HDL-TR-1588 ORGANIC ELECTROLYTE BATTERY ...

109
HDL-TR-1588 ORGANIC ELECTROLYTE BATTERY SYSTEMS by Jeffrey T, Nelson Carla F. Green March 1972 D DC U.S, ARMY MA7ERIEL COMMAND •HARRY DIAMOND LABORATORIES WASHINGTON. DC. 20438 APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

Transcript of HDL-TR-1588 ORGANIC ELECTROLYTE BATTERY ...

HDL-TR-1588

ORGANIC ELECTROLYTE BATTERY SYSTEMS

by

Jeffrey T, Nelson

Carla F. Green

March 1972

D DC

U.S, ARMY MA7ERIEL COMMAND

•HARRY DIAMOND LABORATORIESWASHINGTON. DC. 20438

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

The findings in this report are notto be construed as an official Departmentof the Army position unless so designatedby other authorized documents.

Citation of manufacturers' or tradenames does not constitute an official in-dorsement or approval of the use thereof.

Destroy this report when it is nolonger needed. Do not return it to theoriginator.

I ...........

j1NCT.A•. TFTFD,Secunty Classification A .R&

DOCUMENT CONTROL DATA- R D(SocudiI C7.* ila .,o,. of title. bod•y of obattt end iftdo**t. £vrO?.tjo.' M ~. r be .A W01Df whor !he -4s,&l rsol I to cl'as fw j

OP! I G ATINC AC II ?V (Coep•rtae avmoe he."mCIoq1 ScC,.oYvf C.ASSWFICATION

Harry Diamond Laboratories IFIEDWashington, D.C. 20438

3 RE[PORT? 1 TI * r

ORGANIC ELECTROLYTE BATTERY SYSTEMS

L[ 4. OCISCRuP lvE OdOTC& (7)'po .1 ,epowt £4 fi .Ine .todot**)

S AtJ T6IN4C S9 (First it"". •mel hnatial. lea no".)

Jeffrey T. Nelson, Carla F. Green

0. EIPOIT OAT .06. t. 0 or PAG&S, v 00 .CFO

March 1972 116 L 1010. CO#4TRCl O1 GRANT NO. eO P3ATC'"* 0.RT PdAhelkoSO

b.R-*o, No. DA-lT061102A34A HDL-TR-1588

=.AMCMS Code: 501B.11.86000 f.t oe.at*%".O o, o. *.e, .

HDL Proj: 9EC94 JC.

10 O]I.•TIItelUtN SlTAT~ri1nEN?

Approved for public release; distribution unlimited.

It SUPPLOSENK9TAPT NOTES jiI SPON2SORNG MIL'AlY AC TV,?,

SUSA-MC

12 AOSSRACT €T

A search of the pertinent literature on organic electrolyteattery systems has been conducted to determine which systems, if any,ight be useful to fuze power supplies. The data found in the literaturevaluated in the light of .he requirements necessary for such powerupplies, were found to be not specifically applicable, but useful only.n a ualitative sense, in providing guidance for studies at HDL. A planf study and a list of three anodes, eight solvents, seven solutes, andeven cathodes derived from these data are presented.

i I I•I I• I

DD ..".'.1473 0UNCLASSIFIED 115

=I

UNCL;--•SIFIEDseem t 9. liiil . ..I' I . . .. .

4. L-sK A LINM a LAWK C

* OLtK W T POILS My AOLALW"*"°° o-i -- 0-- %1o.

Organic Electrolyte

Non-Aqueous Electrolyte

Electrode Couples

Anodes

Cathodes

Electrolytic Sol. ?hions

Solvents

Solutes

116 ,,.,.+ CLA T~csITED • •-.

DA-I-1T061102A34A ,-AMCMS Code: 501B.11.86000

HDL Proj: 9EC94

HDL-TR-1588

ORGANIC ELECTROLYTE BATTERY SYSTEMS

by

Jeffrey T. Nelson

Carla F. Green

March 1972

US ARMY MAT ERIEL COMMAND

HARRY DIAMOND LABORATORIESWASH!NGTON Or -C43•

r1

ABSTRACT

A search of the pertinent literature on organic electrolytebattery systems has been conducted to determine which systems,if any, might be useful as fuze power supplies. The data inthe literature, evaluated in the light of the requirementsnecessary for such power supplies, were found to be notspecifically applicable, but useful only in a qualitativesense in providing guidance for studies at HDL. A plan ofstudy and a list of three anodes, eight solvents, seven solutes,and seven cathodes derived from these data are presented.

3

CONTENTS

Page

ABSTPACT ............................................ 3......3

1. INTRODUCTION ............................ 7

2. "DL REQUIR.EMEITS ................................... 8

3. EVALUATION OF LITERLATURE INFORMATION ........... 9

3.1 Electrolytes ................................... 9

3.1.1 Solvents ............................... 9i 3.1.2 Solutes ............................ Ii.

3.1-1 Electrolytic Solutions ............ 12

3.2 Electrode Couplca ............................ 13

3.2.1 Anode Materials .................... 133.2.2 Cathode Materials .............. 133.2.3 Couples ........................... 14

3.3 Complete Cell Systems ........................ 15

4. DISCUSSION OF REQUIREMENTS ........................ 16

4.1 Long Lifetime, Low Current DrainApplications ............................... 16

4.2 Short Lifetime, Moderate Current DrainApplications ............................... 17

5. SUMMJARY AND RECOMMENDATIONS ...................... 18

5.1 Determinations ............................... 195.2 Systems ..................................... 20

6. LITERATURE CITED .................................. 21

DISTRIBUTION ............................................ i

APPENDI CES

A. Conductivity ....................................... 41

B. Calculation of Cell Potential and Energy Density 43

C. Tables ............................................... 45

Preceding page blank

1. INTRODUCTION

The storage and low temperature requirements for fuzepower supplies have severely limited the nu•....r of electro-chemical systems that can be used for these applications.Fuze power supplies must act-ivate and operate at -40OF after10 to 20 years storage at -65*F to +160 0 F. At present, theonly liquid electrolyte enjoying widespread use in fuzepower supplies is the fluoboric acid system. However, theperformennce capabilities of this system are limited by corro-sion ane! adhesion problems with the electrode material. Useof other systems such as aqueous KOH and liquid ammonia hasbeen testricted because ný problems occurring at the limitsof the reqaired operating temperature range. The aqueous

KOH system generally will not activate at low temperatures,in addition to having storage stability problems. On theotter hand, use of a.-nmonia-based eleccrolytes is preventedby the 1igh temperature vapor pressure problem.

Since the temperattire requirements are so severe, andother promising electrolytes were not availal-le, an inves-tigation cf organic electrolyte systems was undertaken.Organic electrolytes usually consist of an inorganic solutedissolved in an organic solvent of very low electricalconductivity. The conductivity of the complete electrolyteis also quite low (usually an order of magnitude or morelower than aqueous systems) which is a disadvantage in high-current-density batteries. However, this low conductivitymay be useful in fast-activation reserve batteries where theinitial voltage rise might otherwise be suppressed by inter-cell shorting through the electrolyte in the fill channel.Intercell shorting may be even further reduced by placingthe solute between the electrode plates and filling thecell stack with the low conductivity solvent alone. Further-more, organic systems are also potentially very useful inthat higher voltages are possible through the utilization ofthe more active metals as anode materials. The use of thesemetals in aqueous media is restricted due to the presence ofreducible hydrogen ions.

The steadily growing interest in organic electrolytebattery systems has resulted in numerous investigations(mostly goverrnnent sponsored) and severa- general sur-veys. Unfortunately, none of these has been concernedwith, or even readily applicable to, fuze power supplies.Because the requirements for fuze power supplies arefrequently unique, this survey is an attempt to determine

Preceding page blank7

which, if any, of the systems previously studied might beuseful for tnis application. Secondarily, because thissurvey contains information on all systems previously investi-gated, it should provide a reference base for the evaluationof future proposals on organic-based systems. It should benoted here, that with tev exceptions the references cited inthe tables pertain to gov.rnment-sponsored contract work. Alist of the companies, agencies, and institutions involved,as well as a PIC (Power Information Center) sheet a:nd contractn.urier Thdex are given in tables C-I, C--II, and C-III.

2. HDL RE'2UIREMENTS

The present approximate performance requirements ofinterest 4or batteries at HDL are threefold: (1) 10 tc 1000

uA/in2 for periods from 2 hours to 30 days, (2) 15 to 30 mA/in 2

for 180 sec v.ith activation in less than 50 msec, and (3) 100

to 5C5 mA/in' for 180 sec wich activation in 150 msec.

The primnarv con-ern of the first requirenent is energy"-ity; i.e., how long _h' battery can produce a given

I' _ential at a given ctrrent density. Normally, energy_nsity figures are given in rerms of watt-hourr per pound(whr/lb) or energy per unit weight. Researchers at HDL,however, are usuilly more interested in energy per unitvolume because the size of a fuze power supply is normallymcre critical than its weight. Therefore, data from theliterature will. be more useful if sufficient information isgiven to allow for the calculation of energy density byvolume.

The second and third requirements are for short-life-time batteries where, although energy density is of interest,power density is of primary concern. As in the case of thefirst requirement, researchers at HDL are more interestedin volume (or area) density rather than weight density.Therefore, for any power density data to be of use it mustLe convertible into watts per unit voltume (or area). Thistype of information is normally available from the literatureonly where polarization (current density vs. potential) dataare given.

Also ot importance., perhaps of primary value, to thestudy at HDL will be that information in the literatureconcerning chemical and physical behavior. For instance,the nature of fuze batte'-jes and the specifications whichgovern their design make certain solvent-solute character-istics not only desirable but necessary. Therefore this type

8

rI

cf information can be used to determine which solvent-solute combinations would be most promising for use in aparticular situation.

3. EVALUATION OF LITERATURE INFORMATION

Any working cell system must contain an electrode couplein contact with an electrolyte. These components shculd havecertain desirable characteristics to provide optimwun perform-ance in a fuze power supply. Once these characteiistics aredefined, then many of the seemingly unlimited possible candi-dates can be eliminated on the basis of information obtainedfrom the literature.

3.1 Electrolytes

Since it is often desirable tc construct a fuze batterywith the solvent in an ampule and the solute between theelectrode plates, it is necessary to consider them separate-ly, as well as combined as an electrolytic solution.

3.1.1 Solvents

Table C-IV is a complete listing of the organic solventsconsidered in the literature covered. Because one of theprimary (and most easily defined) requitements desired fora solvent is a low freezing point, these data are included inthis table. Specifications require that the solvent be a

liquid down to -65°F (-54 0 C). Therefore solvents withfreezing points lower than -65°F are listed in table C-V forconsi-7-ation in the study to be carried on at HDL.Additional itents of data which are of interest, such as con-ductivities, viscosities, etc. are included in table C-V.

To prevent shorting through the fill channels found inmost resex",2 fuze power supplies, a solvent must have lowconductivicy. Most organic solvents meet this requirement,

-5in that conductivities are normally on the order of 10

ohm cm or lower. Resistivities (recipr.ocal conductivi-ties) of this miaqnitude should be sufficient to prevent alowering of voltage during activation and inrercel! corrosionduring operation. (See appendix A for a brief discussion ofthe term-- conductivity and resistivity.) However, it isalso cesizable to have a solvent which forms highly conduc-tive solutions so that the IR drop between the electrodjeswill be mi.nimized. Solution conductivity is usually optia,.imwith solvents characterized by low viscosities and high

9

dielectric constants. For example, dimethyl formamide(viscosity = 0.66 centipoise and dielectric constant =

36.7 at 25°C) forms solutions an order of magnitude moreconductive than methyl cyanoacetate (viscosity = 2.63

centipoise and dielectric constant = 28 at 25 C). The useof low-viscosity and/or high-dielectric-constant additives,such as ethyl ether or ethylene carbonate, has been triedwith some success in improving solution conductivity.

The vapor pressure requirement for the solvent; i.e.,

preferably less than 100 psi at +160°F (71°C), is met byalmost all of the solvents in table C-V. Generally, any

solvent with a boiling point higher than 77 F ( 25C) will

have a vrapor pressure of less than 100 psi at +160 0F. Infact many of the solvents in this table have boiling points

(vapor pressure = 14.7 psi) higher than +1600F.

For fast activation systems, the solvation propertiesof the solvent must be such that the solute (between theelectrode plates) must dissolve rapidly, if not instantane-ously. Generally, a polar solvent (one with a highdielectric constant) is preferable for rapid dissolution ofinorganic solutes. Also, for fast activation (as well asfor high conductivity, see above) the solvent should have alow viscosity.

Finally, the lowest cost per kilogram of the solvents(as found in various chemical catalogues) is listed.Certainly, low cost is of importance when high volume pro-duction is the ultimate desired end result of a study.

Study of table C-IV reveals that the dozen most widelyinvestigated solvents are:

(1) Propylene carbonate (PC)

(2) Dimethylformamide (DMF)

(3) Butyrolactone (BL)

(4) Dimethylsulfoxide (DMSO)(5) Acetonitrile (AN)(6) Nitromethane (NM)

(7) Tetrahydrofuran (THF)

(8) Acetone (A)

(9) Nitrosodimethylamine (NDA)

10

(10) Ethvy!>.. carbonate (EC)

(11) Methyl formate (MF)

(12) Ethyl acetate (EA)

Of the above listed solvents only DMF, THF, A, MF, EA

and PC-NM mixtures have freezing points lower than -65 0 F andof these only MF and the PC-NM mixture have been used in a"successful" battery system. (See section 3.3 for a dis-cussion of "successful" systems.)

3.1.2 Solutes

Table C--VI is a complete listing of the solute materialsconsidered in the literature covered. The majority of thesematerials fall into five general classes of compounds:(1) simple salts; e.g., alkali and alkaline earth halides;(2) Lew~.s acids (electron pair acceptors); e.g., AICl 3 and

BF3 ; (3) Lewis acids combined with alkali halides; e.g.,

LiAlCl 4 (AlCl3 and LiCI); (4) complex fluorides; e.g.,

NaPF6 and KBF 4 ; and (5) organically substituted ammonium

salts; e.g., tetraethylaimmonium perchiorate. The first fourclasses are represented in the ten most commonly studiedsolutes:

(1) I~iClO4

(2) LiCl

(3) AlCl 3

(4) KPF 6

(5) LiPF6

(6) LiAlCl4

(7) LiBF4

(8) NaPF 6

(9) LiF

(10) KSCN

The requirements governing the choice of solute materi-als are compatibility with and solubility in the solvent,lew cost, and ease of handling. The first two requirements

11

are fairly obvious. Certainly the solute must be solublein the solvent and it must not react with the solvent toform any solid or gaseous products. The third requi:.ement(ease of handling) refers to the problems encountered ifthe solute material is gaseous, highly hygroscopic, explosive,or hazardous in any manner. The solute should be such thatit can be easily handled in, at worst, dry -oom conditions.

3.1.3 Electrolytic Solutions

Because the avallable power density of a system is,in part,dependent upon the IR drop between tne electrodes, theconductivity of the electrolytic solution used is of primaryconcern. Extensive listings of conductivities are in theliterature. For specific solvent-solute combinations, mutualreferences in joth solvent and solute tables should bechecked. As mentioned earlier, solutions made with solventspossessing high dielectric constants and low viscositieshave high conductivities. In general, conductivities oforganic *-1.. ctrolytes are at least an order of magnitudelower + Oqueous systems. The values found in the litera-

-2 -4 -l -1.ture 0 from 5 x 10 to 10 ohm cm-. For a givensyste , maximum conductivity is normally obtained at aconcentration of about 1 molar. Above this value, a decreasein conductiviLy is observed, due probably to the increasingviscosity of the solution.

It has been shown that in order to develop limiting

current densities of several hundred mA/cm , cell spacingmust be on the order of 10 mils or less, and that porouselectrodes must be thin, since the cell, spacing involvedalso includes the ion path within the electrode pores.

In addition to having a hiTh ionic conductivity, the

electrolyte must also have certain other physical and chemi-

cal properties. It must not freeze above -40 F (-40 C) and

must have a reasonably low vapor pressure at +140F (-60" 1C).This requirement will certainly ')e met by all solutions madewith the solvents listed in table C-V. Furthermore. theelectrode miaterials must be essentially insoluble in, andchemically inert to, the electrolyte. However, the electrodereaction products should be soluble to prevent film forma-tion.

The purity of the electrolyte can have a marked effectapon the performance of the ceil. The presence of im-purities affects not only the decomposition potential of the

12

solvent, but also the stability of the electrolyte byitself or with regard to the electrode materials used. Themc~t common impurity encountered is water, either as anoriginal constituent of the solvent, or as water of hydra-tion with the solute or cathode materials. While thepresence of water is usually detrimental, in some casessmall amounts appear to be beneficial to the electrodereactions.

3.2 Electrode Couples

As with the breakdown of electrolytes into solventsand solutes, it is also desirable to consider anode andcathode materials separately and then to consider them asa couple.

