energy efficiency study of household gas burner using pot ...

222
i ENERGY EFFICIENCY STUDY OF HOUSEHOLD GAS BURNER USING POT-BOTTOM SHIELD AND MODIFIED POT ARRANGEMENT ASHFARUL ISLAM DEPARTMENT OF CHEMICAL ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA-1000 MARCH, 2019

Transcript of energy efficiency study of household gas burner using pot ...

i

ENERGY EFFICIENCY STUDY OF

HOUSEHOLD GAS BURNER USING

POT-BOTTOM SHIELD AND MODIFIED

POT ARRANGEMENT

ASHFARUL ISLAM

DEPARTMENT OF CHEMICAL ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND

TECHNOLOGY, DHAKA-1000

MARCH, 2019

ii

ENERGY EFFICIENCY STUDY OF HOUSEHOLD GAS BURNER USING POT-BOTTOM SHIELD AND MODIFIED POT ARRANGEMENT

by ASHFARUL ISLAM

M. Sc. in Chemical Engineering. Department of Chemical Engineering

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY March, 2019

iii

The thesis titled “ENERGYEFFICIENCY STUDY OF HOUSEHOLD GAS BURNER USING POT-BOTTOM SHIELD AND MODIFIED POT ARRANGEMENT” submitted by ASHFARUL ISLAM, Roll No: 040502007 F and session: April 2005 has been accepted as satisfactory in fulfillment of the requirement for the degree of M.Sc. in Chemical Engineering on 25thMarch 2019.

BOARD OF EXAMINERS Dr. Md. Mominur Rahman Chairman

Associate Professor Department of Chemical Engineering, BUET, Dhaka -1000, Bangladesh.

Head of the Department Member (Ex-Officio) Department of Chemical Engineering,

BUET, Dhaka -1000, Bangladesh.

Dr. Syeda Sultana Razia Member

Professor, Department of Chemical Engineering, BUET, Dhaka -1000, Bangladesh.

Dr. KawnishKirtania Member Assistant Professor, Department of Chemical Engineering BUET, Dhaka -1000, Bangladesh.

Dr. Aloke Kumar Mozumder Member (External) Professor, Department of Mechanical Engineering BUET, Dhaka -1000, Bangladesh

iv

CANDIDATE’S DECLARATION I hereby declare that this thesis on “ENERGY EFFICIENCY STUDY OF HOUSEHOLD GAS BURNER USING POT-BOTTOM SHIELD AND MODIFIED POT ARRANGEMENT” contains no material which has been accepted for the award of any other degree or diploma at any university or other equivalent institution.

ASHFARUL ISLAM

v

ACKNOWLEDGEMENTS The author expresses his sincere thanks to Dr. Md. Mominur Rahman (Associate Professor

of Chemical Engineering Department, BUET) for his valuable guidance and supervision

throughout the entire work. I appreciate his encouragement during this work.

Special thanks to Dr. Ijaz Hossain, Professor of Chemical Engineering Department, Dr. Kazi

Bayzid Kabir and Dr. Mohidus Samad Khan, Associate Professors of Chemical Engineering

Department, BUET at different stages of the research work.

The author is indebted to Engr. Mezba-ur-Rahman, Deputy Manager of Titas Gas

Transmission and Distribution Company Ltd. for cooperation with information and reports

of the organization.

Bangladesh University of Engineering and Technology (BUET) is acknowledged for

financing the project.

vi

ABSTRACT

The main objectives of this study were to design, develop and evaluate practically applicable

pot-bottom shield and finned-pot in different pot-shield arrangements for better thermal and

emission performances of a conventional household radial flow NG burner. Therefore,

eleven sets of perforated hollow cylindrical pot-bottom shields having different height were

fabricated from thin metal sheet with a provision of secondary combustion air. These were

built in such a way that each of the pot-bottom shields maintains a flue gas exit channel of 4

mm height between the pot-bottom and pot-support. One of the two identical flat bottom

pots was converted to spot welded finned pot. The thermal and emission performances of the

NG burner were then evaluated following the standard water boiling test (WBT) protocol

with four different pot arrangements, namely ordinary flat bottom pot without shield and

with shield and spot welded finned pot without shield and with shield at eleven different

loading heights (from 2.5 cm to 7.5 cm with an increment of 0.5 cm) and six different NG

supply pressures (4, 6, 10, 14, 18 and 20 mbar)keeping the burner primary air opening fixed

at 50%.It was found that a simple inclusion of a pot-bottom shield can dramatically improve

the thermal efficiency of a natural gas cooking system for the both type of pots though pot

bottom shield increases CO emissions. A 20% improved thermal efficiency was evaluated

for the NG burner with ordinary pot and pot-bottom shield arrangement at 6 mbar pressure

and 3 cm loading height corresponded to the highest efficiency of the burner at base setting

(burner with ordinary pot at 6 mbar NG pressure and 4 cm loading height). It was also found

that the operation of the burner at its highest thermal efficiency was still within the safe

operation limit in terms of CO emission in comparison to international standards.

vii

Table of Contents Page

No. Acknowledgements v Abstract vi List of Figures ix List of Tables xiii Abbreviations xv Symbols xviii Chapter 1: Introduction 1.1 Background 1 1.2 Objectives of the Study 3 1.3 Scope of the Study 3 1.4 Organization of the Thesis 4 Chapter 2: Literature Review

2.1 Introductions 6 2.2 Cooking Energy System 6 2.2.1 Cooking Fuels 7 2.2.2 Fuel-specific efficiency aspects 8 2.3 Fundamental Physics Governing Heat Transfer in Cook stoves 2.3.1. Combustion Reaction of NG 9 2.3.2. Contributing Roles of Conduction, Convection, and Radiation 10 2.4 Studies on Household NG Burners 13 Chapter 3:Experimental Design 3.1 Introduction 24 3.2 Experimental Design 24 3.2.1 Experimental NG burner 24 3.2.2 Experimental pots 25 3.2.3 Pot support and shield 27 3.2.4Experimental setup 28 3.2.5Experimental methodology 30 3.2.5.1 Overall thermal efficiency, hc (%) 31 3.2.5.2 Modified combustion efficiency (MCE) 31 3.2.5.3 Heat transfer efficiency (HTE) 32 3.2.5.4 Temperature corrected boiling time (ΔtTc ) 32 3.2.5.5 Firepower (FPc) 33 3.2.5.6 Ratio of CO and CO2 (CO/CO2) 33 Chapter 4: Results and Discussions 4.1 Introduction 34 4.2 Thermal Efficiency, Combustion Efficiency, Heat Transfer Efficiency, Boiling Time,

and CO/CO2 Ratio of the NG Burner with Different Pot and Shield Arrangements 34

4.2.1 Thermal efficiency of the NG burner with different pot and shield 35

viii

arrangements 4.2.2 Modified combustion efficiency (MCE) of the NG burner with different pot

and shield arrangements 41

4.2.3 Heat transfer efficiency (HTE) of the NG burner with different pot and shield arrangements

46

4.2.4 Temperature corrected boiling time of the NG burner with different pot and shield arrangements

51

4.2.5 Ratio of CO and CO2 (CO/CO2) of the NG burner with different pot and shield arrangements

55

4.3 Overall Comparison of Thermal and Environmental Performances of the NG Burner with Different Pot and Shield Arrangements

60

4.3.1 Overall thermal efficiencies of NG burner with different pot-shield arrangements at 6 mbar NG pressure

60

4.3.2 Overall environmental performances (CO/CO2 ratio and CO emission rate) of NG burner with different pot-shield arrangements at 6 mbar NG pressure

61

Chapter 5: Conclusions and Recommendations 5.1 Conclusions 69 5.2 Recommendations for Future Study 70 References 71 Appendix A: Experimental data sheet 79 Appendix B: Calculated data sheet 128 Appendix C: Experimental Pictures 178 Appendix D: Sample Calculations used in WBT 187 Appendix E: Lower Heating Value of Natural Gas (LHV) 194 Appendix F: Calculated data sheet for CO and CO2 emission 196 Appendix G: Calculated data sheet for NG Flow (Liter/min) at STAP 204

ix

List of Figures Page

No. Figure 2.1: Products of Natural Gas after incomplete combustion Reaction. 9 Figure 2.2: Relations among flame temperature and formation of CO, and NOx in

regard to air-fuel ratio ( 10

Figure 2.3: The direction of flame based on loading height. (A) Short gap between burner head and saucepan renders incomplete combustion and low thermal efficiency (B) Maximum thermal efficiency at optimum loading height (C) Gap between burner head and saucepan is more than optimum loading height results quenching of flame and low thermal efficiency

15

Figure 2.4: Cooking vessels used for the study by Lucky and Hossain (2001) 15 Figure 2.5: NG burner set used for the study by Lucky and Hossain (2001) 16 Figure 2.6: Conventional NG burner head 16 Figure 2.7: Perforated NG burner head 17 Figure 2.8: Perforated surrounding shield used for cooking vessels 17 Figure 2.9: Cross sectional view of the double layer modified surrounding pot shield 18 Figure 2.10: Dimensions of the pots used in the study 18 Figure 2.11: Ceramic burner cover 19 Figure 2.11: Flue gas exit channel thickness between pot and cover 19 Figure 2.13: Efficiency and energy losses with flue gas exit channel gap 19 Figure 2.14: Dimensions of the surrounding shield 20 Figure 2.15: Converted pot with projection in the pot center and standard pot for

efficiency study with LPG burner 21

Figure 2.16: Standard original pot (OP) and modified pots (MP) for the study 22 Figure 2.17: Energy efficiency of LPG burner with original pot (OP) and modified

pots (MP) made of steel 22

Figure 2.18 : Energy efficiency of LPG burner with original pot (OP) and modified pots (MP) made of aluminum

23

Figure 2.19: Experimental variation of efficiency with loading height for PNG at 21 mbar pressure

23

Figure 3.2.1: Radial flow gas burner arrangement (a) Top and side view of the burner including mixing tube, gas injecting nozzle and sliding shutter type primary air flow regulator (b) Sectional view of radial flow burner head and (c) Front view of the sliding shutter type primary air flow regulator.

26

Figure 3.2.2: Dimensions of finned pot (a) and regular flat bottom pot (b) used in the study.

27

Figure 3.2.3: Schematic diagram of (a and d) Pot support (b) Shield (c) Pot support with Shield (e) circular shield.

28

Figure 3.2.4: Schematic of the experimental setup for WBT of NG burner 30 Figure 3.2.5: Schematic of pot, shield and NG burner arrangement during WBT 31 Figure 4.1: Thermal efficiency of NG burner with ordinary flat bottom pot without

shield at various loading height and NG supply pressure. 37

Figure 4.2: Thermal efficiency of NG burner with ordinary flat bottom pot with bottom shield at various loading height and NG supply pressure.

39

x

Figure 4.3: Thermal efficiency of NG burner with finned pot without shield at various loading height and NG supply pressure

40

Figure 4.4: Thermal efficiency of NG burner with finned pot and shield at various loading height and NG supply pressure

41

Figure 4.5: MCE of NG burner with ordinary flat bottom pot without shield at various loading height and NG supply pressure

43

Figure 4.6: MCE of NG burner with ordinary flat bottom pot with shield at various loading height and NG supply pressure

44

Figure 4.7: MCE of NG burner with spot welded finned pot without shield at various loading height and NG supply pressure

45

Figure 4.8: MCE of NG burner with spot welded finned pot having shield at various loading height and NG supply pressure

46

Figure 4.9: HTE of NG burner with ordinary flat bottom pot without shield at various loading height and NG supply pressure

48

Figure 4.10: HTE of NG burner with ordinary flat bottom pot with shield at various loading height and NG supply pressure

50

Figure 4.11: HTE of NG burner with spot welded finned pot without shield at various loading height and NG supply pressure

51

Figure 4.12: HTE of NG burner with spot welded finned pot with shield at various loading height and NG supply pressure

52

Figure 4.13: Temperature corrected boiling time of NG burner with ordinary flat bottom pot without shield at various loading height and NG supply pressure

53

Figure 4.14: Temperature corrected boiling time of NG burner with ordinary flat bottom pot with shield at various loading height and NG supply pressure

54

Figure 4.15: Temperature corrected boiling time of NG burner having spot welded finned pot without shield at various loading height and NG supply pressure

55

Figure 4.16: Temperature corrected boiling time of NG burner with spot welded finned pot and shield at various loading height and NG supply pressure

56

Figure 4.17: CO/CO2 ratio of NG burner with ordinary flat bottom pot without shield at various loading height and NG supply pressure

57

Figure 4.18: CO/CO2 ratio of NG burner with ordinary flat bottom pot with bottom shield at various loading height and NG supply pressure

58

Figure 4.19: CO/CO2 ratio of NG burner with spot welded finned pot without bottom shield at various loading height and NG supply pressure

59

Figure 4.20: CO/CO2 ratio of NG burner with spot welded finned pot with bottom shield at various loading height and NG supply pressure

60

Figure 4.21: Variation of thermal efficiency of the NG burner with different pot-shield arrangements at different loading height and 6 mbar NG pressure

61

Figure 4.22: Variation of CO/CO2 ratios of the NG burner with different pot-shield arrangements at different loading height and 6 mbar NG pressure

63

Figure 4.23: Variation of CO emission rate of the NG burner with different pot-shield arrangements at different loading height and 6 mbar NG pressure

64

Figure C1.1: Practical Experimental Setup.

174

xi

Figure C1.2: Practical Experimental Setup during experiment. 175 Figure C1.3: Picture of (a) Gas burner without pot support, (b) Radial flow burner

head and (c) Sliding Sutter. 176

Figure C1.4: Top and side view of Radial flame burner. 177 Figure C1.5: Picture of (A) Pot supports (B) Circular Shields (C) Pot support with

Shield (D) Single Shield 178

Figure C 1.6: Pictures of (A) Finned and normal pots (B) Finned pot observing (C) Spot welded finned pot and (D) Spot argon welding view in inner side of finned pot

179

Figure C 1.7: Pictures of normal pots with pot Support and Shield. 180 Figure C 1.8: Pictures of normal pots with pot Support, without shield. 181 Figure C 1.9: Finned pot before adding Finns. 181 Figure C 1.20: Actual picture of finned pot. 182 Figure C 1.21: red circles represent spot welded area of finned pot. 182

xii

List of Tables Page

No. Table 2.1: General Properties for Some Common Fuels 8 Table A 1.1 : Experimental data for flat bottom pot without Shield at 4 mbar NG Pressure. 77 Table A 1.2 : Experimental data for Finned pot without Shield at 4 mbar NG pressure. 79 Table A 1.3 : Experimental data for flat bottom pot with Shield at 4 mbar NG pressure. 81 Table A 1.4 : Experimental data for Finned pot with Shield at 4 mbar NG pressure. 83 Table A 1.5 : Experimental data for flat bottom pot without Shield at 6 mbar NG Pressure. 85 Table A 1.6 : Experimental data for Finned pot without Shield at 6 mbar NG pressure. 87 Table A 1.7 : Experimental data for flat bottom pot with Shield at 6 mbar NG pressure. 89 Table A 1.8 : Experimental data for Finned pot with Shield at 6 mbar NG pressure. 91 Table A 1.9 : Experimental data for flat bottom pot without Shield at 10 mbar NG

Pressure. 93

Table A 1.10 : Experimental data for Finned pot without Shield at 10 mbar NG pressure. 95 Table A 1.11: Experimental data for flat bottom pot with Shield at 10 mbar NG pressure. 97 Table A 1.12 : Experimental data for Finned pot with Shield at 10 mbar NG pressure. 99 Table A 1.13 : Experimental data for flat bottom pot without Shield at 14 mbar NG

Pressure. 101

Table A 1.14 : Experimental data for Finned pot without Shield at 14 mbar NG pressure. 103 Table A 1.15 : Experimental data for flat bottom pot with Shield at 14 mbar NG pressure. 105 Table A 1.16: Experimental data for Finned pot with Shield at 14 mbar NG pressure. 107 Table A 1.17: Experimental data for flat bottom pot without Shield at 18 mbar NG

Pressure. 109

Table A 1.18: Experimental data for Finned pot without Shield at 18 mbar NG pressure. 111 Table A 1.19: Experimental data for flat bottom pot with Shield at 18 mbar NG pressure. 113 Table A 1.20: Experimental data for Finned pot with Shield at 18 mbar NG pressure. 115 Table A 1.21: Experimental data for flat bottom pot without Shield at 20 mbar NG

Pressure. 117

Table A 1.22: Experimental data for Finned pot without Shield at 20 mbar NG pressure. 119 Table A 1.23: Experimental data for flat bottom pot with Shield at 20 mbar NG pressure. 121 Table A 1.24: Experimental data for Finned pot with Shield at 20 mbar NG pressure. 123 Table B 1.1 : Calculated data for flat bottom pot without Shield at 4 mbar NG pressure. 126 Table B 1.2 : Calculated data for Finned pot without Shield at 4 mbar NG pressure 128 Table B 1.3 : Calculated data for flat bottom pot with Shield at 4 mbar NG pressure. 130 Table B 1.4 : Calculated data for Finned pot with Shield at 4 mbar NG pressure. 132 Table B 1.5 : Calculated data for flat bottom pot without Shield at 6 mbar NG pressure. 134 Table B 1.6 : Calculated data for Finned pot without Shield at 6 mbar NG pressure 136 Table B 1.7 : Calculated data for flat bottom pot with Shield at 6 mbar NG pressure. 138 Table B 1.8 : Calculated data for Finned pot with Shield at 4 mbar NG pressure. 140 Table B 1.9 : Calculated data for flat bottom pot without Shield at 6 mbar NG pressure. 142 Table B 1.10 : Calculated data for Finned pot without Shield at 6 mbar NG pressure 144 Table B 1.11: Calculated data for flat bottom pot with Shield at 6 mbar NG pressure. 146 Table B 1.12 : Calculated data for Finned pot with Shield at 6 mbar NG pressure. 148 Table B 1.13 : Calculated data for flat bottom pot without Shield at 10 mbar NG pressure. 150 Table B 1.14 : Calculated data for Finned pot without Shield at 10 mbar NG pressure 152

xiii

Table B 1.15 : Calculated data for flat bottom pot with Shield at 10 mbar NG pressure. 154 Table B 1.16: Calculated data for Finned pot with Shield at 10 mbar NG pressure. 156 Table B 1.17: Calculated data for flat bottom pot without Shield at 14 mbar NG pressure. 158 Table B 1.18: Calculated data for Finned pot without Shield at 14 mbar NG pressure 160 Table B 1.19: Calculated data for flat bottom pot with Shield at 14 mbar NG pressure. 162 Table B 1.20: Calculated data for Finned pot with Shield at 14 mbar NG pressure. 164 Table B 1.21: Calculated data for flat bottom pot without Shield at 20 mbar NG pressure. 166 Table B 1.22: Calculated data for Finned pot without Shield at 20 mbar NG pressure 168 Table B 1.23: Calculated data for flat bottom pot with Shield at 20 mbar NG pressure. 170 Table B 1.24: Calculated data for Finned pot with Shield at 20 mbar NG pressure. 172 Table F 1.1: Flat bottom pot without Shield (Cco and Cco2 in mg/m3) 191 Table F 1.2: Flat bottom pot with Shield (Cco and Cco2 in mg/m3) 193 Table F 1.3: Finned pot without Shield (Cco and Cco2 in mg/m3) 195 Table F 1.4: Finned pot with Shield (Cco and Cco2 in mg/m3) 197

xiv

ABBREVIATIONS

ASTM American Society for Testing and Materials

WBT Water Boiling Test

BUET Bangladesh University of Engineering and Technology

HHV Gross calorific value / Higher Heating Value (KJ/KG)

LHV Lower heating value (also called Net calorific value) (KJ/KG)

MC Moisture Content (% wet basis)

OAB Old Academic Building

WHO World Health Organization

NG Natural Gas

EHV Effective calorific value (KJ/KG)

P1 Weight of the empty pot.

fci Volume of fuel (NG) before test (Liters)

P1ci Mass of pot of water before test (grams)

T1ci Water temperature at start of test (ºC)

tci Time at start of test (min)

fcf Volume of fuel (NG) after test (Liters)

P1cf Mass of pot of water after test (grams)

T1cf Water temperature at end of test (ºC)

tcf Time at end of test (min)

Pmbar NG Supplied Pressure (mbar)

Tng Natural Gas (NG) Temperature (OC)

Ta Air Temperature (0C):

Thd Stack Temperature (O C)

PStc Stack Pressure. mbar

Vstc Stack exhaust velocity km/hr

CO2h CO2 in percentage

xv

COh CO in ppmv

fcm Fuel (NG) consumed in grams

fcd Equivalent dry fuel (NG) consumed (grams)

wcv Water vaporized (grams)

wcr Effective mass of water boiled (grams)

Δtc Time to boil (min)

hc Thermal efficiency (%)

FPc Firepower (W)

HTE Heat Transfer Efficiency (%)

SET Temp-corrected specific energy consumption (kJ/liter water)

MCE Modified Combustion Efficiency

ΔtTc Temperature corrected time to boil (min)

Ecor At SATP CO emission rate (g/min)

Eco2r At SATP CO2 emission rate (g/min)

Q Total exhaust flow (m3)

ECOw At SATP CO emission per water boiled (grams emission/liter water)

ECO2w At SATP CO2 emission per water boiled (grams emission/liter water)

LH Loading Height

PSD Pot Support inner Diameter

PSC Top side of Chanel for shield

SD Shield Diameter

SH Shield Height

TSH Total number of holes in Shield

DHS Diameter of holes in Shield

St Thickness of Shield

d Port diameter

ID Inner burner head Diameter

OID Outside and inside burner head distance

OD Outside burner Diameter

xvi

th Thickness of pot

PH Height of pot

PD Inner Diameter of pot

PCD Pot collar width

fh Fin Height at the bottom of pot

fw Fin width at the bottom of pot

fd Fin top to top distance at the bottom of pot

TF Total Number of Fin at the bottom of pot

fdb Fin distance from side wall of the pot at the bottom

HTE Heat Transfer Efficiency

NG Natural Gas

LPG Liquefied Petroleum Gas.

CO Carbon monoxide

CO2 Carbon dioxide

O2 Oxygen

STP Standard Temperature and Pressure

NTP Normal Temperature and Pressure

SATP Standard Ambient Temperature and Pressure

ISA International Standard Atmosphere

xvii

SYMBOLS

cm centimeter

°C Degree Celsius

K Degree Kelvin

Pa Pascal

m3 Cubic meter

gm/mol Gram per mol

kJ/liter Kilojoules per liter

Min minute

g/m3 Gram per cubic meter

m3/min Cubic meter per minute

ppmv parts per million by volume

mbar Millibar

m/min Meter per minute

L liter

% percentage

km/hr Kilometer per hour

ppm parts per million

avg. Average

1

CHAPTER 1 INTRODUCTION

1.1 Background

In developing countries like Bangladesh, energy used for cooking constitutes a

significant portion of the total energy requirement (Prasad, 1982; OTA, 1991), while in

developed countries, this item is generally ignored because of its negligible share to the

total energy. Presently in Bangladesh, three types of important cooking fuels are

biomass, natural gas (NG), and liquefied petroleum gas (LPG) of which biomass is the

predominant one. With economic growth and development Bangladesh is experiencing a

gradual shift towards commercial fuels, namely, NG and LPG due to their clean burning

in household cooking. Besides, Bangladesh Country Action Plan (CAP) for clean

cookstoves has a goal towards achieving 100% clean cooking solution by 2030 (CAP,

2013). Thus the demand for clean cooking fuel is expected to be increased dramatically

in near future.

NG is the most significant native source of energy in Bangladesh which is processed and

utilized in significant quantities throughout the year. About 74% of the commercial

energy of Bangladesh comes from natural gas (Malek et al., 2015). Six NG distribution

companies in Bangladesh are now serving 4.1 million households countrywide which

consume yearly 141.5 billion cubic feet of NG (14.63% of total production) for cooking

purpose (Petrobangla, 2016). Currently, there is only 11.91 trillion cubic feet (TCF) of

recoverable NG reserve in Bangladesh for the next eight to nine years out of estimated

total 27.12 TCF recoverable gas reserve (Petrobangla, 2017). Though the household

sector in Bangladesh consumes only a fraction of the total NG produced, most of the

households suffer from gas supply pressure as the real demand is higher than the supply

(Malek et al., 2015). This is due to the production of 2700 million cubic feet of gas per

day (mmcfd) against the demand of 3700 mmcfd, leaving a shortage of 1000 mmcfd. To

overcome this situation and tackle gas supply shortfall the government has already

started importing liquefied natural gas (LNG) through different operators in Bangladesh

(Petrobangla, 2017). As the international price of LNG is much higher than the domestic

NG price it is obvious that the NG based cooking will be rather pricey in near future.

2

Domestic market of Bangladesh is still dependent on imported and locally made low

efficiency household NG burners. Recent work shows that the household NG burners

usually used in Bangladesh (locally made and imported) have thermal efficiency ranges

from 35% to 52% (Islam and Zia, 2017). An inefficient NG burner can contribute to poor

indoor air quality (Klug et al., 2011). Improper design and operation of household NG

burner may contribute 25 to 39% to indoor nitrogen dioxide (NO2), while for carbon

monoxide (CO) the indoor contribution ranges from 21 to 30% depending on seasonal

variations (Logue et al., 2014). Though emissions from NG burners are much lower than

coal, oil and biomass fired cookstoves, inefficient household NG burners emitting

excessive NO2, CO, formaldehyde (HCHO) and very fine particles can exacerbate

various respiratory and other health ailments (Jarvis et al., 1998; EPA, 2013; Kile et al.,

2014; Vrijheid et al., 2012; Pajot et al., 2016; Malouf and Wimberly, 2001; Knibbs et al.,

2018).

Though there are considerable amount of published works related to burner design

parameters for improved thermal efficiency, such as gas flow rate through injector, air-

fuel ratio, injector orifice, throat, primary and secondary air supply, flame shape and

stability, loading height or pot support, fuel specifications, burner port – swirl and radial,

mixed flow burner head, swirl angle and inclination angle (Surange et al., 2014; Couto et

al., 2004; Jones, 1989; Ko and Lin, 2003; Hou and Chou, 2013; Hou and Chou, 2014), a

limited published works are available on shield and cooking utensil design for better heat

utilization and hence improved overall thermal efficiency. Literatures show that a simple

addition of a single layer perforated metallic circular shield around the cooking pot can

increase the overall thermal efficiency of the gas burner in the order of 4 -12% (Hou and

Chou, 2013; Lucky and Hossain, 2001). Inclusion of a small projection in the centre of a

cooking pot can save energy by 14% (Krishnan et al., 2012). However, all the shields and

modified pots found in literatures were far beyond the practical applications.

Domestic market of Bangladesh is still dependent on imported and locally made low

efficiency household gas burners. From an energy conservation viewpoint, studies on the

heat utilization efficiencies of cookstoves are important rather than designing gas burner

for a developing country like Bangladesh. In view of these considerations, the objectives

of the present investigation were to design and develop pot bottom shield and modified

3

utensil and study their thermal and emission performances using a commonly used

household NG burner for cooking.

1.2 Objectives of the Study

The main focuses of this study are to search simple and cost effective way of increasing

the overall efficiency of general household NG burners for cooking. Overall thermal

efficiency of any cookstove mostly depends on combustion efficiency and heat transfer

efficiency. Though, there are extensive works in literature for improving combustion

efficiency of NG burner, few works exist on improving heat transfer efficiency of the

same type of burner. Moreover, the published works on improving heat transfer

efficiency of NG burner seem to have complicacy in practical application. Therefore, the

present work emphasizes on some cost effective and practically applicable means of

increasing the heat transfer efficiency of existing household NG burner in the market.

The main objectives of this research work are as follows:

1. Design and development of low cost and practically applicable pot bottom shield

and finned pot for better heat transfer efficiency and

2. Evaluation of thermal and emission performances of the designed shield and pot

in different configurations with reference to the baseline configuration.

1.3 Scope of the Study

This research work will develop scientific correlation among thermal performance,

emission behavior, loading height with and without pot-bottom shield using ordinary and

modified finned pot of conventional household NG burner at various NG supply

pressures. The output of the study will help users to adopt the optimum configuration of

loading height with or without pot-bottom shield using ordinary or modified finned pot,

and NG pressure for minimizing gas consumption and emission during cooking with

conventional household NG burner.

The study results could be helpful for local decision making organization such as

Petrobangla, local and global NG burner producers and researchers in developing and

marketing efficient NG burners for household cooking with a minimal expense.

4

1.4 Organization of the Thesis

This research work is organized in five chapters in the following format:

Chapter 1 entitled as ‘INTRODUCTION’ presents Background and importance of heat

transfer in cookstove, Emission Impacts on Health and Environment, Objectives of the

Study, Scope of the Study and Organization of the Thesis. In Short, importance of the

present study, various tasks under major objectives, and the areas where there are scopes

to work with.

Chapter 2 entitled as ‘LITERATURE REVIEW’ covers in-depth in the Cooking Energy

System with different Cooking Fuels like Cooking with Solid Fuels, Cooking with Gas,

Cooking with Liquid Fuels. Fuel’s specific efficiency aspect. Fundamental Physics

Governing Heat Transfer in Cookstoves. Combustion reaction of natural gas,

Contributing Roles of Conduction, Convection, and Radiation, Thermal efficiency based

on different arrangement, Emission of Carbon monoxide [CO] based on different

arrangement.

Chapter 3 entitled as ‘EXPERIMENTAL DESIGN’ describes experimental procedures

and methodology used in detail where necessary. Here, Thermal Efficiency based on

different arrangement has been observed. They are Thermal efficiency based on loading

height and Natural Gas (NG) pressure, Modified combustion efficiency (MCE) based on

loading height and NG pressure, Heat transfer efficiency based on loading height and

NG pressure, Variation of Temperature corrected boiling time with NG pressure and

loading height, Firepower based on NG pressure of different settings, Emission of

Carbon monoxide [CO] and Carbon dioxide [CO2] with loading height and NG Pressure.

Chapter 4 entitled as ‘RESULTS AND DISCUSSIONS’ covers the findings and results

out of various tasks under major objectives with criticism and references. This chapter

includes the results and discussions of Thermal Efficiency based on different

arrangement like Thermal efficiency based on loading height and Natural Gas (NG)

pressure, MCE based on loading height and NG pressure, Heat transfer efficiency based

on loading height and NG pressure, Variation of Temperature corrected boiling time with

NG pressure and loading height, Firepower based on NG pressure of different settings,

5

Emission of CO and CO2 with loading height and NG Pressure and Comparison among

different experimental setup of Flat bottom and Finned pot with and without shield.

Chapter 5 entitled as ‘Conclusion and Recommendations for future study’ presents a

summary of the main findings of this research work and suggestions for future research.

6

CHAPTER 2 LITERATURE SURVEY

2.1 Introduction

Cookstoves are the essential household appliances that are required to meet every day

cooking need worldwide. There are several types of cookstoves based on fuel used, such

as biomass based cookstove, kerosene fired cookstoves, NG fired coostoves, LPG fired

cookstoves, methanol/ethanol fired cookstoves, di-methyl-ethar (DME) based

cookstoves, solar cookstove and so on. However, NG, LPG, methanol/ethanol, DME and

solar based cookstoves provide clean cooking solution to general households. Among

various types of cookstoves, household NG burners are being used in 4.1 million general

households under six NG distribution companies at various geographical areas in

Bangladesh which consume yearly 141.5 billion cubic feet of NG (14.63% of total

production) for cooking purpose (Petrobangla, 2016). NG burner is a device which

enables a chemical reaction of fuel and oxidizer (usually oxygen from air) to produce

heat in a controlled way. Though the NG burners offer clean cooking solution to

household, their thermal performance is important to energy conservation perspective.

2.2 Cooking energy system Cooking in households is a complex system, comprising of different factors related to

fuel and cooking devices, as well as to user behavior, cooking equipment and

environment. Users not only make choices regarding ‘stoves and fuels’, but also make

decisions around which meal to prepare, which cooking equipment (pots and pans) to use

and, most importantly, how to cook (cooking practices range from high power phase to

low power simmering phase). The place of cooking, e.g. outdoors, in a well-ventilated

space or in a closed kitchen room is a decisive factor on the concentration and dose of

harmful cookstove emissions to which people are exposed while cooking. In household

energy projects, the focus is often directed towards technical solutions, namely the

cookstove itself with the respective fuel. In laboratories, well-engineered stoves and fuels

have been proven to enhance the performance of cooking energy devices in respect to the

heat output, energy efficiency and emissions. However, these positive results don´t often

directly translate to actual improvements within households. The focus on stoves and

fuels far too often neglects the importance of the user’s capacity to manage fuel, handle

7

the stove, and manage the cooking process in an efficient manner. In short, user behavior

directly influences ‘performance’ within the multi-dimensional cooking energy system

(GIZ, 2014).

2.2.1 Cooking fuel

It has been observed that household´s fuel choice is strongly influenced by the

accessibility, affordability and convenience of the fuel, as well as dependent on the

economic and technical options of a household and the respective social and cultural

determination. In many households, cooking with wood fuels is so deeply rooted in

culture that other fuels have little appeal, although they might provide recognizable

health and economic benefits. Solid fuels are comprised of fossil fuels and solid biomass.

The solid biomass fuels can be differentiated into unprocessed fuels such as wood,

agricultural residues and dung, with processed fuels further categorized

into carbonized and un-carbonized fuels. Liquid fuels include kerosene, methanol,

ethanol and plant oil, whilst renewable gaseous fuels consist of wood gas and biogas.

The fossil gaseous fuels are comprised of petroleum gas (LPG) and NG (GIZ, 2014).

Solid fuels, including both biomass and fossil fuels (firewood, charcoal, dung,

agricultural residues, coal etc.) when used in a traditional manner can result in

measurable inefficient burning, and high concentrations of harmful emissions. Design

deficiency of the traditional cookstoves leads to incomplete and inefficient combustion

which produces significant quantities of ‘products of incomplete combustion’ (PIC)

importantly respirable particulates that have more global warming potential (GWP) than

CO2 (Smith et al., 2000). Incomplete combustion of biomass in traditional cookstoves

also releases carbon monoxide (CO), nitrous oxide (N2O), methane (CH4), polycyclic

aromatic hydrocarbons (PAHs), particles composed of elementary or black carbon, and

other organic compounds (Bhattacharya et al., 2000).

Gaseous fuels can be distinguished into gas generated from a fossil fuel source, such as LPG and NG, and gas generated from a renewable energy source, such as biogas and wood gas, which are obtained from biomass. In case households are used to solid fuels, the introduction of gaseous fuels for cooking requires a change of cooking habits. This is influenced by a new handling of the fuel itself, the new cooking equipment and the different cooking process, i.e., due to different flame temperature (Bajgain and Shakya, 2005; GIZ, 2014; Roth, 2013).

8

Liquid fuels can be categorized into several different fuels, which are derived from the

conversion of biomass, such as alcohols (i.e., ethanol, methanol), plant oil, and those

generated from fossil fuels (i.e., kerosene, also known as paraffin). Ethanol can be also

produced from fossil fuel sources, to produce ethylene which is created by the acid-

catalyzed hydration of petroleum. By using biomass to produce ethanol, the fuel is

classed as a renewable energy source, as the greenhouse gases released in its production

and consumption are theoretically equivalent to those absorbed during its growth cycle

(Lam et al., 2012; Bates et al., 2011; Lambe et al., 2015; Stokes and Crocco, 2005).

2.2.2 Fuel-specific efficiency aspects

Table 2.1 shows the higher heating value (HHV) and lower heating value (LHV) of

commonly used household cooking fuel including their carbon intensity (EFDS, 2011).

Table 2.1: General Properties for Some Common Fuels (EFDS, 2011)

Fuels LHV HHV

Carbon

Intensity

(MJ/L) (MJ/kg) (MJ/L) (MJ/kg) (g CO2-eq / MJ LHV)

Crude Oil 36.84 ± 1.05 43.05 ± 1.40 38.76 ± 1.10 45.30 ± 1.47 73.5 ± 2.6 Petrol /

Gasoline 32.70 ± 0.44 44.15 ± 0.74 34.77 ± 0.47 46.94 ± 0.70 70.8 ± 4.4

Diesel 35.94 ± 0.45 42.91 ± 0.46 38.19 ± 0.47 45.60 ± 0.49 74.3 ± 2.3 Fuel Oil 39.21 ± 1.09 40.87 ± 0.94 41.50 ± 1.15 43.26 ± 1.00 77.8 ± 2.1

LPG 24.67 ± 0.80 46.28 ± 0.74 26.57 ± 0.86 49.84 ± 0.80 63.9 ± 2.1 Kerosene 35.24 ± 0.41 43.69 ± 0.51 37.10 ± 0.43 45.99 ± 0.54 72.0 ± 1.8

(MJ/kg) (MJ/kg) (g/MJ LHV) Coal - 25.75 ± 2.64 - 27.05 ± 2.77 95.7 ± 7.0

(MJ/m3) (MJ/kg) (MJ/m3) (MJ/kg) (g/MJ LHV) Natural Gas 35.22 ± 2.22 45.86 ± 3.95 39.05 ± 2.47 50.84 ± 4.38 56.9 ± 3.4 Hydrogen (1 atm.) 10.05 ± 0.01 119.95 ± 0.13 11.88 ± 0.01 141.88 ±

0.16 0

In respect to energy density, combustion efficiency, heat-transfer efficiency and heat

control characteristics, LPG assumes the leading position among the energy carriers.

Despite the fact that it is a fossil fuel, LPG can be burnt very efficiently and emits few

pollutants (GIZ, 2014). From Table 2.1 it is observed that LPG and NG have almost

same net calorific value, but carbon intensity of NG is less than LPG. However, firewood

has an average LHV around 16 MJ/kg (WNA, 2018). Depending on the type of wood

fuel, charcoal production, and cookstove, between 7.3 and 29.7 kg of wood would be

9

required to provide the same amount of useful cooking energy- found in 1 kg of LPG

(GIZ, 2014).

2.3 Fundamental Physics Governing Heat Transfer in Cookstoves

2.3.1 Combustion reaction of NG

Device which enables a chemical reaction of fuel and oxidizer (usually oxygen from air)

to produce heat in a controlled way is called burner. Theoretical stoichiometric

combustion of NG (mainly methane) involves the air to fuel ratio (lambda, ) equals to

one which is shown by the following equation:

CH4 + 2 (O2 + 3.76 N2) CO2 + 2 H2O + 7.52 N2 -889 kJ (at Standard conditions of 1

atm and 25oC).

Bethold et al. (2017) observed and analyzed complete reaction mechanism of NG with

stoichiometric amount of air. This study showed incomplete combustion of NG in

stoichiometric requirement which is shown in Figure 2.1.

Figure 2.1: Products of NG after incomplete combustion reaction [Bethold et al. (2017)]. Incomplete combustion of NG produces environment pollutants like CO, nitrogen oxides

(NOx) beside the main combustion products CO2, and H2O. Side by side the reaction

produces heat energy. This study also shows that stoichiometrical reactions in most cases

are not advantageous regarding flame temperature, NOx and CO emission. The relations

among flame temperature, NOx and CO formations in regard to air/fuel ratio ( are

shown in Figure 2.2. NOx formation dominates in combustion of nitrogen rich fuel

which is known as fuel NOx. Since NG contains no nitrogen, fuel NOx is not important

for methane combustion. Thermal NOx occurs at high temperature (>1800oK) and is

predominately in nitric oxide (NO) form. Prompt NO occurs at low temperature in fuel

rich flame regions and can be significant in NG flames. CO formation during NG

10

combustion occurs due to poor combustion control (flame stability, mixing etc.), flame

impact or quenching against cold surfaces (loses heat quickly) and equilibrium

dissociation of CO2 to CO.

Figure 2.2: Relations among flame temperature and formation of CO, and NOx in regard

to air-fuel ratio (

2.3.2 Contributing roles of conduction, convection and radiation

Contributions of conduction, convection, and radiation to the overall stove energy

balance was described by Baldwin (1987), and later on observed in detail by Zube

(2010). Conductive heat transfer occurs through the floor of the stove to the ground,

through the body of the stove to the surroundings, and through the thickness of the pot.

There is zero energy gains associated with conduction heat transfer to the pot. The rate

of steady state conduction heat transfer is defined by equation 2.3.1.

𝑄𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑘∗𝐴∗Δ𝑇/𝐿 ……………………… (2.3.1)

where,

𝑘: thermal conductivity), 𝐴: cross sectional area of object, Δ𝑇: temperature difference

and L: objects thickness.

Conduction through the stove walls does not directly contribute to the energy balance.

11

Hot combustion gases interact with two separate surfaces: (a). the inner surface of the

stove (losses) and (b). the outer surface of the pot (gains). The rate of steady state

convective heat transfer is defined by equation 2.3.2.

𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = ℎ∗𝐴∗Δ𝑇 ……………………(2.3.2)

where,

ℎ: convection coefficient (𝑊/𝑚2𝐾), 𝐴: exposed surface area (m2), Δ𝑇: temperature

difference (oK).

The magnitude of convective heat transfer is influenced by the velocity of the gases

flowing through the stove, the exposed surface area contacting the gases, and the

temperature difference between the gases and the exposed surface. Higher flow velocities

and increased temperature differences through the stove increase convective heat

transfer. Convective heat transfer improves by increasing the exposed surface area of the

pot and/or decreasing the inner surface area of the stove. Since the latter is not practical,

focus is often placed on increasing the surface area of the pot exposed to combustion

gases.

It has been observed that total convection gains come from two sources: (a) impinging

combustion gases upon the bottom surface of the pot, and (b) scraping of the same gases

along the sides of the pot. When bottom surface area is considered, estimated

contribution found lower than expected. It is also obvious that hot gases are buoyantly

driven up the sides of the pot which increases the exposed area. Pot skirt reduces the

cross sectional flow area which forces the gases to more closely follow the contours of

the pot and also reduces the surface boundary layer thickness. Surface boundary layer

thickness reduces as the gas velocity increases during traveling through the flow

restriction, thereby increases the convection coefficient.

In the case of radiation, all objects (materials) continuously emit electromagnetic

radiation due to internal molecular and atomic motion. The higher the object's

temperature, the greater the amount of energy so radiated. Radiant energy originating

from flames is transferred to the stove body, pot, or ambient surroundings. The rate of

blackbody radiation heat transfer between two surfaces is described by equation 2.3.3.

12

𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛=𝐴∗𝜎∗ (𝑇42 –𝑇4

1)………………………(2.3.3)

where,

𝑇2 and 𝑇1 are the respective temperatures of each surface.

The magnitude of radiation being emitted as either a loss or a gain is strongly dependent

on the temperature difference between the two objects, the area of the emitting surfaces,

emissivity of both surfaces, and the associated view factor. As each of these variables

grows larger, radiation heat transfer increases. The view factor is a dimensionless

number used in surface-to-surface radiation calculations which accounts for the relative

areas of each surface along with the distance between them. Emissivity values for all

objects of concern are used along with transmissivity and reflectivity values of the flame

and drip pan, respectively, based on a flame reflectivity of zero and assuming the pan is a

gray surface. View factors are used to correct for relative areas of the respective surfaces

and also the distance between them. The pot surface is assumed to behave as a black

body since it absorbs all incident radiation; however, irradiation from the pot surface to

the hotter object is ignored.

Widodo (2016) defined the energy losses in the cooking system are relatively

complicated to identify because of the complexity of geometry of the heating system.

The easiest way to identify energy losses is radiation heat transfer from the stove cover

as shown in equation 2.3.4

Qrad = ATS4 … … … … … … … . . (2.3.4)

where,

Qrad is radiation heat transfer, is emissivity of the surface, = 5.67 x 10-8 W/m2·K4 is

the Stefan–Boltzmann constant and Ts is surface temperature.

Due to the complexity related to the identification of every heat transfer processes such

as conduction and convection, energy losses can be determined and furthermore

expressed by equation 2.3.5.

13

Ec = Eabs + Er.cov + El … … … … … … … . . (2.3.5)

where,

Ec is energy from combustion process, Eabs is energy which is absorbed by water, Er.cov is

radiation energy that is emitted by stove cover and El is energy losses instead of radiation

energy.

2.4 Studies on Household NG Burners

Tamir et al. (1989) carried out the study on thermal efficiency behavior of the NG burner

at various NG flow rate and found that thermal efficiency of the burner first increased

and then decreased with increasing NG supply flow rate. The researchers concluded that

at relatively low gas-input rates, the heat-transfer coefficient between the combustion

gases and the bottom of the pan is relatively small because of the low velocity of the

combustion gas flows under the pan bottom. The process of heat transfer is enhanced by

raising the gas-input rate until optimum conditions are obtained, i.e., when the thermal

efficiency reaches its highest value. Beyond this point, the surface area available for heat

transfer at the vessel bottom for a given mass of water and a fixed temperature becomes

the controlling factor. In other words, the rates of heat loss with the flue gases to the

environment grow faster than the heat-absorption rate of the vessel. At very low gas flow

rates, the researchers observed that there was a distinct gap between the tip of the flame

and the bottom of the cooking vessel. Under such operating conditions, the hot gases will

inevitably cool before impinging on the vessel and will have a temperature lower than

the maximum flame temperature thus adversely affecting efficiency. With increasing gas

flow the flame height was observed to increase. At flow rates in the vicinity of the

maximum efficiency, the flame was impinging on the vessel bottom and covering the

entire surface by flowing along it. At flow rates beyond the maximum efficiency, the

flame heights were greater than the distance between the burner head and the vessel

bottom. Under such operating conditions the following two factors contribute towards

lowering of the efficiency:

1. The combustion reaction stops as soon as the flame hits the vessel bottom and

2. The residence time (in contact with the cooking vessel) is too low for

completing the combustion reaction.

Therefore, the extra gas flow does not contribute much in the way of transferring heat to

the cooking vessel.

14

The similar work was carried out by Bussmann (1981) earlier but with wood burning

stove. The researcher found that at a distance of approximately 17 cm from the fire bed,

the temperature was the highest at 1500°C when no pan was placed; with the pan at 5, 10

and 15 cm from the fire bed the temperature at the bottom of the pan was approximately

1250°C, 1400°C and slightly less than 1500°C respectively.

Eusuf et al. (1990) studied the thermal efficiency of NG burner at various flow rate of

NG based on flame tip height at Institute of Fuel Research and Development (IFRD) of

Bangladesh Council of Scientific and Industrial Research (BCSIR) and found that the

maximum thermal efficiency (61.3%) was obtained at a gas flow rate of 217 L/h.

Lucky and Hossain (2001) studied the thermal performances of a NG burner with round

and flat bottom at various NG flow rates. The flat bottom pot was found to give higher

efficiencies compared to round bottom pot. With regard to NG flow rate the researchers

found that the efficiency first increases and then decreases with increasing gas flow rate.

This study also carried out the efficiency study of the NG burner with a simple

perforated sheet metal shield around the flame and a portion of the cooking vessel. The

modified cooking system was found to increase the heat utilization efficiency. Cooking

vessels and NG burner set used for this study are shown in Figures 2.4 and 2.5

respectively.

Figure 2.4: Cooking vessels used for the study by Lucky and Hossain (2001)

15

Figure 2.5: NG burner set used for the study by Lucky and Hossain (2001)

However, the researchers carried out the thermal efficiency study on conventional gas

burner and with perforated radial port gas burner (Figures 2.6 and 2.7) with and without

a perforated sheet metal shield (Figure 2.8) around the cooking vessels i.e., flat bottom

and round bottom vessels.

Figure 2.6: Conventional NG burner head [Lucky and Hossain (2001)]

Figure 2.7: Perforated NG burner head

16

Figure 2.8: Perforated surrounding shield used for cooking vessels [Lucky and Hossain,

(2001)]

The study reported a thermal efficiency gain of 3.1% to 6.3% for perforated burner with

shield configuration respectively with flat bottom and round bottom pot.

Farzana et al. (2017) designed and developed a modified pot shield and examine its

effect on thermal efficiency of the household gas burner. This modified version of pot

shield was a double layer metallic enclosure having annular gap that was operated with

rockwool insulation or without insulation. Three aluminium flat bottom cooking pots of

different sizes were used for the study which made 0.002 m, 0.004 m and 0.013 m

channel gap between the pot wall and the inner lining of the shield when placed inside

the shield for experiment. Channel gap was provided to allow combustion gases to pass

through it. A partially premixed atmospheric swirl flow gas burner was used to run the

experiments. Each of the pots was used for water boiling test (WBT) filled with 3 kg tap

water in different configurations, namely: pot only, pot in shield without insulation and

pot in shield with rockwool insulation at different natural gas supply pressures (0.1 psig,

0.15 psig, 0.2 psig and 0.25 psig) keeping the burner primary air opening fixed at 50%. It

was found that shield with rockwool insulation performed the best among the three

configurations. Thermal efficiency of the burner at this configuration was ascertained to

be the highest (75%) for 0.004 m channel gap at 0.15 psig gas pressure which was 70%

higher than the maximum efficiency obtained with pot only configuration at the same

pressure. However, in all cases the exposure concentration of CO inside the test kitchen

was found to be lower than 24-hour average indoor CO value of 6 ppm prescribed by the

17

World Health Organization (WHO). Cross sectional view of the double layer

surrounding pot shield and the dimensions of the pots used are shown in Figures 2.9 and

2.10.

Figure 2.9: Cross sectional view of the double layer modified surrounding pot shield

[Farzana et al. (2017)]

Figure 2.10: Dimensions of the pots used in the study [Farzana et al. (2017)]

Widodo (2016) carried out the energy efficiency study of LPG burner with a ceramic built burner cover shown in Figure 2.11. The burner cover had 10 cm dia at base which ended with a dia of 8 cm at the top. The height of the cover was 3 cm. The study was focused to find out the optimum thickness for flue gas exit channel between the pot and the burner cover which is shown in Figure 2.12.

18

Figure 2.11: Ceramic burner cover [Widodo (2016)] The study found the maximum thermal efficiency of 46.4% at a channel gap of 4 mm which is shown in Figure 2.13.

Figure 2.13: Efficiency and energy losses with flue gas exit channel gap [Widodo

(2016)]

Andreatta (2009) studied the thermal efficiency of various finned pots with simulated

stoves using NG as fuel. Study found that the pots with fins on and near the bottom of

the pot performed well and gave around 1.76 fold improvement in heat transfer. The pots

with fins on the sides of the pot were found to perform even better and gave 2 fold

improvements in heat transfer.

Tamir et al. (1989) developed swirling flame gas burner and tested for the thermal

efficiency. Efficiency associated with the developed burner was higher by 10-30% that

that of conventional gas burners.

Figure 2.12: Flue gas exit channel thickness

Between pot and cover [Widodo (2016)]

19

Hou and Chou (2013) investigated the influence of three significant parameters, such as

swirl flow, loading height and semi confined combustion flame on thermal efficiency

and CO emission of multi-port gas burners. Study found that the swirl flow burner yields

higher thermal efficiency and emits less CO than those of the conventional radial flow

burner. Study also compared the thermal efficiencies and CO emissions of the

conventional radial port burner and the improved swirl flow burner at different values of

swirl angle. They concluded that the swirl flame burner gives higher thermal efficiency

than the conventional radial flow burner at the same values of thermal input and loading

height for either open flame or semi-confined flame. However, swirl flame burner gives

somewhat higher CO than the conventional radial flow burner at the same thermal input

and loading height. The study also found that the thermal efficiency and CO emission

decrease with the increase of loading height at same power output of the burners. They

studied the single layer perforated shield around the pot and found that addition of a

shield around the pot can achieve an increase in thermal efficiency by 4-5% and a

reduction in CO emission for the same burner (swirl flow or radial flow). The

dimensions of the shield they used in the study are shown in Figure 2.14.

Figure 2.14: Dimensions of the surrounding shield [Hou and Chou (2013)]

Krishnan et al. (2012) designed a cooking pot putting a small projection in the center

which would increase the area of contact thereby increasing the area of heat transfer. The

pot was then tested for thermal efficiency with LPG burner in comparison to a standard

pot without the projection in the pot center. Modified pot with projection in the center

and standard pot used for comparison are shown in Figure 2.15. The study found around

14% less energy consumption for the converted pot with projection in the center.

20

Figure 2.15: Converted pot with projection in the pot center and standard pot for

efficiency study with LPG burner [Krishnan et al. (2012)]

Naphon (2014) conducted thermal efficiency study with standard pots (OP, 3 different

sizes) and modified pots (3 different sizes) made of aluminum and steel using LPG

burner. Modified pots were double layer having no insulation (MP1), double layer pot

with insulation (MP2) and double layer with spirally twisted tape (MP3). Pots are shown

in Figure 2.16. In both the cases thermal efficiencies (TE) obtained in the following

order: TEMP3 ˃ TEMP2 ˃ TEMP1 ˃ OP. The comparison of the thermal efficiencies for

original pot and modified pots of aluminum and steel are shown in Figures 2.17 and

2.18. It is found that the modified cooking pot required 15-20% less energy than the

original cooking pot to bring water to boiling. It was seen that the gas flow direction and

decreasing convection heat losses have significant effect on the thermal efficiency of the

cooking pot.

21

Figure 2.16: Standard original pot (OP) and modified pots (MP) for the study [Naphon

(2014)]

Figure 2.17: Energy efficiency of LPG burner with original pot (OP) and modified pots

(MP) made of steel [Naphon (2014)]

22

Figure 2.18: Energy efficiency of LPG burner with original pot (OP) and modified pots

(MP) made of aluminum [Naphon (2014)]

Boggavarapu et al. (2014) studied the thermal efficiency of a conventional domestic

burner both experimentally and numerically for piped natural gas (PNG) fuel. For PNG,

loading height was ascertained to be a much more important factor affecting efficiency

of the burner and an optimal loading height could be identified. Experiments show an

improvement in burner thermal efficiency of 10% for PNG with the optimal loading

height. The efficiency variations of the burner with loading height are shown in Figure

2.19.

Figure 2.19: Experimental variation of efficiency with loading height for PNG at 21

mbar pressure [Boggavarapu et al. (2014)]

23

Ko and Lin (2003) studied the effect of gas pressure, heating value of NG and percentage

primary combustion air on thermal and emission performances of NG burner. They

observed that NG having high heating value results in a decrease in thermal efficiency

(due to higher thermal input) and an increase in CO emission compared to NG having

low heating value. They also observed that thermal efficiency decreases with increasing

flow rate of NG which also increases CO emission. Researchers also found that with

increasing primary aeration, CO emission decreases but the thermal efficiency remains

almost unaffected. With increasing loading height, the CO emission decreases, which is

attributed to decreased quenching by flame impingement on the load. However, at higher

loading height, the flame and combustion gases are cooled to a greater extent by mixing

with ambient air before contacting the loading vessel, and thus, the temperature driving

force for heat transfer is decreased, leading to the decrease of thermal efficiency.

Kotb and Saad (2018) studied the CO emission and thermal efficiency of counter-swirl

domestic burners compared to non-swirl domestic burner and found that the burner

performance was affected by the loading height. Both thermal efficiency and CO

emission decreased with the increasing value of the loading height irrespective to type of

burners.

Considering all the studies previously done, still there is scope to access the energy

efficiency of household gas burner using a pot bottom shield of various heights and

modifying the pot using fins for improved heat transfer area. This will provide both

scientific and practical insight on the NG burner efficiency on household cooking.

24

CHAPTER 3

EXPERIMENTAL DESIGN

3.1 Introduction

This chapter includes the detail of design, development and experimentation of modified

pot-bottom shield, spot welded finned pot for the thermal and emission performance study

of household gas burner. Different configurations of pots and shields (i.e., flat bottom pot

with shield, flat bottom pot without shield, finned pot with Shield and Finned pot without

shield) were tested for overall efficiency, heat transfer efficiency and modified combustion

efficiency (MCE) following standard water boiling test (WBT) protocol at different loading

height and different NG supply pressure to ascertain the optimum operating condition for

each configuration.

3.2 Experimental Design

In this study a single NG burner and two standard flat bottom pots made of stainless steel

were sourced from local market. One of the pots was converted to finned pot by spot

welding. Several loading heights and pot-bottom shields of different height were fabricated

in local workshop. Finally the experimental set up was arrayed by coupling the coarse and

fine NG flow regulators, wet gas meter, pressure gauge and the NG burner. The

specifications of the above items, the description of the experimental rig and experimental

methodology are given in the following sub-sections.

3.2.1 Experimental NG burner

A market leading concentric radial flow double ring NG burner was sourced from local

market for this experiment. There were 96 radial ports on the outer ring of the burner head

arrayed in two concentric circular geometry whereas, the inner ring of the burner head

contained only 16 radial ports on a single circular geometry. Each of the radial port had a

diameter (d) of 2.8 mm. The diameters of the outer ring (OD) and inner ring (ID) were 9.6

cm and 3.4 cm respectively. The gap between the two rings (OID) was measured as 1.3 cm.

The burner had also a single gas injecting nozzle connected with a mixing tube wherein gas

25

and primary combustion air are supposed to mix together, and a sliding shutter type primary

air flow regulator attached to the gas injecting nozzle. The detail of the gas burner

arrangement is shown in Figure 3.2.1 which presents top and side view of the burner

including mixing tube, gas injecting nozzle and sliding shutter and sectional view of radial

flow burner head and front view of the sliding shutter. Photographs of NG burner, burner

head and sliding shutter are shown in Figure C1.1 in Appendix C.

Figure 3.2.1: Radial flow gas burner arrangement (a) Top and side view of the burner

including mixing tube, gas injecting nozzle and sliding shutter type primary air flow

regulator (b) Sectional view of radial flow burner head and (c) Front view

of the sliding shutter type primary air flow regulator.

3.2.2 Experimental pots

Two flat bottom pots made of stainless steel (SS) were sourced from local market for WBT.

Each of the pots had a thickness (th) of 0.5 mm, pot height (PH) of 108 mm, inner diameter

(PD) of 250 mm, and a collar width (PCD) of 17 mm. One the pots was then converted to

26

finned pot by adding wavy fins of SS on the outer bottom side of the pot by spot welding for

extended surface with a view to better heat transfer to pot content. The wavy nature of fins

was selected to render high extended heat transfer area and less obstructed exit for

combustion gases. The welded fins were in a circular shape on the pot bottom. The fins were

welded at a distance (fdb) of 34.5 mm from the outer pot bottom periphery. The height (fh)

and the width (fw) of the welded fins were 12 mm and 25.6 mm respectively. The pitch (fd)

between the fins was maintained at 11 mm during fabrication. There were 56 peaks in the

welded fin system. Figure 3.2.2 shows the dimensions of finned pot and regular flat bottom

pot used in this study.

Figure 3.2.2: Dimensions of finned pot (a) and regular flat bottom pot (b) used in the study.

Actual pictures of flat bottom and finned pots used in this experiment are shown in Figure

C1.2 in Appendix C.

27

3.2.3 Pot support and shield

To study the thermal and emission performances of NG burners at various loading height

with shield and without shield several pot supports and circular shields of different height

were fabricated. Pot supports were made of a metal (mild steel) circular ring welded with

five vertical metal bars of different height to support the pot during WBT. The dimensions

and shapes of pot support and pot shield are shown in Figure 3.2.3. The loading height (LH)

varied from 2.5 cm to 7.5 cm with an incremental height of 0.5 cm. Therefore, eleven

different loading heights were employed during the performance test of the NG burner.

Similarly, eleven sets of cylindrical shields were fabricated from thin metal sheet (thickness

0.3 mm) and the height (SH) of those shield varied from 2.1 cm to 7.1 cm leaving a circular

flue gas exit channel (PSC) of 0.4 cm for each of the pot support and shield arrangements.

Figure 3.2.3: Schematic diagram of (a and d) Pot support (b) Shield (c) Pot support with

Shield (e) circular shield.

28

There were total 84 circular holes on each shield spaced equally at an elevation of 1.1 cm

from base. The diameter (DHS) of each circular hole was maintained at 0.5 cm. Each of the

pot support had a base diameter (PSD) of 22 cm whereas the diameter of the shields (SD)

was maintained at 23 cm since it encircle outside the pot support. Photographs of pot

support, circular shields, and pot support with shield are shown in Figure C1.3 in Appendix

C.

Incorporating the pot-bottom shield in this efficiency study was envisaged to minimize heat

loss from the combustion gases into the surrounding air that might increase the thermal as

well as the emission performance of the particular NG burner in question. The narrow exit

(4 mm circular opening between pot and shield) for combustion gases from combustion

chamber was also thought to provide turbulence for better heat transfer efficiency. The holes

on the shield were provided to supply secondary are for better combustion of NG.

3.2.4 Experimental setup

In this study, distributed pipe NG of Titas Gas Transmission and Distribution Company

Limited (TGTDCL) having a measured (using gas chromatograph, GC) lower heating value

(LHV) 48,833.44 kj/kg was used as fuel to carry out the standard water boiling test of

different configurations of pot support (with and without shield) and pot (ordinary flat

bottom pot and finned pot) at different loading heights and NG supply pressure. The

experimental setup used for this study is shown in Figure 3.2.4. However, pictorial views of

the experimental setup are shown in Figures C1.4 and C1.5 in Appendix C. There was a

pressure regulator at main NG supply line for coarse control wherefrom NG enters into the

wet gas meter (Shinagawa Corporation, Japan). The wet gas meter measured the consumed

amount of NG at a rate 5 liter/revolution. A fine pressure regulator was connected to the

outlet tube of the wet gas meter. The outlet of the fine control valve was connected to the

inlet gas nozzle of the burner (radial port single gas burner described in section 3.2.1) with

another piece of tube which was fitted with a pressure gauge (0-100 mbar) to read the supply

pressure of the NG to burner. The wet gas meter was fitted with a standard thermometer to

read the temperature of the supply gas. The wet gas meter gave the total volume of NG

consumed during the WBT. Two electronic temperature reader coupled with standard K-

type thermocouple were used to monitor the temperature of water and ambient temperature

29

inside the test kitchen during WBT. One flat bottom SS pot and another converted spot

welded SS finned pot (specifications are given in 3.2.2) were used for the WBT. Several pot

supports and shields of different heights (specifications are given in 3.2.3) were also

employed for the efficiency study.

Figure 3.2.4: Schematic of the experimental setup for WBT of NG burner

A portable flue gas analyzer (Kane455, 2009) with IR thermal printer (Taiwan) was used to

measure the concentrations of CO, CO2, static pressure and temperature of the flue gases

inside the chimney during WBT. A thermo anemometer (Model: CEM DT-618, China,

working temperature range: 0-60oC) was used to measure the exit velocity of the flue gas to

estimate the volumetric flow rate of flue in the chimney. The water used for the WBT was

simply the supply tap water of BUET.

30

3.2.5 Experimental methodology

In the present study, two pots (one is flat bottom pot and the other is converted flat bottom

pot with spot welded fins) were used for efficiency study at eleven different loading heights

(from 2.5 cm to 7.5 cm at an increment of 0.5 mm) with and without pot-bottom shield. For

each pot and loading height, overall performance (thermal and emission) study of the NG

burner was carried out at six different NG supply pressure from 4 mbar to 20 mbar (i.e., 4

mbar, 6 mbar, 10 mbar, 14 mbar, 18 mbar and 20 mbar) keeping the burner primary air inlet

50% open. At each of the pot configurations and NG supply pressures three sets of WBT

were carried out in high power phase for statistical validity of the data. Three (3) kg of tap

water was taken for each of the WBTs in this study. NG burner and flat bottom pot

arrangement including pot support with pot-bottom shield and primary air sliding shutter of

NG burner during WBT is shown in Figure 3.2.5.

Figure 3.2.5: Schematic of pot, shield and NG burner arrangement during WBT

31

Initial and final boiling temperatures of water, water boiling time, mass of water evaporated,

NG supply pressure and temperature, volume of NG consumed, combustion air temperature,

flue gas temperature, pressure, and velocity and concentrations of CO and CO2 inside the

hood chimney were measured and monitored for each of the WBTs. With all the measured

values, overall thermal efficiency, modified combustion efficiency, heat transfer efficiency,

temperature corrected boiling time, fire power and emission ratio CO/CO2 were calculated

following the ISO/IWA WBT protocol, version 4.2.3 (ISO/IWA, 2014)

3.2.5.1 Overall thermal efficiency, hc (%)

The thermal efficiency of a gas stove is defined as the percentage of the thermal input

transferred to the loaded water. Mathematically, the thermal efficiency was determined by

the following equation:

ℎ𝑐(%) =4.186(𝑇𝑏 − 𝑇𝑎)(𝑃1𝑐𝑖 − 𝑃1 ) + 2,260. 𝑤𝑐𝑣

𝑓𝑐𝑚 . 𝐿𝐻𝑉 𝑋 100 − − − − − − − (3.2.5.1)

Where,

Tb = Boiling temperature of water (°C) P1 = Weight of the empty pot (g).

Ta = Initial water temperature (°C) wcv = Water vaporized (g)

P1ci = Mass of pot plus water before test (g) fcm = NG consumed in each WBT (g)

2,260 kJ/kg is the latent heat of vaporization for water, 4.186 kJ/kg oC is the specific heat

of water and LHV (48,833.44 kj/kg) denotes the lower heating value of NG.

