.O35 (IN) EXPANSION]: 20.1 (DEG C),68.3 (DEG F)

TEMPERATURE (OF) -200 -100 0 100 200 300 400 500 600

I 1 1 1 1 I 1 1 0.0

2.5

2.0

7

E 1.5

z

CI) z

x w

2 1.0

0.5

0.00

0 HSST PLATE 02. FULL-SIZE

0 O O

O O Q 3

0

0 CHARPY DATA MEAN IMPACT CURVE

0.08

0.04

0.02

REMARK: PLATE 02 FULL-SIZE DATA MODEL SET NAME: 02.FE

NUREGER-6379 G-6

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 02-Tl

NOTE: SUB-SIZE CORRELATION PROGRAM - HSST 02 - SPECIMEN TYPE 1 SET NAME: 02 T1

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-W (m) (IN) (PERCENT)

0251 0240 0239 0238 0237 023 6 0235 0234 0233 0252 0253 0254 0258 0255 0256 0257

-100.0 -87.5 -75.0 -62.5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 37.5 75.0 100.0 150.0 200.0

-148.0 -125.5 -103.0 -80.5 -58.0 -35.5 -13.0 9.5 32.0 54.5 77.0 99.5 167.0 212.0 302.0 392.0

0.27 0.81 1.36 1.63 5.02 3.80 8.81 10.85 9.36 10.58 20.07 21.42 32.00 24.95 28.61 28.88

0.20 0.60 1.00 1.20 3.70 2.80 6.50 8.00 6.90 7.80 14.80 15.80 23.60 18.40 21.10 21.30

0.00 0.00 0.00 0.00 0.15 0.10 0.36 0.48 0.46 0.46 0.76 0.91 1.02 0.97 0.94 0.99

0.000 0.000 0.000 0.000 0.006 0.004 0.014 0.019 0.018 0.018 0.030 0.036 0.040 0.038 0.037 0.039

0.0 0.0 0.0 5.0 5.0 5.0 15.0 25.0 25.0 35.0 65.0 80.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 16

G-7 NUREGER-6379

SOURCE: 02-Tl ANALYSIS SET

YVARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMPERATURE: 11.3 (DEG C) ,52.3 (DEG F) TRANSITION ZONE WIDTH: 111.4 (C DEG),200.4 (F DEG) UPPER SHELF ENERGY: 29.4 (J),21.7 (FT-LB)

UPPER SHELF ENERGY: 29.4 (J),21.7 (FT-LB) NOTE: NONE MODEL SET NAME: 2

40 1 1 1 1 1 I I 1 I

IHSST PLATE 02, TYPE 1 - 35 -

30 - 0 25

TEMPERATURE PC)

NUREGER-6379 'G-8

SOURCE: 02-Tl ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: -0.4 (DEG C) ,31.3 (DEG F) TRANSITION ZONE WIDTH: 94.3 (C DEG) ,169.7 (F DEG) UPPER SHELF EXPANSION: 0.994 (MM),O.O391 (IN)

UPPER SHELF EXPANSION: 0.994 (MM),O.O391 (IN) NOTE: NONE MODEL SET NAME: 3

TEMPERATURE C'FI -200 -100 0 100 200 300 400 BOO 600

1.2 I I 1 1 1 1 1 I I 1 I I IHSST PLATE 02, TYPE 1 I

1 .o

2 0.8 E Y

z

fn Z Q: a 5 0.4

0.6

0.2

I 0 CHARPY DATA MEAN IMPACT CURVE

1 I 1 1 I 1 I 6.00 -t50 -100 -50 0 50 100 150 20Q 250 300 350

TEMPERATURE PCI

G-9 NUREGKR-6379

SOURCE: 02-Tl ANALYSIS SET

yvARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 74.1 (C DEG) ,133.3 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE: 16.3 '(DEG C),61.3 (DEG F)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 4

TEMPERATURE PFI -200 -100 0 100 200 SUO 400 500 600

I 1 1 I I 1 1 1 1 120

100

20

n

PLATE 02, TYPE 1 I n h v

- -

- -

-

- I 0 CHARPY DATA

MEAN IMPACT CURVE

1 1 1 1 1

-150 -100 -50 0 ' 5 0 100 150 200 250 300 350

' TEMPERATURE PCl

NU R EGER-6379 G-1 0

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 02-T2

SET NAME: 02 T2 NOTE: SW-SIZE CORRELATION PROGRAM - HSST PLATE 02 - TYPE 2 SPEC. IDENT (DEG C ) (DEG F) (J) (FT-W (W (IN) (PERCENT)

TEMPERATURE ENERGY EXPANSION SHEAR

0229 0228 0227 0231 0230 0232 0221 0222 0223 0224 0225 0226 0267 0269 0268

-87.5 -75.0 -62.5 -60.0 -58.0 -54.0 -50.0 -37.5 -25.0 -12.5 0.0 12.5 100.0 150.0 200.0

-125.5 -103.0 -80.5 -76.0 -72.4 -65 . 2 -58.0 -35.5 -13.0 9.5 32.0 54.5 212.0 302.0 392.0

0.14 0.14 0.68 3.80 1.63 3.53 4.20 4.61 6.24 3.80 7.05 5.97 7.32 7.73 6.78

0.10 0.10 0.50 2.80 1.20 2.60 3.10 3.40 4.60 2.80 5.20 4.40 5.40 5.70 5.00

0.00 0.00 0.00 0.30 0.05 0.20 0.28 0.25 0.43 0.25 0.51 0.41 0.56 0.61 0.64

0.000 0.000 0.000 0.012 0.002 0.008 0.011 0.010 0.017 0.010 0.020 0.016 0.022 0.024 0.025

0.0 0.0 5.0 20.0 10.0 15.0 20.0 15.0 45.0 40.0 85.0 90.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 15

G-I 1 NUREGER-6379

SOURCE: 02-T2 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWEX SHELF ENERGY [HELD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-50.2 (DEG C) ,-58.3 (DEG F) TRANSITION ZONE WIDTH: 53.7 (C DEG),96.6 (F DEG) UPPER SHELF ENERGY: 6.7 (J) ,4.9 (FT-LB)

UPPER SHELF ENERGY: 6.7 (J),4.9 (FT-LB)

MODEL SET NAME: 7 NOTE: NONE

-200 -100 0 100 200 300 400 500 600 9 i 1 1 i 1 I I 1 I

I HSST PLATE 02, TYPE 2 1 8 -

0 0

7 - 0

6 - c-)

5 - 2

a > a w 4 - z W

MEAN IMPACT CURVE

1 1 1 I 1 1

0 - 6

- 5

A

- 4 9

- 3 $

4

> w z w

tz

- 2

- 1

0

NUREGER-6379 G-12

MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPEZATURE:-29.2 (DEG C),-20.6 (DEG F) TRANSITION ZONE WIDTH: 105.3 (C DEG),189.5 (F DEG) UPPER SHELF EXPANSION: 0.590 (MM),O.O232 (IN)

UPPER SHELF EXPANSION: 0.590 (MM),O.O232 (IN) NOTE: NONE MODEL SET NAME: 6

0. Q

0.7

0.6

0.5

-z E Y

0.4 z

2 $ 0.3 a 5

0.2

0.1

1 I 1 1 I I 1 Q.000

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 1 1 I 1 1 1 1 1

IHSST 02, TYPE 21 0 0

0 CWRPY DATA MEAN IMPACT CURVE -

0.025

0.020

0.005

G-I3 NUREGKR-6379

SOURCE: 02-T2 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE:-17.7 (DEG C),O.l (DEG F) TRANSITION ZONE WIDTH: 69.9 (C DEG),125.9 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 5

120

100

U 4: W 5 40

20

0 -

NUREGER-6379

TEMPERATURE C'FI -200 -100 0 100 200 500 400 BOO 600

I 1 1 I 1 I I I 1

!PLATE 02. TYPE 2 I

0 CHARPY DATA MEAN IMPACT CURVE -

I I 1 1 I 1 1 50 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

G-14

SOURCE: ANALYSIS SET ANALYSIS SET NAMES: 02 - TYP3.NH AND 02 - TYP3.FH SET NAME: 02-mP3.NH NOTE: TYPE 3 SUB CVN, PLATE 02, FROM LOW HEIGHT 51.2 FT-LBS

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

02NB 02NJ 02NG 02MQ 02MS 02NF 02MZ 02NN 02MT 02NI 02NK 02Mu

-100.0 -75.0 -50.0 -37.5 -25.0 -12.5 0.0 25.0 50.0 100.0 150.0 200.0

-148.0 -103.0 -58.0 -35.5 -13.0 9.5 32.0 77.0 122.0 212.0 302.0 392.0

0.80 1.84 4.45 8.65 13.50 13.94 14.41 21.92 20.78 24.97 24.69 27.08

0.59 1.36 3.28 6.38 9.96 10.28 10.63 16.17 15.33 18.42 18.21 19.97

0.00 0.05 0.18 0.43 0.66 0.74 0.71 1.02 1.04 1.07 0.97 1-09

0.000 0.002 0.007 0.017 0.026 0.029 0.028 0.040 0.041 0.042 0.038 0.043

0.0 5.0 10.0 20.0 25.0 35.0 40.0 70.0 90.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 12

SET, NAME: 02-TYP3 .FH NOTE: TYPE 3 SUB CVN, PLATE 02, FROM FULL HEIGHT 300 FT-LBS

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

02NM -100.0 -148.0 0.89 0.66 0.00 0.000 0.0 02MR -75.0 -103.0 1.94 1.43 0.05 0.002 5.0 02NA -50.0 -58.0 4.60 3.39 0.18 0.007 10.0 02NE -37.5 -35.5 7.80 5.75 0.36 0.014 15.0 02Mw -25.0 -13.0 9.59 7.07 0.46 0.018 20.0 02NH -12.5 9.5 10.82 7.98 0.56 0.022 30.0 02MA 0.0 32.0 12.87 9.49 0.64 0.025 35.0 02NC 25.0 77.0 17.52 12.92 0.79 0.031 50.0 02m 50.0 122 * 0 22.80 16 - 82 0.94 0.037 . 65.0 02ND 100.0 212.0 24.87 18.34 0.97 0.038 99.0 02Mv 150.0 302.0 27.33 20.16 0.94 0.037 100.0

100.0 02MP 200.0 392.0 29.12 21.48 1.17

NUMBER OF SPECIMENS: 12

0.046

G-15 NUREGER-6379

SOURCE: 02-T3-14 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

MWER SHELF ENERGY [HELD FIXED] : 0.1 (J) ,o.i (FT-LB)

TRANSITION ZONE WIDTH: 132.3 (C DEG),238.2 (F DEG) MID-TRANSITION TEMPERATURE:-6.2 (DEG C) ,20.9 (DEG F) ,

UPPER SHELF ENERGY: 26.7 (J),19.7 (FT-LB) UPPER SHELF ENERGY: 26.7 (J),19.7 (FT-LB) NOTE: HSST PLATE 02, TYPE 3, 2.25 AND 5.5 M/S MODEL SET NAME: 8

35

30

25

CI

2 20 > 0 ac

W g 15

10

5

TEMPERATURE PF1 -200 -100 0 100 200 300 400 500 600

I 1 1 1 1 I 1 1 I,

IHSST PLATE 02, TYPE 31

0

0 CHARPY DATA MEAN IMPACT CURVE

1 1 1 I 1 1 0 -150 -100 -50 0 50 100 150 200 250 300

TEMPERATURE P o

NUREGER-6379 G-I6

25

20

c.

E

b 15

5

SOURCE: 02-T3-14 ANALYSIS SET

0.Q -150

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FXXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE:-22.8 (DEG C),-9.0 (DEG F) TRANSITION ZONE WIDTH: 90.4 (C DEG) ,162.7 (F DEG) UPPER SHELF EXPANSION: 1.026 (MM) ,0.0404 (IN)

UPPER SHELF EXPANSION: 1.026 (MM),0.0404 (IN) NOTE: NONE MODEL SET NAME: 9

U I 1 1 I 1 I 1 1 A 0.00 -100 -50 0 50 100 150 200 250 300 350

1.4

1.2

1.0 - E E Y 0.8 z

a 5 0.6 Q

E

5 0.4

0.2

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 SUO 600

1 I 1 1 1 I 1 1 1

IHSST PLATE 02, TYPE 31

0 0

n

i 0 CHARPY DATA

MEAN IMPACT CURVE

0.05

0.04

0.01

G-17 NUREG/CR-6379

SOURCE: 02-T3-14 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: 12.1 (DEG C),53.8 (DEG F) TRANSITION ZONE WIDTH: 117.7 (C DEG) ,211.8 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAHE: 0

120

100

'i;j 40

TEMPERATURE PF> -200 -100 0 100 200 300 400 500 600

1 i 1 1 1 I 1 I 1

[PLATE M. TYPE 3 I

2o t 0 CHARPY DATA - MEAN IMPACT CURVE

I 1 I I I I I -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE C'Cl

NUREGER-6379 G-i a

SOURCE: ANALYSIS SET ANALYSIS SET N=: 02-T4

SET NAME: 02-T4 NOTE: NONE

TEMPERATURE IDENT (DEG C) (DEG F)

SHEAR (PERCENT)

0261 0202 0201 0212 0203 0211 0204 0210 0205 0209 0206 0264 0207 0208 02C4 0262 0263 02C5 02C6

-87.5 -75.0 -73.3 -62.5 -50.0 -37.5 -25.0 -8.5 0.0 12.5 25.0 37.5 50.0 75.0 75.0 87.5 100.0 100.0 125.0

-125.5 -103.0 -100.0 -80.5 -58.0 -35.5 -13.0 16.7 32.0 54.5 77.0 99.5 122.0 167.0 167.0 189.5 212.0 212.0 257.0

0.00 0.00 0.27 0.41 0.81 1.90 2.44 3.12 4.61 5.56 5.29 5.83 5.83 5.83 7.73 5.97 5.83 6.64 6.33

0.00 0.00 0-20 0.30 0.60 1.40 1.80 2.30 3.40 4.10 3.90 4.30 4.30 4.30 5.70 4.40 4.30 4.90 4.67

~

0 .00 0 .00 0.00 0.00 0.03 0.18 0.25 0.38 0.46 0.58 0.43 0.64 0.66 0.61 0.64 0.58 0.64 0.58 0.61

~ ~~

0.000 0.000 0.000 0.000 0.001 0.007 0.010 0.015 0.018 0.023 0.017 0.025 0.026 0.024 0.025 0.023 0.025 0.023 0.024

0.0 0.0 5.0 5.0 10.0 10.0 20.0 40.0 50.0 75.0 90.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMEXS: 19

G-19 NUREGER-6379

SOURCE: 02-T4 ANALYSIS SET

9

8 -

7 -

YVARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-14.1 (DEG C),6.6 (DEG F) TRANSITION ZONE WIDTH: 74.7 (C DEG),134.5 (F DEG) UPPER SHELF ENERGY: 6.3 (J),4.7 (FT-LB)

UPPER SHELF ENERGY: 6.3 (J) ,4.7 (FT-LB) NOTE: NONE MODEL SET NAME: 3

1 I 1 1 1 I I 1 1

JHSST PLATE 02, TYPE 41 - 6

- 5 0

NUREGER-6379

v 6 - - 5 -

2 > a a

W

3 -

2 -

MEAN IMPACT CURVE

I I I I -150 -100 -50 0 50 100 150 200 250 300 350

0

c5

- 4 ?

