Electron microscopy of octacalcium phosphate in the dental calculus

6
Journal of Electron Microscopy 58(6): 393–398 (2009) doi: 10.1093/jmicro/dfp034 c The Author 2009. Published by Oxford University Press on behalf of Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: [email protected] ......................................................................................................................................................................................................................................................... Biological: Full-length Electron microscopy of octacalcium phosphate in the dental calculus Mitsuo Kakei 1, , Toshiro Sakae 2 and Masayoshi Yoshikawa 3 1 Division of Oral Anatomy, School of Dentistry, Meikai University, Sakado, Saitama 350-0283, 2 Department of Histology, Cell Biology, and Embryology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaechyo-nishi, Matsudo, Chiba 271-8587 and 3 Division of Orthodontics, School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan To whom correspondence should be addressed. E-mail: [email protected] ................................................................................................................................................................................................ Abstract The purpose of this study was to morphologically demonstrate the pres- ence of octacalcium phosphate in the dental calculus by judging from the crystal lattice image and its rapid transformation into apatite crys- tal, as part of our serial studies on biomineral products. We also aimed to confirm whether the physical properties of octacalcium phosphate are identical with those of the central dark lines observed in crystals of or- dinary calcifying hard tissues. Electron micrographs showed that crystals of various sizes form in the dental calculus. The formation of each crystal seemed to be closely associated with the organic substance, possibly orig- inating from degenerated microorganisms at the calcification front. Many crystals had an 8.2- ˚ A lattice interval, similar to that of an apatite crystal. Furthermore, some crystals clearly revealed an 18.7- ˚ A lattice interval and were vulnerable to electron bombardment. After electron beam exposure, this lattice interval was quickly altered to about half (i.e. 8.2 ˚ A), indicating structural conversion. Consequently, a number of apatite crystals in the dental calculus are possibly created by a conversion mechanism involv- ing an octacalcium phosphate intermediate. However, we also concluded that the calcification process in the dental calculus is not similar to that of ordinary calcifying hard tissues. ................................................................................................................................................................................................ Keywords electron microscopy, dental calculus, octacalcium phosphate, OCP- mediated pathway, central dark line, apatite crystals ................................................................................................................................................................................................ Received 10 March 2009, accepted 5 June 2009, online 26 June 2009 ................................................................................................................................................................................................ Introduction Apatite crystals comprise both hydroxyapatite and fluorap- atite crystals, which are typical calcium phosphate minerals widely distributed in both invertebrates and vertebrates. Oc- tacalcium phosphate (OCP) has long been considered a pre- cursor in the formation of more stable apatite forms such as hydroxyapatite and fluorapatite [1,2]; many researchers have supported this theory to date [3–9]. Although X-ray, electron diffraction and Raman spectroscopic analyses have suggested the presence of OCP or an OCP-like mineral in vivo [9–14], very few reports concerning the morphological pres- ence of OCP in biological products are available so far. We therefore aimed to morphologically confirm the presence of OCP in the dental calculus, because OCP is considered to be abundant [10–13,15]. In addition, we have attempted to demonstrate the structural modification of OCP lattice lines by electron microscopy. On the other hand, the existence of central dark line (CDL)-bearing crystals in ordinary hard tissues such as ver- tebrate tooth enamel, dentin and bone, except fish tooth enamel, has already been confirmed through electron mi- croscopic observations [16–25]. Similar CDL-bearing crystals have been observed in the dental calculus [24]. CDLs are thought to be a common characteristic and represented in platy nuclei of the crystals in several hard tissues of verte- brates [23]. However, it hitherto has been considered that a CDL is identical to OCP, and the CDL component consists of a single-unit-cell thickness of OCP embedded in an apatite lattice in mature crystals [3,5]. It has also been stated that the conversion of an OCP lattice line to an apatite crystal at JSEM Organisation on December 23, 2013 http://jmicro.oxfordjournals.org/ Downloaded from

Transcript of Electron microscopy of octacalcium phosphate in the dental calculus