3.2.5.2 Modified combustion efficiency (MCE)

Modified combustion efficiency (MCE) is used to characterize the relative amount of

flaming combustion. MCE essentially describes the degree to which the carbon in

hydrocarbon fuels is converted to CO2 (Akagi et al., 2011; Ward and Radke, 1993;

Agenbroad, 2010) which is defined by the equation 3.2.5.2

MCE =Cco2

Cco + Cco2− − − − − − − (3.2.5.2)

Where, CCO2 and CCO are the flue gas concentrations of CO2 and CO respectively at

Standard ambient temperature (25oC) and 1 atmospheric pressure (SATP).

32

3.2.5.3 Heat transfer efficiency (HTE)

Insufficient combustion air results to low flame temperatures that minimizes heat transfer to

the cooking pot. Incomplete combustion and minimal heat transfer directly affect the overall

cookstove efficiency (Baldwin, 1987). Heat transfer efficiency (HTE) is the percentage of

heat contained in the combustion gases that is transferred to the cooking pot. Smith (1994)

developed correlation among HTE, overall thermal efficiency and combustion efficiency

which is given in the following equation

HTE = hc/MCE − − − (3.2.5.3)

Where,

hc = Overall thermal efficiency in percentage

MCE= Modified combustion efficiency

HTE = Heat transfer efficiency in percentage

From the measured values of hc and MCE, THE can be found from the eq. 3.2.5.3.

3.2.5.4 Temperature corrected boiling time (ΔtTc )

The temperature-corrected time to boil is same as the time to boil (difference between start

and finish times), but adjusts the result to a standard 75 ºC temperature change (from 25 ºC

to 100 ºC). This adjustment standardizes the results and facilitates a comparison between

tests that may have used water with higher or lower initial temperatures. It is calculated in

the following way (ISO/IWA, 2014)

Temperature corrected time to boil (min) ΔtTc:

ΔtcT = Δtc.

75

(T1cf − T1ci) − − − − − − − − − − − − − − − − − (3.2.5.4)

Where,

Δtc = Time to boil (min)

T1cf = Final water temperature (ºC)

T1ci = Initial water temperature (ºC)

33

3.2.5.5 Firepower (FPc)

Firepower is the fuel energy consumed to boil the water divided by the time to boil. It tells

the average power output of the stove (in watts) during the high-power phase of WBT

(ISO/IWA, 2014).

FPc =.fcd. LHV

tc. 60 − − − − − − − − − − − − − − − − − (3.2.5)

Where,

FPc = Firepower (watt)

fcd = NG consumed during high power phase of WBT (g)

Δtc= Time to boil (min)

3.2.5.6 Ratio of CO and CO2 (CO/CO2)

The CO/CO2 ratio is important to find out whether the operation of NG burner is

environment friendly with respect to CO emission and also to get a rough idea regarding

degree of combustion (Bullman, 2001). The ratio is the concentration of CO and CO2 in

chimney flue gas and expressed as

CO/CO2 =Ecor

Eco2r

− − − − − − − − − − − − − − − − − (3.2.5.6)

Where,

Ecor: At SATP CO emission rate (g/min) and

Eco2r: At SATP CO2 emission rate (g/min)

Detail calculations of overall thermal efficiency, modified combustion efficiency, heat transfer efficiency, temperature corrected boiling time, firepower and the CO/CO2 ratio are shown in Appendix B.

34

CHAPTER 4

RESULTS AND DISCUSSIONS

4. 1 Introduction:

Thermal and emission performances of a concentric two rings radial port household NG burner

were tested in different configurations of pots and shields (i.e., flat bottom pot with shield, flat

bottom pot without shield, finned pot with shield and finned pot without shield) at different

loading height (11 different height started from 2.5 cm with an increment of 0.5 cm) and

different NG supply pressure (6 different NG supply pressure: 4, 6, 10, 14, 18 and 20 mbar)

keeping the primary air inlet open at 50%. Overall efficiency, temperature corrected boiling time

and firepower of the NG burner were evaluated through standard water boiling test (WBT),

version 4.2.3 (ISO/IWA, 2014). Concentrations of CO and CO2 in chimney flue gases were

continuously measured along with flue gas temperature, pressure and velocity inside the chimney

to evaluate the MCE for finding the heat transfer efficiency and CO/CO2 ratio and CO emission

rate data for environmental compliance during each of the high power phase WBTs. The findings

of this study are important to ascertain the optimum operating condition for each configuration of

pot type, pot-bottom shield, loading height and NG supply pressure. The higher heating value

(HHV) and lower heating value (LHV) of the TGTDCL supplied pipeline NG were measured as

54,195 kj/kg and 48,833 kj/kg respectively. The detail composition of the NG and the calculation

of HHV and LHV are given in Appendix E.

4.2 Thermal Efficiency, Combustion Efficiency, Heat Transfer Efficiency, Boiling Time,

and CO/CO2 Ratio of the NG Burner with Different Pot and Shield Arrangements

Thermal efficiencies, combustion efficiencies, heat transfer efficiencies, temperature corrected

boiling time, and CO/CO2 ratio of the NG burner were tested with different pot and shield

arrangement at different loading heights and NG supply pressure using standard water boiling

test protocol where TGTDCL supplied pipeline NG was used as burner fuel. Different pot and

shield arrangements were ordinary flat bottom pot without shield and with shield, and spot

welded finned pot without shield and with shield. The thermal efficiencies, combustion

efficiencies, heat transfer efficiencies, temperature corrected boiling time, and CO/CO2 ratio of

35

the NG burner obtained with different pots and shield arrangements are discussed in the

following subsections.

4.2.1 Thermal efficiency of the NG burner with different pot and shield arrangements

Thermal efficiencies of the NG burner with ordinary flat bottom pot and spot welded finned pot

without shield and with shield at different NG supply pressure and loading height are shown in

Figures 4.1, 4.2, 4.3 and 4.4 respectively.

Ordinary flat bottom pot without bottom shield

From the Figure 4.1 it is obvious that the thermal efficiencies of the burner with flat bottom pot

without shield gradually decrease with the increasing loading height from 2.5 cm to 7.5 cm. This

might be due to the heat loss to surrounding environment as the combustion gas exit area

increases with the increase of loading height. Also as the combustion gas exit area increases with

the increasing of loading height, velocity of the combustion gases decreases (reduced turbulence)

at a particular NG supply pressure which might reduce the convective heat transfer to the pot

water. Though radiative heat transfer component was not measured directly, it is envisaged there

might be reduced radiative heat transfer with increasing loading height (Baldwin, 1987). The

highest efficiencies (56.4-62.2%) at all NG supply pressures (from 4 mbar to 20 mbar) for this

configuration (Figure 4.1) were obtained at 2.5 cm loading height. It is also interesting to note

that at a fixed loading height, thermal efficiency decreases with the increasing NG supply

pressure (Figure 4.1) except the NG supply pressure at 6 mbar. At 2.5 cm loading height, the

highest thermal efficiency (62.2%) was obtained at 6 mbar NG supply pressure which might be

expected at 4 mbar NG pressure with regard to the thermal efficiency trend obtained for NG

pressures at 10, 14, 18, and 20 mbar. This phenomenon can be explained in terms of flame height

in the combustion chamber. At 4 mbar pressure the height of the flame produced was not

sufficient to impinge the pot bottom which caused low heat transfer to the utensil content. At

relatively low gas-input rates, the heat-transfer coefficient between the combustion gases and the

bottom of the pot is relatively small because of the low velocity of the gas flows under the pot

bottom. However, at 6 mbar pressure the flame tip was very close to the pot bottom which

accelerated effective heat transfer to the pot content. Flames produced at NG supply pressures

10, 14, 18 and 20 mbar other than 4 and 6 mbar pressures hit the pot bottom at

36

the mid height of the flame and spattered around the pot. These could result flame quenching and

reduced heat transfer to the pot material which might give lower thermal efficiencies at higher

NG pressures. This flame quenching phenomenon is more dominating with increasing NG

supply pressure at a fixed loading height. However, with the increasing loading height the flame

quenching effect might be expected to reduce and therefore higher thermal efficiency could be

the result. But the opposite was true for the experiment due to excessive heat loss to the

surrounding as the contact area of combustion gases and surrounding ambient air increases with

the increase of loading height. In other sense, the surface area available for heat transfer at the

vessel bottom for higher NG supply pressure became limited which induced faster heat loss with

the flue gases to the environment compared to the heat-absorption rate of the vessel. Similar

phenomena were observed for thermal efficiency by Bussmann (1981), Tamir et al. (1989), and

Islam and Zia (2017). It is to be noted that the experimental NG burner was originally fitted with

a 4 cm pot support and the thermal efficiencies of the burner varied from 52.2% to 53.8% at this

loading height and at NG pressure ranges from 4 mbar to 20 mbar. Contrarily, the highest

thermal efficiencies (56.4-62.2%) were obtained at 2.5 cm height for the same NG pressure

range which were 8% to 15.5% higher compared to the efficiencies for original setting of the NG

burner.

.

Figure 4.1: Thermal efficiency of NG burner with ordinary flat bottom pot without shield at

various loading height and NG supply pressure.

35

40

45

50

55

60

65

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Ther

mal

Effi

cien

cy (%

)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

37

Ordinary flat bottom pot with bottom shield

Thermal efficiency of the NG burner with ordinary flat bottom pot was also carried out following

the standard WBT protocol using pot-bottom shield at 11 different loading height and 6 different

NG supply pressure. Thermal efficiency of ordinary flat bottom pot with bottom shield at

different NG supply pressure and loading height are shown in Figure 4.2. Though the highest

thermal efficiencies of the burner with flat bottom pot without shield (Figure 4.1) at different NG

pressures were obtained at 2.5 cm loading height, the highest thermal efficiencies of the burner

with ordinary pot and shield arrangement (Figure 4.2) were found at 3 cm loading height at each

of the NG supply pressures. Thermal efficiency of the burner (with ordinary pot and shield

arrangement) first increased from 2.5 cm loading height to a maximum at 3 cm height and then

went down with the increasing pot loading height and reached to a minimum at 7.5 cm height for

all NG pressures. The shifting of highest efficiencies from 2.5 cm in Figure 4.2 (pot with shield

arrangement) compared to Figure 4.1 (pot without shield arrangement) might be due to the

shifting of flame height. As there was a bottom shield of the pot there was less chance of the

produced flame to interact with the surrounding environment and thereby the flame height might

be longer than observed for pot without shield arrangement (Figure 4.1) at same height.

Therefore, thermal efficiencies (52.4-62%) at 2.5 cm height and 4 to 20 mbar NG pressures for

flat bottom pot with shield arrangement (Figure 4.2) were lower than the thermal efficiencies

(56.4-62.2%) obtained for flat bottom pot without shield configuration (Figure 4.1). For flat

bottom pot and shield arrangement, the highest thermal efficiencies at 3 cm loading height varied

from 58 to 64.4% for the same NG pressure range of 4 to 20 mbar. The highest thermal

efficiency (64.4%) for flat bottom pot with shield was also found at 6 mbar pressure (Figure 4.2)

like flat bottom pot without shield (Figure 4.1) but at different height of 3 cm. Considering the

baseline thermal efficiency (52.2% to 53.8%) of the NG burner at 4 cm high pot support and

pressure range of 4 mbar to 20 mbar, maximum thermal efficiencies of NG burner with flat

bottom pot and shield arrangement were found to be 58% to 64.4% at 3 cm loading height and

same NG pressure range which were 11 to 19.7% higher than the baseline efficiencies of the NG

burner. Therefore, a maximum of ~20% thermal efficiency increase of the NG burner was

obvious with ordinary flat bottom pot with shield arrangement compared to ordinary flat bottom

pot without shield which can be attributed to the pot bottom shield.

38

Figure 4.2: Thermal efficiency of NG burner with ordinary flat bottom pot with bottom shield at

various loading height and NG supply pressure.

Spot welded finned pot without bottom shield

It is seen from Figure 4.3 that the thermal efficiencies of the burner with finned pot without

shield arrangement gradually increased from 2.5 cm loading height and reached to a maximum at

3.5 cm loading height and then decreased gradually with a minimum at 7.5 cm loading height.

The trend in variation of thermal efficiency in this case was similar to that found for flat bottom

pot with shield configuration shown in Figure 4.2. A remarkable reduction in thermal efficiency

was obvious for finned pot without shield arrangement at each loading height and NG supply

pressure compared to ordinary flat bottom pot with and without shield configurations shown in

Figures 4.1 and 4.2. This might be due to the spot welded outside bottom fins of the pot which

rendered passive contact to pot bottom. Stagnant film of combustion product might get into the

crevices of the spot welded fins and created additional resistance to heat transfer to pot water.

The thermal conductivity of the stagnant film of combustion product is very much similar to air

which can resist heat transfer to pot water to a great extent (Baldwin, 1987) to cause reduced

thermal efficiency. However, the maximum thermal efficiencies of finned pot without shield

arrangement were found at 3.5 cm loading height which was 3 cm and 2.5 cm for flat bottom pot

with shield and without shield (Figures 4.2 and 4.1) arrangements respectively. This shifting of

loading height was due to the outside bottom fins of the pot that

50

52

54

56

58

60

62

64

66

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Ther

mal

Effi

ency

(%)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

39

partially reduced the effective height of the flame to travel upward. Interestingly the maximum

thermal efficiency (54.6%) in this case was also obtained at 6 mbar NG pressure which was 12%

and 15% lower than the highest efficiencies obtained with flat bottom pot without shield and

with shield arrangements respectively. However, the highest thermal efficiency (54.6%) was

~1.5% higher than the highest thermal efficiency of the original burner with ordinary flat bottom

pot at 6 mbar pressure and 4 cm pot height

Figure 4.3: Thermal efficiency of NG burner with finned pot without shield at various loading

height and NG supply pressure

Spot welded finned pot with bottom shield

In case of finned pot with bottom shield configuration (Figure 4.4), thermal efficiencies varied in

a similar fashion i.e., thermal efficiencies increased gradually to a maximum and then fall again

gradually. However, like finned pot without bottom shield (Figure 4.3) the maximum thermal

efficiencies in this case (finned pot with shield, Figure 4.4) were 56.7% and 58.3% at 3.5 cm

loading height for 4 and 6 mbar NG pressures respectively. The maximum thermal efficiencies

for finned pot with shield at 10, 14, 18 and 20 mbar NG pressures were also found at 3.5 cm like

that found in finned pot without shield arrangement (Figure 4.3). However, thermal efficiencies

of finned pot with shield arrangement were found better than in finned pot without

40

42

44

46

48

50

52

54

56

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Ther

mal

Effi

cien

cy (%

)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

40

shield configuration (Figure 4.3) but lower than the thermal efficiencies obtained in ordinary pot

with shield configuration (Figure 4.2). Considering the baseline maximum thermal efficiency

(53.8%) of the NG burner at 4 cm high loading height and 6 mbar NG pressure, maximum

thermal efficiency of NG burner with finned pot and shield arrangement was found to be 58.3%

at 3.5 cm loading height and 6 mbar NG pressure which was 8% higher than the maximum

baseline efficiency of the NG burner. Here the maximum thermal efficiency increased in a order

of ~7% compared to finned pot without shield which can be attributed to the pot bottom shield.

Figure 4.4: Thermal efficiency of NG burner with finned pot and shield at various loading

height and NG supply pressure

However, a clear insight on the variations in thermal efficiencies at different loading heights and

NG supply pressures can be deduced from modified combustion efficiency, heat transfer

efficiency and CO/CO2 ratio which are discussed in the subsequent sections.

45

47

49

51

53

55

57

59

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Ther

mal

Effi

cien

cy (%

)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

41

4.2.2 Modified combustion efficiency (MCE) of the NG burner with different pot and

shield arrangements

For ordinary flat bottom pot and spot welded finned pot without shield and with shield,

concentrations of CO and CO2 in combustion flue gases during each WBT at different loading

height and NG supply pressure were measured at stack conditions wherefrom MCE was

calculated using the equation 3.2.5.2. The MCEs obtained for the NG burner with ordinary flat

bottom pot and spot welded finned pot without shield and with shield at different loading height

and NG supply pressure are shown in Figures 4.5, 4.6, 4.7 and 4.8.

Ordinary flat bottom pot without bottom shield

MCEs of the NG burner with ordinary flat bottom pot without shield at different loading height

and different NG supply pressure are shown in Figure 4.5. It is evident from Figure 4.5 that MCE

increased with the increase of loading height. It is also interesting that the MCE decreases at a

particular loading height with the increasing value of NG supply pressure from 4 mbar to 20

mbar keeping the primary air inlet opening fixed at 50%. At a fixed loading height the volume

between the burner head and pot bottom remains fixed whereas the volume of combustion gases

increase with the NG supply pressure. Therefore, shortened retention time of combustion product

and fixed supply of combustion air might cause increased incomplete combustion for increasing

NG supply pressure. This is why at 2.5 cm loading height one can see the highest combustion

efficiency (0.997) was obtained at 4 mbar gas pressure which gradually decreased to a minimum

(0.992) at 20 mbar. However, combustion efficiency gradually shifted towards the maximum

from the lowest loading height (2.5 cm) to the highest loading height (7.5 cm) due to increasing

available volume between the burner head and pot bottom and also increasing supply of

secondary combustion air. Almost 100% combustion efficiencies were obtained for each of the

NG supply pressures after a loading height of 4.5 cm.

42

Figure 4.5: MCE of NG burner with ordinary flat bottom pot without shield at various loading

height and NG supply pressure

Ordinary flat bottom pot with bottom shield

MCEs of the NG burner with ordinary flat bottom pot with shield at different loading height and different NG supply pressure are shown in Figure 4.6. It is evident from figure that MCE increased with the increase of loading height. It is also interesting that the MCE followed the same trend as discussed for ordinary flat bottom pot without bottom shield as shown in Figure 4.5. Same reasons (as discussed for flat bottom pot without shield) are true for the MCEs trend found for Figure 4.6. However, the MCEs of the burner with flat bottom pot and bottom shield were lower than those obtained for flat bottom pot without bottom shields. At 2.5 cm loading height one can see the highest combustion efficiency (0.98) was obtained at 4 mbar gas pressure which gradually decreased to a minimum (0.88) at 20 mbar. These lower MCEs were the cause of pot bottom shields which allowed only a 4 mm cylindrical gap for flue gas exit and 84 circular holes of diameter 0.5 cm on the bottom shield for secondary combustion air. However, for this pot and shield arrangement almost 100% combustion efficiencies were obtained for each of the NG supply pressures after a loading height of 5 cm. Though the MCEs were relatively lower than pot without bottom shield arrangement, thermal efficiencies were obtained higher in pot with shield arrangement as heat loss was restricted by the bottom shield which can be evident from heat transfer efficiency discussion.

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

MC

E

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

43

Figure 4.6: MCE of NG burner with ordinary flat bottom pot with shield at various loading

height and NG supply pressure

Spot welded finned pot without bottom shield

MCEs of the NG burner with spot welded finned pot without shield at different loading height and different NG supply pressure are shown in Figure 4.7. It is evident from Figure 4.7 that MCE increased with the increase of loading height. It is also interesting that the MCE followed the same trend as discussed for ordinary flat bottom pot without bottom shield and with shield configurations (Figures 4.5 and 4.6). Same reasons (as discussed for flat bottom pot without shield and with shield) are true for the MCEs trend found for spot welded finned pot without shield (Figure 4.7). At a fixed loading height the volume between the burner head and pot bottom remains fixed whereas the volume of combustion gases increase with the NG supply pressure. Therefore, shortened retention time of combustion product and fixed supply of combustion air might cause increased incomplete combustion for increasing NG supply pressure. This is why at 2.5 cm loading height one can see the highest combustion efficiency (0.95) was obtained at 4 mbar gas pressure which gradually decreased to a minimum (0.89) at 20 mbar. However, combustion efficiency gradually shifted towards the maximum from the lowest loading height (2.5 cm) to the highest loading height (7.5 cm) due to increasing available volume between the burner head and pot bottom and also increasing supply of secondary combustion air. Almost 100% combustion efficiencies were obtained for each of the NG supply pressures after a loading height of 6 cm. However, MCEs values at initial loading heights

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

MC

E

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

44

were lower compared to the ordinary flat bottom pot without shield and with shield configurations (Figures 4.5 and 4.6). This might be due to the extra fins on outside pot bottom which essentially reduced effective volume between burner head and pot bottom.

Figure 4.7: MCE of NG burner with spot welded finned pot without shield at various loading

height and NG supply pressure

Spot welded finned pot with bottom shield

MCEs of the NG burner with spot welded finned pot with shield at different loading height and different NG supply pressure are shown in Figure 4.8. It is evident from the figure that MCE increased with the increase of loading height. It is also interesting that the MCE followed the same trend as discussed for ordinary flat bottom pot without and with shield, and spot welded finned pot without shield as shown in Figures 4.5, 4.6 and 4.7 respectively. Same reasons (as discussed for flat bottom pot without and with shield, and spot welded finned pot without shield) are true for the MCEs trend found for finned pot with shield arrangement (Figure 4.8). However, the MCEs of the burner with finned pot and bottom shield were lower at initial loading heights than those obtained for other pot and shield arrangements. At 2.5 cm loading height one can see the highest combustion efficiency (0.88) was obtained at 4 and 6 mbar gas pressure which gradually decreased to a minimum (0.85) at 20 mbar. These lower MCEs were the cause of fins on outside pot bottom and bottom shields which allowed only a 4 mm cylindrical gap for flue gas exit and 84 circular holes of diameter 0.5 cm on the bottom shield for secondary combustion air. However, for this finned pot and shield arrangement almost 100% combustion efficiencies were obtained for each of the NG supply pressures after a loading height of 5 cm. Though the MCEs of this setting were the lowest among all configurations, thermal efficiencies

0.88

0.9

0.92

0.94

0.96

0.98

1

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

MC

E

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

45

were obtained higher in finned pot with shield arrangement compared to finned pot without shield arrangement as heat loss was restricted by the bottom shield which can be evident from heat transfer efficiency discussion.

Figure 4.8: MCE of NG burner with spot welded finned pot having shield at various loading

height and NG supply pressure

However, it is interesting to note that the MCEs at 4 mbar NG pressure were the highest at all

loading heights for all pot and shield arrangements (Figures 4.5 to 4.8), whereas the thermal

efficiencies were the highest at 6 mbar NG pressure at almost all loading heights for all pot and

shield configurations (Figures 4.1 to 4.4). This finding clearly indicates that combustion

efficiency is the only determinant for overall thermal efficiency of the burner. There are several

contributing factors that contribute to the overall thermal efficiency. Heat transfer efficiency

(HTE) is one of them which mostly depends on pot geometry, pot arrangement, retention time of

velocity of the flue gases and many others.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

MC

E

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

46

4.2.3 Heat transfer efficiency (HTE) of the NG burner with different pot and shield

arrangements

For ordinary flat bottom pot and spot welded finned pot without shield and with shield, thermal

efficiencies and modified combustion efficiencies during each WBT at different loading height

and NG supply pressure were determined. Thereafter, the heat transfer efficiencies (HTEs) were

calculated using the equation 3.2.5.3. Sample calculations and calculated data are shown in

Appendix D and B. The HTEs obtained for the NG burner with ordinary flat bottom pot and spot

welded finned pot without shield and with shield at different loading height and NG supply

pressure are shown in Figures 4.9, 4.10, 4.11 and 4.12. It is observed from equation 3.2.5.3 in

chapter 3 that HTE is inversely related to MCE and proportionally related to overall thermal

efficiency (Smith, 1994).

Ordinary flat bottom pot without bottom shield

From the Figure 4.9 it is obvious that the HTEs of the burner with flat bottom pot without shield

followed the same trend of overall thermal efficiencies discussed in the section 4.2.1 which

gradually decreased with the increasing loading height from 2.5 cm to 7.5 cm. This might be due

to the heat loss to surrounding environment as the combustion gas exit area increases with the

increase of loading height. Also as the combustion gas exit area increases with the increasing of

loading height velocity of the combustion gases decreases (reduced turbulence) at a particular

NG supply pressure which might reduce the convective heat transfer to the pot water. Though

radiative heat transfer component was not measured directly, it is envisaged there might be

reduced radiative heat transfer with increasing loading height (Baldwin, 1987). The highest

HTEs (56.8-62.4%) at all NG supply pressures (from 4 mbar to 20 mbar) for this configuration

were obtained at 2.5 cm loading height. It is also interesting to note that at a fixed loading height,

HTEs decreased with the increasing NG supply pressure (Figure 4.9) except the NG supply

pressure at 6 mbar.

47

Figure 4.9: HTE of NG burner with ordinary flat bottom pot without shield at various loading

height and NG supply pressure

At 2.5 cm loading height the highest HTE (62.4%) was obtained at 6 mbar NG supply pressure

which might be expected at 4 mbar NG pressure with regard to the HTE trend obtained for NG

pressures of 10, 14, 18, and 20 mbar. This phenomenon can be explained in terms of flame

height in the combustion chamber. At 4 mbar pressure the height of the flame produced was not

sufficient to impinge the pot bottom which caused low heat transfer to the utensil content. At

relatively low gas-input rates, the heat-transfer coefficient between the combustion gases and the

bottom of the pot is relatively small because of the low velocity of the gas flows under the pot

bottom. However, at 6 mbar pressure the flame tip might be very close to the pot bottom which

accelerated effective heat transfer to the pot content. Flames produced at NG supply pressures

10, 14, 18 and 20 mbar other than 4 and 6 mbar pressures might hit the pot bottom at the mid

height of the flame and spatter around the pot. These could result flame quenching and reduced

heat transfer to the pot material which could result lower HTEs at higher NG pressures. This

flame quenching phenomenon is more dominating with increasing NG supply pressure at a fixed

loading height. However, with the increasing loading height the flame quenching effect might be

expected to reduce and therefore higher HTE could be the result. But the opposite was true for

the experiment due to excessive heat loss to the surrounding

35

40

45

50

55

60

65

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Hea

t Tra

nfer

Effi

cien

cy (%

)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

48

as the contact area of combustion gases and surrounding ambient air increases with the increase

of loading height. In other sense, the surface area available for heat transfer to the vessel bottom

at higher NG supply pressure became limited which induced faster heat loss with the flue gases

to the environment compared to the heat-absorption rate of the vessel.

Ordinary flat bottom pot with bottom shield

HTE of the NG burner with ordinary flat bottom pot was also carried out following the standard

WBT protocol using pot-bottom shield at 11 different loading height and 6 different NG supply

pressure. HTE of ordinary flat bottom pot with bottom shield at different NG supply pressure and

loading height are shown in Figure 4.10. Though the highest HTEs of the burner with flat bottom

pot without shield (Figure 4.9) were obtained at 2.5 cm loading height at different NG pressures,

the highest HTEs of the burner with ordinary pot and shield arrangement (Figure 4.10) were

found at 3 cm loading height at each of the NG supply pressures. HTE of the burner (with

ordinary pot and shield arrangement) first increased from 2.5 cm loading height to a maximum at

3 cm height and then went down with the increasing loading height and reached to a minimum at

7.5 cm height for all NG pressures. The shifting of the highest HTEs from 2.5 cm in Figure 4.10

(pot with shield arrangement) compared to Figure 4.9 (pot without shield arrangement) might be

due to the shifting of flame height. As there was a bottom shield of the pot there was less chance

of the produced flame to interact with the surrounding environment and thereby the flame height

might be longer than observed for pot without shield arrangement at same height. For lower heat

loss due to bottom shield, HTEs of NG burner with flat bottom pot and shield arrangement were

60.0-64.6% at 2.5 cm height and 4 to 20 mbar NG pressures (Figure 4.10) which were higher

than the HTEs (56.8-62.4%) obtained for flat bottom pot without shield configuration (Figure

4.9). For flat bottom pot and shield arrangement, the highest HTEs at 3 cm loading height varied

from 60.5 to 65.2% for the same NG pressure range of 4 to 20 mbar. The highest HTE (64.4%)

for flat bottom pot with shield was also found at 6 mbar pressure (Figure 4.10) like flat bottom

pot without shield (Figure 4.9) but at different height of 3 cm. Considering the baseline

maximum HTE (53.8%) of the NG burner at 4 cm high pot support and NG pressure of 6 mbar,

maximum HTE of NG burner with flat bottom pot and shield arrangement was found to be

64.4% at 3 cm loading height and 6 mbar NG pressure which was 19.7% higher than the baseline

maximum HTE of the NG burner.

49

Figure 4.10: HTE of NG burner with ordinary flat bottom pot with shield at various loading

height and NG supply pressure

Spot welded finned pot without bottom shield

It is seen from Figure 4.11 that the HTEs of the burner with finned pot without shield

arrangement gradually increased from 2.5 cm loading height and reached to a maximum at 3.5

cm loading height and then decreased gradually with a minimum at 7.5 cm loading height. The

trend in variation of HTEs in this case was similar to that found for flat bottom pot with shield

configuration shown in Figure 4.10. A remarkable reduction in HTE was obvious for finned pot

without shield arrangement at each loading height and NG supply pressure compared to ordinary

flat bottom pot with and without shield configurations shown in Figures 4.9 and 4.10. This might

be due to the spot welded outside bottom fins of the pot which rendered passive contact to pot

bottom. Stagnant film of combustion product might get into the crevices of the spot welded fins

and created additional resistance to heat transfer to pot water. The thermal conductivity of the

stagnant film of combustion product is very much similar to air which can resist heat transfer to

pot water to a great extent (Baldwin, 1987) to cause reduced HTE. However the maximum HTE

of finned pot without shield arrangement was found at 3.5 cm loading height which was 3 cm

and 2.5 cm for flat bottom pot with shield and without shield (Figures 4.10 and 4.9)

arrangements respectively. This shifting of loading height was due to

505254565860626466

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Hea

t Tra

nfer

Effi

cien

cy (%

)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

50

the outside bottom fins of the pot that partially reduced the effective height of the flame to travel

upward. Interestingly the maximum HTE (55.9%) in this case was also obtained at 6 mbar NG

pressure which was 10.4% and 13% lower than the highest HTEs obtained with flat bottom pot

without shield and with shield arrangements.

Figure 4.11: HTE of NG burner with spot welded finned pot without shield at various loading

height and NG supply pressure

Spot welded finned pot with bottom shield

In case of finned pot with bottom shield configuration (Figure 4.12), HTEs varied in a similar

fashion i.e., HTEs increased gradually to a maximum and then fall again gradually. The

maximum HTEs for finned pot with shield at all NG pressures were found at 3.5 cm like that

found in finned pot without shield arrangement (Figure 4.11). However, the highest HTE in this

case (finned pot with shield, Figure 4.12) was 64.4% that obtained at 3.5 cm height and 6 mbar

NG pressure. However, HTEs of finned pot with shield arrangement were found better than in

finned pot without shield configuration but lower than the HTEs obtained in ordinary pot with

shield configuration. Considering the baseline highest HTE (53.8%) of the NG burner at 4 cm

loading height and 6 mbar NG pressure, the highest HTE of NG burner with finned pot and

40

42

44

46

48

50

52

54

56

58

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Hea

t Tra

nfer

Effi

cien

cy (%

)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

51

shield arrangement was found to be 19.7% higher. Thus the increased HTE by 19.7% can be

attributed to the pot bottom shield.

Figure 4.12: HTE of NG burner with spot welded finned pot with shield at various loading

height and NG supply pressure

4.2.4 Temperature corrected boiling time of the NG burner with different pot and shield

arrangements

Boiling time in WBT is a measure of cooking fastness. Temperature corrected boiling time was

considered as a measure to compare the cooking fastness among the various configurations of

pots, shields, NG pressures and loading height. In the present study four different pot and shield

arrangements were considered (i.e., ordinary flat bottom pot without bottom shield, ordinary flat

bottom pot with bottom shield, spot welded finned pot without bottom shield and spot welded

finned pot with bottom shield). Each of the pot and shield configurations was tested for its

boiling time at different loading height and NG supply pressure using the intended NG burner

through WBT which are then corrected for a 75oC temperature difference which is known as

temperature corrected boiling time. This adjustment standardizes the results and facilitates a

comparison between tests that had used water with higher or lower initial temperatures

47

49

51

53

55

57

59

61

63

65

67

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Hea

t Tra

nfer

Effi

cien

cy (

%)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

52

(ISO/IWA, 2014). Temperature corrected boiling times of the NG burner with different pot and

shield arrangements are shown in Figures 4.13, 4.14, 4.15 and 4.16.

Ordinary flat bottom pot without bottom shield The temperature corrected boiling time of the NG burner with ordinary flat bottom pot without shield at different loading height is shown in Figure 4.13.

Figure 4.13: Temperature corrected boiling time of NG burner with ordinary flat bottom pot

without shield at various loading height and NG supply pressure

It is evident that the boiling time for 3 L water at a particular height increased with the

decreasing NG supply pressure and increased with the loading height at a particular NG supply

pressure. As the fire power of the burner is low at lower NG supply pressure, it took somewhat

higher time to boil compared to the higher fire power of the burner at higher NG supply

pressures. The highest thermal efficiency for the setting was obtained at 6 mbar pressure and 2.5

mbar NG pressure that corresponds to a boiling time of 12.15 minutes which was lower than the

boiling time 14 minutes found for original setting of NG burner with flat bottom pot at 4 cm

height and 6 mbar pressure.

8

10

12

14

16

18

20

22

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Tem

pera

ture

cor

rect

ed b

oilin

g tim

e (m

in)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

53

Ordinary flat bottom pot with bottom shield The temperature corrected boiling time of the NG burner with ordinary flat bottom pot with

shield at different loading height is shown in Figure 4.14.

Figure 4.14: Temperature corrected boiling time of NG burner with ordinary flat bottom pot

with shield at various loading height and NG supply pressure

Similar boiling time trend was observed in this case as obtained for flat bottom pot without

shield except at 3 cm loading height for all NG supply pressures. Without some minor deviations

at NG pressure of 14 mbar, the lowest boiling points for all other NG pressures were obtained at

3 cm loading height. However, the maximum thermal efficiency for this setting was obtained at 6

mbar pressure and 3 cm loading height which corresponds to a boiling time of 12.3 minutes.

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Tem

pera

ture

cor

rect

ed b

oilin

g tim

e (m

in)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

54

Spot welded finned pot without bottom shield

The temperature corrected boiling time of the NG burner with spot welded finned pot without

shield at different loading height is shown in Figure 4.15.

Figure 4.15: Temperature corrected boiling time of NG burner having spot welded finned pot

without shield at various loading height and NG supply pressure

In this case minimum boiling time was found between 3 to 3.5 cm heights for all NG pressure.

However, the maximum thermal efficiency of this setting was obtained at 6 mbar NG pressure

and 3.5 cm which correspond to a boiling time of 14.73 minutes which was higher than found in

flat bottom pot with and without pot bottom shield.

Spot welded finned pot with bottom shield

The temperature corrected boiling time of the NG burner with spot welded finned pot with

bottom shield at different loading height is shown in Figure 4.16. In this case minimum boiling

time was found between 3 to 5 cm heights for all NG pressure. However, the maximum thermal

efficiency of this setting was obtained at 6 mbar NG pressure and 3.5 cm which correspond to a

boiling time of 13.49 minutes and was higher than found in flat bottom pot with and without pot

bottom shield but lower than finned pot without pot bottom shield.

11

12

13

14

15

16

17

18

19

20

21

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Tem

pera

ture

cor

rect

ed b

oilin

g tim

e (m

in)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

55

Figure 4.16: Temperature corrected boiling time of NG burner with spot welded finned pot and

shield at various loading height and NG supply pressure

4.2.5 Ratio of CO and CO2 (CO/CO2) of the NG burner with different pot and shield

arrangements

For ordinary flat bottom pot and spot welded finned pot without shield and with shield,

concentrations of CO and CO2 in combustion flue gases during each WBT at different loading

height and NG supply pressure were measured at stack conditions wherefrom the respective

concentrations of CO and CO2 were converted to SATP and the CO/CO2 ratios were calculated

using the equation 3.2.5.5. The CO/CO2 ratio is important to find out whether the operation of

NG burner is environment friendly with respect to CO emission (Bullman, 2001; Ashman, 1994).

Experimental data, calculated data and the detail calculations for determining CO/CO2 ratios are

given in Appendix A, B, D and F. The CO/CO2 ratios obtained for the NG burner with ordinary

flat bottom pot and spot welded finned pot without shield and with shield at different loading

height and NG supply pressure are shown in Figures 4.17, 4.18, 4.19 and 4.20.

10

11

12

13

14

15

16

17

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Tem

pera

ture

cor

rect

ed b

oilin

g tim

e(m

in)

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

56

Ordinary flat bottom pot without bottom shield CO/CO2 ratios obtained for ordinary flat bottom pot without shield configuration at various

loading height and NG supply pressures are shown in Figure 4.17. It is evident that the ratio

varied with loading height and NG supply pressure. It is seen from the figure that CO/CO2 ratio

at a particular loading height decreased with decreasing NG pressure. At loading height of 2.5

cm, CO/CO2 ratio was found maximum at 20 mbar pressure and minimum at 4 mbar NG

pressure. Again, CO/CO2 ratio decreased with increasing loading height at a particular NG

pressure which eventually became almost zero beyond 4.5 cm loading height. Loading height

and NG pressure are among many parameters that affect CO/CO2 ratio for gas burner. With

increasing loading height, the CO/CO2 ratio decreases, which is attributed to decreased

quenching effect by flame impingement on the load (Hou and Chou, 2014). However, at higher

loading height, the flame and combustion gases are cooled to a greater extent by mixing with

ambient air before contacting the loading vessel, and thus, the temperature driving force for heat

transfer is decreased, leading to the decrease of thermal efficiency (which is evident from Figure

4.1). The MCE and CO/CO2 ratio are inversely related which is also evident from Figures 4.2

and 4.17. However, the CO/CO2 in this case shows clean burning with regard to any loading

height and NG pressure as the manufacturing certification standard for gas appliances in terms of

maximum CO/CO2 ratio is set at 0.02 (Bullman, 2001).

Figure 4.17: CO/CO2 ratio of NG burner with ordinary flat bottom pot without shield at various

loading height and NG supply pressure

-0.001

2.2E-17

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

CO

/CO

2

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

57

Ordinary flat bottom pot with bottom shield

Figure 4.18 represents variation of CO/CO2 ratio at different NG pressure and loading height for

flat bottom pot with bottom shield. The overall trend of the ratio with loading height and NG

pressure was found similar to that found for flat bottom pot without shield (Figure 4.17) with the

exceptions that the ratio became almost zero at 5 cm loading height and onward due to complete

combustion and ratio values were higher below 5 cm loading height compared to ordinary pot

without bottom shield arrangement (Figure 4.17). The higher ratio values in this case were due to

the pot bottom shield which restricted the entrance for secondary combustion air. However, it is

seen from the figure that one can operate this burner arrangement at 2.5 cm loading height and 4

mbar NG pressure, 3 cm loading height and 4, 6 and 10 mbar Ng pressure, 3.5 cm loading height

and 4, 6, 10, 14 and 18 mbar NG pressure, and 4 cm loading height and all NG pressures from 4

to 20 mbar. The highest thermal efficiency (64.4%) for this burner-pot-shield arrangement was

obtained at 6 mbar NG pressure and 3 cm loading height which allows operating the burner in an

environment friendly manner as the maximum allowable limit for CO/CO2 ratio is 0.02

(Bullman, 2001).

Figure 4.18: CO/CO2 ratio of NG burner with ordinary flat bottom pot with bottom shield at

various loading height and NG supply pressure

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

CO

/CO

2

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

58

Spot welded finned pot without bottom shield

CO/CO2 ratios obtained for spot welded finned pot without shield configuration at various

loading height and NG supply pressures are shown in Figure 4.19. The overall trend of the ratio

with loading height and NG pressure was found similar to that found for flat bottom pot without

and with shield (Figures 4.17 and 4.18) with the exceptions that the ratio became almost zero at 6

cm loading height and onward due to complete combustion and ratio values were higher below 6

cm loading height compared to ordinary pot without and with bottom shield arrangement

(Figures 4.17 and 4.18). The higher ratio values in this case were due to fins on outside pot

bottom that might increase the flame quenching effect at a particular loading height with

increasing NG pressure. Contrarily, with increasing loading height at a particular NG pressure,

the CO/CO2 ratio decreased, which might be attributed to decreased quenching effect by flame

impingement on the load (Hou and Chou, 2014). The highest thermal efficiency (54.6%) for this

burner-pot-shield arrangement was obtained at 6 mbar NG pressure and 3.5 cm loading height.

Operating the burner at 6 mbar pressure and 3.5 cm loading height surmounts the acceptable

maximum value of CO/CO2 ratio of 0.02 (Bullman, 2001).

Figure 4.19: CO/CO2 ratio of NG burner with spot welded finned pot without bottom shield at

various loading height and NG supply pressure

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

CO

/CO

2

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

59

Spot welded finned pot with bottom shield

CO/CO2 ratios obtained for spot welded finned pot with bottom shield configuration at various

loading height and NG supply pressures are shown in Figure 4.20. The overall trend of the ratio

with loading height and NG pressure was found similar to that found for flat bottom pot without

and with shield (Figures 4.17 and 4.18) and finned pot without bottom shield (Figure 4.19) with

the exceptions that the ratio became almost zero at 5.5 cm loading height and onward due to

complete combustion and ratio values were higher below 5.5 cm loading height compared to

ordinary pot without and with bottom shield arrangement and finned pot without bottom shield.

The higher ratio values in this case were due to fins on outside pot bottom and bottom shield that

combinedly might increase the flame quenching effect at a particular loading height with

increasing NG pressure. Contrarily, the CO/CO2 ratio decreased with increasing loading height at

a particular NG pressure, which might be attributed to decreased quenching effect by flame

impingement on the load (Hou and Chou, 2014). The highest thermal efficiency (58.3%) for this

burner-pot-shield arrangement was obtained at 6 mbar NG pressure and 3.5 cm loading height.

Operating the burner at 6 mbar pressure and 3.5 cm loading height surmounts the acceptable

maximum value of CO/CO2 ratio of 0.02 (Bullman, 2001).

Figure 4.20: CO/CO2 ratio of NG burner with spot welded finned pot with bottom shield at

various loading height and NG supply pressure

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

CO

/CO

2

Loading Height (cm)

4 mbar6 mbar10 mbar14 mbar18 mbar20 mbar

60

4.3 Overall Comparison of Thermal and Environmental Performances of the NG

Burner with Different Pot and Shield Arrangements

Since the highest thermal efficiencies of the NG burner with different pot and shield

arrangements (ordinary flat bottom pot without shield and with shield, spot welded finned pot

without shield and with shield) were obtained at 6 mbar NG pressure at different loading height,

thermal efficiencies, CO/CO2 ratios and CO emission rate (g/min) of the NG burner at 6 mbar

pressure and different loading height are compared for different pot and shield arrangements.

4.3.1 Overall thermal efficiencies of NG burner with different pot-shield arrangements at

6 mbar NG pressure

Overall thermal efficiencies of the burner with different pot-shield arrangements at 6 mbar NG

pressure are shown in Figure 4.21.

Figure 4.21: Variation of thermal efficiency of the NG burner with different pot-shield

arrangements at different loading height and 6 mbar NG pressure

35

39

43

47

51

55

59

63

67

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Ther

mal

Effi

cien

cy (%

)

Loading Height (cm)

Flat botton pot without ShieldFlat botton pot with ShieldFinned pot without ShieldFinned pot with Shield

61

The highest thermal efficiency among the four different pot and shield arrangements was

obtained with ordinary flat bottom pot with bottom shield at 3 cm loading height at 6 mbar NG

pressure which was 64.4%. This efficiency was ~20% higher than the highest baseline thermal

efficiency (53.8%) of the NG burner with ordinary flat bottom pot without shield at 4 cm loading

height and 6 mbar NG pressure. The burner with ordinary pot only configuration gave the

highest thermal efficiency (62.2%) at 2.5 cm loading height and 6 mbar pressure which was

15.5% higher than the baseline thermal efficiency (53.8%) of the burner. However, the highest

thermal efficiencies of the burner having spot welded finned pot without shield and with shield

arrangements were ascertained to be 54.6% and 58.3% respectively at 3.5 cm loading height and

6 mbar pressure. Though these thermal efficiency values were lower compared to ordinary flat

bottom pot without and with shield arrangement, they were still higher than the base line thermal

efficiency value (53.8%) of the burner. Though Zube (2010) and Andreatta (2009) observed

better thermal efficiency for finned pot, the results with finned pot for this present study was not

encouraging due to using spot welded finned pot instead of continuous welded finned pot.

Reasons for the variation of thermal efficiency values for different pot-shield arrangement at

different NG pressures are discussed elaborately in the sections 4.2.1 to 4.2.3. Presently, six NG

distribution companies in Bangladesh are serving 4.1 million households countrywide which

consume yearly 141.5 billion cubic feet of NG (14.63% of total production) for cooking purpose

(Petrobangla, 2016). Therefore, considering the best configuration of the tested burner (ordinary

flat bottom pot with bottom shield) yearly around 28 billion cubic feet of NG can be saved.

Figure 4.22 showing the same Figure like Figure 4.2, here in the place of loading height, used

dimensionless value (Loading height divided pot diameter) at 6 mbar NG pressure.

62

Figure 4.22: Variation of thermal efficiency of the NG burner with different pot-shield

arrangements at different ratio of loading height and Pot diameter at 6 mbar NG pressure

The following figure 4.23 showing variation of NG flow rate (SATP) with NG supplied pressure

(data taken from Appendix G).

35

39

43

47

51

55

59

63

67

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

Ther

mal

Effi

cien

cy %

LH/PD

Flat botton pot without ShieldFlat botton pot with ShieldFinned pot without ShieldFinned pot with Shield

63

Figure 4.23: Variation of NG flow rate (SATP) with NG supplied pressure.

4.3.2 Overall environmental performances (CO/CO2 ratio and CO emission rate) of NG

burner with different pot-shield arrangements at 6 mbar NG pressure

Though there is no standard value for CO/CO2 ratio for household NG appliances in Bangladesh,

CO/CO2 ratios of the NG burner obtained for different pot-shield arrangements at 6 mbar NG

pressure were compared against the Australian standard where the maximum allowable value of

CO/CO2 is set at 0.02 (Bullman, 2001). CO/CO2 ratios of the NG burner with different pot-

shield arrangements at 6 mbar pressure are shown in Figure 4.23. The highest thermal

efficiencies of the NG burner having flat bottom pot without and with bottom shield and spot

welded finned pot without and with bottom shield were obtained respectively at 2.5 cm, 3 cm

and 3.5 cm loading heights and 6 mbar NG pressure. It is obvious from Figure 4.23 that the

operations of the burner having spot welded finned pot with and without bottom shield at 3.5 cm

for the highest thermal efficiency will generate higher CO/CO2 ratio (excessive CO emission to

environment) compared to the standard value 0.02 (Bullman, 2001). Therefore, the operations of

the burner having the above mentioned pot-shield arrangement at 6 mbar NG pressure for the

highest thermal efficiencies are not environment friendly. However, the CO/CO2 ratios for the

operations of the burner having flat bottom pot without shield at 2.5 cm loading height and 6

4.24.34.44.54.64.74.84.9

55.15.2

4 6 8 10 12 14 16 18 20 22

NG

Flo

w ra

te (L

/min

)

NG pressure (mbar)

NG flow…

64

mbar pressure and flat bottom pot with shield at 3 cm loading height and 6 mbar fall within the

guideline value of CO/CO2 (i.e., 0.02). Therefore, one can easily operate the NG burner having

flat bottom pot with bottom shield for the highest thermal efficiency (64.4%) at 3.5 cm loading

height and 6 mbar pressure without stretching the environment.

Figure 4.24: Variation of CO/CO2 ratios of the NG burner with different pot-shield

arrangements at different loading height and 6 mbar NG pressure

Figure 4.24: showing variation of CO/CO2 ratios of the NG burner with different pot-shield

arrangements at different ratio of loading height (LH) to Pot Diameter (PD) at 6 mbar NG

pressure

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

CO

/CO

2

Loading Height (cm)

Flat botton pot without ShieldFlat botton pot with ShieldFinned pot without ShieldFinned pot with ShieldMax. limit (Bullman, 2001)

65

Figure 4.25: Variation of CO/CO2 ratios of the NG burner with different pot-shield

arrangements at different ratio of loading height (LH) to Pot Diameter (PD) at 6 mbar NG

pressure

However, WHO has its own guideline values for the CO emission rate for household gas burner

to control the indoor air pollution. For a better environment this guideline restricts the CO

emission from a vented NG burner to 0.59 g/min whereas for an unvented NG burner the

maximum CO emission rate is 0.16 g/min (WHO, 2010). Therefore, to compare the CO emission

rate of the tested NG burner having different pot-shield arrangements at 6 mbar pressure Figure

4.25 was developed for the burner. It is evident from Figure 4.25 that the burner with flat bottom

pot without shield and with shield can easily be operated at its highest thermal efficiency level at

2.5 cm and 3 cm loading height at 6 mbar pressures in a vented or unvented systems or kitchen

without stretching the environment. However, the NG burner having spot welded finned pot

without shield arrangement can also be operated at its highest efficiency in properly vented

system but not inside the unvented system. From environmental point of view operation of the

NG burner with spot welded finned pot with bottom shield at the highest efficiency point in

neither encouraged in vented or unvented system.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32

CO

/CO

2

LH/PD

Flat botton pot without Shield

Flat botton pot with Shield

Finned pot without Shield

Finned pot with Shield

Max. limit (Bullman, 2001)

66

Figure 4.26: Variation of CO emission rate of the NG burner with different pot-shield

arrangements at different loading height and 6 mbar NG pressure

Figure 4.26 showing a dimensionless presentation of Figure 4.25 in the place of loading height

(cm), used the ratio of loading height (LH) divide by pot diameter (PD).

Figure 4.27: Variation of CO emission rate of the NG burner with different arrangements at

different ratio of loading height (LH) and pot diameter (PD) at 6 mbar NG pressure

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

CO

(g/m

in)

Loading Height (cm)

Flat botton pot without Shield

Flat botton pot with Shield

Finned pot without Shield

Finned pot with Shield

Standard Unvented CO emissionRate (WHO, 2010)

0

0.5

1

1.5

2

2.5

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

CO

(g/m

in)

LH/PD

Flat botton pot without Shield

Flat botton pot with Shield

Finned pot without Shield

Finned pot with Shield

Standard Unvented CO emission Rate(WHO, 2010)Standard Vented CO emission rate (WHO,2010)

67

The whole scenario can be shown pictorially in Figure 2.28 as the direction of flame based on

fixed NG pressure, varying loading heights and Figure 2.29 as the direction of flame based on

varying NG pressure at fixed loading height.

Figure 2.28: The direction of flame based on loading height.

(A) Short gap between burner head and saucepan renders incomplete combustion and low thermal efficiency (B) Maximum thermal efficiency at optimum loading height (C) Gap between burner head and saucepan is more than optimum loading height results quenching of flame and

low thermal efficiency

Figure 2.29: The direction of flame based on varying NG pressure at fixed loading height. (D)

When NG pressure is less than the optimum position of thermal efficiency, in other word: flame tip is more away from pot bottom. (E) Maximum thermal efficiency at optimum NG pressure (F)

NG pressure is more than optimum NG pressure, results quenching of flame and low thermal efficiency and (G) Quenching of flame becoming more after increasing NG pressure.

68

Table 4.1: Summary of findings

Name Flat bottom pot Without shield

Flat bottom Pot with

shield

Finned pot without shield

Finned pot with shield

Pot dimensions

(Figure 3.2.2)

Material: stainless steel (SS),

thickness (th): 0.5 mm, pot

height (PH): 108 mm, inner

diameter (PD): 250 mm, collar

width (PCD): 17 mm.

Pot dimension is same as flat bottom

pot. Fin (distance from the outer pot

bottom periphery (fdb): 34.5 mm,

height (fh): 12 mm, width (fw) : 25.6

mm, pitch (fd): 11 mm., peaks: 56).

NG Pressures 4, 6, 10, 14, 18 and 20 mbar

Shields

(Figure 3.2.3)

Thickness of Shield (St) = 0.3 mm, hole’s diameter in Shield (DHS) = 5 mm, Total holes (TSH) = 84, Shield Height (SH) = 1.6, 2.1, 2.6, 3.1, 3.6, 4.1, 4.6, 5.1, 5.6, 6.1 and 6.6 cm, Shield Diameter (SD) = 230 mm,

Supports

(Figure 3.2.3) Pot Support Height (PSH) = 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5 and 7 cm. Chanel gap (PSC) = 4 mm, inner Diameter (PSD) = 220 cm.

Loading Heights 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 and 7.5 cm

Base line setting Thermal efficiency: 52.19- 53.81%, 4 cm (Loading height), 4- 20 mbar

NG pressure.

Max. thermal

efficiency (%) for NG

pressure: 4-20 mbar

56.39-62.16%,

at 2.5 cm

(Loading height)

Max. 62.16% at

6 mbar

58 – 64.4%, at

3 cm (Loading

height)

Max. 64.4% at

6 mbar

48.15 – 54.6%, at

3.5 cm (Loading

height)

Max. 54.6% at 6

mbar

53.2 – 58.6%, at

3.5 cm (Loading

height)

Max. 58.6% at 6

mbar

Max. Heat Transfer

Efficiency (%)

62.42%, 6mbar

and 2.5 cm

65.2%, 6 mbar

and 3 cm

59.99%, 6 mbar

and 3.5 cm

60.5%, 6mbar

and 3 cm

Ratio of CO/CO2 at

Max. Thermal

Efficiency.

0.004 0.012 0.025 0.099

Australian standard: Maximum allowable value of CO/CO2 is set at 0.02 (Bullman, 2001).

Emission of CO

(g/min) at Max.

Thermal Efficiency.

0.094

0.16

0.59

1.8

Standard Unvented and vented CO emission Rate (WHO, 2010) = 0.16 g/min and 0.59 g/min

69

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Several factors are responsible for the overall thermal efficiency and emission characteristics

of the cooking system. Size and shape of the cooking vessel, pot loading height, gas flow

rate and pot bottom shield have great effects for natural gas cooking system. From the

results of this study it can be concluded that using a simple pot bottom shield can

dramatically improve the thermal efficiency of a conventional radial port NG burner.

Among the different pot arrangements (ordinary flat bottom pot with and without pot bottom

shield, spot welded finned pot with and without pot bottom shield), ordinary flat bottom pot

with pot bottom shield arrangement provides the highest improvement in thermal efficiency

(~20%) compared to the base line efficiency of the NG burner with flat bottom pot. Thermal

efficiency of finned pot arrangements was not so encouraging. Since the fins were spot

welded on outside pot bottom there might be micro air gap between the pot bottom and fins

which provided additional resistance to heat transfer to pot content.In general it was

observed that at fixed pot height thermal efficiency and heat transfer efficiency decrease

with increasing gas pressure and at fixed gas pressure both efficiencies first increase and

reach to a maximum and then decrease with increasing pot height with the only exception

found in ordinary flat bottom pot without bottom shield arrangement. However, it was found

that at fixed pot height MCE generally decreases with increasing gas pressure and at fixed

gas pressure it increases with increasing pot height. It was also observed that optimum pot

loading height varies with different pot arrangements. The study also found that the

CO/CO2ratio increases with the inclusion of pot bottom shield and finned pot compared to

pot only arrangement. However, at fixed pot height CO/CO2 ratio increases with increasing

gas pressure and at a fixed gas pressure it decreases with increasing pot height. The highest

thermal efficiency for all pot arrangements was obtained at a gas supply pressure of 6 mbar

which is well below the pipeline supply pressure maintained at 20 mbar by the gas

distribution companies in Bangladesh. General households in Bangladesh have a tendency

to operate the gas burner at the pipeline supply pressure to expedite the cooking process,

70

whereas this study manifests that operating this gas burner beyond the optimum pressure

results unnecessary gas wastage. This simple pot bottom shield arrangement can

significantly contribute to energy conservation, lessening of greenhouse gas emission,

lowering the energy cost for cooking and thereby can save huge money which can be

otherwise used for national development.

5.2 Recommendations for Future Study

Very limited literatures were found on thermal efficiency and emission characteristics of

household Natural Gas (NG) cooking system. Therefore, huge opportunities are there to

work with cooking system with NG. This study incorporated spot welded finned pot for

thermal and emission performances. However, as discussed earlier that the overall

performances of the finned pot were not encouraging. This might be due to the presence of

micron level air gap between the fins and pot surface that resists heat transfers to top

content. Therefore, some recommendations for future study are given below:

Study of thermal efficiency and emission characteristics of NG and LPG burners

with various continuous welded finned pots having different shape and size

Study of thermal efficiency and emission characteristics of NG and LPG burners

with various shields (bottom shield and skirt) of different materials

71

REFERENCES Agenbroad, J. N., (2010) . A Simplified Model for Understanding Natural Convection

Driven Biomass Cooking Stoves. Colorado State University Fort Collins, Colorado.(url:https://mountainscholar.org/bitstream/handle/10217/39250/2010_Summer_Agenbroad_Joshua.pdf?sequence=1&isAllowed=y; accessed date: 03.08.2018) pp 3-83.

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, doi:10.5194/acp-11-4039-2011, 2011.

Andreatta, D., (2009). Finned Pots as a Means of Increasing Efficiency, executive summary a pot with heat transfer. (http://bioenergylists.org/stovesdoc/Andreatta/02%2015%2009%20Finned%20Pot/Finned%20pot%20final%20report.pdf; accessed date: 19.11.2018) pp. 1-20.

ASHMAN, P. J., JUNUS, R., STUBINGTON, J. F., and SERGEANT, G. D., (2007). The Effects of Load Height on the Emissions from a Natural Gas-Fired Domestic Cooktop Burner, Combustion Science and Technology, vol. 103, 1994, Issue 1-6. (url:https://www.tandfonline.com/doi/abs/10.1080/00102209408907699)pp. 283-298.

Aunan, K., Berntsen, T. K., Myhre, G., Rypdal, K., Streets, D. G., Jung-Hun Woo, J-H., and Smith, K. R., (2009). Radiative Forcing From Household Fuel Burning in Asia, Atmospheric Environment, vol. 43. (url:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.497.8456&rep=rep1&type=pdf; accessed date: 27.10.2018) pp. 5674-5681.

Bajgain, S. and Shakya, I. (2005). The Nepal biogas support program: A successful model of public private partnership for rural household energy supply, SNV-Netherlands Development Organisation. (url:http://siteresources.worldbank.org/INTENERGY/Publications/20918309/NepalBiogasSupportProgram.pdf; accessed on November 15, 2018)

Baldwin, S. F. (1987), Biomass stoves: engineering design, development and dissemination.

1600 Wilson Boulevard, Arlington, Virgnia 22209, USA, pp. 46-382.

Bates, L., Jagoe, K., and Rouse, J. (2011). Ethanol as a household fuel in Madagascar, Review of Sub-Saharan Africa Experience in scaling-up household energy interventions, Final report for Practical Action.

(url: https://www.cleancookingalliance.org/resources/231.html; accessed on November12, 2018)

Bethold, G., Barozzi L., Dotti M., Gilioli M., Gangale G.. (2017). Gas Burner Technology & Gas Burner Design for Application. (http://www.asge-national.org/wp-

72

content/uploads/2017/09/7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf; accessed date: 18.12.2018) pp 1-40.

Berry, W. M., Brumbaugh, I. V., Moulton, G. F., Shawn, G. B. (1921). Design of atmospheric gas burners, Technologic Papers of the Bureau of Standards, No. 193, DEPARTMENT OF COMMERCE, WASHINGTON GOVERNMENT PRINTING OFFICE. (url: https://nvlpubs.nist.gov/nistpubs/nbstechnologic/ nbstechnologicpaperT193.pdf; accessed date: 26.10.2018) pp 5-64.

Bhattacharya S.C., Salam P.A., and Sharma M. (2000). Emissions from biomass energy use in some selected Asian countries, Energy, vol. 25(2), pp. 169–188.

Boggavarapu, P., Ray, B., and Ravikrishna, R. V. (2014). Thermal efficiency of LPG and

PNG-fired burners: Experimental and numerical studies, Fuel, vol. 116(2014), pp. 709-715.

Bruce, N., Perez-Padilla, R. and Albalak, R. (2000). Indoor Air Pollution in Developing

Countries: a major environmental and public health challenge, Bulletin of the World Health Organization 2000; 78(9). (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2560841/; accessed date:12.01.2019) pp. 1078-1092.

Bullman, S. (2001). Comparison of measurements of absolute CO and CO/CO2 ratio as combustion performance indicators, Advantica report designation: R4188, Advantica Ltd., Loughborough, Leicestershire, LE11 3GR, UK.

Bussmann, PJT., (1981). In: Prasad KK, editor. Some studies on open fires, shielded fires

and heavy stoves. Eindhoven: Woodburning Stove Group, Eindhoven University of Technology.

CAP., (2013). Country Action Plan for Clean Cookstoves, Power Division, Ministry of Power, Energy and Mineral Resources, Government of the People’s Republic of Bangladesh. (http://www.sreda.gov.bd/d3pbs_uploads/files/policy_5_cap_final.pdf; accessed date: 03.09.2018) pp. 7-26.

Couto, H. S., Duarte, J. B. F., and Bastos-Netto, D. (2004), Domestic Range Burner Design Procedure, The Seventh Asia-Pacific International Symposium on Combustion and Energy Utilization, Hong Kong SAR. (url: https://docslide.net › Category Documents; accessed date: 28.10.2018)

73

EFDS, (2011). The Energy and Fuel Data Sheet, Iain Staffell, University of Birmingham, UK, W1P1 – Revision 1. (url: http://www.claverton-energy.com/wordpress/wp-content/uploads/2012/08/the_energy_and_fuel_data_sheet1.pdf; accessed date: 19.10.2018 ) pp 2-3.

EIA, (1999). Natural Gas Issues and Trends, Energy Information Administration Office of Oil and Gas, U.S. Department of Energy Washington, DC 20585. (url: http://webapp1.dlib.indiana.edu/virtual_disk_library/index.cgi/ 4265704/FID1578/pdf/gas/056098.pdf; accessed date: 12.12.2018)

Elmnefi, M. S., (2010). New Optical Method for Heat Flux Measurements in Stagnation Point Laminar Methane/Air Flames and Hydrogen/Methane/Air Flames using Thermographic Phosphors . (https://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-25648/Elmnefi_Mohamed_Salem_Diss.pdf; accessed date: 13.11.2018)

Energy Kids, (online). U.S . Energy Administration. (url: https://www.eia.gov/kids/energy.php?page=natural_gas_home-basics; accessed date: 22.09.2018)

Energypedia, (online). GIZ HERA Cooking Energy Compendium, a practical guide book for cooking energy innovation. (url: https://energypedia.info/wiki/GIZ_HERA_Cooking_Energy_Compendium; accessed date 20.01.2019).

EPA, (2013). Formaldehyde: Hazard Summary, U.S. Environmental Protection Agency, Washington DC, U.S.A.

(url: http://www.epa.gov/ttnatw01/hlthef/formalde.html; accessed date: 21.08.2018).

Eusuf M, Khan AMHR, Banu LB, 1990. Improved model of domestic gas cooking stove. Bangladesh Patent No.1002248; 1990.

Farzana, A., Mahfuz. T. and Rahman, M. M. (2017). Modified pot shield for improved burner efficiency, Fifth International Conference on Chemical Engineering (ICChE 2017), Chemical Engineering Department, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh, pp. 1-8.

Flores-Pajot, M. C., Ofner M., Do M. T., Lavigne E., and Villeneuve P. J., (2016). Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: A review and meta-analysis, Environmental Research,vol.151. (https://www.sciencedirect.com/science/article/pii/S0013935116303176; accessed date: 24.12.2018) Pp. 763-776.

GACC, (2020). Global Alliance for Clean Cookstoves, The Global Alliance for Clean Cookstoves is a public-private partnership with a mission to save lives, improve livelihoods, empower women, and protect the environment by creating a thriving global market for clean cookstoves and fuels, with a goal of enabling 100 million households to adopt clean and efficient cooking technologies by

74

2020. (http://carbonfinanceforcookstoves.org/about-cookstoves/cooking-and-climate-change/;accessed date:12.10.2018)

GELLER, H. S., (1982). Fuel efficiency and performance of traditional and innovative cookstoves. Centre for the Application of Science and Technology to Rural Areas (ASTRA), Indian Institute of Science, Bangalore 560 012, India. Prec. Indian Acad. Sci. (Engg. Sci.), Vol. 5, Pt. 4. (url:https://www.ias.ac.in/article/fulltext/sadh/005/04/0373-0393) pp. 373-393.

GIZ (2014). Multiple-Household Fuel Use – a balanced choice between firewood, charcoal and LPG, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Federal Ministry for Economic Cooperation and Development, Germany, pp. 1-40. (url.https://energypedia.info/images/3/32/2014-03_Multiple_Household_Cooking_Fuels_GIZ_HERA_eng.pdf)

Hou, S.-S., and Chou, C.-H., (2013). Parametric Study of High-Efficiency and Low-Emission Gas Burners, Advances in Materials Science and Engineering, Vol. 2013, Article ID 154957, pp. 1-7.

Hou, S.-S., and Chou, C.-H., (2014). Performance characteristics of multi-port gas burners, Innovation, Communication and Engineering, Meen, Prior & Lam (Eds), pp. 421-424.