5

CI

>. k

- 3 0

z W

- 2

- 1

0

G-20

SOURCE: 02-T4 ANALYSIS SET

a 0 0 0 -

"00 "

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE:-17.8 (DEG C),O.O (DEG F) TRANSITION ZONE WIDTH: 62.9 (C DEG) ,113.3 (F DEG) UPPER SHELF EXPANSION: 0.611 (MM) , 0.0241 (IN)

UPPER SHELF EXPANSION: 0.611 (MM),O.O241 (IN) NOTE: NONE MODEL SET NAME: 2

0.025

0. B

0.7

0 .6

-€ E 0.5 Y

z

VI z U

0.4

0.2

0.1

TEMPERATURE OF1 -200 -100 0 100 200 300 400 BOO 600

0.030

- 1 1 1 1 1 1 1 1

I PLATE 02, TYPE 4 1

0 / p'

4 0.020 z - U Q X W

0.010

0.005 0 CHARPY DATA

MEAN IMPACT CURVE

I I I I ' 1 1 I 0.0 0.000 -150 -100 -50 0 50 100 I50 200 250 300 350

TEMPERATURE PCt

G-21 NUREG/CR-6379

4

1 i i

1

I i

I i

4 i i j

I

I i

!

i 3 1 I

SOURCE: 02-T4 ANALYSIS SET

YVARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 58.6 (C DEG),105.5 (F DEG) UPPER SHELF SHEAR [HELD FIXED] : 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-3.1 (DEG C) ,26.4 (DEG F)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 1

120

100

A

& 80 z W 0

& 60

[2: 4 W X

3

co 40

20

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 1 1 1 I 1 I 1 1 I PLATE 02, TYPE 4 I - n n

V " 1

- - 0 CHARPY DATA

MEAN IMPACT CURVE

P- I I 1 I I 1

NU REG/C R-6379

0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

.~ . - I. . . .

G-22

SOURCE: ANALYSIS SET ANALYSIS SET NAME: HSSTO2-T.3A

NOTE: HSST PLATE-02 TYPE 3 WITH A DEEPER THAN USUAL NOTCH, 0.065t1 SET NAME: HSSTO2 T.3A

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-W (MM) (IN) (PERCENT)

0215 0214 0213 0216 0248 0217 0218 0219 0220 0241 0242 0243 0244 0245 0247 0246

-87.5 -62.5 -50.0 -37.5 -37.5 -25.0 -12 . 5 0.0 25.0 50.0 62.5 76.0 87.5 100.0 150.0 200.0

-125.5 -80.5 -58.0 -35.5 -35.5 -13.0 9.5 32.0 77.0 122.0 144.5 168.8 189.5 212.0 302.0 392.0

0.54 0.81 1.90 5.15 4.20 5.97 7.59 8.41

10.98 14.51 14.37 13.29 10.85 13.02 12.88

11.39

0.40 0.60 1.40 3.80 3.10 4.40 5.60 6.20 8.40 8.10 10.70 10.60 9.80 8.00 9.60 9.50

0.00 0.00 0.03 0.25 0.15 0.30 0.36 0.41 0.64 0.51 0.71 0.69 0.64 0.58 0.69 0.76

0.000 0.000 0.001 0.010 0.006 0.012 0.014 0.016 0.025 0.020 0.028 0.027 0.025 0.023 0.027 0.030

0.0 5.0 10.0 2.0 25.0 30.0 45.0 55.0 80.0 90.0 100 . 0 100.0 100.0 100.0 100.0 100.0

~~

NUMBER OF SPECIMENS: 16

G-23 NUREGER-6379

SOURCE: HSSTOZ T.3A ANALYSIS SEX

Y VARIABLE: ENERGY MODEL PARAMETERS

-

LOWER SHELF ENERGY [RELD FIXED]: 0 . 1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-19.1 (DEG C),-2.4 (DEG F)

UPPER SHELF ENERGY: 13.0 (J),9.6 (FT-LB) TRANSITION ZONE WIDTH: 88.3 (C DEG) ,158.9 ( F DEG)

UPPER SHELF ENERGY: 1 3 . 0 (J),9.6 (FT-LB) NOTE: NONE MODEL SET NAME: 5

17.5

15.0

12.5

- 2 10.0 >- 0

W

W z 7.5

5.0

2.5

TEMPERATURE PF) -200 -100 0 100 200 300 400 500 600

1 1 I 1 1 I 1 1 1 i IHSST PLATE 02. TYPE 3. 1.7 MM THICKNESS I

0 A 9 - 8 -

I 4 k

- 6 z c W z u

- 4

- - 2 0 CHARPY DATA

MEAN IMPACT CURVE

1 1 I 1 1 I 1 I , 0.0

TEMPERATURE PCI

NUREGER-5379 G-24

SOURCE: HSSTO2 - T.3A ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN)

TRANSITION ZONE WIDTH: 80.5 (C BEG) ,144.9 (F DEG) UPPER SHELF EXPANSION: 0.665 (MM) ,0.0262 (IN)

MID-TRANSITION TEMPERATURE:-15.6 (DEG C),3.9 (DEG F)

UPPER SHELF EXPANSION: 0.665 (MM),0.0262 (IN) NOTE: NONE MODEL SET NAME: 4

i i I

I

1

1 i E

I

i i

! I

j

i i I

i i

!

I

i 1 I

j

I

i 0.9

0.8

0.7

G-25

I 1 I 1 I 1 1 1 0.035 - 1

PLATE 02, TYPE 3, 1.7 MM NOTCH I - I

- OO 0

0 - 0.030

NUREGKR-6379

0 - - 0 E 0.6 -

E - 0.5 - -

03 z 0.4 - -

- 0.2 -

0 CHARPY DATA - - MEAN IMPACT CURVE

1 I 1 I 1

0.023 - c 0.020 z

- - 2 z X W

0.015 2

0.010

0.005

0.000

SOURCE: HSSTOZ-T.3A ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-5.1 (DEG C),22.8 (DEG F) TRANSITION ZONE WIDTH: 80.3 (C.DEG),144.5 (F DEG)

UPPER SHELF SHEXR:' 100 (PERCENT) NOTE: NONE MODEL SET NAME: 3

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 6 0 0

120

PLATE 02, TYPE 3, 1 .7 HM NOTCH j 100

F 80 z W u

& 60

cr 4 LI I

5

. U) 40

20 0 CHARPY DATA

MEAN IMPACT CURVE

0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

NUREGlCR-6379 G-26

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 02-T3.lR

SET NAME: 02 T3.1R NOTE: HSST P ~ T E 02, TYPE 3, 0.8 MM NOTCH, 0.- ROOT RAD

IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) ( IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

02MT 02MS 02Mu 02MR 02Mv 02MQ 02Mw 02MA 02MB 02MO 02Mx 02m 02MP

-79.8 -51.8 -37.5 -25.8 -12.5 0.0 12.5 25.0 51.0 77.0 150.0 200.0 206.9

-111.6 -61.3 -35.5 -14.4 9.5 32.0 54.5 77.0 123.8 170.6 302.0 392.0 404.4

0.99 3.35 6.06 6.63 14.60 16.04 19.61 18.85 23.89 25.26 25.58 26.94 25.20

0.73 2.47 4.47 4.89 10.77 11.83 14.46 13.90 17.62 18.63 18.87 19.87 18.59

0.00 0.08 0.15 0.23 0.56 0.61 0.71 0.71 0.84 0.86 0.97 0.94 0.97

0.000 0.003 0.006 0.009 0.022 0.024 0.028 0.028 0.033 0.034 0.038 0.037 0.038

0 . 0 0.0 10.0 15.0 25.0 40.0 55.0 50.0 90.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 13

G-27 NUREGER-6379

SOURCE: 02-T3.m ANAIIYSIS SET

Y VARylBLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TR7U?SITION TEMPERATURE:-10.2 (DEG C) ,13.7 (DEG F) TRANSITION ZONE WIDTH: 91.1 (C DEG),163.9 (F DEG) UPPER SHELF ENERGY: 25.7 (J),18.9 (FT-LB)

UPPER SHELF ENERGY: 25.7 (J),18.9 (FT-LB)

MODEL SET NAME: 6 NOTE: NONE

30

25

20 A

2 >. Q 15 K W z W

i o

5

TEMPERATURE PFI -200 -100 '0 100 200 300 400 500 600

I 1 I I 1 1 I 1 1 I I PLATE 02, TYPE 3, 0.8 MM NOTCH, 0.1 MM R 1 0 4 20.0

17.5

15.0 f!

125 4-l 4; >-

10.0 E W z

7.5

I

5.0

0 CHARPY DATA MEAN IMPACT CURVE d -

-

1 1 1 1 1 1 I 1 0.0 0 -150 - io0 -50 0 50 100 150 200 250 300 350

TEMPERATURE I"C1

NU R EG/C R-6379 G-28

SOURCE: 02-T3.1R ANALYSIS SET

0.0

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED] : 0.000 (MM) ,O.OOOO (IN) MID-TRANSITION TEMPERATURE:-11.3 (DEG C) ,11.7 (DEG F) TRANSITION ZONE WIDTH: 76.5 (C DEG) ,137.7 (F DEG) UPPER SHELF EXPANSION: 0.916 (MM),O.O361 (IN)

UPPER SHELF EXPANSION: 0.916 (MM),O.O361 (IN) NOTE: NONE MODEL SET NAME: 7

I 1 I I 1 1 1 1 6.60

1.2

1 .o

0.8 E Y

z 0 H 0.6 03 z U LL E 0.4

0.2

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 600

1 1 I I 1 1 I I 1

PLATE 02, TYPE 3, 0.8 MM NOTCH, 0. i MM R

;p”

I 0 CHARPY DATA MEAN IMPACT CURVE

0.04

r )

0.03 f - z 0

z

x w

z 0.02 ;;I

0.0 1

G-29 NUREGKR-6379

SOURCE: 02-T3.lR ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 88.2 (C DEG),158.8 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPEFATTJRE: 12.8 (DEG C) ,55.0 (DEG F)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 8

120

too

i I a0 z W u K W

[1: 4 w 5 40

60

20

' TEMPERATURE PFI -200 -100 0 100 200 300 400 BOO 600

I 1 I I 1 I I 1 I

]PLATE 02, TYPE 3, 0.8 MM NOTCH, 0.1 MM R I -

I 0 CHARPY DATA MEAN IMPACT CURVE

1 I 1 I 1 ' 1 I 0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

NUREGER-6379 G-30

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 02-T3.FH

NOTE: HSST PLATE 02, TYPE 1, 45 DEG ANGLE, 0.25 MM RAD SET NAME: 02-T3.FH

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (IN) (PERCENT)

02NJ -100.0 -148.0 2.56 1.89 0.03 0.001 0.0 02NI -75.0 -103.0 6.59 4.86 0.18 0.007 0.0 02NH -50.0 -58.0 11.35 8.37 0.41 0.016 10.0 02NK -37.5 -35 . 5 16.65 12.28 0.69 0.027 20.0 02NG -25.0 -13.0 16.22 11.96 0.61 0.024 15.0 02NF 0.0 32.0 23.84 17.58 0.89 0.035 60.0 02NB 25.0 77.0 21.77 16.06 0.71 0.028 65.0 ,

02NC 50.0 122.0 30.03 22.15 1.04 0.041 80.0 02ND 75.0 167.0 27.31 20.14 0.94 0.037 100.0 02NL 150.0 302.0 30.59 22.56 1.04 0.041 100.0 02NE 200.0 392.0 32.00 23.60 0.99 0.039 100.0 02NM 200.0 392.0 31.85 23.49 0.97 0.038 100.0

NUMBER OF SPECIMENS: 12

G-31

SOURCE: 02-T3.FH ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELl? ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMpERATuRE:-31.3 (DEG C),-24.3 (DEG F) TRANSITION ZONE WIDTH: 145.5 (C DEG),261.9 (F DEG) UPPER SHELF ENERGY: 31.0 (J),22.9 (FT-LB)

UPPER SHELF ENERGY: 31.0 (J),22.9 (FT-LB)

MODEL SET NAME: 1 NOTE: NONE

40

35

50

A 25 2 > 0 20 a w z

1 5

i o

5

TEMPERATURE (OF1 -200 -100 0 100 200 300 400 500 600

1 1 1 1 1 1 1 1 1

lPLATE.02, TYPE 1, 45’ ANGLE, 0.25 MM R1 -

I 0 CHARPY DATA MEAN IMPACT CURVE

0 -150 - io0 -50

NUREGER-6379

25

5

0

TEMPERATURE PC)

G-32

.. - , , -. I . ,: -1

.. . ,---.-:.-- . ~-

SOURCE: 02 - T3.F.H ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM) ,O.OOOO (IN) MID-TRANSITION TEMPERATURE:-44.6 (DEG C) ,-48.2 (DEG F) TRANSITION ZONE WIDTH: 91.8 (C DEG),165.3 (F DEG) UPPER SHELF EXPANSION: 0.968 (MM),O.O381 (IN)

UPPER SHELF EXPANSION: 0.968 (MM),O.O381 (IN) NOTE: NONE MODEL SET NAME: 0

0.0

1.2

1 1 1 1 1 I 1 1 0.00 -150 -100 -50 0 50 100 150 2QQ 250 300 350

1.0

- E 0.8 E Y

z

0) z Q 5 0.4

0.6

0.2

TEMPERATURE PFI 100 200 300 400 500 600

IPLATE 02. TYPE 1 , 45' ANGLE, 0.25 MM R(

0.04

0.03 - z z z x W

0.02 2

0.0 1

0 CHARPY DATA - MEAN IMPACT CURVE

G-33 NUREGKR-6379

SOURCE: 02-T3.FH ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED] : 100 (PERCENT)

MID-TRANSITION TEMPERATURE: 3.1 (DEG C ) , 3 7 . 5 (DEG F) TRANSITION ZONE WIDTH: 100.4 (C DEG),180.8 (F DEG) ,

UPPER SHELF sHEaR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 9

TEMPERATURE C'FI

120

too

20

-200 -100 0 100 200 300 400 BOO 600 1 1 I I I I 1 I I

PLATE 02, TYPE i, 450 ANGLE, 0.25 MM R ]

rn n Y

0 CHARPY DATA MEAN IMPACT CURVE

0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

1 1 1 I 1 1 1 1

NUREGER-6379 G-34

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 2HSST02-.T4

SET NAME: 2HSST02-.T4 NOTE: HSST PLATE 02, ANVIL SPAN EQUALS 20m, SPEC. TYPE 4

TEMPERATURE ENERGY EXPANSION IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN)

SHEAR (PERCENT)

02A2 02A1 02A3 02c1 02A4 02A5 02c2 02A6 02B1 02B2 02B3 02B4 0266 0265 02B5 02C3 02B6

-75.0 -62.5 -50.0 -50.0 -37.5 -25.0 -25 . 0 -12 . 5 0.0 12.5 25.0 37.5 75.0 100.0 100.0 125.0 150.0

-103.0 -80.5 -58.0 -58 . 0 -35.5 -13.0 -13.0 9.5 32.0 54.5 77.0 99.5 167.0 212.0 212.0 257.0 302.0

0.27 0.41 2.44 0.81 2.17 1.90 3.39 2.58 4.61 5.02 5.02 6.51 7.70 7.10 6.78 7.10 6.51

0.20 0.30 1.80 0.60 1.60 1.40 2.50 1.90 3.40 3.70 3.70 4.80 5.68 5.24 5.00 5.24 4.80

0.00 0.03 0.13 0.05 0.18 0.10 0.25 0.23 0.38 0.46 0.53 0.64 0.61 0.64 0.69 0.56 0.61

~~

0.000 0.001 0.005 0.002 0.007 0.004 0.010 0.009 0.015 0.018 0.021 0.025 0.024 0 . 025 0.027 0.022 0.024

~

0.0 5.0 10.0 15.0 10.0 15.0 40.0 35.0 60.0 80.0 80.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 17

G-35 NUREGER-6379

SOURCE: 2HSST02 .T4 ANALYSIS SET -

I

- !PLATE 02, TYPE 4, 20 MM SPAN 0

Y VARIABLE: ENERGY MODEL PARAWETERS

- 6

LOWER SHELF ENERGY [HELD FIXED): 0.1 (J),O.l (FT-LB) MID-TFANSITION TEMPERATURE:-9.1 (DEG C),15.7 (DEG F) TRANSITION ZONE WIDTH: 102.9 (C DEG),185.1 (F DEG) UPPER SHELF ENEXGY: 7.1 (J),5.2 (FT-LB)

UPPER SHELF ENERGY: 7.1 (J),5.2 (FT-LB) NOTE: NONE

V - MEAN IMPACT CURVE 1 1 I I 1

MODEL SET NAME: 3

I 0 CHARPY DATA I I'

NUREG/CR-6379

TEMPERATURE PC)

G-36

SOURCE: 2HSST02-.T4 ANALYSIS SET

O.Q -150 -100 -50 6 50 160 lEi0 200 250 300

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED] : 0.000 (MM) ,O. 0000 (IN) MID-TRANSITION TEMPERATURE: -7.8 (DEG C) ,17.9 (DEG F) TRANSITION ZONE WIDTH: 79.7 (C DEG),143.5 (F DEG) UPPER SHELF EXPANSION: 0.632 (MM) ,0.0249 (IN)

UPPER SHELF EXPANSION: 0.632 (MM),O.O249 (IN)

MODEL SET NAME: 4 NOTE: NONE

Q.060 350

TEMPERATURE C'FI -200 -100 0 100 200 500 400 900 600

0.8

I). 7

' 0 .6 - E E 0.5 Y

z

ffl z -x

0.4

0.2

0.1

I I 1 1 1 1 1 1 I

PLATE 02, TYPE 4, 20 MH S P A N 1 0

0 CHARPY DATA MEAN IMPACT CURVE

0.O30

0.025

CI

0.020 f

z - 0,

0.016 g < a x W

0.010

0.005

1 I I I I 1 1 I

G-37 NUREGER-6379

SOURCE: 2HSST02-.T4 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE:-6.7 (DEG C),20.0 (DEG TRANSITION ZONE WIDTH: 69.1 (C DEG),124.4 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 5

TEMPERATURE -200 -100 0 100 200 300 400 600 600

1 1 1 1 I I I I 1

IPLATE 02, TYPE 4. 29 MM SPAN1

120

100

NU REG/C R-6379

TEMPERATURE PCl

G-38

I ! 1 i i

i

! I I

I !

