Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case

15
J. Appl. Math. & Informatics Vol. 29(2011), No. 1 - 2, pp. 103 - 117 Website: http://www.kcam.biz GLOBAL EXPONENTIAL STABILITY OF BAM NEURAL NETWORKS WITH IMPULSES AND DISTRIBUTED DELAYS YUANFU SHAO * AND ZHENGUO LUO Abstract. By using an important lemma, some analysis techniques and Lyapunov functional method, we establish the sufficient conditions of the existence of equilibrium solution of a class of BAM neural network with impulses and distributed delays. Finally, applications and an example are given to illustrate the effectiveness of the main results. AMS Mathematics Subject Classification : 34D05, 34D20, 93D05. Key words and phrases : Exponential stability, Equilibrium, Lyapunov functional, Delays, Impulses. 1. Introduction Recently, BAM neural networks have attracted the attention of many re- searchers due to its applications in many fields such as pattern recognition, auto- matic control and optimization, and many results for BAM neural networks have been derived [1-8]. Further, the theory of impulsive differential equations is now being recognized to be not only richer than the corresponding theory of differ- ential equations without impulse, but also represents a more natural framework for mathematical modelling of many real world phenomena, such as population dynamics and neural networks, hence, the impulsive differential equations have been extensively studied recently [5,6,9-19]. On the other hand, in practice, it is preferable and desirable that neural networks not only converge to equilibrium points but also admit a convergence rate which is as fast as possible. Since the exponential stability gives a fast convergence rate to the equilibrium point, it is necessary to study the exponential stability and to estimate the exponential convergence rate, see [9,10,20-27]. Therefore, it is necessary and important for scholars to study the existence and exponential stability of equilibrium points for impulsive neural networks Received March 28, 2010. Revised May 20, 2010. Accepted June 21, 2010. * Corresponding author. c 2011 Korean SIGCAM and KSCAM. 103

Transcript of Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case

J. Appl. Math. & Informatics Vol. 29(2011), No. 1 - 2, pp. 103 - 117Website: http://www.kcam.biz

GLOBAL EXPONENTIAL STABILITY OF BAM NEURAL

NETWORKS WITH IMPULSES AND DISTRIBUTED DELAYS

YUANFU SHAO∗ AND ZHENGUO LUO

Abstract. By using an important lemma, some analysis techniques andLyapunov functional method, we establish the sufficient conditions of theexistence of equilibrium solution of a class of BAM neural network withimpulses and distributed delays. Finally, applications and an example aregiven to illustrate the effectiveness of the main results.

AMS Mathematics Subject Classification : 34D05, 34D20, 93D05.Key words and phrases : Exponential stability, Equilibrium, Lyapunovfunctional, Delays, Impulses.

1. Introduction

Recently, BAM neural networks have attracted the attention of many re-searchers due to its applications in many fields such as pattern recognition, auto-matic control and optimization, and many results for BAM neural networks havebeen derived [1-8]. Further, the theory of impulsive differential equations is nowbeing recognized to be not only richer than the corresponding theory of differ-ential equations without impulse, but also represents a more natural frameworkfor mathematical modelling of many real world phenomena, such as populationdynamics and neural networks, hence, the impulsive differential equations havebeen extensively studied recently [5,6,9-19]. On the other hand, in practice, it ispreferable and desirable that neural networks not only converge to equilibriumpoints but also admit a convergence rate which is as fast as possible. Since theexponential stability gives a fast convergence rate to the equilibrium point, itis necessary to study the exponential stability and to estimate the exponentialconvergence rate, see [9,10,20-27].

Therefore, it is necessary and important for scholars to study the existenceand exponential stability of equilibrium points for impulsive neural networks

Received March 28, 2010. Revised May 20, 2010. Accepted June 21, 2010. ∗Corresponding

author.

c© 2011 Korean SIGCAM and KSCAM.

103

104 Yuanfu Shao and Zhenguo Luo

with delays [9,10,23-26]. For example, Zhou [10] investigated the following BAMneural networks:

x′i(t) = −aixi(t) +

m∑j=1

hjigj(yj(t))

+m∑

j=1

lji∫∞0

kji(s)fj(yj(t− τji − s))ds+ bi, t 6= tk

∆xi(t) = Iik(xi(t)) = Bikxi(tk) +∫ tk

tk−1Cik(s)xi(s)ds+ αik, t = tk

y′j(t) = −ajyj(t) +

n∑i=1

hij gi(xi(t))

+n∑

i=1

lij∫∞0

kij(s)fi(xi(t− σij − s))ds+ bj , t 6= tk

∆yj(t) = Jjk(yj(t)) = Bjkyj(tk) +∫ tk

tk−1Cjk(s)yj(s)ds+ αjk, t = tk

(1.1)

By using the contraction mapping principle and Lyapunov functional, the suf-ficient conditions ensuring global exponential stability of the equilibrium pointsof (1.1) are established.

Motivated by above discussion, in this paper, we shall establish a class ofimpulsive BAM neural network with distributed delays as follows:

x′i(t) = −aiei(xi(t)) +

m∑j=1

bjifj(yj(t))

+m∑j=1

lji∫ τ

0kji(s)gj(yj(t− τji − s))ds+ Ii, t 6= tk

∆xi(t) = xi(t+)− xi(t

−) = Iik(xi(t)), t = tk

y′j(t) = −cjhj(yj(t)) +n∑

i=1

dijpi(xi(t))

+n∑

i=1

lij(t)∫ σ

0kij(s)qi(xi(t− σij − s))ds+ Jj , t 6= tk

∆yj(t) = yj(t+)− yj(t

−) = Jjk(yj(t)), t = tk

(1.2)

with initial values

xi(s) = φxi(s),−h ≤ s ≤ 0, yj(s) = φyj (s),−h ≤ s ≤ 0, h = σ+ max1≤i≤n,1≤j≤m

{σij},

h = τ + max1≤i≤n,1≤j≤m

{τji}, φxi ∈ C([−h, 0], R), φyj ∈ C([−h, 0], R).

where xi(t) and yj(t) are the states of the ith neuron and the jth neuron attime t, t ∈ R+ = [0,+∞), respectively. ai, cj denote the neuron charging times.

bji, lji, dij and lij(t) are the weights of the neuron interconnections. Ii and Jjare the external inputs on the neurons. ∆xi(t) and ∆yj(t) are the impulses atmoments t = tk and t1 < t2 < · · · is a strictly increasing sequence such thatlimk→∞ tk = ∞, i = 1, 2, · · · , n, j = 1, 2, · · · ,m. τ > 0, σ > 0 are constants. Asusual in the theory of impulsive differential equations, at the points of disconti-nuity tk of the solution z(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , ym(t))T ,we assume that z(t+k ) exists, and z(t−k ) = z(tk). It is clear that there exist the

limits z′(t−k ), z′(t+k ) such that z′(t−k ) = z′(tk).