3.2.1 Anode Materials

Although previously mentioned, it is worth repeatingthat one of the advantages of organic electrolytes is thatthe active alkali nnd alkaline earth metals can be used asanodes. (It should also be noted that some Group IIImetals have also received consideration as anode materials--see table C-VII.) Amcng the desirable characteristicsexhibited by these metals are: low equivalent weights, highhalf-ceil potentials, and large exchange currents. Thehigh exchange currents exhibited by these materials usuallyyield high rates of reaction during discharge, hence lowerpolarization, resulting in higher possible current densities.

3.2.2 Cathode Materials

Both inorganic and organic mater~ials have been con-sidered for use as cathodes in organic electrolyte systems--see table C-VIII. The inorganic compounds most commonlyconsidered are salts of the light transition meosals (Cr,Mn, Fe. Co, Ni, Cu, and Zn), lead, mercury, and silver.These salts are usually t)e oxides (inorganic acid anhv-drides), halides, sulfides, or sulfates. The organic coh -pounds normally considered are substituted aromatics, mostcommonly nitrates.

Among the desirable characteristics for optimum cathodematerials are a small negative free energy of formation andcompatibility with the electrolyte. Also, the materialshould be essentially insoluble in the electrolyte, althoughat least a slight degree of iolubility appears to be neces-sary for electrochemical activity to take place. Ideally,the material itself should De conductive, althouah PbO and

2some nickel sulfides are the only common examples of this.

13

In some cases, e.g., thin electrodes for short lifetime applications, an electrodepositable material would bedesirable to eliminate the necessity of preparing theelectrode by sintering or pasting.

In the case where the cathode reaction products are aninsoluble metal 7nd a soluble salt (of the anode metal),

e- + N'X-e-X (soluble) + M'

a situation arises which can lead to improved cathode per-formance as discharge occurs. That is, as low density,non-conductive M'X is replaced by high density, conductiveM', the electrode becomes more porous and impregnated witha conducting material.

3.2.3 Couples

The items of interest concernine an electrode coupleare: the potential developed by the couple, the obtainablecurrent density at a desired potential, and the lifetime ofthe couple at a desired current density.

The chemical reaction a.3sociated with any given couplecan be used to determine theoretically several of thesecharacteristics. These include the maximum possiblepotential which can be developed by the couple and itstheoretical energy density. (See appendix B for the mathe-matics involved in these determinations.) In general, anelectrode couple with a high cell potential is one of acathode (positive) with a small negative free energy offormation and an anode (negative) which, together with thecathode, yields reaction products with large negative freeenergies of formation.

For a high energy density, the electrode materialsshould have high theoretical charge densities resulting fromsmall equivalent weights.

Table C-IX shows the th.eoretical cell potentials forall combinations of listed anodes and cathodes yielVingpotentials of 2.0 volts or greater. These potentials werecalculated under the assumption that the electrode zouplereaction is a single replacement only:

M + M'X- - M' + X

Other factors; e.g., another type of rezction orsolvation 1complexing) of the products, may cause the coupleto yield a potential hicher than that calculated. This

14

concept is illustrated by the lead-lead dioxide systemzurrenty in use at HDL. If this were a single replacement:rction; i.e.,

Pb + PbO2 - PbO2 + Pb

the system would tbeoretically have zero potential. Sinceit does yield a useable potential, something else must betaking place; in this case, a reaction in which both re-

actants go to the same product, Pb ions.

Therefore, table C-IX is a guide only, and should beconsidered in vi.ew of the fact that couple potentials canpossibly be higher than those shown. it should also benoted that, if a couple does react by means of a simplesingle replacement, the potential developed will be lowecthan the value shown due to the non-ideality of the reaction.

Available data on the current density obtainable froma givEn couple (with only a reasonable amount of polariza-tion)are highly dependent upou electrode construction andelectrolyte composition and purity. Generally, the organicsystems which are presently coisidercd the most successful

operate in the range of 0.1 to 10 mA/cm2 (0.65 to 65 mA/in 2).

3.3 Complete Cell Systems

Although a few companies have advanced systems to apoint where they are making prototype batteries, it isgenerally agreed that a completely successful organicelectrolyte battery has not yet been developed. In thiscase, a "completely successful" system denotes one that willfunction properly over an on-ire range of specifications(temperature extremes, shelf life, etc.) for the purpose for

which it was designed, which might be as a rechargeablesystem, a high energy density, long-lifetime system, etc.however, some of these systems may still be acceptable forthe unique requirements necessary for power supplies intendedfor use in fuzes.

Table C-X is a listing of those systems which are con-sidered to be the most successful for their particularapplication. In most cases the containers and packaging forthese batteries are laboratory type fixtures and are notapplicable for field use.

A study of this taz:Ale shows that: (1) in all cases theactive anode material is lithium, although the construction

15

Ff the electrode may vary, (2) the cathode materials usedare silver, nickel, or copper halides, with the exceptionsCuS and ACL-70, and, (3) that the acceptable solvents (interms of freezing point) are MF, IPA, and the combinationsTHF, DME and PC, NM.

The daLa given in this table are either taken directlyfrom the reference cited or calculated from data given inthe reference. The information listed is in most casesonly part of the data in the literature, but is that whichis pertinent to the study at HDL only. Any gaps in the tableare the result of a lack of data in the literature.

4. DISCUSSION OF REQUIREMENTS

4.1 Long Lifetime, Low Current Drain Applications

This particular paplication presently calls for asystem which will produce from 10 to 1000 pA/in 2 for periodsfrom 2 hours to 30 days.

Tables C-XI and C-XII reflect the amounts of active

anode and cathode electrode materials (in g/in2 and thick-ness in mils) needed for this application. These values are

calculated on the basis of a 100 uA/in2 current drain for 30days, assuming that the electrodes react in a singlereplacement type reaction. To determine the amounts needed

for the specified 10 to 1000 ;iA/in range, use Ni10 to ONwhere N is the quantity listed. These values then reflectthe weights and thicknesses required for a 100 percentefficient discharge of non-porous materials containing nobinding or conductive additives. Since cathode structuresare normally porous and normally require the active materialto be combined with a binder and a conductive medium, thevalues listed should be increased (reasonably by a factor ofat least 2) to obtain a more realistic picture of the cathodematerial required.

The values listed for the anode materials will bereasonably accurate if the weight and thickness of anyrequired supporting metal grid is considered.

In order to determine which cathode materials mayprovide optimum performance, it is necessary to determinepriorities among requirements. Because the volum2 of thefinal battery is of primary concern, the material yieldingthe thinnest electrode at a given current density should begiven first consideration. However, this approach does not

16

take the potential developed by the cell into account; i.e.,a 2-mil thick electrode producting 2 volts is not asdesirable as a 3-mil thick electrode producting 4 volts.Therefore the electrode materials should be considered inorder of decrea.ing potential per unit thickness (volts/mil).Column 3, table C-XII is a listing of such values theoret-ically determined as volts (-is Li) per mil for materialsproducing 2.0 volts or more for which density informationis available.

Also of primary concern is the solubility of thecathode material. Generally, a highly or even moderatelysoluble material will shorten cell life due to depletion ofcathode material and chemical reaction with the anode.Information in the literature relating to the solubility ofcathodes usually takes one of two forms. First, and mostobvious, is that direct information on solubility in, and/orreactivity with, the electrolyte. Second is information onopen-circuit, wet-stand times. The usual cause of failurein cells during open-circuit stand is dissolution of thecathode material causing chemical discharge at the anode.

In a practical sense, tests run at open circuit will bea simple method of screening potential cathode-electrolytecombinations. A cell that will not last for 30 days at

+140 0F at open circuit will not last for that period undera very small current drain.

4.2 Short Lifetime, Moderate Current Drain Applications

There are two applications that require systems whichwill operate for 180 seconds. One requires activation in

less than 50 msec and operation at 15 to 30 mA/in . Thesecond requires activation in 150 msec and operation at 100

2to 500 mA/in .

The maximum amount of material required for these

applications; i.e.: 180 sec x 500 mA/in2 = 90 coulombs/in2,is of the same order of magnitude as the minimum requirement

for the long lifetime applications; i.e., 30 days x 10 uA/in 2

226 coulombs/in2. Therefore it is possible, although not

highly probable, that the same electrodes can be used forall three applications presently being considered. Whenmaterial requirements for the long lifetime applicationsnecessitate 10 or 100 times the minimum requirement,electrode construction techniques will probably need to bemodified.

IVIVOne advantage to the short lifetime applications is

that the cathode solubility problem is greatly reduced.Most of the systems investigated do not show signs ofdeterioratica for at least several days. Therefore, almost

all systems studied should last for 180 seconds at 140 F.

There are two major problems involved in the short life-time applications. The first is in finding organic basedsystems that will activate under load in 50 msec. Sincenone cof the previous investigations were concerned with ripidactivation, there are no available data on this subject. Tlhesecond will be findin'i systems which will maintain a reason-

able potential at 500 mA/in2. The most promising systems inthe literature to date normally orecate at a current drainan order of magnitude smaller 'har. this.

5. SUMMARY AND RECOMMENDATIONS

The investigations covered by this report fall generallyinto one of two groups. One group is made up of thosestudies which are academic in nature and deal primarily withreaction mechanism and kinetics studies. The studies in thisgroup are not directed toward the actual developmenf of abattery system as are those studies in the second group.

The second group are those investigations (usually by

a company, rather than an agency or university) which aredirected primarily at the development of a marketable batteryeystcm. It is the performance data from this type of studywhich should be of interest to researchers at HDL. Many of

the investigations of the second type were screening studiesconcerned primarily with the measurement of the conductivi-ties and stabilities of electrolyte solutions and with thecompatibilities and solubilities of electrode materials(pririarily cathodes) in these solutions.

Of those reports which cover the testing of actualbattery (or single cell) performance, approximately one halfare devoted to rechargeable (secondary) ,ystems. The datarelated to the charging of these systems are of little inter-est in one-time-only fuze power supplies. On the other handthe discharge data and the data concerning wet-stand shelflife are of general interest.

Unfortunately, it was our experience that a gi~ven setof data related to the performlance of a system (eitherprimary or secondary) would be, for our purposes, incompleteor presented in such a manner as to make an interpretation

18

difficult without making some assumptions. Granted that thedata are usable for the purpose of the investigation inquestion, they are of little value in relation to work onfuze power supplies. This is because the general require-ments for the systems covered; i.e., high energy density,necessitated the taking of data in ranges outside the sphereof interest to HDL. Because most responses of thesesystems, particularly polarization data, are not linear,extrapolation of data would be difficult if not undependable.Therefore, the data derived from these systems was usefulprimarily in the fact that we know qualitatively that one systemworks better than another.

The value of the information derived from this litera-ture search (for researchers at HDL) is that it presents alisting of systems (table C-X) which are the best (for otherapplications) to date, rather than presenting specificnumbers upon which we can base definite statements as to hoowell a system will work for our applications. This informa-tion will at least provide some guidance as to whichsystenms will be most promising for study at HDL.

On this basis, it is presently recommended that thestudy at HDL begin with the determinations listed in section5.1 on the systems listed in section 5.2.

5.1 Determinations

(1) Feasibility of rapid activation over a range

of ttýmperatures (-40 F to +140 0F) and loads (0 to 500

mA/in2 ). This study can be done on cathode and anodematerials separately.

(2) Polarization data (particularly at -40°0F) in

the range from 0 to 500 mA/in .

(3) Lifetimes over a range of temperatures

(particularly *1400F) under very low current drains; i.e.,2< 1000 PA/in2.

(4) Effect of preparation conditions (especiallywith relation to inertness and dryness of the environment)upon performance of any systems found promising in 1, 2, and3.

19

5.2 Systems

Anodes a Solventsb Solutes Cathodes

Li MF LiAlCI 4 CuCI 2

Mg PC,NM LiClO4 CuF 2

Ca DMF LiCI CuS

DMSI Li P AgF2

PC KPF6 AgCI

BL Mg(ClO 4) 2 AgS

AN TPA BF4 ACL-70

ACN

aMg and Ca should be tested for comparison as well as for

possible use.

bsome solvents listed are known to freeze above -650F,

but should be tested at least at room temperature forcomr arison purposes.

20

6. LITERATURE CITED

AIR FORCE - CAMBRIDGE RESEARCH LABS.

1. "Adsorption of Ions and Neutral Molecules at Elec-trode Surfaces"; Internal; Project 8659, task 865904; PIC/1199

Article; JACS, 89, 489 (1967)

2. "Ionic Conductance in Non-aqueous Solvents"; ntternal;Project 8659, task 865904; PIC/1200

AiERICAN UNqIVERSITY

3. "Investigation of Electrochemistry of High EnergyCompounds in Organic Electrolytes"; NGR 09-003-005; NASA-LRC;PIC/11871

Quarterly report #1; Foley, Swinehart, Schubert;Apr 65; NASA CR-63741

Quarterly report #2; Foley, Schubert, Helgen;Oct 65; NASA CR-62023

Quarterly report #3; Foley, S.:hubert, Helgen;Apr 66; NASA CR-62034

Supplement to QR #3; Foley, Marciniszyn; Sep 66;NASA CR-76235

Quarterly report #4; Foley; Oct 66Quarterly report #5; Foley, Bogar; Apr 67;

NASA CR-85842Final Report; Foley, Bogar; Jan 68

4. "Research on Electrochemical Energy Conversion Sys-tems"; DA 44-009-AMC-1386(T); ARMY-MERDC; PIC/1398

Int,-rim report; Foley, Taborek; Feb 67; AD653779Fin.-. report; Foley; May 68Report #5; Foley, Taborek, Bomkamp; Nov 68

ARGONNE NATIONAL LABORATORIES

5. "The Thermochemical Properties of the Oxides, Fluor-ides, and Chlorides"; AEC #W-31-109-ENG-38

Repc7t #ANL-5790(1957); GlassnerReport #ANL-7650

21

_t

ARMY-ELECTRONICS COMMAND (ECOM)

6. "New Electrochemical Systems"; Internal; TaskDAIC014501A34A; PIC/447

"High Energy Electrochemical Battery Systems Using

Organic Electrolytes" (Tech Report #ECOM 2632);Knapp; Oct 65; AD627215

"Status Report on Organic Electrolyte High EnergyDensity Batteries" (Report #ECOM-2844); Braeuer,Harvey; May 67; AD654813

7. "New Electrochemical Systems"; Internal; TaskIG6-22001A-053-02-26; PIC/937

8. "Electro:hemical Evaluation of Porous Cathode Struc-tures in Organ" Electrolytes"; Internal; 1T061102A34A-00-201-C8; PIC/l839 (%,ee U. Calif., DAAB07-67-C-0590)

9. "t:i;etic Studies of Transition Metal Cathodes inOrganic Electrolytes"; Internal; IT061102A34A-00-211-C8;PIC/1840

10. "New Cathode Materials for Organic ElectrolyteBatteries"; Internal. IT662705A05302-721-C8, IT622001A053-02-721-C8; PIC/1857

"Feasibility Stuidy of the Lithium/C F Primary Cell"(R and D Tech. Report #ECOM 3322)x Braeuer; Aug 70

11. "Electrokinetics and Mechanism Research"; Internal;DA ITO-14501 A 34A00000; PIC/1933

"Synthesis and Characterization of intermediateCompounds Involved in the Electrochemical Re-duction of m-Dinit;obenzene" (Tech Report #ECOM3222)

12. "Nitroaromatic Reduction Mechanisms"; internal;61145011-IT014501A 34A00000-C8; PIC/1982 (paper presentedto Electrochem. Soc., May 69)

13. "Organic Electrolyte Batteries-Conference Papers";NASr-191; PIC-Bat 209/10

Report (4 papers; King, Marsh, Braeuer, Knight);Jan 67; AD813045

14. "Characterization of Organic Electrolyte Batteries";Internal; IT6-62 1 05A-053-02-723; PIC/2376

22

- r - • • • •• - _. • -• - - =-• -- - -,

15. "Reserve Organic Electrolyte Batteries"; Internal;IG6-63702DG10-01-132; PIC/2377

16. "Organic Electrolyte Battery Cathodes (InterstitialCompounds of Graphite)"; Internal; IT061102A34A; PIC/2392

ARMY-MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT CENTER(MERDC)

17. "Electrode Reactions in Organic Electrolyte Soiu-

tions"; Internal; IT061102B13A; PIC/2203

ATOMICS INTERNATIONAL

18. "Development of a Lightweight Secondary BatterySystem"; DA36-039-SC-88925; ARMY-ECOM; PIC/561

Final report (AI-7823); Osteryoung, et al.; Nov E2;AD 290326

19. "Improved Cathode Systems for High-Energy Primary

Batteries"; F19628-67-C-0387; AIR FORCE-CRL; PIC/1833

Report (Al-68-93); Nicholson; Dec 68; AD845244

20. "Improved Cathode Systems for High-Energy PrimaryBatteries"; F19628-70-C-0086; AIR FORCE-CRL; PIC/2189

BATTELLE MEMORIAL INSTITUTE

21. "Investigation of Porous Lithium Battery Electroded';AF 33(615)-2619; AIR FORCE-WP; PIC/1473

Quarterly report #1; McCallum, et al.; Dec 65;AD474692

Quarterly report #2, McCallum, et al.; Jan 66;AD478016

Quarterly report #3; McCallum, et al.; Apr 66;AD484218

Quarterly report #4; McCallum, et al.; Jul 66;AD487623

TECH report #AFAPL-TR-67-13; McCallum, Semones,raust; Feb 67; AD808937

22. "Battery Information: Personalizing This EmergingResource" (Title of one of fourteen reports produced underthis contract); AF-33(615)-3701; AIR FORCE-WP; PtC/1517

TECH Report #AFAPL-TR-69-40; Johnson, McCallum,Miller; May 69

23

23. "Preparation of Pure Cupric Fluoride"; NP-3-10942;

NASA-LRC; PIC/1895

Final report; Lundquist; Sep 69; NASA CR-72571

24. "Lithium Battery Research"; F23-615-68-C-1282;AIR FORCE-WP; PIC/2091

Tech report #AFAPL-TR-69-48; McCallum, Semones,Tidwell; Jun 69

Tech report #AFAPL-TR-70-38; Semones, Tidwell,McCallum; Jun 70

Tech report #AFAPL-TR-71-49; Semones, McCallum;Jun 71

Tech report #AFAPL-TR-71-82; Semones, McCallum;Sep 71

CARNEGIE INSTITUTE OF TECHNOLOGY

25. "Electrochemical Studies in Non-Aqueous Solvents";NBS-R-09-022-029

Report; Gedansky, Pribadi; 1967; NASA CR-84657

CaSE WESTERN RESERVE UNIVERSITY

26. "Organic Electrode Processes in Non-Aqueous Sol-vents"; N123(62738)-56006A; NAVY-NWC/COR; PIC/1544

Article; Srinivasan, Kuwana; J. Phys. Chem., 72,1144 (1968)

Article; Osa, Kuwana; J. Electroanal. Chem. andInterfac. Chem., 22, 389 (1969)

Report (NWCCL TP 79•7-; Kuwana; Oct 68; AD843141

EAGLE-PICHER INDUSTRIES, INC.