APPENDIX H

HSST PLATE 02, HALF THICKNESS, TL ORIENTATION

H-1 NUREGICR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 020-5.FLTL

SET NAME: 020-5.m NOTE: HSST PLATE 02 FUI;T;-SIZE, T-L ORIENTATION, HALF-THICXNESS

EXPANSION SHEAR TEMPERATURE ENERGY IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) ( I N ) (PERCENT)

02B-1016 ' -1.1 02B-1017 02B-1019 02B-1012 02B-1013 02B-1015 02C-1008 02 C-10 09 02c-1011 02c-1012 02C-1013 02C-1015 02B-1008 02B-10 09 02B-1011 02C-1004 02 C-1005 02C-1007 02B-1020 02B-1021 02B-1023 02B-1004 02B-1005 02B-1007 02c-1000 02c-1001 02C-1003 02B-1001 02B-1003

-1.1 -1.1 15.6 15.6 15.6 15.6 15.6 15.6 48.9 48.9 48.9 93.3 93.3 93.3 93.3 93.3 93.3 121.1 121.1 121.1 148.9 148.9 148.9 148.9 148.9 148.9 204.4 204.4

30.0 30.0 30.0 60.0 60.0 60.0 60.0 60.0 60.0 120.0 120.0 120.0 200.0 200.0 200.0 200.0 200.0 200.0 250.0 250.0 250.0 300.0 300.0 300.0 300.0 300.0 300.0 400.0 400.0

32.54 31.18 23.05 27.12 37.96 47.45 36.61 38.64 50.17 78 . 64 79 . 99 84.06 100.33 104.40 81.35 128.80 123.38 126.09 112.53 109.82 112.53 109.82 116.60 103.04 124.74 124.74 115.24 97.62 107.11

24.00 23 . 00 17.00 20.00 28.00 35.00 27.00 28 . 50 37.00 58 . 00 59.00 62.00 74.00 77.00 60.00 95.00 91.00 93.00 83.00 81.00 83.00 81.00 86.00 76.00 92.00 92.00 85.00 72.00 79.00

0.61 0.48 0.43 0.46 0.61 0.71 0.64 0.58 0.94 1.45 1.35 1.37 1.75 1.52 1.35 1.83 1.68 1.70 1.83 1.70 1.68 1.75 1.83 1.68 1.78 1.88 1.75 1.47 1.68

0.024 0.019 0.017 0.018 0.024 0.028 0.025 0.023 0.037 0.057 0.053 0.054 0.069 0.060 0.053 0.072 0.066 0.067 0.072 0.067 0.066 0.069 0.072 0.066 0.070 0.074 0.069 0.058 0.066

20.0 20.0 20.0 30.0 25.0 25.0 20.0 1

20.0 20.0 60.0 55.0 65.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 29

NUREGER-6379 H-2

SOURCE: 020-5.FUL ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED]: 2.7 (J) ,2 .0 (FT-LB) MID-TRANSITION TEMPERATURE: 29.2 (DEG C) ,84.6 (DEG F) TRANSITION ZONE WIDTH: 86.4 (C DEG),155.6 (F DEG) UPPER SHELF ENERGY: 113.8 (J),83.9 (FT-LB)

UPPER SHELF ENERGY: 113.8 (J),83.9 (FT-LB) TEMPERATURE [41 (J) t30.2 (FT-LB) ENERGY]: 15.4 (DEG C) ,59-7 (DEG F) TEMPERA- [68 (J) ,5002 (MI-LB) ENERGY]: 36.9 (DEG C) t98.4 (DEG F) NOTE: HSST PLATE 02, TL ORIENTATION, HALF-THICKNESS MODEL SET NAME: 9

TEMPERATURE PF1 -200 -100 0 100 200 .300 400 500 600

150

100

125

80 c1 too

c) f! 2 I .c, >. 6 0 & (!I 75 a > u CY z c1: w W

50 40

25 20

0 0 -150 - io0 -50 0 50 100 150 206 256 300 350

TEMPERATURE PCI

H-3 NUREGER-6379

! I

I

SOURCE: 020-5.FUL ANALYSIS SET

- 0

Y VARIABLE: EXPANSION

0.07

MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OoOO (IN) MID-!lXANSITION TEMPERATURE: 23.3 (DEG C),74.0 (DEG F) TRANSITION ZONE WIDTH: 85.6 (C DEG),154.0 (F DEG) UPPER SHELF EXPANSION: 1.729 (MM),O.O681 (IN)

UPPER SHELF EXPANSION: 1.729 (MM),O.O681 (IN) NOTE: NONE MODEL SET NAME: 8

2.25

2.00

I .75

1.50 E Y

1.25 2 63 z 1-00 a a 25 0.75

0.50

TEMPERATURE C‘FI -200 -100 0 100 200 300 400 500 600

I I 1 1 1 I I I 1 I - I PLATE 02, HALF-THICKNESS

I 0.25

1 0.08

0

0

0 J 0 0.06 t

0.05 z

cI1 0.04 2

x 0.03

Y

0,

n

0.02

0 CHARPY DATA -* MEAN IMPACT CURVE

1 1 1 I 1 1 1 I 0.00 I 0.00

-150 -lQQ -50 0 50 100 150 200 25Q 300 350

TEMPERATURE C‘Cl

NUREGER-6379 H-4

SOURCE: 020-5.FTJL ANALYSIS SET

1 I I I PLATE 02, HALF-THICKNESS I

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE: 37.5 (DEG C),99.5 (DEG F) TRANSITION ZONE WIDTH: 78.2 (C DEG),140.8 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 7

120 1 1 1 1 1 1

h w u too - rn

2 a o - - z W u

& 60 L1: 4 W 5 4 0 - -

6 - -

20 - - 0 CHARPY DATA

MEAN IMPACT CURVE - 0 -150 -100 -50 0 5 0 100 150 200 .250 300 35Q

1 I I 1

H-5 N UREGICR-6379

I i i

i 1 ! 1

i i I

.i

I - j

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 02-T3-12

SET NAME: 02-T3-12 NOTE: HSST PLATE 02 - TYPE 3 SPEC., HALF-THICKNESS

TEMpERATlJRE ENERGY EXPANSION SREAR IDENT (DEG C) (DEG F) (J) ( F T - W (W (IN) (PERCENT)

2B06B 2B06A 2B02B 2B02A 2B10A 2B10B 2B14A 2B14B 2C14A 2C02B 2C02A 2C14B 2B18A 2B18B

-87.5 -75.0 -62.5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 50.0 62.5 100.0 200.0

-125.5 -103.0 -80.5 -58.0 -35.5 -13.0 9.5 32.0 54.5 77.0 122.0 144.5 212.0 392.0

0.95 2.58 2.85 4.20 6.91 8.81 9.08 10.71 12.34 18.71 19.12 21.56 18.98 18.57

0.70 1.90 2.10 3.10 5.10 6.50 6.70 7.90

13.80 14.10 15.90 14.00 13.70

9 .,lo

0.00 0.00 0.05 0.10 0.18 0.30 0.33 0.48 0.53 0.79 0.71 0.89 0.99 0.46

0.000. 0.000 0.002 0.004 0.007 0.012 0.013 0.019 0.021 0.031 0.028 0.035 0.039 0.018

0.0 0.0 5.0 15.0 20.0 35.0 40.0 60.0 75.0 85.0 100.0 95.0 100.0 100.0

NUMBER OF SPECIMENS: 14

NUREGlCR-6379 H-6

SOURCE: 02-T3-12 ANALYSIS SET

1 1 I 1 1 1 I 1 HSST PLATE 02, HALF-THICKNESS, TYPE 3 - 17.5

0

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [ H E L D FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-12.2 (DEG C) ,10.1 (DEG F) TRANSITION ZONE WIDTH: 108.3 (C DEG),195.0 (F DEG) UPPER SHELF ENERGY: 20.3 (5),15.0 (FT-LB)

UPPER SHELF ENERGY: 20.3 (J),15.0 (FT-LB) NOTE: PLATE 02, HALF-THICKNESS MODEL SET NAME: 4

TEMPERATURE ["Cl

H-7 NUREG/CR-6379

I

SOURCE: 02-T3-12 ANALYSIS SET

Y VARIABLE: EXPANSION

- -

- -

0 - -

- I 0 CHARPY DATA

MEAN IMPACT CURVE

I 1 1 1 i

MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE:-11,3 (DEG C) ,11.7 (DEG F) TRANSITION ZONE WIDTH: 75.2 (C DEG),135.3 (F DEG)

- 0.03 - f

z

ell z 0.02 2

x W

E

0.01

0.00

_ _ _ UPPER SHELF EXPANSION: 0.779 (MM),O103O7 (IN)

UPPER SHELF EXPANSION: 0.779 (MM),O.O307 (IN) NOTE: NONE MODEL SET NAME: 5

TEMPERATURE C'F1 -200 -100 0 100 200 300 400 500 600

I I I 1 I I I 1 I

i.- 0.8

E Y

z 0 n 0.6 u) z s: Q 5 0.4

0.2

0.0 -

NUREGER-6379

. - - - , .I .

TEMPERATURE IDCl

H-8

SOURCE: 02 T3 12 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

- -

LOWER SRELF SHEAR [HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE: -8.8 (DEG C) ,16.2 (DEG F) TRANSITION ZONE WIDTH: 80.0 (C DEG) ,143.9 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 6

- I !

! I I

I I !

1

T I

i i I

i i I

i I i

I 1

i i I I

j ! 4

'I i

TEMPERATURE (OF1 -200 -100 0 100 200 SO0 400 500 6 0 0

120 I 1 I I 1 1 1 1 1 i

i 'I

1

i

i I

I

i

I I PLATE 02, HALF-THICKNESS I

a

u) 40

U w I

A n

-

20 - 0 CHARPY DATA

MEAN IMPACT CURVE

0 -150 -100 -50 0 50 100 150 200 250 300

1 1 I 1 I 1

TEMPERATURE PCl '0

H-9 NUREGCR-6379

SOURCE: ANALYSIS SET ANALYSIS SET N M : 02_TYPE-.5

NOTE: HSST 02 - SPECIMEN TYPE 5 SET NAME: 02_mPE-.5

TEMPERATURE ENERGY EXPANSION SHEAR IDENT - (DEG C) (DEG F) (J) (FT-f;B) (m) (W (PERCENT)

2B14 2B10 2C14 2B18 2B02 2B06 2c02 2B22 2C06 2c10

-75.0 -50.0 -37.5 -25.0 0.0 25.0 50.0 75.0 100.0 150.0

-103 . 0 -58.0 -35.5 -13.0 32.0 77.0 122.0 167.0 212.0 302.0

1.36 3.66 6.91 8.41 12.88 15.05 20.07 16.68 22 . 24 19.52

1.00 2.70 5.10 6.20 9.50 11.10 14.80 12.30 16.40 14 40

0.23 0.18 0.36 0.48 0.76 0.81 1.02 0.99 1.02 1.04

0.009 0.007 0.014 0.019 0.030 0.032 0.040 0.039 0.040 0.041

0.0 0.0 15.0 30.0 45.0 70.0 90.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 10

NUREGKR-6379 H-1 0

SOURCE: Q2-TYPE .5 ANALYSIS SET -

i i

I i I I I 1

!

i

I

I

E

I 1

I

I E i

i Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [FIELD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-14.1 (DEG C ) , 6 . 6 (DEG F) TRANSITION ZONE WIDTH: 109.2 (C DEG) ,196.6 (F DEG) UPPER SHELF ENERGY: 20.1 (3) ,14.9 (FT-LB)

UPPER SHELF ENERGY: 20.1 (J ) ,14 .9 (FT-LB) NOTE: NONE MODEL SET NAME: 0

TEMPERATURE PFJ 25

17.5

20

0 - 15.0

0

I HSST PLATE 02. HALF-THICKNESS, TYPE 5 1 r" =J 15

a

- - >. a W z w 10 -

- 5.0

0 GHARPY DATA 2.5 - MEAN IMPACT CURVE

I 1 1 I I 1 I 0.0 -150 -100 -50 6 50 too 150 zoo 250 300 350

TEMPERATURE PCI

H-I 1

12.5 -P

10.0 ,e 2- (3 a 7.5 Lrl z w

I 4

NU REG/C R-6 379

SOURCE: 02_TYPE-.5 ANALYSIS SET

I 1 1 1 I I 1 1 0.0

Y VARIABLE: EXPANSION MODEL P-TERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM) ,O.OOOO (IN) MID-TRANSITION TEMPERATURE:-20.6 (DEG C) ,-5.0 (DEG F) TRANSITION ZONE WIDTH: 110.4 (C DEG),198.7 (F DEG) UPPER SHELF EXPANSION: 1.040 (MM),O.O409 (IN)

UPPER SHELF EXPANSION: 1.040 (MM),0.0409 (IN)

MODEL SET NAME: 1 NOTE: NONE

0.06

TEMPERATURE C'FI -200 -100 0 100 200 300 ,400 BOO 6 Q O

1.2

1 .o

0.8 E Y

z 0, 0.6 UI z a ti 5 0.4

0.2

~

I I I 1 I 1 I I I

0 CHARPY DATA - MEAN IMPACT CURVE

0.04

0.03 - z 0 Y

irj z 0.02 2

0.0 1

NUREGER-6379 H-12

- 1

1 I !PLATE 02, TYPE 5 I

SOURCE: 02_TYPE-.5 ANALYSIS SET

120 I I I I 1 1 I

100 - n

C a o - - z W

- 0: 4 W r (O 4 0 - -

20 - - 0 CHARPY DATA

H U N IMPACT CURVE

1 1 1 I -150 -100 -50 0 50 100 150 200 250 300 350

Y VARUBLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) WID-TRANSITION TEMPERATURE: 3.0 (DEG C) ,37.4 (DEG F)

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT) TRANSITION ZONE WIDTH: 88.8 (C DEG),159.8 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 2

H-13 NUREG/CR-6379

APPENDIX I

HSST PLATE 14, QUENCHED AND TEMPERED AT 950°C

1-1 NUREG/CR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 14AS

SET NAME: 14AS NOTE: PLATE 014 QUENCHED, TEMPERED 950 C/5ihr. FROM BLOCK SURFACE

TEMPERATURE ENERGY EXPANSION I D E N T (DEG C) (DEG F) (J) (FT-LB) (MM) (IN)

SHEAR (PERCENT)

~

A1413 A1462 A1414 A1466 A1412 A1461 A1465 A1411 A1463 A1415 A1464 A1416

-100.0 -75.0 -50 0 -50.0 -25 0 0.0 0.0 25.0 50.0 75.0 100.0 150.0

-148.0 -103.0 -58.0 -58.0 -13 -0 32.0 32.0 77.0 122.0 167.0 212.0 302.0

10.03 7.40 22.37 16.50 29.29 21.60 34.17 25.20 39.32 29.00 58.44 43.10 60.74 44.80 66.71 49.20 73.89 54.50 71.99 53 -10 72.81 53 -70 67.52 49.80