Global exponential stability of BAM neural networks with impulses 105

Our aim is, under the generalized r-norm (r > 1), by using an importantlemma and constructing suitable Lyapunov functional, to obtain the sufficientconditions ensuring the existence and globally exponential stability of equilib-rium solution of (1.2).

The rest of this paper is organized as follows. In section 2, definitions andlemmas are introduced. In section 3, by using Forti and Tesi’s theorem, thesufficient conditions of the existence of equilibrium solution are established. Insection 4, the conditions ensuring the globally exponential stability of the equi-librium point are derived. Finally in section 5, applications and an illustrativeexample are given to show the usefulness of the main results.

2. Preliminaries

First we make some preparation and introduce some elementary definitionsand lemmas.Let PC be a class of function φ = (φx, φy)

T : ([−h, 0], [−h, 0])T → (Rn, Rm)T

satisfying:(i) φ is piecewise continuous with first kind discontinuity at point tk, and isleft-continuous at tk, k = 1, 2, · · · , p.(ii) ∆xi(tk) = Iik(xi(tk)), ∆yj(tk) = Jjk(yj(tk)) for i = 1, 2, · · · , n,j = 1, 2, · · · ,m, k = 1, 2, · · · .For each φ = (φT

x , φTy )

T ∈ PC, z(t) ∈ Rn+m, we define

‖φ‖ =

n∑

i=1

sups∈[−h,0]

|φxi(s)|r +m∑

j=1

sups∈[−h,0]

|φyj (s)|r

1r

,

‖z(t)‖ =

n∑

i=1

|xi(t)|r +m∑

j=1

|yj(t)|r

1r

,

where r > 1 is a constant, z(t) = (x1(t), x2(t), · · · , xn(t), y1(t), · · · , ym(t))T ,φx = (φx1 , φx2 , · · · , φxn)

T and φy = (φy1 , φy2 , · · · , φym)T .

Definition 2.1. A constant vector z∗ = (x∗1, x

∗2, · · · , x∗

n, y∗1 , · · · , y∗m)T is said to

be an equilibrium solution of impulsive system (1.2) if

(i)

aiei(x∗i ) =

m∑

j=1

bjifj(y∗j ) +

m∑

j=1

ljigj(y∗j )

∫ τ

0

kji(s)ds+ Ii

cjhj(y∗j ) =

n∑

i=1

dijpi(x∗i ) +

n∑

i=1

lijqi(x∗i )

∫ σ

0

kij(s)ds+ Jj

(ii) Iik(x∗i ) = 0, Jjk(y

∗j ) = 0.

(2.1)

Definition 2.2. The unique equilibrium z∗ = (x∗1, x

∗2, · · · , x∗

n, y∗1 , · · · , y∗m)T of

system (1.2) is said to be globally exponentially stable if there exists constant

106 Yuanfu Shao and Zhenguo Luo

α > 0,M ≥ 1 such that for all t > 0,

n∑

i=1

|xi(t)− x∗i |r +

m∑

j=1

|yj(t)− y∗j |r

1r

≤ Me−αt‖φ− z∗‖,

where

‖φ−z∗‖ ={∑n

i=1 sups∈[−h,0] |φxi(s)− x∗i |r +

∑mj=1 sups∈[−h,0] |φyj

(s)− y∗j |r} 1

r

.

Definition 2.3 [28]. A real matrix A = (aij)n×n is said to be an M-matrix ifaii > 0, aij ≤ 0(i, j = 1, 2, · · · , n, i 6= j) and successive principle minors of A arepositive.

Lemma 2.1 [29]. Let Q be an n × n matrix with non-positive off-diagonalelements. Then Q is an M-matrix if and only if one of the following conditionsholds:(i) There exists a vector ξ > 0 such that Qξ > 0;(ii) There exists a vector ξ > 0 such that ξTQ > 0.

Lemma 2.2 [30]. (Young inequality) Assume that a, b, p, q > 0, p+ q = 1, thenapbq ≤ pa+ qb.

Lemma 2.3 [31]. (Forti and Tesi’ theorem) If H(x) ∈ C0 satisfies the followingconditions:(i) H(x) is injective on Rn+m,(ii) ‖H(x)‖ → +∞ as ‖x‖ → +∞,then H(x) is homeomorphism of Rn+m onto itself.

Throughout this paper, we always assume that:(A1) ai > 0, cj > 0, bji, dij , lji, lij , Ii and Jj are constants for i = 1, 2, · · · , n,j = 1, 2, · · · ,m.(A2) ei, hj : R → R are differentiable function satisfying 0 < %i ≤ e′i(u), ei(0) = 0and 0 < %j ≤ h′

j(v), hj(0) = 0 for any u, v ∈ R, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.(A3) Functions fj(u), gj(u), pi(u), qi(u) satisfy the Lipschitz conditions, i.e., thereexist positive constants Fj , Gj , Pi, Qi such that

|fj(u)− fj(v)| ≤ Fj |u− v|, |gj(u)− gj(v)| ≤ Gj |u− v|,|pi(u)− pi(v)| ≤ Pi|u− v|, |qi(u)− qi(v)| ≤ Qi|u− v|

with fj(0) = gj(0) = 0, pi(0) = qi(0) = 0 for any u, v ∈ R, i = 1, 2, · · · , n,j = 1, 2, · · · ,m.(A4) Functions kji(t) and kij(t) are positive piecewise continuous and satisfy

∫ τ

0

eηtkji(t)dt = ψ(η, τ),

∫ σ

0

eηtkij(t)dt = ψ(η, σ),

where ψ(η, τ) and ψ(η, σ) are continuous in η. When τ = ∞, σ = ∞, ψ(η, τ) ≡ϕ(η), ψ(η, σ) ≡ ϕ(η) with ϕ(0) = ϕ(0) = 1.