Journal of Electron Microscopy 58(6): 393–398 (2009)doi: 10.1093/jmicro/dfp034

c© The Author 2009. Published by Oxford University Presson behalf of Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: [email protected]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biological: Full-length

Electron microscopy of octacalcium phosphatein the dental calculusMitsuo Kakei1,∗, Toshiro Sakae2 and Masayoshi Yoshikawa3

1Division of Oral Anatomy, School of Dentistry, Meikai University, Sakado, Saitama 350-0283, 2Department ofHistology, Cell Biology, and Embryology, Nihon University School of Dentistry at Matsudo, 2-870-1Sakaechyo-nishi, Matsudo, Chiba 271-8587 and 3Division of Orthodontics, School of Dentistry, MeikaiUniversity, Sakado, Saitama 350-0283, Japan∗To whom correspondence should be addressed. E-mail: [email protected]

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Abstract The purpose of this study was to morphologically demonstrate the pres-ence of octacalcium phosphate in the dental calculus by judging fromthe crystal lattice image and its rapid transformation into apatite crys-tal, as part of our serial studies on biomineral products. We also aimedto confirm whether the physical properties of octacalcium phosphate areidentical with those of the central dark lines observed in crystals of or-dinary calcifying hard tissues. Electron micrographs showed that crystalsof various sizes form in the dental calculus. The formation of each crystalseemed to be closely associated with the organic substance, possibly orig-inating from degenerated microorganisms at the calcification front. Manycrystals had an 8.2-A lattice interval, similar to that of an apatite crystal.Furthermore, some crystals clearly revealed an 18.7-A lattice interval andwere vulnerable to electron bombardment. After electron beam exposure,this lattice interval was quickly altered to about half (i.e. 8.2 A), indicatingstructural conversion. Consequently, a number of apatite crystals in thedental calculus are possibly created by a conversion mechanism involv-ing an octacalcium phosphate intermediate. However, we also concludedthat the calcification process in the dental calculus is not similar to that ofordinary calcifying hard tissues.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Keywords electron microscopy, dental calculus, octacalcium phosphate, OCP-mediated pathway, central dark line, apatite crystals

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Received 10 March 2009, accepted 5 June 2009, online 26 June 2009.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IntroductionApatite crystals comprise both hydroxyapatite and fluorap-atite crystals, which are typical calcium phosphate mineralswidely distributed in both invertebrates and vertebrates. Oc-tacalcium phosphate (OCP) has long been considered a pre-cursor in the formation of more stable apatite forms suchas hydroxyapatite and fluorapatite [1,2]; many researchershave supported this theory to date [3–9]. Although X-ray,electron diffraction and Raman spectroscopic analyses havesuggested the presence of OCP or an OCP-like mineral in vivo[9–14], very few reports concerning the morphological pres-ence of OCP in biological products are available so far. Wetherefore aimed to morphologically confirm the presence ofOCP in the dental calculus, because OCP is considered tobe abundant [10–13,15]. In addition, we have attempted to

demonstrate the structural modification of OCP lattice linesby electron microscopy.

On the other hand, the existence of central dark line(CDL)-bearing crystals in ordinary hard tissues such as ver-tebrate tooth enamel, dentin and bone, except fish toothenamel, has already been confirmed through electron mi-croscopic observations [16–25]. Similar CDL-bearing crystalshave been observed in the dental calculus [24]. CDLs arethought to be a common characteristic and represented inplaty nuclei of the crystals in several hard tissues of verte-brates [23]. However, it hitherto has been considered that aCDL is identical to OCP, and the CDL component consists ofa single-unit-cell thickness of OCP embedded in an apatitelattice in mature crystals [3,5]. It has also been stated thatthe conversion of an OCP lattice line to an apatite crystal

at JSEM

Organisation on D

ecember 23, 2013

http://jmicro.oxfordjournals.org/

Dow

nloaded from

394 J O U R N A L O F E L E C T R O N M I C R O S C O P Y , Vol. 58, No. 6, 2009

occurs on the thermal treatment at ∼150◦C [1,4]; however,CDLs maintain their linear characteristic under such condi-tion [26]. Besides, it is generally accepted that one unit cellof OCP produces two unit cells of apatite by conversion, butwe have not yet observed this phenomenon in CDLs in theircrystals of calcifying hard tissues [21,24,27]. Therefore, wealso attempted to compare the differences in physical prop-erties between CDLs and OCP in order to propose two path-ways for apatite formation.