0.05 0.20 0.30 0 -33 0.43 0.66 0.69 0 -79 0.97 0.99 0.94 0.97

0.002 0.008 0.012 0.013 0.017 0.026 0.027 0.031 0.038 0.039 0.037 0.038

0.0 10.0 15.0 15.0 25.0 55.0 70.0 60.0 100.0 99.0 100.0 100.0

NUMBER OF SPECIMENS: 12

NUREGKR-6379 1-2

SOURCE: 14AS ANALYSIS SET

80

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HEID FIXED1 : 2 -7 (J) ,2.0 (FT-LB) MID-TRANSITION TEMPERATURE: -38 9

UPPER SHELF ENERGY: 73.0 (J) ,53 -8 (FT-LB)

(DEG C) , -38.0 (DEG F) TRANSITION ZONE WIDTH: 118.6 (C DEG) ,213.5 (F DEG)

UPPER SHELF ENERGY: 73.0 (13) ,53.8 (FT-LB) TEMPERATURE 141 (J) I 30 2 (FT-LB) ENERGY1 : -33 6 (DEG C) , -28 -4 (DEG F) TEMPERATURE 168 (J) 150.2 (FT-LB) ENERGY1 : 37.4 (DEG C),99.4 (DEG F) NOTE: PLATE 14 QUENCHED AND TWERED @ 950C/5hr FROM BLOCK SURFACE MODEL SET NAME: 2

I 1 1 1 1 1 1 1 1

~ H S S T PLATE 14, QUENCHED+TEMPERED @ SOCI - 60 - 90

n 70 -

0 - 60 -

- c) a 50 - >

0 a u 40 - - z u

-

- 0 CHARPY DATA

MEAN IMPACT CURVE

I I I I I I 1 1 I 0 -150 -100 -50 0 50 100 150 200 250 300 350

1-3

50

A

40 4

>

W z LI

k

30

20

10

- 0

NUREGlCR-6379

SOURCE: 14AS ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED] : 0.061 (MM) 0.0024 (IN)

TRANSITION ZONE WIDTH: 114.6 (C DEG) ,206.3 (F DEG) UPPER SHELF EXPANSION: 0.988 (MM) ,0.0389 (IN)

=--SITION TEMPERATURE:-18.6 (DEG C) 1-1.4 (DEG E')

UPPER SHELF EXPANSION: 0.988 (MM),o.O389 (IN) NOTE: NONE MODEL SET NAME: 3

1.2

1.0

0.8

E Y

z

(13 z < a

0.6

1: 0.4

0.2

0.0

TEMPERATURE. (OF1 -200 -io0 0 100 - 290 300 400 SO0 600

I I I 1 I 1 I I I 1 I I PLATE 1 4, QUENCHEDiTEMPERED 42 95QC I

d 0 CHARPY DATA - MEAN IMPACT CURVE

Y I 1 I I I 1 1 1 0.00 I -150 - 1 Q Q -50 0 50 - 100 150 200 250 300 360

TEMPERATURE ["Cl

NUREGER-6379 1-4

SOURCE: 14AS ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 100.7 (C DEG),181.2 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-5.9 (DEG C) ,21.4 (DEG E')

UPPER SHELF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 4

TEMPERATURE PF1 100 200 300 400 500 600 -200 -100 0

120 I 1 1 1 1 1 1 I 1 I I PLATE 14, QUENCHEDiTEMPERED @ 950C 1 100

7 80 z W c1

& 60

E 4 W $ 40

ti

20 - I 0 CHARPY DATA

MEAN IMPACT CURVE

1 1 I I I 1 I I -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

1-5 NU REG/C R-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAEIE: P-14-Tl

SET NAME: P-14-Tl NOTE: SW-SIZE CORRELATION PROGRAM, TYPE 1 SPEC., PLATE 14

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

A404 A405 A406 A403 A407 A402 A4 08 A401 A4 10 A409 A4 11

NUMBER OF

-150.0 -238.0 -125.0 -193.0 -112.5 -170.5 -100.0 -148.0 -75.0 -103.0 -50.0 -58.0 -25.0 -13.0 0.0 32.0 50.0 122.0 100.0 212.0 200.0 392.0

SPECIMENS: 11

1.65 2.56 1.38 4.77 5.99 8.01 11.38 14.30 14.85 15.74 13.69

1.22 1.89 1.02 3.52 4.42 5.91 8.39 10.55 10.95 11.61 10.10

0.00 0.00 0.00 0.03 0.00 0.18 0.30 0.43 0.46 0.56 0.51

0.000 0.000 0.000 0.001 0.000 0.007 0.012 0.017 0.018 0.022 0.020

0 .0 0 . 0 UNKNOWN UNKNOkT 10.0 UNKNOWN UNKNOWN 90.0 UNKNOWN 100.0 100.0

NUREGK2R-6379 1-6

SOURCE: P-14-Tl ANALYSIS SET

Y'VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMPERATURE: -61.7 (DEG C) , -79.1 (DEG F) TRANSITION ZONE WIDTH: 129.0 (C DEG),232.2 (F DEG) UPPER SHELF ENERGY: 15.1 (J),Il.l (FT-LB) ' UPPER SHELF ENERGY: 15.1 (J) ,11.1 (FT-LB)

NOTE: HSST PLATE 14, TYPE 1 MODEL SET NAME: 8

- 0 IHSST PLATE 14, TYPE 1

15.0 - 0 -

12.5 - 5 - 10.0 > 8 CC W

W

-

7.5 -

5.0 -

MEAN IMPACT CURVE

TEMPERATURE (OF1 0 200 400 600 -200

17.5 1 1 1 1 1 1 i 12

t o

CI

- 8 f c1 k

- 6 % tK W z W

- 4

- 2

I 1 1 I 1 0.0 t-/ 0

-200 - 100 0 100 200 300 400 TEMPERATURE {"CI

1-7 NUREG/CR-6379

SOURCE: P-14-Tl ANALYSIS SET

Y VARULBLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE:-33.2 (DEG C) ,-27.7 (DEG F) TRANSITION ZONE WIDTH: 74.8 (C DEG),134.6 (F DEG) UPPER SHELF EXPANSION: 0.510 (MM),O.O201 (IN)

UPPER SHELF EXPANSION: 0.510 (MM),O.O201 (IN)

MODEL SET NAME: 9 NOTE: HSST PLATE 14, TYPE 1

0.7 1 1 I I 1

IHSST PLATE 14, TYPE 1 1 - 0 . 6 -

0

P

0.025

0.5 - E E Y 0.4 z

c13 2 0.3 Q

E

xw 0.2

0.1

0.0

NUREGER-6379

-200 0 200 400 600

0.020 - r ) c

z - -

- 0.015 0 -

H

i2 - o.ff10 E

U 0,

-

- - 0.005

- 0 CWIRPY DATA MEAN IMPACT CURVE ,

m 0.066 -200 - 1 00 0 100 200 300 400

1-8

SOURCE: P-14-Tl ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT) MID-TRANSITION TEMPERATURE:-37.5 (DEG C) ,-35.4 (DEG F) TRANSITION ZONE WIDTH: 68.1 (C DEG),122.6 (I? DEG) UPPER SHELF SHEAR [RELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: HSST PLATE 14, TYPE 1 TEMPERATURE [ 5 0 (PERCENT) ,50 (PERCENT) SHEAR]:-37.5 (DEG

MODEL SET NAME: 0

120

100

K 4 W

40

20

0

C) ,-35.4 (DEG F)

TEMPERATURE PFI -300 -200 -100 0 100 200 300 400 BOO 600

I HSST PLATE 14, TYPE 1

i I

I I 0 CHARPY DATA MEAN IMPACT CURVE

A -J I I 1 I 1 1 1 1

TEMPERATURE PCl

1-9 NUREGER-6379

SOURCE: ANZALYSIS SET ANALYSIS SET NAME: P-14-T2

SET NAME: P-14-T2 NOTE: SUB-SIZE CORRELATION PROGRAM, PLATE 14, TYPE 2 SPECIMEN

TEMPERATURE ENERGY EXPANSION SHEXR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

A421 A420 A422 A4 19 A423 A418 A424 A4 17 A425 A416 A426 A4 15 A4 13 A4 14 A428 A427

-150.0 -125.0 -112 . 5 -100.0 -87 . 5 -75.0 -62.5 -50 . 0 -37.5 -25 . 0 -12 . 5 0.0 25.0 100.0 150.0 200.0

-238 . 0 -193.0 -170 . 5 -148.0 -125.5 -103.0 -80.5 -58.0 -35.5 -13.0 9.5 32.0 77.0 212.0 302.0 392.0

0.99 1.98 1.78 1.98 2.56 3.93 1.84 4.12 5.03 4.58 5.55 4.77 5.29 5.92 5.22 5.29

0.73 1.46 1.31 1.46 1.89 2.90 1.36 3.04 3.71 3.38 4.09 ,

3.52 3.90 4.37 3.85 3.90

0.00 0 .00 0.00 0 . 0 0

0.13 0.00 0.15 0.23 0.15 0.23 0.23 0.28 0.36 0.25 0.33

0 . 0 0 .

0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.006 0.009 0.006 0.009 0.009 0.011 0.014 0.010 0.013

NUMBER OF SPECIMENS: 16

0.0 0.0 0.0 15.0 10.0 40.0 60.0 . 70.0 45.0 100.0 UNKNOWN 100.0 100.0 100.0 100.0 100.0

NUREGER-6379 1-1 0

SOURCE: P - 14-T2 ANALYSIS SET Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [Hn;D FIXED] : 0.1 (J) ,0.1 (FT-LB) MID-TRANSITION TEMPERATURE: -83.3 (DEG C) , -118.0 (DEG F) TRANSITION ZONE WIDTH: 150.2 (C DEG),270.4 (F DEG) UPPER SHELF ENERGY: 5.6 (J),4.1 (FT-LB)

UPPER SHELF ENERGY: 5.6 (J) ,4.1 (FT-LB) NOTE: HSST PLATE 14, TYPE 2 MODEL SET NAME: 3

1 1 1 I 1 1 1 1 I I

[HSST PLATE 14, TYPE 21 - 0

7

6

5

A

2 4

% 3

>. a ir

W

- 1

0 CHARPY DATA MEAN IMPACT CURVE

1 I 1 1 I 1 I I I 1 0 -206 -150 -100 -50 0 5Q 100 150 200 250 300 350

TEMPERATURE (OC1

1-1 1 NUREGKR-6379

SOURCE: P-14-T2 ANALYSIS SET

Y VARIABLE: MPANSION MODEL PARAMETERS

LOWER SHELF EXPANSIONi[HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: -3 8.7 ' (DEG C) , -37.7 TRANSITION ZONE WIDTH: 96.9 (C DEG),174.5 (F'DEG) UPPER SHELF EXPANSION: 0.306 (MM),O.O121 (IN)

(DEG F)

UPPER SHELF EXPANSION: 0.306 (MM),O.O121 (IN) NOTE: HSST PLATE 14, TYPE 2 MODEL SET NAME: 2

0.40

0.35

- 1 1 1 1 1 - 0.0150

~HSST PLATE 14, TYPE 21 - 0 0 - 0.0125

0

0.30 - -

z

co - z

a H 0-20 -

- 0.10 -

- 0.05 - 0 CHARPY DATA

1 1 I

MEAN IMPACT CURVE - -200 -too 0 100 2QQ 300 ' 400

NUREGlCR4379

0.0100 z I -

z

0.0073 2 < a. x W

a W

0.0050

0.0025

0.0000

1-1 2

SOURCE: P-14-T2 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE:-61.1 (DEG C),-78.0 (DEG F) TRANSITION ZONE WIDTH: 79.3 (C DEG) ,142.8 (F DEG) UPPER SHELF SHEAR [HELD FIXED] : 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: HSST PLATE 14, TYPE 2 MODEL SET NAME: 1

TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] :-61.1 (DEG C) ,-78.0 (DEG F)

TEMPERATURE (OF1 -500 -200 -100 0 100 200 300 400 SUO 600

120

100

20

1 1 1 1 i I 1 I 1 1

~HSST PLATE 14, TYPE 21

h n n " v

0 CHARPY DATA MEAN IMPACT CURVE

1 1 I I I I 1 1 I 0

TEMPERATURE PCl

1-1 3 NUREG/CR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: P-14-T3

SET NAME: P-14-T3 NOTE: SUB-SIZE CORRELATION PROGRAM, TYPE 3 SPEC., PLATE 14

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-W (MM) (IN) (PERCENT)

A43 6 A44 0 A435 A437 A434 A438 A433 A439 A432 A429 A43 0 A43 1

-150 . 0 -150.0 -125.0 -112 . 5 -100 . 0 -75.0 -50.0 -12 . 5 0.0 25.0 100.0 200.0

-238.0 -238.0 -193.0 -170.5 -148.0 -103 . 0 -58.0 9.5 32.0 77.0 212.0 392.0

3.86 3.21 3.42 5.60 5.74 6.94 8.70 13.82 14.24 11.93 14.95 11.75

2.85 2.37 2.52 4.13 4.23 5.12 6.42 10.19 10.50 8.80 11.03 8.67

0.03 0.00 0.00 0.08 0.00 0.10 0.18 0.33 0.41 0.43 0.53 0.41

0.001 0.000 0.000 0.003 0.000 0.004 0.007 0.013 0.016 0.017 0.021 0.016

0 . 0 0.0 0.0 5.0 10.0 30.0 35.0 I

86.0 84.0 '95.0 100.0 100.0

NUMBER OF SPECIMENS: 12

N UREGlCR-6379 1-1 4

SOURCE: P-14-T3 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXFD]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE: -88 - 3 TRANSITION ZONE WIDTH: 166.1 (C DEG),299.0 (F DEG) UPPER SHELF ENERGY: 13.9 (J),10.2 (FT-LB)

(DEG C) , -126.9 (DEG F)

UPPER SHELF ENERGY: 13.9 (J),10.2 (FT-LB) NOTE: HSST PLATE 14, TYPE 3 MODEL SET NAME: 4

17.5

15.0

12.5

n

2 10.0 > a a W

W z 7.5

5.0

2.5

TEMPERATURE (OF1

1 1 1 I 1 -200 0 200 400 600

IHSST PLATE 14, TYPE 31 IHSST PLATE 14, TYPE 31 0

0

0

0

0 CHARPY DATA MEAN IMPACT CURVE

0.0 1 i 1 1 1 -200 -100 0 100 200 300 4

TEMPERATURE PC)

1-1 5

12

10

6 5 . ft: W z W

4

2

n t

NUREGKR-6379

SOURCE: P-14-T3 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN)

UPPER SHELF WANSION: 0.471 (MM) ,0.0185 (IN)

MID-TRANSITION TEMPERATURE: -38.4 (DEG C) , -37.0 (DEG F) TRANSITION ZONE WIDTH: 101.1 (C DEG),182.0 (F DEG)

UPPER SHELF EXPANSION: 0.471 (MM),O.O185 (IN) NOTE: HSST PLATE 14, TYPE 3 MODEL SET NAME: 5

0.5

TEMPERATURE C'FI -200 0 200 400 600

I 1 I I I 0 . 6 I

0.020 0

[HSST PLATE 14, TYPE 3 1 -

NU REG/C R-6379

^E 0.4 - - E Y

I

63

U n

2 0.5

25 0.2 -

- z -

- 0.1 -

0 CWtRPY DATA MEAN IMPACT CURVE

0 I 1 I 0.0

1-1 6

0.01s z z

0.010 2

- z 0

z

x w

0.005

6.000

0

SOURCE: P-14-T3 ANALYSIS SET

100

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

UPPER SHELF SHEAR [HELD FIXED] : 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-44.3 (DEG C) ,-47.7 (DEG F) TRANSITION ZONE WIDTH: 95.3 (C DEG),171.6 (F DEG)

UPPER SHELF SHEAR: 100 (PERCENT)