Global exponential stability of BAM neural networks with impulses 107

3. Existence of equilibrium solution

In this section, employing the Forti and Tesi’s theorem, we will establish thesufficient conditions of the existence of equilibrium solution of system (1.2).

Theorem 3.1. Assume that (A1)−(A4) hold. Further, if there exists a constantr > 1 such that the following condition holds.

(A5) Γ =

(rA− (r − 1)G −P

−F rC − (r − 1)Q

)is a nonsingular M-matrix,

where A = diag(a1%1, a2%2, · · · , an%n), C = diag(c1%1, c2%2, · · · , cm%m),

G = diag(G1, G2, · · · , Gn), Q = diag(Q1, Q2, · · · , Qm), P = (pij)n×m,

F = (fji)m×n, Gi =∑m

j=1 |bji|Fj + |lji|Gj

∫ τ

0kji(s)ds,

Qj =∑n

i=1 |dij |Pi + |lij |Qi

∫ σ

0kij(s)ds, pij = Pi|dij |+Qi|lij |

∫ σ

0kij(s)ds,

fji = |bji|Fj + |lji|Gj

∫ τ

0kji(s)ds. Then system (1.2) admits exactly one equilib-

rium solution z∗ = (x∗1, · · · , x∗

n, y∗1 , · · · , y∗m)T .

Proof. For z = (x1, x2, · · · , xn, y1, · · · , ym) ∈ Rn+m, define a mapping ψ :Rn+m → Rn+m as follows:

ψi(z) = aiei(xi)−m∑

j=1

bjifj(yj)−m∑

j=1

∫ τ

0kji(s)gj(yj)ds− Ii

ψn+j(z) = cjhj(yj)−n∑

i=1

dijpi(xi)−n∑

i=1

∫ σ

0kij(s)qi(xi)ds− Jj ,

(3.1)

where ψ(z) = (ψ1(z), ψ2(z), · · · , ψn(z), ψn+1(z), · · · , ψn+m(z))T ∈ Rn+m.Firstly, we demonstrate that the mapping ψ is injective, i.e., ψ(z) = ψ(z)

implies that z = z for any z, z ∈ Rn+m. It is clear that ψ(z) = ψ(z) means:

ai(ei(xi)− ei(xi))−∑m

j=1bji(fj(yj)− fj(yj))

−∑m

j=1lji

∫ τ

0kji(s)(gj(yj)− gj(yj))ds = 0

cj(hj(yj)− hj(yj))−∑n

i=1dij(pi(xi)− pi(xi))

−∑n

i=1lji

∫ σ

0kij(s)(qi(xi)− qi(xi))ds = 0

(3.2)

Then from (A2)− (A4) and (3.2), we derive that{

ai%i|xi − xi| ≤∑m

j=1

(|bji|Fj + |lji|Gj

∫ τ

0kji(s)ds

)|yj − yj |,

cj %j |yj − yj | ≤∑n

i=1

(|dij |Pi + |lij |Qi

∫ σ

0kij(s)ds

)|xi − xi|.

(3.3)

On the other hand, we obtain from (A5) and Lemma 2.1 that, there existsξ = (ξ1, ξ2, · · · , ξn, ξn+1, · · · , ξn+m)T > 0 such that

rξiai%i − ξi(r − 1)m∑

j=1

(|bji|Fj + |lji|Gj

∫ τ

0kji(s)ds)

−m∑

j=1

ξn+j(|dij |Pi + |lij |Qi

∫ σ

0kij(s)ds)) > 0

rξn+jcj %j − ξn+j(r − 1)n∑

i=1

(|dij |Pi + |lij |Qi

∫ σ

0kij(s)ds)

−n∑

i=1

ξi(|bji|Fj + |lji|Gj

∫ τ

0kji(s)ds) > 0.

(3.4)

108 Yuanfu Shao and Zhenguo Luo

Further, by Lemma 2.2, it follows from (3.3) that

n∑i=1

ξiai%i|xi − xi|r

≤n∑

i=1

ξi

m∑j=1

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds

)|yj − yj ||xi − xi|r−1

≤n∑

i=1

ξi

m∑j=1

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds

)×(r − 1

r|xi − xi|r +

1

r|yj − yj |r

),

(3.5)

andm∑

j=1

ξn+jcj %j |yj − yj |r

≤m∑

j=1

ξn+j

n∑i=1

(|dij |Pi + |lij |Qi

∫ τ

0

kij(s)ds

)|yj − yj |r−1|xi − xi|

≤m∑

j=1

ξn+j

n∑i=1

(|dij |Pi + |lij |Qi

∫ σ

0

kij(s)ds

)×(r − 1

r|yj − yj |r +

1

r|xi − xi|r

).

(3.6)

(3.5) plus (3.6) lead to

n∑i=1

(ξiai%i − ξi(r − 1)

r

m∑j=1

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds)−m∑

j=1

ξn+j

r(|dij |Pi

+|lij |Qi

∫ σ

0

kij(s)ds)

)|xi − xi|r +

m∑j=1

(ξn+jcj %j − ξn+j(r − 1)

r

n∑i=1

(|dij |Pi

+|lij |Qi

∫ σ

0

kij(s)ds)−n∑

i=1

ξi

r(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds)

)|yj − yj |r ≤ 0

(3.7)

Substituting (3.4) into (3.7), we have |xi − xi|r − 0, |yj − yj |r = 0. That is,xi = xi, yj = yj for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, namely, z = z, which meansψ ∈ C0 is injective on Rn+m.

