Perth Waterworks - Conserving one of the world's earliest cast iron facades

19
Aquam igne et aqua haurio – ‘I draw water by 6ire and water’ Perth Waterworks – conserving one of the world’s earliest cast iron facades. Authors : David S Mitchell & Christopher McGregor Presented at the Association for Preservation Technology Conference, Atlanta 2009

Transcript of Perth Waterworks - Conserving one of the world's earliest cast iron facades

Aquam  igne  et  aqua  haurio  –  ‘I  draw  water  by  6ire  and  water’

Perth  Waterworks  –  conserving  one  of  the  world’s  earliest  cast  iron  facades.

Authors  :  David  S  Mitchell  &  Christopher  McGregor

Presented  at  the  Association  for  Preservation  Technology  Conference,  Atlanta  2009

Abstract

Perth  waterworks  was  constructed  in  1832,  designed  by  schoolmaster  Adam  Anderson  and  

manufactured  by  the  Dundee  Foundry  Company.  The  importance  of  the  building  as  a  datum  in  

the  technological  evolution  of  the  use  of  cast  iron  has  not  previously  been  identiDied,  with  

credit  historically  given  to  James  Bogardus  as  a  pioneer  of  the  technique.  The  authors  propose  

that  it  may  be  the  earliest  known  example  of  cast  iron  façade  construction.  The  original  

construction  technique  employed  cast  iron  cement  within  Dlange  faces,  bolted  with  wrought  

iron  Dixings.  SacriDicial  corrosion  caused  widespread  bolt  failure  and  stress  fractures  to  

Dlanges.    Thermal  movement  and  moisture  ingress  had  exacerbated  this  problem.  

The  building  was  dismantled,  and  a  combination  of  repair  techniques  employed.  Retention  of  

historic  fabric  was  considered  of  paramount  importance  with  minimal  amounts  of  re-­‐casting  

undertaken.  

Whilst  James  Bogardus  has  generally  been  credited  with  inventing  the  cast  iron  façade  form  of  pre-­‐

fabricated  construction,  the  $1.6  M  conservation  of  an  unusual  Scottish  building  in  2004  /  2005,  and  

the  research  undertaken  by  the  authors  challenges  the  validiy  of  this.  Perth  Waterworks  may  well  be  

one  of  the  earliest  and  most  important  cast  iron  structures,  hitherto  largely  unknown.

The  use  of    cast  iron  for  structural  columns,  beams  and  spandrels  was  by  the  1820’s  reasonably  

common  in  Britain  and  the  United  States.  Sir  William  Fairbairn  (1789-­‐1874)  has  generally  laid  claim  to  

the  Dirst  complete  iron  building  via  the  three  storey  Dlour  mill  he  designed  and  shipped  to  Turkey  in  

1839.  This  was  not  however  a  fully  cast  iron  constructon,  instead  using  wrought  iron  plates  for  walls.  A  

fully  cast  iron  lighthouse  was  constructed  in  London  by  Cottam  and  Hallen  in  1844  before  being  

shipped  to  Bermuda.  It  utilised  the  bolted  internal  Dlange  principle  used  extensively  in  cast  iron  

building  construction  thereafter.  

Bostonian  Daniel  Bager,  the  pioneer  of  cast  iron  façade  construction  on  a  mass  market  basis  wrote  that  

he  was  ‘the  Dirst  person  who  practically  used  iron  as  a  building  material  for  the  exterior’  of  a  structure,  

refering  to  an  1842  Boston  Shopfront  he  had  erected.  Badgers’  shopfront,  Fairbairns  Mill  and  Cottam  

and  Hallems  lighhouse  were  all  later  than  Adam  Anderson’s  Perth  Waterworks.    

James  Bogardus  (1800  -­‐1846)  has  generally  been  credited  with  inventing  cast  iron  architecture.  The  

authors  would  submit  that  whilst  he  certainly  popularised  the  material  and  the  technology  on  a  large  

scale,  he  did  not  invent  cast  iron  façade  construction.  That  title  may  lie  at  the  door  of  Adam  Anderson,  

the  Perth  schoolmaster.  Bogardus  was  an  inventor,  and  his  move  to  cast  iron  buildings  was  prompted  

by  the  two  major  New  York  Dires  in  1835  and  1845.  