1 1 I 1 I I 1 1 1

- n n

TEMPERATURE [50 (PERCM) ,50 (PkCENT) SHEAR] :-44.3 (DEG C) ,-47.7 (DEG F) NOTE: HSST PLATE 14, TYPE 3

120 1

“ ”

i= 8 0 - - z W 0

& 60 E 4 W I

6 - -

U) 40 - -

20 - - 0 CHARPY DATA

MEAN IMPACT CURVE

0 1 I 1 1 I -200 -154 -100 -50 o 50 too 150 200 250 300 350

MODEL SET NAME: 6

1-1 7 NUREGlCR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: P-l4-T4

SET NAME: P-14-T4 NOTE: SW-SIZE CORRELATION PROGRAM, PLATE 14, SPECIMEN TYPE 4

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

A447 A446 A448 A445 A449 A450 A444 A451 A452 A443 A453 A442 A441 A454 A455 A456

-112 . 5 -100 . 0 -87.5 -75 . 0 -75 . 0 -62 . 5 -50.0 -50.0 -37.5 -25.0 -25.0 0.0 25.0 100.0 200.0 200.0

-170.5 -148.0 -125.5 -103.0 -103.0 -80.5 -58 . 0 -58.0 -35.5 -13 . 0 -13.0 32.0 77.0 212.0 392.0 392.0

0.53 0.39 1.25 0.92 1.25 0.92 2.24 1.65 2.62 1.93 2.82 2.08 1.45 1.07 2.56 1.89 3.85 2.84 3.85 2.84 4.18 . 3.08 4.18 3.08 4.30 3.17 4.62 3.41 4.04 2.98 4.62 3.41

0.00 0.00 0.00 0.03 0.10 0.10 0.00 0.10 0.18 0.20 0.18 0.23 0.25 0.30 0.25 0.38

0.000 0.000 0.000 0.001 0.004 0.004 0.000 0.004 0.007 0.008 0.007 0.009 0.010 0.012 0.010 0.015

0.0 0.0 5.0 25.0 40.0 50.0 40.0 60.0 UNKNOWN 90.0 UNKNOWN 100.0 100.0 100.0 100.0 100.0

~~

NUMBER OF SPECIMENS: 16

NU R EG/C R-6379 1-1 8

SOURCE: P-14-T4 ANALYSIS SET

6

5 -

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENEXGY [HELD FIXED]: 0.1 (J) ,0.1 (FT-LB) MID-TRANSITION TEME'ERATURE:-67.0 (DEG C) ,-88.5 (DEG F) TRANSITION ZONE WIDTH: 109.5 (C DEG),197.1 (F DEG) UPPER SHELF ENERGY: 4.5 ( J ) , 3 . 3 (FT-LB)

UPPER SHELF ENERGY: 4.5 (J) , 3 . 3 (FT-LB)

MODEL SET NAME: 9 NOTE: HSST PLATE 14, TYPE 4

I 1 1 1 1 1 1 1 1

I HSST PLATE 14, TYPE 4 I - 4.0

- 3.5 0 0

0 - 4 - A - 2

a 2. a 3 - W z W

- - -

1 - 0 CHARPY DATA MEAN IMPACT CURVE

1 1 I I 1 1 1 I 1 0 -150 -100 -50 0 50 100 150 200 250 300 350

1-1 9

3.0 A

f!

2 5 ; Y

> W z

2 0

1.5 w

1.0

0.5

0.0

NUREGCR-6379

SOURCE: P-14-T4 ANALYSIS SET

Y VARUIBLE: EXPANSION MODEL PARAMEZEXS

LOWER SHELF EXPANSION [HELD FIXED]: 0,000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: -31.9 (DEG C) , -25.4 (DEG F) TRANSITION ZONE WIDTH: 96.1 (C DEG),173.0 (F DEG) I

UPPER SHELF EXPANSION: 0.307 (MM),O.O121 (IN) UPPER SHELF EXPANSION: 0.307 (MM),O.O121 (IN) NOTE: HSST PLATE 14, TYPE 4 MODEL SET NAME: 8

0.45

0.40

0.35

2 0.30 E - z 0.25 0 0) z 0.20 a Q

W

25 0.15

0. to

0.05

TEMPERATURE [OF1 -200 -100 0 100 200 300 400 500 600

1 1 I 1 I 1 I 1 I 10 .0175

I HSST PLATE 14, TYPE 4 1 - 0 0.0150 4

0 f o Q 0.0100 z 0

z 0.0075 2

X W

G

0.ODS0

0.0025 0 CHARPY DATA MEAN IMPACT CURVE

1 1 I 1 I I 1 I 0.0006 -150 -100 -50 Q 50 100 150 200 250 300 350

TEMPERATURE IDCl

NUREGlCR-6379 1-20

SOURCE: P 14-T4 ANALYSIS SET -

F a0 z w 0 a: W & 60

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE:-55.9 (DEG C),-68.6 (DEG F) TRANSITION ZONE WIDTH: 70.0 (C DEG),126.0 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT),SO (PERCENT) SHEAR]:-55.9 (DEG C),-68.6 (DEG F) NOTE: HSST PLATE 14, TYPE 4 MODEL SET NAME: 7

-

120

100

TEMPERATURE PFI -200 -100 0 100 200 300 400 BOO 600

1 I 1 1 1 . 1 I 1

I HSST PLATE 14, TYPE 4 I

2o t 1-

n n v

i

V O W A I I I I 1 I 1 1 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

1-21 NUREGICR-6379

APPENDIX J I

I

!

1

I

! .i

i

1 I i

I

I I i i i 1 I

15Kh2MFA, FORGING 'lo3672

J- 1 NUREGlCR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WG3CV

SET NAME: WG3CV NOTE: RUSSIAN SPECIMENS

IDm (DEG C) (DEG F) (J) (FT-LB) (m) (IN) (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

WG3CV27 WG3 CV2 8 WG3CV24 WG3CV25 WG3 CV2 6 WG3CVl.9 WG3CV2 0 WG3 CV2 1 WG3 CV3 1 WG3 CV3 2 WG3CV33 WG3CV34 WG3CV35 WG3CV3 6 WG3CV37 WG3 CV3 8 WG3 CV3 9 WG3 CV4 0 WG3CVl.6 WG3CVl.7 WG3CVl.8 WG3CV2 9 WG3 CV3 0 WG30.22 WG3CV23 WG3CV41 WG3CV42 WG3 CV43 WG3CV44 WG3CV45 WG3CV4 6 WG3 0747 WG3 CV4 8 WG3CV49 WG3CV5 0

-80.0 -80.0 -40.0 -40.0 -40.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0

0.0 0.0 0.0 20.0 20.0 60.0 60.0 100.0 100.0 100 .0 100 .0 100.0 100.0 100.0 100.0 100.0 100.0

-112.0 -112.0 -40.0 -40.0 -40.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0

32.0 32.0 32.0 68.0 68.0 140.0 140.0 212.0 212.0 212.0 212.0 212.0 212.0 212.0 212.0 212.0 212.0

8.81 4.47 59.66 1 0 . 7 1 66.30 76.20 86.91 89.62 93.10 72.10 100.50 110.90 106.70 75.00 68-60 115.20 46.80 117.30 181.54 124.74 129.75 183.04 162.56 190.49 168.80 155.00 178.40 183.20 183.20 181.40 184.50 191.60 182.00 172.70 191.80

6.50 3.30 44.00 7.90 48.90 56.20 64.10 66.10 68.67 53.18 74.13 81.80 78.70 55.32 50.60 84.97 34.52 86.52 133.90 92.00 95.70 135.00 119.90 140.50 124.50 114.32 131.58 135.12 135.12 133.80 136.08 141.32 134.24 127.38 141.47

0.08 0.05 0 -76 0 -10 0.91 1.02 1.12 1.22 1 .35 0.99 1.42 1.58 1.42 1.04 0.94 1.70 0.71 1.68 2.08 1.80 1.65 2.08 2.03 2.06 2.06 1.93 2.06 1 .93 1.88 1 . 9 1 1.98 2.13 2.03 2 -18 1.98

0.003 0.002 0.030 0.004 0.036 0.040 0.044 0.048 0.053 0.039 0.056 0.062 0.056 0.041 0.037 0.067 0.028 0.066 0.082 0.071 0.065 0.082 0.080 0.081 0.081 0.076 0.081 0.076 0.074 0.075 0.078 0.084 0.080 0.086 0.078

0.0 0.0 1 0 . 0 5.0 10 .0 20.0 20.0 20.0 30.0 20.0 35.0 35.0 25.0 20.0 10 .0 45.0 5.0 40.0 100 .0 75.0 75.0 100.0 100.0 100.0 100 .0 100.0 100.0 100.0 100 .0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER O F SPECIMENS: 35

NUREGER-6379 J-2

SOURCE: WG3CV ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED1 : 2 -7 (13) r2.0 (FT-LB) MID-TRANSITION TEMPERATURE:-19-5 (DEG C ) -3.2 (DEG E')

UPPER SHELF ENERGY: 181.3 (J) ,133.7 (FT-LB) TRANSITION ZONE WIDTH: 61.6 (C DEG) ,110.9 (P DEG)

UPPER SHELF ENERGY: 181.3 (51,133.7 (FT-LB) TEMPERATURE E41 (J)r30.2 (FT-LB) ENERGY1 :-39.5 (DEG C),-39.2 (DEG E')

NOTE: NONE MODEL SET NAME: 3

TEMPERATURE 168 (J) 3 0 -2 (FT-LB) ENERGY] :-28.0 (DEG C) t-18-5 (DEG F)

225

200

175

150

75

50

25

0 -

TEMPERATURE C'Fl -200 -100 0 100 200 300 400 500 600

160

125

A a

c, 6

>-

W z W

100

Y

75 E

50

25 0 CHARPY DATA - MEAN IMPACT CURVE

0 150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCI

5-3 NUREGER-6379

SOURCE: WG3CV ANALYSIS SET

I I 1 I I 1 I 50 100 15Q 200 250 300

0.0

Y VARIABLE: =PANSION MODEL PARAMETERS LOWER SHELF =PANSION [HELD FIXED1 : 0.061 (MM) ,0.0024 (IN)

TRANSITION ZONE WIDTH: 51.1 (C DEG) ,92.0 (P DEG) UPPER SHELF EXPANSION: 2.029 (MM) , O .0799 (IN)

MID-TRANSITION TEMPERATURE: -25.7 (DEG C) , -14.2 (DEG F)

UPPER SaELF EXPANSION: 2-029 (MM), 0.0799 (IN) NOTE: NONE MODEL SET NAME: 2

0.00 350

2.5

2.0

- E ,E 1.5

0.5

TEMPERATURE [OF) -200 -100 0 100 200 300 400 500 600

1 I 1 1 I I 1 I 1

0.08

0.02

0 CHARPI DATA MEAN IMPACT CURVE

NUREGER-6379

TEMPERATURE PC1

J-4

SOURCE: WG3CV ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [EiELD FIXED]: 0 (PERCEXT)

TRANSITION ZONE WIDTH: 30.3 (C DEG) ,54.6 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 1 0 0 (PERCENT)

MID-TRANSITION TEMPEIiATuRE: -11.8 (DEG C) ,lo. 8 (DEG F)

UPPER SHELF SHEAR: 1 0 0 (PERCENT) NOTE: NONE MODEL SET NAME: 1

120

100

20

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

1 I 1 I 1 I 1 1 1

I 1 SKMMFA I

I 0 CHARPY DATA MEAN IMPACT CURVE

I , I Y U I 1 1 I I 1 I 0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE PCl

J-5 NUREGKR-6379

I ! > 1

.i i

i i

i 3 i

I i 1 i

1 i 1 1 I I ! i 4 2 1

SOURCE: ANALYSIS SET ANALYSIS SET NAME: VVER440-.Tl

SET NAME: WER44O-.T1 NOTE: WER-440, TYPE 1 SPECIMENS

TEEIPEXATURE ENERGY EXPANSION SREAR IDENT (DEG C) (DE6 F) (J) (FT-LB) (MM) (IN) (PERCENT)

3638 3637 363 6 3635 3634 3651 3652 3653 3654 3655 3639 3640 3657 365 6 3658

-100.0 -87.5 -75 . 0 -62 . 5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 100 . 0 100.0 150.0 200.0

-148.0 -125.5 -103.0 -80.5 -58.0 -35.5 -13.0 9.5 32.0 54.5 77.0 212.0 212.0 302.0 392.0

0.54 4.47 9.49 9.63 17.22 15.32 15.19 29.69 27.25 26.17 26.85 21.96 37.15 30.91 26.71

0.40 3.30 7.00 7.10 12.70 11.30 11.20 21.90 20.10 19.30 19.80 16.20 27.40 22.80 19.70

0.00 0.08 0.41 0.41 0.84 0.71 0.71 1.02 0.97 0.91 0.91 0.81 0.66 0.86 0.71

0.000 0.003 0.016 0.016 0.033 0.028 0.028 0.040 0.038 0.036 0.036 0.032 0.026 0.034 0.028

~-

0.0 5.0 10.0 15.0 50.0 60.0 65.0 ,

100.0 100.0 100.0 100.0 100 0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 15

NUREGjCR-6379 J-6

SOURCE: -440 - .T1 ANALYSIS SET Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMPERATURE: -47.7 (DEG C) , -53.9 (DEG F) TRANSITION ZONE WIDTH: 95.1 (C DEG) ,171.2 (F DEG) UPPER SHELF ENERGY: 29.2 (J),21.6 (FT-LB)

UPPER SHELF ENERGY: 29.2 (J),21.6 (FT-LB) NOTE: 15Kh2MFA, TYPE 1 MODEL SET NAME: 0

0 - t50 -io0 -50 0 sa ioa 150 200 EO 300

TEMPERATURE PF1 -200 -100 0 100 200 300 400 500 600

0 350

45

40

35

30 A

25 2 > 0 c

W g 20

15

io

5

1 1 1 1

1 i5Kh2MFA, TYPE 1 I 1 I

0

1 1 - 1

0

0 CHARPY DATA MEAN IMPACT CURVE

30

25

5

1 1 1 I 1 1 I I

J-7 N UR EG/CR-6379

SOURCE: WER440-.T1 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MK),O.OOOO (IN) MID-TRANSITION TEMPERATURE: -68.3 (DEG C) I -91.0 (DEG F) TFANSITION ZONE WIDTH: 43.3 (C DEG),78.0 (F DEG) UPPER SHELF EXPANSION: 0.841 (MM),O.O331 (IN)

UPPER SHELF EXPANSION: 0.841 (MM),0.0331 (IN) NOTE: 15Kh2Ml?AI TYPE 1 MODEL SET NAME: 1

1.2

I .o

3 0.8 E Y

z 0 u 0.6 ul z U Q 5 0.4

0.2

0.0

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600

1 I 1 1 1 1 1 1 ' I

ISKh2NFA, TYPE 1

- 0 0 00

n I

/0° 0 0

d I 0 CHARPY DATA MEAN IMPACT CURVE

0.04

0.03 - z Ef

0.02 2 * z

' X W

NU REG/CR-6379

A I I I I 1 I I I I 0.00 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE' PC1

J-8

SOURCE: WER440-.T1 ANALYSIS SET

Y VARIABLE: SHEAR MOD= PARAMETERS

LOWEX SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE:-43.9 (DEG C) ,-47.0 (DEG F) TRANSITION ZONE WIDTH: 57.2 (C DEG) ,102.9 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: 15Kh2MFA, TYPE 1 MODEL SET NAME: 2

TEMPERATURE [SO (PERCENT) ,50 (PERCENT) SHEAR] :-43.9 (DEG C) ,-47.0 (DEG F)

120

100

LT 4 W 5 40

20

TEMPERATURE C'Fl -200 -100 0 100 200 300 400 500 600

I 1 1 1 1 1 1 I 1

I iSKh2MFA. TYPE i I

0 CHARPY DATA MEAN IMPACT CURVE

I I I 1 I I 1 I 0

TEMPERATURE PCI

J-9 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WER440-.T2

SET NAME: WER440-.T2 NOTE: WER-440, SPEC, TYPE 2

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DE6 C) (DE6 F) (J) (FT-LB) (MM) (IN) (PERCENT)

3623 3624 3667 3622 3632 3672 3625 3668 3621 3626 3631 3627 3669 3628 3629 363 0 367 0 3671

-137.5 -125.0 -125.0 -112 , 5 -112.5 -112 . 5 -100,o -100 . 0 -87 5 -75.0

' -75.0 -62.5 -62.5 -50.0 -37 . 5 -25.0 50 , 0

' 100.0

-215.5 -193 . 0 -193.0 -170 . 5 -170.5 -170.5 -148.0 -148.0 -125.5 -103.0 -103.0 -80 . 5 -80.5 -58.0 -35.5 -13. 0 122.0 212.0