Next we demonstrate the property ‖ψ(z)‖ → ∞ as ‖z‖ → ∞. Consider

mapping ψ(z) = ψ(z)− ψ(0), i.e.,

ψi(z) = aiei(xi)−m∑

j=1

bjifj(yj)−m∑

j=1

lji

∫ τ

0

kji(s)gj(yj)ds,

ψn+j(z) = cjhj(yj)−n∑

i=1

dijpi(xi)−n∑

i=1

lij

∫ σ

0

kij(s)qi(xi)ds

for z = (x1, x2, · · · , xn, y1, · · · , ym)T ∈ Rn+m, i = 1, 2, · · · , n, j = 1, 2, · · · ,m. It

is enough to show that ‖ψ(z)‖ → ∞ as ‖z‖ → ∞. Using the Young inequality,

Global exponential stability of BAM neural networks with impulses 109

we have

n∑i=1

rξi|xi|r−1sgn(xi)(aiei(xi)− ψi(z))

=

n∑i=1

rξi|xi|r−1sgn(xi)

(m∑

j=1

bjifj(yj) +

m∑j=1

lji

∫ τ

0

gj(yj)kji(s)ds

)

≤n∑

i=1

m∑j=1

rξi|xi|r−1

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds

)|yj |

≤n∑

i=1

m∑j=1

ξi

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds

)((r − 1)|xi|r + |yj |r)

(3.8)

and

m∑j=1

rξn+j |yj |r−1sgn(yj)(cjhj(yj)− ψj(z))

=

m∑j=1

rξn+j |yj |r−1sgn(yj)

(n∑

i=1

dijpi(xi) +

n∑i=1

lij

∫ τ

0

qi(xi)kij(s)ds

)

≤m∑

j=1

n∑i=1

rξn+j |yj |r−1

(|dij |Pi + |lij |Qi

∫ σ

0

kij(s)ds

)|xi|

≤m∑

j=1

n∑i=1

ξn+j

(|dij |Pi + |lij |Qi

∫ σ

0

kij(s)ds

)((r − 1)|yj |r + |xi|r)

(3.9)

(3.8) plus (3.9), then

n∑i=1

rξi|xi|r−1sgn(xi)(aiei(xi)− ψi(z)) +

m∑j=1

rξn+j |yj |r−1sgn(yj)(cjhj(yj)− ψj(z))

≤n∑

i=1

m∑j=1

(ξi(r − 1)

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds

)

+ξn+j

(|dij |Pi + |l|ijQi

∫ σ

0

kij(s)ds

))|xi|r

+

m∑j=1

n∑i=1

(ξn+j(r − 1)

(|dij |Pi + |lij |Qi

∫ σ

0

kij(s)ds

)

+ξi

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds

))|yj |r.

110 Yuanfu Shao and Zhenguo Luo

That is,

n∑i=1

{rξiai%i −

m∑j=1

(ξi(r − 1)

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds

)

+ξn+j

(|dij |Pi + |lij |Qi

∫ σ

0

kij(s)ds

))}|xi|r

+

m∑j=1

{rξn+jcj %j −

n∑i=1

(ξn+j(r − 1)

(|dij |Pi + |lij |Qi

∫ σ

0

kij(s)ds

)

+ξi

(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds

))}|yj |r

≤n∑

i=1

ξirψi(z)|xi|r−1 +

m∑j=1

ξn+jrψj(z)|yj |r−1.

Therefore,

ϑ

(n∑

i=1

|xi|r +

m∑j=1

|yj |r)

≤ rξ+

(n∑

i=1

ψi(z)|xi|r−1 +

m∑j=1

ψj(z)|yj |r−1

)

where

ϑ = min

{min

1≤i≤n

(rξiai%i −

m∑j=1

((r − 1)ξi(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds)

+ξn+j(|dij |Pi + |lijQi

∫ σ

0

kij(s)ds))

), min1≤j≤m

(rξn+jcj %j −

n∑i=1

(ξn+j(|dij |Pi

+|lij |Qi

∫ σ

0

kij(s)ds)(r − 1) + ξi(|bji|Fj + |lji|Gj

∫ τ

0

kji(s)ds))

)}> 0,

ξ+ = max{ξ1, ξ2, · · · , ξn, ξn+1, · · · , ξn+m}.By applying Holder inequality, we have

n∑i=1

|xi|r +

m∑j=1

|yj |r ≤ rξ+

ϑ

(n∑

i=1

|xi|r +

m∑j=1

|yj |r) 1

s(

n∑i=1

|ψi(z)|r +

m∑j=1

|ψj(z)|r) 1

r

where s > 0, r > 0 such that 1s + 1

r = 1. That is,

(n∑

i=1

|xi|r +m∑

j=1

|yj |r) 1

r

≤ rξ+

ϑ

(n∑

i=1

|ψi(z)|r +m∑

j=1

|ψj(z)|r) 1

r

,

i.e., ‖z‖ ≤ rξ+

ϑ ‖ψ(z)‖, from which we assert that ‖ψ(z)‖ → ∞ as ‖z‖ → ∞.

By Lemma 2.3, we conclude that ψ ∈ C0 is a homeomorphism on Rn+m, whichguarantees the existence of a unique solution z∗ ∈ Rn+m of the algebraic system(2.1) which defines the unique equilibrium state of the impulsive network (1.2).This completes the proof.

Global exponential stability of BAM neural networks with impulses 111

Remark 3.1. The proof of the existence of equilibrium point of (1.2) is differentfrom those [8-10], and by applications in section 5, one can see that the resultshere improve or extend the corresponding results [8-10, 20].

In Theorem 3.1, if r → 1, then we have

Corollary 3.1. Assume that (A1)− (A4) hold. Further,

(A6) Γ′ =

(A −P

−F C

)is a nonsingular M-matrix,

where A = diag(a−1 %1, a−2 %2, · · · , a−n %n), C = diag(c−1 %1, c

−2 %2, · · · , c−m%m),

P = (pij)n×m, F = (fji)m×n, pij = Pi|dij |+Qi|lij |∫ σ

0kij(s)ds,

fji = |bji|Fj+|lji|Gj

∫ τ

0kji(s)ds. Then system (1.2) has at least one equilibrium.

4. Globally exponential stability

Theorem 4.1. Assume that (A1)− (A5) hold. Further,

(A7) Iik(xi(tk)) = −βik(xi(tk)− x∗i ), Jjk(yj(tk)) = −γjk(yj(tk)− y∗j ),

|1− βik|r − 1 ≤ 0, |1− γjk|r − 1 ≤ 0 for i = 1, 2, · · · , n, j = 1, 2, · · · ,m,k = 1, 2, · · · . Then the equilibrium solution z∗ of (1.2) is globally exponentiallystable.

Proof. By Theorem 3.1, there exists a unique equilibrium solutionz∗ = (x∗

1, x∗2, · · · , x∗

n, y∗1 , · · · , y∗m)T of (1.2).