27. "Organic Ele -rolyte Battery for M4anpack"; DAAB07-71-C-0131; ARMY-ECOM; PIC/2387

ELECTRIC STORAGE BATTERY CO. (ESB)

28. "High Energy System (Organic Electrolyte)"; DA-28-043-AMC-01394(E); ARMY-ECOM; PIC/1435

Quarterly report #1; Boden, Buhner, Spera; Oct 65;AD628961

Quarterly report #2; Boden, Buhner, Spera; Jan 66;AD630691

24

Quarterly report #3; Boden, Buhner, Spera; Jun 66;AD634491

Final report (Tech report #ECOM-01394-F); Boden,Buhner, Spera; Sep 66; AD639709

29. "High Energy System (Organic Electrolyte)"; DA-26-043-A-MC-02304 (E); ARMY-ECOM; PIC/1435

Quarterly report #1; Boden, Buhner, Spera; Dec 66;AD643935

Quarterly report #2; Buhner, Spera; Feb 67;AD648920

Quarterly report #3; Buhner, Spera; Jun 67;AD643785

Final repcrt (Tech report #ECOM-02304-F); Boden,Buhner, Spera; Sep 67! AD659419

30. "High Energy System (Organic Electrolyte)"; DAAB07-67-C-0385; ARMY ECOM; PIC/1435

Semi-Annual report #9 (Tech report #ECOM-0385-1);Boden, Buhner, Spera; Feb 68; AD666230

Final report #10 (Tech report #ECOM-0385-F); Hoden,Buhner, Spera; Oct 68; AD676867

ELECTROCHEMICA CORP (ELCA)

31. "Research and Development of a High Energy Non-Aqueous Battery"; NOw 63-0618-C; NAVY-NOSC; PIC/1266

Final report; Eisenberg, Pavlovic; Miy 65

32. "Research and Dev.elcpment of a High Energy Non-Aqueous Battery"; NOw 65-0506-C; NAVY-NOSC; PIC/1266

Report; Eisenberg; Jul 65

33. "Research on a High Energy Non-Aqueous BatterySystem; "NCw 66-0342-C; NAVY-NOSC; PIC/1266

Quarterly report #1; Eisenberg: Mar 66; AD48;014Quarterly report #2; Eisenberg; Jun 66Quarterly report #3; Eisenberg; Sep 66; AD802208Quarterly repozt #4; Eisenberg; Dec 66; AD808475Quarterly report #5; Eisenberg; Mar 67; AD813321Quarterly report #6; Eisenberg; Jun 67; AD918935Final report; Eisenberg, Wong; Sep 67; AD8251'31

25

34. "Research on a High Energy N.'ri-Aqueous BatterySystem"; N00017-n8-C-1401; NAVY-NOSC; PIC/1266

Quarterly report #1; Eisenberg; Dec 67; AD826310Quarterly report #2; Eisenberg; Mar 68; AD832005Quafterly report #3; Eisenberg; tI-ay 68Quarterly report #4; Eisenberg; Sep 68Quarterly report #5; Eisenberg; Dec 68Quarterly report #6; Eisenberg; Mar 69

Quarterly report #7; Eisenberg; Jun 69Final report; Eisenberg; Get 69Quarterly report #1; Eisenberg; Jan 70 ("Research

on Electrochemical Parameters for Non-AqueousBatteries.")

Quarterly report #2; Eisenberg; Apr 70. ("Researchon Electrochemical Parameters for Non-AqueousBatteries.")

Quarterly report #3; Eisenberg; Jul 70. ("Researchon Electrochemical Parameters for Non-AqueousBatteries.")

Final report.; Eisenberg, Wong; Nov 70. ("Researchon Electrochemical Parameters for Non-AqueousBatteries.")

35. "Research and Development of a High Energy Non-Aqueous Battery Power Source"; N00017-7>-C-1410; NAVY-NOSC;PIC/1266

Quarterly report #2; Eisenberg; Feb 71Quarterly report #2; Eisenberg; May 71Quarterly report #3; Wong; Aug 71

36. "Organic Electrolyte Bac*eries"; DAAB07-68-C-0240;ARMY-ECOM; PIC/1991

GLOBE-UNION INC.

37. "Deve-op-ment of High Energy Density Primnary Bat-teries, 200 WHP of Total Battery Weight Minimum; NAS3-2790;NASA-LRC; PIC/896

Quarterly report #1; Towle: Oct 63; NASA CR-55055Quarterly report #2; Towle; Jan 54; AASA CR-53111Quarterly report #3; Towle; Apr 64; NASA CR-56449Final report; Elliott, Hsu, Towle; Jul 64; NASA

CR-S5q153

26

- - . . _ .-w TR . ..I -, -

38. "A Program to Develop a High Energy Density PrimaryBattery w.4ch a Minimum of 200 WHP of Total Battery Weight";NAS3-6015; NASA-LRC; PIC/895

Quarterly report #1; Elliott, et al.; Oct 64; NASACR-5-A187

Quarterly report #2; Elliott, et al.; Jan 65; NASACR-54298

Quarterly report #3; Elliott, et al.; Apr 65; NASACR-54375

Quarterly report #4; Elliott, et al.; Aug 65; NASACR-54450

Quarterly report #5; Elliott, et al.; Oct 65; NASACR-54744

Quarterly report #6; Elliott, et al.; Jan 66; NASACR-54873

Quarterly report #7; Elliott, et al,; Apr 66; NASACR-54928

Quarterly report #8; Elliott, et al.; Jul 66; NASACR-72040

Quarterly report #9; Elliott, et al.; Oct 66; NASACR-72158

Quarterly report #10; Elliott, et al.; Jan 67; NASACR-72189Final report; Elliott, Amlie; Sep 67; NASA CR-72364

39. "Lithium-Moist Air Battery"; DA-44-009-AMC-1552(T);ARMY-MERDC; PIC/1490

Semi-annual report #1; Toni, McDonald, Elliott;Oct 66; AD642248

Interim tech report; Mar 67Final report; Toni, Zwaagstra; Jul 67;

40. "'Organic Electrolyte Battery"; 58-0690, 58-4116,58-5214, 58-5291; Sandia Corp; PIC/1634

Final report (SC-CR-67-2855); McDonald, Murphey,Gower; Dec 67

Final report (SC-CR-69-3084); McDonald; Apr 69Final report (SC-CR-69-3290); McDonald; Nov 69

GULTON INDUSTRIES INC.

41. "Lithium-Nickei Halide Secondary Battery Investi-gation"; Internal

Quarterly report #1; Lyall, Seiger, Shair; May 64;AD433616

27

Quarterly report #2; Lyall, Seiger, Shair; Jun 64;AD601148

Quarterly report #3; Lyall, Seiger, Shair; Sep 64;AD605754

42. "Lithium-Nickel Halide Secondary Battery Investiga-tion"; AF33(615)-1265; AIR FORCE-WP; PIC/987

Quarterly report #1; Lyall; Mar 64; AD464485Quarterly report #2; Lyall; Jun 64; AD468352Quarterly report #3; Lyall, Seiger; Sep 64;

AD474394Final tech report #AFAPL-TR-65-11; Lyall, Seiger,

Shair; Jan 65; AD612492Final tech report #AFAPL-TR-65-128; Lyail, Seiger,

Shair; Mar 66; AD478992

43. "Lithium-Nickel Fluoride Secondary Battery Investi-gation"; AF33(615)-3488; AIR FORCE-WP; PIC/1553

Quarterly report #1; Lyall; Aug 66Quarterly report #2; Lyall, et al.: Nov 66;

AD803529Quarterly report #3; Lyall, !t al.; Feb 67;

AD808839Supplement to QR 'Y-3- Lyall, et al.; Feb 67;

AD816378Quarterly report #4; Lyall, et al.; May 67Quarter±y report #5; Lyall, et al.; Apr 67Quarterly report #6; Lyall, et al.; Nov 67;

AD824659Quarterly report #7; Lyall, et al.; Feb 68Fi.aal report #AFAPL-TR-68-71; Lyall, Seiger,

Orshich; Jul 68

44. "Non-Aqueous Electrolyte Secondary Batteries";

NIH-69-2153; NIH; PIC/2273

LIVINGSTON ELECTRONIC CORP.

45. "Development of High Energy Density Primary Bat-teries 200 WHP of Total Battery Weight Mimimu:2."; NAS3-2775;NASA-LRC; PIC/898

Quarterly report #1; Meyers; et al.; Aug 63;NASA CR-52550

Quarterly report #2; Meyers; Nov 63; NASACR-55743

28

Quarterly report #3; Meyers; Feb 64; NASACR-54024

Final report; Meyers; NASA CR-54083

46. "Development of High Energy Density Primary Bat-teries 200 WHP Total Battery Weight Minimum"; NAS3-6004;NASA-LRC; PIC/1201

Quarterly report #1; Abens, Meyers; Oct 64; NASA

CR-54118Quarterly report #2; Abens, Meyers; Dec 64; NASA

CR-54307Quarterly report #3; Abens, Mayers; Mar 65; NASA

CR-54659Final report; Meyers, et al.; Jun 65; NASA

CR-54803

47. "Development of High Energy Density Primary Bat-teries'; NAS3-7632; NASA-LRC; PIC/1463

Quarterly report #1; Abens, Mahy, Merz; Dec 65;NASA CR-54859

Quarterly report #2; Abens, Mahy, Merz; Dec 65;NASA CR-54920

Quarterly report #3; Abens, Corbett, Merz; Mar 66;NASA CR-54992

Quarterly report #4; Abens, Corbett, Merz; Jun 66;NA'SA CR-72071

Final report; Abens, Merz, Walk; Far 67; NASACR-72331

48. "Development of Hig'. Energy Density Primary Bat-teries"; NAS3-10613; NASA-LRC; PIC/1772

Topical report; Abens; Jan 68; NASA CR-72416Final report; Abens, Merz, Walk; Apr 68; NASA

CR-72535

49. "Lithium Battery for Air-Sea-Rescue-Radios";N00019-68-C-0614; NAVY-NASC; PiC/2178

50. "HIigh Energy Density Primary Battery"; NAS3-13221;NASA-LRCj PIC/2312

LOCKHEED AIRCRAFT CORP

51. "New Cathode-Anods_ Couples using Non-Aqueous Elec-trolytes"; AF33(616)7957; A.!R FORCE-WP; PIC/677

29

Tech. doc. report #ASD-TDR-62-1; Chilton; Apr 62;AD277171

Annual tech report #ASD-TDR-62-837; Chilton, Cook;Sep 62; AD285889

Quarterly tech report #1; Bauman, Cbilton, Cook;Dec 62; AD294308

Quarterly tech report #2; Bauman, Chilton, Cook;Apr 63; AD401846

Quarterly tech report #3; Bauman, Chilton, Cook;Jul 63; AD417856

Tech doc. report #RTD-TDR-63-4083; Bauman, Chilton,Conner, Cook; Oct 63; AD425876

52. "Lithium-Silver Chloride Secondary Battery Investi-gation"; AF33(615)1195; AIR FORCE-WP; PIC/677

Quarterly report #1; Chilton, Conner, Holsinger;Apr 64; AD439399

Quarterly report #2; Chilton, Conner, Holsinger;Jul 64; AD450428

Quarterly report #3; Chilton, Holsinger; Oct 64;AD607968Final report #AFAPL-TR-64-147; Chilton, Conner,Cook, Holsinger; Feb 65; AD612189

53. "Lithi-jr.i Anode Limited Cycle Secondary Battery";AF33(657)-11709; AIR FORCE-WP; PIC/861

Quarterly report #1; Bauman; Sep 63; AD418339Quarterly report #2; Bauman; Dec 63; AD426791Quarterly report #3; Bauman; Mar 64; AD433543Tech doc report #APL-TDR-64-59, Bauman; May 64;

AD601128; ("Limited Cycle Secondary Batteryusing Lithium Anode.")

54. "Litnium Anode Limited Cycle Battery Investigation";AF33(615)2455; AIR FORCE-WP; PIC/1216

Quarterly report #2.; Bauman, Chilton, Mauri; May 65;AD463556

Quarterly report #2; Bauman, Chilton, Mauri; Aug 65;AD468674

Quarterly report #3; Baunian, Chilton, Mauri; Nov 65;AD474219

Quarterly report #4; Baoman, Chilton, Mauri; Feb 66Quarterly report #5; Bauman; May 66; AD483237Quarterly report #6; Bauman, Chilton, Hultquist;

Aug 66; AD489624

Quarucrjy report #7: Bauman, Chilton, Hultquist;Nov 66; AD804103

30

• . . . J - • • -• •• • • • _ _ • . .. . . . • -

Tech report *AFAPL-TR-66-35; Bauman, Chilton, Mauri;Apr 66; AD481543

Tech report #AFAPL-TR-67-104; Bauman, Chilton,Hultquist; Jul 67; AD821051

MALLORY AND CO., INC.

55. "Research and Development of a High Capacity Non-Aqueous Secondary Battery"; NAS3-2780; NASA-LRC; PIC/947

Quarterly report #1; Seiim, HillQuarterly report 72; Selim, Hill; NASA CR-53087Quarterly report #3; Selim, HillQuarterly report #4; Selim, Hill; NASA CR-54164Final report; Hill, Selim; Aug 65; NASA CR-54880

56. "Research and Development of a High rapacity Non-Aqueous Secondary Battery"; NAS3-6017; NASA-LRC; PIC/1176

Quarterly report #1; Selim, Hill; NASA CR-54319Quarterly report #2; Selim, Hill; NASA CR-54407Quarterly report #3; Selim, Hill, NASA CR-54732Quarterly report #4; Selim, Hill; NASA CR-54874Final report; Selim, Hill, Rao; Feb 66; NASA

CR-54969

57. "Evaluation of Rechargeable Lithium-Copper ChlorideOrganic Electrolyte Battery System"; DA-44-009-AMC-1537(T);ARMY-MEFRDC; PIC/1489

Tech report #1; Rao, Hill; Sep 66; AD643378Tech report #2; Rao, Hill; Mar 67; AD654451Final report; Dey, Rao; Nov 67; AD825241

58. "Long Shelf I-ife Organic Electrolyte Battery";DAAB07-70-C-0076; ARMY-ECOM; PIC/2149

MIDWEST RESEARCH INSTITUTE

59. "Preparation of Pure Lithium Hexafluorophosphate';NAS3-12979; NASA-LRC; PIC/2146

MONSANTO RESEARCH CORP

60. "Development of the Dry Tape Battery Concept";NAS3-2752, NAS3-4168, NAS3-9168; NASA-LRC; PIC/393

Final report: Gzuber, et al.; Dec 65; NASA CR-347

31

61. "Dry Tape Battery Concept"; NAS3-7624; NASA-LRC;PIC/1500

Quarterly report #1: Driscoll; NASA CR-54780Quarterly report #2; Driscoll; NASA CR-54902Quarterly report #3; Driscoll; NASA CR-54981Quarterly report #4; Driscoll; NASA CR-5477iQuarterly report #5; Driscoll; NASA CR-72170Final report; Driscoll; Apr 67

62. "Research and Development of the Dry Tape BatteryConcept"; NAS3-9431; NASA-LRC

Final report; Driscoll, Williams; Sep 68; NASACR-72464

NASA-LEWIS RESEARCH CENTER

F3. "Electrochemical Reactions and Materials Investi-gation (High Energy Batteries)"; Internal, 123-34-01-P9914;PIC/1178

"Electrolyte Solvent Properties of Organic SulfurDerivatives"; NASA TM X-1283; Johnson; Aug 66

Solute and Cathode Investigations in PropyleneGlycol Sulfite"; NASA TM X-1380; Johnson; Jun C7

64. "High Energy Couples"; Internal; 120-34-12-00-22-

(K3055); PIC/2154

NAVAL ORDNANCE LABORATORY - WHITE OAK

65. "Evaluation of ELCA Experimental Non-Aqueous Elec-trochemical Cells (and Batteries)"; Internal: TASK-ORD-033-127-F108-06-03: TASK-ORD-333-006/UF-17-331-301.

