Lecture 10. Bursting. - Filip Piękniewski

61
Introduction Burster disection Types of bursting Recap Mathematical Foundations of Neuroscience - Lecture 10. Bursting. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 1/49

Transcript of Lecture 10. Bursting. - Filip Piękniewski

IntroductionBurster disection

Types of burstingRecap

Mathematical Foundations of Neuroscience -Lecture 10. Bursting.

Filip Piękniewski

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,Toruń, Poland

Winter 2009/2010

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 1/49

IntroductionBurster disection

Types of burstingRecap

Introduction

Up to now, we’ve seen that neurons may spike in response toinput currentWe’ve studied the geometrical mechanisms that lead fromresting to spikingBut this is not the end of the story. Some neurons, instead ofsending one spike, send a whole bunch of spikes. These spikepackets are called bursts.It is not yet obvious what is bursting for - it may be morereliable in information exchange. Burst may also encode achannel (frequency modulation)Today we will look into the mechanisms responsible forbursting

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 2/49

IntroductionBurster disection

Types of burstingRecap

0 20 40 60 80 100 120 140 160 180 200120

100

80

60

40

20

0

20V

Time (ms)

Neuron responseInput current

Figure: An example of a neuron bursting in response to a step current.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 3/49

IntroductionBurster disection

Types of burstingRecap

DefinitionA burster is a dynamical system which for some values ofparameters autonomously alternates between periodic orbit and astable resting state.

As we will see bursters can vary from very simple to very complexmultidimensional monsters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 4/49

IntroductionBurster disection

Types of burstingRecap

How could such a behavior occur in 2d system? The onlypossibility is that the trajectory will follow a very awkwardcycle resembling a hedgehog:

However this seems strange, such a model would not resembleany neural models we’ve seen!

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 5/49

IntroductionBurster disection

Types of burstingRecap

2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 31

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

Figure: The system dxdt = x − x3/3 − u + 4

1+e5(1−x) cos(40u), dudt = 0.01x is and

example of a planar burster.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 6/49

IntroductionBurster disection

Types of burstingRecap

-2-1

01

23

-1

-0.5

0

0.5-15

-10

-5

0

5

Figure: Vector field of the hedgehog system represented as plains.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 7/49

IntroductionBurster disection

Types of burstingRecap

In neuronal models however we do not see any hedgehogs!When the input current steps up, the phase portrait instantlychanges and remains fixed.The trajectory can either converge back to equilibrium(possibly firing one spike), or remain on the limit cycleindefinitely.The neuron can be bistable, but still there has to be a currentpulse that switches from one regime to the other.Note that ”bursting like” activity may be induced bystimulating a neuron with sinusoidal input current. Howeverin a real burster something else has to oscillate and modulatethe spiking.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 8/49

IntroductionBurster disection

Types of burstingRecap

0 10 20 30 40 50 60 70 80 90 10090

80

70

60

50

40

30

20

10

0

V

Time (ms)

Neuron responseInput current

Figure: A sinusoidal current may elicit ”bursting like” waveform ( INa,p - IK

bistable integrator)

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 9/49

IntroductionBurster disection

Types of burstingRecap

Electrophysiology

In neurons, there has to be some other mechanism responsiblefor spiking/quiescence alternationSpiking activates slow currents, which extinguish firingWhile the neuron remains quiet, the slow current deactivates,eventually destroying the stable equilibriumThe neuron then fires another spike train, and so on...The exact neurophysiological mechanisms responsible forbursting can be of various types, voltage gated, calcium gatedetc. The important thing to note, is that there is some slowlyoscillating current modulating the fast spiking system.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 10/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Example - INa,p + IK + IK(M) model

One can add a slow potassium current to the INa,p + IK model:

CmdVdt = −gL(V − EL) − gNam∞(V )(V − ENa) − gKn(V − EK)+

− gKslownslow(V − EKslow)

dndt = (n∞(V ) − n)/τn(V )

dnslowdt = (n∞slow(V ) − nslow)/τslow(V )

With Cm = 1, EL = −80, τ(n) = 0.152 gL = 8, gNa = 20, gK = 9,gKslow = 5, ENa = 60, EK = −90, EKslow = −90, τslow(V ) = 20,m∞(V ) = 1

1+e−20−V

15, n∞(V ) = 1

1+e−25−V

5, n∞slow(V ) = 1

1+e−20−V

5

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 11/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

0 20 40 60 80 100 120 140 160 180 20090

80

70

60

50

40

30

20

10V

Time (ms)

Neuron responseInput currentSlow current

Figure: INa,p + IK + IK(M) bursting.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 12/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