Let z(t) = (xT (t), yT (t))T = (x1(t), x2(t), · · · , xn(t), y1(t), · · · , ym(t))T be anarbitrary solution of (1.2), then we have

d|xi(t)−x∗i |

dt≤ −ai|ei(xi(t))− ei(x

∗i )|+

∑n

i=1|bji||fj(yj(t))− fj(y

∗j )|

+∑m

j=1|lji|

∫ τ

0kji(s)|gj(t− τji − s)− gj(y

∗j )|ds

≤ −ai%i|xi(t)− x∗i |+

∑n

i=1|bji|Fj |yj(t)− y∗j |

+∑n

i=1|lji|Gj

∫ τ

0kji(s)|yj(t− τji − s)− y∗j |ds

d|yj(t)−y∗j |

dt≤ −cj |hj(yj(t))− hj(y

∗j )|+

∑m

j=1|dij ||pi(xi(t))− pi(x

∗i )|

+∑m

j=1|lij |

∫ τ

0kij(s)|qi(xi(t− σij − s))− qi(x

∗i )|ds

≤ −cj %j |yj(t)− y∗j |+∑m

j=1Pi|dij ||xi(t)− x∗

i |+∑m

j=1|lij |

∫ τ

0kij(s)Qi|xi(t− σij − s)− x∗

i |ds

(4.1)

for t > 0, t 6= tk, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.On the other hand, according to condition (A5) and Lemma 2.1, there exist

a vector (ξ1, ξ2, · · · , ξn, ξn+1, · · · , ξn+m)T such that

ξi

(rai%i − (r − 1)

∑mj=1(|bji|Fj + |lji|Gj

∫ τ

0kji(s)ds)

−∑mj=1 ξn+j(Pi|dij |+Qi|lij |

∫ σ

0kij(s)ds)

)> 0,

ξn+j

(rcj %j − (r − 1)

∑ni=1(|dij |Pi + |lij |Qi

∫ σ

0kij(s)ds)

−∑ni=1 ξi(Fj |bji|+Gj |lji|

∫ τ

0kji(s)ds)

)> 0.

112 Yuanfu Shao and Zhenguo Luo

Let

χi(ε) = ξi

(ε− rai%i + (r − 1)

∑m

j=1(|bji|Fj + |lji|Gj

∫ τ

0kji(s)ds)

)

+∑m

j=1ξn+j

(Pi|dij |+Qie

εσij |lij |∫ σ

0kij(s)e

εsds)

κj(ε) = ξn+j

(ε− rcj %j + (r − 1)

∑n

i=1(dijPi + lijQi

∫ σ

0kij(s)ds)

)+∑n

i=1ξi(Fjbji +Gje

ετji lji∫ τ

0kji(s)ds

)

It is clear that χi(0) < 0, κj(0) < 0. Since χi(ε), κj(ε) are continuous on [0,∞)

and χi(ε), κj(ε) → +∞ as ε → +∞, and dχi(ε)dε > 0,

dκj(ε)dε > 0, then there exist

constant ξ∗i , η∗j such that

χi(ξ∗i ) = ξi

(ξ∗i − rai%i + (r − 1)

∑m

j=1

(|bji|Fj + |lji|Gj

∫ τ

0kji(s)ds

))

+∑m

j=1ξn+j

(Pi|dij |+Qie

ξ∗i σij |lij |∫ σ

0kij(s)e

ξ∗i sds)= 0

κj(η∗j ) = ξn+j

(η∗j − rcj %j + (r − 1)

∑n

i=1

(|dij |Pi + |lij |Qi

∫ σ

0kij(s)ds

))

+∑n

i=1ξi

(Fj |bji|+Gje

η∗j τji |lji|

∫ τ

0kji(s)e

η∗j sds

)= 0

(4.2)

By choosing 0 < λ < min{ξ∗1 , ξ∗2 , · · · , ξ∗n, η∗1 , · · · , η∗m} for i = 1, 2, · · · , n, j =1, 2, · · · ,m, we have

χi(λ) = ξi

(λ− rai%i + (r − 1)

∑m

j=1

(|bji|Fj + |lji|Gj

∫ τ

0kji(s)ds

))

+∑m

j=1ξn+j

(Pi|dij |+ eλσijQi|lij |

∫ σ

0kij(s)e

λsds)< 0

κj(λ) = ξn+j

(λ− rcj %j + (r − 1)

∑n

i=1

(|dij |Pi + |lij |Qi

∫ σ

0kij(s)ds

))+∑n

i=1ξi(Fj |bji|+ eλτjiGj |lji|

∫ τ

0kji(s)e

λsds)< 0.

(4.3)

Let ui(t) = eλt|xi(t)− x∗i |r, vj(t) = eλt|yj(t)− y∗j |r, from (4.1), we derive that

d+ui(t)dt

≤ λeλt|xi(t)− x∗i |r + reλt|xi(t)− x∗

i |r−1sgn(xi(t)− x∗i )

(−ai%i|xi(t)− x∗i | +

∑n

i=1|bji|Fj |yj(t)− y∗

j |+∑n

i=1|lji|Gj

∫ τ

0kji(s)|yj(t− τji − s)− y∗

j |ds)d+vj(t)

dt≤ λeλt|yj(t)− y∗

j |r + reλt|yj(t)− y∗j |r−1sgn(yj(t)− y∗j )(

−cj %j |yj(t)− y∗j | +

∑m

j=1Pi|dij ||xi(t)− x∗

i |+∑m

j=1|lij |

∫ τ

0kij(s)Qi|xi(t− σij − s)− x∗

i |ds)

(4.4)

for t > 0, t 6= tk. When t = tk, for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, it followsfrom (A7) that

ui(t+k ) = |1− αik|rui(tk) ≤ u(tk), vj(t

+k ) = |1− βjk|rvj(tk) ≤ vj(tk) (4.5)

Define a Lyapunov functional as follows:

V (t) =∑n

i=1 ξi

(ui(t) +

∑mj=1 |lji|eλτjiGj

∫ τ

0kji(s)e

λs∫ t

t−τji−svj(z)dzds

)

+∑n

i=1 ξn+j

(vj(t) +

∑ni=1 |lij |eλσijQi

∫ σ

0kij(s)e

λs∫ t

t−σij−sui(z)dzds

)