NOLTR 68-101; Conen, Norr; Jul 68NOLTR 70-68; Rosen; Apr 70

NAVAL RESEARCH LABORATORIES

66. "An Investigation of the Possibility of using theAlkali or Alkaline Earth Metals as the Active Materials ina Battery"

NRL report #P-2503; Dirkse; Mar 45

32

NAV.L ORDNANCE LABORATORY-CORONA

67. "Chei-oelectric Energy Conversion for Non-AqueousReserve Batteries"; Internal; ORD TASK-ORD-033-321/215-1/

F009-06-0.1; Air Task-A34-340/211-l/R010-01 01 (see U. Calif-L.A.; N123(62738)57439A)

"Ionic Melt Electrochemistry-Dimethyl Sulfone"

(NAVWEPS REPORT 8193); Panzer; May 64

NAVAL WEAPONS CENTER-CORONA LAB

68. "Non-Aqueous Voltaic Cell Research"; Internal;RRRE-06017/211-1/F009-06-05; PIC/12 70

Quarterly' report #NWCCL TP 792; Panzer; Oct 68

69. "Investigations of Beryllium Anodes in Non-AqueousElectrolyte Solutions"; internal; 120-34-0202; PIC/1901

Report (NWCCL TP 795); Panzer, et al.; Oct 68;AD843141

Report (NWCCL TP 822); Panzer, et al.; Jan 69:AD847137

Report; Panzer, et al.; Apr 69; NASA ER-9085Final report; Panzer; Oct 69

70. "Radio Beacon Battery Development"; Internal; AirTask A36533/216/69F15222601; PIC/2021

Report; McWilliams

POWER CONVERSION, INC.

71. "No;-Reserve Organic Electrolyte Battery"; DAAB07-71-C-0130; ARP•.Y-ECOM; PIC/2388

RENSSELAER POLYTECHNIC INSTITUTE

72. "Electrochemical Power Sources (Themis 84C)";DAAB07-69-C-0063; ARMY-ECOM; PIC/2246

Article, Littman; "Polarization Phenomena in Con-ductance Measurements in Electrolyte Solutions";J. Electrochem.. Soc.

ROCKETDYNE

73. "High Energy Battery System Study"; DA-36-039-AMC-03201 (E); APMY-ECOM; PIC/960

33

Quarterly report #1; Farrar, et al.; Sep 63;AD429290

Quarterly report #2; Farrar, et al.; Dec 63;AD435627

Quarterly report #3; Farrar, et al.; Mar 64;AD452714

Quarterly report #4; Farrar, et al.; Jun E4;AD450559

Quarterly report #5; Farrar, et al.; Sep 64;AD4584 72

Quarterly report #6; Farrar, et al.; Dec 64;R-5405-6; AD616385

Quarterly report #7; Farrar, et al.; Mar 65;AD617714

Final report; Farrar, Keller, Nicholson; Jun 65;AD622818

74. "Properties of Non-Aqueous Electrolytes"; NAS3-8521;NASA-LRC; PIC/1649

Quarterly report #1; Keller, et al.; Sep 66; NASACR-72106

Quarterly report #2; Keller, et al.; Dec 66; NASACR-72168

Quarterly report #3; Keller, et al.; Mar 67; NASACR-72065

Quarterly report #4; Keller, et al.! Jun 67; NASACR-72277

Quarterly report #5; Keller, et "1.; Sep 67; NASACR-72324

Quarterly report #6; Keller, et al.; Mar 68; NASACR-72407

Final report; Keller, Foster, Hanson, lion, Muirhead;Dec 68; NASA CR-1425

75. "Investigations of Electrolyte Systems for Lithium

Barteries"; NAS3-12969; NASA-LRC; PIC/2366

Final report; NASA CR- 7 2803

SAFT

76. "Systern-L ithium/Ether-Lithium Perchlorate/CopperSulfide; Internal

Paper; Gabano, Gerbier, Laurent; "Primary Cellswith Non-Aqueous Electrolytes"

77. "System-Lithium/Hal-genated Ester-Lithium Tetra-chloroaluminate/Copper Chloride"; Internal

34

Paper; Gabano, Lehmann, Gerbier, Laurent; "Reversi-ble Cells with Lithium Negative Electrodes andCopper Chloride Positi,,e Electrodes."

SPRAGUE ELECTRIC CO.

78. "Silver Chloride/Lithium Button Cells"; InternalArticle; Cook; Mar 69

79. "Solubility of Nickel Chloride and the ComplexIons Formed in Propylene Carbonate Solutions"; Internal

Article; Cook; Jul 69

STANFORD RESEARCH INSTITUTE

80. "Development of High Energy Batteries"; NASw-Ill

Final report; Chilton, Duffek, Reed; Apr 61;NASA CR-74410

TRW, INC.

81. "NASA-Sponsored Work on Batteries and RelatedElectrochemistry"; NAS7-538; NASA-DC; PIC/1664

Report; NASA SP-172; Bauer

82. "Voltammetric Studies of Non-Aqueous Systems"';

DA-28-043-AMC-02464(E); ARMY-ECOM; PIC/1873

Semi-Annual report #1 (Tech report #ECOM-02464-l);Paez, Seo, Silverman; Apr 67; AD655271

Final report #2 (Tech report #ECOM-02464-F);Fogle, Seo, Silverman; Dec 67; AD668936

83. "A Study to Develop a Low Temperature Battery

Suitable for Space Probe Applications"; NAS3-6018

Final report; Sparke; 64; NASA CR-54737

TYCO LABORATORIES, INC.

84. "An Analysis of All Potentially Useful High EnergyBattery Systems" NOw-64-0653-f; NAVY-NASC; PIC/1268

Final report; Jasinski; Jul 65; AD474950

85. "High Energy Batteries"; NOw-66-0621-C; NAVY-NASC; PIC/1268

35

Quarterly report #1; Jasinski; Aug 66Quarterly report #2; Jasinski; Dec 66Quarterly report #3; Jasinski; et al.;Mar 67Final report; Jasinski, Burrows,-Ma-Tachesky;Oct 67; AD823304

86. "Research on Electrode Structures for High Energy

Density Batteries"; N00019-67-C-0680; NAVY-NASC; PIC/1268

Quarterly repurt #1; Jasinski, et al.; Sep 67Quarterly report #2; Jasinski, et al.; Dec 67Quarterly report #3; Jasinski, et al.; Mar 68Final report; Jasinski, Malache~s--y--Burrows;

Jul 68; AD847944

87. "High Energy Batteries"; N00019-68-C-0402; NAVY-NASC; PIC/1268

Quarterly report ii; Jasinski, et al.; Jul 68Quarterly report #2; Jasinski, e-t a-T. Oct 68Final report; Jasinski, Gaines, MaT-hchesky,

Burrows; Jan 69

88. "Study of Kinetics of Alkali Metal Deposition andDissolution in Non-Aqueous Solutions"; AF19(628)5525; AIRFORCE-CRL; PIC/1405

Final report (AFCRL-68-0560); Cogley, Butler;Oct 68; AD681453

89. "Study of the Composition of Non-Aqueous Solutionsof Potential Use in High Energy Density Batteries"; AF19(628)-6131; AIR FORCE-CRL; PIC/1689

Article; Butler, Cogley; Anal. Chem. 39, 1799(1967); AD668747

Article; Butler, Cogley; J. Electrochem. Soc.,115, 445(1968); AD672610

Artrcle; Butler, Cogley; 3. Phys. Chem., in pressArticle; Butler, Cogley; .A7ances in Electrochem.

and Electrocher Eno., Vol. 7, in pressFinal report; Butler, Cogley, Synnott, Holleck:

Sep 69; AD699589

90. "Purification and Analysis of Non-Aqueous Solvents";F19628-68-C-0052; AIR FORCE-CRL; PIC/1832

Report #2 (AFCRL-69-0381); Jasinski; Jul 69;AD697037

36

91. 'Study of the Composition of Non-Aqueous Solutionsof Potential Use in High Energy Density Batteries"; F19628-70-C-0095; AIR FORCE-CRL; PIC/2188

UNIVERSITY OF CALIFORNIA-BERKELEY

92. "Organic Electrolyte Permselective Membranes";DAAB07-67-C-0590; ARMY-ECOM; PIC/1872

Annual report (Tech report #ECOM-0590-F); Dampier;Sep 69

93. "Elucidation of Electrochemical Reactions andSystems"; NI23(62738)33116A; NAVY-NWC/COR; PIC/346

Final report (NAVAEPS REPORT 8228); Tobias;Jan 65

UNIVERSITY OF CALIFORNIA-LOS ANGELES

94. "Non-Aqueous Electrolyte Systems"; DA-44-009-AMC-166] (T); ARMY-MERDC; PIC/1596

Interim report #1; (UCLA report #67-6); Bennion,Yao, D'Orsay; Jan 67; AD653799

Interim report #2; (UCLA report #67-52); Bennion,Yao, D'Orsay; Sep 67; AD826554

Report #3 (UCLA report #69-30); Yao, Bennion;Jun 69; ADE57191

Report #4 (UCLA report #69-31); Yao, Bennion;Jun 69; AD857192

Report #5 (UCLA report #69-32); Yao, Bennion;Jun 69; AD857193

95. "Electrochemical Reduction of mDNB in DMSO";N123(62738)-574 39A; NAVY-NWC/COR; PIC/1614

NOLC report #737; Bennion, et al.;Aug 67;AD658111

NOLC report #746; Bennion, et al.; Dec 67;AD825474

NQLC report #769; Bennion, et al.; Dec 6/;AD832693

Thesis; Bennior, Dunning; Jul 68; AD676318Thesis; Bennin, TiedemannReport (NWCCL TP 795); Bernnion, Tiedemann,

Dunning; Oct 68; AD843141Final report (Jul 66 - Oct 68); Bennion; Sep 69;

AD701411

37

96. "Design Studies for High Rate, High Energy, Non-Aqueous Electrochemical Conversion Systems"; N00123-70-C-0188; NAVY-NWCCL; PIC/1614

Final report (UCLA-ENG-7078); Bennion, Dunning,Tiedemann; Dec 70

97. "Electrochemical Study in Cyclic Esters"; AEC#W-7405-ENG-48

Thesis (UCRL #8381); Harris; Jul 58Thesis (UCRL #17202); Smyrl; Nov 66, 'Oxidation

Potentials in Dimethylsulfoxiie"

UNIVERSITY OF MISSOURI

98. "Electrochemical Study for Use in Low rnemperatureBatteries"; DA36-039-SC-72363; ARMY-SigC

Quarterly report #1Quarterly report #2Quarterly report #3; Feb 57; AD135951Final report; Arcand; Jul 57; AD143945

99. "Electrochemical Systems for Use in Low TemperatureBatteries;" DA-36-039-SC-74994; ARMY-SigC

Quarterly report #1; Arcand, Tudor; Jul 58Final report; Lagc, Karnes, Jennings, Smith;

Mar 59; AD217485

WHITTAKER CORP.

100. "Electrochemical Characterization of Systems forSecondary Battery Application"; NAS3-8509; NASA-LRC; PIC!1618

Quarterly report #1; Shaw, et al., Aug 66; NASACR-72069

Quarterly report #2; Shaw, et al.; Nov 66; NASACR-72138

Quarterly report #3; Shaw, et al.; Feb 67; NASACR-72181

Quarterly report #4; Shaw, et al.; Apr 67; NASACR-72256

Quarterly report #5; Shaw, et al.; Aug 67; NASACR-72293

Quarterly report #6; Shaw, et al.; Nov 67; NASACR-72349

Quarterly report #7; Shaw, et al.; Feb 68; NASACR-72377

38

Quarterly report #8; Shaw, et al.; May 68; NASACR-72419

Quarterly report #5; Shaw, et al.; Aug 68; NASACR-72482

Final report; Shaw, Paez, Ludwig; Jan 69; WRD-392

101. "Advanced Design Battery Power Source for AircrewSurvival Transceivers and Beacons"; F33657-68-C-0438; AIRFORCE-WP; PIC/1925

Interim Tech report; Chand, Smith; Oct 69;AD861947

Final report; Nov 70

39

APPENDIX A. CONDUCTIVITY

Because of the frequent misunderstanding of termsrelated to conductivity, a bief discussion of these termsis offered here.

Conductivity, as normally used, refers to specific-i -l

conductance (K, ohm 1 cm ) and applies to a given concen-tration of solute. Further,

K = c/R (A-1)

where c = cell constant (cmx) and R = resistance (ohms).Also,

K = 1/p (A-2)

where p = resistivity or ýpecfic resistance (ohm - cm).Therefore,

R = pc = pl/A (A--)

where 1 and A refer to the length and cross secti3n azea ofthe test cell.

Molar Conductance is the conductivity of a standardconcentration of solution. Specifically,

M4olar conductance = 1000 K/C (A-4)

where C is the concentration in gqmoles/liter.

Further, epjxivalent conductance (A),

A = molar conductznce/Ne (A-5)

where N is th- valenc( of the electrolyte species; i.e.,eNe = 1 for KCI and Ne - b for A12 (SO 4 ) 3. Therefore,

A = 1000 K/CNe (ohm-I cm 2) (A-6)

Also, A normally varies linearly W¢;th the square rootof concentration, and when so plotted and extrapolate4 toinfinite dilution (zero concentration) yields a value !for the limiting conductance,

= (infinite dilution) (A-7)

Preceding page blank41i

APPENDIX B. CALCULATION OF CELL POTENTIAL AND ENERGY DENSITY

Consider an electrode couple consisting of a metallicanode (M) and a salt (M'X) as the cathode, such that thereaction associated with this couple is a simple singlereplacement; i.e.,

pM 4- qM'X --- rM' .- sMX (B-1)

The thermodynamic equation for the calculation of cellpotential is

E° = -/Ff/nF (B-2)

0 -Where E° is the theoretical cell potential, AFf is the total

free energy change for the reaction, n is the number ofelectrons transferred per mole of reaction and F is thestandard Faraday constant. The total free energy chanle(AFFf) is the difference between the sum of the free energiesof formation of the reactants and the similar sum for theproducts; i.e.,

AF, (reaction) = XF (products, -IFf (reactants) (B-3)

or in the case of reaction (B-I),

, Ff = [sFf(,X) + rFf(U')I - [qFf(M'X) + pFf(M)] (B-4)

where the free energies of M and M' (elemental) are zero byconvention.

From equation (B-2) it is obvious that a high negative

value of AFf (a high positive value of -A,.Ff) will yield a

high cell potential. Therefore a good electrode couple willbe one of a cathode (M'X) with a high positive value of Ff

compared to the value of Ff for the anode reaction product

(MX). Because the free energies of formation for thesecompounds are normally negative, Ff(M'X) should therefore

be a small negative value, while Ff(MX) should be a large

negative value. In practice, values of Ff arc normally

foun:d in kcal/m.le. When .f is expressed in this manner,

the ecuation for cell potential becomes

Preceding page blank43

E 0 AFf /23.06n (B-5)

The maximum theoretical energy density for an electrodecouple can also be calculated from the associated chemicalreaction. Basically, the sum of the charge densities forxboth electrodes is multiplied by the cell potential to yieldthe energy density. In the literature, charge densitiesand energy densities are commonly expressed in amp-hours perpound and watt-hours per pound, respectively. For ease indiscussion, they will be dealt with here in terms of amp-seconds per gram (A-sec/g) and watt-seconds per gram(W-sec/g), where

1 amp (watt) hr/lb = 7.93 amp (watt) se:./g (B-6)

The charge density for an individual electrode issimply the number of coulombs (amp-secs) per gram ofmaterial i.e.,

A-sec/g = 96500/EqW (B-7)

where EqW is the equivalent weight of the material.