Materials and methods

Materials

Samples of dental calculus were obtained from patients dur-ing oral prophylaxis. The surface region of the dental calcu-lus samples was dissected with a razor blade.

Transmission electron microscopy

The samples were fixed with 2% glutaraldehyde in a 0.1 Mcacodylate buffer at pH 7.4 for 1 h at 5◦C, post-fixed with 1%osmium tetroxide in the same buffer for 1 h at 5◦C, dehy-drated by passage through a series of ascending ethanol andthen embedded in Araldite 502. Thin sections were obtainedwith a Porter Blum MT2 ultramicrotome (Sorvall USA)equipped with a diamond knife. The sections were floated onwater saturated with crystal minerals to prevent crystal dis-solution. After double staining some sections with saturateduranyl acetate and lead citrate, and leaving others unstained,the sections were examined under a JEM 100CX electronmicroscope (JEOL, Tokyo, Japan) at an accelerating voltageof 80 kV.

ResultsAt the calcification front of the dental calculus, microor-ganisms involved in the calcification process usually weredensely packed with crystals, although some had emptyspaces or were filled with cellular debris (Fig. 1a). At a rel-atively high magnification, the cellular debris was clearlythe result of microorganismal degeneration and death at thecalcification front (Fig. 1b). An electron micrograph of cal-culus in stained sections revealed that the initial crystalscomprised two thin electron-dense organic layers with anelectron-lucent inner zone (Fig. 1c). Unstained images ofsimilar structures showed no organic layers; instead, mod-erately electron-dense fuzzy images, representing mineralzones, were observed (Fig. 1d).

Cellular components or debris of the degenerated mi-croorganisms seemed to contribute to the formation of thethin organic layers (Fig. 1c). These layers were presumably—tentatively called ‘the organic envelope’—formed beforecrystal development (Fig. 2a). Figure 2a and b clearly showsthat each crystal in the mineral zone is formed within an or-ganic envelope. The electron micrographs also demonstrated

the presence of two types of apatite crystals (in terms ofcrystal size) adjacent to and within microorganisms: a long-thin-type and a bone-like-type crystal (Fig. 1a). The extra-cellular space between microorganisms was densely filledwith the bulk of bone-like crystals, although these crys-tals were predominantly observed within degenerated mi-croorganisms (Fig. 1a). The long-thin crystals seemed to beformed frequently in the extracellular space rather than inthe degenerated microorganisms (Fig. 1a). The width of thelong-thin crystals varied from a few nm to many nanome-ters; these crystals were scattered randomly (Fig. 1a).Although the ultrastructural observations often showedcrystals with an 8.2-A lattice interval, similar to an apatitecrystal, some crystals had an 18.7-A lattice interval, coin-ciding with that of OCP and often coexisting with apatite(Fig. 2c). Figure 3a shows that the upper half of a crys-tal has an OCP image whereas the lower half of the samecrystal has an apatite crystal image, judging from the 8.2-Alattice interval. The subtle dislocation-like border was alsoobserved at the junction between OCP and apatite linearimages (Fig. 3a). Furthermore, the OCP lattice lines weresomewhat thicker than those of the apatite crystal. An evennumber of apatite lattice lines were sandwiched with OCPlattice lines, 6 in Fig. 2c and 26 in Fig. 3b. At higher mag-nification, as Fig. 3b shows, a single lattice line on the left-side edge divided, resulting in two lattice lines. Besides, thephysical properties of OCP lattice lines (shown in Fig. 4a)were vulnerable to electron bombardment, causing the sub-sequent partial alteration of their lattice interval to 8.2 A,about half of the original value (Fig. 4b), during the electronmicroscopic observation.