Global exponential stability of BAM neural networks with impulses 113

By calculating the derivative of V (t) along the solution of (1.2) and from (4.3),(4.4) and Lemma 2.2, we have

d+V (t)dt

=∑n

i=1ξi

(d+ui(t)

dt+∑m

j=1|lji|eλτjiGj

∫ τ

0kji(s)e

λsvj(t)ds

−∑m

j=1|lji|Gje

λτji∫ τ

0kji(s)e

λsvj(t− τji − s)ds)

+∑m

j=1ξn+j

(d+vj(t)

dt+∑n

i=1|lij |Qie

λσij∫ σ

0kij(s)e

λsui(t)ds

−∑n

i=1|lij |Qie

λσij∫ σ

0kij(s)e

λsui(t− σij − s)ds)

≤ ∑n

i=1ξi

((λ− rai%i)|ui(t)|r + reλt

∑m

j=1|bji|Fj |yj(t)− y∗

j ||xi(t)− x∗i |r−1

+reλt∑m

j=1|lji|Gj

∫ τ

0kji(s)|xi(t)− x∗

i |r−1|yj(t− τji − s)− y∗j |ds

+∑m

j=1eλτji |lji|Gj

∫ τ

0kji(s)e

λsdsvj(t)

−∑m

j=1|lji|Gje

λτji∫ τ

0kji(s)e

λsvj(t− τji − s)ds)

+∑m

j=1ξn+j ((λ− rcj %j)|vj(t)|r + reλt

∑n

i=1|dij |Pi|xi(t)− x∗

i ||yj(t)− y∗j |r−1

+reλt∑n

i=1|lij |Qi

∫ σ

0kij(s)|yj(t)− y∗

j |r−1|xi(t− σij − s)− x∗i |ds

+∑n

i=1|lij |Qie

λσij∫ σ

0kij(s)e

λs(ui(t)− ui(t− σij − s))ds)

≤ ∑n

i=1ξi

((λ− rai%i)|ui(t)|r + reλt

∑m

j=1|bji|Fj

(1r|yj(t)− y∗

j |r+ r−1

r|xi(t)− x∗

i |r)+ reλt

∑m

j=1|lji|Gj

∫ τ

0kji(s)

(r−1r

|xi(t)− x∗i |r

+ 1r|yj(t− τji − s)y∗

j |r)ds+

∑m

j=1eλτji |lji|

∫ τ

0kji(s)e

λsds|vj(t)|−∑m

j=1|lji|Gje

λτji∫ τ

0kji(s)e

λsvj(t− τji − s)ds)+∑m

j=1ξn+j(

(λ− rcj %j)|vj(t)|r + reλt∑n

i=1|dij |Pi

(1r|xi(t)− x∗

i |r + r−1r

|yj(t)− y∗j |r

)+reλt

∑n

i=1|lij |Qi

∫ σ

0kij(s)

(r−1r

|yj(t)− y∗j |r + 1

r|xi(t− σij − s)− x∗

i |r)ds

+∑n

i=1|lij |Qie

λσij∫ σ

0kij(s)e

λs(ui(t)− ui(t− σij − s))ds)

≤ ∑n

i=1

(ξi(λ− rai%i + (r − 1)

∑m

j=1

(|bji|Fj + |lji|Gj

∫ τ

0kji(s)ds

)

+∑m

j=1ξn+j

(Pi|dij |+Qi|lij |eλσij

∫ σ

0kij(s)e

λsds))

ui(t)

+∑m

j=1

(ξn+j(λ− rcj %j + (r − 1)

∑n

i=1

(|dij |Pi + |lij |Qi

∫ σ

0kij(s)ds

)+∑n

i=1ξi(Fj |bji|+Gj |lji|eλτji

∫ τ

0kji(s)e

λsds))

vj(t)

< 0

(4.6)

for t > 0, t 6= tk, k = 1, 2, · · · . When t = tk, we obtain from (4.5) that

V (t+k )

=∑n

i=1ξi

(ui(t

+k ) +

∑m

j=1|lji|Gj

∫ τ

0kji(s)e

λs∫ t+

k

t+k−τji−s

vj(z)dzds

)

+∑n

i=1ξn+j

(vj(t

+k ) +

∑m

j=1|lij |Qi

∫ σ

0kij(s)e

λs∫ t+

k

t+k−σij−s

ui(z)dzds

)

=∑n

i=1ξi

(ui(t

+k ) +

∑m

j=1|lji|Gj

∫ τ

0kji(s)e

λs∫ tk

tk−τji−svj(z)dzds

)

+∑m

j=1ξn+j

(vj(t

+k ) +

∑n

i=1|lij |Qi

∫ σ

0kij(s)e

λs∫ tk

tk−σij−sui(z)dzds

)

≤ V (tk), k = 1, 2,

(4.7)

114 Yuanfu Shao and Zhenguo Luo

It follows from (4.6) and (4.7) that

V (t) ≤ V (0) for all t > 0. (4.8)

By the definition of V (t) and (4.8), we have

ξ−i

(n∑

i=1

ui(t) +

m∑j=1

vj(t)

)

≤n∑

i=1

ξi

(ui(0) +

m∑j=1

Gj |lji|eλτji∫ τ

0

kji(s)eλs

∫ 0

−τji−s

vj(z)dzds

)

+

m∑j=1

ξn+j

(vj(0) +

n∑i=1

Qi|lij |eλσij

∫ σ

0

kij(s)eλs

∫ 0

−σij−s

ui(z)dzds

)

≤ ξ+n∑

i=1

(1 +

m∑j=1

Qi|lij |eλσij

∫ σ

0

kij(s)eλs(σij + s)ds

)sup

−h<t≤0

ui(t)

+ξ+m∑

j=1

(1 +

m∑j=1

Gj |lji|eλτji∫ τ

0

kji(s)eλs(τji + s)ds

)sup

−h<t≤0

vj(t)

≤ ξ+ι

(n∑

i=1

sup−h<t≤0

ui(t) +

m∑j=1

sup−h<t≤0

vj(t)

)

where ξ− = min{ξ1, ξ2, · · · , ξn+m}, ξ+ = max{ξ1, ξ2, · · · , ξn+m},ι = max

{max1≤i≤n

(1 +∑m

j=1 Qi|lij |eλσij∫ σ

0kij(s)e

λs(σij + s)ds),

max1≤j≤m

(1 +∑m

j=1 Gj |lji|eλτji∫ τ

0kji(s)e

λs(τji + s)ds)

}≥ 1.