The energy density for the electrode couple is thencalculated by

W-sec/g = E°0 (A-sec/g) (B-8)

where E° is the cell potential (either expe-imental orcalculated from free energies of formation) and 7 (A-sec/g)is the sum of the charge densities for both the anode andthe cathode.

If energy density per unit volume is desired, thecharge densities for the individual electrodes must be

multipliec by their respective densities (g/cm ) beforesumming.

44

APPENDIX C. TABLES

(If no data are entered in any part of a table, itindicates that information is not available.)

45

Table C-I. Companies, agencies, and institutionsinvolved in organic electrolyte research.

Air Force - Cambridge Research Laboratory (AF-CRL)American UniversityArgonne National LaboratoriesArmy - Electronics Command (ECOM)Army - Mobility Equipment Research and Development Center

(MERDC)Atomics InternationalBattelle Memorial InstituteCarnegie Institute of TechnologyCase Western Reserve UniversityEagle-Picher Industries, Incorporated

Electric Storage Battery Company (ESB)Electrochemica Corporation (ELCA)Globe-Union, incorporatedLivingston Electronic Corporation (including Corson and

Honeywell)Lockheed Aircraft CorporationMallory and Company, IncorporatedMidwest Research InstituteMonsanto Research CorporationNASA - Lewis Research Center (NASA-LRC)Naval Ordnance Laboratory - White Oak (NOL-WO)Naval Research Laboratories (NRL)Naval Weapons Center - Corona (NWCCL)Power Conversion, IncorporatedRensselaer Polytechnic InstituteRocketdyneSociete Des Accumulateurs Fixes Et De Traction (SAFT)Sprague Electric CompanyStanford Research InstituteTRW, incorporatedTyco Laboratories, IncorporatedUniversity of California at BerkeleyUniversity of California at Los AngelesUniversity of MissouriWhittaker Corporation

46

Table C-II. PIC sheet index.

PIC Company, agency, or institutionsheet no.

0346 U. C. Berkeley0447 ECOM0561 Atomics International0667 Lockheed0861 Lockheed0893 Monsanto0896 Globe-Union0898 Corson0937 ECOM0947 Mallory0960 Rocketdyne0987 Gulton1176 Mallory1178 NASA-LRC1187 American U.1199 AF - CRL1200 AF ~ CRL1201 Corson1216 Lockheed1266 ELCA1268 Tyco1270 NWCCL1398 American U.1405 Tyco1435 ESB1463 Honeywell1473 Battelle1489 Mallory1490 Globe-Union1500 Monsanto

1517 Battelle1544 Case Western Reserve U.1553 Gulton1596 UCLA1614 UCLA1618 Whittaker1634 Globe-Union1649 Rocketdyne1664 TRW1689 Tyco1772 Honeywell1832 Tyco1833 ?tomics International1839 ECOM1840 ECOM

47

Table C-II. PIC sheet index - Continued

PIC Company, agency, or institutionS~ sheet no.

1857 ECOM1872 U. C. Berkeley1873 TRW1895 Battelle1901 NAVWEPS1925 Whittaker1933 ECOM1982 ECOM1991 ELCA2021 NWCCL2091 Battelle2140 HDL2146 Midwest Research Inst.2149 Mallory2154 NASA-LRC2178 Honeywell2188 Tyco2189 Atomics International2203 MERDC2246 Rensselaer2273 Gulton2312 Honeywell2366 Rocketdyne2376 ECOM2377 ECOM2387 Eagle-Picher2388 Power Conversion2392 ECOM2439 NOL-WO

48

Table C-III. Index of contract numbers fororganic electrolyte research.

Contract no. Contractor

Atomic Energy Commission

AEC W-31-109-ENG-38 Argonne National LaboratoriesW-7405-ENG-48 UCLA

SC 58-0690 Globe-Union (PIC/1634)58-4116 Globe-Union (PIC/1634)58-5214 Globe-Union (PIC/1634)58-5291 Globe-Union

Department of the Air Force

AY 19(628)-5525 Tyco (PIC/I05)19(628)-6131 Tyco (PIC/1689)33(615)-1195 Lockheed (PIC/0677)33(615)-1266 Gulton (PIC/0987)33(615)-2455 Lockheed (PIC/1216)33(615)-2619 Battelle (PIC/1473)331(615)-3488 Gulton (PIC/1553)33 (615)-3701 Battelle (PIC/1517)33(616)-7957 Lockheed (PIC/0677)33(657)-11709 Lockheed (PIC/0861)

F 39628-67-C-0387 Atcmics International (PIC/1833)19628-68-C-0052 Tyco (PIC/1832)19628-70-C-0086 Atomics International (PIC/2189)19628-70-C-0095 Tyco (PIC/2188)33615--8C18 Battelle (PIC/2 i33657-68-C-0438 1Mnittaker (PlCi .925)

Department of the Army

DA AB07-67-C-0385 ESB (PIC/1435)AB07-67-C-0590 U. C. Berkeley (PIC/]872)ABO7-68-C-0240 ELCA (PIC/1991)ABO7-69-C-0063 Rensse.aer (PIC/2246)AB07-70-C-0076 Mallory (PIC/2149)ABO7-71-C-0130 Power Conversion (PIC/2388)AB07-71-C-0131 Eagle-Picher (PIC/2387)28-043-AMC-01394 (E) ESB (PIC/1435)28-043-AMC-02304(E) ESB (1IC/1435)28-043-AMC-02464 (E) TRW (PIC/1873)36-039-AMC-03201(E) Rocketdyne (PIC/0960)36-039-SC-72363 U. Missouri

49

Table C-III. Index of contract numbers fororganic electrolyte research - Continued

Contract no. Contractor

36-039-SC-74994 U. Missouri36-039-SC-88925 Atomics International (PIC/0561)44-009-AMC--1386(T) American U. (PIC/1398)44-009-AMC-1537(T) Mal iory (PIC/1489)44-009-AMC-1552(T) Globe-Union (PIC/1490)

44-009-AMC-1661(T) UCLA (PIC/1596)

Department of the Navy

N 00017-68-C-1401 ELCA (PIC/1266)00017-71-C-1410 ELCA (PIC/1266)00019-67-C-0680 Tyco (PIC/1268)00019-68-C-0402 Tyco (PIC/1268)00019-68-C-0614 Livingston (PIC/2178)00123-70-C-0188 UCLA (PIC/1614)Ow-63-0618c ELCA (PIC/1266)Ow-64-0653f Tyco (PIC/1268)Ow-65-0506c ELCA (PIC/1266)Ow-66-0342c PLCA (PIC/1266)Ow-66-0621c Tyco (PIC/1268)123(62738)33116A U. C. Berkeley (PIC/0346,123(62738)56006A Case Western Reserve University

(PIC/1544)123(62738)57439A UCLA (PIC/1614'

National Aeronautics and Space Administration

NAS 3-2752 Monsanto (PIC/0893)3-2775 Livingston (PIC/0898)3-2780 Mallory (PIC/0947)3-2790 Globe-Union (PIC/0896)3-4168 Monsanto (PIC/0893)3-6004 Livingston (PIC/1201)3-6015 Globe-Union (PIC/0896)3-6017 Mallory (PIC/1176)3-6018 TRW3-7624 Monsanto (PIC/1500)3-7632 Livingston (PIC/1463)3-8509 Whittaker (PIC/1618)3-8521 Rocketdyne (PIC/1,649)3-9168 Monsanto (PIC/0893)3-9431 Monsanto3-10613 Livingston (PIC/1772)3-10942 Battelle (PIC/189';

50

Table C-III. Index of contract numbers fororganic electrolyte research - Continued

Contract no. Contractor

3-12969 Rocketdyne (PIC/2366)3-12979 Midwest Research (PIC/2146)3-13221 Livingston (PIC/2312)7-538 TRW (PIC/1664)r-191 ECOM (PIC-BAT 209/10)w-1ll Stanford Research Institute

NBS R-09-022-029 Carnegie Tech

NGR 09-003-005 American U. (PIC/1187)

National Institute of Health

NIH 69-2153 Gulton (PIC/2273)

51

I -I -00 acco -LA C

v tt % a

04 cok-O

C7% 00 v~ m1 %OD -fN ON ON~ t"n H LA C en LA%Do r-I 1 ON k - M0 H Ln r- %D m~ ko LA v -r D 1

0 rý- re tn 00 r rnI N' co ON co w~~H4 r- m~ r- -.r N OD I H I 4

-4 uV -

0 CN

El) ra 0

0 0 / 0 CV

00 0 C.) u 0 u u N 1

U u u u U u U U U

00

>1 0-4 c r-4>aUn 4J ' >1 r

0) To 010 0 .,1 $4 rQ .,V) tY' wH> 4J) I L (

1.- 41 0 0 . 0 0-o ~ ( 4i >i 'A H(a'4 - *

a) * o) * -4 -I 4.) l10 a& u 41,

U u r. C C: *-4 .- I 0 C: 0 -4 9:.- 1- -rq 0 0 0 C >4 q H -4 *.4)4J) 4J 4.) 4-' W ( 4 .) :)J > 0 r- H a) N

p (L Q1 a) Q)0 C. ) L4 HU HI t r.

U HE () 0 LA u0 t' r-4 0 H N

C-'

C))

r- a n kov) ) %

0 )

j 0' m ~ 0~ 1) %0D 0 1 a) 0~ 1

a) W u

4.) a4

W0

Q) Id (N0U U) )U

Vr Cf4- ) ) U)U U) C14 U)=1- u c Z

0'4) 0 ' *U 0 0)

4) u(N 0 -ICL) (N 0 -zN C

Un U~1L CA) Ch r- U

UN u 0 u

4-)

E-4 H0 )44C

pJ Hj H 0 ml *dQ j s >

$4 r 0 D) 01 W p U a41 aU ) .1 U)V 10 ao.14' ro 41 1- 4) 1-1 >

(1)~C 4) (1 >) >4C 1.

0~~4 g u c~ 0 4)%J ý ý O 434It0 0 .1 10 z : -4 > 1 z >

-ý .1 (n 4) I O MUJ4) m 4- )U

'T LH HD - 4 Ho N (N (N (n IT (n %(0

53

44 rn Lno

Q) t ' 4)I -I CD~L

H -1 *0 C) C-r n cv C h Lm1I~ Cn tD LA k CV ON w- C4 v N~ v

ai) U IS0 v ~ rYi LI) IC Ln ou 'A~ C) 0

ItT. r4I I IT Ic NI Il U- I

41

0

030

PB r 0- 0N (NO

> 0U (NN0 N

CN ) v a) 1

4JI I) %D 0

(t- r- u :r: 0: r4 -4 u~U) 4-' 0 U) U) - -4 0'4C1 0) 0N r0 - 1)o~l~4 *

N Cr4- en 0 0>1 = -

0 0 u '-0

4-~ -) C

U4 00 I)U U ( N 0C 0L ~(U I ~ -i >1 >1 '- I U 0-

En U 0 -4 UL 0 W 0 CN a)~ 0

> 0 ý4 U 14

54 ýN C44 1 , 4

0 0 4 c 0 4 0 - ý 4J r'

ii a% a

vi -w C) m'en~~~' (n -n

r % f n %

m~~ ~ (n tn% O H -4~ a' CV*) Ln (* * r

F' 0 M HN I En I Ir 'O U) 4J U) w W 0 (0 in E

00a)0 C4N 0> U 04

tn 0 0 C N 04 0N (

ý4 ~ ~ ( (N (N1 N(NW wC'~ N U) U U U '4~U) 0 Uj 0 r I

U)~~~~~( 0(N % N N - r

U)tn x

6 >1

H C) ' ~C.C

H 4J u r->1 .,1 0 0i C) Z- ;Hý I H - J4 : 5j . 1

HC I-_ HE LID Q) C)>1V.4 ~ ~ u) ) U) 0-,4 -0 *.4 (Nl ,*' 1-4 .-1 d', r - -

>1>1 >(N - o-'

C 4 a >1(1)H4-; 1 4J 4J l 4J J -- E U

k - Sn 00s I

- T t %) OD. (V en L t

5.: H4 . - -4 . .1C) 'o O(LA LA - JA r'- -4

-r4 r-i tr -4 LA - M 'DCV) ~L r- a% h A 0'% %D~ a T 'rL CC)

t.0~c co w' aN. m~'A tf

fl -k ~\LAW0LA -r Ml 00 -- CCr t a' a%

co 0 -1 1 CN C0 C) ON c~ LO

0

.,q 1U H ) U) u C CruU 1(41 m )C

CA )t rdC )C 0 Z- -

4. )

w (1) Cl-0 -

U) 0(XN_1 U 0 uI(

9 r) Z 0) C l ( l C

IM C C

0 C

C)CV) -0 a) C

-0 1~ -4 -4 0 4

> >1 -4 L1 CL >i -4 0r-11~~. .,M.4t t 4 .

$..) 4) 4.CJ ýc n&- --I r_3 3 C0) U ) En 0l t

-'-~~~~E 0i - -

>10 0 0 C ~ -

I-IQ 0f -C 0 ) C 0 Q (

56

co AD

C; IR C

m tCm I) )% vs r-

44 *

04 0

ty) 0 1

.- 14 04 E- eZ

4£4

~Lf\

0 00 u:> V- ) C14

('I %NN 0 LAO0 Z H i

V.,j 0 N U) (NN ( (NO u u0 1'4)U) 0 -Kr0 0 u 0 u r4'J

:r. -) (/(1 ) V) lqr 0 ~. N (NN ) ' LA LA LAn 0 U u u> oM( U) (N x( ne N NN u u

4J C

0 i r- C) a) UE-4 I~ Q1 u 4J v

>) U) -14 -4 ) 0 ~ 4 H 0-l~r C) L4*4~V C ) .Q Q c Co 0~o~ 0 C 0 H-4 J M) $- (0 u)

.14 14- *'- P d ~ ' -1 L4 (lI 0 0L *-4 *-4 H4X-4J A ' H H 4.) 4-) U) VT: a tC4-~ Q) C

41*.~ n c C) C) -a X) _r_ XJ. ) 4V 4J 4 .&0 41 4J 4J &j 4I4 :4 w w2 14 w H W W -

%T (LI I , co CN 0) > N N1 Tr n %D

57

44mn mn ao CC) (n fnn en mn%D0 %0 e'.z n tLA '.0 .4 %D ' 0 ) %0 '.0 %D0 '0 %.o

Qu a% r- H- 1 1 1 0 kD 0 0 I *q w m0 ~ a% H- r .0 ?- 0D mz o 0 1n c o en1 1

(2 HU) 0z C U) E-4 ZE-H4#

"1~ -4 D l Z 0 l l l

-141

>C N) 0l n L U f

14 0 aý0 0N X n CN (n Cl) r4N 0q U) ("4 (1 "4 ) -4 x U) u 04 ('.4 a; Z (n0. -4 Ir- U U %. (N U M - -~ U U r-

r14 C (N - 0 0 w' ' Z 0 Ln tn u) U) 0tn vI ZA in En a:O ) Ln LA LACi 0, en I- rl =i x- T e N 'II 1 03 0N U U 'X' u U N (' '0j0-

LI UU 3 UU0

'- 44 '44 cl)r- H- 4.3 0

::1 '3V44 MI

4J U UF 4-i rq)0 C ) ) C ttu V, o>j (aC Ct) rdi *,- 4j -J U

00 .1 Hj )i X E C T -(-4 It1

IU) C' (I C) r-4 E t; ~ ~ '4 0 0 .>1N 0 k- 0 43 H4 --i -.5 .4 4.4-a LW 0) (n: a)i o7 z 4 ac4-1 1 ) .i tw- *-4 to~I En 41. .4. fu

C) )(0 C >1 x

4J~.4 4.31>1 >-

58

Ln0

L0

000

0 -0N -4)

LA 0o ON 0 . vI 1q to N A

~otJo I ri LA Ii arg"" -A I, to'

~J~0 m E-' 4 Olt< 0 ~U) r4 C43 54

0-PU) m

> 0 0r. x u0. ý4 D4r' C-) 0

0 NN Nr v 0~'V (N Cu 0 NAN

00

> -0 0%

4 xL :cx P4 0 Le0 u z) '

N) C) 0

0- ) . 0 to 0

- ~ ~ ~ ~ 4 >1 0. ~ ~ c 4 -i >E ' - -4 C) ý-4 U> NO 04 0 ~ 4 0 0

04 :$ N4 H) U) >1

10 0 0 0 N - 0 0 r.

:; 3 C'fuQ e 4-4 E -q -4 0 cI -4 'q-4 E U4- fl) U C) al It > , C) ýI4 D4 S-4 N -N >1 X X X x~ 'a 0I 3 1 0 En C N U

'-4m 0 0% 0z. C .