Islam, S., and Zia, M. Z. U., (2017). Evaluating the Benchmark Performances and Efficiencies of Existing Gas Stoves in Bangladesh and Maximizing the Thermal Performance through Incorporating some Minor Modification, B.Sc. Thesis in Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.

ISO/IWA (2014). The Water Boiling Test, Version 4.2.3. Cookstove Emissions and Efficiency in a Controlled Laboratory Setting. (url:https://cleancookstoves.org/binary-data/DOCUMENT/file/000/000/399-1.pdf)

Jarvis, D., Chinn, S., Sterne, J., Luczynska, C., and Burney, P. (1998). The association of respiratory symptoms and lung function with the use of gas for cooking. European Community Respiratory Health Survey, Eur Respir J, vol. 11(3), (url: http://www.ncbi.nlm.nih.gov/pubmed/9596117; accessed date: 13.11.2018) pp.651–658.

Jones, H. R. N.(1989), The Application of Combustion Principles to Gas Burner Design, British Gas. (url: https://books.google.com › Science › Applied Sciences; accessed date: 15.10.2018). pp. 2–35.

Kane455, (2009). Flue Gas Analyser with direct CO2 measurement, Kane International Ltd, U.K. (url: https://www.kane.co.uk/knowledge-centre/what-are-safe-levels-of-co-and-co2-in-rooms).

Khalequzzaman, M., (2007). Indoor Air Pollution and Its Impact on Children Under 5 Years

Old in Bangladesh.

75

(url:https://www.researchgate.net/publication/50833131_Indoor_Air_Pollution_and_Health_of_Children_in_Biomass_Fuel-using_Households_of_Bangladesh _Comparison_between_Urban_and_Rural_Areas; accessed date: 27.12.2018) pp. 468-474.

Kile, M. L, Coker, E. S, Smit E., Sudakin, D., Molitor J., Harding A. K., (2014). A cross-

sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII, Environmental Health, 2014; 13 (1): 71 (url: https://ehjournal.biomedcentral.com/track/pdf/10.1186/1476-069X-13-71; accessed date: 11.11.2018).

Klug, V. L., Agnes B. Lobscheid, and Singer, B. C, (2011). Cooking Appliance Use in California Homes—Data Collected from a Web-based Survey, Environmental Energy Technologies Division, Ernest Orlando Lawrence, Berkeley National Laboratory, LBNL-5028E. (url: http://homes. lbl.gov/sites/all/files/lbnl-5028e-cooking-appliance.pdf; accessed date: 09.02.2019).

Kotb, A. and Saad, H. (2018). Case study for co and counter swirling domestic burners, Case Studies in Thermal Engineering, vol. 11, pp. 98-104.

Ko, Y-C., and Lin, T-H., (2003). Emissions and efficiency of a domestic gas stove burning natural gases with various compositions, Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan. (url: https://www.researchgate.net/publication/237897196; accessed date: 20.07.2018) .Pp 1-15.

Ko Y-C., and Lin T-H., (2003). Emissions and Efficiency Of a Domestic Gas Stove Burning Natural Gases With Various Compositions. Article in Energy Conversion and Management 44(19):3001-3014. (url:https://www.researchgate.net/publication/237897196_Emissions_and_efficiency_of_a_domestic_gas_stove_burning_natural_gases_with_various_compositions; accessed date: 21.01.2019)

Knibbs, L. D, Woldeyohannes, L., Marks, G. B., and Cowie C. T., Med J., ( 2018). Damp housing, gas stoves, and the burden of childhood asthma in Australia, vol., 208, ISSUE 7. (url: https://www.mja.com.au/journal/2018/208/7/damp-housing-gas-stoves-and-burden-childhood-asthma-australia; accessed date: 23.10.2018)

Krishnan, S. M., Barath, P., Manoj, V., and Stalin, J. M., (2012). Energy Conservation by

Improving the Design of Cook Pot, Int. Journal of Mechanical Engineering and Technology, vol. 3(3), pp. 638-644.

76

Lam, N. L., Smith, K. R., Gauthier, A., and Bates, M. N. (2012). Kerosene: A review of household use and their hazards in low-and middle-income countries, J Toxicol Environ Health B Crit Rev., vol. 15(6), pp. 396-432.

Lambe, F., Jürisoo, M., and Wikman, A. (2015). Ethanol: towards a viable alternative for

domestic cooking in Ethiopia, Stockholm Environment Institute (SEI), Sweden. (url: https://www.cleancookingalliance.org/resources/386.html; accessed on

November 12, 2018) Logue, J. M., Klepeis, N. E., Lobscheid, A. B., and Singer, B. C., (2014). Pollutant

exposures from natural gas cooking burners: a simulation-based assessment for Southern California, Environmental Health Perspectives. (url:http://dx.doi.org/10.1289/ehp.1306673; accessed date: 26.02.2019) pp. 43-50.

Lucky, R. A., and Hossain, I., (2001). Efficiency study of Bangladeshi cookstoves with an

emphasis on gas cookstove, Energy, vol. 26, pp. 221-237. Malek, M. I., Hossain, M. M., and Sarkar, M. A. R. (2015). Production and utilization of

natural gas in Bangladesh, Proceedings of the 7th IMEC, January, Dhaka, Bangladesh,

Malouf, A. and Wimberly, D. (2001). The Health Hazards of Natural Gas, Nova Scotia Allergy and Environmental Health Association. (http://greenheatusa.com/Files/TheHealthHazardsofNaturalGas.pdf; accessed date: 12.01.2019).

Naphon, P. (2014). Thermal Efficiency Enhancement of Domestic Cooking Pots, Asian

Journal of Engineering and Technology (ISSN: 2321 – 2462) Volume 02 – Issue 05, October 2014. Pp 1-6

OTA, (1991). Energy in developing countries, Office of Technology Assessment, US

Congress, Washington, DC: US Government Printing Office. (url: https://ota.fas.org/reports/9118.pdf; accessed date: 29.12.2018)

Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., (2007). Impacts, Adaptation, and Vulnerability: A Summary of the Report from IPCC Working Group 2 and Implications for the Western U.S., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (https://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4_wg2_full_report.pdf; accessed date: 22.12.2018) pp. 7-22.

Petrobangla, (2016).Annual Report, Bangladesh Oil, Gas and Mineral Corporation. (url: https://petrobangla.org.bd/admin/attachment/webtable/596_upload_0.pdf; accessed date: 21.10.2018)

77

Petrobangla, (2017).Annual Report, Bangladesh Oil, Gas and Mineral Corporation. (url: https://petrobangla.org.bd/admin/attachment/webtable/1064_upload_0.pdf; accesses date: 21.10.2018)

Prasad, K. K. (1982). Cooking energy, In: A cross country study prepared for the Workshop on End-Use Focused Global Energy Strategy. Princeton, NJ: Princeton University Press.

Roth, C. (2013). Micro-gasification: cooking with gas from dry biomass, An introduction to concepts and applications of wood-gas burning technologies for cooking, GIZ, Germany. (url:https://energypedia.info/images/0/05/Micro_Gasification_2.0_Cooking_with_gas_from_dry_biomass.pdf; accessed on November 14, 2018)

Schlag, N., and Zuzarte, F., (2008). Market Barriers to Clean Cooking Fuels in Sub-Saharan Africa: A Review of Literature, Stockholm Environment Institute, Stockholm. (url:https://pdfs.semanticscholar.org/6965/b960ed89e9d4b2514f7658c78b2aadbc73f2.pdf; accessed date: 02.01.2019) pp 1-19.

Sebastian, M. (2015). Replacing traditional cooking stoves with gas stoves is transforming lives. (url:https://europa.eu/capacity4dev/article/replacing-traditional-cooking-stoves-gas-stoves-transforming-lives; accessed date: 27 12.2018)

SEI, (online). Stockholm Environment Institute– bridging science and policy. An international non-profit research and policy organization that tackles environment and development challenges.

(url: https://www.sei.org/topic/climate/; accessed date: 11.01.2019). Smith, K. R., (1994). Health, energy, and greenhouse-gas impacts of biomass combustion in

household stoves, Energy for Sustainable Development, vol. 4. (url:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.646.2601&rep=rep1&type=pdf) pp. 23-29.

Smith K.R., Uma R., Kishore V.V.N., Zhang J., Joshi V., and Khalil M.A.K., (2000). Greenhouse implications of household stoves: an analysis for India. Annual Rev. of Energy and the Environ., vol. 25, pp. 741–63.

Stokes, H. C. and Crocco, J. R. (2005). The reality of methanol use as a cooking fuel in developing countries, pp. 1-8.

(url: https://projectgaia.com/wp-content/uploads/2013/10/The-Reality-of-Methanol-Use-as-a-Cooking-Fuel-in-Developing-Countries-2005.pdf; accessed on December 10, 2018)

Surange, J. R., Patil, N. K., and Rajput, A.V., (2014). Performance analysis of burners used in LPG cooking stove – a review, International Journal of Innovative Research in Science, Engineering and Technology, vol. 3(4). (url: https://www.ijirset.com/upload/2014/special/vishwatech/paper-16_Performance.pdf; accessed date: 12.10.2018; accessed date: 26.11.2018) pp. 87-97.

Tamir A., Elperin I., and Yotzer S., (1989). Performance characteristics of a gas burner with a swirling central flame, Energy, vol. 14, no. 7, pp. 373–382.

78

Viskanta, R., (1993). Heat Transfer to Impinging Isothermal Gas and Flame Jets,

Experimental Thermal and Fluid Science (ISSN 0894-1777), vol. 6, no. 2. (url: http://adsabs.harvard.edu/abs/1993ExTFS...6..111V) pp. 111-134.

Vrijheid, Martine; Martinez, David; Aguilera, Inma; Bustamante, Mariona; Ballester, Ferran; Estarlich, Marisa; Fernandez-Somoano, Ana; Guxens, Mònica; Lertxundi, Nerea; Martinez, M. Dolores; Tardon, Adonina; Sunyer, Jordi , (2012). Indoor Air Pollution From Gas Cooking and Infant Neurodevelopment, Epidemiology: vol. 23, Issue 1. (https://journals.lww.com/epidem/Fulltext/2012/01000/ Indoor_Air_Pollution_From_Gas_Cooking_and_Infant.5.aspx) pp. 23–32.

Ward, D. E., and Radke, L. F., (1993). Emission measurements from vegetation fires: a comparative evaluation of methods and results, Intermountain Research Station, Forest Service, U.S. Department of Agriculture, Missoula, MT 59807, U.S.A. 2National Center for Atmospheric Research/Research Aviation Facility, Boulder, CO 80307, U.S.A. (https://www.fs.fed.us/rm/pubs_other/rmrs_1993_ward_d001.pdf; accessed date: 12.02.2019) pp. 1-24.

WHO, (2010). WHO air quality guideline. (url:https://www.who.int/airpollution/guidelines /household-fuel-combustion/Tables_R1_R2_R3_rev1.pdf?ua=1).

Widodo, A. S. (2016). Efficiency of household gas stove by optimizing gap of pan and stove

cover, ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 4 (2016), ISSN 1819-6608. Pp. 1-4

WNA (2018). Heat Values of Various Fuels, World nuclear association. (url:http://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx; accessed date: 10.02.2019).

WRI, 2010. Climate Analysis Indicators Tool, World Resources Institute - [Online] [Cited: May 4, 2010.] (url: http://cait.wri.org/figures/World-FlowChart.pdf.; accessed date: 19.08.2018)

Zube, D. J. (2010). Heat transfer efficiency of biomass cookstoves, Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado.(url:https://mountainscholar.org/bitstream/handle/10217/39344/2010_Summer_Zube_Daniel.pdf?sequence=1&isAllowed=y; accessed date: 26.09.2018). pp 14- 155.

Appendix A Experimental data sheet

79

Variables that measured during Experiment.

TSL = Test Serial number.

TD = Tested date.

P1ci= Int. weight of Pot with water (g).

P1cf = Final weight of Pot with water (g).

wcv= Water evaporated (g).

T1ci= Initial water temperature (0C).

T1cf= Final water temperature (0C).

Δtc= Boiling time (min).

fci= Initial WET GAS Meter Reading (L).

fcf= Final WET GAS Meter Reading (L).

fcf - fci = Gas consumption (L).

LH = Loading Height (cm).

Pmbar = Supplied NG pressure (mbar).

Tng = Supplied NG Temp. (0C).

Ta = Air Temp. (0C). Thd= Stack Temp. (0C). PStc= Stack Pressure (mbar). Vstc = Stack velocity (km/hr). CO2h = Carbon dioxide (%). COh= Carbon monoxide (ppm).

O2h = Oxygen (%).

Appendix A Experimental data sheet

80

Table A 1.1: Experimental data for flat bottom pot without Shield at 4 mbar NG Pressure.

1

21-April

18

3.406 3.317 89 26 98 11.63 56.3

2.5

27 26 45.7 0.06 0.4 18 20.9 2 3.406 3.316 90 26.8 98 11.67 55.92 27.5 28 48.25 0.0625 0.35 17 20.9 3 3.406 3.315 91 27.6 98 11.71 55.54 28 30 50.8 0.065 0.3 16 20.9

Avg.= 90 26.8 11.67 55.92 27.5 28 48.25 0.0625 0.35 17 20.9

STDEV= ± 1.00 0.8 0.04 0.38 0.5 2 2.55 0.0025 0.05 1 0 4 3.406 3.318 88 23.7 98 12.61 58.44

3

25 27 48.7 0.065 0.4 7 20.9 5 3.406 3.3185 87.5 26.1 98 12.095 57.995 27 28.5 49.65 0.075 0.375 6.75 20.9 6 3.406 3.319 87 28.5 98 11.58 57.55 29 30 50.6 0.085 0.35 6.5 20.9

Avg.= 87.5 26.1 12.095 57.995 27 28.5 49.65 0.075 0.375 6.75 20.9

STDEV= ± 0.5 2.4 0.515 0.445 2 1.5 0.95 0.01 0.025 0.25 0 7 3.406 3.32 86 26.7 98 12.73 58.31

3.5

25 28 49.05 0.075 0.3 0 20.9 8 3.406 3.3195 86.5 27.7 98 12.545 58.65 26.5 28.5 50.275 0.075 0.3 0 20.9 9 3.406 3.319 87 28.7 98 12.36 58.99 28 29 51.5 0.075 0.3 0 20.9

Avg.= 86.5 27.7 12.545 58.65 26.5 28.5 50.275 0.075 0.3 0 20.9

STDEV= ± 0.5 1 0.185 0.34 1.5 0.5 1.225 0 0 0 0 10 3.406 3.297 109 27.5 98 14.21 64

4

25 28 50.8 0.125 0.3 0 20.9 11 3.406 3.3015 104.5 29.75 98 13.285 62.845 26 28.5 51.325 0.09 0.3 0 20.9 12 3.406 3.306 100 32 98 12.36 61.69 27 29 51.85 0.055 0.3 0 20.9

Avg.= 104.5 29.75 13.285 62.845 26 28.5 51.325 0.09 0.3 0 20.9

STDEV= ± 4.5 2.25 0.925 1.155 1 0.5 0.525 0.035 0 0 0 13

3.406 3.298 108 27.6 98 14.5 66.59

4.5

27 29 51.7 0.11 0.3 0 20.9 14 3.406 3.3 106 29.35 98 14.23 66.605 27 29 53.85 0.09 0.3 0 20.9 15 3.406 3.302 104 31.1 98 13.96 66.62 27 29 56 0.07 0.3 0 20.9

Avg.= 106 29.35 98 14.23 66.605 27 29 53.85 0.09 0.3 0 20.9

STDEV= ± 2 1.75 0 0.27 0.015 0 0 2.15 0.02 0 0 0 16 3.406 3.29 116 27.7 98 15.21 70.95 5 27 28 54.7 0.13 0.3 0 20.9

SL TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 4 and Vstc = 10

Appendix A Experimental data sheet

81

17

22- April

18

3.406 3.295 111 29.15 98 14.605 69.745 27.5 29 55.625 0.115 0.3 0 20.9 18 3.406 3.3 106 30.6 98 14 68.54 28 30 56.55 0.1 0.3 0 20.9

Avg.= 111 29.15 14.605 69.745 27.5 29 55.625 0.115 0.3 0 20.9

STDEV= ± 5 1.45 0.605 1.205 0.5 1 0.925 0.015 0 0 0 19 3.406 3.298 108 26 98 15.3 74.48

5.5

26 28 53.5 0.025 0.3 0.5 20.9 20 3.406 3.2935 112.5 28.05 98 15.455 74.235 27 29 54.45 0.07 0.3 0.5 20.9 21 3.406 3.289 117 30.1 98 15.61 73.99 28 30 55.4 0.115 0.3 0.5 20.9

Avg.= 112.5 28.05 15.455 74.235 27 29 54.45 0.07 0.3 0.5 20.9

STDEV= ± 4.5 2.05 0.155 0.245 1 1 0.95 0.045 0 0 0 22 3.406 3.281 125 24.8 98 16.83 80.05

6

26 29 54.9 0.04 0.3 0 20.9 23 3.406 3.2835 122.5 25.95 98 16.595 80.025 26.5 28 55.05 0.025 0.3 0 20.9 24 3.406 3.286 120 27.1 98 16.36 80 27 27 55.2 0.01 0.3 0 20.9

Avg.= 122.5 25.95 16.595 80.025 26.5 28 55.05 0.025 0.3 0 20.9

STDEV= ± 2.5 1.15 0.235 0.025 0.5 1 0.15 0.015 0 0 0 25 3.406 3.272 134 25.4 98 17.75 85.05

6.5

27 29 55.6 0.075 0.3 0 20.9 26 3.406 3.2575 148.5 26.3 98 18.155 88.18 27 28.5 56.275 0.065 0.3 0 20.9 27 3.406 3.243 163 27.2 98 18.56 91.31 27 28 56.95 0.055 0.3 0 20.9

Avg.= 148.5 26.3 18.155 88.18 27 28.5 56.275 0.065 0.3 0 20.9

STDEV= ± 14.5 0.9 0.405 3.13 0 0.5 0.675 0.01 0 0 0 28 3.406 3.256 150 27 98 19.25 92.23

7

27 29 56.95 0.08 0.3 0 20.9 29 3.406 3.257 149 27.05 98 19.1 90.94 27 28.5 56.925 0.08 0.3 0 20.9 30 3.406 3.258 148 27.1 98 18.95 89.65 27 28 56.9 0.08 0.3 0 20.9

Avg.= 149 27.05 19.1 90.94 27 28.5 56.925 0.08 0.3 0 20.9

STDEV= ± 1 0.05 0.15 1.29 0 0.5 0.025 0 0 0 0 31 3.406 3.245 161 26 98 20.6 99.12

7.5

27 29 57.25 0.045 0.3 0 20.9 32 3.406 3.248 158 26.3 98 20.3 97.16 27 28.5 57.25 0.0575 0.3 0 20.9 33 3.406 3.251 155 26.6 98 20 95.2 27 28 57.25 0.07 0.3 0 20.9

Avg.= 158 26.3 20.3 97.16 27 28.5 57.25 0.0575 0.3 0 20.9

STDEV= ± 3 0.3 0.3 1.96 0 0.5 0 0.0125 0 0 0

Appendix A Experimental data sheet

82

Table A 1.2 : Experimental data for Finned pot without Shield at 4 mbar NG pressure.

1

23 April 18

3.525 3.387 138 25 98 15.85 75.9

2.5

27 26 40.3 0.025 0.25 205 20.9 2 3.525 3.392 133 25 98 15.755 74.315 27.5 28 43.075 0.04 0.225 202.75 20.9 3 3.525 3.397 128 25 98 15.66 72.73 28 30 45.85 0.055 0.2 200.5 20.9

Avg.= 133 25 15.755 74.315 27.5 28 43.075 0.04 0.225 202.75 20.9

STDEV= ± 5.00 0 0.095 1.585 0.5 2 2.775 0.015 0.025 2.25 0 4 3.525 3.385 140 23.1 98 15.6 74.87

3

25 27 43.1 0.05 0.3 153 20.9 5 3.525 3.394 131 24.55 98 15.375 72.97 26.5 28.5 45 0.0625 0.3 148.75 20.9 6 3.525 3.403 122 26 98 15.15 71.07 28 30 46.9 0.075 0.3 144.5 20.9

Avg.= 131 24.55 15.375 72.97 26.5 28.5 45 0.0625 0.3 148.75 20.9

STDEV= ± 9.00 1.45 0.225 1.9 1.5 1.5 1.9 0.0125 0 4.25 0 7 3.525 3.397 128 27 98 14.61 67.09

3.5

25 28 46.7 0.09 0.3 98 20.9 8 3.525 3.393 132 27 98 14.585 68.33 27 29 47.425 0.085 0.3 91.5 20.9 9 3.525 3.389 136 27 98 14.56 69.57 29 30 48.15 0.08 0.3 85 20.9

Avg.= 132 27 14.585 68.33 27 29 47.425 0.085 0.3 91.5 20.9

STDEV= ± 4.00 0 0.025 1.24 2 1 0.725 0.005 0 6.5 0 10 3.525 3.389 136 27.1 98 15.4 72.7

4

25 28 48.85 0.13 0.4 60 20.9 11 3.525 3.393 132 27.3 98 15.265 71.62 26.5 28.5 49.475 0.105 0.375 68 20.9 12 3.525 3.397 128 27.5 98 15.13 70.54 28 29 50.1 0.08 0.35 76 20.9

Avg.= 132 27.3 15.265 71.62 26.5 28.5 49.475 0.105 0.375 68 20.9

STDEV= ± 4.00 0.2 0.135 1.08 1.5 0.5 0.625 0.025 0.025 8 0 13 3.525 3.385 140 27.4 98 16.31 76.75

4.5

27 29 49.7 0.075 0.3 33.5 20.9 14 3.525 3.386 138.5 28.7 98 15.905 75 27 29 51.175 0.07 0.35 28.75 20.9 15 3.525 3.388 137 30 98 15.5 73.25 27 29 52.65 0.065 0.4 24 20.9

Avg.= 138.5 28.7 15.905 75 27 29 51.175 0.07 0.35 28.75 20.9

STDEV= ± 1.50 1.3 0.405 1.75 0 0 1.475 0.005 0.05 4.75 0 16 3.525 3.392 133 28 98 16.23 76.86

5 27 29 51.85 0.12 0.35 9 20.9

17 3.525 3.399 126 29.4 98 15.89 74.685 27.5 29.5 52.4 0.105 0.35 10.25 20.9 18 3.525 3.406 119 30.8 98 15.55 72.51 28 30 52.95 0.09 0.35 11.5 20.9

TSL

TD

P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 4 and Vstc = 10

Appendix A Experimental data sheet

83

Avg.= 126 29.4 15.89 74.685 27.5 29.5 52.4 0.105 0.35 10.25 20.9

STDEV= ± 7.00 1.4 0.34 2.175 0.5 0.5 0.55 0.015 6.8E-17 1.25 0 19

24 April 18

3.525 3.385 140 23.7 98 17.33 82.2

5.5

25 27 48 0.08 0.35 5 20.9 20 3.525 3.385 140 27.1 98 17.005 80.3 26.5 28.5 51.28 0.095 0.35 4.5 20.9 21 3.525 3.385 140 30.5 98 16.68 78.4 28 30 54.56 0.11 0.35 4 20.9

Avg.= 140 27.1 17.005 80.3 26.5 28.5 51.28 0.095 0.35 4.5 20.9

STDEV= ± 0.00 3.4 0.325 1.9 1.5 1.5 3.28 0.015 6.8E-17 0.5 0 22 3.525 3.397 128 24.8 98 17.46 80.83

6

27 28 53.25 0.035 0.35 0 20.9 23 3.525 3.393 131.5 25.5 98 17.665 82.415 27 27 52.05 0.05 0.35 0 20.9 24 3.525 3.39 135 26.2 98 17.87 84 27 26 50.85 0.065 0.35 0 20.9

Avg.= 131.5 25.5 17.665 82.415 27 27 52.05 0.05 0.35 0 20.9

STDEV= ± 3.50 0.7 0.205 1.585 0 1 1.2 0.015 6.8E-17 0 0 25 3.525 3.345 180 26.4 98 18.2 90.92

6.5

27 27 53.1 0.075 0.35 0 20.9 26 3.525 3.348 176.5 26.4 98 18.15 90.715 27 27 53.325 0.0775 0.35 0.25 20.9 27 3.525 3.352 173 26.4 98 18.1 90.51 27 27 53.55 0.08 0.35 0.5 20.9

Avg.= 176.5 26.4 18.15 90.715 27 27 53.325 0.0775 0.35 0.25 20.9

STDEV= ± 3.50 4.4E-15 0.05 0.205 0 0 0.225 0.0025 6.8E-17 0.25 0

28 3.525 3.346 179 25.3 98 19.66 93.86

7

28 29 54.65 0.075 0.35 4 20.9 29 3.525 3.358 167 26.4 98 18.88 90.62 27.5 28.5 54.875 0.0725 0.35 4 20.9 30 3.525 3.37 155 27.5 98 18.1 87.38 27 28 55.1 0.07 0.35 4 20.9

Avg.= 167 26.4 18.88 90.62 27.5 28.5 54.875 0.0725 0.35 4 20.9

STDEV= ± 12.00 1.1 0.78 3.24 0.5 0.5 0.225 0.0025 6.8E-17 0 0 31 3.525 3.383 142 25.4 98 19.3 88.47

7.5

27 29 54.55 0.075 0.35 0 20.9 32 3.525 3.381 144 26.15 98 19.4 88.855 27 28.5 54.8 0.0775 0.35 0 20.9 33 3.525 3.379 146 26.9 98 19.5 89.24 27 28 55.05 0.08 0.35 0 20.9

Avg.= 144 26.15 19.4 88.855 27 28.5 54.8 0.0775 0.35 0 20.9

STDEV= ± 2.00 0.75 0.1 0.385 0 0.5 0.25 0.0025 6.8E-17 0 0

Appendix A Experimental data sheet

84

Table A 1.3: Experimental data for flat bottom pot with Shield at 4 mbar NG pressure.

1

7 - A P R I L - 1 8

3.406 3.276 130 26.7 98 12.4 60.79

2.5

27 29 42.6 0.03 0.3 92 20.9 2 3.406 3.286 120 26.45 98 12.2 59.29 28 29.5 42.6 0.03 0.3 91.5 20.9 3 3.406 3.296 110 26.2 98 12 57.79 29 30 42.6 0.03 0.3 91 20.9

Avg.= 120 26.45 12.2 59.29 28 29.5 42.6 0.03 0.3 91.5 20.9 STDEV= ± 10.00 0.25 0.2 1.5 1 0.5 0 0 0 0.5 0

4 3.406 3.322 84 29.5 98 11.45 53.1

3

29 30 45.6 0.075 0.3 14.5 20.9 5 3.406 3.3225 83.5 29.55 98 11.325 52.62 29.5 30 45.6 0.075 0.25 12.75 20.9 6 3.406 3.323 83 29.6 98 11.2 52.14 30 30 45.6 0.075 0.2 11 20.9

Avg.= 83.5 29.55 11.325 52.62 29.5 30 45.6 0.075 0.25 12.75 20.9 STDEV= ± 0.50 0.05 0.125 0.48 0.5 0 0 0 0.05 1.75 0

7 3.406 3.325 81 30.5 98 11.2 52.11

3.5

30 30 46.85 0.09 0.3 3.5 20.9 8 3.406 3.3255 80.5 30.5 98 11.3 52.505 30.25 30 46.85 0.09 0.325 1.75 20.9 9 3.406 3.326 80 30.5 98 11.4 52.9 30.5 30 46.85 0.09 0.35 0 20.9

Avg.= 80.5 30.5 11.3 52.505 30.25 30 46.85 0.09 0.325 1.75 20.9

STDEV= ± 0.50 0 0.1 0.395 0.25 0 0 1.7E-17 0.025 1.75 0

10 3.406 3.316 90 29.9 98 12 55.03

4

30.5 30.5 46.5 0.105 0.3 0 20.9 11 3.406 3.3175 88.5 29.9 98 11.95 54.315 30.625 30.5 46.5 0.105 0.3 0 20.9 12 3.406 3.319 87 29.9 98 11.9 53.6 30.75 30.5 46.5 0.105 0.3 0 20.9

Avg.= 88.5 29.9 11.95 54.315 30.625 30.5 46.5 0.105 0.3 0 20.9

STDEV= ± 1.50 4.4E-15 0.05 0.715 0.125 0 0 0 0 0 0

13 3.406 3.308 98 29.8 98 12.1 57.34

4.5

30.5 30 45.8 0.115 0.35 0 20.9 14 3.406 3.31 96 29.8 98 11.95 56.92 30.125 30 45.8 0.115 0.325 0 20.9 15 3.406 3.312 94 29.8 98 11.8 56.5 29.75 30 45.8 0.115 0.3 0 20.9

Avg.= 96 29.8 11.95 56.92 30.125 30 45.8 0.115 0.325 0 20.9

STDEV= ± 2.00 0 0.15 0.42 0.375 0 8.7E-15 0 0.025 0 0

16 3.406 3.311 95 30.1 98 12.5 57.87 5 29.75 30 47.6 0.12 0.35 0 20.9 17 3.406 3.3125 93.5 30.1 98 12.4 57.585 29.875 30 47.6 0.12 0.375 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 4 and Vstc = 10

Appendix A Experimental data sheet

85

18 3.406 3.314 92 30.1 98 12.3 57.3 30 30 47.6 0.12 0.4 0 20.9 Avg.= 93.5 30.1 12.4 57.585 29.875 30 47.6 0.12 0.375 0 20.9

STDEV= ± 1.50 4.4E-15 0.1 0.285 0.125 0 0 0 0.025 0 0

19 3.406 3.308 98 28.4 98 13.2 60.78

5.5

30 31 49.9 0.165 0.35 0 20.9 20 3.406 3.304 102 28.5 98 13.25 60.84 30.25 31 49.9 0.165 0.35 0 20.9 21 3.406 3.3 106 28.6 98 13.3 60.9 30.5 31 49.9 0.165 0.35 0 20.9

Avg.= 102 28.5 13.25 60.84 30.25 31 49.9 0.165 0.35 0 20.9

STDEV= ± 4.00 0.1 0.05 0.06 0.25 0 0 0 6.8E-17 0 0

22 3.406 3.31 96 28.3 98 13.25 61.57

6

30 31 46.45 0.265 0.4 0 20.9 23 3.406 3.313 93 28.3 98 13.225 61.335 30.125 31 46.45 0.265 0.35 0 20.9 24 3.406 3.316 90 28.3 98 13.2 61.1 30.25 31 46.45 0.265 0.3 0 20.9

Avg.= 93 28.3 13.225 61.335 30.125 31 46.45 0.265 0.35 0 20.9

STDEV= ± 3.00 0 0.025 0.235 0.125 0 8.7E-15 0 0.05 0 0

25 3.406 3.299 107 28.1 98 13.8 63.97

6.5

30 30 47.4 0.28 0.3 0 20.9 26 3.406 3.303 103 27.95 98 13.825 63.885 30 30 47.4 0.28 0.275 0 20.9 27 3.406 3.307 99 27.8 98 13.85 63.8 30 30 47.4 0.28 0.25 0 20.9

Avg.= 103 27.95 13.825 63.885 30 30 47.4 0.28 0.275 0 20.9 STDEV= ± 4.00 0.15 0.025 0.085 0 0 0 0 0.025 0 0

28 3.406 3.296 110 27.8 98 13.98 65.85

7

27 26 47.95 0.13 0.3 2.5 20.9 29 3.406 3.295 111 27.8 98 13.97 65.825 27 26 47.95 0.13 0.3 2.5 20.9 30 3.406 3.294 112 27.8 98 13.96 65.8 27 26 47.95 0.13 0.3 2.5 20.9

Avg.= 111 27.8 13.97 65.825 27 26 47.95 0.13 0.3 2.5 20.9

STDEV= ± 1.00 0 0.01 0.025 0 0 8.7E-15 0 0 0 0

31 3.406 3.292 114 26.8 98 13.95 67.66

7.5

27 26 45 0.105 0.35 3 20.9 32 3.406 3.291 115 26.8 98 13.9 67.61 27 26 45 0.105 0.35 3 20.9 33 3.406 3.29 116 26.8 98 13.85 67.56 27 26 45 0.105 0.35 3 20.9

Avg.= 115 26.8 13.9 67.61 27 26 45 0.105 0.35 3 20.9

STDEV= ± 1.00 0 0.05 0.05 0 0 0 0 6.8E-17 0 0

Appendix A Experimental data sheet

86

Table A 1.4 : Experimental data for Finned pot with Shield at 4 mbar NG pressure.

1

09 .04 .18

3.525 3.433 92 30.3 98 12.85 58.79

2.5

29 30 42.8 0.05 0.1 277 20.9 2 3.525 3.436 89 30.6 98 12.815 58.695 29 30 42.8 0.05 0.125 268.5 20.9 3 3.525 3.439 86 30.9 98 12.78 58.6 29 30 42.8 0.05 0.15 260 20.9

Avg.= 89 30.6 12.815 58.695 29 30 42.8 0.05 0.125 268.5 20.9

STDEV= ± 3.00 0.3 0.035 0.095 0 0 8.7E-15 8.5E-18 0.025 8.5 0

4 3.525 3.43 95 31.2 98 12.4 57.7

3

29 30 45.3 0.08 0.13 240 20.9 5 3.525 3.429 96 31.2 98 12.35 57.6 29 30 45.3 0.08 0.125 247 20.9 6 3.525 3.428 97 31.2 98 12.3 57.5 29 30 45.3 0.08 0.12 254 20.9

Avg.= 96 31.2 12.35 57.6 29 30 45.3 0.08 0.125 247 20.9

STDEV= ± 1.00 0 0.05 0.1 0 0 8.7E-15 0 0.005 7 0 7 3.525 3.415 110 30.2 98 12.4 57.94

3.5

29 30 45.3 0.09 0.16 260 20.9 8 3.525 3.4165 108.5 30.85 98 12.3 57.87 29 30 45.3 0.09 0.16 245 20.9 9 3.525 3.418 107 31.5 98 12.2 57.8 29 30 45.3 0.09 0.16 230 20.9

Avg.= 108.5 30.85 12.3 57.87 29 30 45.3 0.09 0.16 245 20.9

STDEV= ± 1.50 0.65 0.1 0.07 0 0 8.7E-15 1.7E-17 0 15 0

10 3.525 3.424 101 29.6 98 12.6 58.63

4

29 30 45.3 0.1 0.3 135 20.9 11 3.525 3.425 100 30.4 98 12.58 58.575 29 30 45.3 0.1 0.325 127.5 20.9 12 3.525 3.426 99 31.2 98 12.56 58.52 29 30 45.3 0.1 0.35 120 20.9

Avg.= 100 30.4 12.58 58.575 29 30 45.3 0.1 0.325 127.5 20.9

STDEV= ± 1.00 0.8 0.02 0.055 0 0 8.7E-15 1.7E-17 0.025 7.5 0

13

3.525 3.415 110 29.7 98 13 60.81

4.5

29 30 44.8 0.11 0.36 10 20.9 14 3.525 3.416 109 29.7 98 12.95 60.755 29 30 44.8 0.11 0.38 11 20.9 15 3.525 3.417 108 29.7 98 12.9 60.7 29 30 44.8 0.11 0.4 12 20.9

Avg.= 109 29.7 12.95 60.755 29 30 44.8 0.11 0.38 11 20.9

STDEV= ± 1.00 0 0.05 0.055 0 0 8.7E-15 0 0.02 1 0

TSL

TD

P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 4 and Vstc = 10

Appendix A Experimental data sheet

87

16

10 .04 .18

3.525 3.425 100 29.8 98 13.2 60.31

5

29 30 47.4 0.12 0.4 1.5 20.9 17 3.525 3.426 99 29.8 98 13.225 60.3 29 30 47.4 0.12 0.4 3 20.9 18 3.525 3.427 98 29.8 98 13.25 60.29 29 30 47.4 0.12 0.4 4.5 20.9

Avg.= 99 29.8 13.225 60.3 29 30 47.4 0.12 0.4 3 20.9

STDEV= ± 1.00 0 0.025 0.01 0 0 0 0 6.8E-17 1.5 0 19 3.525 3.397 128 30.3 98 13.4 64.65

5.5

29 31 47.15 0.17 0.4 1 20.9 20 3.525 3.3985 126.5 30.3 98 13.45 64.62 29 31 47.15 0.17 0.4 1.75 20.9 21 3.525 3.4 125 30.3 98 13.5 64.59 29 31 47.15 0.17 0.4 2.5 20.9

Avg.= 126.5 30.3 13.45 64.62 29 31 47.15 0.17 0.4 1.75 20.9

STDEV= ± 1.50 0 0.05 0.03 0 0 0 0 6.8E-17 0.75 0 22 3.525 3.401 124 28.1 98 14 67.26

6

30 31 45.6 0.19 0.4 1 20.9 23 3.525 3.403 122 27.95 98 14.1 67.23 30 31 45.6 0.19 0.4 1.25 20.9 24 3.525 3.405 120 27.8 98 14.2 67.2 30 31 45.6 0.19 0.4 1.5 20.9

Avg.= 122 27.95 14.1 67.23 30 31 45.6 0.19 0.4 1.25 20.9

STDEV= ± 2.00 0.15 0.1 0.03 0 0 0 3.4E-17 6.8E-17 0.25 0

25 3.525 3.395 130 29 98 14.2 68.7

6.5

30 30 46.25 0.275 0.4 3 20.9 26 3.525 3.397 128 28.8 98 14.25 68.66 30 30 46.25 0.275 0.4 3 20.9 27 3.525 3.399 126 28.6 98 14.3 68.62 30 30 46.25 0.275 0.4 3 20.9

Avg.= 128 28.8 14.25 68.66 30 30 46.25 0.275 0.4 3 20.9

STDEV= ± 2.00 0.2 0.05 0.04 0 0 0 0 6.8E-17 0 0 28 3.525 3.388 137 26.4 98 14.9 72.22

7

27 26 44.9 0.145 0.4 3 20.9 29 3.525 3.389 136 26.4 98 14.95 72.185 27 26 44.9 0.145 0.4 3 20.9 30 3.525 3.39 135 26.4 98 15 72.15 27 26 44.9 0.145 0.4 3 20.9

Avg.= 136 26.4 14.95 72.185 27 26 44.9 0.145 0.4 3 20.9

STDEV= ± 1.00 4.4E-15 0.05 0.035 0 0 0 0 6.8E-17 0 0

31 3.525 3.391 134 28 98 15.15 70.58

7.5

27 26 44.7 0.12 0.4 2 20.9 32 3.525 3.39 135 28.5 98 15.125 70.54 27 26 44.7 0.12 0.4 2 20.9 33 3.525 3.389 136 29 98 15.1 70.5 27 26 44.7 0.12 0.4 2 20.9

Avg.= 135 28.5 15.125 70.54 27 26 44.7 0.12 0.4 2 20.9

STDEV= ± 1.00 0.5 0.025 0.04 0 0 8.7E-15 0 6.8E-17 0 0

Appendix A Experimental data sheet

88

Table A 1.5: Experimental data for flat bottom pot without Shield at 6 mbar NG Pressure.

1

12. 03. 18

3.406 3.282 124 29.9 98.8 11.32 56.3

2.5

28.5 24 44.35 0.02 0.2 16 20.9 2 3.406 3.281 125 29.15 98.75 11.275 56.675 28 24 44.05 0.02 0.25 16 20.9 3 3.406 3.28 126 28.4 98.7 11.23 57.05 27.5 24 43.75 0.02 0.3 16 20.9

Avg.= 125 29.15 11.275 56.675 28 24 44.05 0.02 0.25 16 20.9

STDEV= ± 1.00 0.75 0.045 0.375 0.5 0 0.3 0 0.05 0 0 4 3.406 3.312 94 28.6 98 11.32 56.98

3

27 27 46.8 0.015 0.2 6.5 20.9 5 3.406 3.314 92 28.75 98 11.315 55.91 27 27.75 47.725 0.0125 0.225 4.75 20.9 6 3.406 3.316 90 28.9 98 11.31 54.84 27 28.5 48.65 0.01 0.25 3 20.9

Avg.= 92 28.75 11.315 55.91 27 27.75 47.725 0.0125 0.225 4.75 20.9

STDEV= ± 2.00 0.15 0.005 1.07 0 0.75 0.925 0.0025 0.025 1.75 0 7 3.406 3.3 106 28.8 98 12 60.46

3.5

28 29 49.45 0.035 0.2 1 20.9 8 3.406 3.301 105 28.8 98 12.1 60.43 28 29 49.45 0.035 0.25 0.5 20.9 9 3.406 3.302 104 28.8 98 12.2 60.4 28 29 49.45 0.035 0.3 0 20.9

Avg.= 105 28.8 12.1 60.43 28 29 49.45 0.035 0.25 0.5 20.9

STDEV= ± 1.00 0 0.1 0.03 0 0 8.7E-15 0 0.05 0.5 0

10 3.406 3.312 94 29.4 98.9 12.88 61.36

4

28.5 30 52.35 0.065 0.2 0 20.9 11 3.406 3.313 93 29.4 98.45 12.84 61.305 28.5 30 52.35 0.065 0.25 0 20.9 12 3.406 3.314 92 29.4 98 12.8 61.25 28.5 30 52.35 0.065 0.3 0 20.9

Avg.= 93 29.4 12.84 61.305 28.5 30 52.35 0.065 0.25 0 20.9

STDEV= ± 1.00 4.4E-15 0.04 0.055 0 0 0 0 0.05 0 0

13

3.406 3.279 127 30.1 98.2 13.17 68.2

4.5

28.6 30 53.35 0.08 0.3 0 20.9 14 3.406 3.28 126 30.1 98.1 13.235 68.1 28.6 30 53.35 0.08 0.3 0 20.9 15 3.406 3.281 125 30.1 98 13.3 68 28.6 30 53.35 0.08 0.3 0 20.9

Avg.= 126 30.1 13.235 68.1 28.6 30 53.35 0.08 0.3 0 20.9

STDEV= ± 1.00 4.4E- 0.065 0.1 4.4E- 0 0 0 0 0 0

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 6 and Vstc = 10.05

Appendix A Experimental data sheet

89

30. 03 .18

15 15 16 3.406 3.296 110 30.1 98.1 13.4 66.9

5

28.8 30.5 53.45 0.1 0.25 0 20.9 17 3.406 3.283 123 31.05 98.05 13.75 69.515 28.4 30.75 54.075 0.1225 0.325 0 20.9 18 3.406 3.27 136 32 98 14.1 72.13 28 31 54.7 0.145 0.4 0 20.9

Avg.= 123 31.05 13.75 69.515 28.4 30.75 54.075 0.1225 0.325 0 20.9

STDEV= ± 13.00 0.95 0.35 2.615 0.4 0.25 0.625 0.0225 0.075 0 0 19 3.406 3.281 125 30.5 98 14.5 73.45

5.5

29.6 32 55.8 0.14 0.2 0 20.9 20 3.406 3.2795 126.5 30.5 98 14.55 73.495 29.6 32 55.8 0.14 0.3 0 20.9 21 3.406 3.278 128 30.5 98 14.6 73.54 29.6 32 55.8 0.14 0.4 0 20.9

Avg.= 126.5 30.5 14.55 73.495 29.6 32 55.8 0.14 0.3 0 20.9

STDEV= ± 1.50 0 0.05 0.045 4.4E-15 0 8.7E-

15 0 0.1 0 0

22 3.406 3.28 126 31 98 15.1 77.28

6

30 32 57.45 0.155 0.2 0 20.9 23 3.406 3.279 127 30.5 98 15.175 77.48 30 32 57.45 0.155 0.2 0 20.9 24 3.406 3.278 128 30 98 15.25 77.68 30 32 57.45 0.155 0.2 0 20.9

Avg.= 127 30.5 15.175 77.48 30 32 57.45 0.155 0.2 0 20.9

STDEV= ± 1.00 0.5 0.075 0.2 0 0 8.7E-15 0 3E-17 0 0

25 3.406 3.286 120 32 98 15.94 78.59

6.5

30 32 58.65 0.165 0.2 0 20.9 26 3.406 3.285 121 32 98 15.97 78.605 30 32 58.65 0.165 0.25 0 20.9 27 3.406 3.284 122 32 98 16 78.62 30 32 58.65 0.165 0.3 0 20.9

Avg.= 121 32 15.97 78.605 30 32 58.65 0.165 0.25 0 20.9

STDEV= ± 1.00 0 0.03 0.015 0 0 0 0 0.05 0 0 28 3.406 3.28 126 32.6 98 16.98 81.59

7

30 32 58.25 0.16 0.2 0 20.9 29 3.406 3.281 125 32.6 98 16.99 81.795 30 32 58.25 0.16 0.25 0 20.9 30 3.406 3.282 124 32.6 98 17 82 30 32 58.25 0.16 0.3 0 20.9

Avg.= 125 32.6 16.99 81.795 30 32 58.25 0.16 0.25 0 20.9

STDEV= ± 1.00 0 0.01 0.205 0 0 0 0 0.05 0 0 31 3.406 3.222 184 33.5 98 18 95.2

7.5

30 31.5 58.7 0.155 0.25 0 20.9 32 3.406 3.223 183 33.5 98 18.05 95.1 30 31.5 58.7 0.155 0.275 0 20.9 33 3.406 3.224 182 33.5 98 18.1 95 30 31.5 58.7 0.155 0.3 0 20.9

Avg.= 183 33.5 18.05 95.1 30 31.5 58.7 0.155 0.275 0 20.9

STDEV= ± 1.00 0 0.05 0.1 0 0 8.7E-15 0 0.025 0 0

Appendix A Experimental data sheet

90

Table A 1.6 : Experimental data for Finned pot without Shield at 6 mbar NG pressure.

1

30 .03 .18

3.525 3.425 100 32 98 13.7 64.6

2.5

30 30.5 44.9 0.115 0.3 250 20.9 2 3.525 3.426 99 31.5 98 13.65 64.525 30 30.5 44.9 0.115 0.25 255 20.9 3 3.525 3.427 98 31 98 13.6 64.45 30 30.5 44.9 0.115 0.2 260 20.9

Avg.= 99 31.5 13.65 64.525 30 30.5 44.9 0.115 0.25 255 20.9

STDEV= ± 1.00 0.5 0.05 0.075 0 0 0 0 0.05 5 0 4 3.525 3.395 130 28 98 14 69.35

3

27 28 43.9 0.015 0.2 143 20.9 5 3.525 3.394 131 28 98 14.1 69.35 27.5 28.5 44.225 0.02 0.25 143 20.9 6 3.525 3.393 132 28 98 14.2 69.35 28 29 44.55 0.025 0.3 143 20.9

Avg.= 131 28 14.1 69.35 27.5 28.5 44.225 0.02 0.25 143 20.9

STDEV= ± 1.00 0 0.1 7.3E-12 0.5 0.5 0.325 0.005 0.05 0 0 7 3.525 3.39 135 27 98 14.1 67.34

3.5

30 31 47.9 0.045 0.25 80 20.9 8 3.525 3.389 136 27 98 14.1 67.34 30 31 47.9 0.045 0.25 97.5 20.9 9 3.525 3.388 137 27 98 14.1 67.34 30 31 47.9 0.045 0.25 115 20.9

Avg.= 136 27 14.1 67.34 30 31 47.9 0.045 0.25 97.5 20.9

STDEV= ± 1.00 0 0 0 0 0 0 8.5E-18 0 17.5 0 10 3.525 3.403 122 30 98 14.19 68.09

4

28.7 30 50.3 0.08 0.3 60 20.9 11 3.525 3.402 123 30 98 14.195 68.095 28.7 30 50.3 0.08 0.3 71 20.9 12 3.525 3.401 124 30 98 14.2 68.1 28.7 30 50.3 0.08 0.3 82 20.9

Avg.= 123 30 14.195 68.095 28.7 30 50.3 0.08 0.3 71 20.9

STDEV= ± 1.00 0 0.005 0.005 0 0 8.7E-15 0 0 11 0 13 3.525 3.393 132 29.9 98 14.807 73.1

4.5

28.8 30 52.25 0.09 0.3 36.5 20.9 14 3.525 3.394 131 29.9 98 14.807 73.1 28.8 30 52.25 0.09 0.3 36.5 20.9 15 3.525 3.395 130 29.9 98 14.807 73.1 28.8 30 52.25 0.09 0.3 36.5 20.9

Avg.= 131 29.9 14.807 73.1 28.8 30 52.25 0.09 0.3 36.5 20.9

STDEV= ± 1.00 4.4E-15 0 0 0 0 0 1.7E-17 0 0 0 16 31

.03

.18

3.525 3.365 160 27 98 15.7 80.84 5

30 31 52.05 0.135 0.25 10 20.9 17 3.525 3.3675 157.5 27.5 98 15.9 81.18 30.5 31.25 52.175 0.14 0.275 7.5 20.9 18 3.525 3.37 155 28 98 16.1 81.52 31 31.5 52.3 0.145 0.3 5 20.9

TSL

TD

P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 6 and Vstc = 10.05

Appendix A Experimental data sheet

91

Avg.= 157.5 27.5 15.9 81.18 30.5 31.25 52.175 0.14 0.275 7.5 20.9

STDEV= ± 2.50 0.5 0.2 0.34 0.5 0.25 0.125 0.005 0.025 2.5 0 19 3.525 3.353 172 30.9 98 15.8 81.78

5.5

29 32 52.8 0.14 0.3 5 20.9 20 3.525 3.352 173 30.9 98 15.775 81.78 29 32 52.8 0.14 0.3 5 20.9 21 3.525 3.351 174 30.9 98 15.75 81.78 29 32 52.8 0.14 0.3 5 20.9

Avg.= 173 30.9 15.775 81.78 29 32 52.8 0.14 0.3 5 20.9

STDEV= ± 1.00 4.4E-15 0.025 0 0 0 8.7E-15 0 0 0 0 22 3.525 3.389 136 31.5 98 15.86 77.86

6

30 32 54.75 0.155 0.3 0 20.9 23 3.525 3.387 138 31.5 98 15.87 77.88 30 32 54.75 0.155 0.3 0 20.9 24 3.525 3.385 140 31.5 98 15.88 77.9 30 32 54.75 0.155 0.3 0 20.9

Avg.= 138 31.5 15.87 77.88 30 32 54.75 0.155 0.3 0 20.9

STDEV= ± 2.00 0 0.01 0.02 0 0 0 0 0 0 0 25 3.525 3.386 139 32.1 98 16.187 79.61

6.5

30 32 56.25 0.17 0.3 0 20.9 26 3.525 3.387 138 32.1 98 16.187 79.61 30 32 56.25 0.17 0.3 0 20.9 27 3.525 3.388 137 32.1 98 16.187 79.61 30 32 56.25 0.17 0.3 0 20.9

Avg.= 138 32.1 16.187 79.61 30 32 56.25 0.17 0.3 0 20.9

STDEV= ± 1.00 0 0 0 0 0 0 0 0 0 0 28 3.525 3.372 153 32 97.6 16.94 82.64

7

30 32 55.85 0.155 0.3 0 20.9 29 3.525 3.373 152 32.1 97.6 16.94 82.705 30 31.5 55.5 0.15 0.3 0 20.9 30 3.525 3.374 151 32.2 97.6 16.94 82.77 30 31 55.15 0.145 0.3 0 20.9

Avg.= 152 32.1 16.94 82.705 30 31.5 55.5 0.15 0.3 0 20.9

STDEV= ± 1.00 0.1 0 0.065 0 0.5 0.35 0.005 0 0 0 31 3.525 3.388 137 33.9 98 16.7 81.01

7.5

30 31 55.45 0.155 0.3 0 20.9 32 3.525 3.387 138 33.9 98 16.75 81.045 30 31 55.45 0.155 0.3 0 20.9 33 3.525 3.386 139 33.9 98 16.8 81.08 30 31 55.45 0.155 0.3 0 20.9

Avg.= 138 33.9 16.75 81.045 30 31 55.45 0.155 0.3 0 20.9

STDEV= ± 1.00 0 0.05 0.035 0 0 8.7E-15 0 0 0 0

Appendix A Experimental data sheet

92

Table A 1.7 : Experimental data for flat bottom pot with Shield at 6 mbar NG pressure.

1

07 .04 .18

3.406 3.31 96 30.2 98 11.67 53.26

2.5

26 27 43 0.05 0.1 70 20.9 2 3.406 3.3095 96.5 30.1 98 11.475 52.67 25.7 27.7 43.27 0.055 0.115 75 20.9 3 3.406 3.309 97 30 98 11.28 52.08 25.5 28.5 43.55 0.06 0.13 80 20.9

Avg.= 96.5 30.1 11.475 52.67 25.7 27.7 43.27 0.055 0.115 75 20.9 STDEV= ± 0.50 0.1 0.195 0.59 0.25 0.75 0.275 0.005 0.015 5 0

4 3.406 3.305 101 28.5 98 11.55 52.85

3

26 29 44.45 0.08 0.1 19.5 20.9 5 3.406 3.3025 103.5 28.55 98 11.425 52.49 26.4 29 45.22 0.04 0.1 19.5 20.9 6 3.406 3.3 106 28.6 98 11.3 52.13 26.8 29 46 0 0.1 19.5 20.9

Avg.= 103.5 28.55 11.425 52.49 26.4 29 45.22 0.04 0.1 19.5 20.9 STDEV= ± 2.50 0.05 0.125 0.36 0.4 0 0.77 0.04 1.7E-17 0 0

7 3.406 3.322 84 31.4 98 10.97 50.89

3.5

27.5 29.5 46.7 0.085 0.3 7 20.9 8 3.406 3.3185 87.5 31.5 98 11.1 51.39 27.7 29.75 46.6 0.1 0.3 7 20.9 9 3.406 3.315 91 31.6 98 11.23 51.89 28 30 46.5 0.115 0.3 7 20.9

Avg.= 87.5 31.5 11.1 51.39 27.75 29.75 46.6 0.1 0.3 7 20.9 STDEV= ± 3.50 0.1 0.13 0.5 0.25 0.25 0.1 0.015 0 0 0 10 3.406 3.308 98 32 98.3 11.53 53.26

4

28 30 45.55 0.12 0.3 0 20.9 11 3.406 3.311 95 32 98.15 11.415 53.08 28 30 45.55 0.1075 0.3 0 20.9 12 3.406 3.314 92 32 98 11.3 52.9 28 30 45.55 0.095 0.3 0 20.9

Avg.= 95 32 11.415 53.08 28 30 45.55 0.1075 0.3 0 20.9 STDEV= ± 3.00 0 0.115 0.18 0 0 8.7E-15 0.0125 0 0 0 13 3.406 3.313 93 31.4 98 11.58 56

4.5

28 29 45.25 0.08 0.25 0 20.9 14 3.406 3.3145 91.5 31.5 98 11.465 54.535 28 29.5 45.85 0.0775 0.25 0 20.9 15 3.406 3.316 90 31.6 98 11.35 53.07 28 30 46.45 0.075 0.25 0 20.9

Avg.= 91.5 31.5 11.465 54.535 28 29.5 45.85 0.0775 0.25 0 20.9 STDEV= ± 1.50 0.1 0.115 1.465 0 0.5 0.6 0.0025 0 0 0 16 3.406 3.313 93 31.2 98 12.15 54.78

5 28 30 47.85 0.08 0.2 0 20.9

17 3.406 3.312 94 30.9 98 12.08 56.135 28 30 47.9 0.085 0.2 0 20.9 18 3.406 3.311 95 30.6 98 12.01 57.49 28 30 47.95 0.09 0.2 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 6 and Vstc = 10.05

Appendix A Experimental data sheet

93

Avg.= 94 30.9 12.08 56.135 28 30 47.9 0.085 0.2 0 20.9 STDEV= ± 1.00 0.3 0.07 1.355 0 0 0.05 0.005 3.4E-17 0 0 19 3.406 3.288 118 30.5 98 12.61 60.38

5.5

28 29 50.8 0.08 0.2 0 20.9 20 3.406 3.282 124 30.55 98 12.785 61.365 28 29 50.825 0.08 0.2 0 20.9 21 3.406 3.276 130 30.6 98 12.96 62.35 28 29 50.85 0.08 0.2 0 20.9

Avg.= 124 30.55 12.785 61.365 28 29 50.825 0.08 0.2 0 20.9 STDEV= ± 6.00 0.05 0.175 0.985 0 0 0.025 0 3.4E-17 0 0 22 3.406 3.3 106 30.2 98 12.71 61.64

6

28 29 50.2 0.07 0.2 0 20.9 23 3.406 3.296 110 30.2 98 12.77 61.32 28 29 49.3 0.0575 0.2 0 20.9 24 3.406 3.292 114 30.2 98 12.83 61 28 29 48.4 0.045 0.2 0 20.9

Avg.= 110 30.2 12.77 61.32 28 29 49.3 0.0575 0.2 0 20.9 STDEV= ± 4.00 0 0.06 0.32 0 0 0.9 0.0125 3.4E-17 0 0 25 3.406 3.304 102 30.7 98 13 61.57

6.5

28 29 49.15 0.03 0.2 0 20.9 26 3.406 3.2985 107.5 30.65 98 13.2 61.66 27.5 29 49.05 0.03 0.2 0 20.9 27 3.406 3.293 113 30.6 98 13.4 61.75 27 29 48.95 0.03 0.2 0 20.9

Avg.= 107.5 30.65 13.2 61.66 27.5 29 49.05 0.03 0.2 0 20.9 STDEV= ± 5.50 0.05 0.2 0.09 0.5 0 0.1 0 3.4E-17 0 0 28 3.406 3.296 110 28.6 98 13.78 64.72

7

27.5 28.5 49.7 0.08 0.2 0 20.9 29 3.406 3.297 109 28.55 98 13.765 64.71 27.5 28.5 49.7 0.08 0.2 0 20.9 30 3.406 3.298 108 28.5 98 13.75 64.7 27.5 28.5 49.7 0.08 0.2 0 20.9

Avg.= 109 28.55 13.765 64.71 27.5 28.5 49.7 0.08 0.2 0 20.9

STDEV= ± 1.00 0.05 0.015 0.01 0 0 8.7E-15 0 3.4E-17 0 0

31 3.406 3.295 111 28.3 98 13.56 65.5

7.5

27 28 48.4 0.06 0.2 0 20.9 32 3.406 3.296 110 28.3 98 13.505 65.475 27 28 48.4 0.06 0.2 0 20.9 33 3.406 3.297 109 28.3 98 13.45 65.45 27 28 48.4 0.06 0.2 0 20.9

Avg.= 110 28.3 13.505 65.475 27 28 48.4 0.06 0.2 0 20.9 STDEV= ± 1.00 0 0.055 0.025 0 0 0 0 3.4E-17 0 0

Appendix A Experimental data sheet

94

Table A 1.8: Experimental data for Finned pot with Shield at 6 mbar NG pressure.

1

11 .04 .18

3.525 3.42 105 29.9 98 12.53 59.45

2.5

25 28 42.95 0.055 0.2 414 20.9 2 3.525 3.416 109 30.4 98 12.49 58.835 25.5 28.5 42.35 0.0625 0.2 418.5 20.9 3 3.525 3.412 113 30.9 98 12.45 58.22 26 29 41.75 0.07 0.2 423 20.9

Avg.= 109 30.4 12.49 58.835 25.5 28.5 42.35 0.0625 0.2 418.5 20.9

STDEV= ± 4.00 0.5 0.04 0.615 0.5 0.5 0.6 0.0075 3.4E-17 4.5 0 4 3.525 3.436 89 32 98 11.67 54.3

3

26 29 43.65 0.075 0.18 380 20.9 5 3.525 3.4255 99.5 31.6 98 12.085 56.1 26.5 29 44.325 0.06 0.19 370 20.9 6 3.525 3.415 110 31.2 98 12.5 57.9 27 29 45 0.045 0.2 360 20.9

Avg.= 99.5 31.6 12.085 56.1 26.5 29 44.325 0.06 0.19 370 20.9

STDEV= ± 10.50 0.4 0.415 1.8 0.5 0 0.675 0.015 0.01 10 0 7 3.525 3.428 97 30.4 98 11.97 55.7

3.5

28 29 45.25 0.095 0.2 320 20.9 8 3.525 3.4185 106.5 30.45 98 12.16 56.56 28 29.5 44.975 0.1025 0.2 311 20.9 9 3.525 3.409 116 30.5 98 12.35 57.42 28 30 44.7 0.11 0.2 302 20.9

Avg.= 106.5 30.45 12.16 56.56 28 29.5 44.975 0.1025 0.2 311 20.9

STDEV= ± 9.50 0.05 0.19 0.86 0 0.5 0.275 0.0075 3.4E-17 9 0 10 3.525 3.393 132 32 98 12.3 59.42

4

28 30 45.85 0.11 0.3 120 20.9 11 3.525 3.4035 121.5 32.1 98 12.15 58.855 28 30 44.825 0.105 0.3 117.5 20.9 12 3.525 3.414 111 32.2 98 12 58.29 28 30 43.8 0.1 0.3 115 20.9

Avg.= 121.5 32.1 12.15 58.855 28 30 44.825 0.105 0.3 117.5 20.9

STDEV= ± 10.50 0.1 0.15 0.565 0 0 1.025 0.005 0 2.5 0 13 3.525 3.427 98 32 98 12.4 56.99

4.5

28 29.5 45.4 0.08 0.4 15 20.9 14 3.525 3.427 98 31.75 98 12.225 56.75 28 29.75 45.75 0.0775 0.4 12.5 20.9 15 3.525 3.427 98 31.5 98 12.05 56.51 28 30 46.1 0.075 0.4 10 20.9

Avg.= 98 31.75 12.225 56.75 28 29.75 45.75 0.0775 0.4 12.5 20.9

STDEV= ± 0.00 0.25 0.175 0.24 0 0.25 0.35 0.0025 6.8E-17 2.5 0 16 3.525 3.397 128 30 98 13.06 62.68

5 28 30 47.5 0.085 0.4 6 20.9

17 3.525 3.402 123 30.75 98 12.895 61.91 28 29.5 47.25 0.0875 0.4 5.5 20.9 18 3.525 3.407 118 31.5 98 12.73 61.14 28 29 47 0.09 0.4 5 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 6 and Vstc = 10.05

Appendix A Experimental data sheet

95

Avg.= 123 30.75 12.895 61.91 28 29.5 47.25 0.0875 0.4 5.5 20.9

STDEV= ± 5.00 0.75 0.165 0.77 0 0.5 0.25 0.0025 6.8E-17 0.5 0 19 3.525 3.399 126 29 98 13.2 63.78

5.5

28 29 48.2 0.08 0.4 0 20.9 20 3.525 3.393 132 29.35 98 13.34 65.18 28 29 46.975 0.075 0.4 0 20.9 21 3.525 3.387 138 29.7 98 13.48 66.58 28 29 45.75 0.07 0.4 0 20.9

Avg.= 132 29.35 13.34 65.18 28 29 46.975 0.075 0.4 0 20.9

STDEV= ± 6.00 0.35 0.14 1.4 0 0 1.225 0.005 6.8E-17 0 0 22 3.525 3.388 137 30.9 98 13.3 65.3

6

28 29 46.4 0.055 0.4 0 20.9 23 3.525 3.3925 132.5 33.65 98 12.9 63.315 28 29 45.975 0.0425 0.4 0 20.9 24 3.525 3.397 128 36.4 98 12.5 61.33 28 29 45.55 0.03 0.4 0 20.9

Avg.= 132.5 33.65 12.9 63.315 28 29 45.975 0.0425 0.4 0 20.9

STDEV= ± 4.50 2.75 0.4 1.985 0 0 0.425 0.0125 6.8E-17 0 0 25 3.525 3.413 112 33.1 98 13.18 63.86

6.5

28 29 46.35 0.02 0.4 0 20.9 26 3.525 3.404 121 32.25 98 13.44 64.405 27.5 28.5 45.675 0.0375 0.4 0 20.9 27 3.525 3.395 130 31.4 98 13.7 64.95 27 28 45 0.055 0.4 0 20.9

Avg.= 121 32.25 13.44 64.405 27.5 28.5 45.675 0.0375 0.4 0 20.9

STDEV= ± 9.00 0.85 0.26 0.545 0.5 0.5 0.675 0.0175 6.8E-17 0 0 28 3.525 3.397 128 29.7 98 13.9 67.1

7

27.5 28 46.7 0.075 0.4 0 20.9 29 3.525 3.4 125 30.55 98 14 67.075 27.5 28 46.7 0.075 0.4 0 20.9 30 3.525 3.403 122 31.4 98 14.1 67.05 27.5 28 46.7 0.075 0.4 0 20.9

Avg.= 125 30.55 14 67.075 27.5 28 46.7 0.075 0.4 0 20.9

STDEV= ± 3.00 0.85 0.1 0.025 0 0 8.7E-15 0 6.8E-17 0 0

31 3.525 3.409 116 31.4 98 14.6 66.6

7.5

28 28.5 46.35 0.07 0.4 0 20.9 32 3.525 3.412 113 31.4 98 14.2 65.3 28 28.5 46.35 0.07 0.4 0 20.9 33 3.525 3.415 110 31.4 98 13.8 64 28 28.5 46.35 0.07 0.4 0 20.9

Avg.= 113 31.4 14.2 65.3 28 28.5 46.35 0.07 0.4 0 20.9

STDEV= ± 3.00 4.4E-15 0.4 1.3 0 0 0 0 6.8E-17 0 0

Appendix A Experimental data sheet

96

Table A 1.9: Experimental data for flat bottom pot without Shield at 10 mbar NG Pressure.