Cast  iron  construction  was  seen  as  Direproof  construction,  and  Badger  established  his  foundry  beside  

the  Columbia  Ironworks  and  the  foundry  of  Daniel  Badger  in  New  York,  1848.  The  modularity  of  the  

cast  iron  components  were  such  that  from  a  limited  number  of  patterns,  high  volumes  of  identical  

components  could  be  cast  and  assembled  quickly.  The  secret,  was  of  course  in  the  design,  the  essence  

of  all  prefabricated  buildings.  His  Dirst  cast  iron  building  was  the  Milhau  pharmacy  of  1848  on  the  West  

side  of  Broadway,  a  Dive  story  façade  erected  in  three  days.

In  the  years  that  followed,  Bogardus  designed  and  erected  a  profusion  of  cast  iron  buildings,  notably  

the  Sun  Building  in  Baltimore.

Whilst  the  work  of  Bogardus  was  sixteen  years  later  than  Anderson,  there  are  some  potentially  

interesting  connections.  These  may  of  course  be  cirumstantial,  but  perhaps  there  is  something  more  to  

be  learned.  Bogardus  had  married  Margeret  Maclay  in  1831,  a  Scots  immigrant  to  the  united  States  and  

daughter  of  inDluential  Baptist  Minister  Archibald  Maclay.  His  Dine  engineering  work  sustained  them  in  

the  early  years  of  their  marriage.  He  met  John  Wylie  Thomson,  another  Scot  from  Kilmarnock  who  

arrived  in  New  York  in  1832,  the  year  that  Perth  Waterworks  was  completed,  and  who  was  to  become  

his  trusted  busines  partner.  We  know  that  Bogardus  left  America  for  Britain  in  1836  1,  for  a  planned  

short  period  to  protect  his  overseas  patents.  He  secured  high  quality  engraving  work,  however,  and  

remained  in  Britain  for  four  years.  He  was  joined  by  his  wife  in  1838  who  wished  to  visit  her  family  

and  that  of  Thomson,  in  Scotland.  It  was  on  a  trip  to  Italy  before  they  returned  to  New  York  in  1840,  

that  Bogardus  is  identiDied  as  forming  his  plans  for  cast  iron  architecture  ;

‘  It  was  whilst  in  Italy,  contemplating  there  the  rich  architectural  designs  of  antiquity,  That  Mr  

Bogardus  6irst  conceived  the  idea  of  emulating  them  in  modern  times,  by  the  aid  of  cast  iron’        2  

Given  the  Scottish  connections  with  Bogardus  and  his  sharp  engineering  and  inventive  mind,  it  might  

not  be  too  much  of  an  extrapolation  to  suggest  that  Bogardus  was  certainly  aware  of  the  erection  Perth  

Waterworks.  Anderson  notes  that  in  1837  the  King  of  Prussia  has  asked  for  outline  drawings  of  the  

building  in  order  that  an  identical  structure  be  erected  in  Berlin.  Whilst  to  date  no  record  of  such  a  

building  has  been  determined,  if  the  king  of  Prussia  was  to  learn  of  it,    surely  a  man  in  Borgardus’  

position  would  also  ?  

Perth  is  situated  at  the  heart  of  Scotland,  some  forty  miles  north  of  Edinburgh.  The  river  Tay  bisects  the  

town,  one  of  the  Dinest  salmon  rivers  in  Scotland  with  a  steep  runoff  from  the  surrounding  catchment  

(Figure  1).

Figure  1  :  Mid  Nineteenth  Century  view  of  Perth  showing  Waterworks  (Image  from  D  S  

Mitchell  private  collection)

Perth  Waterworks    is  an  A  Listed  structure  which  identiDies  it  as  a  building  of  national  or  international  

importance.  There  are  around  forty  thousand  listed  structures  in  Scotland,  from  grade  C  to  A  (highest)  

as  designated  by  Historic  Scotland  on  behalf  of  Scottish  Ministers.  Historic  Scotland  served  a  number  

of  functions  during  this  project,  a  statutory  consent  role  for  the  conservation  works  undertaken,  and  as  

a  key  funding  partner  for  the  project.  

As  early  as  1751  Perth  town  council  proposed  pumping  a  water  supply  from  the  Tay,  but  it  was  not  

until  1762  that  a  timber  piped  supply  was  installed,  replaced  thirty  years  later  in  lead.  In  1810  The  

Perth  Water  Commisioners  requested  that  Adam  Anderson  evaluate  the  options  of  providing  a  water  

supply.  