-4 -4 4 -59

"tr -r(1)

3 0 ~ 0 a 0 m oOD0 0 LO (NOa

'-4 Ir a4 C-4 54I

4J IM V

>I~ 0 0

rq z 0 z e

E0 0 :z U U 0 x Uj (N o 0 o mn4.3 r 4 (N (N 0 (14 C9 0 0 0 (NO u u-~ - x± -~ 0 0 0 wl u 0 =N U> mn mU enU Un 0 0 000U 00 U U) U U 0 U n U U U

4) 4 .31

.Q 4i a) .Q mU 1ci '0 Ci4 4-) -14

Iý4 9: 4J 0) 0 (a 41~ 4 4 0 'U E 410 ý 44 -H 4J Qo 1-4 N3 ý 0 ý4 0' -4 H 3- 0 4J .L:3)"'4 J .>1 0c E

01 > 1 4 443 H- (a 4 4Q U0 rC.-'I H C i 0 01>0- 04 " 1 -4 0~ >1 - '4 H0 - 0 4.3 (U ( U 3 > 1 1 > >43

0, a. 4.3 .-rI . i C . C .C C U .CjO 0 U U) 4.3 43 J 43 43 4.3 43 43 4J

"T ' % - N C) -I C%4 cl 0t Cil %0 , co)

-- rH -A r-4 1- -1 H4 1-4H H

60

co Ln

w k V')Oi CNL

m ON *ýL

N v %D CN %ID VT0 C4 (

01 n - (n S(1N.a O

1A 00wC 0- D i n

0

tn 0 C1 LA CI CC- 04 A 0 I 0 O ~ C

4J IM 9 -

m Cl)

u 0N

U) 0 z :N (NON 4

4-04 0 u CiZ00 0 Clj 000 0 u U U 0 U(Vzi U n to -

0)- w 0a) Z0 Q) '7:1

rq0~ z -4 -4 0.0 4i q.0 E r 41 r-i

9z 41 (a 0o 0E-t a) 40 w Z N-r

> r_ U 0 5-i cu f 4) 0 )0 04 C-% H u 0) :5 o fu

sJ). 0 44 0 044J Cl>1 s. C-4 r-4 .- (a I C 0 0- -1 . L I z C: C N H- 4 P~ Nr. ,-4 0 4 1 4-J -H r. I 4.3 04 a,>I N >I >4 H1 a) 0 41 (D 0 0.C CL a- a- 0 .0 ý

>i 4.)0 .4. 4J ~ > . 0 4-' 0 0 4i 4.3A:0 0 n w ~ 0) p -i N4 p .144J- ý- 4 N4 3 Z 4.) 41 Z

tO a)I ' 0 1- H .11 1'

-4 '-I -4 - -- 1 - 4H -

61

tnm w% So r-oi -I . .S C

CAý (1A v~ %D C'o

1 N 0) C) aN IWcnr44 ()I I IV r, r-4 M M

M 00 Cl m U

0- CV m c) CN N mr- 01A m.'

. M 0- E 4 a a -CU U) 4J -. a

4.) C )IS )

>1 0 C C .or 4. -u N SCCO

U)C) C- 0 z *- N 1 0 ) =C42P C1 C u) 0 - -

0U 0 z uI . - U Z C4 Cu --4 JJ u - .0 CcL

>) 4-' 01 "' C- 0 C"%4~~C

0 0. u u u u *u40 > 1Q >

E-4 C) 04 0 C C 0 00 0

.14 0. 0 .

(A A A ( ( CA22~ 2 22 ('

62.0>

LJ 0 C ar

q1W OD MD

1-4 r- rn

%DO a% LA N, Dý CN

m M LIA NCO4 00 C) AT (n mR t rC1 "I' qw rN toD 0% NN 'D (1 CV ko %D

0 U

tp0 0 0i H >I ' 04 (n ~ I I N C

C1 0 0-

> 0J' 0 U- >4r r

ý4 0 A N N LA 4 M HLo 0 U) Ix NHI3 C z

Q)U nt> m n N ( N N 0 N 0nI

j '-4 000 u U 0 0- u-L LA N

0 - 0

P-1 0 0A

4~ 4J zj :3 J N IE- Ut) 0 -4(Dr

>1 U ) 4) $r-4 > 1 S4 z fz :

m U u U4 Di'- -' a) U'4 U

00 004c > > :

w' 0. = o C -0 -a 4-i 4- Xý 4 J J 4

f- 4 r0 a0 . E0 .:> 'a4-(I 4 ItN t r -

'-4 -4 H4ý - 3 ý 4(

tO C 4 ý4 > ) (1) CU xO

k-~ E- E- EOO) E -i E- E-- E,0 H1 %D >t 0-' a% en IT ;LAr qT LIr 4-4 q~ HG) Hn t4 0) 0

0 0 N >1 1 C * 63

44-

M. &A Ln LA) LA LA 0 M 0) mV ai m (VI LA m1 rj AV 'tJ V~ IQ -T 'r %D N' ko %D .D lw %D

0 r 0 LA r - (n to0 to LA I r-;r-4 1-4 m' r,- ~ LA r-4 I LA

.41 1:1 Al

0

PE-4 E-4 E-l

0) rd 0 04

4-4 0 P A 4 04 ('u)00

mO 0 0 Uf) mu M rn M-Z ~

4.) 0Z 4 - ~p COuuu n nL 0% f 00D u 0 1 e 0 u x ene

>~ en ) V 4-) --N en V LU)I zU =U U 5.4 uU'. -

0 u u- CH~L

'U -'4 I 0 4 J 04 H 4UVU)

w - 0 o 0 .r C O U -4 0 4 0) 0HU ) ' ~ 4) 0 0 0H 0 c - 4. S-4

U) *C9 , 0 0 LI H. .Ci 0 ~ U ) H 0E-0 U 0 040 04 ZU >0 f

'U 0 M 4 4a) 0 MN L LI -H i U) U4 -4 1 C1 0 01 >

(I C 4J 0 0 0 4J )

u 0 z .1 0 E- 01 04 >1 (a 0 1 .0 .1 .c20 0o 0 U U - 0 0 0 4.) 4 -i r,- 2 4

-4 -'-4 4 4 1 1

>i '0 N ) C'4 0 E-I ('4 ('1 ~'0 0 ) 4 C:

0 0A :A L , 0'0 '0 '0 Q) U4 -4 E0 ' E-4 I H H -1 . r.4 -H H .14 ~.11 .-4 .- q H- .4 .1

64

M" -ý7I

4)

H LA

0t 00 r-4 m

a) U- V) (

0

Ul 4J E-4E~Q) a)0

4IJ A

00

4-) 0(lN u x

> r-4 jU N

= In0) U

n M 04 U Ui

>UU

ý44

0)

a) 0

> U) ) 4)PH 0 r. ro 4: 0~.Ui) Q,4-)

0C a,

ia , 4- m A 0>-H lq 0 a) -I x.

)14 .4 p4 $4 01 1

H H H H- > H-

65

4.) 0 j >t n

4.) (U E n4J 0 r4 4.)(a -I U) rf :R:dPrq I

IQ 2 -4 Q0. wU4 > f-4

0~~~ 4J4 icf*-U )1I 4J o4 O Wi -, 9- (1 *

~4U~l.- )hI 4 0-e.- 0 O0:3r-

rc W4 PN d fH NX E 0 0

0 5; 0 H)r

H X 0 % 0 0 054 0 0t

0~ C> .0 L0~ Q 0 N(V

I.)o0 K2l (%4 0D

% .0C'

0 4j 00 4 U

'10 Jel LA Ný '0 0r4a) C0 OEC) i Ci

.. A : I ,

*n N C No HON CC c 0 co lH) U H. N LnN

66 C

-~ ~ AA

U )i > 1~-I )4.> c4J 4i0 IH'U) 44U) .4'~~0 0 0

> c N >~ >A

00C

o E~ 0~ k- 0 H Q a .00 Uu

X M -~ ltn CZC

0. '13 N % r %c 0 N

0 J Md 0 M m

.9 -1 - H

ri K0) 0 co0 1W4 N JN

N 0J N0U) NC C )j N) H 4N 0

0 IOn vL %Z) rC) H

4Ia H Il CD I I In

m 0~

H U) 41z 0

E-4

67

0 a -4t r 4 R

wo >1 *- U)0 V 0 ýA 0dir. UW 4-1-4O a)

r- ' V4-) E - -

0 ~~O CU) 04 r: J Iu4o

LO~ ~ ~ ~ ~ x - r - C

LA

o. En 4 0 0 00 0 C H 0o H 0

-A H4J

HP C H r- CHL

rL i C ACN0 A 0

I) (N C1 H H a 0

'4 U

H; C; C;Cý

.HH

4- ) m -4

Y 1

00

S 0 :3,C H.4- T;El09 U) W9q -H c w I *0i1

(D 0 0 a u P0:

4U) V)0>I- 0 -r %00 E ~ a) as of4J 0 0 *4 rP4 0 M -1 0 0 0 ý 04 0 0, 0o 0 rd

0 > 4 0 (n I4 r. 4 -

0 0r

L Hn>1

01

() 41 N41 (1) L\J V) 0 H O) r4 C0 (N '0 4

aI.. C) c V) r- *4

0 .-

I 1 00

0 Ir LO C> 0 ( N en a%(n 0 0. 0 a D

4J >

u6

0 41 U)

4-) 4J rofl-4- - 0

U)~ r- - > E 4 0

U) M r_ 4 -H

~0 0 r-2 Er~-I17- 04 (U >1 4 z t~r-441 ý4 E4i r- -4 41 -4 r-i s 4.

z1 04 E 00)-1- -0 0~

4-JU) N ~ ri) m LO co %D'~o0 N~- a' 1-4

o r

44 ri -4 U Ln 1-4 CN d 0) * N000 inO E c 0 0ý 00 aN OD 00 0 C C

a )C" tp C-4 -4 0 ý 0 ý 0ý 0 )

0r-4 -'41 C)

4.) N44; flr) C) (Y) L' n N a,,f e

r. r-4 a% N

N 4J C' 0

!54 0~ U

t.4

U) -5.40)

41-)

U1 CC4 --- 0N %:D T' N C -

a) 0

r-40 u

LI rl Co en 0o0 C(N CN S Nr- a -4 C. Co CIN m

L-Z 0L! 4J z

NS CS ' N*?~

70

-P1 4Jf 0 44 44 i

4J >9 i0 - -. 0 0 u >90> U 0 1,8 - QS *- EL) :3 x~ 0 V4 0 *d(Y w :, 1 :

ri 0- >1 * l 0m0 0~ *)r

4-J .- 4 -ri0c1S4 004 W 00j )4) 4j V Ur:0 .1.0 toX a 4 d 4 W (dl 0 *8 Uu, U 004 >a)00 ~ 04 : 4 t L 00

0 )C I H r-4 A -4

0 W. -~

.Q 4Jt~~ 00~F-A

40 ElO F. 0 0cc 0 ) Al

0 u*-I 0 0

0 -4U Q)041 Q~ -

M Cf1~ 0 l

$4 0 t0 L

44 U I

U)1 0 0 Ln 0n k L41 H~ H Ln

0'

H C C) ON !) %D to v.0 r, 01 01% E- E-' E-c

010 ~L O

7.L

Table C-VI. Solute materials.

(Figures in parentheses are co,-t, in $/kg, andavailable form when not anhydrous.)

Solute materi.al Literature reference

I. Inorganic

AlBr3 (43) 51

A1.C 3 (6) 6,13,21,24,33,34,37,42,45,46,51-53,55,56,67,73

AlF 3 (i0,"nH 2 0) 24,29,37,42,45,88

Ai 2 (SO 4 ) 3 (5) 45

NH 4Br (5) 51

NH 4Cl (1) 42,51.88

NH4 CO4 (S) 88,95

(NH4 ) 2 CO 3 (1) 24

NH 4COOCH3 (2) 88

(NH4 ) 2CrO4 (9) 88

'Nl4 ) 2Cr 2 0, (3) 88NH4 F (16) 42,88

NH 4I (28) 67

NH4 NO (2) 884 3

Nil PF 1%70) 6,13,38,53,54,88

NH4SCN (5) 6,28,51,67,88

Ni 4 SO3 F 37,53

(Nl4 )2TiF6 (15,-2H2 0) 53

SbCl3 ,9) 37,69,88

SbF 3 (14) 37

BaCI2 (3) 42,88

Ba(C1O4)2 (6) 84B a ( CN) 24

2

72

Table C-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

I. Inorganic - Continued

Ba(N03) 2 (6a) 88

BeCl2 (200) 37

BeF2 (110) 37

BCI 3 37BF 3 (26, 10% in CH3 OH) 29,37,74,100

CdCl., (15) 88L

Cd(CN) 2 (70) 88

CdI2 (29) 88

Ca(BF 4 ) 2 (122) 100

CaCl2 (3,• 2H 20) 24,29,42,51,88,100

CaCO3 (7) 29

CaF.2 (9) 24,37,40,42

Ca (NO3)2 (3,-4H2 0) 88

Ca(PF ) 2 100

CaSO4 (8) 29

CaTiF 6 (15) 37

CeCI3 (57,"7H 20) 88

CeNH 4 (N0 3 ) 5 (8, (NH4 ),Ce(NO)6 88

CsCl (280) 24,37,88CsCIO4 (325) 84

CsF (290) 24,37,55,64CsPF6 37

aExplosive when anhydrous

73

Table C-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

I.. Inorgaic - Continued

Co(CN) 2 (83,•2H 2 0) 88

CoF3 (37) 51

CuBr 2 (13) 51,88

Cucl2 (12) 45,46,56,74,88

CuCN (10) 88CuF2 (450) 46,51,74,88

CuI (36) 88CuSO4 (5) 51

HCIO 4 12,28,82

H20 56,82,85,911'ONH2 HCI 45

H 2SO 4 13,51,84

inOr 3 (350) 88

InCl 3 (700) 37,88

In(NO3 ) 3 (550) 88

FeCI3 (4) 37,51,88

PbC1 (8) 51,88

PbF2 (102) 42,88

PL'(NO3) 2 (4) 88

PbSO4 ,6) 51

LiAiCl4 6,8,13,31,52,54-57,75,77,78

bLicl, AiCI (usually vreparcd in situ).7 3

74

Table O-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

I. Inorganic - Continued

LiAsF6 47,48,50,59,74,75LiBF (400) 6,12,13,29,42,48,53,56,69,82,

91,95,100

LiBr (19) 6,28,51,73,74,88LiCF 3SO3 95

LiCl (13) 4,13,19,21,24,28,33,34,37,38,40,42,45,46,51-53,55-57,63,65,67-69,74,84,88,92,94,95,100

LiClO (49) 3,4,6,8-10,13,15,19,20,28-30,33,38-40,45-48,51,54,56,61,62,68,69,74-76,82,84-88,90,92,94,95,100,101

LiCN 24Li2 CO3 :10) 24,29,37,88

LiCOOCH 3 (19,'2H2 0) 88

LiF (15) 24,37,42,45,46,51,74,84,88,91,94,100

LiI (200) 56,68,69,88LiNO3 (-.) 88,91,95

LiOH (22) 24LiPF6 (380) 13,29,37,38,42,43,47,48,51,

53,56,74,91,100

Li 2S 24

LiSCN 90) 24,73Li2SiF6 37

Li2 so4 (14) 29,51,88

Li2SO3F 37

Mg (BF4 ) 2 100

MgBr 2 (15,.6H 20) 45

75

Table C-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

I. Inorganic - Conti' ed

MgCI 2 (6) 24,29,37,40,45,51,88,1002 aMg(CIO4 ) 2 (9) 6,29,45,51,94,100

MgCO, (15,basic) 29

MgF 2 (15) 24.37,42,88,100

Mg(PF 6 ) 2 100

Mg%(SCN) 2 29

MgSiF 6 37

MgSO 4 (5) 29.45

HgBr 88

Hg(CN) 2 (52) 88

Hg(COOCH 3 ) 2 (30) 88

HgI 2 (30) 88

HgSO4 (28) 51

NiC3 2 (130) 88

Ni (CN) 2 88

NiF2 (320) c'4,88Ni (PF6 ) 2 37

NiSO4 (7,.6H2 0) 51

NOBF (900) 53

NOPF6 (940) 53

PCI5 (4) 42

PF 5 74,100

aExplosive when anhydrous

76

Table C-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailab?.e form when not anhydrous.)

Solute material Literature reference

I. Inorganic - Continued

KAg (CN) 2 88

K3A-F6 (9) 37

KAsF 6 (118) 13,37,47,48

K 2BeF4 37KBF4 (i1) 3,13,3?