DiscussionAccording to the previous reports, the dental calculus con-sists of apatite crystals of different sizes and other types ofcrystals such as brushite and whitlokite [11,28,29]. In thisstudy, we measured the lattice interval of minerals to de-termine whether they contain OCP. Electron micrographsrevealed that the crystal lattice seemed to develop from theelectron-lucent inner zone enveloped with thin organic lay-ers, the so-called organic envelope at the initial stage of crys-tal development (Fig. 2a and b). An electron-lucent zone isthought to be a mineral-rich portion and the site of crys-tal development, based on transmission electron microscopicobservations made so far [21–23,27]. This kind of organicenvelope structure is thought to be a prerequisite for tem-plate construction in mineral accumulation and/or facilitat-ing crystal growth because each crystal formed was recog-nized within the organic envelope in several calcifying hardtissues [21–23,27]. Therefore, the organic envelope possiblyplays a decisive role in crystal formation from the nucle-ation process to the maturation, although the detailed func-tion still needs further elucidation. During the process of mi-croorganismal calcification, the resultant cellular debris mayplay a role in serving as a resource of the organic envelope

at JSEM

Organisation on D

ecember 23, 2013

http://jmicro.oxfordjournals.org/

Dow

nloaded from

M. Kakei et al. Octacalcium phosphate in the dental calculus 395

Fig. 1. Electron micrographs of the calcification front in the dental calculus. (a) The long-thin-type (L) and bone-like-type (B) crystalscan be observed in this calcifying region. (b) The microorganisms tended to degenerate and die before the calcification. (c) The organicsubstance related to cellular debris, possibly originating from degenerated microorganisms, seems to contribute to the formation of theenvelope structures (arrows). (d) The unstained section shows moderately electron-dense mineral plates (arrows) without organic layers.(a–c) Double-stained sections; scale bars = 1 μm (a), 5 μm (b) and 10 nm (c and d).

structure, different from those of ordinary calcifying hardtissues. Regarding OCP in biomineral products, it had beendifficult to morphologically confirm the presence of OCP sofar because of its sensitivity. However, based on the latticeinterval, we could morphologically confirm the presence ofOCP among crystals in the dental calculus. The OCP crys-tals had somewhat thicker lattice lines than those of ap-atite crystals. Besides, the crystal features in Figs. 2c and3b resemble a schematic of the stepwise hydrolysis mech-anism [30]. In Fig. 3b, a thick linear characteristic of OCPof left-side edge was found to divide into two lattice lines,which may provide the morphological evidence that theOCP structure is layered and consists of two apatite lay-ers [1]. Furthermore, the apatite lattice lines sandwichedwith OCP lattice lines seemed to increase with even num-bers (Figs. 2b, 3a and c), suggesting that a single unit cell ofOCP produces two unit cells of apatite by hydrolysis [1]. Asfar as we know, these findings have not yet been observed

morphologically in biomineral products. Besides, we haveclearly demonstrated morphologically the crystallographicconversion of biologically induced OCP to the apatiteform (Fig. 4). Although only partial conversion oc-curred, our study has definitely confirmed the phe-nomenon of OCP transformation to apatite crystals via TEMobservation.

Concerning the relationship between CDLs and OCP,many researchers have postulated that OCP might be a can-didate constituent of CDLs [1–9]. However, it should be em-phasized that both the division and conversion of OCP havenot been observed in CDLs in previous observations; instead,the CDL constituent is converted into a lattice line of ap-atite after electron beam exposure [21,22,27]. Furthermore,the thermal properties of CDLs are reportedly different fromthose of OCP, providing crucial evidence that the constituentof CDLs in apatite crystals is more thermally stable than OCP[26]. The fossil studies have provided evidence that the CDLs

at JSEM

Organisation on D

ecember 23, 2013

http://jmicro.oxfordjournals.org/

Dow

nloaded from

396 J O U R N A L O F E L E C T R O N M I C R O S C O P Y , Vol. 58, No. 6, 2009

Fig. 2. Linear images (100) of an apatite crystal and OCP crystal. (a and b) Apatite lattice lines are sandwiched between two thin organiclayers (arrows). (c) OCP adhered to apatite crystals (HA) can be clearly seen. The OCP lattice lines are relatively thicker than those of apatite.(a and b) Double-stained sections, (c) unstained section; scale bars = 10 nm (a–c).