1

12 .04 .18

3.406 3.215 191 35.8 98.6 10.5 62.95

2.5

28.9 25 47.75 -0.015 0.3 22 20.9 2 3.406 3.248 158 35.65 98.6 10.05 59.35 28.9 25 48.25 -0.02 0.3 22.2 20.9 3 3.406 3.281 125 35.5 98.6 9.6 55.75 28.9 25 48.75 -0.025 0.3 22.5 20.9

Avg.= 158 35.65 10.05 59.35 28.9 25 48.25 -0.02 0.3 22.2 20.9

STDEV= ± 33.00 0.15 0.45 3.6 4.4E-15 0 0.5 0.005 0 0.25 0

4 3.406 3.32 86 31.7 98 10.7 54.74

3

28 25 45.8 0.14 0.3 10 20.9 5 3.406 3.322 84 31.7 98 10.65 54.675 28 25 45.8 0.14 0.3 9 20.9 6 3.406 3.324 82 31.7 98 10.6 54.61 28 25 45.8 0.14 0.3 8 20.9

Avg.= 84 31.7 10.65 54.675 28 25 45.8 0.14 0.3 9 20.9

STDEV= ± 2.00 0 0.05 0.065 0 0 8.7E-15 0 0 1 0 7 3.406 3.314 92 30 98.1 11.6 58.41

3.5

27.5 24.8 47.25 0.14 0.25 2 20.9 8 3.406 3.316 90 29.9 98.05 11.625 58.255 27.5 24.8 47.25 0.14 0.25 1 20.9 9 3.406 3.318 88 29.8 98 11.65 58.1 27.5 24.8 47.25 0.14 0.25 0 20.9

Avg.= 90 29.9 11.625 58.255 27.5 24.8 47.25 0.14 0.25 1 20.9

STDEV= ± 2.00 0.1 0.025 0.155 0 0 0 0 0 1 0 10 3.406 3.317 89 29 98 12.3 61.56

4

27 25 47.25 0.09 0.3 0 20.9 11 3.406 3.316 90 28.9 98 12.35 61.56 27 25 47.25 0.09 0.3 0 20.9 12 3.406 3.315 91 28.8 98 12.4 61.56 27 25 47.25 0.09 0.3 0 20.9

Avg.= 90 28.9 12.35 61.56 27 25 47.25 0.09 0.3 0 20.9

STDEV= ± 1.00 0.1 0.05 0 0 0 0 1.7E-17 0 0 0 13 3.406 3.305 101 27 98 13.4 66.98

4.5

26 25 50.9 0.105 0.3 0 20.9 14 3.406 3.31 96 26.9 98 13.45 66.955 26 25 50.9 0.105 0.3 0 20.9 15 3.406 3.315 91 26.8 98 13.5 66.93 26 25 50.9 0.105 0.3 0 20.9

Avg.= 96 26.9 13.45 66.955 26 25 50.9 0.105 0.3 0 20.9

STDEV= ± 5.00 0.1 0.05 0.025 0 0 0 0 0 0 0 16 3.406 3.272 134 26 98 14.9 75.63 5 26 25 50.7 0.115 0.3 0 20.9 17 3.406 3.274 132 25.9 98 14.75 75.515 26 25 50.7 0.115 0.3 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 10 and Vstc = 10.1

Appendix A Experimental data sheet

97

18 3.406 3.276 130 25.8 98 14.6 75.4 26 25 50.7 0.115 0.3 0 20.9

Avg.= 132 25.9 14.75 75.515 26 25 50.7 0.115 0.3 0 20.9

STDEV= ± 2.00 0.1 0.15 0.115 0 0 8.7E-15 0 0 0 0 19 3.406 3.301 105 25.8 98 15.3 75.11

5.5

26 25 52.5 0.105 0.3 0 20.9 20 3.406 3.301 105 25.5 98 15.4 75.11 26 25 52.5 0.105 0.3 0 20.9 21 3.406 3.301 105 25.2 98 15.5 75.11 26 25 52.5 0.105 0.3 0 20.9

Avg.= 105 25.5 15.4 75.11 26 25 52.5 0.105 0.3 0 20.9

STDEV= ± 0.00 0.3 0.1 0 0 0 0 0 0 0 0 22 3.406 3.3 106 25.2 98.2 15.9 78.84

6

26 25 52.9 0.16 0.3 0 20.9 23 3.406 3.3 106 25.15 98.1 15.925 78.84 26 25 52.9 0.16 0.3 0 20.9 24 3.406 3.3 106 25.1 98 15.95 78.84 26 25 52.9 0.16 0.3 0 20.9

Avg.= 106 25.15 15.925 78.84 26 25 52.9 0.16 0.3 0 20.9

STDEV= ± 0.00 0.05 0.025 0 0 0 0 0 0 0 0 25 3.406 3.288 118 25.1 98 16.7 83.33

6.5

25.5 25 53.65 0.195 0.3 0 20.9 26 3.406 3.2895 116.5 25.1 98 16.55 83.33 25.5 25 53.65 0.195 0.3 0 20.9 27 3.406 3.291 115 25.1 98 16.4 83.33 25.5 25 53.65 0.195 0.3 0 20.9

Avg.= 116.5 25.1 16.55 83.33 25.5 25 53.65 0.195 0.3 0 20.9

STDEV= ± 1.50 4.4E-15 0.15 0 0 0 0 3.4E-17 0 0 0

28 3.406 3.27 136 24.5 98 17.9 90.24

7

25 25 53.5 0.18 0.3 0 20.9 29 3.406 3.271 135 24.4 98 17.85 90.24 25 25 53.5 0.18 0.3 0 20.9 30 3.406 3.272 134 24.3 98 17.8 90.24 25 25 53.5 0.18 0.3 0 20.9

Avg.= 135 24.4 17.85 90.24 25 25 53.5 0.18 0.3 0 20.9

STDEV= ± 1.00 0.1 0.05 0 0 0 0 3.4E-17 0 0 0 31 3.406 3.266 140 24.3 98.2 18.7 93.7

7.5

25 24.7 54.45 0.18 0.3 0 20.9 32 3.406 3.266 140 24.3 97.9 18.75 93.7 25 24.7 54.45 0.18 0.3 0 20.9 33 3.406 3.266 140 24.3 97.6 18.8 93.7 25 24.7 54.45 0.18 0.3 0 20.9

Avg.= 140 24.3 18.75 93.7 25 24.7 54.45 0.18 0.3 0 20.9

STDEV= ± 0.00 0 0.05 0 0 0 8.7E-15 3.4E-17 0 0 0

Appendix A Experimental data sheet

98

Table A 1.10 : Experimental data for Finned pot without Shield at 10 mbar NG pressure.

1

30 .03 .18

3.525 3.425 100 32.6 98 12.9 65.44

2.5

29 26 41.85 0.165 0.2 230 20.9 2 3.525 3.426 99 32.6 98 12.9 65.44 29 26 41.85 0.165 0.2 235 20.9 3 3.525 3.427 98 32.6 98 12.9 65.44 29 26 41.85 0.165 0.2 240 20.9

Avg.= 99 32.6 12.9 65.44 29 26 41.85 0.165 0.2 235 20.9

STDEV= ± 1.0 0 0 0 0 0 0 0 3.4E-17 5 0 4 3.525 3.415 110 32 98 12.95 65.9

3

28 25.5 44.9 0.145 0.25 146 20.9 5 3.525 3.421 104 32 98 12.925 65.55 28 25.5 44.9 0.145 0.225 148 20.9 6 3.525 3.427 98 32 98 12.9 65.2 28 25.5 44.9 0.145 0.2 150 20.9

Avg.= 104 32 12.925 65.55 28 25.5 44.9 0.145 0.225 148 20.9

STDEV= ± 6.0 0 0.025 0.35 0 0 0 0 0.025 2 0 7 3.525 3.397 128 30.6 98 13.3 67.1

3.5

27 25 45.15 0.135 0.25 120 20.9 8 3.525 3.402 123 30.6 98 13.1 66.82 27 25 45.15 0.135 0.275 115 20.9 9 3.525 3.407 118 30.6 98 12.9 66.54 27 25 45.15 0.135 0.3 110 20.9

Avg.= 123 30.6 13.1 66.82 27 25 45.15 0.135 0.275 115 20.9

STDEV= ± 5.00 4.4E-15 0.2 0.28 0 0 0 0 0.025 5 0 10 3.525 3.417 108 28.6 98 13.95 69.36

4

27 25 47.7 0.1 0.3 87.5 20.9 11 3.525 3.417 108 28.6 98 13.95 69.36 27 25 47.7 0.1 0.3 90.5 20.9 12 3.525 3.417 108 28.6 98 13.95 69.36 27 25 47.7 0.1 0.3 93.5 20.9

Avg.= 108 28.6 13.95 69.36 27 25 47.7 0.1 0.3 90.5 20.9

STDEV= ± 0.0 4.4E-15 2.2E-

15 0 0 0 8.7E-15 1.7E-17 0 3 0

13 3.525 3.417 108 26.9 98 14.65 72.53

4.5

27 25 48.7 0.11 0.4 45 20.9 14 3.525 3.417 108 26.9 98 14.625 72.53 27 25 48.7 0.11 0.4 54.25 20.9 15 3.525 3.417 108 26.9 98 14.6 72.53 27 25 48.7 0.11 0.4 63.5 20.9

Avg.= 108 26.9 14.625 72.53 27 25 48.7 0.11 0.4 54.25 20.9

STDEV= ± 0.00 4.4E-15 0.025 0 0 0 8.7E-15 0 6.8E-17 9.25 0

16 3.525 3.411 114 26 98 15.6 75.62 5 26 25 48.5 0.12 0.4 27 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 10 and Vstc = 10.1

Appendix A Experimental data sheet

99

17 3.525 3.411 114 26 98 15.5 75.62 26 25 48.5 0.12 0.4 25.5 20.9 18 3.525 3.411 114 26 98 15.4 75.62 26 25 48.5 0.12 0.4 24 20.9

Avg.= 114 26 15.5 75.62 26 25 48.5 0.12 0.4 25.5 20.9

STDEV= ± 0.0 0 0.1 0 0 0 0 0 6.8E-17 1.5 0 19 3.525 3.406 119 25.4 98 16.4 78.53

5.5

26 25 49.75 0.13 0.4 16 20.9 20 3.525 3.407 118 25.4 98 16.375 78.465 26 25 49.75 0.13 0.4 11.5 20.9 21 3.525 3.408 117 25.4 98 16.35 78.4 26 25 49.75 0.13 0.4 7 20.9

Avg.= 118 25.4 16.375 78.465 26 25 49.75 0.13 0.4 11.5 20.9

STDEV= ± 1.0 4.4E-15 0.025 0.065 0 0 0 0 6.8E-17 4.5 0 22 3.525 3.408 117 25.2 98 17.05 80.58

6

26 25 51.7 0.18 0.4 0 20.9 23 3.525 3.407 118 25.2 98 17.075 80.6 26 25 51.7 0.18 0.4 0 20.9 24 3.525 3.406 119 25.2 98 17.1 80.62 26 25 51.7 0.4 0 20.9

Avg.= 118 25.2 17.075 80.6 26 25 51.7 0.18 0.4 0 20.9

STDEV= ± 1.00 0 0.025 0.02 0 0 8.7E-15 0 6.8E-17 0 0

25 3.525 3.373 152 24.4 98 17.9 87.91

6.5

25.7 25 52.6 0.19 0.4 0 20.9 26 3.525 3.373 152 24.4 98 17.925 87.91 25.7 25 52.6 0.19 0.4 0 20.9 27 3.525 3.373 152 24.4 98 17.95 87.91 25.7 25 52.6 0.19 0.4 0 20.9

Avg.= 152 24.4 17.925 87.91 25.7 25 52.6 0.19 0.4 0 20.9

STDEV= ± 0.0 4.4E-15 0.025 0 0 0 0 3.4E-17 6.8E-17 0 0 28 3.525 3.357 168 24 98 18.4 92.1

7

25 24.8 51.4 0.18 0.4 0 20.9 29 3.525 3.359 166 24 98 18.425 91.99 25 24.8 51.4 0.18 0.4 0 20.9 30 3.525 3.361 164 24 98 18.45 91.88 25 24.8 51.4 0.18 0.4 0 20.9

Avg.= 166 24 18.425 91.99 25 24.8 51.4 0.18 0.4 0 20.9

STDEV= ± 2.0 0 0.025 0.11 0 0 0 3.4E-17 6.8E-17 0 0 31 3.525 3.374 151 23.7 98 19.3 91.38

7.5

25 25 50.8 0.17 0.4 0 20.9 32 3.525 3.374 151 23.7 98 19.2 91.38 25 25 50.8 0.17 0.4 0 20.9 33 3.525 3.374 151 23.7 98 19.1 91.38 25 25 50.8 0.17 0.4 0 20.9

Avg.= 151 23.7 19.2 91.38 25 25 50.8 0.17 0.4 0 20.9

STDEV= ± 0.0 0 0.1 0 0 0 8.7E-15 0 6.8E-17 0 0

Appendix A Experimental data sheet

100

Table A 1.11 : Experimental data for flat bottom pot with Shield at 10 mbar NG pressure.

1

04. 08. 18

3.406 3.321 85 24.3 98 12.38 57.51

2.5

25 27 42.8 0.06 0.2 161.5 20.9 2 3.406 3.32 86 24.65 98 11.995 57.75 25.5 27.5 43.1 0.0625 0.2 152.5 20.9 3 3.406 3.319 87 25 98 11.61 58 26 28 43.4 0.065 0.2 143.5 20.9

Avg.= 86 24.65 11.995 57.75 25.5 27.5 43.1 0.0625 0.2 152.5 20.9

STDEV= ± 1.00 0.35 0.385 0.245 0.5 0.5 0.3 0.0025 3.4E-17 9 0

4 3.406 3.314 92 25 98 11.48 56.82

3

26 28 44.45 0.065 0.2 37.5 20.9 5 3.406 3.318 88 24.85 98 11.265 56.2 26.5 28.25 44.95 0.0725 0.2 49.5 20.9 6 3.406 3.322 84 24.7 98 11.05 55.58 27 28.5 45.45 0.08 0.2 61.5 20.9

Avg.= 88 24.85 11.265 56.2 26.5 28.25 44.95 0.0725 0.2 49.5 20.9

STDEV= ± 4.00 0.15 0.215 0.62 0.5 0.25 0.5 0.0075 3.4E-17 12 0

7 3.406 3.321 85 24.8 98 11.25 56.04

3.5

27 29 43.95 0.095 0.25 17.5 20.9 8 3.406 3.322 84 25.1 98 11.225 55.86 27 29 44.25 0.095 0.275 16.5 20.9 9 3.406 3.323 83 25.4 98 11.2 55.69 27 29 44.55 0.095 0.3 15.5 20.9

Avg.= 84 25.1 11.225 55.86 27 29 44.25 0.095 0.275 16.5 20.9 STDEV= ± 1.00 0.3 0.025 0.175 0 0 0.3 1.7E-17 0.025 1 0

10 3.406 3.325 81 25 98 11.4 56.64

4

27 29 45.15 0.1 0.3 17.5 20.9 11 3.406 3.321 85 24.35 98 11.48 57.17 27.5 29 45 0.125 0.3 18.25 20.9 12 3.406 3.317 89 23.7 98 11.56 57.7 28 29 44.85 0.15 0.3 19 20.9

Avg.= 85 24.35 11.48 57.17 27.5 29 45 0.125 0.3 18.25 20.9 STDEV= ± 4.00 0.65 0.08 0.53 0.5 0 0.15 0.025 0 0.75 0

13 3.406 3.308 98 25.2 98 11.85 59.25

4.5

28 30 45.15 0.13 0.3 8 20.9 14 3.406 3.3115 94.5 25.65 98 11.625 58.96 28 30 45.35 0.1325 0.3 9.5 20.9 15 3.406 3.315 91 26.1 98 11.4 58.67 28 30 45.55 0.135 0.3 11 20.9

Avg.= 94.5 25.65 11.625 58.96 28 30 45.35 0.1325 0.3 9.5 20.9 STDEV= ± 3.50 0.45 0.225 0.29 0 0 0.2 0.0025 0 1.5 0

16 3.406 3.3 106 25.6 98.3 12.06 61.92 5

28 30 47.2 0.12 0.3 9 20.9 17 3.406 3.309 97 25.75 98.15 11.72 60.45 28 29.75 47.075 0.1325 0.3 5 20.9 18 3.406 3.318 88 25.9 98 11.38 58.99 28 29.5 46.95 0.145 0.3 1 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 10 and Vstc = 10.43

Appendix A Experimental data sheet

101

Avg.= 97 25.75 11.72 60.45 28 29.75 47.075 0.1325 0.3 5 20.9 STDEV= ± 9.00 0.15 0.34 1.465 0 0.25 0.125 0.0125 0 4 0

19 3.406 3.308 98 25.4 98 11.96 61.87

5.5

28 28 46.4 0.155 0.25 2.5 20.9 20 3.406 3.307 99 25.8 98 11.93 61.9 28 27.75 46.375 0.15 0.275 2.25 20.9 21 3.406 3.306 100 26.2 98 11.9 61.93 28 27.5 46.35 0.145 0.3 2 20.9

Avg.= 99 25.8 11.93 61.9 28 27.75 46.375 0.15 0.275 2.25 20.9 STDEV= ± 1.00 0.4 0.03 0.03 0 0.25 0.025 0.005 0.025 0.25 0

22 3.406 3.3 106 25.6 98 12.1 63.88

6

27 28 47 0.16 0.25 1.5 20.9 23 3.406 3.305 101 26 98 11.95 63.16 27 27.5 47.1 0.1575 0.275 1.75 20.9 24 3.406 3.31 96 26.4 98 11.8 62.45 27 27 47.2 0.155 0.3 2 20.9

Avg.= 101 26 11.95 63.16 27 27.5 47.1 0.1575 0.275 1.75 20.9 STDEV= ± 5.00 0.4 0.15 0.715 0 0.5 0.1 0.0025 0.025 0.25 0

25 3.406 3.318 88 25.6 98 11.85 62.59

6.5

27 27 46.8 0.15 0.3 3 20.9 26 3.406 3.312 94 26 98 12.33 63.27 27 27 46.4 0.1475 0.25 3.75 20.9 27 3.406 3.306 100 26.4 98 12.81 63.95 27 27 46 0.145 0.2 4.5 20.9

Avg.= 94 26 12.33 63.27 27 27 46.4 0.1475 0.25 3.75 20.9 STDEV= ± 6.00 0.4 0.48 0.68 0 0 0.4 0.0025 0.05 0.75 0

28 3.406 3.302 104 26.5 98 12.8 65.63

7

27 26.5 48.6 0.15 0.3 5.5 20.9 29 3.406 3.298 108 26.25 98 12.9 66.19 27 26.25 48.25 0.1075 0.25 7.5 20.9 30 3.406 3.294 112 26 98 13 66.76 27 26 47.9 0.065 0.2 9.5 20.9

Avg.= 108 26.25 12.9 66.19 27 26.25 48.25 0.1075 0.25 7.5 20.9 STDEV= ± 4.00 0.25 0.1 0.565 0 0.25 0.35 0.0425 0.05 2 0

31 3.406 3.32 86 26 98 12.63 63.42

7.5

26.5 26.5 47.15 0.11 0.3 8.5 20.9 32 3.406 3.312 94 26.25 98 12.855 64.92 26.5 26.5 47.425 0.1125 0.3 10.25 20.9 33 3.406 3.304 102 26.5 98 13.08 66.42 26.5 26.5 47.7 0.115 0.3 12 20.9

Avg.= 94 26.25 12.855 64.92 26.5 26.5 47.425 0.1125 0.3 10.25 20.9 STDEV= ± 8.00 0.25 0.225 1.5 0 0 0.275 0.0025 0 1.75 0

Appendix A Experimental data sheet

102

Table A 1.12 : Experimental data for Finned pot with Shield at 10 mbar NG pressure.

1

14 .04 .18

3.525 3.422 103 24.5 98 13.86 74.16

2.5

25 28 41.35 0.05 0.14 335.5 20.9 2 3.525 3.415 110 25.4 98 13.105 70.425 25 28 41.9 0.0675 0.14 349.25 20.9 3 3.525 3.408 117 26.3 98 12.35 66.69 25 28 42.45 0.085 0.14 363 20.9

Avg.= 110 25.4 13.105 70.425 25 28 41.9 0.0675 0.14 349.25 20.9

STDEV= ± 7.00 0.9 0.755 3.735 0 0 0.55 0.0175 0 13.75 0 4 3.525 3.417 108 25.3 98 12.35 63

3

25.5 29 44.1 0.09 0.16 280 20.9 5 3.525 3.416 109 26.75 98 12.325 63.005 25.75 29 44.65 0.095 0.155 310 20.9 6 3.525 3.415 110 28.2 98 12.3 63.01 26 29 45.2 0.1 0.15 340 20.9

Avg.= 109 26.75 12.325 63.005 25.75 29 44.65 0.095 0.155 310 20.9

STDEV= ± 1.00 1.45 0.025 0.005 0.25 0 0.55 0.005 0.005 30 0 7 3.525 3.415 110 25.2 98 12.6 61.63

3.5

27 30 45.45 0.115 0.175 290 20.9 8 3.525 3.412 113 25.55 98 12.65 62.285 27.25 30 45.6 0.1175 0.1675 280 20.9 9 3.525 3.409 116 25.9 98 12.7 62.94 27.5 30 45.75 0.12 0.16 270 20.9

Avg.= 113 25.55 12.65 62.285 27.25 30 45.6 0.1175 0.1675 280 20.9

STDEV= ± 3.00 0.35 0.05 0.655 0.25 0 0.15 0.0025 0.0075 10 0 10 3.525 3.407 118 26.3 98 12.4 61.28

4

27.5 30 46.2 0.13 0.25 140 20.9 11 3.525 3.405 120 26.1 98 12.65 64.11 27.75 30 46.025 0.135 0.25 136 20.9 12 3.525 3.403 122 25.9 98 12.9 66.94 28 30 45.85 0.14 0.25 132 20.9

Avg.= 120 26.1 12.65 64.11 27.75 30 46.025 0.135 0.25 136 20.9

STDEV= ± 2.00 0.2 0.25 2.83 0.25 0 0.175 0.005 0 4 0 13 3.525 3.417 108 26.1 98 13.06 61.3

4.5

28 30 48.4 0.145 0.3 40 20.9 14 3.525 3.422 103 25.9 98 12.595 62.61 28.5 30 50.95 0.155 0.3 37.5 20.9 15 3.525 3.427 98 25.7 98 12.13 63.92 29 30 53.5 0.165 0.3 35 20.9

Avg.= 103 25.9 12.595 62.61 28.5 30 50.95 0.155 0.3 37.5 20.9

STDEV= ± 5.00 0.2 0.465 1.31 0.5 0 2.55 0.01 0 2.5 0 16 3.525 3.407 118 26.7 98 13.2 65.19

5 30 30 48.85 0.17 0.3 0 20.9

17 3.525 3.415 110 26.75 98 12.8 63.815 29.5 30.25 48.45 0.165 0.3 1.5 20.9 18 3.525 3.423 102 26.8 98 12.4 62.44 29 30.5 48.05 0.16 0.3 3 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 10 and Vstc = 10.7

Appendix A Experimental data sheet

103

Avg.= 110 26.75 12.8 63.815 29.5 30.25 48.45 0.165 0.3 1.5 20.9

STDEV= ± 8.00 0.05 0.4 1.375 0.5 0.25 0.4 0.005 0 1.5 0 19 3.525 3.403 122 26.8 98 12.9 66.78

5.5

29 31 47.35 0.155 0.25 0 20.9 20 3.525 3.401 124 26.7 98 13.04 66.725 29 31 47.775 0.15 0.225 2 20.9 21 3.525 3.399 126 26.6 98 13.18 66.67 29 31 48.2 0.145 0.2 4 20.9

Avg.= 124 26.7 13.04 66.725 29 31 47.775 0.15 0.225 2 20.9

STDEV= ± 2.00 0.1 0.14 0.055 0 0 0.425 0.005 0.025 2 0 22 3.525 3.382 143 26.7 98 13.78 69.95

6

29 31 49.15 0.145 0.3 0 20.9 23 3.525 3.3985 126.5 26.9 98 13.28 68.2 29 30.5 48.925 0.1475 0.35 2 20.9 24 3.525 3.415 110 27.1 98 12.78 66.45 29 30 48.7 0.15 0.4 4 20.9

Avg.= 126.5 26.9 13.28 68.2 29 30.5 48.925 0.1475 0.35 2 20.9

STDEV= ± 16.50 0.2 0.5 1.75 0 0.5 0.225 0.0025 0.05 2 0 25 3.525 3.415 110 27.6 98 13.8 67.85

6.5

29 30 49.1 0.14 0.4 0 20.9 26 3.525 3.419 106 27.65 98 13.35 66.235 29 30 49.2 0.135 0.4 0 20.9 27 3.525 3.423 102 27.7 98 12.9 64.62 29 30 49.3 0.13 0.4 0 20.9

Avg.= 106 27.65 13.35 66.235 29 30 49.2 0.135 0.4 0 20.9

STDEV= ± 4.00 0.05 0.45 1.615 0 0 0.1 0.005 6.8E-17 0 0

28 3.525 3.405 120 28.1 98 13.28 69.4

7

29 29 47.55 0.12 0.4 0 20.9 29 3.525 3.408 117 28.55 98 13.305 68.24 29 29 48.8 0.115 0.4 0 20.9 30 3.525 3.411 114 29 98 13.33 67.08 29 29 50.05 0.11 0.4 0 20.9

Avg.= 117 28.55 13.305 68.24 29 29 48.8 0.115 0.4 0 20.9

STDEV= ± 3.00 0.45 0.025 1.16 0 0 1.25 0.005 6.8E-17 0 0

31 3.525 3.403 122 28.9 98 14.2 69.54

7.5

29 29 50.3 0.11 0.4 0 20.9 32 3.525 3.415 110 28.6 98 13.625 67.6 29 29 49.45 0.1075 0.4 0 20.9 33 3.525 3.427 98 28.3 98 13.05 65.66 29 29 48.6 0.105 0.4 0 20.9

Avg.= 110 28.6 13.625 67.6 29 29 49.45 0.1075 0.4 0 20.9

STDEV= ± 12.00 0.3 0.575 1.94 0 0 0.85 0.0025 6.8E-17 0 0

Appendix A Experimental data sheet

104

Table A 1.13: Experimental data for flat bottom pot without Shield at 14 mbar NG Pressure.

1

17. 03. 18

3.406 3.306 100 29.4 98.7 10.62 57.2

2.5

29 25 51.25 0.015 0.3 28 20.9 2 3.406 3.3015 104.5 29.65 98.7 10.645 57.59 29 25 51.075 0.015 0.3 26.5 20.9 3 3.406 3.297 109 29.9 98.7 10.67 57.98 29 25 50.9 0.015 0.3 25 20.9

Avg.= 104.5 29.65 10.645 57.59 29 25 51.075 0.015 0.3 26.5 20.9 STDEV= ± 4.50 0.25 0.025 0.39 0 0 0.175 0 0 1.5 0

4 3.406 3.302 104 28.3 98.7 10.65 59.5

3

28 24 49.35 0.075 0.3 13.5 20.9 5 3.406 3.303 103 28.95 98.7 10.62 58.875 28 25 49.725 0.075 0.325 13.5 20.9 6 3.406 3.304 102 29.6 98.7 10.59 58.25 28 26 50.1 0.075 0.35 13.5 20.9

Avg.= 103 28.95 10.62 58.875 28 25 49.725 0.075 0.325 13.5 20.9 STDEV= ± 1.00 0.65 0.03 0.625 0 1 0.375 0 0.025 0 0

7 3.406 3.308 98 29.4 98.7 10.88 59.51

3.5

28 26 49.85 0.045 0.4 4.5 20.9 8 3.406 3.306 100 29.4 98.7 10.94 60 28 26 51.35 0.03 0.4 2.25 20.9 9 3.406 3.304 102 29.4 98.7 11 60.49 28 26 52.85 0.015 0.4 0 20.9

Avg.= 100 29.4 10.94 60 28 26 51.35 0.03 0.4 2.25 20.9

STDEV= ± 2.00 4.4E-15 0.06 0.49 0 0 1.5 0.015 6.8E-

17 2.25 0

10 3.406 3.288 118 29 98.9 11.8 65.81

4

28 26 52.1 0 0.4 1 20.9 11 3.406 3.292 114 28.75 99 11.55 65.135 28 26 52.025 0 0.4 1 20.9 12 3.406 3.296 110 28.5 99.1 11.3 64.46 28 26 51.95 0 0.4 1 20.9

Avg.= 114 28.75 11.55 65.135 28 26 52.025 0 0.4 1 20.9

STDEV= ± 4.00 0.25 0.25 0.675 0 0 0.075 0 6.8E-17 0 0

13 3.406 3.292 114 27.7 98.9 12.1 68.88

4.5

29 25 57.8 0.015 0.3 0 20.9 14 3.406 3.283 123 29.9 98.9 12.15 69.285 29 25.75 57.05 0.0175 0.3 0 20.9 15 3.406 3.274 132 32.1 98.9 12.2 69.69 29 26.5 56.3 0.02 0.3 0 20.9

Avg.= 123 29.9 12.15 69.285 29 25.75 57.05 0.0175 0.3 0 20.9 STDEV= ± 9.00 2.2 0.05 0.405 0 0.75 0.75 0.0025 0 0 0

16 3.406 3.288 118 31 98.7 12.9 71.2 5 30 27 56.9 0.035 0.3 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 14 and Vstc = 10

Appendix A Experimental data sheet

105

17 19 .03

.18

3.406 3.285 121 31.3 98.7 12.825 70.86 29.5 27 56.875 0.04 0.3 0 20.9 18 3.406 3.282 124 31.6 98.7 12.75 70.52 29 27 56.85 0.045 0.3 0 20.9

Avg.= 121 31.3 12.825 70.86 29.5 27 56.875 0.04 0.3 0 20.9 STDEV= ± 3.00 0.3 0.075 0.34 0.5 0 0.025 0.005 0 0 0

19 3.406 3.282 124 31.5 98.7 13.66 75.69

5.5

29 27.4 58.6 0.05 0.35 0 20.9 20 3.406 3.287 119 31.5 98.7 13.33 73.945 29.25 27.4 59.075 0.045 0.375 0 20.9 21 3.406 3.292 114 31.5 98.7 13 72.2 29.5 27.4 59.55 0.04 0.4 0 20.9

Avg.= 119 31.5 13.33 73.945 29.25 27.4 59.075 0.045 0.375 0 20.9

STDEV= ± 5.00 0 0.33 1.745 0.25 4.4E-15 0.475 0.005 0.025 0 0

22 3.406 3.27 136 31.1 99 14.39 80.58

6

29 28.5 58.25 0.04 0.35 0 20.9 23 3.406 3.2795 126.5 31.05 98.85 14.11 78.92 29 28.5 59.25 0.045 0.375 0 20.9 24 3.406 3.289 117 31 98.7 13.83 77.26 29 28.5 60.25 0.05 0.4 0 20.9

Avg.= 126.5 31.05 14.11 78.92 29 28.5 59.25 0.045 0.375 0 20.9 STDEV= ± 9.50 0.05 0.28 1.66 0 0 1 0.005 0.025 0 0

25 3.406 3.266 140 29.1 98.7 15 85.63

6.5

28 26 56.7 0 0.3 0 20.9 26 3.406 3.272 134 29.3 98.7 14.925 84.175 28.25 26 57.45 0.005 0.3 0 20.9 27 3.406 3.278 128 29.5 98.7 14.85 82.72 28.5 26 58.2 0.01 0.3 0 20.9

Avg.= 134 29.3 14.925 84.175 28.25 26 57.45 0.005 0.3 0 20.9 STDEV= ± 6.00 0.2 0.075 1.455 0.25 0 0.75 0.005 0 0 0

28 3.406 3.27 136 29.9 98.8 15.45 87.48

7

29 25.8 57.65 0.025 0.3 0 20.9 29 3.406 3.275 131 30 98.8 15.33 86.825 28.75 25.7 58.375 0.04 0.3 0 20.9 30 3.406 3.28 126 30.1 98.80 15.21 86.17 28.5 25.6 59.1 0.055 0.3 0 20.9

Avg.= 131 30 15.33 86.825 28.75 25.7 58.375 0.04 0.3 0 20.9 STDEV= ± 5.00 0.1 0.12 0.655 0.25 0.1 0.725 0.015 0 0 0

31 3.406 3.257 149 29.6 98.8 16.53 93.7

7.5

28 25.6 59.8 0.07 0.35 0 20.9 32 3.406 3.272 134 29.6 98.75 15.97 90.69 28 25.6 59.95 0.0825 0.35 0 20.9 33 3.406 3.287 119 29.6 98.7 15.41 87.68 28 25.6 60.1 0.095 0.35 0 20.9

Avg.= 134 29.6 15.97 90.69 28 25.6 59.95 0.0825 0.35 0 20.9

STDEV= ± 15.00 4.4E-15 0.56 3.01 0 4.4E-

15 0.15 0.0125 6.8E-17 0 0

Appendix A Experimental data sheet

106

Table A 1.14 : Experimental data for Finned pot without Shield at 14 mbar NG pressure.

1

23 .03 .18

And 24 .03 .18

3.525 3.441 84 37.7 98.7 11.08 60.5

2.5

29 24.4 48.8 0.005 0.3 438.5 20.9 2 3.525 3.44 85 37.35 98.7 11.18 60.9 28.75 24.5 49.15 0.0175 0.275 375.25 20.9 3 3.525 3.439 86 37 98.7 11.28 61.3 28.5 24.6 49.5 0.03 0.25 312 20.9

Avg.= 85 37.35 11.18 60.9 28.75 24.5 49.15 0.0175 0.275 375.25 20.9

STDEV= ± 1.00 0.35 0.1 0.4 0.25 0.1 0.35 0.0125 0.025 63.25 0 4 3.525 3.437 88 36.8 98.7 10.8 60.65

3

29 25 50.3 0.04 0.3 217.5 20.9 5 3.525 3.435 90 36.55 98.7 11 61.225 29 25 50.4 0.045 0.275 232.75 20.9 6 3.525 3.433 92 36.3 98.7 11.2 61.8 29 25 50.5 0.05 0.25 248 20.9

Avg.= 90 36.55 11 61.225 29 25 50.4 0.045 0.275 232.75 20.9

STDEV= ± 2.00 0.25 0.2 0.575 0 0 0.1 0.005 0.025 15.25 0 7 3.525 3.389 136 35 98.7 11.7 67.3

3.5

29 25.4 49.9 0.055 0.3 180 20.9 8 3.525 3.391 134 34.9 98.7 11.6 67.2 29 25.4 50.775 0.055 0.275 177 20.9 9 3.525 3.393 132 34.8 98.7 11.5 67.1 29 25.4 51.65 0.055 0.25 174 20.9

Avg.= 134 34.9 11.6 67.2 29 25.4 50.775 0.055 0.275 177 20.9

STDEV= ± 2.00 0.1 0.1 0.1 0 4.4E-15 0.875 0 0.025 3 0 10 3.525 3.379 146 34.8 98.7 11.9 70.91

4

29 24.8 51.85 0.05 0.3 118 20.9 11 3.525 3.386 139 34.8 98.7 11.8 69.955 29.5 24.8 52.1 0.055 0.275 114 20.9 12 3.525 3.393 132 34.8 98.7 11.7 69 30 24.8 52.35 0.06 0.25 110 20.9

Avg.= 139 34.8 11.8 69.955 29.5 24.8 52.1 0.055 0.05 114 20.9

STDEV= ± 7.00 0 0.1 0.955 0.5 0 0.25 0.005 0.025 4 0 13 3.525 3.383 142 34.8 98.7 11.8 72.85

4.5

30 24.2 54.75 0.04 0.3 77 20.9 14 3.525 3.3745 150.5 34.5 98.7 12.1 74 30 24.2 54.5 0.045 0.25 81.25 20.9 15 3.525 3.366 159 34.2 98.7 12.4 75.15 30 24.2 54.25 0.05 0.2 85.5 20.9

Avg.= 150.5 34.5 12.1 74 30 24.2 54.5 0.045 0.25 81.25 20.9

STDEV= ± 8.50 0.3 0.3 1.15 0 0 0.25 0.005 0.05 4.25 0 16 3.525 3.365 160 32 98.7 13.93 79.31 5 29 23 52 0.04 0.3 55 20.9 17 3.525 3.375 150 32.5 98.7 13.215 77.125 29 23 53.05 0.045 0.275 47.75 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 14 and Vstc = 10

Appendix A Experimental data sheet

107

18 3.525 3.385 140 33 98.7 12.5 74.94 29 23 54.1 0.05 0.25 40.5 20.9

Avg.= 150 32.5 13.215 77.125 29 23 53.05 0.045 0.275 47.75 20.9

STDEV= ± 10.00 0.5 0.715 2.185 0 0 1.05 0.005 0.025 7.25 0 19 3.525 3.407 118 31.8 98 13.8 73.2

5.5

29 23 53.1 0.08 0.2 14 20.9 20 3.525 3.4015 123.5 31.65 98 13.78 74.9 29 22.9 54.675 0.095 0.25 14 20.9 21 3.525 3.396 129 31.5 98 13.76 76.6 29 22.8 56.25 0.11 0.3 14 20.9

Avg.= 123.5 31.65 13.78 74.9 29 22.9 54.675 0.095 0.25 14 20.9

STDEV= ± 5.50 0.15 0.02 1.7 0 0.1 1.575 0.015 0.05 0 0 22 3.525 3.386 139 30.7 98 14.3 80.15

6

29 22.8 55.25 0.01 0.25 3.5 20.9 23 3.525 3.39 135 30.75 98 14.22 79.15 29 22.8 56.2 0.02 0.25 3.5 20.9 24 3.525 3.394 131 30.8 98 14.14 78.15 29 22.8 57.15 0.03 0.25 3.5 20.9

Avg.= 135 30.75 14.22 79.15 29 22.8 56.2 0.02 0.25 3.5 20.9

STDEV= ± 4.00 0.05 0.08 1 0 0 0.95 0.01 0 0 0 25 3.525 3.406 119 25.8 98 15.6 81.75

6.5

27 27 52.95 0.075 0.3 2 20.9 26 3.525 3.408 117 26.9 98 15.4 80.7 27.5 27.5 54.55 0.09 0.325 1 20.9 27 3.525 3.41 115 28 98 15.2 79.65 28 28 56.15 0.105 0.35 0 20.9

Avg.= 117 26.9 15.4 80.7 27.5 27.5 54.55 0.09 0.325 1 20.9

STDEV= ± 2.00 1.1 0.2 1.05 0.5 0.5 1.6 0.015 0.025 1 0 28 3.525 3.403 122 28 98 15.4 82

7

28 27 55.8 0.16 0.3 0 20.9 29 3.525 3.3965 128.5 27.8 98 15.7 83.475 28 27 56 0.1725 0.3 0 20.9 30 3.525 3.39 135 27.6 98 16 84.95 28 27 56.2 0.185 0.3 0 20.9

Avg.= 128.5 27.8 15.7 83.475 28 27 56 0.1725 0.3 0 20.9

STDEV= ± 6.50 0.2 0.3 1.475 0 0 0.2 0.0125 0 0 0 31 3.525 3.392 133 27.5 98 16.18 85.8

7.5

28.5 27 56.15 0.205 0.3 0 20.9 32 3.525 3.389 136 27.6 98 16.32 86.5 28.5 27 56.3 0.215 0.2 0 20.9 33 3.525 3.386 139 27.7 98 16.46 87.2 28.5 27 56.45 0.225 0.1 0 20.9

Avg.= 136 27.6 16.32 86.5 28.5 27 56.3 0.215 0.2 0 20.9

STDEV= ± 3.00 0.1 0.14 0.7 0 0 0.15 0.01 0.1 0 0

Appendix A Experimental data sheet

108

Table A 1.15 : Experimental data for flat bottom pot with Shield at 14 mbar NG pressure.

1

04. 09. 18

3.406 3.288 118 27.9 98 11.31 62.22

2.5

27 28.5 44.85 0.015 0.25 280 20.9 2 3.406 3.295 111 27.95 98 10.92 59.665 27.5 28.75 45.875 0.0175 0.275 250.25 20.9 3 3.406 3.302 104 28 98 10.53 57.11 28 29 46.9 0.02 0.3 220.5 20.9

Avg.= 111 27.95 10.92 59.665 27.5 28.75 45.875 0.0175 0.275 250.25 20.9 STDEV= ± 7.00 0.05 0.39 2.555 0.5 0.25 1.025 0.0025 0.025 29.75 0

4 3.406 3.314 92 28.3 98 10.1 54.61

3

28 29 46.95 0.025 0.25 97.5 20.9 5 3.406 3.318 88 28.95 98 10.06 54.27 28 29.5 47.6 0.0275 0.25 88.25 20.9 6 3.406 3.322 84 29.6 98 10.02 53.93 28 30 48.25 0.03 0.25 79 20.9

Avg.= 88 28.95 10.06 54.27 28 29.5 47.6 0.0275 0.25 88.25 20.9 STDEV= ± 4.00 0.65 0.04 0.34 0 0.5 0.65 0.0025 0 9.25 0

7 3.406 3.296 110 28.3 98 9.98 57.21

3.5

26 27 44.65 0.07 0.3 80 20.9 8 3.406 3.305 101 28.8 98 10.055 55.67 26 27.5 45.5 0.08 0.3 52.75 20.9 9 3.406 3.314 92 29.3 98 10.13 54.13 26 28 46.35 0.09 0.3 25.5 20.9

Avg.= 101 28.8 10.055 55.67 26 27.5 45.5 0.08 0.3 52.75 20.9 STDEV= ± 9.00 0.5 0.075 1.54 0 0.5 0.85 0.01 0 27.25 0 10 3.406 3.326 80 28.5 98 9.95 53.86

4

27 28 46.45 0.13 0.3 34.5 20.9 11 3.406 3.327 79 28.75 98 9.99 53.865 27 28 46.525 0.14 0.3 26.5 20.9 12 3.406 3.328 78 29 98 10.03 53.87 27 28 46.6 0.15 0.3 18.5 20.9

Avg.= 79 28.75 9.99 53.865 27 28 46.525 0.14 0.3 26.5 20.9 STDEV= ± 1.00 0.25 0.04 0.005 0 0 0.075 0.01 0 8 0 13 3.406 3.324 82 28.9 98 10.25 55.15

4.5

27 28 45.6 0.165 0.3 8 20.9 14 3.406 3.33 76 28.75 98 10.255 54.725 27.25 28.5 46.35 0.1675 0.3 6.75 20.9 15 3.406 3.336 70 28.6 98 10.26 54.3 27.5 29 47.1 0.17 0.3 5.5 20.9

Avg.= 76 28.75 10.255 54.725 27.25 28.5 46.35 0.1675 0.3 6.75 20.9 STDEV= ± 6.00 0.15 0.005 0.425 0.25 0.5 0.75 0.0025 0 1.25 0 16 3.406 3.32 86 28.3 98 10.26 57.64 5 28 30 48.05 0.015 0.3 5.5 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 14 and Vstc = 10.23

Appendix A Experimental data sheet

109

17 3.406 3.316 90 28.4 98 10.485 58.01 28 30 48.825 0.02 0.325 3.25 20.9 18 3.406 3.312 94 28.5 98 10.71 58.38 28 30 49.6 0.025 0.35 1 20.9

Avg.= 90 28.4 10.485 58.01 28 30 48.825 0.02 0.325 3.25 20.9 STDEV= ± 4.00 0.1 0.225 0.37 0 0 0.775 0.005 0.025 2.25 0 19 3.406 3.308 98 28 98 10.8 60.98

5.5

28 30 50.5 0.06 0.35 0.5 20.9 20 3.406 3.312 94 28.25 98 10.85 59.9 28.5 30 50.5 0.06 0.35 0.5 20.9 21 3.406 3.316 90 28.5 98 10.9 58.82 29 30 50.5 0.06 0.35 0.5 20.9

Avg.= 94 28.25 10.85 59.9 28.5 30 50.5 0.06 0.35 0.5 20.9

STDEV= ± 4.00 0.25 0.05 1.08 0.5 0 0 0 6.8E-17 0 0

22 3.406 3.32 86 29.5 98 10.63 59.35

6

29 30 52.95 0.115 0.3 0 20.9 23 3.406 3.318 88 29.65 98 10.74 59.47 29 30 53.4 0.125 0.35 0 20.9 24 3.406 3.316 90 29.8 98 10.85 59.59 29 30 53.85 0.135 0.4 0 20.9

Avg.= 88 29.65 10.74 59.47 29 30 53.4 0.125 0.35 0 20.9 STDEV= ± 2.00 0.15 0.11 0.12 0 0 0.45 0.01 0.05 0 0 25 3.406 3.322 84 31 98 10.86 58.5

6.5

29 31 50.85 0.14 0.3 0 20.9 26 3.406 3.3225 83.5 31.1 98 10.835 59.01 29.5 31 50.875 0.135 0.3 0 20.9 27 3.406 3.323 83 31.2 98 10.81 59.52 30 31 50.9 0.13 0.3 0 20.9

Avg.= 83.5 31.1 10.835 59.01 29.5 31 50.875 0.135 0.3 0 20.9 STDEV= ± 0.50 0.1 0.025 0.51 0.5 0 0.025 0.005 0 0 0 28 3.406 3.296 110 30 98 11.3 63.66

7

29 31 55.5 0.125 0.3 6 20.9 29 3.406 3.304 102 30.5 98 11.2 63.165 29 31 55.1 0.125 0.3 8.25 20.9 30 3.406 3.312 94 31 98 11.1 62.67 29 31 54.7 0.125 0.3 10.5 20.9

Avg.= 102 30.5 11.2 63.165 29 31 55.1 0.125 0.3 8.25 20.9 STDEV= ± 8.00 0.5 0.1 0.495 0 0 0.4 0 0 2.25 0 31 3.406 3.331 75 31.3 98 11.2 60.47

7.5

29 31 52.85 0.13 0.3 3.5 20.9 32 3.406 3.329 77 30.85 98 11.2 60.385 29 30.5 53.2 0.13 0.3 1.75 20.9 33 3.406 3.327 79 30.4 98 11.2 60.3 29 30 53.55 0.13 0.3 0 20.9

Avg.= 77 30.85 11.2 60.385 29 30.5 53.2 0.13 0.3 1.75 20.9

STDEV= ± 2.00 0.45 2.2E-15 0.085 0 0.5 0.35 0 0 1.75 0

Appendix A Experimental data sheet

110

Table A 1.16 : Experimental data for Finned pot with Shield at 14 mbar NG pressure.

1

16 .04 .18

3.525 3.401 124 26.6 98 12.8 74.4

2.5

28 29 43.9 0.08 0.14 420 20.9 2 3.525 3.407 118 27.1 98 12.55 72.485 28 29 45.025 0.085 0.17 425 20.9 3 3.525 3.413 112 27.6 98 12.3 70.57 28 29 46.15 0.09 0.2 430 20.9

Avg.= 118 27.1 12.55 72.485 28 29 45.025 0.085 0.17 425 20.9

STDEV= ± 6.00 0.5 0.25 1.915 0 0 1.125 0.005 0.03 5 0 4 3.525 3.422 103 27.2 98 11.8 62.78

3

29 30 48 0.11 0.18 390 20.9 5 3.525 3.425 100 27.25 98 11.825 62.39 29 30 48.025 0.1175 0.2 407.5 20.9 6 3.525 3.428 97 27.3 98 11.85 62 29 30 48.05 0.125 0.22 425 20.9

Avg.= 100 27.25 11.825 62.39 29 30 48.025 0.1175 0.2 407.5 20.9

STDEV= ± 3.00 0.05 0.025 0.39 0 0 0.025 0.0075 0.02 17.5 0 7 3.525 3.4 125 27.5 98 12 64.68

3.5

29 30 47.35 0.13 0.175 330 20.9 8 3.525 3.4115 113.5 27.3 98 11.8 62.925 29.5 30.5 47.55 0.1325 0.1775 310 20.9 9 3.525 3.423 102 27.1 98 11.6 61.17 30 31 47.75 0.135 0.18 290 20.9

Avg.= 113.5 27.3 11.8 62.925 29.5 30.5 47.55 0.1325 0.1775 310 20.9

STDEV= ± 11.50 0.2 0.2 1.755 0.5 0.5 0.2 0.0025 0.0025 20 0 10 3.525 3.429 96 28 98 11.6 60.93

4

30 31 47.95 0.135 0.1 60 20.9 11 3.525 3.427 98 27.75 98 11.75 61.155 30 31 48.85 0.1475 0.1 62.5 20.9 12 3.525 3.425 100 27.5 98 11.9 61.38 30 31 49.75 0.16 0.1 65 20.9

Avg.= 98 27.75 11.75 61.155 30 31 48.85 0.1475 0.1 62.5 20.9

STDEV= ± 2.00 0.25 0.15 0.225 0 0 0.9 0.0125 1.7E-17 2.5 0

13 3.525 3.407 118 27.7 98 11.88 64.75

4.5

30 31 50.25 0.175 0.1 26 20.9 14 3.525 3.414 111 27.75 98 11.68 63.35 30 31 49.175 0.1725 0.15 23 20.9 15 3.525 3.421 104 27.8 98 11.48 61.95 30 31 48.1 0.17 0.2 20 20.9

Avg.= 111 27.75 11.68 63.35 30 31 49.175 0.1725 0.15 23 20.9

STDEV= ± 7.00 0.05 0.2 1.4 0 0 1.075 0.0025 0.05 3 0 16 3.525 3.428 97 27.7 98 12.3 65.26 5 31 31.5 48.7 0.205 0.3 2 20.9 17 3.525 3.4315 93.5 27.6 98 11.8 62.03 31 31.5 49.5 0.2075 0.3 1.5 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 14 and Vstc = 10.8

Appendix A Experimental data sheet

111

18

3.525 3.435 90 27.5 98 11.3 58.8 31 31.5 50.3 0.21 0.3 1 20.9

Avg.= 93.5 27.6 11.8 62.03 31 31.5 49.5 0.2075 0.3 1.5 20.9

STDEV= ± 3.50 0.1 0.5 3.23 0 0 0.8 0.0025 0 0.5 0 19 3.525 3.424 101 32 98 11.11 60.3

5.5

31 31.5 51.05 0.2 0.2 1 20.9 20 3.525 3.413 112 32 98 11.345 62.325 31 31.5 51.05 0.2 0.25 1.5 20.9 21 3.525 3.402 123 32 98 11.58 64.35 31 31.5 51.05 0.2 0.3 2 20.9

Avg.= 112 32 11.345 62.325 31 31.5 51.05 0.2 0.25 1.5 20.9

STDEV= ± 11.00 0 0.235 2.025 0 0 8.7E-15

3.4E-17 0.05 0.5 0

22 3.525 3.405 120 34 98 11.3 62.84

6

31 31.5 50.7 0.21 0.3 0 20.9 23 3.525 3.4075 117.5 34 98 11.275 62.525 31 31.5 50.6 0.21 0.275 1 20.9 24 3.525 3.41 115 34 98 11.25 62.21 31 31.5 50.5 0.21 0.25 2 20.9

Avg.= 117.5 34 11.275 62.525 31 31.5 50.6 0.21 0.275 1 20.9

STDEV= ± 2.50 0 0.025 0.315 0 0 0.1 0 0.025 1 0 25 3.525 3.385 134 32 98 11.6 67

6.5

31 31 51.15 0.2 0.3 5 20.9 26 3.525 3.379 140 32 98 11.8 68.295 31 31 51.05 0.195 0.3 5 20.9 27 3.525 3.385 146 32 98 12 69.59 31 31 50.95 0.19 0.3 5 20.9

Avg.= 140 32 11.8 68.295 31 31 51.05 0.195 0.3 5 20.9

STDEV= ± 6.00 0 0.2 1.295 0 0 0.1 0.005 0 0 0 28 3.525 3.397 128 32 98 12.38 68.29

7

31 31 52.45 0.175 0.3 6 20.9 29 3.525 3.411 114 32 98 12.155 65.88 30.5 31 52.3 0.17 0.3 6 20.9 30 3.525 3.425 100 32 98 11.93 63.47 30 31 52.15 0.165 0.3 6 20.9

Avg.= 114 32 12.155 65.88 30.5 31 52.3 0.17 0.3 6 20.9

STDEV= ± 14.00 0 0.225 2.41 0.5 0 0.15 0.005 0 0 0 31 3.525 3.423 102 34.3 98 12.8 74.69

7.5

30 31 53.5 0.18 0.3 4.5 20.9 32 3.525 3.43 95 33.35 98 12.1 63.975 30 31 52.375 0.175 0.3 4.5 20.9 33 3.525 3.437 88 32.4 98 11.4 53.26 30 31 51.25 0.17 0.3 4.5 20.9

Avg.= 95 33.35 12.1 63.975 30 31 52.375 0.175 0.3 4.5 20.9

STDEV= ± 7.00 0.95 0.7 10.715 0 0 1.125 0.005 0 0 0

Appendix A Experimental data sheet

112

Table A 1.17: Experimental data for flat bottom pot without Shield at 18 mbar NG Pressure.

1

24. 03. 18

and

25. 03. 18

3.406 3.335 71 27.5 98 9.9 56.1

2.5

28 30 55.25 0.255 0.3 32 20.9 2 3.406 3.331 75 28.65 98 9.785 54.97 28 30 54.3 0.2525 0.35 32 20.9 3 3.406 3.327 79 29.8 98 9.67 53.84 28 30 53.35 0.25 0.4 32 20.9

Avg.= 75 28.65 9.785 54.97 28 30 54.3 0.2525 0.35 32 20.9 STDEV= ± 4.00 1.15 0.115 1.13 0 0 0.95 0.0025 0.05 0 0

4 3.406 3.332 74 30 98 9.81 54.9

3

29 30 53.1 0.245 0.3 14.5 20.9 5 3.406 3.3295 76.5 30.5 98.5 9.835 55.125 29.25 30 54.325 0.2475 0.35 15.5 20.9 6 3.406 3.327 79 31 99 9.86 55.35 29.5 30 55.55 0.25 0.4 16.5 20.9

Avg.= 76.5 30.5 9.835 55.125 29.25 30 54.325 0.2475 0.35 15.5 20.9 STDEV= ± 2.50 0.5 0.025 0.225 0.25 0 1.225 0.0025 0.05 1 0

7 3.406 3.333 73 30.8 98 10 56.2

3.5

29.5 30 54.45 0.255 0.4 6.5 20.9 8 3.406 3.327 79 31.5 98.5 10.115 56.575 29.5 30.5 55.75 0.2525 0.4 6.5 20.9 9 3.406 3.321 85 32.2 99 10.23 56.95 29.5 31 57.05 0.25 0.4 6.5 20.9

Avg.= 79 31.5 10.115 56.575 29.5 30.5 55.75 0.2525 0.4 6.5 20.9

STDEV= ± 6.00 0.7 0.115 0.375 0 0.5 1.3 0.0025 6.8E-17 0 0

10 3.406 3.327 79 32 98 10.58 59.21

4

29 31 57.2 0.26 0.3 2 20.9 11 3.406 3.3295 76.5 32.1 98 10.445 58.455 29 31 57.375 0.26 0.3 1.5 20.9 12 3.406 3.332 74 32.2 98 10.31 57.7 29 31 57.55 0.26 0.3 1 20.9

Avg.= 76.5 32.1 10.445 58.455 29 31 57.375 0.26 0.3 1.5 20.9 STDEV= ± 2.50 0.1 0.135 0.755 0 0 0.175 0 0 0.5 0

13 3.406 3.318 88 32.2 98 11.18 63.1

4.5

29 31 58.85 0.27 0.4 0 20.9 14 3.406 3.325 81 32.2 98 11.015 62.15 29.5 31.25 59.375 0.265 0.4 0 20.9 15 3.406 3.332 74 32.2 98 10.85 61.2 30 31.5 59.9 0.26 0.4 0 20.9

Avg.= 81 32.2 11.015 62.15 29.5 31.25 59.375 0.265 0.4 0 20.9

STDEV= ± 7.00 0 0.165 0.95 0.5 0.25 0.525 0.005 6.8E-17 0 0

16 3.406 3.321 85 31.6 98 11.26 66.5 5 29.5 30 56.7 0.03 0.3 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 18 and Vstc = 10.57

Appendix A Experimental data sheet

113

17 3.406 3.315 91 31.95 98 11.43 66.375 29.5 30.5 58.125 0.04 0.35 0 20.9 18 3.406 3.309 97 32.3 98 11.6 66.25 29.5 31 59.55 0.05 0.4 0 20.9

Avg.= 91 31.95 11.43 66.375 29.5 30.5 58.125 0.04 0.35 0 20.9 STDEV= ± 6.00 0.35 0.17 0.125 0 0.5 1.425 0.01 0.05 0 0

19 3.406 3.306 100 32 98 12.63 71.61

5.5

29 31 59.75 0.07 0.3 0 20.9 20 3.406 3.314 92 31.85 98.1 12.315 69.88 29.25 31 59.85 0.075 0.3 0 20.9 21 3.406 3.322 84 31.7 98.2 12 68.15 29.5 31 59.95 0.08 0.3 0 20.9

Avg.= 92 31.85 12.315 69.88 29.25 31 59.85 0.075 0.3 0 20.9 STDEV= ± 8.00 0.15 0.315 1.73 0.25 0 0.1 0.005 0 0 0

22 3.406 3.326 80 31.3 98 12.81 72.05

6

29.5 30.5 60.15 0.09 0.3 0 20.9 23 3.406 3.322 84 31.25 98 12.895 72.235 29.5 30.25 60.125 0.0925 0.3 0 20.9 24 3.406 3.318 88 31.2 98 12.98 72.42 29.5 30 60.1 0.095 0.3 0 20.9

Avg.= 84 31.25 12.895 72.235 29.5 30.25 60.125 0.0925 0.3 0 20.9 STDEV= ± 4.00 0.05 0.085 0.185 0 0.25 0.025 0.0025 0 0 0

25 3.406 3.316 90 30.7 98 13.57 76.45

6.5

29.5 30 60.95 0.1 0.3 0 20.9 26 3.406 3.312 94 30.25 98 13.59 77.045 29.25 30 60.95 0.1 0.3 0 20.9 27 3.406 3.308 98 29.8 98 13.61 77.64 29 30 60.95 0.1 0.3 0 20.9

Avg.= 94 30.25 13.59 77.045 29.25 30 60.95 0.1 0.3 0 20.9

STDEV= ± 4.00 0.45 0.02 0.595 0.25 0 8.7E-15

1.7E-17 0 0 0

28 3.406 3.316 90 31 98 14.12 79.4

7

29.5 30 61.2 0.11 0.3 0 20.9 29 3.406 3.314 92 31 98 14.125 79.45 29.5 30 61.2 0.11 0.3 0 20.9 30 3.406 3.312 94 31 98.0 14.13 79.5 29.5 30 61.2 0.11 0.3 0 20.9

Avg.= 92 31 14.125 79.45 29.5 30 61.2 0.11 0.3 0 20.9

STDEV= ± 2.00 0 0.005 0.05 0 0 8.7E-15 0 0 0 0

31 3.406 3.298 108 31 98.2 15.1 84.88

7.5

29 30 60.7 0.11 0.3 0 20.9 32 3.406 3.299 107 31 98.1 15.05 84.84 29 30 60.7 0.11 0.3 0 20.9 33 3.406 3.3 106 31 98 15 84.8 29 30 60.7 0.11 0.3 0 20.9

Avg.= 107 31 15.05 84.84 29 30 60.7 0.11 0.3 0 20.9

STDEV= ± 1.00 0 0.05 0.04 0 0 8.7E-15 0 0 0 0

Appendix A Experimental data sheet

114

Table A 1.18 : Experimental data for Finned pot without Shield at 18 mbar NG pressure.

1

23 .05 .18

And 24 .05 .18

3.525 3.451 74 30 98 11.7 65.36

2.5

28 30 49.85 0.25 0.25 405 20.9 2 3.525 3.448 77 30.05 98 11.775 65.605 28.5 30 50.125 0.245 0.275 428 20.9 3 3.525 3.445 80 30.1 98 11.85 65.85 29 30 50.4 0.24 0.3 451 20.9

Avg.= 77 30.05 11.775 65.605 28.5 30 50.125 0.245 0.275 428 20.9

STDEV= ± 3.00 0.05 0.075 0.245 0.5 0 0.275 0.005 0.025 23 0 4 3.525 3.441 84 30.1 98 11.56 65.55

3

29 30 51.9 0.25 0.25 232 20.9 5 3.525 3.443 82 30.55 98 11.455 64.9 29.25 30.25 51.9 0.25 0.25 232 20.9 6 3.525 3.445 80 31 98 11.35 64.25 29.5 30.5 51.9 0.25 0.25 232 20.9

Avg.= 82 30.55 11.455 64.9 29.25 30.25 51.9 0.25 0.25 232 20.9

STDEV= ± 2.00 0.45 0.105 0.65 0.25 0.25 5E-15 0 0 0 0 7 3.525 3.427 98 31.4 98 11.7 65.05

3.5

29.5 31 54.05 0.26 0.25 197.5 20.9 8 3.525 3.421 104 31.6 98 11.85 65.845 29.5 31 53.75 0.26 0.275 200.75 20.9 9 3.525 3.415 110 31.8 98 12 66.64 29.5 31 53.45 0.26 0.3 204 20.9

Avg.= 104 31.6 11.85 65.845 29.5 31 53.75 0.26 0.275 200.75 20.9

STDEV= ± 6.00 0.2 0.15 0.795 0 0 0.3 0 0.025 3.25 0 10 3.525 3.443 82 31.5 98 11.48 64.15

4

29.5 31 55.1 0.255 0.23 120.5 20.9 11 3.525 3.441 84 31.65 98 11.59 64.9 29.5 31 54.875 0.2625 0.265 135.75 20.9 12 3.525 3.439 86 31.8 98 11.7 65.65 29.5 31 54.65 0.27 0.3 151 20.9

Avg.= 84 31.65 11.59 64.9 29.5 31 54.875 0.2625 0.265 135.75 20.9

STDEV= ± 2.00 0.15 0.11 0.75 0 0 0.225 0.0075 0.035 15.25 0 13 3.525 3.429 96 32.5 98 11.95 67

4.5

30 32 57.25 0.27 0.35 145 20.9 14 3.525 3.425 100 32.65 98 12.065 67.875 30 31.5 57.325 0.27 0.375 142.5 20.9 15 3.525 3.421 104 32.8 98 12.18 68.75 30 31 57.4 0.27 0.4 140 20.9

Avg.= 100 32.65 12.065 67.875 30 31.5 57.325 0.27 0.375 142.5 20.9

STDEV= ± 4.00 0.15 0.115 0.875 0 0.5 0.075 0 0.025 2.5 0 16 3.525 3.43 95 32.4 98 11.75 68.3

5 29.5 31 57.05 0.04 0.3 64 20.9

17 3.525 3.4235 101.5 32.45 98 12.055 69.47 29.65 31 56.975 0.05 0.3 67 20.9 18 3.525 3.417 108 32.5 98 12.36 70.64 29.8 31 56.9 0.06 0.3 70 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 18 and Vstc = 10.57

Appendix A Experimental data sheet

115

Avg.= 101.5 32.45 12.055 69.47 29.65 31 56.975 0.05 0.25 67 20.9

STDEV= ± 6.50 0.05 0.305 1.17 0.15 0 0.075 0.01 0 3 0 19 3.525 3.429 96 32.1 98 12.55 70.95

5.5

29.8 31 56.7 0.07 0.4 26 20.9 20 3.525 3.421 104 31.8 98.1 12.865 72.21 29.8 31 56.5 0.0775 0.4 23.75 20.9 21 3.525 3.413 112 31.5 98.2 13.18 73.47 29.8 31 56.3 0.085 0.4 21.5 20.9

Avg.= 104 31.8 12.865 72.21 29.8 31 56.5 0.0775 0.4 23.75 20.9

STDEV= ± 8.00 0.3 0.315 1.26 0 0 0.2 0.0075 6.8E-17 2.25 0

22 3.525 3.408 117 31.1 98 13.63 76.01

6

29.5 30 57.5 0.09 0.4 7.5 20.9 23 3.525 3.4145 110.5 31 98 13.465 75.405 29.5 30 58.5 0.095 0.4 7.25 20.9 24 3.525 3.421 104 30.9 98 13.3 74.8 29.5 30 59.5 0.1 0.4 7 20.9

Avg.= 110.5 31 13.465 75.405 29.5 30 58.5 0.095 0.4 7.25 20.9

STDEV= ± 6.50 0.1 0.165 0.605 0 0 1 0.005 6.8E-17 0.25 0

25 3.525 3.412 113 30.6 98 13.85 77.55

6.5

29.5 30 58.25 0.105 0.4 1 20.9 26 3.525 3.413 112 30.55 98 13.835 77.515 29.5 30 58.25 0.105 0.4 0.5 20.9 27 3.525 3.414 111 30.5 98 13.82 77.48 29.5 30 58.25 0.105 0.4 0 20.9

Avg.= 112 30.55 13.835 77.515 29.5 30 58.25 0.105 0.4 0.5 20.9

STDEV= ± 1.00 0.05 0.015 0.035 0 0 0 1.7E-17

6.8E-17 0.5 0

28 3.525 3.417 108 30.2 98 14 78.55

7

29.5 30 58.3 0.1 0.4 0 20.9 29 3.525 3.418 107 30.15 98 14 78.525 29.5 30 58.3 0.1 0.4 0 20.9 30 3.525 3.419 106 30.1 98 14 78.5 29.5 30 58.3 0.1 0.4 0 20.9

Avg.= 107 30.15 14 78.525 29.5 30 58.3 0.1 0.4 0 20.9

STDEV= ± 1.00 0.05 0 0.025 0 0 8.7E-15

1.7E-17

6.8E-17 0 0

31 3.525 3.408 117 29.9 98 14.45 81.82

7.5

29 30 59.3 0.1 0.4 0 20.9 32 3.525 3.409 116 29.9 98 14.425 81.805 29 30 60.075 0.1 0.4 0 20.9 33 3.525 3.41 115 29.9 98 14.4 81.79 29 30 60.85 0.1 0.4 0 20.9

Avg.= 116 29.9 14.425 81.805 29 30 60.075 0.1 0.4 0 20.9

STDEV= ± 1.00 4.4E-15 0.025 0.015 0 0 0.775 1.7E-

17 6.8E-

17 0 0

Appendix A Experimental data sheet

116

Table A 1.19 : Experimental data for flat bottom pot with Shield at 18 mbar NG pressure.