00.2

0.40.6

0.8

105

05

1080

70

60

50

40

30

20

10

nSlow current

V

Saddle nodebifurcation

Saddle homoclinicbifurcation

Cycle manifold

Resting state

Saddle

Figure: Phase space of a burster (one of many possible).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 13/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Fast-slow bursters

A m + k fast-slow burster is a system which can be describedas:

d~xdt = f (~x ,~u)

d~udt = µg(~x ,~u)

where dim~x = m, dim~u = k and µ is small, such that the twoequations operate on different time scales. The first equationis the fast subsystem while the second is the slow one.In neural models the fast subsystem is usually the 2d systemresponsible for spiking. The slow system can be 1d or 2d andis responsible for modulating spike trains and induces bursts.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 14/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Dissecting a burster

Fast-slow bursters are convenient for analysis, since they canbe dissected.One can freeze the slow dynamics and analyze the fastsubsystem, as the slow variable drives it through variousbifurcationsOn the other hand one can assume the fast system isinstantaneous (similarly to instantaneous gating variables inthe simplifications of Hodgkin-Huxley model) and study thebehavior (phase portrait) of the slow system.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 15/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Dissecting a burster

In order to dissect a bursterd~xdt = f (~x ,~u) d~u

dt = µg(~x ,~u)

we follow steps.If the neuron is resting, find the asymptotic resting value ~xrestfor fixed u. We obtain the function ~xrest(u). We then studythe reduced system:

d~udt = µg(~xrest(u),~u) = g(~u)

If the neuron spikes (folows a periodic orbit) the asymptotic~x∞(u) hasn’t a fixed value. We can however replace theperiodic function with an appropriate average.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 16/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Dissecting a burster

We replace ~u with some other variable ~w = ~u + o(µ) and put

g(~w) =1

n · T (~w)

∫n·T(~w)

0g(~xspike(t, ~w), ~w

)dt

where T (~w) is the spiking period of the fast subsystem at ~wand ~xspike(t, ~w) is the value of the fast subsystem at t andn ∈ N is the number of cycles over which we compute theaverage (the more the better).Equilibria of the reduced slow system correspond to resting orspiking of the fast subsystem. Limit cycles may correspond toswitching between spiking and resting (bursting behavior).The reduction fails for the points of transition from resting tospiking and vice versa (the period T (~w) may become infinite)!

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 17/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Equivalent voltage

The reduced system is useful, but it looses the connection withthe fast subsystem and therefore my be not very informativeWith the neural models the slow system usually depends onlyon voltage V , and not the whole vector of values V , n,m etc...One may solve

g(V ,~u) = g(~u)

to find the equivalent voltage Vequiv(~u). Note thatVequiv(~u) = Vrest(~u) when the neuron is resting.That way we can get back to a more familiar phase space of ~uwith V attached.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 18/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Spiking amplitude

saddle

node

n∞slow(V)

nslow

V

Spiking equivalent voltage0 10 20 30 40 50 60 70 80 90 100

90

80

70

60

50

40

30

20

10

V

Time (ms)

Neuron responseInput currentSlow current

Stable resting state

Figure: INa,p + IK + IK(M) slow system phase portrait I = 3, 6, 10

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 19/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Spiking amplitude

saddle

node

n∞slow(V)

nslow

V

Spiking equivalent voltage

Limit cycle(periodic bursting)

0 10 20 30 40 50 60 70 80 90 10090

80

70

60

50

40

30

20

10

V

Time (ms)

Neuron responseInput currentSlow current

Figure: INa,p + IK + IK(M) slow system phase portrait I = 3, 6, 10

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 19/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Spiking amplitude

saddle

node

n∞slow(V)

nslow

V

Spiking equivalent voltage

Stable, persistent spiking

0 10 20 30 40 50 60 70 80 90 10090

80

70

60

50

40

30

20

10

V

Time (ms)

Neuron responseInput currentSlow current

Figure: INa,p + IK + IK(M) slow system phase portrait I = 3, 6, 10

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 19/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Hysteresis loop and slow wave

Lets get back for a minute to the interpretation of bursting inwhich the slow subsystem drives the fast one through a seriesof bifurcations, which ultimately initiate and extinguishspiking.Note that the slow system has to exhibit periodic behavior.Therefore the minimal dimension for the slow subsystem hasto be two. But we’ve seen 1 + 1 and 2 + 1 bursters so far,how can they exist?The key is that the slow system is coupled with the fast one.If the fast system is bistable, it can drive the oscillations inthe slow one via hysteresis loop.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 20/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Hysteresis loop and slow wave