Anderson  was  then  local  schoolmaster  with  an  interest  in  science  matters.  Anderson  conducted  

extensive  water  sampling,  and  discovered  that  general  abstraction  from  the  land  adjacent  to  the  river  

brought  water  that  was  contaminated  from  the  alluvial  deposits  borne  downstream  by  the  river.  

However,  when  sinking  a  nine  foot  cast  iron  pipe  into  the  bed  of  the  Tay  itself,  he  discovered  that  he  

could  penetrate  a  clay  band  beneath  the  river  bed  where  the  staticial  pressure  forced  the  water  level  in  

the  pipe  well  above  the  river  level,  and  raising  good  quality  drinking  water.  Further  evaluation  

identiDied  that  the  river  had  eroded  through  the  clay  band  on  Moncreiffe  Island  on  the  Tay,  and  this  was  

selected  for  the  extraction  point.  

Andersons  logic  was  simple,  yet  highly  effective.  Filter  beds  would  be  lain  on  Moncreiffe  Island  and  the  

water  pumped  to  a  high  level  storage  tank  or  cistern.  A  deep  well  would  be  constructed  beneath  the  

ground.  The  base  level  of  the  reservoir  was  set  at  four  feet  above  the  the  level  of  the  highest  outlet  

point  in  the  town  to  ensure  that  the  water  supply  would  not  fail.  He  designed  an  additional  mechanism  

to  ensure  that  supplies  were  maintained  to  those  properties  which  might  be  considered  marginal  

(Figure  2).  

Figure  2  :  Operational  Sketch  of  Perth  Waterworks  by  Adam  Anderson  (c.  1830).  Image  courtesy  

of  Perth  and  Kinross  Council  Archives.

Anderson  Dirst  selected  a  site  adjacent  to  Grey  Friars  Graveyard,  proposing  a  relatively  plain  structure  

given  its  location.  The  local  residents  were  unhappy  about  the  prospect  of  the  water  supply  for  the  

town  being  in  such  close  proximity  to  the  graveyard,  and  a  new  location  on  the  corner  of  Marshall  

Place  and  Tay  Street  selected.  Given  the  prominent  location,  Anderson  re-­‐designed  the  building  in  the  

ionic  order  (Figures  3  and  4).

Figure  3  :  Anderson  designs  drawing  for  Perth  Waterworks,  c.  1830  (Image  copyright  of  

Dundee  Library)

Figure  4  :  Anderson  designs  drawing  for  Perth  Waterworks,  c.  1830  (Image  copyright  of  

Dundee  Library)

Firms  submitted  tenders  for  the  pipework  and  the  cast  iron  façade  work  separately.  Eleven  

ironfounders  tendered  for  the  casting  and  erecting  the  façade  work,  some  of  which  recorded  a  

manufacture  and  installation  timescale  of  six  months  from  order  3  .  Whilst  Scotland  was  to  become  the  

location  of  a  large  and  specialised  collection  of  architectural  ironfounders  in  the  latter  half  of  the  

Nineteenth  Century  with  famous  Dirms  such  as  Walter  MacFarlane  &  Co,  McDowell  Steven  and  George  

Smith’s  Sun  Foundry  exporting  structures  around  the  world,  there  were  few  speciDically  architectural  

ironfounders  in  Scotland  at  that  time.  The  notable  exception  was  Carron  Company,  founded  in  1759  as  

the  Dirst  large  scale  industrial  operation  in  Britain.  It  is  somewhat  surprising  that  Carron  does  not  

appear  on  the  tender  list,  although  one  of  their  engine  men  later  applied  for  the  Perth  engine  man  post.  

St  Johns  Foundry  in  Perth  was  the  lowest  bid  at  £980  which  was  accepted.  A  dispute  over  speciDication  

later  developed  with  Anderson,    and  the  Dirm  withdrew  it’s  bid,  citing  the  death  of  the  foundry  

manager  who  had  agreed  the  contract  originally.  The  contract  for  both  the  façade  and  the  steam  engine  

was  subsequently  awarded  to  the  Dundee  Foundry  4.  