1

4 .

10 .

18

3.406 3.291 115 29 98 10.7 65.34

2.5

29 30 46.8 0.09 0.108 300 20.9 2 3.406 3.3005 105.5 29 98 10.6 63.25 29 29.5 46.25 0.085 0.154 302.75 20.9 3 3.406 3.31 96 29 98 10.5 61.16 29 29 45.7 0.08 0.2 305.5 20.9

Avg.= 105.5 29 10.6 63.25 29 29.5 46.25 0.085 0.154 302.75 20.9 STDEV= ± 9.50 0 0.1 2.09 0 0.5 0.55 0.005 0.046 2.75 0

4 3.406 3.328 78 28.8 98 9.56 53.68

3

29 29 48.55 0.07 0.2 96 20.9 5 3.406 3.325 81 29.3 98 9.605 54.21 28.5 29 48.075 0.065 0.19 103 20.9 6 3.406 3.322 84 29.8 98 9.65 54.74 28 29 47.6 0.06 0.18 110 20.9

Avg.= 81 29.3 9.605 54.21 28.5 29 48.075 0.065 0.19 103 20.9 STDEV= ± 3.00 0.5 0.045 0.53 0.5 0 0.475 0.005 0.01 7 0

7 3.406 3.337 69 28.8 98 9.68 53.35

3.5

28 30 48.9 0.145 0.18 60 20.9 8 3.406 3.335 71 28.65 98 9.73 53.68 28.5 30 49.175 0.1625 0.215 55 20.9 9 3.406 3.333 73 28.5 98 9.78 54.01 29 30 49.45 0.18 0.25 50 20.9

Avg.= 71 28.65 9.73 53.68 28.5 30 49.175 0.1625 0.215 55 20.9 STDEV= ± 2.00 0.15 0.05 0.33 0.5 0 0.275 0.0175 0.035 5 0 10 3.406 3.322 84 30 98 9.63 54.75

4

29 30 49.25 0.18 0.35 41 20.9 11 3.406 3.325 81 29.75 98 9.63 54.57 29 30.5 49.3 0.19 0.375 40 20.9 12 3.406 3.328 78 29.5 98 9.63 54.39 29 31 49.35 0.2 0.4 39 20.9

Avg.= 81 29.75 9.63 54.57 29 30.5 49.3 0.19 0.375 40 20.9 STDEV= ± 3.00 0.25 0 0.18 0 0.5 0.05 0.01 0.025 1 0 13 3.406 3.332 74 29.6 98.2 9.9 55.3

4.5

29 31 49.75 0.2 0.4 19 20.9 14 3.406 3.335 71 29.55 98.1 9.8 54.96 29 31 49.725 0.21 0.4 16.5 20.9 15 3.406 3.338 68 29.5 98 9.7 54.62 29 31 49.7 0.22 0.4 14 20.9

Avg.= 71 29.55 9.8 54.96 29 31 49.725 0.21 0.4 16.5 20.9

STDEV= ± 3.00 0.05 0.1 0.34 0 0 0.025 0.01 6.8E-17 2.5 0

16 3.406 3.326 80 29.2 98 10.21 57.45 5 29 31 52.8 0.225 0.4 0 20.9 17 3.406 3.3295 76.5 29.05 98 10.22 57.22 29.25 31.25 52.875 0.2275 0.4 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 18 and Vstc = 10.57

Appendix A Experimental data sheet

117

18 3.406 3.333 73 28.9 98 10.23 56.99 29.5 31.5 52.95 0.23 0.4 0 20.9 Avg.= 76.5 29.05 10.22 57.22 29.25 31.25 52.875 0.2275 0.4 0 20.9

STDEV= ± 3.50 0.15 0.01 0.23 0.25 0.25 0.075 0.0025 6.8E-17 0 0

19 3.406 3.334 72 29.6 98 10.35 57.49

5.5

30 31.5 53.25 0.235 0.4 0 20.9 20 3.406 3.3305 75.5 29.55 98 10.425 57.91 30 31.5 53.45 0.2475 0.325 0 20.9 21 3.406 3.327 79 29.5 98 10.5 58.33 30 31.5 53.65 0.26 0.25 0 20.9

Avg.= 75.5 29.55 10.425 57.91 30 31.5 53.45 0.2475 0.325 0 20.9 STDEV= ± 3.50 0.05 0.075 0.42 0 0 0.2 0.0125 0.075 0 0 22 3.406 3.322 84 28.3 98.3 10.8 61.11

6

30 31 54.3 0.035 0.25 0 20.9 23 3.406 3.325 81 28.3 98.15 10.75 60.575 30 31 53.475 0.0425 0.25 0 20.9 24 3.406 3.328 78 28.3 98 10.7 60.04 30 31 52.65 0.05 0.25 0 20.9

Avg.= 81 28.3 10.75 60.575 30 31 53.475 0.0425 0.25 0 20.9 STDEV= ± 3.00 0 0.05 0.535 0 0 0.825 0.0075 0 0 0 25 3.406 3.333 73 29.1 98 10.75 60.11

6.5

30 31 53.6 0.05 0.3 0 20.9 26 3.406 3.328 78 29.35 98 10.675 60.065 30 31.25 53.875 0.0475 0.3 0 20.9 27 3.406 3.323 83 29.6 98 10.6 60.02 30 31.5 54.15 0.045 0.3 0 20.9

Avg.= 78 29.35 10.675 60.065 30 31.25 53.875 0.0475 0.3 0 20.9 STDEV= ± 5.00 0.25 0.075 0.045 0 0.25 0.275 0.0025 0 0 0 28 3.406 3.31 96 29 98 11.08 63.76

7

30 31 55.7 0.06 0.3 0 20.9 29 3.406 3.314 92 28.75 98 10.98 63.505 30 31 56.175 0.0625 0.3 0 20.9 30 3.406 3.318 88 28.5 98 10.88 63.25 30 31 56.65 0.065 0.3 0 20.9

Avg.= 92 28.75 10.98 63.505 30 31 56.175 0.0625 0.3 0 20.9 STDEV= ± 4.00 0.25 0.1 0.255 0 0 0.475 0.0025 0 0 0 31 3.406 3.33 76 28.9 98 11 61.97

7.5

30 31 53.55 0.05 0.3 0 20.9 32 3.406 3.332 74 28.9 98 10.95 61.585 30 31 53.65 0.05 0.3 0 20.9 33 3.406 3.334 72 28.9 98 10.9 61.2 30 31 53.75 0.05 0.3 0 20.9

Avg.= 74 28.9 10.95 61.585 30 31 53.65 0.05 0.3 0 20.9

STDEV= ± 2.00 4.4E-15 0.05 0.385 0 0 0.1 8.5E-

18 0 0 0

Appendix A Experimental data sheet

118

Table A 1.20 : Experimental data for Finned pot with Shield at 18 mbar NG pressure.

1 3.525 3.397 128 31.9 98 11.7 72.51

2.5

30 30 45.75 0.17 0.15 380 20.9 2 3.525 3.4035 121.5 32 98 11.55 70.49 30 30 45.45 0.1625 0.15 400 20.9 3 3.525 3.41 115 32.1 98 11.4 68.47 30 30 45.15 0.155 0.15 420 20.9

Avg.= 121.5 32 11.55 70.49 30 30 45.45 0.1625 0.15 400 20.9 STDEV= ± 6.50 0.1 0.15 2.02 0 0 0.3 0.0075 0 20 0 4 3.525 3.428 97 32.3 98 10.5 60.24

3

30 30 47.75 0.145 0.13 300 20.9 5 3.525 3.4245 100.5 33 98 10.65 60.94 30 30 47.875 0.14 0.125 295 20.9 6 3.525 3.421 104 33.7 98 10.8 61.64 30 30 48 0.135 0.12 290 20.9

Avg.= 100.5 33 10.65 60.94 30 30 47.875 0.14 0.125 295 20.9 STDEV= ± 3.50 0.7 0.15 0.7 0 0 0.125 0.005 0.005 5 0 7 3.525 3.391 134 28.8 98 11.41 64.2

3.5

28 29 48.25 0.11 0.18 220 20.9 8 3.525 3.399 126 28.85 98 11.395 64 28 29 48.15 0.115 0.14 235 20.9 9 3.525 3.407 118 28.9 98 11.38 63.8 28 29 48.05 0.12 0.1 250 20.9

Avg.= 126 28.85 11.395 64 28 29 48.15 0.115 0.14 235 20.9 STDEV= ± 8.00 0.05 0.015 0.2 0 0 0.1 0.005 0.04 15 0 10 3.525 3.422 103 30.5 98 11.15 60.36

4

28 30 47.15 0.125 0.11 80 20.9 11 3.525 3.42 105 30.35 98 11.065 60.37 28 30 47.75 0.13 0.105 75 20.9 12 3.525 3.418 107 30.2 98 10.98 60.38 28 30 48.35 0.135 0.1 70 20.9 Avg.= 105 30.35 11.065 60.37 28 30 47.75 0.13 0.105 75 20.9 STDEV= ± 2.00 0.15 0.085 0.01 0 0 0.6 0.005 0.005 5 0 13 3.525 3.425 100 30.5 98 10.8 60.2

4.5

29 30 48.05 0.16 0.17 45 20.9 14 3.525 3.423 102 30.75 98 11 60.325 29 30 48.55 0.1625 0.165 37.5 20.9 15 3.525 3.421 104 31 98 11.2 60.45 29 30 49.05 0.165 0.16 30 20.9 Avg.= 102 30.75 11 60.325 29 30 48.55 0.1625 0.165 37.5 20.9 STDEV= ± 2.00 0.25 0.2 0.125 0 0 0.5 0.0025 0.005 7.5 0 16 3.525 3.417 108 27.8 98 11.6 63.64

5 28 27 47.6 0.175 0.3 1.5 20.9

17 3.525 3.4185 106.5 28.05 98 11.4 63.26 28 27 47.125 0.18 0.3 0.75 20.9 18 3.525 3.42 105 28.3 98 11.2 62.88 28 27 46.65 0.185 0.3 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 18 and Vstc = 10.57

Appendix A Experimental data sheet

119

Avg.= 106.5 28.05 11.4 63.26 28 27 47.125 0.18 0.3 0.75 20.9 STDEV= ± 1.50 0.25 0.2 0.38 0 0 0.475 0.005 0 0.75 0 19 3.525 3.418 107 26.6 98 11.95 64.84

5.5

27 27 45.75 0.185 0.3 0 20.9 20 3.525 3.423 102 26.8 98 11.675 63.895 27 27 46.5 0.1875 0.3 0 20.9 21 3.525 3.428 97 27 98 11.4 62.95 27 27 47.25 0.19 0.3 0 20.9 Avg.= 102 26.8 11.675 63.895 27 27 46.5 0.1875 0.3 0 20.9 STDEV= ± 5.00 0.2 0.275 0.945 0 0 0.75 0.0025 0 0 0 22 3.525 3.43 95 28 98 11.8 63.22

6

27 27 47.05 0.18 0.3 0 20.9 23 3.525 3.4295 95.5 28.65 98 11.515 62.775 27 27 47.275 0.185 0.3 0 20.9 24 3.525 3.429 96 29.3 98 11.23 62.33 27 27 47.5 0.19 0.3 0 20.9 Avg.= 95.5 28.65 11.515 62.775 27 27 47.275 0.185 0.3 0 20.9 STDEV= ± 0.50 0.65 0.285 0.445 0 0 0.225 0.005 0 0 0 25 3.525 3.427 98 28.3 98 11.9 64.7

6.5

27 28 48.1 0.19 0.3 0 20.9 26 3.525 3.432 93 28.45 98 11.7 63.675 27 28 47.8 0.1875 0.3 0 20.9 27 3.525 3.437 88 28.6 98 11.5 62.65 27 28 47.5 0.185 0.3 0 20.9 Avg.= 93 28.45 11.7 63.675 27 28 47.8 0.1875 0.3 0 20.9 STDEV= ± 5.00 0.15 0.2 1.025 0 0 0.3 0.0025 0 0 0 28 3.525 3.427 98 29.3 98 11.81 66.14

7

27 28 48.9 0.19 0.3 0 20.9 29 3.525 3.418 107 29.15 98 11.905 66.315 27 28 50.025 0.185 0.3 0 20.9 30 3.525 3.409 116 29 98 12 66.49 27 28 51.15 0.18 0.3 0 20.9 Avg.= 107 29.15 11.905 66.315 27 28 50.025 0.185 0.3 0 20.9 STDEV= ± 9.00 0.15 0.095 0.175 0 0 1.125 0.005 0 0 0 31 3.525 3.418 107 29.2 98 11.96 67.89

7.5

27 28 48.95 0.18 0.3 0 20.9 32 3.525 3.417 108 28.9 98 12.13 67.31 27 28 49.975 0.19 0.3 0 20.9 33 3.525 3.416 109 28.6 98 12.3 66.73 27 28 51 0.2 0.3 0 20.9 Avg.= 108 28.9 12.13 67.31 27 28 49.975 0.19 0.3 0 20.9 STDEV= ± 1.00 0.3 0.17 0.58 0 0 1.025 0.01 0 0 0

Appendix A Experimental data sheet

120

Table A 1.21: Experimental data for flat bottom pot without Shield at 20 mbar NG Pressure.

1

26 . 03 . 18

3.406 3.333 73 30.8 98 9.4 56.36

2.5

29 29 53.65 0.075 0.3 34 20.9 2 3.406 3.3325 73.5 30.7 98 9.24 54.615 29 29.5 53.65 0.075 0.3 36.25 20.9 3 3.406 3.332 74 30.6 98 9.08 52.87 29 30 53.65 0.075 0.3 38.5 20.9

Avg.= 73.5 30.7 9.24 54.615 29 29.5 53.65 0.075 0.3 36.25 20.9 STDEV= ± 0.50 0.1 0.16 1.745 0 0.5 0 0 0 2.25 0

4 3.406 3.332 74 31.1 98 9.45 54.77

3

29 30 55.45 0.075 0.35 23.5 20.9 5 3.406 3.3325 73.5 31.2 98 9.41 54.31 29 30.25 55.5 0.07 0.375 20.5 20.9 6 3.406 3.333 73 31.3 98 9.37 53.85 29 30.5 55.55 0.065 0.4 17.5 20.9

Avg.= 73.5 31.2 9.41 54.31 29 30.25 55.5 0.07 0.375 20.5 20.9 STDEV= ± 0.50 0.1 0.04 0.46 0 0.25 0.05 0.005 0.025 3 0

7 3.406 3.336 70 31.1 98 9.75 56.12

3.5

29 30.8 55.25 0.08 0.4 7.5 20.9 8 3.406 3.338 68 31.15 98 9.675 55.495 29.25 30.9 56.3 0.035 0.375 6.75 20.9 9 3.406 3.34 66 31.2 98 9.6 54.87 29.5 31 57.35 -0.01 0.35 6 20.9

Avg.= 68 31.15 9.675 55.495 29.25 30.9 56.3 0.035 0.375 6.75 20.9 STDEV= ± 2.00 0.05 0.075 0.625 0.25 0.1 1.05 0.045 0.025 0.75 0

10 3.406 3.34 66 31.1 98 10.2 58.18

4

29.8 31.3 58.25 0.05 0.4 2 20.9 11 3.406 3.339 67 31.15 98.1 10.18 58.365 29.8 31.3 58.325 0.055 0.4 2 20.9 12 3.406 3.338 68 31.2 98.2 10.16 58.55 29.8 31.3 58.4 0.06 0.4 2 20.9

Avg.= 67 31.15 10.18 58.365 29.8 31.3 58.325 0.055 0.4 2 20.9 STDEV= ± 1.00 0.05 0.02 0.185 0 0 0.075 0.005 6.8E-17 0 0

13 3.406 3.316 90 31.1 98 11.03 63.66

4.5

30 32 59.2 0.05 0.4 0 20.9 14 3.406 3.319 87 31.35 98 10.85 64.13 30 31.5 58.05 0.0275 0.35 0 20.9 15 3.406 3.322 84 31.6 98 10.67 64.6 30 31 56.9 0.005 0.3 0 20.9

Avg.= 87 31.35 10.85 64.13 30 31.5 58.05 0.0275 0.35 0 20.9 STDEV= ± 3.00 0.25 0.18 0.47 0 0.5 1.15 0.0225 0.05 0 0

16 3.406 3.33 76 32.2 98 11.12 65.06 5

30 31.5 59.75 -0.01 0.3 0 20.9 17 3.406 3.328 78 32.2 98 11.015 64.77 30 31.25 60.3 0.035 0.3 0 20.9 18 3.406 3.326 80 32.2 98 10.91 64.48 30 31 60.85 0.08 0.3 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 20 and Vstc = 10.8

Appendix A Experimental data sheet

121

Avg.= 78 32.2 11.015 64.77 30 31.25 60.3 0.035 0.3 0 20.9 STDEV= ± 2.00 0 0.105 0.29 0 0.25 0.55 0.045 0 0 0

19 3.406 3.308 98 32.2 98 12.28 72.28

5.5

30 31 60 0.12 0.3 0 20.9 20 3.406 3.315 91 32.35 98 11.925 69.91 29.75 30.5 60.35 0.13 0.35 0 20.9 21 3.406 3.322 84 32.5 98 11.57 67.54 29.5 30 60.7 0.14 0.4 0 20.9

Avg.= 91 32.35 11.925 69.91 29.75 30.5 60.35 0.13 0.35 0 20.9 STDEV= ± 7.00 0.15 0.355 2.37 0.25 0.5 0.35 0.01 0.05 0 0

22 3.406 3.336 70 32.4 98.2 12.03 69.52

6

29.5 30 61.1 0.11 0.4 0 20.9 23 3.406 3.332 74 32.4 98.1 12.105 69.89 29.5 30 60.675 0.1075 0.375 0 20.9 24 3.406 3.328 78 32.4 98 12.18 70.26 29.5 30 60.25 0.105 0.35 0 20.9

Avg.= 74 32.4 12.105 69.89 29.5 30 60.675 0.1075 0.375 0 20.9 STDEV= ± 4.00 0 0.075 0.37 0 0 0.425 0.0025 0.025 0 0

25 3.406 3.326 80 32 98 12.55 73.51

6.5

29 29.5 61.15 0.095 0.3 0 20.9 26 3.406 3.325 81 32 98 12.575 73.555 29 29.5 61.15 0.095 0.3 0 20.9 27 3.406 3.324 82 32 98 12.6 73.6 29 29.5 61.15 0.095 0.3 0 20.9

Avg.= 81 32 12.575 73.555 29 29.5 61.15 0.095 0.3 0 20.9

STDEV= ± 1.00 0 0.025 0.045 0 0 0 1.7E-17 0 0 0

28 3.406 3.316 90 30.5 98 13.57 79.75

7

29 29.5 62.6 0.08 0.3 0 20.9 29 3.406 3.314 92 30.95 98 13.535 79.725 29 29.5 62.6 0.08 0.3 0 20.9 30 3.406 3.312 94 31.4 98.0 13.5 79.7 29 29.5 62.6 0.08 0.3 0 20.9

Avg.= 92 30.95 13.535 79.725 29 29.5 62.6 0.08 0.3 0 20.9 STDEV= ± 2.00 0.45 0.035 0.025 0 0 0 0 0 0 0

31 3.406 3.296 110 30.5 98 14.55 86.55

7.5

29 29 63.15 0.08 0.3 0 20.9 32 3.406 3.294 112 30.35 98 14.575 86.575 29 29 63.15 0.08 0.3 0 20.9 33 3.406 3.292 114 30.2 98 14.6 86.6 29 29 63.15 0.08 0.3 0 20.9

Avg.= 112 30.35 14.575 86.575 29 29 63.15 0.08 0.3 0 20.9 STDEV= ± 2.00 0.15 0.025 0.025 0 0 0 0 0 0 0

Appendix A Experimental data sheet

122

Table A 1.22 : Experimental data for Finned pot without Shield at 20 mbar NG pressure.

1 22 .09 .18

And 23 .09 .18

3.525 3.445 80 32.1 98 11.2 66.49

2.5

28 30 49.8 0.08 0.2 427.5 20.9 2 3.525 3.448 77 32 98 11.1 65.925 28 30 50.425 0.075 0.225 412.75 20.9 3 3.525 3.451 74 31.9 98 11 65.36 28 30 51.05 0.07 0.25 398 20.9

Avg.= 77 32 11.1 65.925 28 30 50.425 0.075 0.225 412.75 20.9

STDEV= ± 3.00 0.1 0.1 0.565 0 0 0.625 0.005 0.025 14.75 0 4 3.525 3.449 76 31 98 11.05 65.5

3

29 30 52.35 0.07 0.25 330 20.9 5 3.525 3.447 78 31 98 11.1 65.805 29 30.25 51.9 0.0725 0.275 315.5 20.9 6 3.525 3.445 80 31 98 11.15 66.11 29 30.5 51.45 0.075 0.3 301 20.9

Avg.= 78 31 11.1 65.805 29 30.25 51.9 0.0725 0.275 315.5 20.9

STDEV= ± 2.00 0 0.05 0.305 0 0.25 0.45 0.0025 0.025 14.5 0 7 3.525 3.431 94 31.1 98 11.16 66.01

3.5

29 31 55.05 0.075 0.35 295 20.9 8 3.525 3.426 99 31.1 98 11.31 66.625 29.25 31.25 54.425 0.055 0.325 274.5 20.9 9 3.525 3.421 104 31.1 98 11.46 67.24 29.5 31.5 53.8 0.035 0.3 254 20.9

Avg.= 99 31.1 11.31 66.625 29.25 31.25 54.425 0.055 0.325 274.5 20.9

STDEV= ± 5.00 4.4E-15 0.15 0.615 0.25 0.25 0.625 0.02 0.025 20.5 0 10 3.525 3.443 82 31.3 98 11.43 66.02

4

29.7 31.5 55.95 0.055 0.4 258 20.9 11 3.525 3.44 85 31.15 98 11.47 66.655 29.8 31.5 56.325 0.0575 0.4 239.25 20.9 12 3.525 3.437 88 31 98 11.51 67.29 29.9 31.5 56.7 0.06 0.4 220.5 20.9

Avg.= 85 31.15 11.47 66.655 29.8 31.5 56.325 0.0575 0.4 239.25 20.9

STDEV= ± 3.00 0.15 0.04 0.635 0.1 0 0.375 0.0025 6.8E-17 18.75 0 13 3.525 3.437 88 31.6 98 11.73 67.9

4.5

30 32 57.25 0.03 0.4 130 20.9 14 3.525 3.435 90 31.65 98 11.6 67.855 30 32 57.25 0.03 0.4 171 20.9 15 3.525 3.433 92 31.7 98 11.47 67.81 30 32 57.25 0.03 0.4 212 20.9

Avg.= 90 31.65 11.6 67.855 30 32 57.25 0.03 0.4 171 20.9

STDEV= ± 2.00 0.05 0.13 0.045 0 0 0 0 6.8E-17 41 0 16 3.525 3.434 91 32 98 11.82 68.95

5 30 31.5 58.45 0.055 0.3 80 20.9

17 3.525 3.429 96 32.1 98 11.865 69.605 30 31.1 58.7 0.07 0.3 85 20.9 18 3.525 3.424 101 32.2 98 11.91 70.26 30 30.7 58.95 0.085 0.3 90 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 20 and Vstc = 10.8

Appendix A Experimental data sheet

123

Avg.= 96 32.1 11.865 69.605 30 31.1 58.7 0.07 0.3 85 20.9

STDEV= ± 5.00 0.1 0.045 0.655 0 0.4 0.25 0.015 0 5 0 19 3.525 3.431 94 32.5 98 12.07 70.67

5.5

29.5 30 59.25 0.15 0.35 42 20.9 20 3.525 3.4305 94.5 32.45 98 12.12 70.86 29.5 30 58.6 0.135 0.375 40 20.9 21 3.525 3.43 95 32.4 98 12.17 71.05 29.5 30 57.95 0.12 0.4 38 20.9

Avg.= 94.5 32.45 12.12 70.86 29.5 30 58.6 0.135 0.375 40 20.9

STDEV= ± 0.50 0.05 0.05 0.19 0 0 0.65 0.015 0.025 2 0

22 3.525 3.422 103 32 98.1 12.7 74.22

6

29.5 30 58 0.115 0.4 13 20.9

23 3.525 3.417 108 31.85 98.05 12.85 75.31 29.25 29.75 57.9 0.1075 0.4 13.5 20.9

24 3.525 3.412 113 31.7 98 13 76.4 29 29.5 57.8 0.1 0.4 14 20.9

Avg.= 108 31.85 12.85 75.31 29.25 29.75 57.9 0.1075 0.4 13.5 20.9

STDEV= ± 5.00 0.15 0.15 1.09 0.25 0.25 0.1 0.0075 6.8E-17 0.5 0 25 3.525 3.418 107 31 98 13.13 77.29

6.5

29 29 59.65 0.095 0.4 3.5 20.9 26 3.525 3.418 107 31 98 13.13 77.3 29 29 59.65 0.095 0.4 8.25 20.9 27 3.525 3.418 107 31 98 13.13 77.31 29 29 59.65 0.095 0.4 13 20.9

Avg.= 107 31 13.13 77.3 29 29 59.65 0.095 0.4 8.25 20.9

STDEV= ± 0.00 0 0 0.01 0 0 0 1.7E-17 6.8E-17 4.75 0

28 3.525 3.415 110 30.5 98 13.5 81.06

7

29 29 60.8 0.09 0.4 0 20.9 29 3.525 3.415 110 30.5 98 13.55 81.08 29 29 60.8 0.59 0.4 0 20.9 30 3.525 3.415 110 30.5 98 13.6 81.1 29 29 60.8 1.09 0.4 0 20.9

Avg.= 110 30.5 13.55 81.08 29 29 60.8 0.59 0.4 0 20.9

STDEV= ± 0.00 0 0.05 0.02 0 0 8.7E-15 0.5 6.8E-17 0 0

31 3.525 3.391 134 29.9 98 14.2 86.28

7.5

29 29 59.05 0.07 0.4 0 20.9 32 3.525 3.391 134 29.9 98 14.225 86.29 29 29 59.05 0.07 0.4 0 20.9 33 3.525 3.391 134 29.9 98 14.25 86.3 29 29 59.05 0.07 0.4 0 20.9

Avg.= 134 29.9 14.225 86.29 29 29 59.05 0.07 0.4 0 20.9

STDEV= ± 0.00 4.4E-15 0.025 0.01 0 0 8.7E-15 0 6.8E-17 0 0

Appendix A Experimental data sheet

124

Table A 1.23 : Experimental data for flat bottom pot with Shield at 20 mbar NG pressure.

1 3.406 3.305 101 26.7 98 11.6 68.77

2.5

28 30 46.3 0.055 0.2 300 20.9 2

15 .

07 .

18 And 16 .

07 .

18

3.406 3.315 91 30.2 98 10.35 61.355 27.5 30.25 47.275 0.0575 0.15 310 20.9 3 3.406 3.325 81 33.7 98 9.1 53.94 27 30.5 48.25 0.06 0.1 320 20.9

Avg.= 91 30.2 10.35 61.355 27.5 30.25 47.275 0.0575 0.15 310 20.9 STDEV= ± 10.00 3.5 1.25 7.415 0.5 0.25 0.975 0.0025 0.05 10 0

4 3.406 3.333 73 32.5 98 9.06 51.2

3

27 30.5 49.7 0.085 0.1 98 20.9 5 3.406 3.332 74 32.25 98 9.12 51.7 27 30.5 49.825 0.085 0.2 110 20.9 6 3.406 3.331 75 32 98 9.18 52.2 27 30.5 49.95 0.085 0.3 140 20.9

Avg.= 74 32.25 9.12 51.7 27 30.5 49.825 0.085 0.2 120 20.9 STDEV= ± 1.00 0.25 0.06 0.5 0 0 0.125 0 0.1 21.633 0

7 3.406 3.328 78 32.9 98 9 51.69

3.5

28.5 30.5 50.45 0.08 0.2 80.5 20.9 8 3.406 3.329 77 33.25 98 9.025 51.715 28.75 30.25 50.35 0.07 0.25 80.75 20.9 9 3.406 3.33 76 33.6 98 9.05 51.74 29 30 50.25 0.06 0.3 81 20.9

Avg.= 77 33.25 9.025 51.715 28.75 30.25 50.35 0.07 0.25 80.75 20.9 STDEV= ± 1.00 0.35 0.025 0.025 0.25 0.25 0.1 0.01 0.05 0.25 0 10 3.406 3.33 76 32.5 98 9.18 53.08

4

29 30 49.85 0.065 0.35 68.5 20.9 11 3.406 3.334 72 32.35 98 9.14 52.195 29 30 49.925 0.0625 0.375 56.5 20.9 12 3.406 3.338 68 32.2 98 9.1 51.31 29 30 50 0.06 0.4 44.5 20.9

Avg.= 72 32.35 9.14 52.195 29 30 49.925 0.0625 0.375 56.5 20.9 STDEV= ± 4.00 0.15 0.04 0.885 0 0 0.075 0.0025 0.025 12 0 13 3.406 3.332 74 32.2 98 9.45 53.9

4.5

29 30 49.1 0.06 0.4 34 20.9 14 3.406 3.332 74 31.85 98 9.4 54.295 29 30 49.55 0.055 0.4 34.25 20.9 15 3.406 3.332 74 31.5 98 9.35 54.69 29 30 50 0.05 0.4 34.5 20.9

Avg.= 74 31.85 9.4 54.295 29 30 49.55 0.055 0.4 34.25 20.9 STDEV= ± 0.00 0.35 0.05 0.395 0 0 0.45 0.005 6.8E-17 0.25 0 16 3.406 3.341 65 31 98 9.6 54.68

5 29.5 29 52.3 0.045 0.45 4.5 20.9

17 3.406 3.342 64 30.5 98 9.675 54.74 29.25 29 51.9 0.045 0.425 2.25 20.9 18 3.406 3.343 63 30 98 9.75 54.8 29 29 51.5 0.045 0.4 0 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 20 and Vstc = 10.8

Appendix A Experimental data sheet

125

Avg.= 64 30.5 9.675 54.74 29.25 29 51.9 0.045 0.425 2.25 20.9

STDEV= ± 1.00 0.5 0.075 0.06 0.25 0 0.4 8.5E-18 0.025 2.25 0

19 3.406 3.338 68 30 98 9.83 56.1

5.5

29 29 52.8 0.065 0.4 0 20.9 20 3.406 3.336 70 30.5 98 9.945 56.29 28.5 29 52.575 0.07 0.4 0 20.9 21 3.406 3.334 72 31 98 10.06 56.48 28 29 52.35 0.075 0.4 0 20.9

Avg.= 70 30.5 9.945 56.29 28.5 29 52.575 0.07 0.4 0 20.9 STDEV= ± 2.00 0.5 0.115 0.19 0.5 0 0.225 0.005 6.8E-17 0 0 22 3.406 3.33 76 30 98 10.26 58.88

6

28 29 54.6 0.065 0.4 0 20.9 23 3.406 3.331 75 29.5 98 10.235 58.57 28 29 53.95 0.0675 0.4 0 20.9 24 3.406 3.332 74 29 98 10.21 58.26 28 29 53.3 0.07 0.4 0 20.9

Avg.= 75 29.5 10.235 58.57 28 29 53.95 0.0675 0.4 0 20.9 STDEV= ± 1.00 0.5 0.025 0.31 0 0 0.65 0.0025 6.8E-17 0 0 25 3.406 3.334 72 30 98 10.1 58.6

6.5

27 29 52.25 0.07 0.4 0 20.9 26 3.406 3.33 76 29.5 98 10.45 59.2 27.5 29 51.875 0.07 0.375 0 20.9 27 3.406 3.326 80 29 98 10.8 59.8 28 29 51.5 0.07 0.35 0 20.9

Avg.= 76 29.5 10.45 59.2 27.5 29 51.875 0.07 0.375 0 20.9 STDEV= ± 4.00 0.5 0.35 0.6 0.5 0 0.375 0 0.025 0 0 28 3.406 3.325 81 29 98 10.75 61.66

7

28 29 54.55 0.105 0.4 0 20.9 29 3.406 3.324 82 29 98 10.8 61.695 28 29 55.25 0.115 0.4 0 20.9 30 3.406 3.323 83 29 98 10.85 61.73 28 29 55.95 0.125 0.4 0 20.9

Avg.= 82 29 10.8 61.695 28 29 55.25 0.115 0.4 0 20.9 STDEV= ± 1.00 0 0.05 0.035 0 0 0.7 0.01 6.8E-17 0 0 31 3.406 3.338 68 30 98 10.61 59.5

7.5

28 30 55.55 0.14 0.4 0 20.9 32 3.406 3.3365 69.5 30 98 10.705 59.825 28 30.5 54.725 0.14 0.4 0 20.9 33 3.406 3.335 71 30 98 10.8 60.15 28 31 53.9 0.14 0.4 0 20.9

Avg.= 69.5 30 10.705 59.825 28 30.5 54.725 0.14 0.4 0 20.9 STDEV= ± 1.50 0 0.095 0.325 0 0.5 0.825 0 6.8E-17 0 0

Appendix A Experimental data sheet

126

Table A 1.24 : Experimental data for Finned pot with Shield at 20 mbar NG pressure.

1

27 .07 .18

And 28 .07 .18

3.525 3.436 89 34.2 98 10.72 64.88

2.5

27 30.5 46.95 0.075 0.2 520 20.9 2 3.525 3.433 92 33.85 98 10.81 64.955 27 30.75 47.15 0.08 0.185 522.5 20.9 3 3.525 3.43 95 33.5 98 10.9 65.03 27 31 47.35 0.085 0.17 525 20.9

Avg.= 92 33.85 10.81 64.955 27 30.75 47.15 0.08 0.185 522.5 20.9

STDEV= ± 3.00 0.35 0.09 0.075 0 0.25 0.2 0.005 0.015 2.5 0 4 3.525 3.431 94 33.1 98 10.33 64.34

3

28 30.5 48.25 0.085 0.15 410 20.9 5 3.525 3.434 91 33 98 10.17 60.83 28 30.25 48.575 0.08 0.15 385 20.9 6 3.525 3.437 88 32.9 98 10.01 57.32 28 30 48.9 0.075 0.15 360 20.9

Avg.= 91 33 10.17 60.83 28 30.25 48.575 0.08 0.15 385 20.9

STDEV= ± 3.00 0.1 0.16 3.51 0 0.25 0.325 0.005 0 25 0 7 3.525 3.433 92 33.1 98 10.11 57.69

3.5

27 30.5 48.6 0.03 0.14 270 20.9 8 3.525 3.4355 89.5 33.05 98 10.095 57.38 27.5 30.5 48.775 0.05 0.145 265 20.9 9 3.525 3.438 87 33 98 10.08 57.07 28 30.5 48.95 0.07 0.15 260 20.9

Avg.= 89.5 33.05 10.095 57.38 27.5 30.5 48.775 0.05 0.145 265 20.9

STDEV= ± 2.50 0.05 0.015 0.31 0.5 0 0.175 0.02 0.005 5 0 10 3.525 3.441 84 32.6 98 10.01 57.44

4

29 30 48.55 0.065 0.17 140 20.9 11 3.525 3.438 87 32.5 98 10.105 57.475 28.75 30 48.625 0.065 0.185 152.5 20.9 12 3.525 3 90 32.4 98 10.2 57.51 28.5 30 48.7 0.065 0.2 165 20.9

Avg.= 87 32.5 10.105 57.475 28.75 30 48.625 0.065 0.185 152.5 20.9

STDEV= ± 3.00 0.1 0.095 0.035 0.25 0 0.075 0 0.015 12.5 0 13 3.525 3.442 83 31.9 98 10.08 57.39

4.5

29 30 48.8 0.05 0.2 60 20.9 14 3.525 3.441 84 31.2 98 10.14 58.26 29 30 49.15 0.05 0.2 62.5 20.9 15 3.525 3.44 85 30.5 98 10.2 59.13 29 30 49.5 0.05 0.2 65 20.9

Avg.= 84 31.2 10.14 58.26 29 30 49.15 0.05 0.2 62.5 20.9

STDEV= ± 1.00 0.7 0.06 0.87 0 0 0.35 8.5E-18

3.4E-17 2.5 0

16 3.525 3.447 78 30 98 10.13 58.12 5 28 29 50.45 0.04 0.2 5 20.9 17 3.525 3.4445 80.5 30.5 98 10.17 58.615 28.25 29.25 50.45 0.045 0.15 5 20.9

TSL

TD P1ci P1cf wcv T1ci

T1cf

Δtc fcf - fci

LH Tng Ta Thd PStc CO2h COh O2h

Pmbar = 20 and Vstc = 10.8

Appendix A Experimental data sheet

127

18

3.525 3.442 83 31 98 10.21 59.11 28.5 29.5 50.45 0.05 0.1 5 20.9

Avg.= 80.5 30.5 10.17 58.615 28.25 29.25 50.45 0.045 0.15 5 20.9

STDEV= ± 2.50 0.5 0.04 0.495 0.25 0.25 8.7E-15 0.005 0.05 0 0

19 3.525 3.447 78 30.5 98 10.21 58.67

5.5

28 29 50.7 0.07 0.3 0 20.9 20 3.525 3.4415 83.5 30 98 10.51 59.7 28 29 50.825 0.07 0.3 0 20.9 21 3.525 3.436 89 29.5 98 10.81 60.73 28 29 50.95 0.07 0.3 0 20.9

Avg.= 83.5 30 10.51 59.7 28 29 50.825 0.07 0.3 0 20.9

STDEV= ± 5.50 0.5 0.3 1.03 0 0 0.125 0 0 0 0 22 3.525 3.437 88 30 98 10.71 61.48

6

28 29 52.4 0.075 0.3 0 20.9 23 3.525 3.438 87 30 98 10.68 61.085 28 29 51.9 0.0725 0.3 0 20.9 24 3.525 3.439 86 30 98 10.65 60.69 28 29 51.4 0.07 0.3 0 20.9

Avg.= 87 30 10.68 61.085 28 29 51.9 0.0725 0.3 0 20.9

STDEV= ± 1.00 0 0.03 0.395 0 0 0.5 0.0025 0 0 0 25 3.525 3.439 86 28.6 98 11.01 61.79

6.5

27 29 50.8 0.055 0.3 0 20.9 26 3.525 3.436 89 28.2 98 11.105 63.695 27.5 29 49.625 0.0575 0.3 0 20.9 27 3.525 3.433 92 27.8 98 11.2 65.6 28 29 48.45 0.06 0.3 0 20.9

Avg.= 89 28.2 11.105 63.695 27.5 29 49.625 0.0575 0.3 0 20.9

STDEV= ± 3.00 0.4 0.095 1.905 0.5 0 1.175 0.0025 0 0 0 28 3.525 3.435 90 30 98 11.8 64.34

7

28 29 53.5 0.09 0.3 1.5 20.9 29 3.525 3.4365 88.5 29.05 98 11.655 64.195 28 29 53.65 0.105 0.3 1.5 20.9 30 3.525 3.438 87 28.1 98 11.51 64.05 28 29 53.8 0.12 0.3 1.5 20.9

Avg.= 88.5 29.05 11.655 64.195 28 29 53.65 0.105 0.3 1.5 20.9

STDEV= ± 1.50 0.95 0.145 0.145 0 0 0.15 0.015 0 0 0 31 3.525 3.443 82 29 98 11.7 63.48

7.5

28 30 52.25 0.115 0.3 2.5 20.9 32 3.525 3.447 78 29.5 98 11.5 63.065 28 30.5 53.25 0.1275 0.3 2.5 20.9 33 3.525 3.451 74 30 98 11.3 62.65 28 31 54.25 0.14 0.3 2.5 20.9

Avg.= 78 29.5 11.5 63.065 28 30.5 53.25 0.1275 0.3 2.5 20.9

STDEV= ± 4.00 0.5 0.2 0.415 0 0.5 1 0.0125 0 0 0

Appendix B Calculated data sheet

128

Table A: Calculated data (average) for flat bottom and Finned pot with/without Shield. Burner Name: RFL (TOPPER) Burner type: Single nozzle, perforated burner head Fuel Type: Natural Gas Pot Specification: Height is 4.4 inch, top diameter is 9.7 inch and bottom diameter is 9.2 inch. Flat bottom pot: Stainless Steel saucepan, Empty pot wt. (P1) = 406 gm. Finned Pot: Finned Stainless Steel saucepan, Empty pot wt. (P1) = 525 gm.

All calculation done at SATP [Standard Ambient Temperature and Pressure is a reference with temperature of 25oC (298.15 K) and pressure of 101.325 kPa. At these conditions, the volume of 1 mol of a gas is 24.4651 liters.] Name of the Variables that are calculated from Experimental data:

LH: Loading Height (cm). (fcm): Fuel (NG) consumed (gm). (fcd): Equivalent dry fuel (NG) consumed (gm) (wcr): Effective mass of water boiled (gm) (hc): Thermal efficiency (%) (ΔtTc): Temperature corrected time to boil (min)

Q : At SATP total exha ust flow (m3/min)

Ecor : At SATP CO emission rate (g/min)

Eco2r : At SATP CO2 emission rate (g/min)

Eco2r/(Ecor+Eco2r)]: Modified Combustion Efficiency (MCE). CO/CO2 : Ratio of Carbon monoxide and Carbon dioxide.

FPc: Fire power (Watt) HTE: Heat transfer efficiency

Appendix B Calculated data sheet

129

Appendix B Calculated data sheet

130

Table B 1.1: Calculated data for flat bottom pot without Shield at 4 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 37.92 37.92 2879.01 60.23 12.11 0.10 36.41 5.05 0.997 0.0029 2654 60.40 2 2.5 37.60 37.60 2877.67 60.32 12.29 0.10 31.61 5.01 0.997 0.0031 2622 60.50 3 2.5 37.28 37.28 2876.31 60.40 12.48 0.09 26.88 4.97 0.997 0.0034 2591 60.61 Avg.= 37.60 37.60 2877.66 60.32 12.29 0.10 31.63 5.01 0.997 0.0031 2622.54 60.51

STDEV= ± 0.32 0.32 1.35 0.09 0.18 0.01 4.77 0.04 0.000 0.0003 31.17 0.10 4 3 39.63 39.63 2880.98 59.02 12.73 0.04 36.07 5.01 0.999 0.0011 2558 59.08 5 3 39.06 39.06 2880.45 58.23 12.62 0.04 33.72 4.99 0.999 0.0011 2629 58.29 6 3 38.51 38.51 2879.85 57.41 12.50 0.04 31.38 4.98 0.999 0.0012 2706 57.47 Avg.= 39.06 39.06 2880.43 58.22 12.61 0.04 33.72 4.99 0.999 0.0011 2630.84 58.28

STDEV= ± 0.56 0.56 0.57 0.80 0.12 0.00 2.35 0.01 0.000 0.0000 74.41 0.80 7 3.5 39.54 39.54 2881.67 56.96 13.39 0.00 27.02 5.00 1.000 0.0000 2528 56.96 8 3.5 39.57 39.57 2880.72 56.32 13.38 0.00 26.92 4.98 1.000 0.0000 2567 56.32 9 3.5 39.60 39.60 2879.76 55.69 13.38 0.00 26.82 4.96 1.000 0.0000 2608 55.69 Avg.= 39.57 39.57 2880.71 56.33 13.38 0.00 26.92 4.98 1.000 0.0000 2567.55 56.33

STDEV= ± 0.03 0.03 0.96 0.64 0.01 0.00 0.10 0.02 0.000 0.0000 39.90 0.64 10 4 43.40 43.40 2858.56 53.88 15.12 0.00 26.88 4.97 1.000 0.0000 2486 53.88 11 4 42.47 42.47 2861.95 53.20 14.60 0.00 26.83 4.97 1.000 0.0000 2602 53.20 12 4 41.55 41.55 2865.27 52.48 14.05 0.00 26.79 4.96 1.000 0.0000 2736 52.48

Avg.= 42.47 42.47 2861.93 53.18 14.59 0.00 26.83 4.97 1.000 0.0000 2607.84 53.18 STDEV= ± 0.92 0.92 3.35 0.70 0.54 0.00 0.04 0.01 0.000 0.0000 125.37 0.70 13 4.5 44.85 44.85 2859.51 51.97 15.45 0.00 26.80 4.96 1.000 0.0000 2518 51.97 14 4.5 44.86 44.86 2860.66 50.75 15.55 0.00 26.63 4.93 1.000 0.0000 2566 50.75 15 4.5 44.87 44.87 2861.78 49.53 15.65 0.00 26.45 4.90 1.000 0.0000 2616 49.53

Avg.= 44.86 44.86 2860.65 50.75 15.55 0.00 26.63 4.93 1.000 0.0000 2566.49 50.75 STDEV= ± 0.01 0.01 1.14 1.22 0.10 0.00 0.18 0.03 0.000 0.0000 49.28 1.22 16 5 47.79 47.79 2851.55 49.49 16.23 0.00 26.56 4.92 1.000 0.0000 2557 49.49 17 5 46.90 46.90 2855.82 49.15 15.91 0.00 26.48 4.90 1.000 0.0000 2613 49.15 18 5 46.01 46.01 2860.05 48.78 15.58 0.00 26.41 4.89 1.000 0.0000 2675 48.78

Appendix B Calculated data sheet

131

Avg.= 46.90 46.90 2855.81 49.14 15.91 0.00 26.48 4.90 1.000 0.0000 2615.17 49.14 STDEV= ± 0.89 0.89 4.25 0.36 0.32 0.00 0.07 0.01 0.000 0.0000 58.88 0.36 19 5.5 50.33 50.33 2860.22 47.12 15.94 0.00 26.65 4.93 1.000 0.0001 2678 47.13 20 5.5 50.00 50.00 2854.85 46.80 16.57 0.00 26.58 4.92 1.000 0.0001 2633 46.81 21 5.5 49.67 49.67 2849.43 46.47 17.24 0.00 26.50 4.90 1.000 0.0001 2590 46.47

Avg.= 50.00 50.00 2854.83 46.80 16.58 0.00 26.58 4.92 1.000 0.0001 2633.46 46.80 STDEV= ± 0.33 0.33 5.40 0.33 0.65 0.00 0.08 0.01 0.000 0.0000 43.88 0.33 22 6 54.10 54.10 2843.92 45.87 17.24 0.00 26.54 4.91 1.000 0.0000 2616 45.87 23 6 53.99 53.99 2845.90 45.20 17.27 0.00 26.53 4.91 1.000 0.0000 2648 45.20 24 6 53.88 53.88 2847.87 44.53 17.31 0.00 26.52 4.91 1.000 0.0000 2681 44.53

Avg.= 53.99 53.99 2845.90 45.20 17.27 0.00 26.53 4.91 1.000 0.0000 2648.23 45.20 STDEV= ± 0.11 0.11 1.97 0.67 0.03 0.00 0.01 0.00 0.000 0.0000 32.26 0.67 25 6.5 57.28 57.28 2834.76 43.78 18.34 0.00 26.48 4.90 1.000 0.0000 2627 43.78 26 6.5 59.39 59.39 2820.04 42.96 18.99 0.00 26.43 4.89 1.000 0.0000 2663 42.96 27 6.5 61.50 61.50 2805.30 42.20 19.66 0.00 26.38 4.88 1.000 0.0000 2697 42.20

Avg.= 59.39 59.39 2820.03 42.98 19.00 0.00 26.43 4.89 1.000 0.0000 2662.08 42.98 STDEV= ± 2.11 2.11 14.73 0.79 0.66 0.00 0.05 0.01 0.000 0.0000 35.13 0.79 28 7 62.12 62.12 2818.25 40.90 20.33 0.00 26.38 4.88 1.000 0.0000 2626 40.90 29 7 61.25 61.25 2819.21 41.38 20.19 0.00 26.38 4.88 1.000 0.0000 2610 41.38 30 7 60.38 60.38 2820.18 41.88 20.05 0.00 26.38 4.88 1.000 0.0000 2593 41.88

Avg.= 61.25 61.25 2819.21 41.39 20.19 0.00 26.38 4.88 1.000 0.0000 2610.00 41.39 STDEV= ± 0.87 0.87 0.97 0.49 0.14 0.00 0.00 0.00 0.000 0.0000 16.53 0.49 31 7.5 66.76 66.76 2807.80 39.20 21.46 0.00 26.35 4.88 1.000 0.0000 2638 39.20 32 7.5 65.44 65.44 2810.64 39.66 21.23 0.00 26.35 4.88 1.000 0.0000 2624 39.66 33 7.5 64.12 64.12 2813.48 40.14 21.01 0.00 26.35 4.88 1.000 0.0000 2609 40.14

Avg.= 65.44 65.44 2810.64 39.67 21.23 0.00 26.35 4.88 1.000 0.0000 2623.62 39.67 STDEV= ± 1.32 1.32 2.84 0.47 0.22 0.00 0.00 0.00 0.000 0.0000 14.16 0.47

Appendix B Calculated data sheet

132

Table B 1.2 : Calculated data for Finned pot without Shield at 4 mbar NG pressure

SL PH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 51.12 51.12 2830.98 49.21 16.11 1.21 23.15 5.14 0.95 0.052222 2625.1 51.8 2 2.5 49.97 49.97 2835.92 49.88 16.01 1.19 20.65 5.10 0.95 0.057387 2581.5 52.7 3 2.5 48.82 48.82 2840.87 50.58 15.91 1.16 18.20 5.05 0.94 0.063844 2537.5 53.8 Avg.= 49.97 49.97 2835.92 49.89 16.01 1.19 20.66 5.10 0.95 0.06 2581.4 52.8

STDEV= ± 1.15 1.15 4.95 0.68 0.10 0.02 2.48 0.04 0.01 0.01 43.8 1.0 4 3 50.77 50.77 2829.78 50.70 15.46 0.89 27.53 5.10 0.97 0.032479 2648.6 52.4 5 3 49.23 49.23 2838.09 50.68 15.53 0.86 27.37 5.06 0.97 0.031577 2606.1 52.3 6 3 47.71 47.71 2846.37 50.64 15.61 0.83 27.20 5.03 0.97 0.030675 2563.1 52.2 Avg.= 49.24 49.24 2838.08 50.68 15.53 0.86 27.37 5.07 0.97 0.03 2605.9 52.3

STDEV= ± 1.53 1.53 8.30 0.03 0.08 0.03 0.16 0.03 0.00 0.00 42.8 0.1 7 3.5 45.49 45.49 2840.00 53.16 15.26 0.57 27.22 5.04 0.98 0.020804 2534.2 54.3 8 3.5 46.02 46.02 2836.04 52.95 15.24 0.53 27.16 5.03 0.98 0.019424 2568.3 54.0 9 3.5 46.55 46.55 2832.09 52.75 15.21 0.49 27.10 5.02 0.98 0.018044 2602.0 53.7 Avg.= 46.02 46.02 2836.04 52.95 15.24 0.53 27.16 5.03 0.98 0.02 2568.2 54.0

STDEV= ± 0.53 0.53 3.96 0.21 0.03 0.04 0.06 0.01 0.00 0.00 33.9 0.3 10 4 49.30 49.30 2832.04 49.75 16.11 0.34 36.05 5.00 0.99 0.009553 2605.3 50.2 11 4 48.32 48.32 2835.91 50.27 16.01 0.39 33.73 4.99 0.99 0.011548 2576.3 50.9 12 4 47.35 47.35 2839.78 50.80 15.92 0.43 31.42 4.99 0.99 0.013829 2547.3 51.5

Avg.= 48.32 48.32 2835.91 50.27 16.01 0.39 33.74 4.99 0.99 0.01 2576.3 50.9 STDEV= ± 0.97 0.97 3.87 0.52 0.10 0.05 2.31 0.01 0.00 0.00 29.0 0.6 13 4.5 51.69 51.69 2827.96 47.65 17.13 0.19 26.97 4.99 0.99 0.007111 2579.6 48.0 14 4.5 50.52 50.52 2828.84 47.97 17.02 0.16 31.32 4.97 0.99 0.005231 2585.0 48.2 15 4.5 49.34 49.34 2829.71 48.29 16.90 0.14 35.63 4.95 1.00 0.003821 2590.6 48.5

Avg.= 50.52 50.52 2828.84 47.97 17.02 0.16 31.31 4.97 0.99 0.01 2585.1 48.2 STDEV= ± 1.18 1.18 0.88 0.32 0.12 0.03 4.33 0.02 0.00 0.00 5.5 0.2 16 5 51.77 51.77 2834.60 46.66 17.19 0.05 31.25 4.96 1.00 0.001638 2596.1 46.7 17 5 50.22 50.22 2840.87 46.74 17.17 0.06 31.20 4.95 1.00 0.001865 2572.3 46.8 18 5 48.68 48.68 2847.11 46.82 17.15 0.07 31.15 4.94 1.00 0.002093 2547.7 46.9

Appendix B Calculated data sheet

133

Avg.= 50.22 50.22 2840.86 46.74 17.17 0.06 31.20 4.95 1.00 0.00 2572.0 46.8 STDEV= ± 1.55 1.55 6.25 0.08 0.02 0.01 0.05 0.01 0.00 0.00 24.2 0.1 19 5.5 55.74 55.74 2829.53 45.91 17.31 0.03 31.63 5.02 1.00 0.00091 2617.6 45.9 20 5.5 54.18 54.18 2828.09 45.61 17.79 0.03 31.31 4.97 1.00 0.000819 2593.0 45.7 21 5.5 52.63 52.63 2826.50 45.29 18.32 0.02 31.00 4.92 1.00 0.000728 2568.1 45.3

Avg.= 54.18 54.18 2828.04 45.60 17.80 0.03 31.31 4.97 1.00 0.00 2592.9 45.6 STDEV= ± 1.55 1.55 1.52 0.31 0.50 0.00 0.32 0.05 0.00 0.00 24.8 0.3 22 6 54.44 54.44 2840.95 45.46 17.70 0.00 31.12 4.94 1.00 0 2537.8 45.5 23 6 55.51 55.51 2837.19 44.55 18.07 0.00 31.24 4.96 1.00 0 2557.6 44.6 24 6 56.58 56.58 2833.43 43.68 18.46 0.00 31.35 4.97 1.00 0 2576.8 43.7

Avg.= 55.51 55.51 2837.19 44.56 18.08 0.00 31.24 4.96 1.00 0.00 2557.4 44.6 STDEV= ± 1.07 1.07 3.76 0.89 0.38 0.00 0.12 0.02 0.00 0.00 19.5 0.9 25 6.5 61.24 61.24 2788.84 43.67 18.85 0.00 31.14 4.94 1.00 0 2738.5 43.7 26 6.5 61.10 61.10 2792.30 43.50 18.80 0.00 31.11 4.94 1.00 4.55E-05 2739.9 43.5 27 6.5 60.96 60.96 2795.76 43.34 18.75 0.00 31.09 4.93 1.00 9.1E-05 2741.3 43.3

Avg.= 61.10 61.10 2792.30 43.50 18.80 0.00 31.11 4.94 1.00 0.00 2739.9 43.5 STDEV= ± 0.14 0.14 3.46 0.17 0.05 0.00 0.02 0.00 0.00 0.00 1.4 0.2 28 7 63.01 63.01 2790.30 42.82 20.06 0.02 30.99 4.92 1.00 0.000728 2608.5 42.8 29 7 60.94 60.94 2801.70 42.90 19.56 0.02 30.97 4.91 1.00 0.000728 2626.8 42.9 30 7 58.85 58.85 2813.08 42.99 19.04 0.02 30.95 4.91 1.00 0.000728 2646.5 43.0

Avg.= 60.93 60.93 2801.69 42.90 19.55 0.02 30.97 4.91 1.00 0.00 2627.3 42.9 STDEV= ± 2.08 2.08 11.39 0.09 0.51 0.00 0.02 0.00 0.00 0.00 19.0 0.1 31 7.5 59.59 59.59 2826.85 42.36 19.72 0.00 31.00 4.92 1.00 0 2512.9 42.4 32 7.5 59.85 59.85 2824.55 42.01 20.03 0.00 30.97 4.91 1.00 0 2510.8 42.0 33 7.5 60.11 60.11 2822.24 41.66 20.34 0.00 30.95 4.91 1.00 0 2508.8 41.7

Avg.= 59.85 59.85 2824.55 42.01 20.03 0.00 30.97 4.91 1.00 0.00 2510.8 42.0 STDEV= ± 0.26 0.26 2.30 0.35 0.31 0.00 0.02 0.00 0.00 0.00 2.1 0.3

Appendix B Calculated data sheet

134

Table B 1.3 : Calculated data for flat bottom pot with Shield at 4 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 40.94 40.94 2838.16 59.98 13.04 0.54 27.58 5.10 0.98 0.01953 2687 61.14869 2 2.5 39.80 39.80 2848.15 60.70 12.79 0.54 27.58 5.10 0.98 0.019424 2655 61.87736 3 2.5 38.67 38.67 2858.15 61.45 12.53 0.53 27.58 5.10 0.98 0.019318 2623 62.63708 Avg.= 39.80 39.80 2848.15 60.71 12.79 0.54 27.58 5.10 0.98 0.02 2655.09 61.89

STDEV= ± 1.14 1.14 10.00 0.74 0.25 0.00 0.00 0.00 0.00 0.00 32.47 0.74 4 3 35.53 35.53 2882.34 61.10 12.54 0.08 27.32 5.06 1.00 0.003078 2525 61.29022 5 3 35.15 35.15 2882.81 61.66 12.41 0.07 22.76 5.06 1.00 0.003248 2526 61.8594 6 3 34.77 34.77 2883.28 62.23 12.28 0.06 18.21 5.06 1.00 0.003503 2527 62.444 Avg.= 35.15 35.15 2882.81 61.66 12.41 0.07 22.76 5.06 1.00 0.00 2526.09 61.86

STDEV= ± 0.38 0.38 0.47 0.56 0.13 0.01 4.55 0.00 0.00 0.00 0.67 0.58 7 3.5 34.75 34.75 2884.81 61.33 12.44 0.02 27.21 5.04 1.00 0.000743 2525 61.37508 8 3.5 34.99 34.99 2885.30 60.85 12.56 0.01 29.48 5.04 1.00 0.000343 2520 60.87304 9 3.5 35.22 35.22 2885.80 60.38 12.67 0.00 31.74 5.04 1.00 0 2514 60.38186 Avg.= 34.99 34.99 2885.30 60.85 12.56 0.01 29.48 5.04 1.00 0.00 2519.89 60.88

STDEV= ± 0.23 0.23 0.49 0.47 0.11 0.01 2.27 0.00 0.00 0.00 5.42 0.50 10 4 36.64 36.64 2876.21 59.73 13.22 0.00 27.24 5.04 1.00 0 2485 59.72901 11 4 36.15 36.15 2877.69 60.35 13.16 0.00 27.24 5.04 1.00 0 2462 60.34815 12 4 35.66 35.66 2879.18 60.98 13.11 0.00 27.24 5.04 1.00 0 2439 60.98364

Avg.= 36.15 36.15 2877.69 60.35 13.16 0.00 27.24 5.04 1.00 0.00 2461.85 60.35 STDEV= ± 0.49 0.49 1.48 0.63 0.06 0.00 0.00 0.00 0.00 0.00 23.12 0.63 13 4.5 38.18 38.18 2868.35 58.36 13.31 0.00 31.85 5.05 1.00 0 2568 58.35995 14 4.5 37.94 37.94 2870.33 58.47 13.14 0.00 29.57 5.05 1.00 0 2584 58.47403 15 4.5 37.71 37.71 2872.31 58.59 12.98 0.00 27.30 5.05 1.00 0 2601 58.59042

Avg.= 37.94 37.94 2870.33 58.47 13.14 0.00 29.57 5.05 1.00 0.00 2584.36 58.47 STDEV= ± 0.23 0.23 1.98 0.12 0.16 0.00 2.27 0.00 0.00 0.00 16.57 0.12 16 5 38.62 38.62 2871.17 57.12 13.81 0.00 31.67 5.02 1.00 0 2515 57.12344 17 5 38.42 38.42 2872.65 57.25 13.70 0.00 33.93 5.02 1.00 0 2522 57.24915 18 5 38.21 38.21 2874.14 57.38 13.59 0.00 36.19 5.02 1.00 0 2529 57.37596

Avg.= 38.42 38.42 2872.65 57.25 13.70 0.00 33.93 5.02 1.00 0.00 2521.66 57.25

Appendix B Calculated data sheet

135

STDEV= ± 0.21 0.21 1.48 0.13 0.11 0.00 2.26 0.00 0.00 0.00 6.82 0.13 19 5.5 40.53 40.53 2869.02 55.85 14.22 0.00 31.44 4.99 1.00 0 2499 55.85449 20 5.5 40.54 40.54 2865.02 56.24 14.30 0.00 31.44 4.99 1.00 0 2490 56.23863 21 5.5 40.55 40.55 2861.02 56.62 14.37 0.00 31.44 4.99 1.00 0 2481 56.62265

Avg.= 40.54 40.54 2865.02 56.24 14.30 0.00 31.44 4.99 1.00 0.00 2490.19 56.24 STDEV= ± 0.01 0.01 4.00 0.38 0.07 0.00 0.00 0.00 0.00 0.00 8.99 0.38 22 6 41.06 41.06 2871.05 54.98 14.26 0.00 36.32 5.04 1.00 0 2522 54.97503 23 6 40.89 40.89 2874.01 54.87 14.23 0.00 31.78 5.04 1.00 0 2516 54.86884 24 6 40.71 40.71 2876.98 54.76 14.20 0.00 27.24 5.04 1.00 0 2510 54.76156

Avg.= 40.89 40.89 2874.01 54.87 14.23 0.00 31.78 5.04 1.00 0.00 2516.21 54.87 STDEV= ± 0.17 0.17 2.97 0.11 0.03 0.00 4.54 0.00 0.00 0.00 5.92 0.11 25 6.5 42.66 42.66 2860.26 54.23 14.81 0.00 27.16 5.03 1.00 0 2516 54.22639 26 6.5 42.60 42.60 2864.29 53.95 14.80 0.00 24.90 5.03 1.00 0 2508 53.95457 27 6.5 42.55 42.55 2868.31 53.68 14.80 0.00 22.64 5.03 1.00 0 2500 53.68202

Avg.= 42.60 42.60 2864.29 53.95 14.80 0.00 24.90 5.03 1.00 0.00 2508.12 53.95 STDEV= ± 0.06 0.06 4.02 0.27 0.00 0.00 2.26 0.00 0.00 0.00 7.87 0.27 28 7 44.35 44.35 2857.44 52.64 14.94 0.01 27.12 5.02 1.00 0.000531 2582 52.67186 29 7 44.34 44.34 2856.45 52.77 14.93 0.01 27.12 5.02 1.00 0.000531 2583 52.79631 30 7 44.32 44.32 2855.46 52.89 14.91 0.01 27.12 5.02 1.00 0.000531 2584 52.92084

Avg.= 44.34 44.34 2856.45 52.77 14.93 0.01 27.12 5.02 1.00 0.00 2583.02 52.80 STDEV= ± 0.02 0.02 0.99 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.87 0.12 31 7.5 45.57 45.57 2853.93 52.21 14.69 0.02 31.93 5.06 1.00 0.000546 2659 52.23463 32 7.5 45.54 45.54 2852.94 52.35 14.64 0.02 31.93 5.06 1.00 0.000546 2666 52.37494 33 7.5 45.50 45.50 2851.96 52.49 14.59 0.02 31.93 5.06 1.00 0.000546 2674 52.51546