0.00 0.14 0,oo 3.66 2.71 0.00 5.02 4.47 5.69 4.75 5.69 5.56 8.54 8.54 8.41 9.08 8.54 7.73

0.00 0.10 0.00 2.70 2.00 0.00 3.70 3.30 4.20 3.50 4.20 4.10 6.30 6.30 6.20 6.70 6.30 5.70

0.00 0.00 0.00 0.28 0.08 0.00 0.41 0.33 0.41 0.38 0.46 0.46 0.58 0.61 0.58 0.64 0.61 0.66

0.000 0.000 0.000 0.011 0.003 0.000 0.016 0.013 0.016 0.015 0.018 0.018 0.023 0.024 0.023 0.025 0.024 0.026

0.0 0.0 0.0 10.0 5.0 0.0 20.0 10.0 20.0 20.0 30.0 35.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 18

NUREGER-6379 J-10

SOURCE: WER440-.T2 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HFZD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-94.4 (DEG C),-137.9 (DEG F) TRANSITION ZONE WIDTH: 65.0 (C DEG) ,116.9 (F DEG) UPPER SHELF ENERGY: 8.4 (J) ,6.2 (FT-LB)

UPPER SHELF ENERGY: 8.4 (J),6.2 (FT-LB) NOTE: 15Kh2MFA, TYPE 2 MODEL SET NAME: 5

TEMPERATURE PF, -300 -200 -100 0 100 200 300 400 500 600

10

a

- 6

>. <I3 LT w z w 4

2

2

I 1 1 1 1 I 1 1 I I 15KhPMFA. TYPE 2

- 1

0

I ~~ I o CHARPY DATA

MEAN IMPACT CURVE

a -200 -i50 - to0 -50 a 50 too 150

TEMPERATURE PCl-

J-1 1

200 250 300 0

350

NUREGER-6379

f

i i I

i 1

I

i i

i Y

i ! I i 1 I 1 1 I f

I I

I 1 I

I

SOURCE: VVER440-.T2 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM) , O . O O O O (IN) MID-TRANSITION TEMPERATURE:-95.7 (DEG C) ,-140.3 (DEG F) TRANSITION ZONE WIDTH: 58.3 (C DEG),105.0 (F DEG) UPPER SHELF EXPANSION: 0.607 (MM),O.O239 (IN)

UPPER SHELF EXPANSION: 0.607 (MM),O.O239 (IN) NOTE: 15Kh2MF'A, TYPE 2 MODEL SET NAME: 4

0.7

I I 1 1 1 I 1 1 1 - 0.030 I lSKhPMFA, TYPE 21 - 0

N UREGER-6379

0.8 I

a - n 0.6 - v

- - E E 0.5 - - z 0 u 0.4 - a z <

-

- E O-= -

0.2 - -

0.1 - 0 CHARPY DATA - MEAN IMPACT CURVE

0.0 I 1 1 1 1 I 1 -200 -150 -100 -50 0 50 100 150 200 250 300 350

J-12

0.025

c)

0.020 f - z E

0.015 g < X LI a

0.010

0.005

0.000

SOURCE: WER440--T2 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 33.6 (C DEG),60.5 (F DEG) UPPER SHELF SHEAR [HELD FIXED] : 100 (PERCENT)

MID-TRANSITION TEMPERA!FURE:-68.4 (DEG C) ,-91.2 (DEG F)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE ( 5 0 (PERCENT) ,50 (PERCENT) SREAR) :-68.4 (DEG C) ,-91.2 (DEG F) NOTE: 15Kh2MFA, TYPE 2 MODEL SET NAME: 3

120

100

4 u I u) 40

20

TEMPERATURE C'FI -300 -200 -100 0 100 200 300 400 BOO 600

I 1 1 I 1 I I 1 1 1 I iSKh2MFA. TYPE 2 I

h h Y v

00 1 O T MEAN IMPACT CURVE I 1 mAJ U

0 1 1 I 1 1 I 1 1 - -200 -150 -100 -50 0 50 io0 151)

TEMPERATURE PCl

J-13

200 250 300 350

NUREGER-6379

SOURCE: ZWXLYSIS SET ANALYSIS SET NAME: VVER440-.T3

SET NAME: WER440-.T3 NOTE: WER-440, SPECIMEN TYPE 3

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DE6 C) (DE6 F) (J) (FT-LB) (W (IN) (PERCENT)

3616 3614 6646 3613 6647 3615 3617 3618 3619 3620 6645 6644 6643 6641 6642

-112.5 -100.0 -100 . 0 -87.5 -87.5 -75.0 -62.5 -50.0 -37.5 -25.0 -25.0 -12.5 0.0 50.0 100.0

-170 . 5 -148 . 0 -148.0 -125.5 -125.5 -103 . 0 -80.5 -58.0 -35.5 -13.0 -13.0 9.5 32.0 122.0 212.0

0.41 0.81 0.54 8.68 2.71 13.42 12.07 14.10 15.73 13.29 25.22 24.68 25.22 22.64 25.22

0.30 0.60 0.40 6.40 2.00 9.90 8.90 10.40 11.60 9.80 18.60 18.20 18.60 16.70 18.60

0.15 0.13 0.15 0.33 0.00 0.66 0.61 0.66 0.79 0.61 0.89 0.86 0.91 0.91 0.89

0.006 0.005 0.006 0.013 0.000 0.026 0.024 0.026 0.031 0.024 0.035 0.034 0.036 0.036 0.035

0 . 0 0 . 0 0.0 0.0 0.0 20.0 15.0 45.0 70.0 65.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 15

NUREG/CR-6379 J-14

SOURCE: -440 .T3 ANALYSIS SET - Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF EXEXGY [HELD FIXED]: 0 . 1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE: -59.7 (DEG C) , -75.4 (DEG F) TRANSITION ZONE WIDTH: 85.4 (C DEG),153.7 (F DEG) UPPER SHELF ENERGY: 24.6 (J),18.1 (FT-LB)

UPPER SHELF ENERGY: 24.6 (J),l8.1 (FT-LB)

MODEL SET NAME: 6 NOTE: 15Kh2MF'A, TYPE 3

I 1 1 1 1 1 1 1 1

- 20.0 [ ISKhlMFA, TYPE 3 I 0

TEMPERATURE [DCl

J-15 NUREGlCR-6379

SOURCE: VVER440-.T3 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED] : 0.000 (MM) ,O.OOOO (IN)

TRANSITION ZONE WIDTH: 62.9 (C DEG) ,113.3 (F DEG) MID-TRANSITION TEMPERATURE:-75.5 (DEG C),-103.9 (DEG F)

UPPER SHELF EXPANSION: 0.863 (MM) ,0.0340 (IN) UPPER SHELF EXPANSION: 0.863 (MM),O.O340 (IN) NOTE: 15Kh2Ml?A, TYPE 3 MODEL SET NAME: 7

-200 -100 0 100 200 300 400 sou 600 1.2 - 1 I 1 I I 1 1 I 1

I I5Kh2MFA. TYPE 3 I -

1.0 - O O

- Y

z 0 H 0.6 a z

- -

- 0 CHARPY DATA

MEAN IMPACT CURVE

1 1 I 1 1 1

0.04

CI

0.03 f z - E 2

0.02 2 x w

0.01

6.00

NU REG/CR-6379 J-16

SOURCE: WER440-.T3 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED] : 0 (PERCENT) MID-TRANSITION TEMPERATURE:-46.7 (DEG C ) , - 5 2 . 0 (DEG F ) TRANSITION ZONE WIDTH: 48.6 (C DEG) ,87.4 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: 15Kh2MFA, TYPE 3 MODEL SET NAME: 8

TEMPERATURE [ 5 0 (PERCENT) ,50 (PERCENT) SHEARJ:-46.7 (DEG C) ,-52.0 (DEG F )

-200 -100 0 100 200 300 400 500 600 I 1 1 1 I ' 1 1 1 1 120

15Kh2MFA, TYPE 31

n 100 - n v u

- W 0

& 60 11: 4 W

- -

-

- 0 CHARPY DATA

MEAN IMPACT CURVE

1 1 1 1 1 I -156 -100 -50 6 50 100 t56 200 256 300 356

J-17 NUREGER-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: WER440-OT4

SET NAF4E: WER440-eT4 NOTE: WER-440, TYPE 4

TEMPERATURE ENERGY EXPANSION SHEAR IDEN!L' (DE6 C) (DE6 F) (J) (FT-LB) (MM) (W (PERCENT)

3607 3608 3612 6663 3609 6661 6664 3610 6662 6665 3611 6666 3606 3605 3604 3603 3602 3601

-100.0 -87 . 5 -87 . 5 -87 . 5 -75 . 0 -75 . 0 -75.0 -62.5 -62.5 -62 . 5 -50.0 -50.0 -37 . 5 -25.0 -12 . 5 0.0 12.5 25.0

-148 . 0 -125.5 -125.5 -125.5 -103.0 -103 . 0 -103.0 -80.5 -80.5 -80.5 -58.0 -58 . 0 -35.5 -13 . 0 9.5 32.0 54.5 77.0

0.20 0.20 0.72 0.34 3.46 3.59 0.62 5.19 5.00 5.23 7.78 3.82 8.16 7.54 7.54 7.97 8.04 7.54

0.15 0.15 0.53 0.25 2.55 2.65 0.46 3.83 3.69 3.86 5.74 2.82 6.02 5.56 5.56 5.88 5.93 5.56

0 . 0 0 0.00 0.00 0.00 0.23 - 0.25 0.00 0.38 0.41 0.28 0.61 0.25 0.56 0.58 0.61 0.66 0.61 0.53

0.000 0.000 0.000 0.000 0.009 0 . 010 0.000 0.015 0.016 0.011 0.024 0.010 0 . 022 0.023 0.024 0.026 0.024 0.021

0 . 0 0.0 0.0 0.0 10.0 10.0 0.0 40.0 45.0 20.0 100.0 10.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 18

NUREGKR-6379 J-18

SOURCE: WER440-.T4 ANALYSIS SET

-200 -100 0 100 200 300 400 500 600 9 1 1 1 1 I I 1 i I

8 - 0

7 -

6 - A

5 - 2 >- a E w 4 - Z W

0

3 -

2 -

0 CHARPY DATA - MEAN IMPACT CURVE

I 1 I 1 I 1 1

Y VARIABLE: ENERGY MODEL PARAMETERS

L O m SHELF ENERGY [HELD FIXED]: 0.1 (J),O,l (FT-LB) MID-TRANSITION TEMPEFSTURE:-67.3 (DEG C),-89.1 (DEG F)

UPPER SHELF ENERGY: 7.7 (J) ,5.7 (FT-LB) TRANSITION ZONE WIDTH: 37.0 (C DEG),66,5 (F DEG)

UPPER SHELF ENERGY: 7.7 (J),5,7 (FT-LB) NOTE: 15Kh2MFA, TYPE 4 MODEL SET NAME: 1

- 6

- 5

z - 4 T

4; .@

>

W z Lrl

- 3 E

- 2

- 1

0

I 15Kh2HFA. TYPE 41

J-19 NUREGER-6379

SOURCE: WER440-.T4 ANALYSIS SET

0.0 -150 -100 -50 0 50 100 150 200 250 300

Y VARIABLE: EXPANSION MODEL PARAMETERS *

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: -64.6 (DEG C) , -84.3 (DEG F) TRANSITION ZONE WIDTH: 37.9 (C DEG) ,68.2 (F DEG) UPPER SHELF EXPANSION: 0.592 (MM),O.O233 (IN)

UPPER SHELF EXPANSION: 0.592 (MM),O.O233 (IN) NOTE: 15Kh2MFA, TYPE 4 MODEL SET NAME: 0

0.006 350

TEMPERATURE C'FI -200 -100 0 100 200 300 400 900 600

0.8

0.7

0.6 - E 0.5 Y

0.2

0.1

I 1 I 1 1 I 1 I 1

I 15Kh2MFA, TYPE 4 1 0

0 0 0

0

1 I I 0 CHARPY DATA

MEAN IMPACT CURVE

0.030

0.025

0.020 ^f

E 0.015 g?

- z

a a X LI

0.010

0.005

I 1 1 1 1 I I 1

NUREGb2R-6379 J-20

SOURCE: WER440-.T4 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPEXATURE:-54.9 (DEG C) ,-66.8 (DEG F) TRANSITION ZONE WIDTH: 35.2 (C DEG),63.4 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: 15Kh2MFA, TYPE 4 MODEL SET NAME: 9

TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] :-54.9 (DEG C) ,-66.8 (DEG F)

120

100

F: 80

a

z w 0

60

K 4 W I u3 40

20

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 6 0 0

15Kh2MFA, TYPE 4 I h v

i c 0 CHARPY DATA

MEAN 3MPACT CURVE

1 1 I 1 I I 1 I 0 -150 -100 -50 0 50 100 150

TEMPERATURE PCl

J-21

200 250 300 350

NUREGlCR-6379

I

APPENDIX K

HSSl WELD 72W

K- 1 NUREGICR-6379

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 7 2 W . m

SET NAME: 72W.FUL NOTE: NONE

DENT (DEG C) (DEG F) (J) (FT-LB) (MM) ( M I (PERCENT) TEMPERATURE ENERGY EXPANSION SHEAR

72W329 72W343 72W449 72W469 72W460 72W327 72W434 72W395 72W341 72W338 72W443 72W350 72W3 89 72W43 6 72W435 72W348 72W393 72W442 72W456 72W455 72W325 72W377 72W359 72W424 72W357 72W379 72W336 72W426 72W437 72W438 72W461 72W462 72W323 72W451 72W375 72W371 72W414 72W444 72W452 72W301 72W468 72W418 72W404 72W445 72W303 72W3 05 72W473 72W447 72W472 72W446 72W387

-74.0 -74.0 -48.0 -48.0 -48.0 -48.0 -48.0 -48.0 -32.0 -32.0 -24.0 -24 . 0 -24.0 -24.0 -24.0 -24.0 -24.0 -24.0 -24.0 -24.0 -18.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0

10.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 38.0 66.0 80.0 80.0 80.0 80.0 80.0

NUREG/CR-6379

-101.2 -101.2 -54.4 -54.4 -54.4 -54.4 -54.4 -54.4 -25.6 -25.6 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -0.4

24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 50.0 69.8 69.8 69.8 6-9.8 69.8 69.8 69.8 69.8 69.8 69.8 69.8 100.4 150 .8 176.0 176.0 176.0 176.0 176.0

9.50 10 .10 14.90 1 5 . 5 0 15.60 16.30 25.80 30.50 19.70 27.80 29.80 32.50 38.60 46.10 55.60 56.30 65.10 67.10 69.20 71.90 71.90 23.70 28.50 35.90 46.80 59.70 77.30 78.60 86.80 86.80 86.80 92.20 107.10 50.80 66.40 88.80 96.30 101.00 108.50 109.80 111.20 112.50 114.60 122.00 134.20 135.60 108 .50 122.00 124.70 130.80 133.50

7 .01 7.45 10.99 11.43 11.51 12.02 19 .03 22.50 14.53 20.50 21.98 23.97 28.47 34.00 41.01 41.52 48.02 49.49 51.04 53.03 53.03 17.48 21.02 2 6 -48 34.52 44.03 57.01 57.97 64.02 64.02 64.02 68.00 78.99 37.47 48.97 65.50 71.03 74.49 80.03 80.98 82.02 82.98 84.52 89.98 98.98 1 0 0 . 0 1 80.03 89.98 91.97 96 -47 98.46

K-2

0.08 0.00 0.25 0.24 0.27 0.27 0.44 0.39 0.34 0.37 0.69 0.56 0.67 0.69 0.91 0.72 1.04 1.04 1.12 1.17 0.83 0.60 0.48 1.02 0.69 0.97 1.18 1.32 1.25 1.45 1.37 1.52 1.47 1.00 1.14 1.36 1.60 1.68 1.78 1.52 1.83 1.78 1.65 2.13 1.83 1.79 1.60 2.01 1.97 2.21 2 -10