KBr (3) 2,45,51,88KBrO3 (5) 51

KCCI 3CO2 45

Rcl (1) 24,37,42,45,51,88

KC1O4 a (6) 6,47,84,88,95

KCN (8) 51,67,88KCNO 24K 2CO3 (2) 24,37,88

KCo (CN) 3 88KCrF 6 47

K3 Cr(SCN) 6 (67) 37

KCu (CN) 2 88

":.o (4,-2H2 0) 24,37,42,45,84,88

K4 Fe(CN) 6 (3,'3H2 0) 37

KHSO 4 (2) 51

KI (8) 37,43,45:51,56,67,88KiMnO4 (2) 51

K2 NbF 7 (174) 37

KNi (CN) 883KNO-. (q) 88

aExplosive when anhydrous

77

,!4

Table C-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

1. Inorganic - Continued

KNOI (2) 51,88

KOH (670) 13,84,88KPF6 (30) 1-3,6,13,20,28,37,38,40,42,43,

48,51,53,68,69,84,88,100,101

K2 S 24

KSbF6 (240ý 48

KSCN (7) 6,24,28,45,51,67,73,84,88

K2 SiF 6 (5) 37

K2 SO4 (1) 88

K2S208 (7) 51

K2 TaF 7 (208) 37

K2 TiF 6 (9) 37

K2 ZrF6 (12) 37

RbCl (400) 88RbCiO4 (300) 84

Rb' (320) 37,42,43,88

SiF4 37

AgBr (143) 88AgCI (69) 51,88AgCIO4 (300) 56

AgI (101) 88AgNO 3 (41) 45,88

Na3AIF6 (2) 37

NaAsF 6 37,47,48

a Explosive when arnhydrous

78

Table C-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

I. Inorganic - Continued

NaBF4 (12) 37,40

NaBr (3) 45,88NaCCI CO 45

NaCF 3 SO3 94

NaCH 3 SO 9433

NaCl (2) 13,24,37,42,45,84,88

NaCiO4 (5,-HO0) 13,47,48,73,84,88,94

NaCN (2) 88Na2 CO3 (2) 24,88

O3(

NaCOOCH5 (4) 88NaCOOC 6 H5 (3) 88NaF (6) 24,37,42,51,88,91NaHSO4 (5) 88

NaT (15) 43,45.88NaNO 2 (2) 88

NaNO3 a (2) 51,88

NaOCH 3 (8) 88

NaOH (1) 88NaPF6 (192) 6,13,37,42,43,47,48,53,54,84,88

Na4 PO 3 F (21) 51

NaSbF 6 (90) 37,88

NaSCN (6) 88,94Na2 SF 6 (4) 37

Na 2SO4 (1) 88

Na TPBb (750) 74,94

a Explosive when anhydrous

bSee abbreviations at end of table

79

1#

Table C-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

I. Inorganic - Continued

SrC 12 (4,.6H2 0) 88

Sr(C10 4 ) 2 (238) 40

TICi (25) 88,93

SOC 2 (4) 42

SnCl 2 (8) 45

SnF2 (43) 37

SnF 4 (3500) 37

TiF 3 (270) 37

TiF4 (130) 37

WCI 6 (104) 88

VC 2 88

VCI 3 (420 88

SnCl2 (4) 28,88

BnF 2 (124) 42,88

80

'I

Table C-VI. Solute materials - Continued.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

II. Organicb

(BTrMA)AsF 6 37

(BTrMA) SbF6 37

(DBA)AsF 6 37

(DBA) 2 SiF6 37

(DBTrMA)PF 6 37,38

(EPy)Br '78) 51

(M)AsF 6 37

(M)PF 6 37,38,42,43,56,61,74

(nPA) BF4 56

(PTrMA) Cl 40,42,43(PTrMA) PF 6 37,39,40,42,43,54,88

(TAmA) SCN 94

(TBA)Br (96) 74(TBA)F 13(TBA)I (80) 37,84,88(TBA)OH (153,25% CH3OH soln) 24,40

(TBA) (TPB) 74

(TEA)Br (14) 51,88(TEA)C1O 4 (100) 69,84-89,91

(TEA)F (620) 40,74

bsee abbreviations at end of table

81

- -•

Table C-VI. Solute materials - Continu, ".

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Solute material Literature reference

II. Organicb- Continued 24

(TMA)BF 4 (120) 26,37,42,43,74,88

(TMA) Br (19) 37,74(TMA) Cl (16) 3,18,37,45,51(TMA) CIO 18

(TMA)F (600) 48,74(TMA)I (43) 45,88(TMA)OH (545"5H2 0) 40

(TMA)PF 6 (250) 37,38,42,43,53,74,88

(TPA)BF 4 37

(TPA)CIO 82

(TPA)PF 6 (680) 37,36

(TrABA) (TPB) 94

(TrMA)Cl (32) 45

;TrPA)AsE6 37

II

I:I

0 See abbreviations at end of* table

82

Table C-VI. Solute materials -Continued.

Abbreviations

An ions

TPB Te traphenylboride

Cdtions

BTrMA Benzyltrime thylaminoniurnDBA DibutylainmoniumDBTrMN Dodecylbenzyltrimethy lanunoniumEPy EthylpyridiniumM MorpholiniuinnPA n- PropylamnioniumPTrMA Pheny ltrime thylarnmonium,TArnA Tetra-n-amy lagmmoniumTBA TetrabutylammoniuxnTEA TetraethylarrinoniumTMA TetramethylaminoniumTPA Tetrapropy lammoniuinTrABA Ti- l-amylbutylarnmoniumTrMA Triniethylamm~oniumTrPA Tripropy lanimoniurn

831

Table C-VII. Anode materials.

Material Literature reference

1. Aluminum 13,,28,33,37,39,51:52,55,73,84,94

2. Beryllium 33,37,40,51,55,69,73

3. Cadmium 33,40,100

4. Calcium 3,o,7,13,28,33,37,38,40,42,51,73,94,100

5. Cobalt 28

6. Lithium 3,4,6,8,10,12,13,15,16,18,19,21,24,27-34,36-58,61,62,65,71.73,75-78,82-88,90,92,94,95,109,101

7. Magnesium 3,6,7,!3,28,33,37,38,40,42,4S,46,51,52,60,61,67,68,73,84,94,100

8. Potassium 3,40,51,52,94

9. Rubiduium 28

10. Sodium 3,28,33,37,38,51,88,94

11. Strontium

12. Zinc 6,7,28,33,46,100

84

Table C-VIII. Cathode materials.

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Material Literature reference

I. Elemental

12 94

S 6,45,51,73

II. Inorgani_

AlF 3 (10,-nH2 0) 45

SbCl5 24

SbF 3 (14) 38,47

SbF I 24

AsBr 3 24

AsF 3 (82) 24;38

AsF. 24

B2 0 3 (4) 45

CdC1 2 (15) 19,24,89

CdCO3 24

Cd (CN) 2 24

CdF 2 (60) 19,20,24,100,101

CdS (25) 24

CrCI (3Ot0) 40,55

CrCI 3 (77) 29,40

CrF 2 (480) 29,40,551

CrF 3 (9,13 H2 0) 28,40,51

CrI 2 (2800) 40

CrO, (8) 40,46,73

65

r

Table C-VIII. Cathode materials - Continued.

(Figuren in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Material Literature reference

II. Inorqanic- Continued

Cr203 '4) 6,40Cr (OH) 2 24

Cr (OH).3 24

CoBr 2 (240) 40

-oCl2 (111) 40,55,?00CoCI 3 100COCO3 (21) 24,29

CoF2 (80) 24,40,46,55,100

CoF3 (37) 13,28,38,40,45-47,51,53-56,100

CoI2 (130) 40

CoO (350) 40,100Co 2 0 3 (19) 40

Co304 (.7 40

CoS 24,87Co (SCN) 2 24

CuBr (55) 40CuBr. (13) 40

Z

CuCl (7) 19,28,30:36,40,46,56,75CuCI 2 (12) 6:13,15,19,24,30-34,36,38.40,

"15, 56, 57,65 ,7 ,74 77,92,100

CuCO3 (7) 13,24,29

CuCN 24CuCNS (60) 24Cu (CNS) 2 24

CuF 19,24,28-30,40.,46Cup' 1450) 6,13,15,19,23,2>1,28-34,37,38,

40,42,45-51,53,54,56,70,73-75,841-87,94 .100

86

IITable C-VIII. Cathode materials - Continued

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Material Literature reference

II. Inorganic - Continued

CuI (36) 40CuIl) 40

Cu(10 3 ) 2 (1L0,-H20) 73

u20 (3) 40

CuO (8) 13,29,40,45,46,100Cu2S (11) 24,38,87

CuS (8) 15,24,29,45,73,76,87CuS@% (5) 29

AuBr 40AuBr3 40

AuCI 40AuCI3 (1 6 8 0,I1AuCl4- 3H20) 40

AuI 40Au 0 (9600' 40

2 3

GeCI 4 24

InF 3 (14001 100

in(OH)2 24

I 205 (67) 6,73

FeBr 2 (365) 40

Fecl2 (195) 24,40,51,55

FeCl 3 (4) 40,55

F,)3 24.29

FeF.. (600) 24,55

FeF3 (500) 40,51,55,100

FeI2 (600) 40

87

- __ I

Table C-VIII. Cathode materials - Continued

/Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Material Literature reference

II. Inorganic - Continued

Fe 2 0 3 (1) 13,29,40

Fe0 ( 38,40

Pb (OH) 242

FS(14) 2408

Fe 2 S3 24,87

PbICI2 (8) 51,57,89

PbF (102) 28PbO2 (5) 38,45,46Pb (OCN) 2 24

PbS (1i) 24PbSO4 (6) 51

MnBr2 (140) 40

MnC 2O (9) 40,55

MnCO3 24

tgFl2 (270) 13,19,29,40,46,55SMnF 3 (240', 48

i•Mni2) (1521, " 4 H20) 40

:MgnO (12) 40::MnO- (7) 13,38,40,45,46,73

Mn 2 03 k4

Mn 3 04 '.9) 40

MnS 24

HgCI 2 (24) 511

HgO (32) 46HgS ý27) 24.51HgSO4 (28) 6,45,51

88

Table C-VIII. Cathode materials - Continued

(Figures in parentheses are cost, in $/kg, and

available form when not anhydrous.)

Material Literature reference

II. Intrganic - Continued

MoO3 (9)

NiBr 2 (146) 40

NiCl 2 (130) 13,19,38,40,42,46,51,55,73,79,100

Ni (CN) 2 24

NiCO3 (14) 24,29

NiF (320) 13,19,24,28,29,37,38,40,42-46,51,73,100

NiI 2 (120- 66H;0) 40

NiO (17) 38,40,100NiO2 (12) 40

Ni203 45

Ni (OH) 2 24,38

NiS 24,87NiS 2 87

Ni 2 S 87z 3

Ni (SCN) 2 24

NO3 38

PB3 24

Pci3 24

KI (8) 94

KIO4 (47) 60

K2 SO4 (1) 94

K2S 208 (7) 73,94

Se 7Cl2 24

89

Pable C-VIII. Cathode materials - Continued

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Material Literature reference

II. Inorganic - Continued

SiC1 4 24

Si 2Cl6 24

AgBr (143) 40AgCI (69) 6,7,13,19,21,24,28,37,38,40,

46,51,52,55-57,73,78,89,94,100

AgCN (4S) 24Ag 2 CO 3 24

AgF (900) 19,24,28,z0,46,51AgF 2 6,38,40,73,100

AgI (101) 40Ag2 0 (97) 13,38,40;45

AgO (330) 13,28-30,38,40,45,47,73,100Ag203 40

Ag9708 38

AgOCN (120) 24Ag2S 24,51,101

Ag 2 SO 4 (92) 51

NaBO3 (5,-4H2 0) 45

NaIO3 (12) 73

S2CI4 24

TIC1 (2-) 89

SnCl 4 24

SnO2 (8) 45

SnS 24

TiF3 (270) 28,29,38

TiF4 (330) 29

90

I!

Table C-VIII. Cathode materials - Continued

(Figures in parentheses are cost, in $/kg, andavailable form when not arhydrous.)

Material Literature reference

II. Inorganic - Continued

VCI 2 40

VCI3 (420) 40

VCl 24'7 4

V2 05 (17) 6,38,40,45,46.73

ZnBr 2 (25) 40

ZnCl2 (4) 24,40,101 ,

ZnCO 3 24

Zn(CN) 2 24

ZnF2 (124) 24,40,100,1012

" "n2 (47) 40

ZnO (1) 40Zn(OH) 2 24

ZnS (6) 24,87

91

l

DIM-

Table C-V/III. Cathode materials - Continued

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Material Literature reference

III. Organic

Bis-benzofurazane sulfone 28-301-Chloro-2,6-dinitrobenzene 82N-Chlorosuccinimide 61Dichlorobenzoquinonediimine 61Dichloroisocyanuric acid 38,46,60-62

(ACL-70)N,N Dichloro-4-toluene- 3

sulfonic acidamide(Dichloroamine T)

Dichlorotriazinetrione 6,13,60-622,4 Dinitroaniline 95m-Dinitrobenzene 3,6,7,11,28-30,38,45,82,95o-Dinitrobenzene 26p-Dinitrobenzene 3,26,822,4 Dinitrophenola 38,822,5 Dinitrophencl 822,6 Dinitrophenol 822,4 Dinitrotoluene 452,6 Dinitrotoluene 82DinitrotrichlorobenzeneFluorinated graphite (CxF) 10,16

Heyxachlorcomelamine 38,602,4,6 Hexachlorotrizzine- 60

trione

Nitrobenzeneb 3,12,824-Nitrosophenol 38

Picric acida 29,60Potassium trichloroisocyanur- 3,38,46,61

acep-Qui nonedixime 38Quinone resins 18Sodium trichloroisocyanurato 3,38,46,615,5'-Sulfunyl-bis-benzofura- 3

zone-3,3'-dioxide

aExplosive

bLiquid at roomi temperature

92

Table C-VIII. Cathode materials - Continued

(Figures in parentheses are cost, in $/kg, andavailable form when not anhydrous.)

Material Literature .ceference

III. Organic - Continued

Trichloroisocyanuric acid 3,38,46,61Trichloromelamine 3,38Trichlorotriazinetrione 61

093

- ~ --- -~>

4N3 N Y- N Ec .Di Ii - Ln Ln ('4 -In

.41 j4 C4 O'4 (4 4 '-4 4~ ' I - C) L

0) 004

(d X N IN C,4I I I I Nr MA

4-)0) 0

a) 11 LA4 C4 C * c;C C4 A4 N4 C4r i r 0 A

0 0 4. I04-4 0

4-I 147 in V) i C0 0

1 NC -4NI I N I

*dq ) 4414J-,-4 Q

(U Ln LA N I .- f I 0 Ln '00

0 C4C) *rq A

.r)o Lno c ýo

F-4

0 f- A N N N n N N I I N N N N C

rI N45 f u Ul 14 III0

94

n OD I- NI CO OD Ni 100He4 I II a Ii II I ii 0i *

vI V v V V V v

40 0- r- S 0 0 rý0 N tn 0n o *z v

W 0

44'I ~~ ~ C I0 I I( O 'O II (N MVa t I I I I* I 1 *0rý I I C, I II INN NN I ( N

Q). I 1 .CD II4 I N 01 N 1

W4-) rý 0)M 1 4N()4J ( 00 0 g 104 U co l I OMOm( OCODo( W NI

Hl 000 *-4

4Jo Il I ON M . 0 en m0E~ 0 C N l I N M M M4 I I

u004-)

()4-4 CD OI I I kOC3 H co HH4 IM I- I Iý40 U)l *1 I I I.............e l * I I0 WV r Z (N, l I r4 (N MM I4 I4 I4 rIW1) n HOI

ý4 u M- II H N L OD Ch N Ln W P4 fl-N enO0N0 4 (Nil (N (N(N(NenM M(N(( ((HW (L 4 4C-( 4 4C

W- CL (N LM 00N NM( j (N L F)HI rq M(N(N

N Wn

0Q ~ $4(NN 1-44N 1- 0

u UUU UU U u Juuu UUUL U uL)u

95

I i; 0 0 10 C a a.- 4 I I *.4 C, m

LrA LA. %o'~ m OaimN Ln LA ONa CD 0 mO m'

C m r4(' nir c4 N4 r4 Ný (4c4 r4 .4 r,4 N) Vv v- v V V V

-a'~m -r- r- 'I 4VN m r L' H i - I .