Consider a simple system:

dxdt = −(x − 1)x(x + 1) − u

dudt = 0.005x

The fast system is bistable (stable states are positive andnegative). When the fast system is at a positive state it slowlyincreases u, eventually reaching a point at which theequilibrium looses stability. At that point the system jumps tothe negative equilibrium, and begins to decrease u. Theprocess continues periodically, even though the slow system is1d and cannot be periodic by itself.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 21/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−3

−2

−1

0

1

2

3

Figure: Hysteresis loop in a pair of coupled 1d systems.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 22/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

0 100 200 300 400 500 600 700 800 900 1000−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure: The slow subsystem (though 1d) exhibits periodic behavior due tohysteresis.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 23/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Hysteresis loop and slow wave

The same thing applies to bursters - when the fast system isbistable (resting/spiking) then 1d slow system is sufficient forbursting and can be driven by the hysteresis loop.If the fast system is monostable, the slow subsystem has tohave at least two variables, giving four in total. Recall thatHodgkin-Huxley model is 4d, therefore it is a minimal modelfor bursting.The slow system even when it is 2d may not be able tooscillate by itself! The only coupling of the equations may bethrough the voltage.Recall that bistability in neural models appears nearsaddle-node homoclinic orbit bifurcation and Bautinbifurcation.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 24/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Stable cycleStable equilibrium

Bistability

Figure: Bistability near saddle-node homoclinic orbit bifurcation

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 25/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

sadd

le n

ode

on

inva

riant

circ

lesa

ddle

nod

e

homoclinic

fold/circle bursting

circle/circle bursting

circle/homoclinic bursting

fold/homoclinic bursting

Figure: Possible ways that the slow system drives the fast one throughbifurcations near saddle-node homoclinic orbit bifurcation.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 26/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

Stable cycle Stable focus

Unstable focus

Bistability

Figure: Bistability near Bautin bifurcation

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 27/49

IntroductionBurster disection

Types of burstingRecap

Example - INa,p + IK + IK(M) modelFast-slow burstersAveragingEquivalent voltageHysteresis loop and slow wave

a(b)

c(b)

Subc

ritic

al A

HSu

perc

ritic

al A

H

Fold cycle

Bautin Bautin

subHopf/Fold cyclebursting

Hopf/Hopfbursting

Hopf/Fold cyclebursting

subHopf/Hopfbursting

Figure: Possible ways that the slow system drives the fast one throughbifurcations near Bautin bifurcation.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 28/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Types of bursting

Any burst of spikes has two important stages - when it startsand when it ends. Each such an event corresponds to abifurcation of the equilibrium and a limit cycle respectively.One can therefore classify bursters by the kind of bifurcation.Since we know there are four bifurcations of stable equilibriaand for bifurcations of limit cycles, we end up with 16 possiblebursters.Some of these bursters have been observed in real neurons,some are purely theoretical (perhaps they will be discovered infuture).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 29/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Fold/Circle Bursting Fold/Fold Cycle BurstingFold/Homoclinic Bursting Fold/Hopf Bursting

Circle/Circle Bursting Circle/Homoclinic Bursting Circle/Hopf Bursting Circle/Fold Cycle Bursting

Hopf/Circle Bursting Hopf/Fold Cycle BurstingHopf/Homoclinic Bursting Hopf/Hopf Bursting

SubHopf/Circle Bursting SubHopf/Fold Cycle BurstingSubHopf/Homoclinic Bursting SubHopf/Hopf Bursting

Saddle node onInvariant Circle

Homoclinic Orbit Supercritical Andronov Hopf Fold Cycle

Saddle node onInvariant Circle

Saddle node (Fold)

Supercritical Andronov Hopf

Subcritical Andronov Hopf

Spiking -> Resting

Resting -> Spiking

Figure: Diagram of major bursting types in neurons (see Izhikevich 2000).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 30/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Fold/Circle Bursting

Figure: Fold-Circle bursting diagram. The slow system requires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 31/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Circle/Circle Bursting

Figure: Circle-Circle bursting diagram. The slow system requires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 32/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Hopf/Circle Bursting

Figure: Supercritical Andronov-Hopf-Circle bursting diagram. The slow systemrequires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 33/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

SubHopf/Circle Bursting

Figure: Subcritical Andronov-Hopf-Circle bursting diagram. The slow systemrequires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 34/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Fold/Homoclinic Bursting

Figure: Fold-Homoclinic bursting diagram. The slow system may be onedimensional due to hysteresis loop..