0.003 0.000 0.010 0 * 009 0 . 0 1 1 0 .011 0.017 0.015 0.013 0.015 0.027 0.022 0.026 0.027 0.036 0.028 0.041 0.041 0.044 0.046 0.033 0.024 0.019 0.040 0.027 0.038 0.046 0.052 0.049 0.057 0.054 0.060 0.058 0.039 0.045 0.054 0.063 0.066 0.070 0.060 0.072 0.070 0.065 0.084 0.072 0.070 0.063 0.079 0.078 0.087 0.083

10 .0 3.0 0.0 0.0 0.0 18.0 0.0 0.0 12.0 14.0 32.0 18.0 23.0 25.0 30.0 42.0 47.0 50.0 39.0 57.0 52.0 44.0 20.0 47.0 36.0 39.0 48.0 53.0 23.0 43.0 64.0 69.0 70.0 56.0 38.0 73.0 60.0 79.0 78.0 25.0 82.0 84.0 80.0 88.0 95.0 95.0 86.0 100 .0 96.0 100.0 1 0 0 . 0

72W454 72W43 0 72W397 72W453 72W420 72W3 07 72W355 72W3 85 72W349 72W458 72W470 72W457 72W471 72W361 72W440 72W381 72W309 72W450 72W448 72W475 72W474 72W408 72W464 72W463 72W441 72W432 72W406 72W465 72W466 72W412 72W459 72W321 72W467

80.0 176.0 80.0 176.0 80.0 176.0 80.0 176.0 80.0 176.0 93.0 199.4 140.0 284.0 140.0 284.0 140.0 284.0 140.0 284.0 140.0 284.0 140.0 284.0 140.0 284.0 140.0 284.0 140.0 284.0 140.0 284.0 149.0 300.2 190.0 374.0 190.0 374.0 190.0 374.0 190.0 374.0 190.0 374.0 190.0 374.0 190.0 374.0 190.0 374.0 190.0 374.0 190.0 374.0 288.0 550.4 288.0 550.4 288.0 550.4 288.0 550.4 288.0 550.4 288.0. 550.4

135.60 136.90 138.30 139.60 141.00 136.90 124.70 127.40 130.80 132.90 134.20 135.60 136.90 136.90 136.90 148.50 134.90 113 .'90 122 -70 127 -40 129.50 138.30 138.30 141.70 142 -40 143.00 143.00 135.60 136.30 140.30 141.00 142.40 147.80

100.01 100.97 102.00 102.96 104.00 100.97 91.97 93.97 96.47 98.02 98.98 100.01 100.97 100.97 100.97 109.53 99.50 84.01 90.50 93.97 95.51 102.00 102.00 104.51 105.03 105.47 105.47 100.01 100.53 103.48 104.00 105.03 109.01

2.18 2 -39 2-08 2.21 2 -41 1.89 2.11 2.03 2.13 2.06 2 -20 2.29 2-06 2.01 2.34 2 -31 2.05 1-78 2 -12 2.06 2 -21 2.08 1-80 2.41 2 -26 2.06 2.18 1.94 1.97 2-03 2.13 2 -24 2 -22

0.086

0.082 0.094

0.087 0.095 0.074 0.083 0.080 0.084 0.081 0.087 0.090 0.081 0.079 0.092 0.091 0.081 0.070 0.083 0.081 0.087 0.082 0.071 0.095 0.089 0.081 0.086 0.076 0.078 0.080 0.084 0.088 0.087

100.0 100.0 100.0 100.0 100 * 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 *

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100 0 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 84

K-3

SOURCE: 72W.FUL ANALYSIS SET

0

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED] : 2 -7 (J) ,2 -0 (FT-LB) MID-TRANSITION TEMPERATURE: -4.5 (DEG C ) , 23.9 (DEG F)

UPPER SHELF ENERGY: 136.3 (J),100.5 (FT-LB) TRANSITION ZONE WIDTH: 103.7 (C DEG) ,186.6 (F DEG)

UPPER SHELF ENERGY: 136.3 (5),100.5 (FT-LB) TEMPERATURE [41 (5),30-2 (FT-LB) ENERGY] :-28.1 (DEG C),-18.6 (DEG F) TEMPERATURE [68 ( 5 ) , 5 0 . 2 (FT-LB) ENERGYI:-5.7 (DEG C),21.8 (DEG I?) NOTE: NONE MODEL SET NAME: 9

I 1 I I I 1 1 l o

175

1 50

125

3 - 100 >- a K u w z 75

50

25

0 0

L

TEMPERATURE C'FI -200 -100 0 100 200 300 400 500 600

I 1 1 I 1 1 I I , 1 I

100

IHSSI WELD 72W, FULL-SIZE DATA1

,-

-

-

1 1 2 0

h

a0 c, k

- 6 0 & W z W

40

20 0

8

0

0 CHARPY DATA MEAN IMPACT CURVE

NU REGER-6379

T E M P E R A T U R E PC1

K-4

SOURCE: 72W.EWL ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED] : 0.061 (MM) , O . 0024 (IN) MID-TRANSITION TEMPERATURE:-5.7 (DEG C ) ,21.7 (DEG F) TRANSITION ZONE WIDTH: 98.6 (C DEG) ,177.4 (F DEG) UPPER SHELF EXPANSION: 2.119 (MM),0.0834 (IN)

UPPER SHELF EXPANSION: 2.119 (MM) ,0.0834 (IN) NOTE: NONE MODEL SET NAME: 0

3.0

2.5

- E 2.0 € Y

Z

a z c a

1.5

5 1.0

0.5

TEMPERATURE [OF) -200 -1 00 0 100 200 300 400 500 600

I 1 1 1 1 1 1 1 I i HSSI WELD 7 2 W I

- 0. IO

0.08 - c

z - -

- 0.06 z < a X - 0.04

0.02 0 CHARPY DATA

- MEAN IMPACT CURVE

1 I 1 I I 1 I 0.00 0.0 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE (OCI

K-5 NUREGER-6379

SOURCE: 72W.FTJL ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT)

TRANSITION ZONE WIDTH: 99.6 (C DEG) ,179.2 (F DEG) ,

UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

MID-TRANSITION TEMPERATURE:-I.O (DEG C ) r30.2 (DEG F)

UPPER SmLF SHEAR: 100 (PERCENT) NOTE: NONE MODEL SET NAME: 10 DESTINATION FILE NAME: 1 DESTINATION DIRECTORY PATH: C:\USER\ MODEL VARIABLES SAVED

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 600

120 , 1 I I I I 1 1 1 I I IHSSI WELD 7 2 W ]

100 -

c 8 0 - z W 0

& 60 E 4 W $ 40-

E -

ii 0 CHARPY DATA MEAN IMPACT CURVE

L I I I 1 I 1 I 1 -150 -100 -50 0 50 100 150 200 250 300 350

TEMPERATURE C'Cl

NUREGER-6379

--: _ _ , . ~ ., .. . .--.,,> ' *. . . . -,". . -. - '.i _." . . \ f I .. .-

K-6

SOURCE: ANALYSIS SET ANALYSIS SET NAEIE: 72W-Tl

SET NAME: 72W-Tl NOTE: HSSI WELD 72W SPECIMEN TYPE 1

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-LB) (m) (IN) (PERCENT)

7W1G 7W1F 7W1H 7W1E 7W1I 7W1D 7W1J 7W1C 7W1K 7W1B 7W1L 7wl.A 7 w m 7W1N 7W1P 7W10

-112.5 -100.0 -87.5 -75.0 -62.5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 50.0 100.0 150.0 200.0

-170.5 -148.0 -125.5 -103.0 -80 . 5 -58 . 0 -35 . 5 -13.0 9.5 32.0 54.5 77.0 122.0 212.0 302.0 392.0

1.45 0.66 4.75 10.21 3.59 13.31 12.35 8.09 16.70 18.21 21.02 20.66 22.19 22.80 24.55 22.47

1.07 0.49 3.50 7.53 2.65 9.82 9.11 5.97 12 . 32 13.43 15.50 15.24 16 . 37 16.82 18 . 11 16 . 57

0.00 0 . 0 0 0.03 '0.36 0.08 0.48 0.48 0.38 0.69 0.74 0.91 0.91 0.89 0.91 0.99 0.91

0.000 0.000 0.001 0.014 0.003 0.019 0 . 019 0 . 015 0.027 0.029 0.036 0.036 0.035 0.036 0.039 0.036

0.0 0.0 5.0 10.0 10.0 45.0 50.0 65.0 75.0 75.0 90.0 85.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 16

,

K-7 NUREGER-6379

SOURCE: 72W-Tl ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 (J),O.l (FT-LB) MID-TRANSITION TEMeERATURE: -36.2 (DEG C) , -33.1 (DEG F)

UPPER SHELF ENERGY: 23.7 (J),17.5 (FT-LB) ' TRANSITION ZONE WIDTH: 131.9 (C DEG),237.4 (F DEG)

UPPER SHELF ENERGY: 23.7 (J),17.5 (FT-LB) NOTE: HSSI WELD 72W, TYPE 1 MODEL SET NAME: 1

-200 -100 0 100 200 300 400 500 600 30 1 1 1 I I I I I I

HSSL 72W, TYPE I 1 - 25 - 0

0 - 20 -

CI

2 - > 0 15 - W z W

- a

- -

I 0 CHARPY DATA - MEAN IMPACT CURVE

I I I I

20.0

17.5

15.0 -P

I 12.5

Y

>

W z 10.0

7.5 w

5.0

2.5

0.0

NUREG/CR-6379 K-8

TEMPERATURE ["CI

SOURCE:

1.0

72W-Tl AN?GYSIS

1 1 1 1 1 I 1 1 1

HSSI 72W, TYPE 1 I - 0.04 - 0

SET

1 .2

0 0

-

z U -

- 0 CHARPY DATA

MEAN IMPACT CURVE

I 1 1 1 1

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: -34.1 (DEG C) , -29.4 (DEG F) TRANSITION ZONE WIDTH: 99.7 (C DEG) ,179.4 (F DEG) UPPER SHELF EXPANSION: 0.951 (MM),0.0375 (IN)

UPPER SHELF EXPANSION: 0.951 (MM) ,0.0375 (IN) NOTE: HSSI WELD 72W, TYPE 1 MODEL SET NAME: 2

c)

0.03 f

z - E z X W

0.02 2

0.01

0.00

K-9 NUREGER-6379

SOURCE: 72W-Tl ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS

LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERAm:-34.9 (DEG C) ,-30.8 (DEG F) TRANSITION ZONE WIDTH: 85.6 (C DEG),154.0 (F DEG) UPPER SHELF SHEAR [HELD FIXED] : 100 (PERCENT)

UPPER SRELF SHEAR: 100 (PERCENT)

NOTE: HSSI WELD 72W, TYPE 1 MODEL SET NAME: 3

TEMPERATURE [ 50 (PERCENT) I 5 0 (PERCENT) SHEXR] : -34.9 (DEG C) , -30.8 (DEG F)

120

109

-2 W I u) 40

2 0

TEMPERATURE PFI -200 -100 0 100 200 300 400 500 6 0 0

I 1 1 1 1 ' I 1 I I

IHSSI 7 2 W , TYPE 1 1

-

-

-

-

- 0 CHARPY DATA

MEAN IMPACT CURVE I__

1 1 I I I I I I -i50 -100 -50 0 50 100 150 200 250 300 356

TEMPERATURE PCl

NUREGKR-6379 K-1 0

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 72W-T2

SET NAME: 72W-T2 NOTE: 72W TYPE 2 SPECIMENS

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-W (MM) (IN) (PERCENT)

7W2H 7W2G 7W2F 7W2I 7W2E 7W2P 7W2 J 7W2D 7W2K 7W2C 7W2L 7W2B 7W2M 7W2A 7W2N 7W20

-125.0 -112 . 5 -100.0 -87 . 5 -75 . 0 -75 . 0 -62 . 5 -50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 37.5 100.0

-193.0 -170.5 -148.0 -125.5 -103.0 -103.0 -80.5 -58.0 -35.5 -13 . 0 9.5 32.0 54.5 77.0 99.5 212 . 0

0.14 2.16 1.57 0.79 0.99 4.23 4.75 5.64 6.02 6.52 7.21 7.28 7.40 7.73 7.54 7.85

0.10 1.59 1.16 0.58 0.73 3.12 3.50 4.16 4.44 4.81 5.32 5.37 5.46 5.70 5.56 5.79

0.00 0.05 0.00 0.00 0.00 0.28 0.33 0.36 0.41 0.51 0.43 0.61 0.56 0.56 0.64 0.66

0.000 0.002 0 . 000 0.000 0.000 0 . 011 0.013 0.014 0.016 0.020 0 . 017 0.024 0.022 0.022 0.025 0.026

0.0 0 . 0 0.0 0.0 0.0 20.0 40.0 70.0 80.0 90.0 90.0 100.0 95.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 16

K-11 NUREG/CR-6379

SOURCE: 72W-T2 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWER SHELF ENERGY [HELD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE: -64.6 (DEG C) , -84.3 (DEG F) TRANSITION ZONE WIDTH: 7 9 . 1 ( C DEG),142.4 (F DEG) UPPER SHELF ENERGY: 7 . 7 (J) , 5 . 7 (FT-LB)

UPPER SHELF ENERGY: 7 . 7 ( J ) , 5 . 7 (FT-LB) NOTE: HSSI WELD 72W, TYPE 2 MODEL SET NAME: 6

-200 -100 0 100 200 300 400 500 600 , 1 1 1 1 1 1 I I

[HSSI 72W, TYPE 21

9 -

0 8 - U

7 -

6 - c.)

2 > a e W z w 4 -

0 CHARPY DATA MEAN IMPACT CURVE

1 1 I 1 I 1

- 6

- 5

CI

- 4 ?

- 3 E

4

>

W z W

b

- 2

- 1

0

NUREGER-6379 K-12

\

SOURCE: 72W-T2 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS

LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE: -54.2 (DEG C) , -65.6 (DEG F) TRANSITION ZONE WIDTH: 74.7 (C DEG),134.5 (F DEG) UPPER SHELF EXPANSION: 0.601 (MM) ,0.0237 (IN)

UPPER SHELF EXPANSION: 0.601 (MM) ,0.0237 (IN) NOTE: HSSI WELD 72W, TYPE 2 MODEL SET NAME: 5

TEMPERATURE 0 -200 -100 0 100 200 300 400 500 600

0.0

0.7

0 . 6 - E E 0.5 Y

z

<n z U

0.4

: 0.2

a. i

IHSSX 72W. TYPE 2 I

0 CHARPY DATA MEAN IMPACT CURVE

D. CIS0

0.025

- 0.020 f -

z 0 U

0.015 g U n. x W

0.010

a. 005

1 1 1 I 1 I I a. ooo -150 -100 -50 o 50 iao 150 200 250 300 350

TEMPERATURE PCI

K-13

SOURCE: 72W-TZ ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE: -56.3 (DEG C) , -69.3 (DEG F) TRANSITION ZONE WIDTH: 41.4 (C DEG) ,74.4 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT),50 (PERCENT) SHEA.R]:-56.3 (DEG C),-69.3 (DEG F) NOTE: HSSI WELD 72W, TYPE 2 MODEL SET NAME: 4

TEMPERATURE (OF) -200 -100 0 100 200 300 400 500 600

0 CHARPY DATA MEAN IMPACT CURVE

-150 - io0 -50 0 ' 60 t o 0 150 200 250 300 350 TEMPERATURE PCl

NUREGER-6379 K-14

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 72W-T3

SET NAME: 72W-T3 NOTE: SW-SIZE CORRELATION PROGRAM, TYPE 3 SPEC., PLATE 72W

TEMPERATDRE ENERGY EXPANSION SHEAR IDENT (DEG C ) (DEG F) (J) (FT-LB) (MM) (IN) (PERCENT)

7W3I 7W3G 7W3H 7W3F 7W3 J 7W3E 7W3K 7W3D 7W3L 7w3c 7W3M 7W3B 7W3N 7W3A 7W30 7W30 7W3R 7W3R 7W3P 7W3Q

-137 5 -125 . 0 -112 . 5 -100.0 -91.5 -75.0 -62.5 -50.0 -37.5 -25 . 0 -12.5

0.0 12.5 25.0 100.0 100.0 150.0 150.0 200.0 250 0

-215.5 -193.0 -170.5 -148 . 0 -132 . 7 -103 . 0 -80.5 -58.0 -35.5 -13 . 0

9.5 32.0 54.5 77.0 212.0 212 . 0 302.0 302.0 392.0 482.0

0.92 1.26 6.89 4.84 10.09 9.08 11.93 '11.75 11.93 13.45 16.03 16.74 19.43 20.00 20.23 20.23 20.91 20.91 24.27 25.15

0.68 0.93 5.08 3.57 7.44 6.70 8.80 8.67 8.80 9.92 11.82 12.35 14.33 14.75 14.92 14.92 15 . 42 15 . 42 17.90 18.55

0.00 0.00 0.18 '0.08 0.36 0.30 0.56 0.51 0.53 0.58 0.74 0.71 0.76 0.81 0.79 0.79 0.89 0.89 0.97 0.76

0.000 0.000 0 . 007 0.003 0.014 0 . 012 0 . 022 0.020 0.021 0.023 0.029 0.028 0.030 0 . 032 0.031 0.031 0.035 0.035 0.038 0.030

0 . 0 0.0 5.0 0.0 15.0 0.0 35.0 . 45.0 60.0 65.0 85.0 80.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 20

K-15

SOURCE: 72W-T3 ANALYSIS SET

Y VARIABLE: ENERGY MODEL PARAMETERS LOWER SHELF ENERGY [HELD FIXED] : 0.1 (J) ,0.1 (FT-LB) MID-TRANSITION TEMPERATURE:-54-3 (DEG C) ,-65.7 (DEG F) TRANSITION ZONE WIDTH: 183.4 (C DEG),330-2 (F DEG) UPPER SHELF ENERGY: 22.5 (J),16.6 (FT-LB)

UPPER SHELF ENERGY: 22.5 (J),16.6 (FT-LB) NOTE: HSSI WELD 72W, TYPE 3 MODEL SET NAME: 7

30

25

1 I 1 1 1 I 1 I 1 I

I HSSI 7 2 W , TYPE 3 I - 20.0

0 - 17.5 0 -

NUREGlCR-6379

-300 -200 -100 0 100 200 500 400 500 600

- 0 20 -

c.)