(1) 0

4-4

rd~ -4(L) 0 co l C^ en I I 1 I I -

4) r. a) *. N *, %- (1)I I4J: 's.. Q)i Nrl NC' lrvII I

V) VV

0 0 -14040 co ON 1-4 I C ro N N -I -

(D I~ Vl N CN N C.) N~ N I I

z 0 41)

,--I M I4 1 ~ a ,4-4 m - A N O

(1 E t............... r ri)i c4 4i N 1' Nmc N N4 Ný N

U00 v A

a) 44 U I r L LA co' t V .CN tv v aP0 En wm- faN N N N

0U) -,-40 A

E-; .,A ý4 (

1-4 -T a% m k r'-~ M *-~r r C) ~ ,4

EL >

00)

0;- 0 I4 W I-

[-d 4 4, :4

CA't)

r ri

.- I

N I- C '4 A I I C J I

rJ4 IN r N I I IN N I CN~

0N N N di IIN I l

a) 4-)C4 1 AN A

W 4) 0

0.O Iu N I N 00 C I I com

1 4 14Iv

u 4-)' %D IY m. ' ) I ~ I

HiE. 0 ~ I I ~ : g N N N I( i Am

.,. 4 4-441 0

I N N M N1 I . I I I

E-4 --4 ý

$4 9) In1 Df)C

H~ ~ ~ CU -4A

d~~~~~ co IN N' 0 C)CNN.r 4C

-4C I- A AFv4-(a

d ONNur a '0 O -C

r4 4 Cr, U~ 44 N a' C 0 U)- U) U 44E

<3 I '-4 I H H H I I I97

Up4 %D CC Ch I MI I a a t i r

N) j- N Vq (V Vb&

I9- 'I 40 nm

N C,4*

NJ r4 N N N N N C N C%4 m N ir- -A viItW 4J (1 I 0(J I t 1 4 I L '

m u I CI CO t - mC -I tnL

0 v

~4 0 C, .C % -41 1 C4 1 V M N M-

I 0~I I(iN CJN N I4 N N4ý

-f 0 v v

54 (D ) 1 l . . P 'z4 L ~ (i

E-4 ,! 4I

U)4 enN 0- Nn NCO rN C'~ 40 1 0 z Iý 40 LA C-4 1 A, N A-0 4 4N '

W I

N- tn N 0 0 0 C4 DmR q-01 N1 1 r- - -4.

m. $r 4 9-4 0 C4 N 0Q 14 -4Z N N.4 4J0 CO U U.. C\ Q0 -U) ClU U . 1

X: uIz z .. z % z ~< lc

98

(7 0 ý-I -I :c :

O1 -4'4 N N-l "I C-4 -

.U

S J C 4 -I m en *N C4 * 4 C4

0

1-4 1- 1~ ,( m~ I ~ l i I

4-* r. ) I *r

0 0 454

C4 C -4s : ' i ~4 ~ ~ m

0 m I II I m 'sI N NN N N4 C4 C

0 0

1 0.

0 C)NNr4 * I . CN4 1 I C 1 NN N

E-C~ .ii4 'r-n I) j.-4 0 -f4 ' e t LO -4 ?;-4 I m) I r-4t L S

C) T,: . . 1 .* I . .

C' C,~je4 m "n r4' N ca naN.! N NI,

)4

%D fn I -4~ 1-43'1I -N 4 ?0 0 c 0 qr CD (' 0

'111-I + C4 1I~ RT T- rv I- '-4 (4 r 0

C ~ ' I

0 1 n 0 r41 C 1 0 0 () V) -4 4W 04 ~ -n N4 N-

54 4 r4~ 0 N C.IqC4 " (U) W -4 -4~ U A.. "-

U (U E- (0'4 E-4U > ~ >

99

I q r- I 1 0 qTI OD h II

vv v 'v v v

%D ( tn-4 % 4Cotft-4 u N0 o C 01

4) Vv vV

0

0)0 C4 .* ~ N 04ftA-~ ruO iO C'O -4r-4 uI I0~ Id -4 c - W III

043 4

C., -4 r- %Dt

0 0- 0) n r-~~f r- U) O r4?- n

00

:3 0 a) (ntI C) Ln- -.4 . ,-lCO0 C'. 41

0 ocrir 00O N6N0 -4 -O -4r-c-A r r-4iV I3 I II I 1 14--4 ' N((%r 3 .- C'

co

4 - VVV D V

0 m n c

E-4 4 <

100 Dor n t

$4 o'I NC C--4= - -n % DL-'ta

Table C-X. Successful cell systems.

Part 1. L-Ist of cell systems.

Cell systemn Literature reference

Li/PC-LiAlCl /AgC1 51,52

2. Li/PC-NaPF 6/cup 3

3. Li/PC-RPf 6 /Nix 2 421

4. L/CLl CuF 28,46A47

Li/C-L~l 4/ 2

i5. Li/PC.NM-LiAlC'I4 /CUC1 2 33,34,65

6.Li/MF-LiClO /Cu 4

4 27. L/BL-PF 6J~gF2 108. L/"MFLiC! 4 /uF 246,4

9. L/MF--JiCO /AL-7010,6

Table C-X. SuccesbZul cell systemrs - Continued.

Part 2. Available data for cell systems listed in part 1.

Data Literature reference

1. Li/PC-LiAlCl 4 /AgCI Lockheed (51,52)

Electrolyte: 0.6M LiAlCl in PC

Anode: Li pressed on expanded NiCathode: 75% AgCl, 10% Ag, 15% inert conductor on

expanded Ag.

a. Open circuit potential = 2.80 to 2.85V.

b. Time to 2.OV cut-off at given current densityI 2(mA/in h n

CD (mA/in2) Time (hr) _ _-hr/in2

6.3 7.8 49.2

11.0 3.9 42.918.7 2.0 3-t.428.4 0.75 21.338.7 0.26 10.1

c. Current density at 2.OV at given temperature.

2Temp. (CF) CD (mA/in2)

-22 5.2+28 33+66 >65+149 >65

2. Li/PC-N•PF 6 /CuF2 Lockheed (53)

Electrolyte: NaPF 6 in PC (concentration unknown,

likely -1M)Anode: Li on expanded AgCathode: 70% CuF 2, 30% Ag on expanded Ag

a. Best performance: 72% utilization of CuF2 at ]

mA/in2 to 2.OV cut-off = 12S Whr/Ib of eflctrode.b. At 1 rA/in2, obtained 200 hr of discharae to 2.0V

2cut-off 200 mA•.A !n. .

102

25

Table C-X. Successful cell systems - Continued.

Part 2. Available data for cell systems listed in part 1.

Data Literature reference

3. Li/PC-KPF6 /NiX 2 Gulton (42)

Electrolyte: KPF 6 in PC (concentration unknown)

Anode: 90% Li, 10% graphiteCathode: 50% NiX2 , 50% graphitea. NiX2 prepared by treating NiF_ with SOCI2.

2b. At 2 mA/in , obtain 66% cathode efficiency from 3.0

to 1.OV.

2c. At 100 mA/in2, obtain 33% cathode efficiency from1.6 to 0.6V.

4. Li/PC-LiC10 4 /CuF 2 Livingston (46,47)ESB (28)

Electrolyte: Livingston, 1.4M LiClO4 in PC

ESB, IM LiCIO in PC4

Anode: Livingston, Li on AgESB, Li on Cu

Cathode: Livingston, 83% CuF2, 12% graphite, 6% pulpon Ag

ESB, 85% Cur 2 , 10% graphite, 5% binder on Cu.21I

a. Open circuit potential: Livingston 3.45VESB = 3.3V

2b. Livingston: At 12.9 mA/in obtain 15.5 hr of dis-charge to 2.OV cut-off.

Note: Completely self-discharged after a few days

at 35 C; stable for 6 weeks at -15°C.

2c. ESB: At 0.08 to 0.46 mA/in , obtain a voltageplateau at -3.OV.

Note: Energy density is a maximum at -0.3 mA/indue to loss of active material through dis-solution at lower drain rates. (Applies toLivingston system as well.)

103

B'

iA

Table C-X. Successful cell systems - Continued

Part 2. Available data for cell systems listed in part 1.

Data Literature reference

'A/PC,NM-LiAICl 4 ,AlCl 3 /CuCl 2 ELCA (33,34,65)

Slectrolyte: 3.OF A1CI 3 , 0.3F LiC1 in 45% PC, 55% NM

Anode: Li on Ni or AlCathode: 85% CuCl 2 , 7.5% Ag, 7.5% carbon on Cu

L2

a. Open circuit potential = 3.1V.

b. Voltage range for given current density.

2CD (mA/in2) Voltage range

46.5 2.3 - 1.6125 2.2 - 1.0

c. System will self-discharge due to solubility of

CuCl 2 .

6. Li/BL-LiC1O4 /CuC1 2 Livingston (45)

Electrolyte: 12% LiCIO in BLAnode: LiCathode: 75% CuCl 2 , 25% carbon

a. Open circuit potential 2 3.5V. (This value ishigher than that theoretically calcu?.ated: 2.9V.)

2b. At 6.45 mA/in2, obtain 28 hr of discharge to 2.8Vcut-off.

2Note: at 3.2 mA/in obtain 30 hr of discharge to3.OV cut-off with CuF,; OCP = 3.2V.

104

Table C-X. Successful cell systems - Continued

Part 2. Available dat3 for cell systems listed in part 1.

Data Literature reference

7. Li/BL-KPF6 /AgF 2 Whittaker (100)

Electrolyte: Saturated KPF6 in BLAnode: Li on AgCathode: AgF 2 , carbon, polyethylene on Ag

a. Open circuit potential = 3.7V.

b. At 6.45 mA/in2 , obtain voltage plateau of 3.4 to3.OV.

8. Li/MF-LiCIO4 /CuF 2 Livingston (46,47)

Electrolyte: 4.68F LiCIO4 in MFAnode: Li on 4g.Cathode: 83% CuF2 , 12% carbon, 6% paper on Ag

a. Open circuit potential = 3.5V.

b. Hours of discharge at given current density to 2.OV

cut-off (-150 C).

Hours CD (rum/in )

1.05 1291.25 64.53.4 53.56.2 19.4

Note: Li anode material reacts with solvent givingpoor wet shelf life.

9. Li/MF-LiClO4 /ACL-°70 Monsanto (61,62)

Electrolyte: 1.0 F LiClO4 in MFAnode: IiCathode: 81% ACL-70 (dichloroisocyanuric acid), 13%

Shawingan Black, 6% carbon

a. Open circuit potential = 4,OV.

b. At 50 mA/in 2 , obtain 2.6 hr of discharge from 3.7 to2.OV.Note: "Dry Tape" system

105

Table C-X. Successful cell systems - Continued.

Part 2. Available data for cell systems listed in part 1.

Data Literature reference

1G. Li/IPA-LiCIO4/CuS (85)

a. For 7 amp • hr battery at 0.05 mA/in , obtain 95

Whr/lb with a 40% voltage drop. At 0.05 mA/incbtain 190 hr of discharge to 1.5V cut-off (voltagenever above 2.OV).

b. For 2 amp • hr cell: lifetime (hr) for given CD2

%1i&.A/jfl

CD(mA/in ) Time (hr)0.05 257

0.09 1250._7 58

c. See 7. Dechenaux, G. Gerbier, J. Laurent; RevueBimestriella Entropie; 13; 15 (1967) for oFTlThalreference.

11. Li/THtF,DME-LiClO4 /CuS SAFT (76)

Electrolyte: IM LiClO in THF,DMEAnode: LiCathode: CuS

L0

a. Open circuit potential >1.95V at 20°C.

12. Li/MCC-LiAlCl 4 /CuCI FAFT (77)

Electrolyte: IM LiAICl in MCCAnode: Li on Ag 4

Cathode: CuCI on Ni-plated steel

a. Open circuit potential = 2.75V.

Note: electrolyte decomposes above 50°C.

106

Table C-XI. Anode material requirements

(100 vA/in2 for 30 days).

Material g/in2 Mils Material g/in2 Mils ILi 0.019 2.1 Ca 0.054 2.1

Na 0.06' 3.9 Sr 0.118 2.8

K 0. 1061 7,5 Zn 0.088 0.8

Rb 0.231 9.2 Cd 0.152 I. 1

Be 0.012 0.4 Al 0.024 0.6

Mg 0.033 1.2 Co 0.080 0.6

107

Table C-XII. Cathode (inorganic) matarial requirements2(100 pA/in for 30 days).

Material g/in2 Mils V/pila Material g/in2 Mils V/mil a

AIF 3 0.075 1.5 --- CuBr 2 0.301 ... ...

SbF3 0.161 2.2 1.3 CuCI 0.267 4.7 0.6

AsF 3 0.119 2.7 1.1 CuCI 2 0.181 3.6 0.8

B 0 0.031 1.1 --- CUCO 0.166 2.5 1.32 3 3

CdCl 2 0.247 3.8 0.6 CuF 0.223

CdF 2 0.203 1.9 1.4 CuF 2 0.138 2.9 1.2

CrCI 2 0.166 3.7 0.6 CuI 0.514 5.6 0.4

CrCI 3 0.143 3.2 0.7 CuM(I3 ) 2 0.558 6.6 ---

CrF 2 0.122 1.8 1.3 Cu 2 0 0.193 2.0 1.1

CrF3 0.099 1.6 1.4 CuO 0.108 1.0 2.3

Cri 2 0.413 4.9 --- Cu 2 S 0.215 2.3 0.9

CrO 0.045 1.0 CuS 0.i30 1.7 1.33

Cr 2 0 3 0.069 0.8 ... CuSO4 0.216 3.7 0.9

CoBr2 0.296 3.7 0.6 AuBr 0.748 5.8 0.6

CoCI2 0.176 3.2 0.7 AuBr 3 0.393

Col.. 0.149 3.1 --- AuCI 0.628 5.2 0.7

oCO 3 0.161 2.4 1.0 AuC. 3 0.273 4.3 0.8

CoF 2 0.131 1.8 1.6 Aul 0.875 6.4 0.4

CoF 0.100 1.6 2.2 Au2 03 0.200 ... ....323

CoI 2 0.423 4.5 0.5 InF 3 0.154 2.2 ---

CoO 0.101 1.0 --- 205 0.090 1.2

Co 2 03 0.074 0.9 --- FeBr 2 0.292 3.9 0.6

Co30 0.091 0.8 --- FeC 2 0 171 3.5 0.7

CoS 0.123 1.4 1.5 FeCi 3 0.146 3.2 0.8

CuBr 0.387 5.0 0.5 FeCO3 0,157 2.5 1.0

aV vs Li.

108

Lable C-XII. " (inorganic) material requirements

U(C, u A!/2 for 30 days) - Continued.

2 a 2 aMaterial g/in Mils V/mila Material ;/-in mils V/mila

FeF2 0.127 1.9 1.5 HgSO 0.401 3.8 0.824

FeF 0.101 1.9 1.4 MoO 3 0.065 0.9 ---33

FeI2 0.419 4.8 0.4 NiBr2 0.296 3.9 0.6

Fe 2 0 3 0.072 0.8 --- N•C12 0.176 3.0 0.9

Fe 0 0.078 0.9 --- NiCO 0.161 ... ...

Fe(OH) 2 0.121 2.2 1.0 NiF 2 0.131 1.7 1.5

FeS 0.119 1.5 Ni... Nil2 0.423 4,5 0.5I2Fe 2 S3 0.107 1.5 NiO 0.101 0.8 ---

PbCI 2 0.375 3.9 0.6 Ni 0 0.223 2.8 ---2~2 3

PbF 0.331 2.5 1.2 Ni(OH) 2 0.126 1.9 1.2

PbO 0.162 1.1 2.2 NiS 2 0.123 1.4 1.522

PbS 0.322 2.6 0.8 Ni S 0.162 1.7 ---3 2

PbSO 0.409 4.0 0.6 KI 0.448 P.8 ---4

MnBr 0.290 4.0 --- KIO4 0.621 10,524

MnC1 2 0.170 3.5 --- K2so4 0.235 5.3 ---

MnF 0.126 1.9 1.2 F2S20 0.365 8.9 ---2 2 2 8

MnF 0.101 1.8 1.3 AgBr 0.508 4.8 0.53

MnI 0.417 5.1 --- AgC1 0.386 4.2 0.72

MnO 0.096 1.1 --- AgCN 0.181 2.8

MnO 0.059 0.7 --- AgF 0.343 3.6 1.2

Mn2 0 3 0.072 1.0 --- AgF 2 0.197 2.6 2.0

Mn 0 0.077 1.0 --- AgI 0.635 6.8 0.33 4

HgCl 2 0.366 4.1 0.8 A 0.313 2.7 1.1

.9gO 0.293 1.6 1.6 AgO 0.167 1.4 2.1

lcs 0.315 2A4 1.0 Ag S 0.335 2.8 0.8

a, vs Li.

109

.1

Table C-XII. Cathode (inorganic) material requirements

(100 pA/in 2 for 30 days)- Continued

Material g/in2 Mils V/mila Material g/in2 Mils V/mil a

Ag2 SO4 0.421 4.7 0.7 V20 0.049 0.9 ---

NaBO3 0.221 --- ZnBr 2 0.304 4.4

NaIO3 0.535 7.6 --- ZnClI 0.184 3.9 0.5

TIC1 0.648 ....--- ZnF 2 0.139 1.8 1.4

Sno 0.103 0.9 ZnI 2 0.,I 5.6 ---

SnS 0.204 2.4 0.9 ZnO 0.109 1.2

TiF 0.095 --- -- ZnS 0.131 2.03TiF 0.084 1.6 1.24VCI 2 0.165 3.2 ---

VC1 3 0.140 2.9 0.8

aV vs Li.

110