Avg.= 45.54 45.54 2852.94 52.35 14.64 0.02 31.93 5.06 1.00 0.00 2666.44 52.38 STDEV= ± 0.03 0.03 0.99 0.14 0.05 0.00 0.00 0.00 0.00 0.00 7.62 0.14

Appendix B Calculated data sheet

136

Table B 1.4 : Calculated data for Finned pot with Shield at 4 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 39.34 39.34 2874.04 55.08 14.07 1.62 9.19 5.10 0.85 0.176407 2491.43 64.80 2 2.5 39.27 39.27 2876.85 54.62 14.09 1.57 11.48 5.10 0.88 0.136795 2494.20 62.09 3 2.5 39.21 39.21 2879.67 54.16 14.12 1.52 13.78 5.10 0.90 0.110387 2496.98 60.14 Avg.= 39.27 39.27 2876.85 54.62 14.09 1.57 11.48 5.10 0.88 0.14 2494.20 62.34

STDEV= ± 0.06 0.06 2.81 0.46 0.02 0.05 2.30 0.00 0.03 0.03 2.78 2.34 4 3 38.61 38.61 2870.62 55.88 13.76 1.39 11.85 5.06 0.89 0.117572 2533.98 62.45 5 3 38.54 38.54 2869.63 56.10 13.70 1.43 11.39 5.06 0.89 0.125842 2539.83 63.16 6 3 38.47 38.47 2868.64 56.32 13.65 1.47 10.94 5.06 0.88 0.1348 2545.72 63.91 Avg.= 38.54 38.54 2869.63 56.10 13.70 1.43 11.39 5.06 0.89 0.13 2539.84 63.18

STDEV= ± 0.07 0.07 0.99 0.22 0.06 0.04 0.46 0.00 0.01 0.01 5.87 0.73 7 3.5 38.77 38.77 2856.30 58.11 13.56 1.51 14.58 5.06 0.91 0.103488 2544.52 64.12 8 3.5 38.72 38.72 2857.46 57.57 13.58 1.42 14.58 5.06 0.91 0.097518 2562.10 63.18 9 3.5 38.67 38.67 2858.61 57.02 13.60 1.33 14.58 5.06 0.92 0.091547 2579.98 62.24 Avg.= 38.72 38.72 2857.46 57.57 13.58 1.42 14.58 5.06 0.91 0.10 2562.20 63.18

STDEV= ± 0.05 0.05 1.16 0.54 0.02 0.09 0.00 0.00 0.00 0.01 17.73 0.94 10 4 39.23 39.23 2865.49 56.75 13.66 0.78 27.34 5.06 0.97 0.028658 2533.95 58.38 11 4 39.19 39.19 2866.08 56.16 13.79 0.74 29.62 5.06 0.98 0.024984 2535.60 57.57 12 4 39.15 39.15 2866.67 55.57 13.93 0.70 31.90 5.06 0.98 0.021835 2537.25 56.79

Avg.= 39.19 39.19 2866.08 56.16 13.79 0.74 29.62 5.06 0.98 0.03 2535.60 57.58 STDEV= ± 0.04 0.04 0.59 0.59 0.14 0.04 2.28 0.00 0.00 0.00 1.65 0.80 13 4.5 40.69 40.69 2856.54 55.68 14.11 0.06 32.86 5.07 1.00 0.001769 2547.30 55.78 14 4.5 40.65 40.65 2857.53 55.62 14.06 0.06 34.69 5.07 1.00 0.001844 2554.82 55.72 15 4.5 40.61 40.61 2858.52 55.55 14.00 0.07 36.51 5.07 1.00 0.001911 2562.40 55.66

Avg.= 40.65 40.65 2857.53 55.62 14.06 0.06 34.69 5.07 1.00 0.00 2554.84 55.72 STDEV= ± 0.04 0.04 0.99 0.06 0.05 0.01 1.83 0.00 0.00 0.00 7.55 0.06 16 5 40.35 40.35 2866.38 54.93 14.35 0.01 36.22 5.03 1.00 0.000239 2488.08 54.94 17 5 40.35 40.35 2867.37 54.83 14.38 0.02 36.22 5.03 1.00 0.000478 2482.96 54.85 18 5 40.34 40.34 2868.35 54.72 14.40 0.03 36.22 5.03 1.00 0.000716 2477.87 54.76

Appendix B Calculated data sheet

137

Avg.= 40.35 40.35 2867.37 54.83 14.38 0.02 36.22 5.03 1.00 0.00 2482.97 54.85 STDEV= ± 0.01 0.01 0.99 0.11 0.03 0.01 0.00 0.00 0.00 0.00 5.11 0.09 19 5.5 43.26 43.26 2838.46 53.94 14.67 0.01 36.24 5.03 1.00 0.000159 2627.32 53.95 20 5.5 43.24 43.24 2839.94 53.81 14.73 0.01 36.24 5.03 1.00 0.000279 2616.33 53.82 21 5.5 43.22 43.22 2841.42 53.67 14.78 0.01 36.24 5.03 1.00 0.000398 2605.43 53.69

Avg.= 43.24 43.24 2839.94 53.81 14.73 0.01 36.24 5.03 1.00 0.00 2616.36 53.82 STDEV= ± 0.02 0.02 1.48 0.14 0.05 0.00 0.00 0.00 0.00 0.00 10.94 0.13 22 6 44.85 44.85 2843.46 52.87 14.85 0.01 36.42 5.06 1.00 0.000159 2607.61 52.88 23 6 44.83 44.83 2845.50 52.77 14.93 0.01 36.42 5.06 1.00 0.000199 2587.96 52.78 24 6 44.81 44.81 2847.55 52.68 15.00 0.01 36.42 5.06 1.00 0.000239 2568.59 52.69

Avg.= 44.83 44.83 2845.50 52.77 14.93 0.01 36.42 5.06 1.00 0.00 2588.05 52.78 STDEV= ± 0.02 0.02 2.05 0.10 0.07 0.00 0.00 0.00 0.00 0.00 19.51 0.09 25 6.5 45.81 45.81 2837.11 51.86 15.26 0.02 36.35 5.05 1.00 0.000478 2625.92 51.89 26 6.5 45.79 45.79 2839.18 51.80 15.27 0.02 36.35 5.05 1.00 0.000478 2615.19 51.83 27 6.5 45.76 45.76 2841.25 51.74 15.28 0.02 36.35 5.05 1.00 0.000478 2604.52 51.77

Avg.= 45.79 45.79 2839.18 51.80 15.27 0.02 36.35 5.05 1.00 0.00 2615.21 51.83 STDEV= ± 0.03 0.03 2.07 0.06 0.01 0.00 0.00 0.00 0.00 0.00 10.70 0.06 28 7 48.64 48.64 2831.36 50.89 15.44 0.02 36.50 5.07 1.00 0.000478 2657.08 50.91 29 7 48.62 48.62 2832.35 50.82 15.49 0.02 36.50 5.07 1.00 0.000478 2646.91 50.84 30 7 48.60 48.60 2833.34 50.75 15.54 0.02 36.50 5.07 1.00 0.000478 2636.80 50.77

Avg.= 48.62 48.62 2832.35 50.82 15.49 0.02 36.50 5.07 1.00 0.00 2646.93 50.84 STDEV= ± 0.02 0.02 0.99 0.07 0.05 0.00 0.00 0.00 0.00 0.00 10.14 0.07 31 7.5 47.54 47.54 2833.62 50.91 16.05 0.01 36.52 5.07 1.00 0.000318 2553.89 50.93 32 7.5 47.51 47.51 2832.40 50.77 16.14 0.01 36.52 5.07 1.00 0.000318 2556.66 50.78 33 7.5 47.48 47.48 2831.17 50.62 16.22 0.01 36.52 5.07 1.00 0.000318 2559.44 50.64

Avg.= 47.51 47.51 2832.40 50.77 16.14 0.01 36.52 5.07 1.00 0.00 2556.66 50.78 STDEV= ± 0.03 0.03 1.22 0.14 0.09 0.00 0.00 0.00 0.00 0.00 2.78 0.14

Appendix B Calculated data sheet

138

Table B 1.5 : Calculated data for flat bottom pot without Shield at 6 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc THE 1 2.5 37.81 37.81 2876.00 62.05 12.32 0.09 18.37 5.10 0.99 0.005095 2718 62.36 2 2.5 38.12 38.12 2872.94 62.16 12.15 0.09 22.99 5.11 1.00 0.004076 2752 62.41 3 2.5 38.44 38.44 2869.92 62.27 11.98 0.09 27.61 5.11 1.00 0.003397 2786 62.48

Avg.= 38.12 38.12 2872.95 62.16 12.15 0.09 22.99 5.11 1.00 0.00 2751.91 62.42 STDEV= ± 0.32 0.32 3.04 0.11 0.17 0.00 4.62 0.00 0.00 0.00 33.76 0.06 4 3 38.45 38.45 2872.88 58.26 12.23 0.04 18.23 5.06 1.00 0.00207 2765 58.38 5 3 37.73 37.73 2874.79 59.03 12.25 0.03 20.45 5.05 1.00 0.001344 2714 59.11 6 3 37.01 37.01 2876.70 59.82 12.28 0.02 22.66 5.03 1.00 0.000764 2663 59.87

Avg.= 37.73 37.73 2874.79 59.04 12.25 0.03 20.45 5.05 1.00 0.00 2714.05 59.12 STDEV= ± 0.72 0.72 1.91 0.78 0.02 0.01 2.21 0.01 0.00 0.00 50.74 0.75 7 3.5 40.67 40.67 2860.93 56.33 13.01 0.01 18.08 5.02 1.00 0.000318 2758 56.35 8 3.5 40.65 40.65 2861.91 56.24 13.11 0.00 22.60 5.02 1.00 0.000127 2734 56.25 9 3.5 40.63 40.63 2862.90 56.16 13.22 0.00 27.12 5.02 1.00 0 2710 56.16

Avg.= 40.65 40.65 2861.91 56.24 13.11 0.00 22.60 5.02 1.00 0.00 2734.19 56.25 STDEV= ± 0.02 0.02 0.99 0.09 0.11 0.00 4.52 0.00 0.00 0.00 23.95 0.09 10 4 41.20 41.20 2910.19 53.87 13.90 0.00 17.92 4.98 1.00 0 2604 53.87 11 4 41.17 41.17 2892.34 53.81 13.95 0.00 22.40 4.98 1.00 0 2609 53.81 12 4 41.13 41.13 2874.48 53.74 13.99 0.00 26.88 4.98 1.00 0 2615 53.74

Avg.= 41.17 41.17 2892.34 53.81 13.95 0.00 22.40 4.98 1.00 0.00 2609.48 53.81 STDEV= ± 0.04 0.04 17.85 0.06 0.05 0.00 4.48 0.00 0.00 0.00 5.79 0.06 13 4.5 45.78 45.78 2847.91 51.43 14.50 0.00 26.80 4.96 1.00 0 2829 51.43 14 4.5 45.71 45.71 2844.72 51.40 14.60 0.00 26.80 4.96 1.00 0 2811 51.40 15 4.5 45.65 45.65 2841.52 51.38 14.69 0.00 26.80 4.96 1.00 0 2793 51.38

Avg.= 45.71 45.71 2844.72 51.40 14.60 0.00 26.80 4.96 1.00 0.00 2811.31 51.40 STDEV= ± 0.07 0.07 3.19 0.03 0.09 0.00 0.00 0.00 0.00 0.00 17.94 0.03 16 5 44.88 44.88 2860.55 50.71 14.78 0.00 22.33 4.96 1.00 0 2726 50.71 17 5 46.70 46.70 2845.15 49.50 15.39 0.00 28.97 4.95 1.00 0 2764 49.50 18 5 48.52 48.52 2829.70 48.38 16.02 0.00 35.59 4.94 1.00 0 2801 48.38

Appendix B Calculated data sheet

139

Avg.= 46.70 46.70 2845.14 49.53 15.40 0.00 28.96 4.95 1.00 0.00 2763.48 49.53 STDEV= ± 1.82 1.82 15.43 1.16 0.62 0.00 6.63 0.01 0.00 0.00 37.31 1.16 19 5.5 49.14 49.14 2841.33 47.51 16.11 0.00 17.73 4.92 1.00 0 2758 47.51 20 5.5 49.17 49.17 2839.84 47.62 16.17 0.00 26.60 4.92 1.00 0 2751 47.62 21 5.5 49.20 49.20 2838.36 47.74 16.22 0.00 35.47 4.92 1.00 0 2743 47.74

Avg.= 49.17 49.17 2839.84 47.62 16.17 0.00 26.60 4.92 1.00 0.00 2750.66 47.62 STDEV= ± 0.03 0.03 1.48 0.11 0.06 0.00 8.87 0.00 0.00 0.00 7.77 0.11 22 6 51.64 51.64 2840.09 45.06 16.90 0.00 17.65 4.90 1.00 0 2783 45.06 23 6 51.77 51.77 2839.35 45.28 16.86 0.00 17.65 4.90 1.00 0 2777 45.28 24 6 51.91 51.91 2838.60 45.50 16.82 0.00 17.65 4.90 1.00 0 2770 45.50

Avg.= 51.77 51.77 2839.35 45.28 16.86 0.00 17.65 4.90 1.00 0.00 2776.71 45.28 STDEV= ± 0.13 0.13 0.74 0.22 0.04 0.00 0.00 0.00 0.00 0.00 6.56 0.22 25 6.5 52.51 52.51 2845.51 43.29 18.11 0.00 17.58 4.88 1.00 0 2681 43.29 26 6.5 52.52 52.52 2844.52 43.37 18.15 0.00 21.98 4.88 1.00 0 2677 43.37 27 6.5 52.53 52.53 2843.53 43.45 18.18 0.00 26.37 4.88 1.00 0 2672 43.45

Avg.= 52.52 52.52 2844.52 43.37 18.15 0.00 21.98 4.88 1.00 0.00 2676.78 43.37 STDEV= ± 0.01 0.01 0.99 0.08 0.03 0.00 4.40 0.00 0.00 0.00 4.52 0.08 28 7 54.52 54.52 2839.27 41.92 19.47 0.00 17.60 4.89 1.00 0 2613 41.92 29 7 54.65 54.65 2840.26 41.73 19.48 0.00 22.00 4.89 1.00 0 2618 41.73 30 7 54.79 54.79 2841.24 41.54 19.50 0.00 26.40 4.89 1.00 0 2623 41.54

Avg.= 54.65 54.65 2840.26 41.73 19.48 0.00 22.00 4.89 1.00 0.00 2618.18 41.73 STDEV= ± 0.14 0.14 0.99 0.19 0.01 0.00 4.40 0.00 0.00 0.00 5.02 0.19 31 7.5 63.61 63.61 2781.50 39.79 20.93 0.00 21.97 4.88 1.00 0 2876 39.79 32 7.5 63.54 63.54 2782.49 39.75 20.99 0.00 24.17 4.88 1.00 0 2865 39.75 33 7.5 63.48 63.48 2783.48 39.72 21.05 0.00 26.37 4.88 1.00 0 2854 39.72

Avg.= 63.54 63.54 2782.49 39.75 20.99 0.00 24.17 4.88 1.00 0.00 2865.32 39.75 STDEV= ± 0.07 0.07 0.99 0.03 0.06 0.00 2.20 0.00 0.00 0.00 10.95 0.03

Appendix B Calculated data sheet

140

Table B 1.6 : Calculated data for Finned pot without Shield at 6 mabr NG Pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 43.17 43.17 2865.27 50.04 15.38 1.46 27.51 5.09 0.95 0.053071 2564 52.70 2 2.5 43.12 43.12 2866.52 50.29 15.21 1.49 22.93 5.09 0.94 0.064959 2571 53.56 3 2.5 43.06 43.06 2867.76 50.54 15.04 1.52 18.34 5.09 0.92 0.08279 2577 54.72

Avg.= 43.12 43.12 2866.51 50.29 15.21 1.49 22.93 5.09 0.94 0.07 2570.78 53.66 STDEV= ± 0.05 0.05 1.24 0.25 0.17 0.03 4.59 0.00 0.01 0.01 6.43 1.02

4 3 46.80 46.80 2837.57 51.32 14.83 0.84 18.40 5.11 0.96 0.045535 2721 53.65 5 3 46.72 46.72 2836.58 51.50 14.94 0.84 22.98 5.10 0.96 0.036428 2697 53.38 6 3 46.65 46.65 2835.59 51.69 15.04 0.84 27.54 5.10 0.97 0.030357 2674 53.26

Avg.= 46.72 46.72 2836.58 51.50 14.94 0.84 22.97 5.10 0.96 0.04 2697.17 53.43 STDEV= ± 0.08 0.08 0.99 0.18 0.11 0.00 4.57 0.01 0.01 0.01 23.61 0.20

7 3.5 45.00 45.00 2833.08 54.46 14.73 0.46 22.71 5.04 0.98 0.020379 2597 55.57 8 3.5 45.00 45.00 2832.09 54.57 14.73 0.56 22.71 5.04 0.98 0.024837 2597 55.92 9 3.5 45.00 45.00 2831.10 54.67 14.73 0.67 22.71 5.04 0.97 0.029295 2597 56.27

Avg.= 45.00 45.00 2832.09 54.57 14.73 0.56 22.71 5.04 0.98 0.02 2597.29 55.92 STDEV= ± 0.00 0.00 0.99 0.10 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.35 10 4 45.69 45.69 2844.53 50.63 15.47 0.34 27.05 5.01 0.99 0.012737 2621 51.27 11 4 45.70 45.70 2843.55 50.72 15.47 0.41 27.05 5.01 0.99 0.015072 2620 51.49 12 4 45.70 45.70 2842.56 50.82 15.48 0.47 27.05 5.01 0.98 0.017407 2619 51.71

Avg.= 45.70 45.70 2843.55 50.72 15.47 0.41 27.05 5.01 0.99 0.02 2620.07 51.49 STDEV= ± 0.00 0.00 0.99 0.10 0.01 0.06 0.00 0.00 0.00 0.00 0.73 0.22 13 4.5 49.04 49.04 2834.70 48.17 16.12 0.21 26.89 4.98 0.99 0.007748 2695 48.54 14 4.5 49.04 49.04 2835.69 48.07 16.12 0.21 26.89 4.98 0.99 0.007748 2695 48.45 15 4.5 49.04 49.04 2836.68 47.98 16.12 0.21 26.89 4.98 0.99 0.007748 2695 48.35

Avg.= 49.04 49.04 2835.69 48.07 16.12 0.21 26.89 4.98 0.99 0.01 2695.50 48.45 STDEV= ± 0.00 0.00 0.99 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 16 5 54.02 54.02 2808.36 47.51 16.40 0.06 22.42 4.98 1.00 0.002547 2800 47.63 17 5 54.15 54.15 2810.61 46.94 16.73 0.04 24.66 4.98 1.00 0.001737 2772 47.02 18 5 54.29 54.29 2812.85 46.37 17.06 0.03 26.89 4.98 1.00 0.001061 2745 46.42

Appendix B Calculated data sheet

141

Avg.= 54.15 54.15 2810.61 46.94 16.73 0.04 24.65 4.98 1.00 0.00 2772.29 47.02 STDEV= ± 0.14 0.14 2.25 0.57 0.33 0.01 2.23 0.00 0.00 0.00 27.83 0.61 19 5.5 54.83 54.83 2794.68 45.99 17.45 0.03 26.85 4.97 1.00 0.001061 2824 46.04 20 5.5 54.83 54.83 2793.69 46.08 17.42 0.03 26.85 4.97 1.00 0.001061 2829 46.13 21 5.5 54.83 54.83 2792.70 46.16 17.40 0.03 26.85 4.97 1.00 0.001061 2833 46.21

Avg.= 54.83 54.83 2793.69 46.08 17.42 0.03 26.85 4.97 1.00 0.00 2828.65 46.13 STDEV= ± 0.00 0.00 0.99 0.08 0.03 0.00 0.00 0.00 0.00 0.00 4.48 0.08 22 6 52.03 52.03 2829.96 44.97 17.67 0.00 26.69 4.94 1.00 0 2670 44.97 23 6 52.04 52.04 2827.98 45.14 17.69 0.00 26.69 4.94 1.00 0 2669 45.14 24 6 52.05 52.05 2826.00 45.30 17.70 0.00 26.69 4.94 1.00 0 2668 45.30

Avg.= 52.04 52.04 2827.98 45.14 17.69 0.00 26.69 4.94 1.00 0.00 2668.80 45.14 STDEV= ± 0.01 0.01 1.98 0.17 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.17 25 6.5 53.19 53.19 2826.69 43.95 18.20 0.00 26.56 4.92 1.00 0 2675 43.95 26 6.5 53.19 53.19 2827.67 43.86 18.20 0.00 26.56 4.92 1.00 0 2675 43.86 27 6.5 53.19 53.19 2828.66 43.78 18.20 0.00 26.56 4.92 1.00 0 2675 43.78

Avg.= 53.19 53.19 2827.67 43.86 18.20 0.00 26.56 4.92 1.00 0.00 2674.66 43.86 STDEV= ± 0.00 0.00 0.99 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 28 7 55.22 55.22 2795.86 43.37 19.02 0.00 26.60 4.92 1.00 0 2653 43.37 29 7 55.26 55.26 2796.76 43.21 19.05 0.00 26.62 4.93 1.00 0 2655 43.21 30 7 55.31 55.31 2797.67 43.04 19.08 0.00 26.65 4.93 1.00 0 2657 43.04

Avg.= 55.26 55.26 2796.76 43.21 19.05 0.00 26.62 4.93 1.00 0.00 2655.12 43.21 STDEV= ± 0.04 0.04 0.91 0.16 0.03 0.00 0.03 0.01 0.00 0.00 2.09 0.16 31 7.5 54.13 54.13 2827.71 42.17 19.30 0.00 26.63 4.93 1.00 0 2638 42.17 32 7.5 54.15 54.15 2826.72 42.23 19.36 0.00 26.63 4.93 1.00 0 2631 42.23 33 7.5 54.18 54.18 2825.73 42.30 19.41 0.00 26.63 4.93 1.00 0 2625 42.30

Avg.= 54.15 54.15 2826.72 42.23 19.36 0.00 26.63 4.93 1.00 0.00 2631.36 42.23 STDEV= ± 0.02 0.02 0.99 0.07 0.06 0.00 0.00 0.00 0.00 0.00 6.72 0.07

Appendix B Calculated data sheet

142

Table B 1.7: Calculated data for flat bottom pot with Shield at 6 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 36.06 36.06 2870.13 61.24 12.91 0.41 9.23 5.12 0.96 0.047722 2515 63.97 2 2.5 35.69 35.69 2869.69 62.01 12.67 0.44 10.60 5.12 0.96 0.044264 2532 64.58 3 2.5 35.32 35.32 2869.24 62.80 12.44 0.47 11.97 5.11 0.96 0.036773 2549 65.26

Avg.= 35.69 35.69 2869.69 62.01 12.68 0.44 10.60 5.12 0.96 0.04 2531.85 64.60 STDEV= ± 0.37 0.37 0.44 0.78 0.23 0.03 1.37 0.00 0.00 0.01 16.79 0.65

4 3 35.79 35.79 2866.01 63.58 12.46 0.11 9.18 5.10 0.99 0.012388 2522 64.37 5 3 35.49 35.49 2863.51 64.39 12.34 0.11 9.16 5.09 0.99 0.012388 2529 65.19 6 3 35.20 35.20 2861.02 65.21 12.21 0.11 9.14 5.07 0.99 0.012449 2536 66.02

Avg.= 35.50 35.50 2863.51 64.39 12.34 0.11 9.16 5.09 0.99 0.01 2528.64 65.19 STDEV= ± 0.29 0.29 2.50 0.82 0.13 0.00 0.02 0.01 0.00 0.00 6.95 0.83

7 3.5 34.29 34.29 2881.39 61.89 12.35 0.04 27.36 5.06 1.00 0.001486 2544 61.98 8 3.5 34.60 34.60 2877.88 61.73 12.52 0.04 27.37 5.06 1.00 0.001486 2537 61.82 9 3.5 34.90 34.90 2874.37 61.58 12.68 0.04 27.37 5.07 1.00 0.001486 2530 61.67

Avg.= 34.59 34.59 2877.88 61.73 12.52 0.04 27.37 5.06 1.00 0.00 2536.68 61.83 STDEV= ± 0.31 0.31 3.51 0.16 0.17 0.00 0.01 0.00 0.00 0.00 7.14 0.16 10 4 35.82 35.82 2880.28 60.61 13.04 0.00 27.46 5.08 1.00 0 2529 60.61 11 4 35.70 35.70 2876.73 60.43 12.94 0.00 27.46 5.08 1.00 0 2546 60.43 12 4 35.58 35.58 2873.17 60.24 12.84 0.00 27.46 5.08 1.00 0 2563 60.24

Avg.= 35.70 35.70 2876.73 60.43 12.94 0.00 27.46 5.08 1.00 0.00 2545.75 60.43 STDEV= ± 0.12 0.12 3.55 0.18 0.10 0.00 0.00 0.00 0.00 0.00 17.02 0.18 13 4.5 37.67 37.67 2872.50 57.44 13.04 0.00 22.90 5.09 1.00 0 2647 57.44 14 4.5 36.68 36.68 2873.93 58.73 12.93 0.00 22.86 5.08 1.00 0 2604 58.73 15 4.5 35.70 35.70 2875.36 60.08 12.82 0.00 22.82 5.07 1.00 0 2560 60.08

Avg.= 36.68 36.68 2873.93 58.75 12.93 0.00 22.86 5.08 1.00 0.00 2603.72 58.75 STDEV= ± 0.99 0.99 1.43 1.32 0.11 0.00 0.04 0.01 0.00 0.00 43.84 1.32 16 5 36.85 36.85 2872.60 58.86 13.64 0.00 18.17 5.05 1.00 0 2468 58.86 17 5 37.76 37.76 2871.76 57.77 13.50 0.00 18.17 5.04 1.00 0 2544 57.77 18 5 38.67 38.67 2870.92 56.72 13.36 0.00 18.17 5.04 1.00 0 2621 56.72

Avg.= 37.76 37.76 2871.76 57.78 13.50 0.00 18.17 5.04 1.00 0.00 2544.24 57.78

Appendix B Calculated data sheet

143

STDEV= ± 0.91 0.91 0.84 1.07 0.14 0.00 0.00 0.00 0.00 0.00 76.15 1.07 19 5.5 40.61 40.61 2848.24 56.69 14.01 0.00 18.01 5.00 1.00 0 2621 56.69 20 5.5 41.28 41.28 2842.29 56.42 14.22 0.00 18.01 5.00 1.00 0 2628 56.42 21 5.5 41.94 41.94 2836.33 56.16 14.42 0.00 18.00 5.00 1.00 0 2634 56.16

Avg.= 41.28 41.28 2842.29 56.43 14.22 0.00 18.01 5.00 1.00 0.00 2627.55 56.43 STDEV= ± 0.66 0.66 5.95 0.26 0.21 0.00 0.00 0.00 0.00 0.00 6.21 0.26 22 6 41.46 41.46 2860.25 54.38 14.06 0.00 18.04 5.01 1.00 0 2655 54.38 23 6 41.25 41.25 2856.30 55.11 14.13 0.00 18.09 5.02 1.00 0 2629 55.11 24 6 41.03 41.03 2852.34 55.85 14.19 0.00 18.14 5.04 1.00 0 2603 55.85

Avg.= 41.25 41.25 2856.30 55.12 14.13 0.00 18.09 5.02 1.00 0.00 2628.85 55.12 STDEV= ± 0.22 0.22 3.95 0.74 0.07 0.00 0.05 0.01 0.00 0.00 26.07 0.74 25 6.5 41.41 41.41 2863.96 53.69 14.49 0.00 18.10 5.02 1.00 0 2593 53.69 26 6.5 41.54 41.54 2858.55 54.16 14.70 0.00 18.11 5.03 1.00 0 2561 54.16 27 6.5 41.67 41.67 2853.13 54.63 14.91 0.00 18.11 5.03 1.00 0 2531 54.63

Avg.= 41.54 41.54 2858.55 54.16 14.70 0.00 18.11 5.03 1.00 0.00 2561.81 54.16 STDEV= ± 0.13 0.13 5.41 0.47 0.21 0.00 0.01 0.00 0.00 0.00 30.82 0.47 28 7 43.60 43.60 2857.07 53.08 14.89 0.00 18.07 5.02 1.00 0 2575 53.08 29 7 43.60 43.60 2858.08 53.01 14.87 0.00 18.07 5.02 1.00 0 2578 53.01 30 7 43.59 43.59 2859.09 52.94 14.84 0.00 18.07 5.02 1.00 0 2580 52.94

Avg.= 43.60 43.60 2858.08 53.01 14.87 0.00 18.07 5.02 1.00 0.00 2577.85 53.01 STDEV= ± 0.01 0.01 1.01 0.07 0.03 0.00 0.00 0.00 0.00 0.00 2.41 0.07 31 7.5 44.20 44.20 2856.22 52.64 14.59 0.00 18.14 5.04 1.00 0 2653 52.64 32 7.5 44.19 44.19 2857.21 52.55 14.53 0.00 18.14 5.04 1.00 0 2663 52.55 33 7.5 44.17 44.17 2858.19 52.47 14.47 0.00 18.14 5.04 1.00 0 2673 52.47

Avg.= 44.19 44.19 2857.21 52.55 14.53 0.00 18.14 5.04 1.00 0.00 2663.00 52.55 STDEV= ± 0.02 0.02 0.99 0.08 0.06 0.00 0.00 0.00 0.00 0.00 9.83 0.08

Appendix B Calculated data sheet

144

Table B 1.8: Calculated data for Finned pot with Shield at 6 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 40.39 40.39 2861.39 55.39 13.64 2.43 18.45 5.12 0.88 0.131828 2624 62.69 2 2.5 39.91 39.91 2857.19 56.20 13.70 2.46 18.49 5.13 0.88 0.133261 2600 63.69 3 2.5 39.42 39.42 2852.99 57.04 13.75 2.50 18.53 5.14 0.88 0.134694 2577 64.72

Avg.= 39.91 39.91 2857.19 56.21 13.70 2.46 18.49 5.13 0.88 0.13 2600.35 63.70 STDEV= ± 0.48 0.48 4.20 0.82 0.06 0.03 0.04 0.01 0.00 0.00 23.21 1.01

4 3 36.77 36.77 2876.14 57.36 13.10 2.23 16.57 5.11 0.88 0.134446 2564 65.08 5 3 37.92 37.92 2865.97 57.17 13.49 2.16 17.46 5.10 0.89 0.124018 2554 64.26 6 3 39.07 39.07 2855.80 56.99 13.87 2.10 18.34 5.09 0.90 0.114633 2544 63.52

Avg.= 37.92 37.92 2865.97 57.17 13.49 2.16 17.45 5.10 0.89 0.12 2554.17 64.29 STDEV= ± 1.15 1.15 10.17 0.19 0.38 0.06 0.88 0.01 0.01 0.01 10.03 0.78

7 3.5 37.47 37.47 2869.05 58.38 13.13 1.87 18.32 5.09 0.91 0.101896 2547 64.33 8 3.5 38.04 38.04 2859.63 58.62 13.34 1.82 18.34 5.09 0.91 0.09903 2546 64.42 9 3.5 38.62 38.62 2850.22 58.84 13.56 1.76 18.35 5.10 0.91 0.096164 2545 64.50

Avg.= 38.04 38.04 2859.63 58.61 13.34 1.82 18.34 5.09 0.91 0.10 2546.35 64.42 STDEV= ± 0.58 0.58 9.41 0.23 0.22 0.05 0.02 0.00 0.00 0.00 1.07 0.09 10 4 39.97 39.97 2833.65 57.75 13.81 0.70 27.43 5.08 0.98 0.025474 2645 59.22 11 4 39.59 39.59 2843.98 57.01 13.66 0.69 27.52 5.09 0.98 0.024943 2652 58.43 12 4 39.21 39.21 2854.30 56.26 13.51 0.67 27.61 5.11 0.98 0.024413 2659 57.63

Avg.= 39.59 39.59 2843.98 57.01 13.66 0.69 27.52 5.09 0.98 0.02 2651.91 58.43 STDEV= ± 0.38 0.38 10.32 0.75 0.15 0.01 0.09 0.02 0.00 0.00 7.28 0.79 13 4.5 38.33 38.33 2867.25 56.11 13.92 0.09 36.63 5.08 1.00 0.002388 2516 56.24 14 4.5 38.17 38.17 2867.38 56.51 13.67 0.07 36.59 5.08 1.00 0.00199 2541 56.63 15 4.5 38.01 38.01 2867.50 56.92 13.43 0.06 36.55 5.07 1.00 0.001592 2567 57.01

Avg.= 38.17 38.17 2867.37 56.51 13.68 0.07 36.59 5.08 1.00 0.00 2541.56 56.63 STDEV= ± 0.16 0.16 0.13 0.41 0.25 0.01 0.04 0.01 0.00 0.00 25.64 0.39 16 5 42.16 42.16 2838.60 55.53 14.24 0.03 36.39 5.05 1.00 0.000955 2627 55.58 17 5 41.64 41.64 2843.18 55.20 14.21 0.03 36.41 5.05 1.00 0.000876 2628 55.25 18 5 41.12 41.12 2847.74 54.86 14.19 0.03 36.44 5.06 1.00 0.000796 2629 54.91

Appendix B Calculated data sheet

145

Avg.= 41.64 41.64 2843.17 55.20 14.21 0.03 36.41 5.05 1.00 0.00 2628.34 55.25 STDEV= ± 0.52 0.52 4.57 0.33 0.03 0.00 0.03 0.00 0.00 0.00 0.94 0.34 19 5.5 42.90 42.90 2841.06 54.95 14.18 0.00 36.31 5.04 1.00 0 2645 54.95 20 5.5 43.84 43.84 2834.96 54.20 14.41 0.00 36.45 5.06 1.00 0 2675 54.20 21 5.5 44.78 44.78 2828.87 53.48 14.63 0.00 36.59 5.08 1.00 0 2704 53.48

Avg.= 43.84 43.84 2834.96 54.21 14.41 0.00 36.45 5.06 1.00 0.00 2674.65 54.21 STDEV= ± 0.94 0.94 6.10 0.74 0.22 0.00 0.14 0.02 0.00 0.00 29.38 0.74 22 6 43.92 43.92 2829.27 53.72 14.69 0.00 36.51 5.07 1.00 0 2688 53.72 23 6 42.59 42.59 2832.29 53.26 14.85 0.00 36.56 5.07 1.00 0 2687 53.26 24 6 41.25 41.25 2835.18 52.76 15.02 0.00 36.61 5.08 1.00 0 2686 52.76

Avg.= 42.59 42.59 2832.25 53.25 14.86 0.00 36.56 5.07 1.00 0.00 2686.92 53.25 STDEV= ± 1.34 1.34 2.96 0.48 0.17 0.00 0.05 0.01 0.00 0.00 0.92 0.48 25 6.5 42.95 42.95 2852.83 50.92 15.05 0.00 36.52 5.07 1.00 0 2652 50.92 26 6.5 43.39 43.39 2844.39 51.87 15.15 0.00 36.59 5.08 1.00 0 2628 51.87 27 6.5 43.83 43.83 2835.93 52.80 15.24 0.00 36.67 5.09 1.00 0 2604 52.80

Avg.= 43.39 43.39 2844.39 51.86 15.15 0.00 36.59 5.08 1.00 0.00 2628.09 51.86 STDEV= ± 0.44 0.44 8.45 0.94 0.10 0.00 0.08 0.01 0.00 0.00 24.24 0.94 28 7 45.21 45.21 2838.75 51.95 15.09 0.00 36.48 5.06 1.00 0 2647 51.95 29 7 45.19 45.19 2841.30 51.18 15.38 0.00 36.48 5.06 1.00 0 2627 51.18 30 7 45.17 45.17 2843.84 50.41 15.69 0.00 36.48 5.06 1.00 0 2608 50.41

Avg.= 45.19 45.19 2841.30 51.18 15.39 0.00 36.48 5.06 1.00 0.00 2627.31 51.18 STDEV= ± 0.02 0.02 2.55 0.77 0.30 0.00 0.00 0.00 0.00 0.00 19.75 0.77 31 7.5 44.80 44.80 2849.77 50.22 16.25 0.00 36.52 5.07 1.00 0 2497 50.22 32 7.5 43.92 43.92 2852.73 50.90 15.80 0.00 36.52 5.07 1.00 0 2517 50.90 33 7.5 43.05 43.05 2855.70 51.61 15.36 0.00 36.52 5.07 1.00 0 2539 51.61

Avg.= 43.92 43.92 2852.73 50.91 15.80 0.00 36.52 5.07 1.00 0.00 2517.87 50.91 STDEV= ± 0.87 0.87 2.96 0.70 0.45 0.00 0.00 0.00 0.00 0.00 20.82 0.70

Appendix B Calculated data sheet

146

Table B 1.9: Calculated data for flat bottom pot without Shield at 10 mbar NG Pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 42.38 42.38 2800.08 59.08 12.54 0.13 27.40 5.07 1.00 0.00467 3285 59.36 2 2.5 39.96 39.96 2833.00 58.94 11.97 0.13 27.36 5.06 1.00 0.004723 3236 59.22 3 2.5 37.53 37.53 2865.92 58.78 11.41 0.13 27.32 5.06 1.00 0.004776 3182 59.06

Avg.= 39.96 39.96 2833.00 58.94 11.97 0.13 27.36 5.06 1.00 0.00 3234.41 59.21 STDEV= ± 2.42 2.42 32.92 0.15 0.56 0.00 0.04 0.01 0.00 0.00 51.51 0.15

4 3 36.96 36.96 2879.26 57.45 12.10 0.06 27.57 5.10 1.00 0.002123 2812 57.57 5 3 36.92 36.92 2881.23 57.27 12.05 0.05 27.57 5.10 1.00 0.001911 2822 57.38 6 3 36.88 36.88 2883.21 57.08 11.99 0.05 27.57 5.10 1.00 0.001698 2831 57.18

Avg.= 36.92 36.92 2881.23 57.27 12.05 0.05 27.57 5.10 1.00 0.00 2821.54 57.38 STDEV= ± 0.04 0.04 1.98 0.18 0.06 0.01 0.00 0.00 0.00 0.00 9.89 0.20

7 3.5 39.51 39.51 2878.41 55.56 12.78 0.01 22.87 5.08 1.00 0.000509 2772 55.59 8 3.5 39.40 39.40 2878.32 55.54 12.79 0.01 22.87 5.08 1.00 0.000255 2759 55.55 9 3.5 39.30 39.30 2878.24 55.52 12.81 0.00 22.87 5.08 1.00 0 2745 55.52

Avg.= 39.40 39.40 2878.32 55.54 12.79 0.01 22.87 5.08 1.00 0.00 2758.72 55.55 STDEV= ± 0.10 0.10 0.09 0.02 0.02 0.01 0.00 0.00 0.00 0.00 13.27 0.04 10 4 41.71 41.71 2877.64 52.91 13.37 0.00 27.45 5.08 1.00 0 2760 52.91 11 4 41.71 41.71 2876.70 53.08 13.40 0.00 27.45 5.08 1.00 0 2749 53.08 12 4 41.71 41.71 2875.75 53.26 13.44 0.00 27.45 5.08 1.00 0 2738 53.26

Avg.= 41.71 41.71 2876.70 53.08 13.40 0.00 27.45 5.08 1.00 0.00 2748.67 53.08 STDEV= ± 0.00 0.00 0.94 0.17 0.03 0.00 0.00 0.00 0.00 0.00 11.13 0.17 13 4.5 45.53 45.53 2866.70 50.82 14.15 0.00 27.14 5.02 1.00 0 2766 50.82 14 4.5 45.51 45.51 2871.69 50.39 14.19 0.00 27.14 5.02 1.00 0 2754 50.39 15 4.5 45.50 45.50 2876.68 49.95 14.22 0.00 27.14 5.02 1.00 0 2743 49.95

Avg.= 45.51 45.51 2871.69 50.38 14.19 0.00 27.14 5.02 1.00 0.00 2754.24 50.38 STDEV= ± 0.02 0.02 4.99 0.43 0.03 0.00 0.00 0.00 0.00 0.00 11.27 0.43 16 5 51.41 51.41 2834.51 48.48 15.52 0.00 27.15 5.03 1.00 0 2808 48.48 17 5 51.33 51.33 2836.53 48.42 15.34 0.00 27.15 5.03 1.00 0 2833 48.42 18 5 51.26 51.26 2838.55 48.36 15.17 0.00 27.15 5.03 1.00 0 2857 48.36

Appendix B Calculated data sheet

147

Avg.= 51.33 51.33 2836.53 48.42 15.34 0.00 27.15 5.03 1.00 0.00 2832.71 48.42 STDEV= ± 0.08 0.08 2.02 0.06 0.18 0.00 0.00 0.00 0.00 0.00 24.49 0.06 19 5.5 51.06 51.06 2863.27 46.28 15.89 0.00 27.00 5.00 1.00 0 2716 46.28 20 5.5 51.06 51.06 2863.40 46.44 15.93 0.00 27.00 5.00 1.00 0 2698 46.44 21 5.5 51.06 51.06 2863.53 46.59 15.97 0.00 27.00 5.00 1.00 0 2681 46.59

Avg.= 51.06 51.06 2863.40 46.44 15.93 0.00 27.00 5.00 1.00 0.00 2698.52 46.44 STDEV= ± 0.00 0.00 0.13 0.15 0.04 0.00 0.00 0.00 0.00 0.00 17.52 0.15 22 6 53.59 53.59 2870.41 44.47 16.34 0.00 26.97 4.99 1.00 0 2743 44.47 23 6 53.59 53.59 2866.49 44.49 16.37 0.00 26.97 4.99 1.00 0 2739 44.49 24 6 53.59 53.59 2862.59 44.52 16.41 0.00 26.97 4.99 1.00 0 2735 44.52

Avg.= 53.59 53.59 2866.50 44.49 16.37 0.00 26.97 4.99 1.00 0.00 2739.07 44.49 STDEV= ± 0.00 0.00 3.91 0.02 0.04 0.00 0.00 0.00 0.00 0.00 4.30 0.02 25 6.5 56.74 56.74 2850.72 43.03 17.18 0.00 26.91 4.98 1.00 0 2765 43.03 26 6.5 56.74 56.74 2852.20 42.90 17.03 0.00 26.91 4.98 1.00 0 2790 42.90 27 6.5 56.74 56.74 2853.68 42.78 16.87 0.00 26.91 4.98 1.00 0 2816 42.78

Avg.= 56.74 56.74 2852.20 42.90 17.03 0.00 26.91 4.98 1.00 0.00 2790.55 42.90 STDEV= ± 0.00 0.00 1.48 0.12 0.15 0.00 0.00 0.00 0.00 0.00 25.29 0.12 28 7 61.55 61.55 2833.16 41.27 18.27 0.00 26.92 4.98 1.00 0 2799 41.27 29 7 61.55 61.55 2834.19 41.24 18.19 0.00 26.92 4.98 1.00 0 2806 41.24 30 7 61.55 61.55 2835.22 41.20 18.11 0.00 26.92 4.98 1.00 0 2814 41.20

Avg.= 61.55 61.55 2834.19 41.24 18.19 0.00 26.92 4.98 1.00 0.00 2806.42 41.24 STDEV= ± 0.00 0.00 1.03 0.03 0.08 0.00 0.00 0.00 0.00 0.00 7.86 0.03 31 7.5 63.91 63.91 2836.97 40.12 18.98 0.00 26.84 4.97 1.00 0 2782 40.12 32 7.5 63.91 63.91 2825.45 40.12 19.11 0.00 26.84 4.97 1.00 0 2774 40.12 33 7.5 63.91 63.91 2813.93 40.12 19.24 0.00 26.84 4.97 1.00 0 2767 40.12

Avg.= 63.91 63.91 2825.45 40.12 19.11 0.00 26.84 4.97 1.00 0.00 2774.15 40.12 STDEV= ± 0.00 0.00 11.52 0.00 0.13 0.00 0.00 0.00 0.00 0.00 7.40 0.00

Appendix B Calculated data sheet

148

Table B 1.10: Calculated data for Finned pot without Shield at 10 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 44.04 44.04 2864.95 48.69 14.61 1.36 18.61 5.17 0.93 0.073238 2779 52.26 2 2.5 44.04 44.04 2865.94 48.59 14.61 1.39 18.61 5.17 0.93 0.07483 2779 52.22 3 2.5 44.04 44.04 2866.93 48.48 14.61 1.42 18.61 5.17 0.93 0.076422 2779 52.19

Avg.= 44.04 44.04 2865.94 48.59 14.61 1.39 18.61 5.17 0.93 0.07 2778.79 52.22 STDEV= ± 0.00 0.00 0.99 0.11 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.04

4 3 44.50 44.50 2855.39 49.58 14.54 0.86 23.04 5.12 0.96 0.037192 2797 51.42 5 3 44.26 44.26 2861.32 49.22 14.51 0.87 20.74 5.12 0.96 0.041891 2787 51.28 6 3 44.03 44.03 2867.25 48.85 14.48 0.88 18.43 5.12 0.95 0.047764 2778 51.18

Avg.= 44.26 44.26 2861.32 49.22 14.51 0.87 20.74 5.12 0.96 0.04 2787.29 51.30 STDEV= ± 0.24 0.24 5.93 0.36 0.03 0.01 2.30 0.00 0.00 0.01 9.49 0.12

7 3.5 45.46 45.46 2838.31 51.16 14.63 0.70 23.02 5.11 0.97 0.030569 2782 52.72 8 3.5 45.27 45.27 2843.25 50.86 14.41 0.67 25.33 5.11 0.97 0.026632 2813 52.21 9 3.5 45.08 45.08 2848.19 50.56 14.19 0.65 27.63 5.11 0.98 0.023351 2844 51.74

Avg.= 45.27 45.27 2843.25 50.86 14.41 0.67 25.33 5.11 0.97 0.03 2813.01 52.22 STDEV= ± 0.19 0.19 4.94 0.30 0.22 0.03 2.30 0.00 0.00 0.00 31.16 0.49 10 4 46.99 46.99 2859.04 48.61 14.90 0.51 27.41 5.07 0.98 0.018575 2742 49.52 11 4 46.99 46.99 2859.04 48.61 14.90 0.53 27.41 5.07 0.98 0.019212 2742 49.55 12 4 46.99 46.99 2859.04 48.61 14.90 0.54 27.41 5.07 0.98 0.019848 2742 49.58

Avg.= 46.99 46.99 2859.04 48.61 14.90 0.53 27.41 5.07 0.98 0.02 2741.71 49.55 STDEV= ± 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 13 4.5 49.14 49.14 2859.82 47.38 15.28 0.26 36.43 5.06 0.99 0.007165 2730 47.72 14 4.5 49.14 49.14 2859.82 47.38 15.26 0.31 36.43 5.06 0.99 0.008637 2735 47.79 15 4.5 49.14 49.14 2859.82 47.38 15.23 0.37 36.43 5.06 0.99 0.01011 2739 47.86

Avg.= 49.14 49.14 2859.82 47.38 15.26 0.31 36.43 5.06 0.99 0.01 2734.70 47.79 STDEV= ± 0.00 0.00 0.00 0.00 0.03 0.05 0.00 0.00 0.00 0.00 4.67 0.07 16 5 51.41 51.41 2854.29 46.28 16.07 0.16 36.45 5.06 1.00 0.004299 2682 46.48 17 5 51.41 51.41 2854.29 46.28 15.97 0.15 36.45 5.06 1.00 0.00406 2699 46.47 18 5 51.41 51.41 2854.29 46.28 15.87 0.14 36.45 5.06 1.00 0.003821 2717 46.46

Appendix B Calculated data sheet

149

Avg.= 51.41 51.41 2854.29 46.28 15.97 0.15 36.45 5.06 1.00 0.00 2699.31 46.47 STDEV= ± 0.00 0.00 0.00 0.00 0.10 0.01 0.00 0.00 0.00 0.00 17.42 0.01 19 5.5 53.38 53.38 2849.60 45.29 16.76 0.09 36.31 5.04 1.00 0.002547 2649 45.40 20 5.5 53.34 53.34 2850.59 45.24 16.73 0.07 36.31 5.04 1.00 0.001831 2651 45.32 21 5.5 53.29 53.29 2851.58 45.19 16.71 0.04 36.31 5.04 1.00 0.001114 2653 45.24

Avg.= 53.34 53.34 2850.59 45.24 16.73 0.07 36.31 5.04 1.00 0.00 2651.13 45.32 STDEV= ± 0.04 0.04 0.99 0.05 0.03 0.03 0.00 0.00 0.00 0.00 1.85 0.08 22 6 54.78 54.78 2851.66 44.06 17.37 0.00 36.09 5.01 1.00 0 2615 44.06 23 6 54.79 54.79 2850.67 44.14 17.40 0.00 36.09 5.01 1.00 0 2612 44.14 24 6 54.80 54.80 2849.68 44.21 17.43 0.00 36.09 5.01 1.00 0 2608 44.21

Avg.= 54.79 54.79 2850.67 44.14 17.40 0.00 36.09 5.01 1.00 0.00 2611.62 44.14 STDEV= ± 0.01 0.01 0.99 0.07 0.03 0.00 0.00 0.00 0.00 0.00 3.18 0.07 25 6.5 59.82 59.82 2817.38 43.40 18.04 0.00 35.99 5.00 1.00 0 2720 43.40 26 6.5 59.82 59.82 2817.38 43.40 18.07 0.00 35.99 5.00 1.00 0 2716 43.40 27 6.5 59.82 59.82 2817.38 43.40 18.09 0.00 35.99 5.00 1.00 0 2712 43.40

Avg.= 59.82 59.82 2817.38 43.40 18.07 0.00 35.99 5.00 1.00 0.00 2716.14 43.40 STDEV= ± 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 3.79 0.00 28 7 62.82 62.82 2801.71 42.67 18.45 0.00 36.13 5.01 1.00 0 2779 42.67 29 7 62.74 62.74 2803.69 42.57 18.47 0.00 36.13 5.01 1.00 0 2772 42.57 30 7 62.67 62.67 2805.67 42.48 18.50 0.00 36.13 5.01 1.00 0 2764 42.48

Avg.= 62.74 62.74 2803.69 42.57 18.47 0.00 36.13 5.01 1.00 0.00 2771.56 42.57 STDEV= ± 0.08 0.08 1.98 0.10 0.03 0.00 0.00 0.00 0.00 0.00 7.07 0.10 31 7.5 62.33 62.33 2818.65 41.87 19.27 0.00 36.19 5.02 1.00 0 2628 41.87 32 7.5 62.33 62.33 2818.65 41.87 19.17 0.00 36.19 5.02 1.00 0 2642 41.87 33 7.5 62.33 62.33 2818.65 41.87 19.07 0.00 36.19 5.02 1.00 0 2656 41.87

Avg.= 62.33 62.33 2818.65 41.87 19.17 0.00 36.19 5.02 1.00 0.00 2642.09 41.87 STDEV= ± 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 13.76 0.00

Appendix B Calculated data sheet

150

Table B 1.11: Calculated data for flat bottom pot with Shield at 10 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 39.23 39.23 2883.70 58.87 12.60 0.99 19.16 5.32 0.95 0.051426 2579 61.90 2 2.5 39.33 39.33 2882.56 58.61 12.26 0.93 19.14 5.31 0.95 0.04856 2668 61.45 3 2.5 39.43 39.43 2881.42 58.35 11.93 0.87 19.13 5.31 0.96 0.045694 2764 61.01

Avg.= 39.33 39.33 2882.56 58.61 12.26 0.93 19.14 5.31 0.95 0.05 2670.38 61.46 STDEV= ± 0.10 0.10 1.14 0.26 0.34 0.06 0.02 0.01 0.00 0.00 92.61 0.44

4 3 38.63 38.63 2876.48 60.16 11.79 0.23 19.06 5.29 0.99 0.011941 2738 60.88 5 3 38.14 38.14 2880.50 60.54 11.55 0.30 19.03 5.28 0.98 0.015762 2756 61.49 6 3 37.66 37.66 2884.52 60.93 11.31 0.37 19.00 5.28 0.98 0.019583 2774 62.12

Avg.= 38.14 38.14 2880.50 60.54 11.55 0.30 19.03 5.28 0.98 0.02 2755.86 61.50 STDEV= ± 0.48 0.48 4.02 0.38 0.24 0.07 0.03 0.01 0.00 0.00 17.60 0.62

7 3.5 37.97 37.97 2883.49 60.48 11.53 0.11 23.87 5.30 1.00 0.004458 2747 60.75 8 3.5 37.85 37.85 2884.35 60.34 11.55 0.10 26.23 5.30 1.00 0.003821 2744 60.58 9 3.5 37.73 37.73 2885.21 60.21 11.57 0.09 28.58 5.29 1.00 0.00329 2742 60.41

Avg.= 37.85 37.85 2884.35 60.34 11.55 0.10 26.23 5.30 1.00 0.00 2744.35 60.58 STDEV= ± 0.12 0.12 0.86 0.14 0.02 0.01 2.36 0.01 0.00 0.00 2.48 0.17 10 4 38.37 38.37 2887.36 59.22 11.71 0.11 28.53 5.28 1.00 0.003715 2740 59.44 11 4 38.67 38.67 2883.68 59.68 11.69 0.11 28.54 5.28 1.00 0.003874 2742 59.92 12 4 38.96 38.96 2879.99 60.14 11.67 0.12 28.56 5.29 1.00 0.004033 2743 60.38

Avg.= 38.67 38.67 2883.68 59.68 11.69 0.11 28.54 5.28 1.00 0.00 2741.48 59.91 STDEV= ± 0.29 0.29 3.68 0.46 0.02 0.00 0.01 0.00 0.00 0.00 1.75 0.47 13 4.5 40.01 40.01 2870.46 58.64 12.21 0.05 28.53 5.28 1.00 0.001698 2748 58.74 14 4.5 39.81 39.81 2873.72 58.23 12.05 0.06 28.51 5.28 1.00 0.002017 2787 58.35 15 4.5 39.62 39.62 2876.99 57.82 11.89 0.07 28.49 5.27 1.00 0.002335 2828 57.95

Avg.= 39.81 39.81 2873.72 58.23 12.05 0.06 28.51 5.28 1.00 0.00 2787.97 58.35 STDEV= ± 0.20 0.20 3.27 0.41 0.16 0.01 0.02 0.00 0.00 0.00 40.26 0.39 16 5 41.81 41.81 2874.23 56.75 12.44 0.05 28.35 5.25 1.00 0.001911 2822 56.86 17 5 40.82 40.82 2877.17 57.01 12.14 0.03 28.36 5.25 1.00 0.001061 2835 57.07 18 5 39.83 39.83 2880.04 57.29 11.84 0.01 28.37 5.25 1.00 0.000212 2849 57.30

Avg.= 40.82 40.82 2877.15 57.02 12.14 0.03 28.36 5.25 1.00 0.00 2835.22 57.08

Appendix B Calculated data sheet

151

STDEV= ± 0.99 0.99 2.91 0.27 0.30 0.02 0.01 0.00 0.00 0.00 13.56 0.22 19 5.5 41.78 41.78 2870.37 56.04 12.36 0.02 23.68 5.26 1.00 0.000637 2843 56.07 20 5.5 41.80 41.80 2869.21 55.87 12.39 0.01 26.05 5.26 1.00 0.000521 2852 55.90 21 5.5 41.82 41.82 2868.04 55.71 12.43 0.01 28.42 5.26 1.00 0.000425 2860 55.73

Avg.= 41.80 41.80 2869.21 55.87 12.39 0.01 26.05 5.26 1.00 0.00 2851.64 55.90 STDEV= ± 0.02 0.02 1.16 0.16 0.04 0.00 2.37 0.00 0.00 0.00 8.55 0.17 22 6 43.28 43.28 2862.37 54.83 12.53 0.01 23.64 5.25 1.00 0.000382 2911 54.85 23 6 42.80 42.80 2867.14 54.67 12.45 0.01 25.99 5.25 1.00 0.000405 2915 54.69 24 6 42.31 42.31 2871.91 54.50 12.36 0.01 28.35 5.25 1.00 0.000425 2918 54.53

Avg.= 42.80 42.80 2867.14 54.67 12.45 0.01 25.99 5.25 1.00 0.00 2914.74 54.69 STDEV= ± 0.48 0.48 4.77 0.16 0.09 0.00 2.35 0.00 0.00 0.00 3.59 0.16 25 6.5 42.41 42.41 2880.17 53.99 12.28 0.02 28.38 5.25 1.00 0.000637 2913 54.03 26 6.5 42.87 42.87 2874.07 53.82 12.84 0.02 23.68 5.26 1.00 0.000955 2830 53.87 27 6.5 43.33 43.33 2867.96 53.65 13.42 0.03 18.97 5.27 1.00 0.001433 2753 53.73

Avg.= 42.87 42.87 2874.07 53.82 12.85 0.02 23.68 5.26 1.00 0.00 2831.65 53.88 STDEV= ± 0.46 0.46 6.11 0.17 0.57 0.00 4.71 0.01 0.00 0.00 79.88 0.15 28 7 44.47 44.47 2863.96 52.64 13.43 0.03 28.22 5.22 1.00 0.001168 2827 52.70 29 7 44.85 44.85 2860.11 52.74 13.48 0.04 23.55 5.23 1.00 0.001911 2830 52.85 30 7 45.23 45.23 2856.26 52.85 13.54 0.06 18.86 5.24 1.00 0.003025 2832 53.01

Avg.= 44.85 44.85 2860.11 52.74 13.48 0.04 23.54 5.23 1.00 0.00 2829.57 52.85 STDEV= ± 0.38 0.38 3.85 0.11 0.06 0.01 4.68 0.01 0.00 0.00 2.22 0.16 31 7.5 43.04 43.04 2881.98 52.74 13.16 0.05 28.35 5.25 1.00 0.001804 2774 52.84 32 7.5 44.06 44.06 2873.96 52.22 13.44 0.06 28.33 5.24 1.00 0.002176 2789 52.33 33 7.5 45.08 45.08 2865.93 51.72 13.72 0.07 28.30 5.24 1.00 0.002547 2805 51.85

Avg.= 44.06 44.06 2873.96 52.23 13.44 0.06 28.33 5.24 1.00 0.00 2789.26 52.34 STDEV= ± 1.02 1.02 8.02 0.51 0.28 0.01 0.02 0.00 0.00 0.00 15.63 0.49

Appendix B Calculated data sheet

152

Table B 1.12: Calculated data for Finned pot with Shield at 10 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 50.58 50.58 2865.81 46.79 13.99 2.11 13.82 5.48 0.87 0.152617 2970 53.93 2 2.5 48.03 48.03 2858.50 49.47 13.39 2.19 13.80 5.47 0.86 0.158871 2983 57.32 3 2.5 45.49 45.49 2851.19 52.44 12.78 2.27 13.78 5.46 0.86 0.165126 2998 61.10

Avg.= 48.03 48.03 2858.50 49.57 13.39 2.19 13.80 5.47 0.86 0.16 2983.71 57.45 STDEV= ± 2.55 2.55 7.31 2.83 0.61 0.08 0.02 0.01 0.00 0.01 13.71 3.58

4 3 42.90 42.90 2860.52 55.23 12.60 1.75 15.66 5.43 0.90 0.111449 2827 61.39 5 3 42.87 42.87 2858.90 54.51 12.83 1.93 15.15 5.43 0.89 0.12737 2831 61.46 6 3 42.83 42.83 2857.25 53.79 13.07 2.11 14.63 5.42 0.87 0.144353 2834 61.56

Avg.= 42.87 42.87 2858.89 54.51 12.83 1.93 15.15 5.43 0.89 0.13 2830.66 61.47 STDEV= ± 0.03 0.03 1.64 0.72 0.23 0.18 0.51 0.01 0.01 0.02 3.60 0.08

7 3.5 41.76 41.76 2858.59 57.03 12.84 1.80 17.06 5.41 0.90 0.105535 2697 63.05 8 3.5 42.16 42.16 2855.47 56.59 12.95 1.74 16.32 5.41 0.90 0.106458 2713 62.62 9 3.5 42.57 42.57 2852.35 56.16 13.07 1.67 15.58 5.41 0.90 0.107468 2728 62.20

Avg.= 42.16 42.16 2855.47 56.59 12.95 1.74 16.32 5.41 0.90 0.11 2712.75 62.62 STDEV= ± 0.41 0.41 3.12 0.43 0.11 0.06 0.74 0.00 0.00 0.00 15.55 0.42 10 4 41.45 41.45 2850.20 57.66 12.83 0.87 24.31 5.40 0.97 0.035664 2721 59.72 11 4 43.33 43.33 2848.31 55.49 13.05 0.84 24.32 5.40 0.97 0.034645 2788 57.41 12 4 45.20 45.20 2846.42 53.51 13.27 0.82 24.34 5.41 0.97 0.033626 2852 55.31

Avg.= 43.33 43.33 2848.31 55.55 13.05 0.84 24.32 5.40 0.97 0.03 2786.72 57.48 STDEV= ± 1.88 1.88 1.89 2.08 0.22 0.02 0.01 0.00 0.00 0.00 65.68 2.20 13 4.5 41.39 41.39 2860.18 56.74 13.47 0.25 28.97 5.36 0.99 0.008491 2580 57.22 14 4.5 42.21 42.21 2865.21 55.22 12.96 0.23 28.74 5.32 0.99 0.007961 2728 55.66 15 4.5 43.02 43.02 2870.24 53.76 12.45 0.21 28.52 5.28 0.99 0.00743 2887 54.16

Avg.= 42.21 42.21 2865.21 55.24 12.96 0.23 28.75 5.32 0.99 0.01 2731.23 55.68 STDEV= ± 0.81 0.81 5.03 1.49 0.51 0.02 0.23 0.04 0.00 0.00 153.49 1.53 16 5 43.73 43.73 2850.02 54.42 13.73 0.00 28.93 5.35 1.00 0 2696 54.42 17 5 42.88 42.88 2857.91 54.60 13.32 0.01 28.97 5.36 1.00 0.000318 2726 54.62 18 5 42.02 42.02 2865.80 54.80 12.92 0.02 29.00 5.37 1.00 0.000637 2758 54.84

Appendix B Calculated data sheet

153

Avg.= 42.88 42.88 2857.91 54.61 13.32 0.01 28.97 5.36 1.00 0.00 2727.03 54.63 STDEV= ± 0.85 0.85 7.89 0.19 0.41 0.01 0.04 0.01 0.00 0.00 30.99 0.21 19 5.5 44.95 44.95 2846.02 53.30 13.44 0.00 24.22 5.38 1.00 0 2836 53.30 20 5.5 44.91 44.91 2844.09 53.61 13.56 0.01 21.77 5.37 1.00 0.000566 2803 53.64 21 5.5 44.87 44.87 2842.16 53.92 13.69 0.02 19.33 5.37 1.00 0.001274 2771 53.98

Avg.= 44.91 44.91 2844.09 53.61 13.56 0.01 21.77 5.37 1.00 0.00 2803.17 53.64 STDEV= ± 0.04 0.04 1.93 0.31 0.13 0.01 2.45 0.01 0.00 0.00 32.41 0.34 22 6 47.08 47.08 2825.30 53.00 14.33 0.00 28.91 5.35 1.00 0 2781 53.00 23 6 45.90 45.90 2841.53 52.59 13.85 0.01 33.75 5.35 1.00 0.000364 2813 52.61 24 6 44.72 44.72 2857.75 52.15 13.37 0.02 38.59 5.36 1.00 0.000637 2848 52.18

Avg.= 45.90 45.90 2841.53 52.58 13.85 0.01 33.75 5.35 1.00 0.00 2813.97 52.60 STDEV= ± 1.18 1.18 16.23 0.43 0.48 0.01 4.84 0.00 0.00 0.00 33.79 0.41 25 6.5 45.67 45.67 2857.53 50.79 14.54 0.00 38.55 5.35 1.00 0 2693 50.79 26 6.5 44.58 44.58 2861.46 51.59 14.07 0.00 38.53 5.35 1.00 0 2718 51.59 27 6.5 43.49 43.49 2865.39 52.42 13.61 0.00 38.52 5.35 1.00 0 2744 52.42

Avg.= 44.58 44.58 2861.46 51.60 14.07 0.00 38.53 5.35 1.00 0.00 2718.32 51.60 STDEV= ± 1.09 1.09 3.93 0.81 0.46 0.00 0.01 0.00 0.00 0.00 25.38 0.81 28 7 46.71 46.71 2847.41 50.37 14.09 0.00 38.73 5.38 1.00 0 2863 50.37 29 7 45.93 45.93 2850.17 50.68 14.20 0.00 38.58 5.36 1.00 0 2809 50.68 30 7 45.15 45.15 2852.92 50.99 14.32 0.00 38.43 5.33 1.00 0 2757 50.99