- 2 > Cl 15 - K W z W

- -

-

- 0 CHARPY DATA MEAN IMPACT CURVE

I 1 I 1 -200 -150 -100 -50 0 50 100 150 200 250 300

K-16

15.0 fi

I 12.5 g

Y

>

Lrl z

10.0

7.5

5.0

2.5

0.0 350

SOURCE: 72W-T3 ANALYSIS SET

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPEZATURE:-62.6 (DEG C),-80.6 (DEG F) TRANSITION ZONE WIDTH: 121.4 (C DEG) ,218.5 (F DEG) UPPER SHELF EXPANSION: 0.842 (MM) ,0.0331 (IN)

UPPER SHELF EXPANSION: 0.842 (MM) ,0.0331 (IN) NOTE: HSSI WELD 72W, TYPE 3 MODEL SET NAME: 8

-300 -200 -100 0 100 200 300 400 500 600 1.2 1 I I 1 1 1 1 I 1 1

HSSI 7 2 W , TYPE 3 I -

0 1.0 -

0

- 0 0 - E 0.8 - E Y

- Z U

-

I 0 CHARPY DATA MEAN IMPACT CURVE

I 1 1 1 1 1

0.04

0.03 p z 0

z

x w

- ;;

0.02 2

0.01

0.00

K-17 NUREGER-6379

SOURCE: 72W-T3 ANALYSIS SET

YVARUIBLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMF'ERA=:-42.9 (DEG C) ,-45.1 (DEG F) TRANSITION ZONE WIDTH: 78-9 (C DEG),141.9 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT) TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] :-42.9 (DEG C) ,-45.1 (DEG F) NOTE: HSSI WELD 72W, TYPE 3 MODEL SET NAME: 9

I I I 1 1 1 1 1 1

IHSSI 72W, TYPE 31

120 I

n n n n 100 - u Y v

A I- a0 - - z W 0 K W

e 60 - -

-

- 0 CHARPY DATA

20 - MEAN IMPACT CURVE

1 I 1 I 1 1 -200 -150 -100 -50 0 so 100 150 200 250 ~ Q O 350

NUREGjCR-6379 K-18

SOURCE: ANALYSIS SET ANALYSIS SET NAMES: 72W-T4 AND 72WT4FUL

SET NAME: 72W-T4 NOTE: SUB-SIZE CORRELATION PROGRAM, 72W, SPECIMEN TYPE 4

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) ' (FT-LB) (MM) (IN) (PERCENT)

7W4F 7W4G 7W4E 7W4H 7W4I 7W4D 7W4 J 7W4K 7w4c 7W4L 7W4B 7W4A 7W4M

-100.0 -87 . 5 -75.0 -75.0 -62 . 5 -50.0 -50 . 0 -37.5 -25.0 -25.0 0.0 25.0 100.0

-148 . 0 -125.5 -103.0 -103.0 -80.5 -58.0 -58 . 0 -35.5 -13.0 -13.0 32.0 77.0 212.0

0.90 1.60 0.70 0.80 2.80 2.60 4.00 5.90 6.10 6.20 5.50 5.50 5.50

0.66 1.18 0.52 0.59 2.07 1.92 2.95 4.35 4.50 4.57 4.06 4.06 4.06

0 .00 0.00 0.00 0.00 0.20 0.20 0.36 0.51 0.48 0.48 0.74 0.51 0.53

0 .000 0.000 0.000 0.000 0.008 0.008 0.014 0.020 0.019 0.019 0.029 0.020 0.021

0.0 0.0 5.0 5.0 30.0 25.0 70.0 100.0 100.0 100.0 100.0 100.0 100.0

~

NUMBER OF SPECIMENS: 13

SET NAME: 72WT4FUL NOTE: 72W TYPE 4 SPECIMENS TESTED WITH HAMMER AT FULL HEIGHT

TEMPERATURE ENERGY EXPANSION SHEAR IDENT (DEG C) (DEG F) (J) (FT-W (M.w (IN) (PERCENT)

7W4N -75.0 -103.0 1.87 1.38 0.05 0.002 5.0 7W40 -62.5 -80.5 3.12 2.30 0.23 0 . 009 20.0 7W4P -50.0 -58.0 3.47 2.56 0.25 0.010 40.0 7W4Q -25 . 0 -13.0 4.24 3.13 0.36 0.014 80.0 7W4Q 100.0 212.0 5.45 4.02 0.56 0.022 100.0

NUMBER OF SPECIMENS: 5

K-19 NUREGER-6379

SOURCE: 72W T4 AND 72WT4FUL ANALYSIS SETS

Y VARIABLE: ENERGY MODEL PARAMETERS

-

LOWER SHELF ENERGY [HELD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-59.4 (DEG C),-74.9 (DEG F) TRANSITION ZONE WIDTH: 53.1 (C DEG) ,95.6 (F DEG) UPPER SHELF ENERGY: 5.7 (J) ,4.2 (FT-LB)

UPPER SHELF ENERGY: 5.7 (J),4.2 (FT-LB) NOTE: HSSI WELD 72W, TYPE 4, 2.25 AND 5.5 M/S MODEL SET NAME: 2

Q

7

6

5

3 - 4 >. a az

W E 3

2

1

I 1 I I 1 I 1 1 0

TEMPERATURE [OF) -200 -100 0 100 200 300 400 500 600

1 I 1 1 I I 1 I 1

8 0

0 e

[HSSI n w , TYPE 4 I

0 CHARPY DATA MEAN IMPACT CURVE -

NUREGKR-6379 K-20

SOURCE: 72W-T4 AND 72WT4FTJL ANALYSIS SETS

0.9

0.8

0.7

3 0 . 6

Y VARIABLE: EXPANSION MODEL PARAMETERS LOWER SHELF EXPANSION [HELD FIXED]: 0.000 (MM),O.OOOO (IN) MID-TRANSITION TEMPERATURE:-50.6 (DEG C),-59.0 (DEG F) TRANSITION ZONE WIDTH: 48.0 (C DEG),86.4 (F DEG) UPPER SHELF EXPANSION: 0.560 (MM),O.O221 (IN)

UPPER SHELF EXPANSION: 0.560 (MM),O.O221 (IN) NOTE: HSSI WELD 72W, TYPE 4, 2.25 AND 5.5 M/S MODEL SET NAME: 1

1 I 1 1 I I 1 1 0.035 1

HSSI 72W. TYPE 41

0

- I - 0.030

- - 0.025

CI c - - 8 Y

0.5 - 0 - a - 0.4 -

-

0 CHARPY DATA - MEAN IMPACT CURVE

I I 1 1 I 1

K-21

- 0.020 z

ii z 0.015 2

X L1

0.010

0.005

0.006

NUREG/CR-6379

! I

SOURCE: 72W-T4 AND 72WT4mL ANALYSIS SETS

Y VARIABLE: SREAR MODEL PARAMETERS LOWER SHELF SHE3R [HELD FIXED] : 0 (PERCENT) MID-TRANSITION TEMPERAm:-50.2 (DEG C),-58.4 (DEG F) TRANSITION ZONE WIDTH: 33.0 (C DEG),59.5 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: HSSI 72W, TYPE 4, 2.25 AND 5.5 M/S MODEL SET NAME: 20 DESTINATION FILE NAME: 10 DESTINATION DIRECTORY PATH: C:\USER\ HODEL VARIABLES SAVED

TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] :-50.2 (DEG C) ,-58.4 (DEG F)

I20

100

i= 8 0 - z W u

& 60 U 4 w

6

. 5 4 0 -

1 I I 1 I 1 I I 1

- e n

- 01

- -

3 -

NUREG/CR-6379

-200 -100 0 100 200 300 400 500 600

0 20 - -

0 CHARPY DATA MEAN IMPACT CURVE

0 -150 -100 -50 0 50 100 150 200 250 300

I I I 1 I I I I

K-22

350

SOURCE: ANALYSIS SET ANALYSIS SET NAME: 72W-T5

SET NAME: 72W-T5 NOTE: SW-SIZE CORRELATION PROG., 72W, TYPE 5 SPECIMEN

TEMPERATURE .ENERGY EXPANSION IDENT (DEG C) (DEG F) (J) (FT-LB) (MM) (IN)

SHEAR (PERCENT)

7W5L 7W5F 7W5G 7W5M 7W5E

' 7W5H 7W5N 7W5D 7W5I 7w5c 7W5K 7W50 7W5B 7W5A 7W5P 7W5Q 7W5R

-125 . 0 -103.3 -100.0 -87.5 -75.0 -75.0 -62.5 -50.0 -50.0 -25.0 -25.0 -12.5 0.0 25.0 100.0 200.0 200.0

-193.0 -154.0 -148.0 -125.5 -103.0 -103.0 -80.5 -58.0 -58 . 0 -13.0 -13.0 9.5 32.0 77.0 212.0 392.0 392.0

0.83 0.96 2.83 7.93 8.37 10. 52 11.40 11.54

14.10 13.80 17.07 14.53 18.40 19.92 20.13 19 * 01

11.32

0.61 0.71 2.09 5.85 6.17 7.76 8.41 8.51 8.35 10.40 10.18 12 . 59 10.72 13.57 14.69 14.85 14.02

UNKNOWN UNKNOWN UNKNOWN 'UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN TJNKNOWN UNKNOWN TJNKNOWN UNKNOWN

0.0 0.0 0.0 5.0 5.0 10.0 20.0 . 45.0 45.0 65.0 65.0 70.0 70.0 100.0 100.0 100.0 100.0

NUMBER OF SPECIMENS: 17

K-23 NUREGER-6379

SOURCE: 72W-T5 ANALYSIS SET

-200 -100 0 100 200 300 400 500 600 22.5 I I 1 1 1 1 I 1 I

- 20.0 - I 0 0 HSSI 72W, TYPE 51 I

U

- 17.5 - 15.0 -

A - 2 12.5 - > Q Q: W 10.0 - z W

-

-

- 0 CHARPY DATA

MEAN IMPACT CURVE

I 1 1 I 1

Y VARIABLE: ENERGY MODEL PARAMETERS

LOWEX SHELF ENERGY [HEZD FIXED]: 0.1 ( J ) , O . l (FT-LB) MID-TRANSITION TEMPERATURE:-63.6 (DEG C),-82.5 (DEG F) TRANSITION ZONE WIDTH: 121.1 (C DEG),218.0 (F DEG) UPPER SHELF ENERGY: 19.1 (J),14.1 (FT-LB)

UPPER SHELF ENERGY: 19.1 (J) ,14.1 (FT-LB) NOTE: HSSI WELD 72W, TYPE 5 MODEL SET NAME: 3

15.0

12.5

A e 10.0 I +.r G

>-

W z w

Y

7.5

5.0

2.5

6.0

TEMPERATURE PC)

NUREG/CR-6379 K-24

SOURCE: 72W-T5 ANALYSIS SET

Y VARIABLE: SHEAR MODEL PARAMETERS LOWER SHELF SHEAR [HELD FIXED]: 0 (PERCENT) MID-TRANSITION TEMPERATURE:-36.5 (DEG C),-33.6 (DEG F) TRANSITION ZONE WIDTH: 86.7 (C DEG),156;0 (F DEG) UPPER SHELF SHEAR [HELD FIXED]: 100 (PERCENT)

UPPER SHELF SHEAR: 100 (PERCENT)

NOTE: HSSI WELD 72W, TYPE 5 MODEL SET NAME: 4

TEMPERATURE [50 (PERCENT) ,50 (PERCENT) SHEAR] :-36.5

120

100

F: 80 z W 0

& 60

K 4 W 5 40

5

20

TEMPERATURE PFI -200 -100 0 100 200 300 4 0 5

(DEG C) ,-33.6 (DEG F)

I 0 CHARPY DATA I I MEAN IMPACT CURVE1

0 -15Q -100 -50 a BO 100 150 200 250 300 350

TEMPERATURE PCl

I I 1 1 1 1 I

0 600

IHSSI 7 2 W , TYPE 51

m n Y v

d

K-25

U S . NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER (Atriprwd bV NRC Add VoL, Supp.. Rav., . md Adrbndum Nwbm. If my.)

JRC FORM 335 JRCM 1102. 1201,3202

2-89]

BIBLIOGRAPHIC DATA SHEET (see instrucrions on the reverse) NUREG/CR-6379

'.TITLE AND SUBTITLE OWL-6888

A n Improved Correlation Procedure for Subsize and Fd1-Size Charpy Impact Specimen Data

DATE REPORT PUBLISHED MONTH

4. FIN OR GRANT NUMBER L1098

8, AUTHORIS) 6. TYPE OF REPORT

M. A. Sokolov and D. J. Alexander Technical

7. PERIOD COVERED (lyk&e Dares)

, PERFORMING ORGANIZATION - NAME AND ADDRESS IlfNRC.prwi& DkSon. OfficeorRegion, 0.S NudearR~u&zoryCommhim. andmailingddrro:ifmntrbnor,pmvide n m e andmillngaddnnl

Oak Ridge National Laboratory Oak Ridge, TN 37831-6285

.SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC. ~ p e ' ~ ~ s r ~ b o v e ~ i f e c n r s c f i r , p r a ) i d e NRCDkkion, Off- orRegian. U S NudearRlbprlsmry Commission, and miling addmss.1

Division of Engineering Technology Office of Nuclear Regulatory Research US. Nuclear Regulatory Commission Washington, DC 20555-0001

M. G. Vassilaros, NRC Project Manager 3. SUPPLEMENTARY NOTES

1. ABSTRACT I2Wwordror~l

To examine the potential for using subsize Charpy specimens to evaluate the material properties of vessel material for life extension, a study was conducted on the behavior of subsize impact specimens of five different geometries. Effects of notch depth, angle, and radius, as well as overall specimen dimensions were determined. Correlations of the transition temperature determined by the different subsize specimens as compared to full-size specimens were evaluated. A new procedure for transforming data from subsize specimens was developed.

?. KEY WO RDSIDESCR: PTOR S ILin wordr orphmcr &at wiil prirr rrre.r~lrar in lowting the m n . I

impact testing subsize specimens pressure vessels geometry effects transition temperature

3. AVAlLAElUTY STATEMENT

Unclassified 4. SECURITY CLASSIFICATION

mhis Pelel

Unclassified

Unclassified (This Repon1

15. NUMBER OF PAGES

1 16. PRICE

RC FORM 335 12-89)