The  Dilter  beds  were  excavated  four  feet  below  the  river  bed  with  a  gravel  base.  Eight  foot  walls  were  

built  in  open  stonework  to  allow  water  percolation.  The  beds  were  capped  in  Dlat  Dine  jointed  stone  to  

prevent  surface  water  seepage.  The  entire  construction  was  then  buried  beneath  clay  and  gravel  to  

offer  protection  in  spate  conditions.  A  masonry  well  was  constructed  in  the  centre  of  the  bed  from  

which  a  cast  iron  pipe  ran  to  the  bank,  and  a  cast  iron  trap  was  constructed  to  trap  sediment  .  The  river  

pipe  had  a  bore  of  one  foot  with  a  one  inch  wall  thickness,  and  coated  inside  and  out  with  India  rubber  

dissolved  in  linseed  oil  and  coal  tar.  Anderson  designed  the  system  such  that  the  pipe  could  be  Dlushed  

towards  the  Dilter  bed  using  water  from  the  cistern.

The  cast  iron  wells  were  sunk  to  a  depth  of  twenty  three  feet  below  the  engine  house  Dloor,  and  four  

feet  below  the  river  bed.  This  allowed  the  wells  to  Dill  largely  under  their  own  pressure.  Anderson  

notes  that  

‘The  unremitting  exertions  of  6ifty  or  sixty  men  with  a  couple  of  large  pumps  in  an  inclined  

position  were  barely  suf6icient  for  removing  the  water,  as  it  6lowed  in  from  every  side’  5

The  foundations  were  constructed  to  take  a  load  of  nine  hundred  tons  in  Perthshire  sandstone  and  

lime,  undertaken  by  the  Dirm  of  Cameron  and  Galletly  at  a  cost  of  £3127  6.  The  primary  cylinder  of  

internally  Dlanged  cast  iron  supported  a  domed  roof  atop  which  was  mounted  a  cupola.  A  steam  pipe  

was  run  from  the  boiler  house  around  the  internal  face  of  the  cistern  to  prevent  freezing  in  winter.  A  

steam  engine  was  incorporated  to  assist  water  movement.  A  beam  engine  was  supplied  by  the  Dundee  

Foundry  Company  in  1832,  with  another  from  Russell  of  Kirkcaldy  the  following  year.The  Dundee  

Foundry  Company  are  not  known  for  their  architectural  work,  but  are  recognised  for  producing  

engines,  notably  the  Stirling  Maxwell  engine  in  later  years.  As  previously  indicated  the  1830’s  was  

before  the  architectural  ironfounders  had  become  established  generally  in  Scotland.  

Perth  waterworks  opened  in  1832  to  considerable  acclaim.  By  the  1860’s  the  works  were  no  longer  

considered  adequate  to  meet  the  needs  of  the  burgeoning  population,  and  a  reservoir  was  constructed  

at  WellsDield.  The  waterworks  became  a  pumping  station  to  supply  the  new  reservoir.  The  

Commissioners  planned  to  dismantle  the  ironwork  in  1872  to  raise  funds,  but  public  outcry  prevented  

this.  The  sole  plates  of  the  reservoir  and  the  associated  masonry  were  dismantled  and  raised  £100  in  

sale.  In  the  same  year  a  new  boiler  house  and  ofDice  building  was  erected  on  the  site.  In  1878,  eighty  

unemployed  men  were  taken  on  to  dig  a  new  well  within  the  round  house  and  construct  foundations  

for  new  engines  supplied  by  Boulton  and  Watt’s  famous  Soho  works.  

A  further  supply  was  run  into  the  building  in  1888  from  a  new  Dilter  above  Perth  bridge,  and  a  new  

engine  room  erected  in  1898  to  house  a  triple  expansion  engine  from  GlenDield  and  Co  to  pump  water  

to  the  new  Muirhall  reservoir.  Another  pumping  engine  was  installed  in  1904.An  attempt  to  sink  an  

artesian  well  was  commenced  in  1916,  but  abandoned  the  following  year  at  a  depth  of  450  feet.  The  

original  two  beam  engines  were  removed  in  1928,  not  having  been  used  for  thirty  years.  The  site  

Dinally  closed  in  1965  when  a  new  waterworks  came  online  to  serve  the  city.  