Avg.= 45.93 45.93 2850.17 50.68 14.21 0.00 38.58 5.36 1.00 0.00 2809.55 50.68 STDEV= ± 0.78 0.78 2.76 0.31 0.12 0.00 0.15 0.02 0.00 0.00 53.04 0.31 31 7.5 46.80 46.80 2845.06 50.03 15.24 0.00 38.40 5.33 1.00 0 2683 50.03 32 7.5 45.50 45.50 2857.07 50.42 14.56 0.00 38.50 5.34 1.00 0 2718 50.42 33 7.5 44.19 44.19 2869.07 50.82 13.88 0.00 38.61 5.36 1.00 0 2756 50.82

Avg.= 45.50 45.50 2857.07 50.42 14.56 0.00 38.50 5.34 1.00 0.00 2718.80 50.42 STDEV= ± 1.31 1.31 12.00 0.40 0.68 0.00 0.10 0.01 0.00 0.00 36.78 0.40

Appendix B Calculated data sheet

154

Table B 1.13: Calculated data for flat bottom pot without Shield at 14 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 38.65 38.65 2895.82 58.15 11.49 0.16 26.84 4.97 0.99 0.005944 2962 58.50 2 2.5 38.91 38.91 2891.31 58.13 11.56 0.15 26.85 4.97 0.99 0.005626 2975 58.46 3 2.5 39.18 39.18 2886.80 58.11 11.63 0.14 26.87 4.97 0.99 0.005307 2988 58.41

Avg.= 38.91 38.91 2891.31 58.13 11.56 0.15 26.85 4.97 0.99 0.01 2975.06 58.46 STDEV= ± 0.26 0.26 4.51 0.02 0.07 0.01 0.01 0.00 0.00 0.00 13.16 0.04

4 3 40.34 40.34 2891.89 56.88 11.35 0.08 27.00 5.00 1.00 0.002866 3083 57.04 5 3 39.91 39.91 2892.85 56.95 11.42 0.08 29.21 4.99 1.00 0.002645 3059 57.10 6 3 39.49 39.49 2893.81 57.02 11.49 0.08 31.42 4.99 1.00 0.002456 3035 57.16

Avg.= 39.91 39.91 2892.85 56.95 11.42 0.08 29.21 4.99 1.00 0.00 3058.70 57.10 STDEV= ± 0.42 0.42 0.96 0.07 0.07 0.00 2.21 0.01 0.00 0.00 23.83 0.06

7 3.5 40.34 40.34 2897.82 55.48 11.77 0.03 35.94 4.99 1.00 0.000716 3018 55.52 8 3.5 40.67 40.67 2895.82 55.26 11.84 0.01 35.77 4.97 1.00 0.000358 3026 55.28 9 3.5 41.01 41.01 2893.82 55.03 11.90 0.00 35.61 4.94 1.00 0 3034 55.03

Avg.= 40.67 40.67 2895.82 55.26 11.84 0.01 35.78 4.97 1.00 0.00 3025.98 55.28 STDEV= ± 0.33 0.33 2.00 0.22 0.06 0.01 0.17 0.02 0.00 0.00 8.12 0.24 10 4 44.61 44.61 2886.13 52.48 12.66 0.01 35.69 4.95 1.00 0.000159 3077 52.48 11 4 44.16 44.16 2894.24 52.75 12.33 0.01 35.70 4.96 1.00 0.000159 3111 52.75 12 4 43.70 43.70 2902.33 53.02 12.00 0.01 35.71 4.96 1.00 0.000159 3147 53.03

Avg.= 44.16 44.16 2894.23 52.75 12.33 0.01 35.70 4.96 1.00 0.00 3112.00 52.76 STDEV= ± 0.46 0.46 8.10 0.27 0.33 0.00 0.01 0.00 0.00 0.00 35.12 0.27 13 4.5 46.54 46.54 2890.06 50.62 12.75 0.00 26.31 4.87 1.00 0 3130 50.62 14 4.5 46.81 46.81 2881.18 50.01 13.21 0.00 26.37 4.88 1.00 0 3136 50.01 15 4.5 47.09 47.09 2872.30 49.40 13.70 0.00 26.43 4.89 1.00 0 3141 49.40

Avg.= 46.81 46.81 2881.18 50.01 13.22 0.00 26.37 4.88 1.00 0.00 3135.87 50.01 STDEV= ± 0.27 0.27 8.88 0.61 0.48 0.00 0.06 0.01 0.00 0.00 5.43 0.61 16 5 47.95 47.95 2877.75 47.75 14.29 0.00 26.38 4.88 1.00 0 3025 47.75 17 5 47.80 47.80 2874.73 48.03 14.27 0.00 26.38 4.88 1.00 0 3033 48.03 18 5 47.65 47.65 2871.72 48.31 14.25 0.00 26.38 4.88 1.00 0 3042 48.31

Avg.= 47.80 47.80 2874.73 48.03 14.27 0.00 26.38 4.88 1.00 0.00 3033.37 48.03

Appendix B Calculated data sheet

155

STDEV= ± 0.15 0.15 3.01 0.28 0.02 0.00 0.00 0.00 0.00 0.00 8.20 0.28 19 5.5 51.14 51.14 2871.73 45.06 15.25 0.00 30.62 4.86 1.00 0 3047 45.06 20 5.5 49.92 49.92 2876.72 45.70 14.88 0.00 32.76 4.85 1.00 0 3048 45.70 21 5.5 48.70 48.70 2881.71 46.37 14.51 0.00 34.89 4.84 1.00 0 3049 46.37

Avg.= 49.92 49.92 2876.72 45.71 14.88 0.00 32.76 4.85 1.00 0.00 3048.07 45.71 STDEV= ± 1.22 1.22 4.99 0.65 0.37 0.00 2.14 0.01 0.00 0.00 1.01 0.65 22 6 54.45 54.45 2872.46 43.54 15.89 0.00 30.65 4.86 1.00 0 3079 43.54 23 6 53.32 53.32 2875.62 43.65 15.61 0.00 32.74 4.85 1.00 0 3076 43.65 24 6 52.20 52.20 2878.75 43.77 15.32 0.00 34.82 4.83 1.00 0 3072 43.77

Avg.= 53.32 53.32 2875.61 43.65 15.61 0.00 32.74 4.85 1.00 0.00 3075.74 43.65 STDEV= ± 1.12 1.12 3.14 0.12 0.29 0.00 2.08 0.01 0.00 0.00 3.66 0.12 25 6.5 58.05 58.05 2855.90 42.04 16.16 0.00 26.40 4.89 1.00 0 3150 42.04 26 6.5 57.02 57.02 2861.88 42.22 16.13 0.00 26.34 4.87 1.00 0 3109 42.22 27 6.5 55.98 55.98 2867.86 42.41 16.09 0.00 26.28 4.86 1.00 0 3068 42.41

Avg.= 57.02 57.02 2861.88 42.23 16.13 0.00 26.34 4.87 1.00 0.00 3109.07 42.23 STDEV= ± 1.03 1.03 5.98 0.19 0.03 0.00 0.06 0.01 0.00 0.00 40.70 0.19 28 7 59.11 59.11 2864.00 40.63 16.82 0.00 26.32 4.87 1.00 0 3114 40.63 29 7 58.71 58.71 2869.00 40.46 16.71 0.00 26.26 4.86 1.00 0 3117 40.46 30 7 58.32 58.32 2874.00 40.29 16.60 0.00 26.21 4.85 1.00 0 3121 40.29

Avg.= 58.71 58.71 2869.00 40.46 16.71 0.00 26.26 4.86 1.00 0.00 3117.17 40.46 STDEV= ± 0.39 0.39 5.00 0.17 0.11 0.00 0.06 0.01 0.00 0.00 3.47 0.17 31 7.5 63.52 63.52 2851.00 38.87 17.92 0.00 30.51 4.84 1.00 0 3128 38.87 32 7.5 61.48 61.48 2863.93 39.03 17.32 0.00 30.49 4.84 1.00 0 3133 39.03 33 7.5 59.44 59.44 2876.84 39.20 16.73 0.00 30.48 4.84 1.00 0 3139 39.20

Avg.= 61.48 61.48 2863.92 39.04 17.32 0.00 30.49 4.84 1.00 0.00 3133.36 39.04 STDEV= ± 2.04 2.04 12.92 0.17 0.59 0.00 0.01 0.00 1.00 0.00 5.89 0.17

Appendix B Calculated data sheet

156

Table B 1.14: Calculated data for Finned pot without Shield at 14 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 40.88 40.88 2911.23 47.88 13.60 2.52 27.04 5.01 0.91 0.093086 3003 52.34 2 2.5 41.18 41.18 2910.26 47.86 13.65 2.15 24.76 5.00 0.92 0.086901 2998 52.02 3 2.5 41.49 41.49 2909.28 47.84 13.69 1.79 22.49 4.99 0.93 0.079479 2993 51.64

Avg.= 41.18 41.18 2910.26 47.86 13.65 2.15 24.76 5.00 0.92 0.09 2998.04 52.00 STDEV= ± 0.30 0.30 0.97 0.02 0.04 0.37 2.28 0.01 0.01 0.01 4.64 0.35

4 3 40.98 40.98 2907.30 48.78 13.06 1.24 26.92 4.98 0.96 0.046172 3088 51.04 5 3 41.37 41.37 2905.33 48.70 13.25 1.33 24.67 4.98 0.95 0.053901 3061 51.33 6 3 41.76 41.76 2903.35 48.63 13.44 1.42 22.42 4.98 0.94 0.063176 3034 51.70

Avg.= 41.37 41.37 2905.33 48.70 13.25 1.33 24.67 4.98 0.95 0.05 3061.11 51.35 STDEV= ± 0.39 0.39 1.98 0.08 0.19 0.09 2.25 0.00 0.01 0.01 26.92 0.33

7 3.5 45.47 45.47 2859.51 49.87 13.75 1.03 26.95 4.99 0.96 0.038211 3163 51.77 8 3.5 45.40 45.40 2861.51 49.79 13.62 1.01 24.64 4.97 0.96 0.04099 3186 51.83 9 3.5 45.34 45.34 2863.52 49.72 13.48 0.99 22.34 4.96 0.96 0.044325 3209 51.92

Avg.= 45.40 45.40 2861.51 49.79 13.62 1.01 24.64 4.97 0.96 0.04 3185.85 51.84 STDEV= ± 0.07 0.07 2.00 0.07 0.14 0.02 2.31 0.01 0.00 0.00 22.72 0.08 10 4 47.91 47.91 2849.54 48.40 13.95 0.67 26.79 4.96 0.98 0.025049 3277 49.61 11 4 47.19 47.19 2856.53 48.46 13.83 0.65 24.54 4.95 0.97 0.0264 3255 49.74 12 4 46.47 46.47 2863.52 48.51 13.71 0.62 22.29 4.95 0.97 0.028021 3232 49.87

Avg.= 47.19 47.19 2856.53 48.46 13.83 0.65 24.54 4.95 0.97 0.03 3254.66 49.74 STDEV= ± 0.72 0.72 6.99 0.06 0.12 0.02 2.25 0.00 0.00 0.00 22.23 0.13 13 4.5 49.06 49.06 2853.53 46.89 13.83 0.43 26.55 4.91 0.98 0.016346 3384 47.66 14 4.5 49.83 49.83 2845.07 47.11 14.11 0.46 22.14 4.92 0.98 0.020698 3352 48.08 15 4.5 50.61 50.61 2836.60 47.31 14.40 0.48 17.73 4.92 0.97 0.027225 3322 48.60

Avg.= 49.83 49.83 2845.07 47.10 14.11 0.46 22.14 4.92 0.98 0.02 3352.55 48.11 STDEV= ± 0.77 0.77 8.47 0.21 0.28 0.02 4.41 0.00 0.01 0.01 31.04 0.47 16 5 53.59 53.59 2835.75 45.83 15.64 0.31 26.78 4.96 0.99 0.011676 3131 46.36 17 5 52.11 52.11 2845.70 45.99 14.95 0.27 24.47 4.94 0.99 0.011058 3209 46.50 18 5 50.63 50.63 2855.65 46.16 14.25 0.23 22.17 4.92 0.99 0.010317 3297 46.64

Appendix B Calculated data sheet

157

Avg.= 52.11 52.11 2845.70 45.99 14.95 0.27 24.47 4.94 0.99 0.01 3212.40 46.50 STDEV= ± 1.48 1.48 9.95 0.17 0.70 0.04 2.30 0.02 0.00 0.00 83.00 0.14 19 5.5 49.46 49.46 2847.59 45.46 15.45 0.08 17.79 4.94 1.00 0.004458 2917 45.66 20 5.5 50.61 50.61 2842.23 45.01 15.39 0.08 22.13 4.92 1.00 0.003566 2989 45.17 21 5.5 51.76 51.76 2836.87 44.58 15.33 0.08 26.43 4.89 1.00 0.002972 3061 44.71

Avg.= 50.61 50.61 2842.23 45.02 15.39 0.08 22.12 4.92 1.00 0.00 2989.09 45.18 STDEV= ± 1.15 1.15 5.36 0.44 0.06 0.00 4.32 0.02 0.00 0.00 72.18 0.48 22 6 54.15 54.15 2827.39 43.84 15.75 0.02 22.09 4.91 1.00 0.000892 3082 43.88 23 6 53.48 53.48 2831.32 44.02 15.67 0.02 22.03 4.89 1.00 0.000892 3061 44.06 24 6 52.80 52.80 2835.25 44.21 15.60 0.02 21.97 4.88 1.00 0.000892 3039 44.25

Avg.= 53.48 53.48 2831.32 44.02 15.67 0.02 22.03 4.89 1.00 0.00 3060.81 44.06 STDEV= ± 0.68 0.68 3.93 0.19 0.08 0.00 0.06 0.01 0.00 0.00 21.45 0.19 25 6.5 55.60 55.60 2849.43 43.30 16.03 0.01 26.70 4.94 1.00 0.000425 2901 43.31 26 6.5 54.80 54.80 2850.92 43.25 16.06 0.01 28.78 4.92 1.00 0.000196 2896 43.26 27 6.5 54.00 54.00 2852.40 43.20 16.10 0.00 30.85 4.89 1.00 0 2891 43.20

Avg.= 54.80 54.80 2850.92 43.25 16.06 0.01 28.78 4.92 1.00 0.00 2896.09 43.26 STDEV= ± 0.80 0.80 1.49 0.05 0.04 0.01 2.07 0.02 0.00 0.00 4.89 0.06 28 7 55.59 55.59 2845.48 42.54 16.31 0.00 26.47 4.90 1.00 0 2938 42.54 29 7 56.59 56.59 2839.15 42.41 16.58 0.00 26.45 4.90 1.00 0 2934 42.41 30 7 57.59 57.59 2832.81 42.29 16.85 0.00 26.44 4.89 1.00 0 2929 42.29

Avg.= 56.59 56.59 2839.14 42.41 16.58 0.00 26.45 4.90 1.00 0.00 2933.60 42.41 STDEV= ± 1.00 1.00 6.34 0.13 0.27 0.00 0.02 0.00 0.00 0.00 4.22 0.13 31 7.5 58.07 58.07 2834.83 41.82 17.02 0.00 26.44 4.89 1.00 0 2921 41.82 32 7.5 58.54 58.54 2831.82 41.68 17.19 0.00 17.62 4.89 1.00 0 2920 41.68 33 7.5 59.02 59.02 2828.81 41.53 17.36 0.00 8.81 4.89 1.00 0 2918 41.53

Avg.= 58.54 58.54 2831.82 41.68 17.19 0.00 17.62 4.89 1.00 0.00 2919.53 41.68 STDEV= ± 0.47 0.47 3.01 0.14 0.17 0.00 8.82 0.00 0.00 0.00 1.42 0.14

Appendix B Calculated data sheet

158

Table B 1.15: Calculated data for flat bottom pot with Shield at 14 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 42.32 42.32 2849.48 55.99 12.10 1.66 23.34 5.18 0.933422 0.071327 3045 59.98 2 2.5 40.51 40.51 2856.38 57.65 11.69 1.48 25.59 5.17 0.945221 0.057953 3020 60.99 3 2.5 38.72 38.72 2863.28 59.46 11.28 1.30 27.83 5.15 0.955285 0.046808 2992 62.24 Avg.= 40.52 40.52 2856.38 57.70 11.69 1.48 25.59 5.17 0.94 0.06 3019.16 61.07

STDEV= ± 1.80 1.80 6.90 1.74 0.41 0.18 2.24 0.02 0.01 0.01 26.52 1.13 4 3 37.02 37.02 2875.00 60.47 10.87 0.58 23.19 5.15 0.975765 0.024837 2983 61.98 5 3 36.79 36.79 2878.65 59.89 10.93 0.52 23.14 5.14 0.978013 0.022481 2976 61.24 6 3 36.56 36.56 2882.29 59.31 10.99 0.46 23.09 5.13 0.980273 0.020124 2970 60.50 Avg.= 36.79 36.79 2878.65 59.89 10.93 0.52 23.14 5.14 0.98 0.02 2976.43 61.24

STDEV= ± 0.23 0.23 3.64 0.58 0.06 0.06 0.05 0.01 0.00 0.00 6.81 0.74 7 3.5 39.04 39.04 2857.21 59.48 10.74 0.48 28.03 5.19 0.983301 0.016983 3184 60.49 8 3.5 37.99 37.99 2865.87 59.69 10.90 0.31 27.95 5.17 0.988926 0.011198 3075 60.35 9 3.5 36.94 36.94 2874.53 59.91 11.06 0.15 27.88 5.16 0.994616 0.005413 2968 60.23 Avg.= 37.99 37.99 2865.87 59.69 10.90 0.31 27.95 5.17 0.99 0.01 3075.71 60.36

STDEV= ± 1.05 1.05 8.66 0.22 0.16 0.16 0.07 0.01 0.01 0.01 108.01 0.13 10 4 36.63 36.63 2886.77 59.46 10.74 0.20 27.87 5.16 0.992729 0.007324 2997 59.89 11 4 36.64 36.64 2887.64 59.15 10.82 0.16 27.86 5.16 0.994406 0.005626 2985 59.48 12 4 36.64 36.64 2888.51 58.84 10.90 0.11 27.86 5.16 0.996088 0.003927 2973 59.07

Avg.= 36.64 36.64 2887.64 59.15 10.82 0.16 27.86 5.16 0.99 0.01 2984.88 59.48 STDEV= ± 0.00 0.00 0.87 0.31 0.08 0.05 0.01 0.00 0.00 0.00 11.67 0.41 13 4.5 37.51 37.51 2884.60 58.04 11.13 0.05 27.94 5.17 0.998305 0.001698 2979 58.14 14 4.5 37.19 37.19 2890.61 57.89 11.11 0.04 27.88 5.16 0.998569 0.001433 2952 57.98 15 4.5 36.87 36.87 2896.61 57.75 11.09 0.03 27.81 5.15 0.998834 0.001168 2925 57.81

Avg.= 37.19 37.19 2890.61 57.89 11.11 0.04 27.88 5.16 1.00 0.00 2951.71 57.98 STDEV= ± 0.32 0.32 6.00 0.15 0.02 0.01 0.07 0.01 0.00 0.00 26.82 0.16 16 5 39.07 39.07 2880.93 56.58 11.04 0.03 27.73 5.13 0.998834 0.001168 3100 56.65 17 5 39.33 39.33 2876.93 56.63 11.30 0.02 29.97 5.12 0.999364 0.000637 3053 56.66 18 5 39.58 39.58 2872.93 56.67 11.56 0.01 32.20 5.11 0.999818 0.000182 3008 56.68

Avg.= 39.33 39.33 2876.93 56.63 11.30 0.02 29.97 5.12 1.00 0.00 3053.27 56.67

Appendix B Calculated data sheet

159

STDEV= ± 0.25 0.25 4.00 0.04 0.26 0.01 2.23 0.01 0.00 0.00 46.06 0.02 19 5.5 41.34 41.34 2869.21 55.01 11.57 0.00 32.11 5.09 0.999909 9.1E-05 3115 55.02 20 5.5 40.54 40.54 2873.05 55.48 11.67 0.00 32.11 5.09 0.999909 9.1E-05 3041 55.49 21 5.5 39.74 39.74 2876.88 55.97 11.76 0.00 32.11 5.09 0.999909 9.1E-05 2968 55.97

Avg.= 40.54 40.54 2873.05 55.49 11.67 0.00 32.11 5.09 1.00 0.00 3041.27 55.49 STDEV= ± 0.80 0.80 3.84 0.48 0.10 0.00 0.00 0.00 0.00 0.00 73.89 0.48 22 6 40.10 40.10 2880.36 54.37 11.64 0.00 27.31 5.06 1 0 3070 54.37 23 6 40.18 40.18 2878.31 54.39 11.78 0.00 31.82 5.05 1 0 3045 54.39 24 6 40.26 40.26 2876.26 54.42 11.93 0.00 36.32 5.04 1 0 3020 54.42

Avg.= 40.18 40.18 2878.31 54.39 11.79 0.00 31.82 5.05 1.00 0.00 3045.19 54.39 STDEV= ± 0.08 0.08 2.05 0.02 0.15 0.00 4.50 0.01 0.00 0.00 25.05 0.02 25 6.5 39.53 39.53 2881.59 53.95 12.16 0.00 27.49 5.09 1 0 2962 53.95 26 6.5 39.81 39.81 2882.04 53.45 12.15 0.00 27.49 5.09 1 0 2990 53.45 27 6.5 40.08 40.08 2882.48 52.95 12.14 0.00 27.49 5.09 1 0 3018 52.95

Avg.= 39.80 39.80 2882.04 53.45 12.15 0.00 27.49 5.09 1.00 0.00 2990.05 53.45 STDEV= ± 0.28 0.28 0.44 0.50 0.01 0.00 0.00 0.00 0.00 0.00 27.80 0.50 28 7 43.01 43.01 2856.40 52.97 12.46 0.03 27.10 5.02 0.998728 0.001274 3098 53.04 29 7 42.68 42.68 2864.06 52.22 12.44 0.05 27.13 5.02 0.998252 0.001751 3101 52.31 30 7 42.34 42.34 2871.71 51.45 12.43 0.06 27.17 5.03 0.997776 0.002229 3105 51.56

Avg.= 42.68 42.68 2864.05 52.21 12.44 0.05 27.13 5.02 1.00 0.00 3101.40 52.30 STDEV= ± 0.33 0.33 7.66 0.76 0.02 0.01 0.03 0.01 0.00 0.00 3.39 0.74 31 7.5 40.86 40.86 2890.33 50.98 12.59 0.02 27.32 5.06 0.999258 0.000743 2969 51.02 32 7.5 40.80 40.80 2888.59 51.56 12.51 0.01 27.29 5.05 0.999629 0.000371 2965 51.58 33 7.5 40.74 40.74 2886.84 52.15 12.43 0.00 27.26 5.05 1 0 2961 52.15

Avg.= 40.80 40.80 2888.59 51.56 12.51 0.01 27.29 5.05 1.00 0.00 2964.89 51.58 STDEV= ± 0.06 0.06 1.75 0.58 0.08 0.01 0.03 0.01 0.00 0.00 4.17 0.56

Appendix B Calculated data sheet

160

Table B 1.16: Calculated data for Finned pot with Shield at 14 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 50.44 50.44 2844.13 47.78 13.30 2.64 13.84 5.49 0.839592 0.191055 3207 56.91 2 2.5 49.14 49.14 2849.84 48.22 13.13 2.67 16.75 5.47 0.862655 0.159212 3187 55.90 3 2.5 47.84 47.84 2855.55 48.68 12.96 2.69 19.63 5.45 0.879567 0.136923 3166 55.34

Avg.= 49.14 49.14 2849.84 48.23 13.13 2.67 16.74 5.47 0.86 0.16 3186.42 56.05 STDEV= ± 1.30 1.30 5.71 0.45 0.17 0.02 2.90 0.02 0.02 0.03 20.72 0.80 4 3 42.42 42.42 2864.63 54.16 12.36 2.42 17.57 5.42 0.878747 0.137984 2926 61.63 5 3 42.15 42.15 2867.58 54.14 12.40 2.53 19.52 5.42 0.885145 0.129758 2901 61.16 6 3 41.89 41.89 2870.52 54.12 12.43 2.64 21.47 5.42 0.89045 0.123028 2877 60.78

Avg.= 42.15 42.15 2867.58 54.14 12.40 2.53 19.52 5.42 0.88 0.13 2901.46 61.19 STDEV= ± 0.26 0.26 2.94 0.02 0.03 0.11 1.95 0.00 0.01 0.01 24.27 0.43 7 3.5 43.70 43.70 2842.74 54.72 12.62 2.06 17.11 5.43 0.892784 0.120092 2964 61.29 8 3.5 42.45 42.45 2854.20 55.21 12.38 1.93 17.35 5.43 0.899908 0.111224 2928 61.35 9 3.5 41.19 41.19 2865.67 55.72 12.13 1.80 17.58 5.42 0.906944 0.102604 2890 61.44

Avg.= 42.45 42.45 2854.20 55.22 12.38 1.93 17.35 5.43 0.90 0.11 2927.33 61.36 STDEV= ± 1.25 1.25 11.46 0.50 0.24 0.13 0.23 0.00 0.01 0.01 36.88 0.07 10 4 41.03 41.03 2871.19 54.70 12.29 0.37 9.76 5.42 0.963195 0.038211 2879 56.79 11 4 41.18 41.18 2869.32 54.88 12.40 0.39 9.73 5.40 0.961721 0.039803 2853 57.06 12 4 41.34 41.34 2867.46 55.06 12.52 0.40 9.71 5.39 0.96025 0.041395 2827 57.34

Avg.= 41.18 41.18 2869.32 54.88 12.40 0.39 9.73 5.40 0.96 0.04 2852.92 57.06 STDEV= ± 0.15 0.15 1.86 0.18 0.11 0.01 0.03 0.02 0.00 0.00 25.93 0.27 13 4.5 43.60 43.60 2849.57 53.98 12.53 0.16 9.69 5.38 0.983712 0.016558 2987 54.88 14 4.5 42.66 42.66 2856.47 54.39 12.33 0.14 14.59 5.40 0.990329 0.009765 2973 54.92 15 4.5 41.72 41.72 2863.37 54.81 12.13 0.12 19.51 5.42 0.993672 0.006368 2958 55.16

Avg.= 42.66 42.66 2856.47 54.39 12.33 0.14 14.60 5.40 0.99 0.01 2972.63 54.98 STDEV= ± 0.94 0.94 6.90 0.41 0.20 0.02 4.91 0.02 0.01 0.01 14.80 0.15 16 5 43.80 43.80 2870.34 51.52 12.97 0.01 29.22 5.41 0.999576 0.000425 2899 51.54 17 5 41.64 41.64 2873.84 53.87 12.43 0.01 29.14 5.39 0.999682 0.000318 2872 53.89 18 5 39.47 39.47 2877.35 56.49 11.89 0.01 29.07 5.38 0.999788 0.000212 2843 56.50

Appendix B Calculated data sheet

161

Avg.= 41.64 41.64 2873.84 53.96 12.43 0.01 29.14 5.39 1.00 0.00 2870.99 53.98 STDEV= ± 2.17 2.17 3.51 2.49 0.54 0.00 0.07 0.01 0.00 0.00 27.91 2.48 19 5.5 40.47 40.47 2864.28 53.48 12.47 0.01 19.34 5.37 0.999682 0.000318 2965 53.50 20 5.5 41.83 41.83 2853.41 52.96 12.74 0.01 24.17 5.37 0.999618 0.000382 3001 52.98 21 5.5 43.19 43.19 2842.54 52.47 13.00 0.01 29.00 5.37 0.999576 0.000425 3036 52.50

Avg.= 41.83 41.83 2853.41 52.97 12.74 0.01 24.17 5.37 1.00 0.00 3000.67 52.99 STDEV= ± 1.36 1.36 10.87 0.50 0.26 0.00 4.83 0.00 0.00 0.00 35.36 0.50 22 6 42.18 42.18 2844.44 52.19 13.08 0.00 29.04 5.37 1 0 3038 52.19 23 6 41.97 41.97 2846.91 52.17 13.05 0.01 26.62 5.38 0.999768 0.000232 3029 52.19 24 6 41.76 41.76 2849.38 52.16 13.02 0.01 24.21 5.38 0.999491 0.000509 3021 52.19

Avg.= 41.97 41.97 2846.91 52.17 13.05 0.01 26.62 5.38 1.00 0.00 3029.47 52.19 STDEV= ± 0.21 0.21 2.47 0.01 0.03 0.01 2.41 0.00 0.00 0.00 8.55 0.00 25 6.5 44.97 44.97 2831.68 51.53 13.02 0.03 29.00 5.37 0.99894 0.001061 3155 51.58 26 6.5 45.84 45.84 2825.75 51.16 13.25 0.03 29.00 5.37 0.99894 0.001061 3162 51.21 27 6.5 46.71 46.71 2819.82 50.80 13.47 0.03 29.01 5.37 0.99894 0.001061 3168 50.86

Avg.= 45.84 45.84 2825.75 51.16 13.25 0.03 29.00 5.37 1.00 0.00 3161.76 51.22 STDEV= ± 0.87 0.87 5.93 0.36 0.22 0.00 0.01 0.00 0.00 0.00 6.37 0.36 28 7 45.84 45.84 2837.60 49.95 13.90 0.04 28.88 5.34 0.998728 0.001274 3013 50.01 29 7 44.29 44.29 2851.44 50.23 13.65 0.04 28.89 5.35 0.998728 0.001274 2966 50.29 30 7 42.74 42.74 2865.27 50.54 13.39 0.04 28.91 5.35 0.998728 0.001274 2916 50.60

Avg.= 44.29 44.29 2851.44 50.24 13.65 0.04 28.89 5.35 1.00 0.00 2965.11 50.30 STDEV= ± 1.55 1.55 13.83 0.29 0.25 0.00 0.01 0.00 0.00 0.00 48.74 0.29 31 7.5 50.30 50.30 2862.06 41.95 14.88 0.03 28.79 5.33 0.999046 0.000955 3198 41.99 32 7.5 43.08 43.08 2869.49 48.79 13.87 0.03 28.89 5.35 0.999046 0.000955 2898 48.84 33 7.5 35.87 35.87 2876.92 58.39 12.88 0.03 28.99 5.36 0.999046 0.000955 2561 58.44

Avg.= 43.08 43.08 2869.49 49.71 13.88 0.03 28.89 5.35 1.00 0.00 2885.63 49.76 STDEV= ± 7.22 7.22 7.43 8.26 1.00 0.00 0.10 0.02 0.00 0.00 318.96 8.26

Appendix B Calculated data sheet

162

Table B 1.17: Calculated data for flat bottom pot without Shield at 18 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 38.18 38.18 2896.14 56.63 10.53 0.19 28.02 5.19 0.99 0.006793 3139 57.02 2 2.5 37.41 37.41 2891.64 57.50 10.58 0.19 32.79 5.20 0.99 0.005823 3112 57.84 3 2.5 36.64 36.64 2887.13 58.41 10.63 0.19 37.58 5.22 0.99 0.005095 3084 58.70

Avg.= 37.41 37.41 2891.64 57.51 10.58 0.19 32.80 5.20 0.99 0.01 3111.43 57.85 STDEV= ± 0.77 0.77 4.50 0.89 0.05 0.00 4.78 0.02 0.00 0.00 27.40 0.84

4 3 37.24 37.24 2891.98 56.71 10.82 0.09 28.21 5.22 1.00 0.003078 3089 56.88 5 3 37.36 37.36 2910.66 56.49 10.85 0.09 32.79 5.20 1.00 0.00282 3092 56.65 6 3 37.48 37.48 2929.62 56.27 10.88 0.10 37.33 5.18 1.00 0.002627 3094 56.42

Avg.= 37.36 37.36 2910.75 56.49 10.85 0.09 32.78 5.20 1.00 0.00 3091.71 56.65 STDEV= ± 0.12 0.12 18.82 0.22 0.03 0.01 4.56 0.02 0.00 0.00 2.20 0.23

7 3.5 38.06 38.06 2892.56 54.83 11.16 0.04 37.46 5.20 1.00 0.001035 3097 54.88 8 3.5 38.31 38.31 2907.98 54.72 11.32 0.04 37.31 5.18 1.00 0.001035 3083 54.77 9 3.5 38.57 38.57 2923.75 54.61 11.49 0.04 37.16 5.16 1.00 0.001035 3068 54.67

Avg.= 38.31 38.31 2908.10 54.72 11.32 0.04 37.31 5.18 1.00 0.00 3082.77 54.77 STDEV= ± 0.25 0.25 15.59 0.11 0.16 0.00 0.15 0.02 0.00 0.00 14.62 0.11 10 4 40.16 40.16 2886.02 51.88 12.02 0.01 27.86 5.16 1.00 0.000425 3090 51.90 11 4 39.65 39.65 2888.44 52.19 11.89 0.01 27.84 5.15 1.00 0.000318 3090 52.21 12 4 39.14 39.14 2890.85 52.51 11.75 0.01 27.83 5.15 1.00 0.000212 3090 52.52

Avg.= 39.65 39.65 2888.44 52.19 11.89 0.01 27.84 5.15 1.00 0.00 3089.57 52.21 STDEV= ± 0.51 0.51 2.42 0.32 0.14 0.00 0.01 0.00 0.00 0.00 0.03 0.31 13 4.5 42.80 42.80 2877.02 49.53 12.74 0.00 36.96 5.13 1.00 0 3116 49.53 14 4.5 42.09 42.09 2883.94 49.60 12.56 0.00 36.90 5.12 1.00 0 3110 49.60 15 4.5 41.37 41.37 2890.85 49.67 12.37 0.00 36.84 5.11 1.00 0 3104 49.67

Avg.= 42.09 42.09 2883.94 49.60 12.56 0.00 36.90 5.12 1.00 0.00 3109.73 49.60 STDEV= ± 0.71 0.71 6.92 0.07 0.19 0.00 0.06 0.01 0.00 0.00 6.09 0.07 16 5 45.03 45.03 2880.30 47.11 12.72 0.00 27.90 5.16 1.00 0 3255 47.11 17 5 44.95 44.95 2874.19 47.62 12.98 0.00 32.41 5.14 1.00 0 3201 47.62 18 5 44.86 44.86 2868.08 48.13 13.24 0.00 36.88 5.12 1.00 0 3148 48.13

Avg.= 44.95 44.95 2874.19 47.62 12.98 0.00 32.40 5.14 1.00 0.00 3201.08 47.62

Appendix B Calculated data sheet

163

STDEV= ± 0.08 0.08 6.11 0.51 0.26 0.00 4.49 0.02 0.00 0.00 53.64 0.51 19 5.5 48.57 48.57 2865.27 44.89 14.35 0.00 27.64 5.12 1.00 0 3130 44.89 20 5.5 47.36 47.36 2877.60 45.34 13.94 0.00 27.64 5.11 1.00 0 3130 45.34 21 5.5 46.15 46.15 2889.93 45.81 13.53 0.00 27.63 5.11 1.00 0 3130 45.81

Avg.= 47.36 47.36 2877.60 45.35 13.94 0.00 27.64 5.11 1.00 0.00 3130.04 45.35 STDEV= ± 1.21 1.21 12.33 0.46 0.41 0.00 0.01 0.00 0.00 0.00 0.04 0.46 22 6 48.79 48.79 2885.39 43.17 14.40 0.00 27.61 5.11 1.00 0 3100 43.17 23 6 48.92 48.92 2881.47 43.46 14.49 0.00 27.61 5.11 1.00 0 3087 43.46 24 6 49.04 49.04 2877.54 43.75 14.57 0.00 27.62 5.11 1.00 0 3075 43.75

Avg.= 48.92 48.92 2881.47 43.46 14.49 0.00 27.61 5.11 1.00 0.00 3087.46 43.46 STDEV= ± 0.13 0.13 3.93 0.29 0.08 0.00 0.00 0.00 0.00 0.00 12.44 0.29 25 6.5 51.77 51.77 2875.81 41.87 15.12 0.00 27.55 5.10 1.00 0 3105 41.87 26 6.5 52.22 52.22 2872.09 42.09 15.04 0.00 27.55 5.10 1.00 0 3127 42.09 27 6.5 52.66 52.66 2868.35 42.31 14.97 0.00 27.55 5.10 1.00 0 3149 42.31

Avg.= 52.22 52.22 2872.08 42.09 15.04 0.00 27.55 5.10 1.00 0.00 3127.16 42.09 STDEV= ± 0.45 0.45 3.73 0.22 0.08 0.00 0.00 0.00 0.00 0.00 22.13 0.22 28 7 53.77 53.77 2875.66 40.17 15.81 0.00 27.52 5.09 1.00 0 3099 40.17 29 7 53.80 53.80 2873.69 40.32 15.81 0.00 27.52 5.09 1.00 0 3100 40.32 30 7 53.84 53.84 2871.71 40.47 15.82 0.00 27.52 5.09 1.00 0 3101 40.47

Avg.= 53.80 53.80 2873.69 40.32 15.81 0.00 27.52 5.09 1.00 0.00 3100.07 40.32 STDEV= ± 0.03 0.03 1.98 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.85 0.15 31 7.5 57.57 57.57 2866.41 38.97 16.85 0.00 27.57 5.10 1.00 0 3103 38.97 32 7.5 57.55 57.55 2863.13 38.90 16.82 0.00 27.57 5.10 1.00 0 3112 38.90 33 7.5 57.52 57.52 2859.85 38.84 16.79 0.00 27.57 5.10 1.00 0 3121 38.84

Avg.= 57.55 57.55 2863.13 38.90 16.82 0.00 27.57 5.10 1.00 0.00 3112.09 38.90 STDEV= ± 0.03 0.03 3.28 0.06 0.03 0.00 0.00 0.00 0.00 0.00 8.87 0.06

Appendix B Calculated data sheet

164

Table B 1.18: Calculated data for Finned pot without Shield at 18 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 44.48 44.48 2891.98 47.01 12.75 2.45 23.74 5.27 0.91 0.10317 3094 51.86 2 2.5 44.57 44.57 2888.99 47.20 12.85 2.59 26.10 5.27 0.91 0.099117 3081 51.88 3 2.5 44.67 44.67 2886.00 47.38 12.94 2.72 28.44 5.26 0.91 0.09574 3068 51.92

Avg.= 44.57 44.57 2888.99 47.20 12.85 2.59 26.09 5.27 0.91 0.10 3080.97 51.89 STDEV= ± 0.09 0.09 2.99 0.18 0.09 0.14 2.35 0.00 0.00 0.00 13.23 0.03

4 3 44.46 44.46 2882.04 48.02 12.62 1.39 23.59 5.24 0.94 0.0591 3130 50.85 5 3 43.98 43.98 2883.80 48.06 12.59 1.39 23.59 5.24 0.94 0.0591 3125 50.90 6 3 43.51 43.51 2885.55 48.11 12.56 1.39 23.59 5.24 0.94 0.0591 3120 50.95

Avg.= 43.99 43.99 2883.80 48.06 12.59 1.39 23.59 5.24 0.94 0.06 3125.17 50.90 STDEV= ± 0.48 0.48 1.75 0.05 0.03 0.00 0.00 0.00 0.00 0.00 5.24 0.05

7 3.5 44.05 44.05 2867.55 49.18 13.02 1.18 23.44 5.21 0.95 0.050311 3064 51.65 8 3.5 44.59 44.59 2861.52 49.09 13.23 1.20 25.81 5.21 0.96 0.04649 3062 51.37 9 3.5 45.13 45.13 2855.49 49.01 13.43 1.22 28.18 5.22 0.96 0.043306 3061 51.13

Avg.= 44.59 44.59 2861.52 49.09 13.23 1.20 25.81 5.21 0.96 0.05 3062.48 51.38 STDEV= ± 0.54 0.54 6.03 0.09 0.21 0.02 2.37 0.00 0.00 0.00 1.79 0.26 10 4 43.44 43.44 2883.31 48.10 12.79 0.72 21.49 5.19 0.97 0.033365 3080 49.71 11 4 43.95 43.95 2881.26 47.67 12.94 0.81 24.78 5.19 0.97 0.032624 3086 49.22 12 4 44.46 44.46 2879.21 47.25 13.10 0.90 28.07 5.20 0.97 0.032055 3093 48.76

Avg.= 43.95 43.95 2881.26 47.67 12.95 0.81 24.78 5.19 0.97 0.03 3086.19 49.23 STDEV= ± 0.51 0.51 2.05 0.43 0.15 0.09 3.29 0.00 0.00 0.00 6.37 0.47 13 4.5 45.30 45.30 2868.96 47.00 13.52 0.86 32.50 5.16 0.97 0.026384 3085 48.23 14 4.5 45.89 45.89 2864.93 46.71 13.68 0.84 34.81 5.15 0.98 0.0242 3096 47.84 15 4.5 46.48 46.48 2860.90 46.43 13.84 0.83 37.12 5.15 0.98 0.02229 3106 47.46

Avg.= 45.89 45.89 2864.93 46.71 13.68 0.84 34.81 5.15 0.98 0.02 3095.44 47.85 STDEV= ± 0.59 0.59 4.03 0.28 0.16 0.01 2.31 0.00 0.00 0.00 10.40 0.39 16 5 46.25 46.25 2870.00 45.98 13.27 0.38 27.87 5.16 0.99 0.013586 3204 46.60 17 5 47.02 47.02 2863.55 45.84 13.63 0.40 27.88 5.16 0.99 0.014223 3175 46.49 18 5 47.79 47.79 2857.10 45.71 13.98 0.41 27.88 5.16 0.99 0.01486 3147 46.39

Appendix B Calculated data sheet

165

Avg.= 47.02 47.02 2863.55 45.84 13.63 0.40 27.88 5.16 0.99 0.01 3175.01 46.49 STDEV= ± 0.77 0.77 6.45 0.14 0.36 0.02 0.01 0.00 0.00 0.00 28.45 0.11 19 5.5 48.00 48.00 2869.17 44.56 14.11 0.15 37.20 5.16 1.00 0.00414 3113 44.75 20 5.5 48.85 48.85 2865.74 44.75 14.40 0.14 37.22 5.17 1.00 0.003781 3090 44.92 21 5.5 49.70 49.70 2862.25 44.94 14.69 0.13 37.25 5.17 1.00 0.003423 3069 45.09

Avg.= 48.85 48.85 2865.72 44.75 14.40 0.14 37.22 5.17 1.00 0.00 3090.82 44.92 STDEV= ± 0.85 0.85 3.46 0.19 0.29 0.01 0.02 0.00 0.00 0.00 21.76 0.17 22 6 51.47 51.47 2848.93 43.94 15.10 0.04 37.11 5.15 1.00 0.001194 3074 44.00 23 6 51.06 51.06 2855.41 43.76 14.89 0.04 37.00 5.14 1.00 0.001154 3086 43.81 24 6 50.65 50.65 2861.88 43.57 14.69 0.04 36.89 5.12 1.00 0.001114 3100 43.62

Avg.= 51.06 51.06 2855.41 43.76 14.90 0.04 37.00 5.14 1.00 0.00 3086.57 43.81 STDEV= ± 0.41 0.41 6.47 0.19 0.20 0.00 0.11 0.02 0.00 0.00 13.06 0.19 25 6.5 52.51 52.51 2853.13 42.96 15.23 0.01 37.03 5.14 1.00 0.000159 3086 42.97 26 6.5 52.49 52.49 2854.15 42.92 15.20 0.00 37.03 5.14 1.00 7.96E-05 3088 42.92 27 6.5 52.47 52.47 2855.16 42.87 15.18 0.00 37.03 5.14 1.00 0 3090 42.87

Avg.= 52.49 52.49 2854.15 42.92 15.20 0.00 37.03 5.14 1.00 0.00 3087.97 42.92 STDEV= ± 0.02 0.02 1.01 0.04 0.03 0.00 0.00 0.00 0.00 0.00 1.95 0.05 28 7 53.19 53.19 2858.27 42.17 15.31 0.00 37.02 5.14 1.00 0 3092 42.17 29 7 53.18 53.18 2859.29 42.13 15.29 0.00 37.02 5.14 1.00 0 3091 42.13 30 7 53.16 53.16 2860.30 42.08 15.28 0.00 37.02 5.14 1.00 0 3090 42.08

Avg.= 53.18 53.18 2859.29 42.13 15.29 0.00 37.02 5.14 1.00 0.00 3091.34 42.13 STDEV= ± 0.02 0.02 1.01 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.98 0.05 31 7.5 55.50 55.50 2849.53 41.31 15.73 0.00 36.91 5.12 1.00 0 3126 41.31 32 7.5 55.49 55.49 2850.51 41.24 15.70 0.00 36.82 5.11 1.00 0 3131 41.24 33 7.5 55.48 55.48 2851.50 41.16 15.67 0.00 36.74 5.10 1.00 0 3136 41.16

Avg.= 55.49 55.49 2850.51 41.24 15.70 0.00 36.82 5.11 1.00 0.00 3130.76 41.24 STDEV= ± 0.01 0.01 0.99 0.08 0.03 0.00 0.09 0.01 0.00 0.00 4.85 0.08

Appendix B Calculated data sheet

166

Table B 1.19: Calculated data for Flat bottom pot with Shield at 18 mbar NG

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 44.32 44.32 2851.93 52.51 11.63 1.83 10.36 5.32 0.85 0.176903 3371 61.80 2 2.5 42.90 42.90 2861.33 53.22 11.52 1.85 14.79 5.33 0.89 0.125199 3294 59.88 3 2.5 41.48 41.48 2870.72 53.98 11.41 1.87 19.24 5.34 0.91 0.097279 3216 59.23

Avg.= 42.90 42.90 2861.33 53.24 11.52 1.85 14.80 5.33 0.88 0.13 3293.63 60.30 STDEV= ± 1.42 1.42 9.39 0.73 0.11 0.02 4.44 0.01 0.03 0.04 77.78 1.34

4 3 36.41 36.41 2888.61 59.35 10.36 0.58 19.07 5.29 0.97 0.030569 3100 61.17 5 3 36.83 36.83 2885.40 58.70 10.49 0.63 18.14 5.30 0.97 0.034524 3121 60.73 6 3 37.25 37.25 2882.19 58.07 10.61 0.67 17.22 5.31 0.96 0.038919 3142 60.33

Avg.= 36.83 36.83 2885.40 58.71 10.49 0.63 18.14 5.30 0.97 0.03 3120.92 60.74 STDEV= ± 0.42 0.42 3.21 0.64 0.13 0.04 0.93 0.01 0.00 0.00 21.06 0.42

7 3.5 36.31 36.31 2897.50 58.38 10.49 0.36 17.15 5.29 0.98 0.021228 3053 59.61 8 3.5 36.47 36.47 2895.60 58.47 10.52 0.33 20.46 5.28 0.98 0.016292 3051 59.43 9 3.5 36.63 36.63 2893.69 58.57 10.55 0.30 23.77 5.28 0.99 0.012737 3049 59.32

Avg.= 36.47 36.47 2895.60 58.47 10.52 0.33 20.46 5.28 0.98 0.02 3050.72 59.45 STDEV= ± 0.16 0.16 1.91 0.10 0.03 0.03 3.31 0.00 0.00 0.00 1.98 0.15 10 4 37.14 37.14 2882.09 58.11 10.62 0.25 33.30 5.28 0.99 0.00746 3139 58.54 11 4 37.01 37.01 2885.18 58.10 10.58 0.24 35.68 5.28 0.99 0.006793 3128 58.49 12 4 36.89 36.89 2888.27 58.09 10.54 0.24 38.05 5.28 0.99 0.006209 3118 58.45

Avg.= 37.01 37.01 2885.18 58.10 10.58 0.24 35.68 5.28 0.99 0.01 3128.33 58.50 STDEV= ± 0.12 0.12 3.09 0.01 0.04 0.01 2.37 0.00 0.00 0.00 10.32 0.05 13 4.5 37.51 37.51 2900.63 56.57 10.82 0.11 38.00 5.27 1.00 0.003025 3084 56.74 14 4.5 37.28 37.28 2899.39 56.58 10.72 0.10 38.00 5.28 1.00 0.002627 3096 56.73 15 4.5 37.05 37.05 2898.15 56.60 10.62 0.08 38.01 5.28 1.00 0.002229 3109 56.72

Avg.= 37.28 37.28 2899.39 56.58 10.72 0.10 38.00 5.28 1.00 0.00 3096.12 56.73 STDEV= ± 0.23 0.23 1.24 0.01 0.10 0.02 0.00 0.00 0.00 0.00 12.44 0.01 16 5 38.97 38.97 2886.44 55.43 11.13 0.00 37.65 5.23 1.00 0 3106 55.43 17 5 38.78 38.78 2889.97 55.38 11.12 0.00 37.64 5.22 1.00 0 3088 55.38 18 5 38.59 38.59 2893.50 55.33 11.10 0.00 37.63 5.22 1.00 0 3070 55.33

Avg.= 38.78 38.78 2889.97 55.38 11.12 0.00 37.64 5.22 1.00 0.00 3088.34 55.38

Appendix B Calculated data sheet

167

STDEV= ± 0.19 0.19 3.53 0.05 0.01 0.00 0.01 0.00 0.00 0.00 17.99 0.05 19 5.5 38.87 38.87 2894.15 54.36 11.35 0.00 37.59 5.22 1.00 0 3056 54.36 20 5.5 39.15 39.15 2890.72 54.41 11.42 0.00 30.53 5.22 1.00 0 3057 54.41 21 5.5 39.43 39.43 2887.28 54.46 11.50 0.00 23.47 5.21 1.00 0 3057 54.46

Avg.= 39.15 39.15 2890.72 54.41 11.42 0.00 30.53 5.22 1.00 0.00 3056.52 54.41 STDEV= ± 0.28 0.28 3.44 0.05 0.07 0.00 7.06 0.00 0.00 0.00 0.18 0.05 22 6 41.31 41.31 2895.32 53.29 11.57 0.00 23.42 5.20 1.00 0 3113 53.29 23 6 40.95 40.95 2892.09 53.42 11.54 0.00 23.48 5.21 1.00 0 3101 53.42 24 6 40.59 40.59 2888.84 53.56 11.51 0.00 23.54 5.23 1.00 0 3087 53.56

Avg.= 40.95 40.95 2892.08 53.43 11.54 0.00 23.48 5.21 1.00 0.00 3100.48 53.43 STDEV= ± 0.36 0.36 3.24 0.13 0.03 0.00 0.06 0.01 0.00 0.00 12.96 0.13 25 6.5 40.64 40.64 2893.40 52.42 11.70 0.00 28.17 5.21 1.00 0 3077 52.42 26 6.5 40.61 40.61 2888.34 52.87 11.66 0.00 28.14 5.21 1.00 0 3096 52.87 27 6.5 40.58 40.58 2883.28 53.32 11.62 0.00 28.12 5.20 1.00 0 3116 53.32

Avg.= 40.61 40.61 2888.34 52.87 11.66 0.00 28.14 5.21 1.00 0.00 3096.11 52.87 STDEV= ± 0.03 0.03 5.06 0.45 0.04 0.00 0.02 0.00 0.00 0.00 19.43 0.45 28 7 43.11 43.11 2870.72 51.95 12.04 0.00 27.99 5.18 1.00 0 3166 51.95 29 7 42.93 42.93 2874.79 51.88 11.89 0.00 27.94 5.17 1.00 0 3182 51.88 30 7 42.76 42.76 2878.86 51.80 11.74 0.00 27.90 5.16 1.00 0 3199 51.80

Avg.= 42.93 42.93 2874.79 51.88 11.89 0.00 27.94 5.17 1.00 0.00 3182.50 51.88 STDEV= ± 0.17 0.17 4.07 0.07 0.15 0.00 0.04 0.01 0.00 0.00 16.21 0.07 31 7.5 41.90 41.90 2890.54 51.30 11.94 0.00 28.17 5.21 1.00 0 3100 51.30 32 7.5 41.64 41.64 2892.51 51.40 11.88 0.00 28.16 5.21 1.00 0 3095 51.40 33 7.5 41.37 41.37 2894.49 51.50 11.83 0.00 28.15 5.21 1.00 0 3089 51.50

Avg.= 41.64 41.64 2892.51 51.40 11.88 0.00 28.16 5.21 1.00 0.00 3094.63 51.40 STDEV= ± 0.26 0.26 1.98 0.10 0.05 0.00 0.01 0.00 0.00 0.00 5.22 0.10

Appendix B Calculated data sheet

168

Table B 1.20: Calculated data for Finned pot with Shield at 18 mbar NG Pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 49.02 49.02 2837.66 46.76 13.12 2.33 14.43 5.34 0.86 0.161335 3410 54.30 2 2.5 47.66 47.66 2844.03 47.41 12.97 2.45 14.44 5.35 0.85 0.169827 3358 55.47 3 2.5 46.29 46.29 2850.40 48.11 12.82 2.58 14.46 5.35 0.85 0.178318 3305 56.69

Avg.= 47.66 47.66 2844.03 47.43 12.97 2.45 14.44 5.35 0.85 0.17 3357.66 55.49 STDEV= ± 1.37 1.37 6.37 0.67 0.15 0.12 0.01 0.01 0.01 0.01 52.63 1.19

4 3 40.73 40.73 2868.08 52.51 11.84 1.83 12.43 5.31 0.87 0.146965 3157 60.23 5 3 41.20 41.20 2864.25 51.86 12.14 1.80 11.94 5.31 0.87 0.150297 3148 59.66 6 3 41.67 41.67 2860.41 51.23 12.44 1.76 11.46 5.30 0.87 0.153905 3140 59.11

Avg.= 41.20 41.20 2864.25 51.87 12.14 1.80 11.95 5.31 0.87 0.15 3148.57 59.67 STDEV= ± 0.47 0.47 3.83 0.64 0.30 0.03 0.48 0.00 0.00 0.00 8.18 0.56

7 3.5 43.69 43.69 2833.25 54.92 12.23 1.34 17.18 5.30 0.93 0.077837 3117 59.20 8 3.5 43.56 43.56 2841.13 54.22 12.22 1.43 13.37 5.30 0.90 0.1069 3111 60.01 9 3.5 43.42 43.42 2849.02 53.50 12.21 1.52 9.55 5.30 0.86 0.159212 3105 62.02

Avg.= 43.56 43.56 2841.13 54.21 12.22 1.43 13.37 5.30 0.90 0.11 3110.92 60.41 STDEV= ± 0.14 0.14 7.89 0.71 0.01 0.09 3.81 0.00 0.03 0.04 5.63 1.45 10 4 41.08 41.08 2863.07 53.86 12.24 0.49 10.54 5.32 0.96 0.046316 2998 56.36 11 4 41.08 41.08 2861.17 54.17 12.12 0.46 10.04 5.31 0.96 0.045489 3022 56.64 12 4 41.09 41.09 2859.26 54.48 12.00 0.43 9.54 5.30 0.96 0.044579 3046 56.91

Avg.= 41.08 41.08 2861.16 54.17 12.12 0.46 10.04 5.31 0.96 0.05 3022.12 56.63 STDEV= ± 0.01 0.01 1.90 0.31 0.12 0.03 0.50 0.01 0.00 0.00 23.72 0.28 13 4.5 40.83 40.83 2866.03 53.84 11.86 0.27 16.24 5.30 0.98 0.016858 3077 54.75 14 4.5 40.92 40.92 2863.93 53.80 12.12 0.23 15.73 5.29 0.99 0.014474 3028 54.58 15 4.5 41.00 41.00 2861.83 53.76 12.39 0.18 15.23 5.29 0.99 0.011941 2980 54.40

Avg.= 40.92 40.92 2863.93 53.80 12.12 0.23 15.73 5.29 0.99 0.01 3028.13 54.58 STDEV= ± 0.08 0.08 2.10 0.04 0.26 0.05 0.50 0.01 0.00 0.00 48.79 0.18 16 5 43.31 43.31 2859.41 53.22 12.25 0.01 28.69 5.31 1.00 0.000318 3039 53.24 17 5 43.05 43.05 2860.78 53.23 12.08 0.00 28.73 5.32 1.00 0.000159 3074 53.24 18 5 42.79 42.79 2862.15 53.24 11.91 0.00 28.78 5.33 1.00 0 3110 53.24

Appendix B Calculated data sheet

169

Avg.= 43.05 43.05 2860.78 53.23 12.08 0.00 28.73 5.32 1.00 0.00 3074.02 53.24 STDEV= ± 0.26 0.26 1.37 0.01 0.17 0.00 0.04 0.01 0.00 0.00 35.47 0.00 19 5.5 44.27 44.27 2860.94 52.66 12.41 0.00 28.86 5.34 1.00 0 3015 52.66 20 5.5 43.63 43.63 2865.80 52.79 12.16 0.00 28.79 5.33 1.00 0 3041 52.79 21 5.5 42.98 42.98 2870.65 52.92 11.91 0.00 28.72 5.32 1.00 0 3069 52.92

Avg.= 43.63 43.63 2865.80 52.79 12.16 0.00 28.79 5.33 1.00 0.00 3041.86 52.79 STDEV= ± 0.65 0.65 4.85 0.13 0.25 0.00 0.07 0.01 0.00 0.00 26.67 0.13 22 6 43.17 43.17 2872.18 51.89 12.50 0.00 28.74 5.32 1.00 0 2977 51.89 23 6 42.86 42.86 2871.38 51.92 12.31 0.00 28.72 5.32 1.00 0 3030 51.92 24 6 42.56 42.56 2870.57 51.95 12.12 0.00 28.70 5.31 1.00 0 3085 51.95

Avg.= 42.86 42.86 2871.37 51.92 12.31 0.00 28.72 5.32 1.00 0.00 3030.53 51.92 STDEV= ± 0.30 0.30 0.80 0.03 0.19 0.00 0.02 0.00 0.00 0.00 53.55 0.03 25 6.5 44.18 44.18 2869.07 50.84 12.66 0.00 28.65 5.30 1.00 0 3022 50.84 26 6.5 43.48 43.48 2873.94 51.04 12.47 0.00 28.67 5.31 1.00 0 3024 51.04 27 6.5 42.78 42.78 2878.81 51.24 12.29 0.00 28.70 5.31 1.00 0 3028 51.24

Avg.= 43.48 43.48 2873.94 51.04 12.47 0.00 28.67 5.31 1.00 0.00 3024.52 51.04 STDEV= ± 0.70 0.70 4.87 0.20 0.19 0.00 0.03 0.00 0.00 0.00 3.02 0.20 28 7 45.16 45.16 2868.60 49.16 12.74 0.00 28.58 5.29 1.00 0 3112 49.16 29 7 45.28 45.28 2859.77 50.04 12.82 0.00 28.48 5.27 1.00 0 3096 50.04 30 7 45.40 45.40 2850.95 50.91 12.89 0.00 28.38 5.25 1.00 0 3079 50.91

Avg.= 45.28 45.28 2859.77 50.04 12.82 0.00 28.48 5.27 1.00 0.00 3095.73 50.04 STDEV= ± 0.12 0.12 8.83 0.87 0.07 0.00 0.10 0.02 0.00 0.00 16.53 0.87 31 7.5 46.36 46.36 2859.75 48.85 12.89 0.00 28.57 5.29 1.00 0 3155 48.85 32 7.5 45.96 45.96 2858.90 49.54 13.02 0.00 28.48 5.27 1.00 0 3084 49.54 33 7.5 45.56 45.56 2858.05 50.24 13.14 0.00 28.39 5.25 1.00 0 3015 50.24

Avg.= 45.96 45.96 2858.90 49.54 13.01 0.00 28.48 5.27 1.00 0.00 3084.46 49.54 STDEV= ± 0.40 0.40 0.85 0.70 0.13 0.00 0.09 0.02 0.00 0.00 69.81 0.70

Appendix B Calculated data sheet

170

Table B 1.21: Calculated data for flat bottom pot without Shield at 20 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 38.30 38.30 2892.56 54.47 10.49 0.21 28.77 5.33 0.992834 0.007218 3316 54.87 2 2.5 37.12 37.12 2892.12 56.35 10.30 0.22 28.77 5.33 0.992363 0.007695 3269 56.78 3 2.5 35.93 35.93 2891.68 58.34 10.10 0.24 28.77 5.33 0.991893 0.008173 3221 58.82 Avg.= 37.12 37.12 2892.12 56.39 10.30 0.22 28.77 5.33 0.99 0.01 3268.83 56.82

STDEV= ± 1.19 1.19 0.44 1.93 0.19 0.01 0.00 0.00 0.00 0.00 47.86 1.98 4 3 37.22 37.22 2891.42 55.97 10.59 0.14 33.39 5.30 0.995742 0.004276 3206 56.21 5 3 36.91 36.91 2891.87 56.31 10.57 0.12 35.76 5.30 0.996531 0.003481 3192 56.51 6 3 36.60 36.60 2892.31 56.66 10.54 0.11 38.14 5.29 0.997222 0.002786 3179 56.82 Avg.= 36.91 36.91 2891.87 56.32 10.57 0.12 35.76 5.30 1.00 0.00 3192.35 56.51

STDEV= ± 0.31 0.31 0.44 0.34 0.03 0.02 2.38 0.00 0.00 0.00 13.47 0.30 7 3.5 38.14 38.14 2895.38 54.14 10.93 0.05 38.18 5.30 0.998807 0.001194 3184 54.21 8 3.5 37.68 37.68 2897.33 54.52 10.85 0.04 35.68 5.28 0.998855 0.001146 3170 54.58 9 3.5 37.23 37.23 2899.28 54.90 10.78 0.04 33.19 5.27 0.998909 0.001092 3156 54.96 Avg.= 37.68 37.68 2897.33 54.52 10.85 0.04 35.68 5.28 1.00 0.00 3170.03 54.58

STDEV= ± 0.46 0.46 1.95 0.38 0.08 0.00 2.49 0.02 0.00 0.00 13.75 0.38 10 4 39.44 39.44 2899.33 51.89 11.43 0.01 37.83 5.25 0.999682 0.000318 3147 51.91 11 4 39.56 39.56 2902.65 51.81 11.40 0.01 37.82 5.25 0.999682 0.000318 3163 51.83 12 4 39.69 39.69 2905.98 51.73 11.37 0.01 37.82 5.25 0.999682 0.000318 3179 51.75

Avg.= 39.56 39.56 2902.65 51.81 11.40 0.01 37.82 5.25 1.00 0.00 3162.90 51.83 STDEV= ± 0.13 0.13 3.32 0.08 0.03 0.00 0.01 0.00 0.00 0.00 16.24 0.08 13 4.5 43.12 43.12 2875.61 50.03 12.37 0.00 37.72 5.24 1 0 3182 50.03 14 4.5 43.44 43.44 2878.45 49.20 12.21 0.00 33.12 5.25 1 0 3259 49.20 15 4.5 43.76 43.76 2881.29 48.38 12.05 0.00 28.49 5.27 1 0 3338 48.38

Avg.= 43.44 43.44 2878.45 49.20 12.21 0.00 33.11 5.25 1.00 0.00 3259.40 49.20 STDEV= ± 0.32 0.32 2.84 0.83 0.16 0.00 4.62 0.02 0.00 0.00 77.97 0.83 16 5 44.07 44.07 2888.88 46.84 12.67 0.00 28.25 5.23 1 0 3226 46.84 17 5 43.87 43.87 2886.90 47.27 12.56 0.00 28.20 5.22 1 0 3242 47.27 18 5 43.68 43.68 2884.92 47.69 12.44 0.00 28.15 5.21 1 0 3258 47.69

Avg.= 43.87 43.87 2886.90 47.27 12.56 0.00 28.20 5.22 1.00 0.00 3241.86 47.27

Appendix B Calculated data sheet

171

STDEV= ± 0.20 0.20 1.98 0.42 0.12 0.00 0.05 0.01 0.00 0.00 16.39 0.42 19 5.5 48.96 48.96 2867.14 44.24 14.00 0.00 28.23 5.22 1 0 3245 44.24 20 5.5 47.39 47.39 2873.98 44.94 13.62 0.00 32.89 5.22 1 0 3235 44.94 21 5.5 45.83 45.83 2880.81 45.69 13.25 0.00 37.55 5.21 1 0 3224 45.69

Avg.= 47.39 47.39 2873.98 44.96 13.62 0.00 32.89 5.22 1.00 0.00 3234.40 44.96 STDEV= ± 1.57 1.57 6.84 0.72 0.37 0.00 4.66 0.01 0.00 0.00 10.71 0.72 22 6 47.17 47.17 2903.52 43.07 13.71 0.00 37.51 5.21 1 0 3191 43.07 23 6 47.42 47.42 2895.15 43.23 13.82 0.00 35.21 5.21 1 0 3188 43.23 24 6 47.67 47.67 2886.80 43.39 13.93 0.00 32.90 5.22 1 0 3185 43.39

Avg.= 47.42 47.42 2895.16 43.23 13.82 0.00 35.21 5.21 1.00 0.00 3188.31 43.23 STDEV= ± 0.25 0.25 8.36 0.16 0.11 0.00 2.30 0.01 0.00 0.00 2.88 0.16 25 6.5 49.96 49.96 2885.03 41.80 14.26 0.00 28.13 5.21 1 0 3240 41.80 26 6.5 49.99 49.99 2884.04 41.86 14.29 0.00 28.13 5.21 1 0 3235 41.86 27 6.5 50.02 50.02 2883.05 41.93 14.32 0.00 28.13 5.21 1 0 3231 41.93