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 35/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Circle/Homoclinic Bursting

Figure: Circle-Homoclinic bursting diagram. The slow system requires 2dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 36/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Hopf/Homoclinic Bursting

Figure: Supercritical Andronov-Hopf-Homoclinic bursting diagram. The slowsystem requires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 37/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

SubHopf/Homoclinic Bursting

Figure: Subcritical Andronov-Hopf-Homoclinic bursting diagram. The slowsystem requires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 38/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Fold/Hopf Bursting

Figure: Fold-Supercritical Andronov-Hopf bursting diagram.The slow systemrequires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 39/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Circle/Hopf Bursting

Figure: Circle-Supercritical Andronov-Hopf bursting diagram. The slow systemrequires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 40/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Hopf/Hopf Bursting

Figure: Supercritical Andronov-Hopf-Supercritical Andronov-Hopf burstingdiagram. The slow system requires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 41/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

SubHopf/Hopf Bursting

Figure: Subcritical Andronov-Hopf-Supercritical Andronov-Hopf burstingdiagram. The slow system requires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 42/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Fold/Fold Cycle Bursting

Figure: Fold-Fold Cycle bursting diagram. The slow system requires 2dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 43/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Circle/Fold Cycle Bursting

Figure: Circle-Fold Cycle bursting diagram. The slow system requires 2dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 44/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

Hopf/Fold Cycle Bursting

Figure: Supercritical Andronov-Fold Cycle bursting diagram. The slow systemrequires 2 dimensions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 45/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

SubHopf/Fold Cycle Bursting

Figure: Subcritical Andronov-Fold Cycle bursting diagram. The slow systemmay be one dimensional due to hysteresis loop.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 46/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

AaBb

AaBb

Fold/Circle Bursting Fold/Fold Cycle BurstingFold/Hopf Bursting

Circle/Circle Bursting Circle/Homoclinic Bursting Circle/Hopf Bursting Circle/Fold Cycle Bursting

Hopf/Circle Bursting Hopf/Fold Cycle BurstingHopf/Homoclinic Bursting Hopf/Hopf Bursting

SubHopf/Circle Bursting SubHopf/Hopf Bursting

Saddle node onInvariant Circle

Homoclinic Orbit Supercritical Andronov Hopf Fold Cycle

Saddle node onInvariant Circle

Saddle node (Fold)

Supercritical Andronov Hopf

Subcritical Andronov Hopf

Spiking -> Resting

Resting -> Spiking

SubHopf/Homoclinic Bursting

Bistability at the end of the burst

Bistability at the end of the burst

Bist

abilit

y be

fore

th

e bu

rst

Bist

abilit

y be

fore

th

e bu

rst

SubHopf/Fold Cycle Bursting

Fold/Homoclinic Bursting

Figure: Bistability at the beginning and end of the burst. Marked are modelswhich are bistable during the whole burst (which can have 1d slow system).Are there any other bursters which can be bistable during the whole burst?

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 47/49

IntroductionBurster disection

Types of burstingRecap

Classification by E. IzhikevichBasic neurocomputational properties

AaBb

Fold/Circle Bursting Fold/Fold Cycle BurstingFold/Hopf Bursting

Circle/Circle Bursting Circle/Homoclinic Bursting Circle/Hopf Bursting Circle/Fold Cycle Bursting

Hopf/Circle Bursting Hopf/Fold Cycle BurstingHopf/Homoclinic Bursting Hopf/Hopf Bursting

SubHopf/Circle Bursting SubHopf/Hopf Bursting

Saddle node onInvariant Circle

Homoclinic Orbit Supercritical Andronov Hopf Fold Cycle

Saddle node onInvariant Circle

Saddle node (Fold)

Supercritical Andronov Hopf

Subcritical Andronov Hopf

Spiking -> Resting

Resting -> Spiking

SubHopf/Homoclinic Bursting

Decreasing frequency at the end of the burst

Incr

easi

ng fr

eque

ncy

atth

e be

ginn

ing

of th

e bu

rst

SubHopf/Fold Cycle Bursting

Fold/Homoclinic Bursting

Decreasing frequency at the end of the burst

Figure: Classification of bursters based on their spike frequency at thebeginning and end of the burst.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 48/49

IntroductionBurster disection

Types of burstingRecap

Recapitulation

Bursting is a series of spikes alternating with a period ofquiescence.In the general dynamical system sense, it is a system whichautonomously alternates between period orbit and a restingstate.Fast-slow bursters can be dissected into independent systemsand studied theoreticallyNot all bursters are of the fast-slow type. These are verydifficult to study.The slow system can be 1d (driven by the hysteresis loop -only when the fast system is bistable) or > 1d (slow wavetype).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 10 49/49