A  campaign  was  launched  in  1967  to  save  the  building  by  the  newly  formed  Perth  Civic  Trust,  with  

extensive  correspondence  between  the  Trust,  the  Town  Council,  and  the  Ministry  of  Public  Building  

and  Works  (the  predecessor  of  Historic  Scotland).  Interestingly  a  ‘specialist  report’    from  Robertson  

and  Robertson  of  Perth  Foundry  in  1964  considered  the  ironwork  to  be  ‘in  a  remarkably  good  state  of  

preservation’  7      but  then  notes  that  the  frieze  section  is  insecurely  fastened  and  currently  held  on  with  

wire  !    The  foundryman  does  note  that  bolts  were  falling  off  the  structure.  Morris  and  Steedman  

Architects  were  appointed  to  convert  the  building  into  a  tourist  information  centre,  which  was  

completed  in  1974.  the  tradition  of  technological  innovation  continued,  as  the  showpiece  of  the  

building  was  a  360  degree  scenic  projection  made  possible  by  fourteen  slide  projectors.  

The  original  engineering  expertise  required  to  cast  radiused  panels  in  relatively  thin  section  to  form  a  

perfect  cylinder,  as  well  as  the  highly  decorative  work,  was  considerable.  The  radiused  panels  which  

form  the  core  of  the  building  were  cast  in  grey  iron  with  internally  faced  Dlanges  on  four  sides.  These  

Dlanges  are  tapered  inwards  to  effect  a  better  seal.  The  jointing  detail  varies  from  location  to  location  

but  essentially  comprises  a  wrought  iron  Ditting  strip  with  cast  iron  cement  inDill.  In  some  locations  

leather  strips  had  been  used  where  a  Ditting  problem  had  occurred.  Cast  iron  cement  was  invented  by  

William  Murdoch,  a  Scot  who  worked  closely  with  James  Watt  and  Mathew  Boulton  8  .  It  comprises  cast  

iron  Dilings  mixed  with  sal  amoniac  (ammonium  chloride)  which  sets  hard  in  the  joint,  and  was  used  

extensively  in  the  jointing  of  pipework  in  both  steam  and  water  pipes.  

The  original  proposal  for  the  dome  was  relatively  utilitarian  due  to  it’s  planned  location  next  to  the  

graveyard,  but  the  current  prominent  location  prompted  a  more  decorative  approach.  Ionic  pilasters  

and  decorative  corbels  and  friezes  were  cast  and  bolted  through  the  primary  structure  to  create  a  more  

decorative  building,  including  the  city  crest.  References  to  the  paintwork  are  somewhat  conDlicting,  one  

specifying  that  the  ornamentation  should  be  a  darker  colour  than  the  rest  of  the  dome,  another  that  it  

should  be  ‘shaded  as  the  stone  below’  which  matches  another  quote  noting  that  it  would  be  painted  ‘in  

imitation  of  ashlar’  at  a  cost  of  £13.50  9  .    The  second  approach  would  appear  to  be  the  one  employed  

and  ties  in  with  later  cast  iron  façade  decoration  where  the  cheaper  cast  iron  could  be  made  to  appear  

like  Dinished  ashlar.  

The  original  decorative  scheme  was  unfortunately  destroyed  in  the  1972  restoration,  when  the  

structure  was  coated  in  a  rubber  –  type  paint  which  caused  subsequent  problems  due  to  its  lack  of  

permeability  to  moisture.    

The  1970’s  project  adopted  a  repair  in  situ  approach,  with  key  aspects  being  ;

•The  later  pumping  house  to  the  front  elevation  demolished  to  present  the  site  in  it’s  original  

conDiguration.

•The  masonry  to  be  extensively  cleaned.

•Stress  fractures  to  the  primary  panels  repaired  by  the  ‘Metalock’  TM  process  of  cold  metal  stitching.

•Other  fractures  repaired  using  mild  steel  Dlat  bar  drilled  and  tapped  to  the  cast  iron  panels.

•Limited  re-­‐bolting  within  Dlanges  (the  reasons  for  which  became  apparent  later).

•Recasting  missing  or  damaged  components  of  the  structure  in  Dibreglass.

•Replacement  of  damaged  stone.

•Replicating  the  original  urn  from  Anderson’s  drawings,  again  in  Dibreglass.  

In  the  1960’s  structural  steelwork  was  added  to  the  interior  of  the  dome  to  provide  structural  support  

to  the  cast  ironwork  This  work  was  undertaken  by  Frederick  Braby  and  Co  Ltd  of  Glasgow,  who  were  

themselves  manufacturers  of  architectural  ironwork  of  note  in  the  19th  and  early  20th  Century.  