Avg.= 49.99 49.99 2884.04 41.86 14.29 0.00 28.13 5.21 1.00 0.00 3235.42 41.86 STDEV= ± 0.03 0.03 0.99 0.07 0.03 0.00 0.00 0.00 0.00 0.00 4.45 0.07 28 7 54.20 54.20 2875.92 40.09 15.08 0.00 28.01 5.18 1 0 3251 40.09 29 7 54.18 54.18 2873.71 40.06 15.14 0.00 28.01 5.18 1 0 3258 40.06 30 7 54.16 54.16 2871.51 40.03 15.20 0.00 28.01 5.18 1 0 3266 40.03

Avg.= 54.18 54.18 2873.71 40.06 15.14 0.00 28.01 5.18 1.00 0.00 3258.10 40.06 STDEV= ± 0.02 0.02 2.20 0.03 0.06 0.00 0.00 0.00 0.00 0.00 7.40 0.03 31 7.5 58.82 58.82 2856.15 38.52 16.17 0.00 27.96 5.17 1 0 3290 38.52 32 7.5 58.84 58.84 2854.25 38.73 16.16 0.00 27.96 5.17 1 0 3286 38.73 33 7.5 58.85 58.85 2852.34 38.94 16.15 0.00 27.96 5.17 1 0 3281 38.94

Avg.= 58.84 58.84 2854.25 38.73 16.16 0.00 27.96 5.17 1.00 0.00 3285.57 38.73 STDEV= ± 0.02 0.02 1.90 0.21 0.01 0.00 0.00 0.00 0.00 0.00 4.69 0.21

Appendix B Calculated data sheet

172

Table B 1.22: Calculated data for Finned pot without Shield at 20 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 45.34 45.34 2884.98 45.55 12.59 2.64 19.41 5.39 0.880184 0.136127 3295 51.75 2 2.5 44.95 44.95 2887.99 45.68 12.46 2.55 21.80 5.38 0.895394 0.116827 3296 51.02 3 2.5 44.57 44.57 2891.01 45.83 12.33 2.45 24.17 5.37 0.907946 0.101387 3298 50.47

Avg.= 44.95 44.95 2887.99 45.69 12.46 2.55 21.79 5.38 0.89 0.12 3296.05 51.08 STDEV= ± 0.39 0.39 3.02 0.14 0.13 0.10 2.38 0.01 0.01 0.02 1.45 0.64 4 3 44.51 44.51 2889.50 46.61 12.22 2.02 24.07 5.35 0.922455 0.084064 3279 50.53 5 3 44.72 44.72 2887.52 46.60 12.28 1.94 26.52 5.35 0.931911 0.073064 3279 50.00 6 3 44.93 44.93 2885.55 46.59 12.33 1.85 28.97 5.36 0.93994 0.063897 3280 49.57

Avg.= 44.72 44.72 2887.52 46.60 12.28 1.94 26.52 5.35 0.93 0.07 3279.15 50.03 STDEV= ± 0.21 0.21 1.98 0.01 0.06 0.09 2.45 0.01 0.01 0.01 0.43 0.48 7 3.5 44.86 44.86 2871.66 48.05 12.36 1.79 33.43 5.30 0.949057 0.053677 3272 50.63 8 3.5 45.24 45.24 2866.72 48.15 12.53 1.67 31.10 5.31 0.948956 0.053789 3256 50.74 9 3.5 45.62 45.62 2861.78 48.26 12.70 1.55 28.76 5.32 0.948839 0.05392 3240 50.86

Avg.= 45.24 45.24 2866.72 48.15 12.53 1.67 31.09 5.31 0.95 0.05 3255.80 50.74 STDEV= ± 0.38 0.38 4.94 0.11 0.17 0.12 2.33 0.01 0.00 0.00 15.82 0.12 10 4 44.76 44.76 2883.42 46.80 12.70 1.56 38.10 5.29 0.960544 0.041077 3188 48.72 11 4 45.18 45.18 2880.53 46.76 12.72 1.45 38.05 5.28 0.963306 0.038092 3206 48.54 12 4 45.60 45.60 2877.64 46.72 12.73 1.33 38.01 5.28 0.966084 0.035106 3224 48.36

Avg.= 45.18 45.18 2880.53 46.76 12.72 1.45 38.05 5.28 0.96 0.04 3205.83 48.54 STDEV= ± 0.42 0.42 2.89 0.04 0.02 0.12 0.04 0.01 0.00 0.00 18.30 0.18 13 4.5 45.99 45.99 2877.33 45.98 13.09 0.79 37.95 5.27 0.979722 0.020698 3191 46.93 14 4.5 45.96 45.96 2875.33 46.18 12.96 1.03 37.95 5.27 0.973496 0.027225 3225 47.44 15 4.5 45.93 45.93 2873.33 46.39 12.82 1.28 37.95 5.27 0.967349 0.033753 3259 47.95

Avg.= 45.96 45.96 2875.33 46.18 12.96 1.03 37.95 5.27 0.97 0.03 3225.15 47.44 STDEV= ± 0.03 0.03 2.00 0.20 0.14 0.25 0.00 0.00 0.01 0.01 34.01 0.51 16 5 46.70 46.70 2874.16 45.36 13.27 0.48 28.36 5.25 0.983301 0.016983 3216 46.13 17 5 47.15 47.15 2869.17 45.37 13.34 0.51 28.34 5.24 0.982276 0.018044 3234 46.19 18 5 47.59 47.59 2864.18 45.38 13.41 0.54 28.31 5.24 0.981253 0.019105 3252 46.24

Appendix B Calculated data sheet

173

Avg.= 47.15 47.15 2869.17 45.37 13.34 0.51 28.34 5.24 0.98 0.02 3234.13 46.19 STDEV= ± 0.44 0.44 4.99 0.01 0.07 0.03 0.02 0.00 0.00 0.00 18.17 0.06 19 5.5 47.95 47.95 2870.94 44.20 13.65 0.25 33.00 5.24 0.992416 0.007642 3233 44.54 20 5.5 48.08 48.08 2870.47 44.16 13.70 0.24 35.43 5.25 0.993253 0.006793 3229 44.46 21 5.5 48.21 48.21 2870.00 44.11 13.75 0.23 37.87 5.26 0.993986 0.00605 3224 44.38

Avg.= 48.08 48.08 2870.47 44.16 13.70 0.24 35.43 5.25 0.99 0.01 3228.56 44.46 STDEV= ± 0.13 0.13 0.47 0.04 0.05 0.01 2.43 0.01 0.00 0.00 4.66 0.08 22 6 50.36 50.36 2866.64 43.22 14.26 0.08 37.86 5.26 0.997935 0.00207 3227 43.31 23 6 51.14 51.14 2859.60 43.06 14.40 0.08 37.87 5.26 0.997855 0.002149 3239 43.16 24 6 51.92 51.92 2852.58 42.91 14.53 0.08 37.88 5.26 0.997776 0.002229 3251 43.00

Avg.= 51.14 51.14 2859.61 43.06 14.39 0.08 37.87 5.26 1.00 0.00 3238.98 43.16 STDEV= ± 0.78 0.78 7.03 0.16 0.14 0.00 0.01 0.00 0.00 0.00 11.75 0.15 25 6.5 52.53 52.53 2858.86 42.23 14.52 0.02 37.67 5.23 0.999443 0.000557 3256 42.25 26 6.5 52.53 52.53 2858.86 42.22 14.52 0.05 37.67 5.23 0.998688 0.001314 3256 42.28 27 6.5 52.54 52.54 2858.86 42.22 14.52 0.08 37.67 5.23 0.997935 0.00207 3257 42.31

Avg.= 52.53 52.53 2858.86 42.22 14.52 0.05 37.67 5.23 1.00 0.00 3256.42 42.28 STDEV= ± 0.01 0.01 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.42 0.03 28 7 55.09 55.09 2856.15 40.75 14.82 0.00 37.54 5.21 1 0 3321 40.75 29 7 55.10 55.10 2856.15 40.74 14.88 0.00 37.54 5.21 1 0 3310 40.74 30 7 55.12 55.12 2856.15 40.73 14.93 0.00 37.54 5.21 1 0 3298 40.73

Avg.= 55.10 55.10 2856.15 40.74 14.88 0.00 37.54 5.21 1.00 0.00 3309.82 40.74 STDEV= ± 0.01 0.01 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 11.40 0.01 31 7.5 58.64 58.64 2832.72 40.44 15.46 0.00 37.74 5.24 1 0 3361 40.44 32 7.5 58.64 58.64 2832.72 40.44 15.48 0.00 37.74 5.24 1 0 3355 40.44 33 7.5 58.65 58.65 2832.72 40.43 15.51 0.00 37.74 5.24 1 0 3350 40.43

Avg.= 58.64 58.64 2832.72 40.44 15.48 0.00 37.74 5.24 1.00 0.00 3355.33 40.44 STDEV= ± 0.01 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 5.51 0.00

Appendix B Calculated data sheet

174

Table B 1.23: Calculated data for flat bottom pot with Shield at 20 mbar NG pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE

1 2.5 46.89 46.89 2866.83 49.51 12.20 1.87 19.62 5.45 0.912802 0.095527 3290 54.24 2 2.5 41.91 41.91 2875.08 52.15 11.45 1.93 14.67 5.43 0.883692 0.131616 3295 59.01 3 2.5 36.90 36.90 2883.13 55.52 10.61 1.99 9.75 5.41 0.830708 0.203792 3301 66.84 Avg.= 41.90 41.90 2875.01 52.39 11.42 1.93 14.68 5.43 0.88 0.14 3295.30 60.03

STDEV= ± 4.99 4.99 8.15 3.02 0.79 0.06 4.94 0.02 0.04 0.06 5.21 6.36 4 3 35.03 35.03 2891.68 58.32 10.37 0.61 9.71 5.39 0.941255 0.062411 3147 61.96 5 3 35.37 35.37 2890.83 58.07 10.40 0.68 19.41 5.39 0.966159 0.035027 3157 60.10 6 3 35.71 35.71 2889.97 57.82 10.43 0.86 29.10 5.39 0.971138 0.02972 3166 59.54 Avg.= 35.37 35.37 2890.83 58.07 10.40 0.72 19.41 5.39 0.96 0.04 3156.46 60.53

STDEV= ± 0.34 0.34 0.86 0.25 0.03 0.13 9.70 0.00 0.02 0.02 9.76 1.27 7 3.5 35.19 35.19 2886.53 58.42 10.37 0.50 19.37 5.38 0.975007 0.025633 3182 59.92 8 3.5 35.18 35.18 2887.33 58.05 10.45 0.50 24.22 5.38 0.979844 0.02057 3172 59.25 9 3.5 35.16 35.16 2888.12 57.69 10.54 0.50 29.08 5.38 0.983096 0.017195 3162 58.68 Avg.= 35.18 35.18 2887.33 58.05 10.45 0.50 24.22 5.38 0.98 0.02 3172.18 59.28

STDEV= ± 0.01 0.01 0.80 0.37 0.09 0.00 4.85 0.00 0.00 0.00 9.88 0.62 10 4 36.07 36.07 2888.72 57.01 10.51 0.42 33.96 5.39 0.987689 0.012464 3198 57.72 11 4 35.47 35.47 2892.75 57.57 10.44 0.35 36.38 5.39 0.990496 0.009595 3159 58.12 12 4 34.87 34.87 2896.78 58.14 10.37 0.27 38.80 5.39 0.992965 0.007085 3119 58.55

Avg.= 35.47 35.47 2892.75 57.57 10.44 0.35 36.38 5.39 0.99 0.01 3158.59 58.13 STDEV= ± 0.60 0.60 4.03 0.56 0.07 0.07 2.42 0.00 0.00 0.00 39.74 0.41 13 4.5 36.63 36.63 2890.85 56.10 10.77 0.21 38.91 5.40 0.994616 0.005413 3155 56.41 14 4.5 36.90 36.90 2891.04 55.94 10.66 0.21 38.85 5.39 0.994577 0.005453 3195 56.25 15 4.5 37.17 37.17 2891.22 55.78 10.55 0.21 38.80 5.39 0.994537 0.005493 3235 56.08

Avg.= 36.90 36.90 2891.04 55.94 10.66 0.21 38.85 5.39 0.99 0.01 3195.05 56.25 STDEV= ± 0.27 0.27 0.18 0.16 0.11 0.00 0.05 0.01 0.00 0.00 40.24 0.16 16 5 37.10 37.10 2900.37 55.10 10.75 0.03 43.34 5.35 0.999364 0.000637 3145 55.14 17 5 37.17 37.17 2901.61 55.22 10.75 0.01 40.98 5.35 0.999663 0.000337 3127 55.24 18 5 37.24 37.24 2902.85 55.33 10.75 0.00 38.62 5.36 1 0 3109 55.33

Avg.= 37.17 37.17 2901.61 55.22 10.75 0.01 40.98 5.35 1.00 0.00 3127.05 55.24

Appendix B Calculated data sheet

175

STDEV= ± 0.07 0.07 1.24 0.12 0.00 0.01 2.36 0.01 0.00 0.00 18.23 0.10 19 5.5 38.13 38.13 2897.91 54.66 10.84 0.00 38.47 5.34 1 0 3157 54.66 20 5.5 38.32 38.32 2895.68 54.29 11.05 0.00 38.49 5.34 1 0 3136 54.29 21 5.5 38.51 38.51 2893.45 53.93 11.26 0.00 38.52 5.35 1 0 3116 53.93

Avg.= 38.32 38.32 2895.68 54.29 11.05 0.00 38.49 5.34 1.00 0.00 3136.15 54.29 STDEV= ± 0.19 0.19 2.23 0.37 0.21 0.00 0.03 0.00 0.00 0.00 20.48 0.37 22 6 40.15 40.15 2890.00 52.83 11.32 0.00 38.25 5.31 1 0 3185 52.83 23 6 39.94 39.94 2891.23 53.31 11.21 0.00 38.33 5.32 1 0 3176 53.31 24 6 39.73 39.73 2892.46 53.81 11.10 0.00 38.41 5.33 1 0 3167 53.81

Avg.= 39.94 39.94 2891.23 53.32 11.21 0.00 38.33 5.32 1.00 0.00 3175.79 53.32 STDEV= ± 0.21 0.21 1.23 0.49 0.11 0.00 0.08 0.01 0.00 0.00 9.05 0.49 25 6.5 40.09 40.09 2893.95 52.44 11.14 0.00 38.53 5.35 1 0 3231 52.44 26 6.5 40.43 40.43 2890.25 52.77 11.44 0.00 36.16 5.35 1 0 3149 52.77 27 6.5 40.78 40.78 2886.53 53.10 11.74 0.00 33.79 5.36 1 0 3073 53.10

Avg.= 40.43 40.43 2890.24 52.77 11.44 0.00 36.16 5.35 1.00 0.00 3150.88 52.77 STDEV= ± 0.34 0.34 3.71 0.33 0.30 0.00 2.37 0.01 0.00 0.00 78.90 0.33 28 7 42.04 42.04 2885.54 51.61 11.68 0.00 38.26 5.31 1 0 3183 51.61 29 7 42.07 42.07 2884.56 51.69 11.74 0.00 38.18 5.30 1 0 3170 51.69 30 7 42.09 42.09 2883.57 51.77 11.79 0.00 38.10 5.29 1 0 3157 51.77

Avg.= 42.07 42.07 2884.56 51.69 11.74 0.00 38.18 5.30 1.00 0.00 3170.28 51.69 STDEV= ± 0.02 0.02 0.99 0.08 0.05 0.00 0.08 0.01 0.00 0.00 12.88 0.08 31 7.5 40.57 40.57 2897.91 51.37 11.70 0.00 38.14 5.29 1 0 3112 51.37 32 7.5 40.79 40.79 2896.42 51.26 11.81 0.00 38.24 5.31 1 0 3101 51.26 33 7.5 41.01 41.01 2894.94 51.15 11.91 0.00 38.34 5.32 1 0 3091 51.15

Avg.= 40.79 40.79 2896.42 51.26 11.81 0.00 38.24 5.31 1.00 0.00 3101.49 51.26 STDEV= ± 0.22 0.22 1.48 0.11 0.10 0.00 0.10 0.01 0.00 0.00 10.68 0.11

Appendix B Calculated data sheet

176

Table B 1.24: Calculated data for Finned pot with Shield at 20 mbar NG Pressure.

SL LH (fcm) (fcd) (wcr) (hc) (ΔtTc) Ecor ECO2r Q MCE CO/CO2 FPc HTE 1 2.5 44.39 44.39 2874.95 46.24 12.45 3.24 19.58 5.44 0.857941 0.165581 3370 53.90 2 2.5 44.44 44.44 2872.18 46.70 12.48 3.26 18.10 5.43 0.847553 0.179867 3346 55.10 3 2.5 44.49 44.49 2869.41 47.16 12.52 3.27 16.63 5.43 0.835649 0.196674 3322 56.44

Avg.= 44.44 44.44 2872.18 46.70 12.48 3.26 18.10 5.43 0.85 0.18 3345.91 55.15 STDEV= ± 0.05 0.05 2.77 0.46 0.04 0.01 1.48 0.00 0.01 0.02 23.99 1.27

4 3 43.87 43.87 2870.61 47.96 11.79 2.55 14.63 5.41 0.851736 0.174072 3457 56.31 5 3 41.48 41.48 2873.63 50.45 11.59 2.39 14.61 5.41 0.859507 0.163458 3319 58.70 6 3 39.08 39.08 2876.65 53.25 11.39 2.23 14.60 5.40 0.86742 0.152844 3178 61.39

Avg.= 41.48 41.48 2873.63 50.55 11.59 2.39 14.61 5.41 0.86 0.16 3317.96 58.80 STDEV= ± 2.39 2.39 3.02 2.65 0.20 0.16 0.01 0.01 0.01 0.01 139.35 2.54

7 3.5 39.47 39.47 2872.59 53.07 11.54 1.68 13.64 5.41 0.890614 0.122821 3177 59.59 8 3.5 39.19 39.19 2875.09 53.19 11.52 1.64 14.12 5.41 0.895744 0.11639 3160 59.38 9 3.5 38.91 38.91 2877.58 53.30 11.49 1.61 14.60 5.40 0.900587 0.110387 3142 59.19

Avg.= 39.19 39.19 2875.09 53.19 11.52 1.64 14.12 5.41 0.90 0.12 3159.68 59.39 STDEV= ± 0.28 0.28 2.50 0.11 0.03 0.03 0.48 0.00 0.00 0.01 17.63 0.20 10 4 39.04 39.04 2880.76 53.04 11.34 0.87 16.56 5.41 0.950167 0.052446 3174 55.82 11 4 39.09 39.09 2877.85 53.39 11.43 0.95 18.02 5.41 0.950121 0.052497 3149 56.19 12 4 39.15 39.15 2874.94 53.73 11.52 1.02 19.48 5.41 0.950083 0.05254 3124 56.55

Avg.= 39.09 39.09 2877.85 53.39 11.43 0.95 18.02 5.41 0.95 0.05 3148.84 56.19 STDEV= ± 0.06 0.06 2.91 0.34 0.09 0.08 1.46 0.00 0.00 0.00 25.08 0.36 13 4.5 39.00 39.00 2882.12 53.43 11.30 0.37 19.47 5.41 0.981253 0.019105 3149 54.45 14 4.5 39.59 39.59 2881.49 53.20 11.25 0.39 19.45 5.40 0.980487 0.019902 3178 54.26 15 4.5 40.19 40.19 2880.86 52.98 11.20 0.40 19.43 5.39 0.979722 0.020698 3207 54.08

Avg.= 39.59 39.59 2881.49 53.21 11.25 0.39 19.45 5.40 0.98 0.02 3177.92 54.27 STDEV= ± 0.59 0.59 0.63 0.22 0.05 0.02 0.02 0.01 0.00 0.00 28.65 0.19 16 5 39.63 39.63 2888.02 53.23 11.04 0.03 19.37 5.38 0.99841 0.001592 3184 53.32 17 5 39.93 39.93 2885.30 52.80 11.17 0.03 14.53 5.38 0.997882 0.002123 3196 52.91 18 5 40.24 40.24 2882.58 52.37 11.29 0.03 9.69 5.38 0.996826 0.003184 3208 52.53

Appendix B Calculated data sheet

177

Avg.= 39.93 39.93 2885.30 52.80 11.17 0.03 14.53 5.38 1.00 0.00 3195.86 52.92 STDEV= ± 0.30 0.30 2.72 0.43 0.13 0.00 4.84 0.00 0.00 0.00 11.77 0.39 19 5.5 40.01 40.01 2887.77 52.41 11.21 0.00 29.04 5.37 1 0 3189 52.41 20 5.5 40.71 40.71 2882.59 52.45 11.46 0.00 29.02 5.37 1 0 3152 52.45 21 5.5 41.41 41.41 2877.40 52.49 11.70 0.00 29.01 5.37 1 0 3118 52.49

Avg.= 40.71 40.71 2882.59 52.45 11.46 0.00 29.02 5.37 1.00 0.00 3153.05 52.45 STDEV= ± 0.70 0.70 5.19 0.04 0.24 0.00 0.01 0.00 0.00 0.00 35.63 0.04 22 6 41.92 41.92 2878.14 51.43 11.68 0.00 28.88 5.35 1 0 3186 51.43 23 6 41.65 41.65 2879.13 51.65 11.64 0.00 28.93 5.35 1 0 3174 51.65 24 6 41.38 41.38 2880.12 51.87 11.61 0.00 28.97 5.36 1 0 3163 51.87

Avg.= 41.65 41.65 2879.13 51.65 11.64 0.00 28.93 5.35 1.00 0.00 3174.14 51.65 STDEV= ± 0.27 0.27 0.99 0.22 0.03 0.00 0.04 0.01 0.00 0.00 11.61 0.22 25 6.5 42.27 42.27 2880.79 51.63 11.76 0.00 29.03 5.37 1 0 3125 51.63 26 6.5 43.50 43.50 2878.01 50.73 11.80 0.00 29.13 5.39 1 0 3188 50.73 27 6.5 44.73 44.73 2875.23 49.88 11.83 0.00 29.24 5.41 1 0 3251 49.88

Avg.= 43.50 43.50 2878.01 50.75 11.80 0.00 29.13 5.39 1.00 0.00 3187.95 50.75 STDEV= ± 1.23 1.23 2.78 0.88 0.03 0.00 0.11 0.02 0.00 0.00 62.79 0.88 28 7 43.87 43.87 2876.16 49.35 12.86 0.01 28.79 5.33 0.999682 0.000318 3026 49.37 29 7 43.77 43.77 2878.11 49.86 12.53 0.01 28.77 5.33 0.999682 0.000318 3057 49.88 30 7 43.67 43.67 2880.04 50.38 12.21 0.01 28.76 5.32 0.999682 0.000318 3088 50.39

Avg.= 43.77 43.77 2878.10 49.87 12.54 0.01 28.77 5.33 1.00 0.00 3056.97 49.88 STDEV= ± 0.10 0.10 1.94 0.51 0.33 0.00 0.01 0.00 0.00 0.00 31.13 0.51 31 7.5 43.28 43.28 2884.56 49.76 12.57 0.02 28.90 5.35 0.99947 0.000531 3011 49.79 32 7.5 43.00 43.00 2888.27 49.36 12.45 0.02 28.81 5.33 0.99947 0.000531 3043 49.39 33 7.5 42.72 42.72 2891.98 48.95 12.32 0.02 28.72 5.32 0.99947 0.000531 3077 48.98

Avg.= 43.00 43.00 2888.27 49.36 12.45 0.02 28.81 5.33 1.00 0.00 3043.76 49.38 STDEV= ± 0.28 0.28 3.71 0.40 0.13 0.00 0.09 0.02 0.00 0.00 32.91 0.40

APPENDIX-C EXPERIMENTAL

178

Figure C 1: Actual experimental pictures.

Figure C1.1: Practical Experimental Setup.

APPENDIX-C EXPERIMENTAL

179

Figure C1.2: Practical Experimental Setup during experiment.

APPENDIX-C EXPERIMENTAL

180

Figure C1.3: Picture of (a) Gas burner without pot support, (b) Radial flow burner head and

(c) Sliding Sutter.

APPENDIX-C EXPERIMENTAL

181

Figure C1.4: Top and side view of Radial flame burner.

APPENDIX-C EXPERIMENTAL

182

Figure C1.5: Picture of (A) Pot supports (B) Circular Shields (C) Pot support with Shield

(D) Single Shield

APPENDIX-C EXPERIMENTAL

183

Figure C 1.6: Pictures of (A) Finned and normal pots (B) Finned pot observing (C) Spot

welded finned pot and (D) Spot argon welding view in inner side of finned pot

APPENDIX-C EXPERIMENTAL

184

Figure C 1.7: Pictures of normal pots with pot Support and Shield.

APPENDIX-C EXPERIMENTAL

185

.

Figure C 1.8: Pictures of normal pots with pot Support, without shield.

Figure C 1.9: Finned pot before adding Finns.

APPENDIX-C EXPERIMENTAL

186

Figure C 1.20: Actual picture of finned pot.

Figure C 1.21: red circles represent spot welded area of finned pot.

187

APPENDIX-D

Sample Calculations used in WBT

For this Sample calculation, data taken from Appendix A of Table A 1.1: Experimental data for flat bottom pot without Shield at 4 mbar NG Pressure (SL 01). After calculation, data recoded in Table B 1.1: Calculated data for flat bottom pot without Shield at 4 mbar NG pressure (SL 01) of Appendix B.

Overall thermal efficiency, hc (%) Equation (3.2.5.1) taken from Chapter 3 is following:

ℎ𝑐(%) =4.186(𝑇𝑏 − 𝑇𝑎)(𝑃1𝑐𝑖 − 𝑃1 ) + 2260. 𝑤𝑐𝑣

𝑓𝑐𝑚 . 𝐿𝐻𝑉 𝑋 100 − − − −(3.2.5.1)

here,

Tb = Local boiling point of water =

98.8°C

P1= Weight of the empty pot.= 406 g

Ta = Ambient Temperature = 26 °C Wcv = Water vaporized = 89 g

P1ci = Mass of pot of water before test =

3406 g

fcm = NG consumed in each WBT ( g)

Where, latent heat of evaporation of water is 2260 kJ/kg and lower heating value (LHV) is

48,833.44 kj/kg (Appendix E)

NG consumed (grams) fcm :

fcm = mNG(g) =PNG. VNG. MWNG

RTNG

According to ideal gas law:

PV =𝑚

𝑀𝑊 𝑅𝑇

Here,

188

mNG = gram of Natural Gas (NG)

R = universal gas constant = 8.314 (Pa.m3/mol.K)

TNG = temperature of the NG in Kelvin = Tng+273.15= 27+273.15 = 300.15 0 K

PNG = Absolute Pressure of Supplied Natural gas (pa)

= (Pmbar+1013.25)*100 = (4+1013.25)*100 = 101725 pa

VNG = Volume of NG consumed (m3)= (fcf - fci)/1000 = (56.3/1000 )m3

MWNG = Molecular weight of Natural Gas (NG) = 16.5244 gm/mol

Putting values in Equation 3.2.1.2.1:

fcm = 101725 pa . (

56.31000

) m3. 16.5244 g/mol

8.312 pa.m3

mol. k. 300.15 K

= 37.92 g

Putting all values to equation 3.2.5.1:

hc(%) =4.186(98oC − 26oC)(3406 g − 406 g ) + 2260

kjkg

. 89 g

37.9 g .48833.44kjkg

X 100

= 60.23 %

Calculation of Modified combustion efficiency (MCE): Equation (3.2.5.2) taken from Chapter 3 is following:

MCE =Eco2r

Ecor + Eco2r− − − (3.2.5.2)

189

Where,

Eco2r= At SATP CO2 emission rate (g/min)

Ecor= At SATP CO emission rate (g/min)

Putting the values of equation 3.2.6.1 and equation 3.2.6.2 to equation 3.2.5.2,

MCE =Eco2r

Ecor+Eco2r=

36.4

0.104+36.4= 0.997

Calculation of Heat Transfer Efficiency (HTE):

Equation taken from Chapter 3,

HTE = hc/MCE − − − (3.2.5.3)

Where,

hc = Overall thermal efficiency in percentage

MCE= Modified combustion efficiency

THE= heat transfer efficiency in percentage

Putting the values of equation 3.2.5.2 and equation 3.2.5.1 to equation 3.2.5.3,

HTE =60.23%

0.997= 60.4 %

Calculation of Temperature corrected time to boil (min) ΔtTc:

ΔtcT = Δtc.

75

(T1cf − T1ci) − − − − − − − − − − − −(3.2.5.4)

Δtc = 11.63 min

ΔtcT = 11.63 min .

75

(98 − 26)= 12.11 min

190

Calculation of Fire power:

FPc =.fcm. LHV

tc. 60 − − − − − − − − − − − − − − − − − (3.2.5)

Where,

FPc = Firepower (watt)

fcm = Equivalent dry fuel (NG) consumed (grams) = 37.92 g (taken from hc calculation)

Δtc= Time to boil (min) = 11.63 min

Putting above values in equation 3.2.5, FPc = 2653.7 watt

Calculation of ratio of Carbon monoxide [CO] and Carbon dioxide [CO2]

CO/CO2 =Ecor

Eco2r

− − − − − − − − − − − − − − − − − (3.2.5.6)

Where,

Ecor: At SATP CO emission rate (g/min) and

Eco2r: At SATP CO2 emission rate (g/min)

At SATP emission rate:

Ecor= (𝐸𝑆𝐴𝑇𝑃𝑐𝑜 (

𝑔

𝑚3) 𝑋 𝑄 (

𝑚3

min)) … … … … … . . (𝐴)

Eco2r= (𝐸𝑆𝐴𝑇𝑃𝑐𝑜2

(𝑔

𝑚3) 𝑋 𝑄 (

𝑚3

min)) − − − −(𝐵)

Where,

ESATPco = AT SATP Amount of CO (g/m3 flue gas).

ESATPco2 = AT SATP Amount of CO2 (g/m3 flue gas).

Q = At SATP Exhaust flow (m3 flue gas/min)

ESATPco = 𝐶𝑂ℎ . 44.95 .𝑀𝑊𝐶𝑂

1000000.273

298− − − − − (C)

191

ESATPco2= 𝐶𝑂2ℎ .10.

𝑀𝑊𝐶𝑂2

22.4 .

273

298− − − − − − − −(𝐷)

Where, COh = At STP Stack CO (ppmv) = 18 ppmv MWCO = Molecular weight of CO ( 28.01 g/mol)

CO2h = At STP Stack CO2 in percentage (m/m, v/v, mole/mole)= 0.4%

MWCO2 = Molecular weight of CO2 ( 44 g/mol)

Putting values in equations C and D,

ESATPco = 0.02076g

m3 flue gas And

ESATPco2= 7.2

𝑔

𝑚3 𝑓𝑙𝑢𝑒 𝑔𝑎𝑠

At SATP Exhaust flow (m3/min) Q:

Q (m3

min) =

PStcA. TSATP. QStc

PSATP . ThdA − − − − − − − −(E)

𝐏𝐒𝐀𝐓𝐏 𝐐

𝐓𝐒𝐀𝐓𝐏=

𝐏𝐒𝐭𝐜𝐐𝐒𝐭𝐜

𝐓𝐒𝐭𝐜 (According to Gas Law:)

Where,

PStcA = [ PStc + 1013.25] mbar = 0.06+1013.25= 1013.31 mbar

PStc = Stack Pressure in mbar = 0.06 mbar

TSATP = Standard Ambient Temperature of 25oC (298.15 K)

QStc = Stack Gas flow (m3/min)

PSATP = Standard pressure of 1013.25 mbar.

ThdA = [ Thd.+273] K = [45.7+273] = 318.7 K

Thd = Stack Temperature (O C) = 45.7 O C

QStc =𝜋DStc

2

4 X VStcm − − − − − − − − − − − (F)

192

VStcm (m

min) = VStc (

km

hr) X

1000 m

km X

hr

60 min − − − −(G)

Where,

DStc = Stack Diameter (m) = 0.2032 m.

Vstcm = Stack Exhaust velocity (m/min)

VStc = 10 km/hr

Putting values in equation G. VStcm = 166.67 m/min

Again, putting values in equation F, QStc = 5.4 m3 flue gas/min

Again, putting above values in equation E,

Q = 5.05 m3 flue gas at SATP/min

Putting values of equation C, equation D and equation E to equation A and B.

Ecor= 0.104 g/min

Eco2r= 36.4 g/min

Putting these above values to equation 3.2.5.6, CO

CO2=

Ecor

Eco2r

=0.104

36.4= 0.0029

At SATP NG Flow rate (Liter/min.):

According to Gas Law

𝐏𝐒𝐀𝐓𝐏 𝐐𝐒𝐀𝐓𝐏

𝐓𝐒𝐀𝐓𝐏=

𝐏𝐦𝐛𝐚𝐫 𝐐𝐞𝐱𝐩

𝐓𝐧𝐠

𝐐𝐒𝐀𝐓𝐏 =𝐏𝐦𝐛𝐚𝐫 . 𝐓𝐒𝐀𝐓𝐏. 𝐐𝐞𝐱𝐩

𝐏𝐒𝐀𝐓𝐏 𝐓𝐧𝐠… … . (𝐇)

193

Where,

Pmbar = Supplied NG pressure (mbar) = [ 4 + 1013.25] mbar =1017.25 mbar

PSATP = 1013.25 mbar

TSATP = Standard Ambient Temperature of 25oC (298.15 K)

Tng = Supplied NG temp. (O C) = 28.02 O C (taken from Appendix A, avg.

flow rate of pot arrangement at 4 mbar, given in Appendix G)

QSATP = NG flow rate (Liter/min)=?

Qexp = Avg.NG flow rate (Liter/min) in experiment= 4.72 (taken from

Appendix A, avg. flow rate of pot arrangement at 4 mbar, given in

Appendix G)

From equation (H)

𝐐𝐒𝐀𝐓𝐏 = (𝟏𝟎𝟏𝟕. 𝟐𝟓

𝟏𝟎𝟏𝟑. 𝟐𝟓) . (

𝟐𝟓

𝟐𝟖. 𝟎𝟐) . 𝟒. 𝟕𝟐 = 𝟒. 𝟐𝟑 𝐋/𝐦𝐢𝐧

APPENDIX-E Composition and calorific value of pipeline Natural Gas

194

Table E 1.1: Composition and calorific value of pipeline Natural Gas

Component Wt. %

M.

Wt.

Mole % Mol%o

f Sample

Density(kg/m3)

average density (kg/m3)

Molecular weight

Gross Heating Value

(BTU/Nft^3)

GHV*Mol%ofsample

Net Heating Value

NHV*molFracofSa

mple

N2 28 0.5314009 0.5314 1.1650 0.6191 0.148792266 0 0 0 0

CO2 44 0.3372633 0.3373 1.8420 0.6212 0.148395845 0 0 0 0

c1 96.65691 16 98.888557 98.0295 0.6785 66.5111 15.68472764 1010 990.0984321 909 891.48071

c2 0.436674 30 0.2383 0.2362 1.2717 0.0055 0.070860031 1769 4.17837981 1619 3.82337

c3 1.34632 44 0.5009 0.4965 1.8649 0.0247 0.21847031 2516 12.49302607 2315 11.49402

Iso c4 0.493527 58 0.1393 0.1381 2.4581 0.0119 0.080085673 3252 4.490182768 3000 4.14291

nc4 0.296291 58 0.0836 0.0829 2.4581 0.0072 0.04807979 3262 2.704322422 3011 2.49584

Neo C5 0.004592 72 0.0010 0.0010 3.0514 0.0001 0.000745148 3984 0.041231525 3683 0.03812

Iso C5 0.161156 72 0.0366 0.0363 3.0514 0.0048 0.026151148 4001 1.453168447 3699 1.34352

nC5 0.081999 72 0.0186 0.0185 3.0514 0.0025 0.013306215 4009 0.740878967 3707 0.68507

nC6 (N Hexen) 0.030176 86 0.0057 0.0057 3.6446 0.0011 0.004896687 4756 0.270792493 4404 0.25074

Iso mers(PI

C6) 0.077626 86 0.0148 0.0146 3.6446 0.0028

0.01259655

4756 0.696603877 4404 0.64503

APPENDIX-E Composition and calorific value of pipeline Natural Gas

195

M. Cy c5 0.04136 84 0.0081 0.0080 3.6446 0.0015 0.006711655 4501 0.359648821 4199 0.33553

Cy c6 0.048148 84 0.0094 0.0093 3.6446 0.0017 0.007813055 4482 0.41685437 4180 0.38876

C6H6 0.043576 78 0.0091 0.0091 3.6446 0.0016 0.0070711 3742 0.339213364 3591 0.32553

nc7 0.018149 100 0.0030 0.0029 4.2378 0.0008 0.002945109 5503 0.162054619 5100 0.15020

Paraffin Isomers (PIC7)

0.019899 100 0.0033 0.0032 4.2378 0.0008 0.003228975 5503 0.177674342 5100 0.16468

MCyC6 0.079327 98 0.0133 0.0131 4.2378 0.0033 0.01287261 5216 0.685124958 4864 0.63885

Tolune 0.071735 92 0.0128 0.0127 4.2378 0.0030 0.011640632 4475 0.566215513 4274 0.54073

nC8 0.0164 114 0.0024 0.0023 4.8310 0.0008 0.002661243 6249 0.145875802 5796 0.13531

Xylene 0.061047 106 0.0094 0.0093 4.8310 0.0029 0.009906211 5209 0.48678747 4957 0.46327

nC9 0.015088 128 0.0019 0.0019 5.4242 0.0008 0.002448344 6997 0.133826842 6493 0.12420

100 100.868

7 100.000

0

148.2781 67.8290 16.5244 182196.50

00 1020.6403 169569.7000 919.6664

Molecular weight of NG= 16.5244 gm .

Gross Heating Value Corrected = 1025.14 and Corrected Net heating value = 923.72 BTU/ft3 at 600 F (15.560C).

At SATP: HHV is 54195.11 and LHV is 48833.44 kj/kg.

Appendix F Calculated data sheet for CO and CO2 (mg/m3)

196

Table F 1.1: Flat bottom pot without Shield (Cco and Cco2 in mg/m3)

SL PH 4 mbar NG

pressure Cco Cco2

1 2.5 20.65 7204.26 2 2.5 19.50 6303.73 3 2.5 18.35 5403.20

Avg.= 19.50 6303.73 STDEV= ± 1.15 900.53 4 3 8.03 7204.26 5 3 7.74 6754.00 6 3 7.45 6303.73

Avg.= 7.74 6754.00 STDEV= ± 0.29 450.26 7 3.5 0 5403.20 8 3.5 0 5403.20 9 3.5 0 5403.20

Avg.= 0 5403.20 STDEV= ± 0 0 10 4 0 5403.20 11 4 0 5403.20 12 4 0 5403.20

Avg.= 0 5403.20 STDEV= ± 0 0 13 4.5 0 5403.20 14 4.5 0 5403.20 15 4.5 0 5403.20

Avg.= 0 5403.20 STDEV= ± 0 0 16 5 0 5403.20 17 5 0 5403.20 18 5 0 5403.20

Avg.= 0 5403.20 STDEV= ± 0 0 19 5.5 0.57 5403.20

6 mbar NG pressure

Cco Cco2 18.35 3602.13 18.35 4502.66 18.35 5403.20 18.35 4502.66

0 900.53 7.45 3602.13 5.44 4052.40 3.44 4502.66 5.44 4052.40 2.01 450.26 1.15 3602.13 0.57 4502.66

0 5403.20 0.57 4502.66 0.57 900.53

0 3602.13 0 4502.66 0 5403.20 0 4502.66 0 900.53 0 5403.20 0 5403.20 0 5403.20 0 5403.20 0 0 0 4502.66 0 5853.46 0 7204.26 0 5853.46 0 1350.8 0 3602.13

10 mbar NG pressure

Cco Cco2 25.23 5403.20 25.52 5403.20 25.81 5403.20 25.52 5403.20 0.29 0

11.47 5403.20 10.32 5403.20 9.18 5403.20

10.32 5403.20 1.15 0 2.29 4502.67 1.15 4502.67

0 4502.67 1.15 4502.67 1.15 0

0 5403.20 0 5403.20 0 5403.20 0 5403.20 0 0 0 5403.20 0 5403.20 0 5403.20 0 5403.20 0 0 0 5403.20 0 5403.20 0 5403.20 0 5403.20 0 0 0 5403.20

14 mbar NG pressure

Cco Cco2 32.12 5403.20 30.40 5403.20 28.68 5403.20 30.40 5403.20 1.72 0.00

15.48 5403.20 15.48 5853.47 15.48 6303.73 15.48 5853.47 0.00 450.27 5.16 7204.27 2.58 7204.27 0.00 7204.27 2.58 7204.27 2.58 0.00 1.15 7204.27 1.15 7204.27 1.15 7204.27 1.15 7204.27 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 6303.73

18 mbar NG pressure

Cco Cco2 36.70 5403.20 36.70 6303.73 36.70 7204.27 36.70 6303.73 0.00 900.53

16.63 5403.20 17.78 6303.73 18.93 7204.27 17.78 6303.73 1.15 900.53 7.46 7204.27 7.46 7204.27 7.46 7204.27 7.46 7204.27 0.00 0.00 2.29 5403.20 1.72 5403.20 1.15 5403.20 1.72 5403.20 0.57 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 5403.20 0.00 6303.73 0.00 7204.27 0.00 6303.73 0.00 900.53 0.00 5403.20

20 mbar NG pressure

Cco Cco2 39.00 5403.20 41.58 5403.20 44.16 5403.20 41.58 5403.20 2.58 0.00

26.95 6303.73 23.51 6754.00 20.07 7204.27 23.51 6754.00 3.44 450.27 8.60 7204.27 7.74 6754.00 6.88 6303.73 7.74 6754.00 0.86 450.27 2.29 7204.27 2.29 7204.27 2.29 7204.27 2.29 7204.27 0.00 0.00 0.00 7204.27 0.00 6303.73 0.00 5403.20 0.00 6303.73 0.00 900.53 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20

Appendix F Calculated data sheet for CO and CO2 (mg/m3)

197

20 5.5 0.57 5403.20 21 5.5 0.57 5403.20

Avg.= 0.57 5403.20 STDEV= ± 0 0 22 6 0 5403.20 23 6 0 5403.20 24 6 0 5403.20

Avg.= 0 5403.20 STDEV= ± 0 0 25 6.5 0 5403.20 26 6.5 0 5403.20 27 6.5 0 5403.20

Avg.= 0 5403.20 STDEV= ± 0 0 28 7 0 5403.20 29 7 0 5403.20 30 7 0 5403.20

Avg.= 0 5403.20 STDEV= ± 0 0 31 7.5 0 5403.20 32 7.5 0 5403.20 33 7.5 0 5403.20

Avg.= 0 5403.20 STDEV= ± 0 0

0 5403.20 0 7204.26 0 5403.20 0 1801.06 0 3602.13 0 3602.13 0 3602.13 0 3602.13 0 0 0 3602.13 0 4502.66 0 5403.20 0 4502.66 0 900.53 0 3602.13 0 4502.66 0 5403.20 0 4502.66 0 900.53 0 4502.66 0 4952.93 0 5403.20 0 4952.93 0 450.26

0 5403.20 0 5403.20 0 5403.20 0 0 0 5403.20 0 5403.20 0 5403.20 0 5403.20 0 0 0 5403.20 0 5403.20 0 5403.20 0 5403.20 0 0 0 5403.20 0 5403.20 0 5403.20 0 5403.20 0 0 0 5403.20 0 5403.20 0 5403.20 0 5403.20 0 0

0.00 6754.00 0.00 7204.27 0.00 6754.00 0.00 450.27 0.00 6303.73 0.00 6754.00 0.00 7204.27 0.00 6754.00 0.00 450.27 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 6303.73 0.00 6303.73 0.00 6303.73 0.00 6303.73 0.00 0.00

0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00

0.00 6303.73 0.00 7204.27 0.00 6303.73 0.00 900.53 0.00 7204.27 0.00 6754.00 0.00 6303.73 0.00 6754.00 0.00 450.27 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00

Appendix F Calculated data sheet for CO and CO2 (mg/m3)

198

Table F 1.2: Flat bottom pot with Shield (Cco and Cco2 in mg/m3)

SL PH 4 mbar NG

pressure Cco Cco2

1 2.5 105.52 5403.20 2 2.5 104.95 5403.20 3 2.5 104.38 5403.20

Avg.= 104.95 5403.20 STDEV= ± 0.57 0.00 4 3 16.63 5403.20 5 3 14.62 4502.67 6 3 12.62 3602.13

Avg.= 14.62 4502.67 STDEV= ± 2.01 900.53 7 3.5 4.01 5403.20 8 3.5 2.01 5853.47 9 3.5 0.00 6303.73

Avg.= 2.01 5853.47 STDEV= ± 2.01 450.27 10 4 0.00 5403.20 11 4 0.00 5403.20 12 4 0.00 5403.20

Avg.= 0.00 5403.20 STDEV= ± 0.00 0.00 13 4.5 0.00 6303.73 14 4.5 0.00 5853.47 15 4.5 0.00 5403.20

Avg.= 0.00 5853.47 STDEV= ± 0.00 450.27 16 5 0.00 6303.73 17 5 0.00 6754.00 18 5 0.00 7204.27

Avg.= 0.00 6754.00 STDEV= ± 0.00 450.27 19 5.5 0.00 6303.73

6 mbar NG pressure

Cco Cco2 80.29 1801.07 86.03 2071.23 91.76 2341.39 86.03 2071.23 5.74 270.16

22.37 1801.07 22.37 1801.07 22.37 1801.07 22.37 1801.07 0.00 0.00 8.03 5403.20 8.03 5403.20 8.03 5403.20 8.03 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 4502.67 0.00 4502.67 0.00 4502.67 0.00 4502.67 0.00 0.00 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 0.00 0.00 3602.13

10 mbar NG pressure

Cco Cco2 185.24 3602.13 174.92 3602.13 164.60 3602.13 174.92 3602.13 10.32 0.00 43.01 3602.13 56.78 3602.13 70.54 3602.13 56.78 3602.13 13.76 0.00 20.07 4502.67 18.93 4952.93 17.78 5403.20 18.93 4952.93 1.15 450.27

20.07 5403.20 20.93 5403.20 21.79 5403.20 20.93 5403.20 0.86 0.00 9.18 5403.20

10.90 5403.20 12.62 5403.20 10.90 5403.20 1.72 0.00

10.32 5403.20 5.74 5403.20 1.15 5403.20 5.74 5403.20 4.59 0.00 2.87 4502.67

14 mbar NG pressure

Cco Cco2 321.16 4502.67 287.04 4952.93 252.92 5403.20 287.04 4952.93 34.12 450.27

111.83 4502.67 101.22 4502.67 90.61 4502.67

101.22 4502.67 10.61 0.00 91.76 5403.20 60.50 5403.20 29.25 5403.20 60.50 5403.20 31.26 0.00 39.57 5403.20 30.40 5403.20 21.22 5403.20 30.40 5403.20 9.18 0.00 9.18 5403.20 7.74 5403.20 6.31 5403.20 7.74 5403.20 1.43 0.00 6.31 5403.20 3.73 5853.47 1.15 6303.73 3.73 5853.47 2.58 450.27 0.57 6303.73

18 mbar NG pressure

Cco Cco2 344.10 1945.15 347.26 2773.64 350.41 3602.13 347.26 2773.64

3.15 828.49 110.11 3602.13 118.14 3422.03 126.17 3241.92 118.14 3422.03

8.03 180.11 68.82 3241.92 63.09 3872.29 57.35 4502.67 63.09 3872.29 5.74 630.37

47.03 6303.73 45.88 6754.00 44.73 7204.27 45.88 6754.00 1.15 450.27

21.79 7204.27 18.93 7204.27 16.06 7204.27 18.93 7204.27 2.87 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27

20 mbar NG pressure

Cco Cco2 344.10 3602.13 355.57 2701.60 367.04 1801.07 355.57 2701.60 11.47 900.53

112.41 1801.07 126.17 3602.13 160.58 5403.20 133.05 3602.13 24.81 1801.07 92.33 3602.13 92.62 4502.67 92.91 5403.20 92.62 4502.67 0.29 900.53

78.57 6303.73 64.81 6754.00 51.04 7204.27 64.81 6754.00 13.76 450.27 39.00 7204.27 39.29 7204.27 39.57 7204.27 39.29 7204.27 0.29 0.00 5.16 8104.80 2.58 7654.54 0.00 7204.27 2.58 7654.54 2.58 450.27 0.00 7204.27

Appendix F Calculated data sheet for CO and CO2 (mg/m3)

199

20 5.5 0.00 6303.73 21 5.5 0.00 6303.73

Avg.= 0.00 6303.73 STDEV= ± 0.00 0.00 22 6 0.00 7204.27 23 6 0.00 6303.73 24 6 0.00 5403.20

Avg.= 0.00 6303.73 STDEV= ± 0.00 900.53 25 6.5 0.00 5403.20 26 6.5 0.00 4952.93 27 6.5 0.00 4502.67

Avg.= 0.00 4952.93 STDEV= ± 0.00 450.27 28 7 2.87 5403.20 29 7 2.87 5403.20 30 7 2.87 5403.20

Avg.= 2.87 5403.20 STDEV= ± 0.00 0.00 31 7.5 3.44 6303.73 32 7.5 3.44 6303.73 33 7.5 3.44 6303.73

Avg.= 3.44 6303.73 STDEV= ± 0.00 0.00

0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 0.00 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 0.00 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 0.00 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 0.00 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 3602.13 0.00 0.00

2.58 4952.93 2.29 5403.20 2.58 4952.93 0.29 450.27 1.72 4502.67 2.01 4952.93 2.29 5403.20 2.01 4952.93 0.29 450.27 3.44 5403.20 4.30 4502.67 5.16 3602.13 4.30 4502.67 0.86 900.53 6.31 5403.20 8.60 4502.67

10.90 3602.13 8.60 4502.67 2.29 900.53 9.75 5403.20

11.76 5403.20 13.76 5403.20 11.76 5403.20 2.01 0.00

0.57 6303.73 0.57 6303.73 0.57 6303.73 0.00 0.00 0.00 5403.20 0.00 6303.73 0.00 7204.27 0.00 6303.73 0.00 900.53 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 6.88 5403.20 9.46 5403.20

12.04 5403.20 9.46 5403.20 2.58 0.00 4.01 5403.20 2.01 5403.20 0.00 5403.20 2.01 5403.20 2.01 0.00

0.00 5853.47 0.00 4502.67 0.00 5853.47 0.00 1350.80 0.00 4502.67 0.00 4502.67 0.00 4502.67 0.00 4502.67 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00

0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 6754.00 0.00 6303.73 0.00 6754.00 0.00 450.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00

Appendix F Calculated data sheet for CO and CO2 (mg/m3)

200

Table F 1.3: Finned pot without Shield (Cco and Cco2 in mg/m3)

SL PH 4 mbar NG

pressure Cco Cco2

1 2.5 235.1 4502.6 2 2.5 232.5 4052.4 3 2.5 229.9 3602.1

Avg.= 232.5 4052.4 STDEV= ± 2.58 450.27 4 3 175.4 5403.2 5 3 170.6 5403.2 6 3 165.7 5403.2

Avg.= 170.6 5403.2 STDEV= ± 4.87 0.00 7 3.5 112.4 5403.2 8 3.5 104.9 5403.2 9 3.5 97.50 5403.2

Avg.= 104.9 5403.2 STDEV= ± 7.46 0.00 10 4 68.82 7204.2 11 4 78.00 6754.0 12 4 87.17 6303.7

Avg.= 78.00 6754.0 STDEV= ± 9.18 450.27 13 4.5 38.42 5403.20 14 4.5 32.98 6303.73 15 4.5 27.53 7204.27

Avg.= 32.98 6303.73 STDEV= ± 5.45 900.53 16 5 10.32 6303.73 17 5 11.76 6303.73 18 5 13.19 6303.73

Avg.= 11.76 6303.73 STDEV= ± 1.43 0.00 19 5.5 5.74 6303.73

6 mbar NG pressure

Cco Cco2 286.75 5403.20 292.49 4502.67 298.22 3602.13 292.49 4502.67

5.74 900.53 164.02 3602.13 164.02 4502.67 164.02 5403.20 164.02 4502.67

0.00 900.53 91.76 4502.67

111.83 4502.67 131.91 4502.67 111.83 4502.67 20.07 0.00 68.82 5403.20 81.44 5403.20 94.05 5403.20 81.44 5403.20 12.62 0.00 41.87 5403.20 41.87 5403.20 41.87 5403.20 41.87 5403.20 0.00 0.00

11.47 4502.67 8.60 4952.93 5.74 5403.20 8.60 4952.93 2.87 450.27 5.74 5403.20

10 mbar NG pressure

Cco Cco2 263.81 3602.13 269.55 3602.13 275.28 3602.13 269.55 3602.13 5.74 0.00

167.46 4502.67 169.76 4052.40 172.05 3602.13 169.76 4052.40 2.29 450.27

137.64 4502.67 131.91 4952.93 126.17 5403.20 131.91 4952.93 5.74 450.27

100.36 5403.20 103.80 5403.20 107.25 5403.20 103.80 5403.20 3.44 0.00

51.62 7204.27 62.23 7204.27 72.84 7204.27 62.23 7204.27 10.61 0.00 30.97 7204.27 29.25 7204.27 27.53 7204.27 29.25 7204.27 1.72 0.00

18.35 7204.27

14 mbar NG pressure

Cco Cco2 502.96 5403.20 430.42 4952.93 357.87 4502.67 430.42 4952.93 72.55 450.27 249.47 5403.20 266.97 4952.93 284.46 4502.67 266.97 4952.93 17.49 450.27 206.46 5403.20 203.02 4952.93 199.58 4502.67 203.02 4952.93 3.44 450.27

135.35 5403.20 130.76 4952.93 126.17 4502.67 130.76 4952.93 4.59 450.27

88.32 5403.20 93.19 4502.67 98.07 3602.13 93.19 4502.67 4.87 900.53

63.09 5403.20 54.77 4952.93 46.45 4502.67 54.77 4952.93 8.32 450.27

16.06 3602.13

18 mbar NG pressure

Cco Cco2 464.54 4502.67 490.92 4952.93 517.30 5403.20 490.92 4952.93 26.38 450.27 266.11 4502.67 266.11 4502.67 266.11 4502.67 266.11 4502.67 0.00 0.00

226.53 4502.67 230.26 4952.93 233.99 5403.20 230.26 4952.93 3.73 450.27

138.21 4142.45 155.71 4772.83 173.20 5403.20 155.71 4772.83 17.49 630.37 166.32 6303.73 163.45 6754.00 160.58 7204.27 163.45 6754.00 2.87 450.27

73.41 5403.20 76.85 5403.20 80.29 5403.20 76.85 5403.20 3.44 0.00

29.82 7204.27

20 mbar NG pressure

Cco Cco2 490.35 3602.13 473.43 4052.40 456.51 4502.67 473.43 4052.40 16.92 450.27 378.51 4502.67 361.88 4952.93 345.25 5403.20 361.88 4952.93 16.63 450.27 338.37 6303.73 314.85 5853.47 291.34 5403.20 314.85 5853.47 23.51 450.27 295.93 7204.27 274.42 7204.27 252.92 7204.27 274.42 7204.27 21.51 0.00 149.11 7204.27 196.14 7204.27 243.17 7204.27 196.14 7204.27 47.03 0.00 91.76 5403.20 97.50 5403.20 103.23 5403.20 97.50 5403.20 5.74 0.00

48.17 6303.73

Appendix F Calculated data sheet for CO and CO2 (mg/m3)

201

20 5.5 5.16 6303.73 21 5.5 4.59 6303.73

Avg.= 5.16 6303.73 STDEV= ± 0.57 0.00 22 6 0.00 6303.73 23 6 0.00 6303.73 24 6 0.00 6303.73

Avg.= 0.00 6303.73 STDEV= ± 0.00 0.00 25 6.5 0.00 6303.73 26 6.5 0.29 6303.73 27 6.5 0.57 6303.73

Avg.= 0.29 6303.73 STDEV= ± 0.29 0.00 28 7 4.59 6303.73 29 7 4.59 6303.73 30 7 4.59 6303.73

Avg.= 4.59 6303.73 STDEV= ± 0.00 0.00 31 7.5 0.00 6303.73 32 7.5 0.00 6303.73 33 7.5 0.00 6303.73

Avg.= 0.00 6303.73 STDEV= ± 0.00 0.00

5.74 5403.20 5.74 5403.20 5.74 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00

13.19 7204.27 8.03 7204.27

13.19 7204.27 5.16 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00

16.06 4502.67 16.06 5403.20 16.06 4502.67 0.00 900.53 4.01 4502.67 4.01 4502.67 4.01 4502.67 4.01 4502.67 0.00 0.00 2.29 5403.20 1.15 5853.47 0.00 6303.73 1.15 5853.47 1.15 450.27 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 3602.13 0.00 1801.07 0.00 3602.13 0.00 1801.07

27.24 7204.27 24.66 7204.27 27.24 7204.27 2.58 0.00 8.60 7204.27 8.32 7204.27 8.03 7204.27 8.32 7204.27 0.29 0.00 1.15 7204.27 0.57 7204.27 0.00 7204.27 0.57 7204.27 0.57 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00

45.88 6754.00 43.59 7204.27 45.88 6754.00 2.29 450.27

14.91 7204.27 15.48 7204.27 16.06 7204.27 15.48 7204.27 0.57 0.00 4.01 7204.27 9.46 7204.27

14.91 7204.27 9.46 7204.27 5.45 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00

Appendix F Calculated data sheet for CO and CO2 (mg/m3)

202

Table F 1.4: Finned pot with Shield (Cco and Cco2 in mg/m3)

SL PH 4 mbar NG

pressure Cco Cco2

1 2.5 317.7 1801.0 2 2.5 307.9 2251.3 3 2.5 298.2 2701.6

Avg.= 307.9 2251.3 STDEV= ± 9.75 450.27 4 3 275.2 2341.3 5 3 283.3 2251.3 6 3 291.3 2161.2

Avg.= 28.31 2251.3 STDEV= ± 8.3 90.05 7 3.5 298.2 2881.7 8 3.5 281.0 2881.7 9 3.5 263.8 2881.7

Avg.= 281.0 2881.7 STDEV= ± 17.21 0.00 10 4 154.8 5403.2 11 4 146.2 5853.4 12 4 137.6 6303.7

Avg.= 146.2 5853.4 STDEV= ± 8.60 450.27 13 4.5 11.47 6483.8 14 4.5 12.62 6844.0 15 4.5 13.76 7204.2

Avg.= 12.62 6844.0 STDEV= ± 1.15 360.21 16 5 1.72 7204.2 17 5 3.44 7204.2 18 5 5.16 7204.2

Avg.= 3.44 7204.2 STDEV= ± 1.72 0.00 19 5.5 1.15 7204.2

6 mbar NG pressure

Cco Cco2 474.8 3602.1 480.0 3602.1 485.1 3602.1 480.0 3602.1 5.16 0.00

435.8 3241.9 424.3 3422.0 412.9 3602.1 424.3 3422.0 11.47 180.11 367.0 3602.1 356.7 3602.1 346.4 3602.1 356.7 3602.1 10.32 0.00 137.6 5403.2 134.7 5403.2 131.9 5403.2 134.7 5403.2 2.87 0.00

17.21 7204.2 14.34 7204.2 11.47 7204.2 14.34 7204.2 2.87 0.00 6.88 7204.2 6.31 7204.2 5.74 7204.2 6.31 7204.2 0.57 0.00 0.00 7204.2

10 mbar NG pressure

Cco Cco2 384.82 2521.49 400.59 2521.49 416.36 2521.49 400.59 2521.49 15.77 0.00 321.16 2881.71 355.57 2791.65 389.98 2701.60 355.57 2791.65 34.41 90.05 332.63 3151.87 321.16 3016.79 309.69 2881.71 321.16 3016.79 11.47 135.08 160.58 4502.67 155.99 4502.67 151.41 4502.67 155.99 4502.67 4.59 0.00

45.88 5403.20 43.01 5403.20 40.15 5403.20 43.01 5403.20 2.87 0.00 0.00 5403.20 1.72 5403.20 3.44 5403.20 1.72 5403.20 1.72 0.00 0.00 4502.67

14 mbar NG pressure

Cco Cco2 481.74 2521.49 487.48 3061.81 493.21 3602.13 487.48 3061.81 5.74 540.32

447.33 3241.92 467.41 3602.13 487.48 3962.35 467.41 3602.13 20.07 360.21 378.51 3151.87 355.57 3196.89 332.63 3241.92 355.57 3196.89 22.94 45.03 68.82 1801.07 71.69 1801.07 74.56 1801.07 71.69 1801.07 2.87 0.00

29.82 1801.07 26.38 2701.60 22.94 3602.13 26.38 2701.60 3.44 900.53 2.29 5403.20 1.72 5403.20 1.15 5403.20 1.72 5403.20 0.57 0.00 1.15 3602.13

18 mbar NG pressure

Cco Cco2 435.86 2701.60 458.80 2701.60 481.74 2701.60 458.80 2701.60 22.94 0.00 344.10 2341.39 338.37 2251.33 332.63 2161.28 338.37 2251.33 5.74 90.05

252.34 3241.92 269.55 2521.49 286.75 1801.07 269.55 2521.49 17.21 720.43 91.76 1981.17 86.03 1891.12 80.29 1801.07 86.03 1891.12 5.74 90.05

51.62 3061.81 43.01 2971.76 34.41 2881.71 43.01 2971.76 8.60 90.05 1.72 5403.20 0.86 5403.20 0.00 5403.20 0.86 5403.20 0.86 0.00 0.00 5403.20

20 mbar NG pressure

Cco Cco2 596.44 3602.13 599.31 3331.97 602.18 3061.81 599.31 3331.97

2.87 270.16 470.27 2701.60 441.60 2701.60 412.92 2701.60 441.60 2701.60 28.68 0.00

309.69 2521.49 303.96 2611.55 298.22 2701.60 303.96 2611.55

5.74 90.05 160.58 3061.81 174.92 3331.97 189.26 3602.13 174.92 3331.97 14.34 270.16 68.82 3602.13 71.69 3602.13 74.56 3602.13 71.69 3602.13

2.87 0.00 5.74 3602.13 5.74 2701.60 5.74 1801.07 5.74 2701.60 0.00 900.53 0.00 5403.20

Appendix F Calculated data sheet for CO and CO2 (mg/m3)

203

20 5.5 2.01 7204.2 21 5.5 2.87 7204.2

Avg.= 2.01 7204.2 STDEV= ± 0.86 0.00 22 6 1.15 7204.2 23 6 1.43 7204.2 24 6 1.72 7204.2

Avg.= 1.43 7204.2 STDEV= ± 0.29 0.00 25 6.5 3.44 7204.2 26 6.5 3.44 7204.2 27 6.5 3.44 7204.2

Avg.= 3.44 7204.2 STDEV= ± 0.00 0.00 28 7 3.44 7204.2 29 7 3.44 7204.2 30 7 3.44 7204.2

Avg.= 3.44 7204.2 STDEV= ± 0.00 0.00 31 7.5 2.29 7204.2 32 7.5 2.29 7204.2 33 7.5 2.29 7204.2

Avg.= 2.29 7204.2 STDEV= ± 0.00 0.00

0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 0.00 0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 0.00 0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 0.00 0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 0.00 0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 7204.2 0.00 0.00

2.29 4052.40 4.59 3602.13 2.29 4052.40 2.29 450.27 0.00 5403.20 2.29 6303.73 4.59 7204.27 2.29 6303.73 2.29 900.53 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 7204.27 0.00 0.00

1.72 4502.67 2.29 5403.20 1.72 4502.67 0.57 900.53 0.00 5403.20 1.15 4952.93 2.29 4502.67 1.15 4952.93 1.15 450.27 5.74 5403.20 5.74 5403.20 5.74 5403.20 5.74 5403.20 0.00 0.00 6.88 5403.20 6.88 5403.20 6.88 5403.20 6.88 5403.20 0.00 0.00 5.16 5403.20 5.16 5403.20 5.16 5403.20 5.16 5403.20 0.00 0.00

0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00

0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 5403.20 0.00 0.00 1.72 5403.20 1.72 5403.20 1.72 5403.20 1.72 5403.20 0.00 0.00 2.87 5403.20 2.87 5403.20 2.87 5403.20 2.87 5403.20 0.00 0.00

Appendix G Calculated data sheet for NG Flow (Liter/min) at STAP

199

Table G 1.1: Calculated data of NG flow rate (Liter/min.) at different NG supplied pressure.

SL Name Avg. Flow rate (L/min) Avg. Temp. (0C) At SATP avg. flow rate

(L/min)

01 Pot Arrangement at 4 mbar 4.72 28.02 4.23

02 Pot Arrangement at 6 mbar 4.84 28.35 4.30

03 Pot Arrangement at 10 mbar 5.03 27.03 4.70

04 Pot Arrangement at 14 mbar 5.52 28.90 4.84

05 Pot Arrangement at 18 mbar 5.63 29.00 4.94

06 Pot Arrangement at 20 mbar 5.80 28.72 5.15