It leads to{

n∑i=1

|xi(t)− x∗i |r +

m∑j=1

|yj(t)− y∗j |r

} 1r

≤(ξ+ι

ξ−

) 1r

e−λrt

{n∑

i=1

sup−h<s≤0

|φxi(s)− x∗i |r +

m∑j=1

sup−h<s≤0

|φyj (s)− y∗j |r

} 1r

= Me−αt

{n∑

i=1

sup−h<t≤0

|φxi(s)− x∗i |r +

m∑j=1

sup−h<s≤0

|φyj (s)− y∗j |r

} 1r

where M =(

ιξ+

ξ−

) 1r ≥ 1, α = λ

r > 0. Therefore, the equilibrium z∗ of system

(1.2) is globally exponentially stable. This completes the proof.

Remark 4.1. The method and analysis techniques employed here are differentfrom [8-10, 27], and the conditions ensuring the stability of the equilibrium pointare simpler and easier to verified than [27].

Global exponential stability of BAM neural networks with impulses 115

Let r → 1 in Theorem 4.1, we get the corollary immediately.

Corollary 4.1. Assume that (A1)− (A4) and (A6) hold. Further,

(A8) Iik(xi(tk) = −βikxi(tk), Jjk(yj(tk)) = −γjkyj(tk), |1− αik| − 1 ≤ 0,|1 − βjk| − 1 ≤ 0. Then system (1.2) admits one equilibrium which is globallyexponential stable.

5. Applications and an illustrative example

For (1.2), let τ → ∞, σ → ∞ and∫∞0

kji(s)ds = 1,∫∞0

kij(s)ds = 1, byCorollary 3.1, one can obtain Theorem 3.1 in [10], i.e.,

Corollary 5.1. Suppose conditions (A1)− (A2) in [10] hold. Further,(A9) ai >

∑mj=1(Gi|hij |+ Fi|lij |), aj >

∑ni=1 Gj |hji|+ Fj |lji|), i = 1, · · · , n,

j = 1, · · · ,m. Then (1.1) has a unique equilibrium point.Similarly, one can obtain the result of existence of equilibrium point of the

models in [9,20]. It is in this sense that we extend the previously known results.Considering the following system studied by Wu [8]:

ui(t) = −ai(t)ei(ui) +∑n

j=1bji(t)fj(vj)

+∑n

j=1lji(t)

∫ τ

0kji(s)gj(vj(t− τji − s))ds+ Ii(t)

vj(t) = −cj(t)hj(vj) +∑m

i=1dij(t)pi(ui)

+∑m

i=1lij(t)

∫ σ

0kij(s)qi(ui(t− σij − s))ds+ Jj(t)

(5.1)

By similar proof of Theorem 3.1, we can derive the sufficient conditions ensuringthe existence of a unique equilibrium point of (5.1). For function f(t), denotef+ = sup0≤t<∞ |f(t)|, then we have

Corollary 5.2. Suppose (A1)− (A4) hold. Further,

(A9) Γ′ =

(A −P−F C

)is a nonsingular M-matrix,

where P = (pij)n×m, F = (fji)m×n, pij = Pid+ij + Qi l

+ij

∫ σ

0kij(s)ds, fji =

b+jiFj + l+jiGj

∫ τ

0kji(s)ds,A,C are defined as Corollary 3.1. Then system (5.1)

has at least one equilibrium.

Remark 5.1. The conditions of the existence of a unique equilibrium point of(5.1) are simpler and easier to verified than Theorem 4.2 in [8]. Particularly,it shows that the condition (2) of Theorem 4.2 in [8] is unnecessary, hence, weimprove the main results [8].

Example. Let

x′1(t) = −a1e1(x1(t)) + b11f1(y1(t)) + l11

∫ τ

0k11(s)g1(y1(t− τ11 − s))ds+ I1, t 6= tk,

x′2(t) = −a2e2(x2(t)) + b12f1(y1(t)) + l12

∫ τ

0k12(s)g1(y1(t− τ12 − s))ds+ I2, t 6= tk,

∆x1(t) = x1(t+)− x1(t−) = −β1k(x1(t)), t = tk,∆x2(t) = x2(t+)− x2(t−) = −β2k(x2(t)), t = tk,

y′1(t) = −c1h1(y1(t)) + d11p1(x1(t)) + d21p2(x2(t))l11∫ σ

0k11(s)

q1(x1(t− σ11 − s))ds+ l21∫ σ

0k21(s)q2(x2(t− σ21 − s))ds+ J1,

∆y1(t) = y1(t+)− y1(t−) = −γ1k(y1(t)), t = tk,

(5.2)

116 Yuanfu Shao and Zhenguo Luo

where ei(u) =u2 , h1(u) = u, f1(u) = g1(u) = |u|, pi(u) = qi(u) =

|u|4 , for i =

1, 2, u ∈ R. a1 = 2, a2 = 4, c1 = 7, b11 = − 13 , l11 = 2

3 , k11(s) = k12(s) =1τ , b12 = −2, l12 = 1, d11 = 7, l11 = −1, d21 = −10, l21 = −2, k11(s) =

k21(s) = 1σ , β1k = β2k = 1

2 , γ1k = 18 . Then %1 = %2 = 1

2 , %1 = 1, F1 = G1 =

1, P1 = P2 = Q1 = Q2 = 14 .

By simple calculation, we have f11 = 31, f12 = 43, p11 = 2, p21 = 3, and

the corresponding matrix Γ′ =

(1 0 −20 2 −3−1 −3 7

). It is easy to show that there

exists a constant vector ξ = ( 256 , 289 , 2)T > 0 such that Γ′ξ > 0. Using Lemma

2.1, one obtains that Γ′ is a nonsingular M-matrix and (A6) holds. By easyverification, (A8) holds too. Therefore, by Corollary 4.1, one concludes that(5.2) admits an equilibrium which is globally exponentially stable.

References

1 Y.H. Xia, J.D. Cao and M.R. Lin, New results on the existence and uniqueness of almostperiodic solutions for BAM neural networks with continuously distributed delays, ChaosSolit. Fract. 314 (2007) 928-936.