Thirty  years  later  Perth  Council  had  concerns  over  the  structural  stability  of  the  structure,  particularly  

the  profuse  failure  of  Dlange  bolts.  Water  ingress  was  such  that  a  secondary  waterproof  membrane    was  

installed  to  the  base  of  the  dome  to  provide  protection  to  the  art  gallery  below.  The  tourist  information  

centre  had  been  converted  to  an  art  gallery  by  this  stage.  Glasgow  industrial  heritage  specialists  

Heritage  Engineering  were  appointed  in  1998  to  assess  the  structure,  identifying  ;

•90%  failure  of  Dlange  Dixings.

•Failure  of  previous  cold  metal  stitch  and  plated  repairs.

•Moisture  entrapment  caused  by  using  a  rubber    -­‐  type  coating.

•Insecure  ornamental  work  caused  by  the  failure  of  external  Dixings  by  sacriDicial  corrosion.

•A  microclimate  was  established  in  the  dome  with  extensive  temperature  Dluctuations  and  a  miniature  

hydrological  cycle  of  evaporation  and  condensation  from  the  water  ingress  to  the  dome.  Thermal  

variations  to  the  ironwork  exposed  and  sheltered  from  the  radiant  energy,  particularly  in  winter,  were  

noticeable  in  direct  sunlight,  with  audible  expansion  and  contraction  of  the  cast  iron  structure.  

•An  electrochemical  corrosion  within  the  joint  itself  with  the  wrought  iron  sacriDicially  corroding  to  

the  cast  iron  fabric  and  cast  iron  cement.  The  wrought  iron  Ditting  strips  then  corroding,  with  

expansive  delamination  causing  extensive  failure  of  the  adjacent  cast  iron  Dlanges  (Figure  5).

•Similarly,  the  wrought  iron  bolts  used  to  secure  the  Dlanges  and  decorative  work  corroded  sacriDicially  

to  the  cast  iron  structure.  This  caused  stress  fractures  to  the  cast  ironwork  and  Dlange  failure  in  many  

locations.  

Figure  5  :  Flang  and  bolt  failure  due  to  expansive  corrosion  of  wrought  iron  packer  (Image  D  S  

Mitchell  1998)

Heritage  Engineering  proposed  a  complete  dismantling  of  the  cast  iron  dome  to  effect  repairs,  with  

temporary  repairs  to  Dixings  until  funding  could  be  secured.  Extreme  difDiculty  was  found  in  removing  

corroded  wrought  iron  bolts  without  damage  to  Dlanges.  Around  40  %  replacement  was  achieved  using  

a  custom  jig  and  a  hydraulic  ram.  Replacement  bolts  were  in  318  Stainless  steel,  isolated  from  the  cast  

iron  by  nylon  sleeves.  Additional  clamps  were  manufactured  to  pin  the  Dlange  and  loaded  with  a  torque  

wrench.

Perth  Council  provided  the  bulk  of  the  project  funds,  with  additional  funding  secured  from  the  

Heritage  Lottery  Fund  and  Historic  Scotland  .  The  tendered  works  were  secured  by  general  contractors  

John  Dennis  &  Co  with  the  specialised  ironwork  sub  contracted  to  Casting  Repairs  Ltd.          

The  building  was  drawn  up  to  identify  each  individual  cast  iron  component,  which  was  then  assigned  a  

unique  reference,  and  therefore  location  number.  The  externally  secured  ornamental  castings  were  

removed  fairly  easily,  many  being  held  in  tension,  pulled  into  the  structure  by  as  much  as  three  to  four  

inches  by  the  movement  of  the  cylindrical  core  –  so  much  for  grey  iron  lacking  ductility  !

Major  problems  were  encountered  dismantling  the  primary  structure.  As  previously  noted  many  of  the  

bolts  could  not  be  removed,  and  the  cast  iron  cement  created  a  hard  bond  between  Dlange  faces.  In  

most  cases  the  cement  had  to  be  weakened  by  using  a  cutting  disc  combined  with  a  degree  of  lateral  

movement  under  the  load  of  a  crane.  This  method  was  not  ideal  since  it  risked  damage  to  the  panels,  

particularly  the  Dlanges.  Delays  were  encountered  at  this  point  in  the  project  due  to  the  slow  and  

laborious  nature  of  the  operation  to  remove  panels  safely  (Figure  6)  .  

Figure  6  :  Dismantling  the  building,  January  2003  (Image  C  Mcgregor)

On  removal  it  was  discovered  that  the  1970’s  restoration  had  extensively  utilised  glass  Dibre  to  repair  

the  decorative  freize  elements  and  other  decorative  components.  The  ironwork  was  transported  off  

site  to  the  contractors  workshops  where  it  was  blast  cleaned  using  an  inert  mineral  grit  to  Swedish  

Standard  SA  2.5,  and  a  blast  holding  primer  employed.  At  this  stage  the  project  engineer  undertook  a  

condition  survey  in  conjunction  with  the  contractor  and  Historic  Scotland  (Fig  7).

Fig  7  :  Condition  survey  –  discussing  repair  methods  (Image  C  McGregor)

A  great  deal  of  debate  centred  around  the  retention  of  historic  fabric  against  re-­‐casting  components.  

The  number  of  repairs  required  to  ensure  structural  stability  far  exceeded  the  provisional  contract  

sum,  and  the  project  manager  was  required  to  make  cost  savings  in  other  areas  to  facilitate  this.  The  

Historic  Scotland  ethos  of  conserving  and  retention  of  existing  fabric  demanded  that  repair  

methodologies  utilised  a  variety  of  techniques.  Consequently,    limited  re-­‐casting  work  was  undertaken.  

Cold  metal  stitching  employed  in  the  1970’s  restoration  was  again  employed,  but  to  a  more  limited  

extent  and  only  in  appropriate  scenarios.  Great  care  was  taken  to  stitch  around  historic  cast  detail.  

Pinning  using  318  stainless  steel  dowels  and  epoxy  resins  was  also  utilised.  It  was  of  course,  much  

easier  to  effect  these  repairs  in  a  workshop  environment  than  on  site.

Painting  issues  were  identiDied  off  site  in  terms  of  lack  of  suitable  preparation  and  incomplete  removal  

of  paint  from  decorative  detail,  and  a  lack  of  consistency  of  application.  Lack  of  relative  humidity  

control  also  caused  some  degree  of  moisture  bloom  beneath  the  Dinished  paint  system.  The  coating  

speciDication  utilised  a  zinc  –  rich  primer  coat,  followed  by  a  micaceous  iron  oxide  coat  and  two  coats  

of  standard  metal  gloss.  

Whilst  the  works  to  the  cast  iron  structure  were  undertaken  off  site,  the  main  contractor  undertook  

the  repairs  to  the  masonry  elements,  comprising  indents  using  petrographically  matched  stone  and  

extensive  replacement  of  ordinary  portland  cement  pointing  with  an  appropriate  lime  mortar  

following  analysis  of  an  original  sample.  The  original  engine  house  roof  was  also  re-­‐roofed  in  lead  to  

match  existing  details.  

As  the  cast  ironwork  was  conserved  off  –site,  the  project  team  had  extensive  debate  on  how  to  re-­‐

instate  the  primary  cylindrical  structure.  It  was  agreed  that  the  re-­‐bolting  would  be  undertaken  using  

stainless  steel  bolts  and  nuts  on  the  proviso  that  there  was  no  metal  to  metal  contact  by  using  nylon  

insulators.  Clearly  the  re-­‐instatement  of  a  wrought  iron  packer  was  not  desirable,  but  some  debate  was  

held  on  the  possibility  of  using  cast  iron  cement  again.  Attempts  to  source  a  commercial  supplier  

identiDied  one  potential  in  the  United  States,  but  the  client  held  Dirm  that  it  would  not  be  in  the  best  

interests  of  the  building.  Since  there  clearly  had  been  a  degree  of  electrochemical  interaction  between  

the  original  cast  iron  cement  and  the  cast  panels,  it  was  agreed  that  a  long  life  pH  neutral  grout  would  

be  employed,  run  into  the  joints  post  assembly.  It  would  have  been  our  preference  to  have  seen  a  nylon  

material  acting  as  a  gasket  employed.  A  foam  extrusion  was  used  to  prevent  the  grout  from  escaping  

externally,  and  temporary  tape  used  on  the  internal  face.