2 J.D. Cao, Global asymptotic stability of delayed bi-directional associative memory neuralnetworks, Appl. Math. Comput. 142 (2003) 333-339.

3 J.D. Cao, Exponential stability of delayed bi-directional associative memory neural net-works, Appl. Math. Comput. 135 (2003) 105-112.

4 A.P. Chen, L.H. Huang, Z.G. Liu and J.D. Cao, Periodic bi-directional associative memoryneural networks with distributed delays, J. Math. Anal. Appl. 317 (2006) 80-102.

5 H. Wang, X.F. Liao and C.D. Li, Existence and exponential stability of periodic solution ofBAM neural networks with impulse and time varying delays, Chaos Solit. Fract. 33 (2007)1028-1039.

6 W.C.daniel, J.L. Liang and L.James, Global exponential stability of impulsive high-orderBAM neural networks with time varying delays, Neural Networks, 19 (2006) 1581-1590.

7 Arik Sabri and T.Vedat, Global asymptotic stability analysis of bidirectional associativememory neural networks with constant time delays, Neucomputing 68 (2005) 161-176.

8 R.C. Wu, Exponential convergence of BAM neural networks with time-varying coefficientsand distributed delays, doi:10.1016/j.nonrwa.2009.02.003.

9 J. Chen and B.T. Cui, Impulsive effects on global asymptotic stability of delay BAM neuralnetworks, Chaos Solit. Fract. 38 (2008) 1115-1125.

10 Q.H. Zhou, Global exponential stability of BAM neural networks with distributed delaysand impulses, Nonlinear Anal. RWA 10 (2009) 144-153.

11 Z.K. Huang and Y.H. Xia, Exponential periodic attractor of impulsive BAM networks withfinite distributed delays, Chaos Solit. Fract. 39 (2009) 373-384.

12 H.Q. Wu and C.H. Shan, Stability analysis for periodic solution of BAM neural networkswith discontinuous neuron activations and impulses, Appl. Math. Model. 33 (2009) 2564-2574.

13 Z. Gui and W. Ge, Existence and uniqueness of periodic solutions of nonautonomouscellular neural networks with impulses, Phys. Lett. A 354 (2006) 84-94.

14 C.Z. Bai, Global exponential stability and existence of periodic solution of Cohen-Grossbergtype neural networks with delays and impulses, Nonlinear Anal. RWA 9 (2008) 747-761.

15 X.S. Yang, Existence and global exponential stability of periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks with delays and impulses, doi:10.1016/j.neucom. 2009.01.003.

Global exponential stability of BAM neural networks with impulses 117

16 H.B. Gu, H.J. Jiang and Z.D. Teng, Existence and globally exponential stability of peri-odic solution of BAM neural networks with impulses and recent-history distributed delays,Neurocomputing, 71 (2008) 813-822.

17 Y.T. Li and J.Y. Wang, An analysis on the global exponential stability and the existence ofperiodic solutions for non-autonomous hybrid BAM neural networks with distributed delaysand impulses, Comput. Math. Appl. 56 (2008) 2256-2267.

18 Z. Gui and W. Ge, Periodic solutions of nonautonomous cellular neural networks withimpulses, Chaos Solit. Fract. 32 (2007) 1760-1771.

19 J. Zhang and Z. Gui, Periodic solutions of nonautonomous cellular neural networks withimpulses and delays, Nonlinear Anal. 10 (2009) 1891-1903.

20 Y.K. Li, Global exponential stability of BAM neural networks with delays and impulses,Chaos Solit. Fract. 24 (2005) 279-285.

21 H.Y. Zhao, Global stability of bidirectional associative memory neural networks with dis-tributed delays, Phys. Lett. A 297 (2002) 182-190.

22 B. Liu and L. Huang, Global exponential stability of BAM neural networks with recent-history distributed delays and impulses, Neucomputing 69 (2006) 2090-2096.

23 Y.H. Xia, Z.K. Huang and M.A. Han, Existence and globally exponential stability of equi-librium for BAM neural networks with impulses, Chaos Solit. Fract. 37 (2008) 588-597.

24 S. Mohamad, K. Gopalsamy and H. Acka, Exponential stability of artificial neural networkswith distributed delays and large impulses, Nonl. Anal. RWA 9 (2008) 872-888.

25 Z.K. Huang and Y.H. Xia, Global exponential stability of BAM neural networks with trans-mission delays and nonlinear impulses, Chaos Solit. Frac. 38 (2008) 489-498.

26 Y.H. Xia and Patr.Y. Wong, Global exponential stability of a class of retarded impulsivedifferential equations with applications, Chaos Solit. Fract. bf39 (2009) 440-453.

27 R. Samidurai, R. Sakthivel and S.M. Anthoni, Global asymptotic stability of BAM neuralnetworks with mixed delays and impulses, doi:10.1016/j.amc.2009.02.002.

28 Richard and s. Varga, Matrix Iterative Analysis, Springer Press, 2004.29 B. Fang, J. Zhou and Y. Li, Matrix Theory, Tinghua University Press and Springer Press,

2004.30 Q. Zhang, X. Wei and J. Xu, Delay-dependent exponential stability criteria for non-

autonomous cellular neural networks with time-varying delays, Chaos Solit. Fract. 36 (2008)985-990.

31. M. Forti and A. Tesi, New conditions for global stability of neural networks with applicationto linear and quadratic programming problems, IEEE Trans. Circuit. syst. I 42 (1995) 354-366.

Yuanfu Shao is a Ph. D. student in School of Mathematical Sciences and ComputingTechnology, Central South University, Changsha, China, and he is also an associate professorin school of Mathematics and Computer Science, Guizhou Normal University, Guiyang,China. He received his M. S. from Yunnan University, Kunming, in 2005. His researchinterests focus on the stability theory of impulsive differential equation and neural network.

1. School of Mathematics and Computer Science, Guizhou Normal University, Guiyang,Guizhou 550001, P. R. China.2. School of Mathematical Sciences and Computing Technology, Central South University,Changsha, Hunan 410075, P. R. China.e-mail: [email protected]

Zhenguo Luo is a Ph. D. student. His research interests focus on the theory of differentialand difference equation.

School of Mathematical Sciences and Computing Technology, Central South University,Changsha, Hunan 410083, P. R. China.e-mail: [email protected]