Since  the  building  no  longer  had  to  hold  water,  this  meant  that  a  number  of  fractured  Dlanges  did  not  

have  to  be  repaired  intrusively,  but  alternative  Dixing  points  used  where  the  fabric  was  sound.  The  main  

cylinder  came  together  in  a  reasonably  straightforward  manner,  with  some  difDiculty  encountered  as  

the  Dinal  panels  were  lifted  into  place  in  terms  of  alignment.  

The  upper  roof  panels  proved  to  be  much  more  problematic.  The  original  Dit  of  these  had  never  been  

great  since  the  casting  has  a  double  radius,  and  the  upper  drum  castings  supporting  the  cupola  were  in  

poor  condition.  It  was  agreed  to  manufacture  Dibreglass  panels  proDiled  to  Dit  neatly  across  air  gaps  

here  (Fig  8).  These  can  be  clearly  identiDied  as  being  later,  and  meant  that  a  minimal  intervention  

approach  could  be  maintained.  It  also  means  that  the  building    becomes  self  documenting.

Fig  8  :  Fitting  Uibreglass  panels  to  Uill  air  gaps  in  cupola  (Image  C  Mcgregor)

Quality  issues  were  picked  up  on  site  inspections  made  in  terms  of  poor  paintwork,  handling  damage  

to  the  cast  panels,  and  use  of  ferrous  metal  Dixings  and  plates  rather  than  stainless  steel.  Over  liberal  

use  of  polysulphide  mastic  was  picked  up,  as  was  over  –  torquing  of  Dixings  resulting  in  additional  

stress  fractures  to  the  repaired  fabric.  This  required  a  greater  deal  of  site  management  from  the  project  

team  than  would  have  been  expected  and  created  tensions  as  the  project  grew  to  a  close.  The  project  

engineer  is  to  be  commended  for  his  tenacity  at  this  stage  of  the  project.    

A  humidity  controlled  fan  was  installed  in  the  cupola  which  could  automatically  effect  an  air  change  

within  the  structure  fairly  rapidly,  but  at  the  very  least  provided  a  means  of  promoting  airDlow.  This  is  

the  Dirst  real  winter  the  building  has  faced,  but  we  would  realistically  consider  that  the  building  will  

not  have  a  low  level  relative  humidity  as  we  might  like.    

The  building  re-­‐opened  to  it’s  current  use  as  an  art  gallery  in  late  2005  (Fig  9).  Whilst  the  project  was  

not  without  it’s  difDiculties,  we  would  hope  that  it  will  now  become  more  widely  recognised  for  the  role  

it  has  played  in  the  development  of  cast  iron  façade  construction,  and  that  it  is  truly  a  building  of  

international  importance.

Notes

1.  Margot  Gayle  and  Carol  Gayle,  Cast  Iron  Architecture  in  America  (New  York  :  WW  Norton  &  Co,  

1998).

2.  John  W  Thomson,  Cast  Iron  Buildings  –  Their  construction  and  advantages  (New  York,  1856)

3.  Perth  Water  Commisioners  Archive,  PCPE20  Bundle  5,  Perth  &  Kinross  Council  Archives.  

4.  Perth  Water  Commisioners  Archive,  PWCPE20  Bundle  9,  Perth  &  Kinross  Council  Archives.

5.  Anderson  quote…………….

6.  Perth  Water  Commissioners  Archives,  PWCPE20  Bundle  4,  Perth  &  Kinross  Council  Archives.

7.  National  Archives  of  Scotland  Papers  NAS  DD27/4253.

8.  Samuel  Smiles,  Lives  of  the  Engineers,  3  Vol  (London,  1862).  

9.  Perth  Water  Commissioners  Archives,  PEWCPE20  Bundle  11.  Perth  &  Kinross  Council  Archives.

Acknowledgements

Perth  City  Archives  and  the  National  Archives  of  Scotland  for  access  to  archive  documents,  Moses  

Jenkins,  Researcher  with  Historic  Scotland  TCRE  Group,  John  Sinclair  of  Allen  Gordon  &  Co,  Heritage  

Engineering,  Casting  Repairs,  Historic  Scotland  for  supporting  the  writing  and  presentation  of  this  

paper.

Contact    Details

David  S  Mitchell

Director  of  Conservation

Historic  Scotland  

Longmore  House

Edinburgh

EH9  1SH

+44  131  668  8929

[email protected]

[email protected]