Fig. 3. Electron micrographs of the lattice lines (100) of OCP and apatite crystals. (a) The upper half of the crystal shows the OCP lattice lineswhereas the lower half of the same crystal shows the apatite ones (HA). (b) The OCP lattice line of the left-side edge (large arrow) seemsto divide into two lattice lines (small arrows). The bold arrow indicates the division point. Unstained sections; scale bars = 10 nm (a and b).Inset: enlarged view of the portion of division. Scale bar = 2.5 nm.

in apatite crystals are maintained crystallographically stablefor more than several hundred million years [25,30]. There-fore, it still remains unclear whether OCP is a constituent ofCDLs.

Regarding the mechanism of apatite formation, CDLsin their crystals have been actually observed in several

calcifying tissues and some in the dental calculus [16–25],but crystals without CDLs have been found in some hardtissues such as fish tooth enamel and pathologically inducedapatite crystals [31–36]. Consequently, it is plausible to con-sider that two different types in apatite formation exist inthe biological products—one with CDLs at the center and

at JSEM

Organisation on D

ecember 23, 2013

http://jmicro.oxfordjournals.org/

Dow

nloaded from

M. Kakei et al. Octacalcium phosphate in the dental calculus 397

Fig. 4. Conversion of the OCP lattice lines (100) into the apatite form after electron beam exposure. (a) Rapidly focused and photographed,OCP lattice lines are shown. (b) After several seconds of exposure to the electron beam, the OCP lattice lines converted to those of apatite(arrows). Unstained sections; scale bar = 10 nm.

the other without CDLs—possibly reflecting different mech-anisms of apatite formation.

Conclusion remarksWe have morphologically demonstrated the presence of OCPminerals in the dental calculus and the conversion of OCPlinear images into apatite form. We also concluded that thecalcification process in the dental calculus is not similar tothat of ordinary calcifying hard tissues.

FundingFrontier Science Projects to Laboratory for Electron BeamResearch and Application (LEBRA) at Nihon University;Ministry of Education, Science, Sports and Culture of Japan(2000–2004, 2005–2007).

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Brown W E, Smith J P, Lehr J R, and Frazier A W (1962) Octacalciumphosphate and hydroxyapatite. Nature 196: 1048–1055.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Brown W E, Eidelman N, and Tomazic B (1987) Octacalcium phos-phate as a precursor in biomineral formation. Adv. Dent. Res. 1: 306–313.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Nelson D G A, Wood G J, and Barry J C (1986) The structure of (100)defects in carbonated apatite crystallites: a high resolution electronmicroscope study. Ultramicroscopy 19: 253–266.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Bigi A, Cojazzi G, Gazzano M, Ripamonti A, and Roveri N (1990)Thermal conversion of octacalcium phosphate into hydroxyapatite.J. Inorg. Biochem. 40: 293–299.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Iijima M, Tohda H, Suzuki H, Yanagisawa T, and Moriwaki Y (1992)Effects of F on apatite-octacalcium phosphate intergrowth and crys-tal morphology in a model system of tooth enamel formation. Calcif.Tissue Int. 50: 357–361.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Miyake Y, Shimoda S, Fukae M, and Aoba T (1993) Epitaxial over-growth of apatite crystals on the thin-ribbon precursor at early

at JSEM

Organisation on D

ecember 23, 2013

http://jmicro.oxfordjournals.org/

Dow

nloaded from

398 J O U R N A L O F E L E C T R O N M I C R O S C O P Y , Vol. 58, No. 6, 2009

stages of porcine enamel mineralization. Calcif. Tissue Int. 53: 249–256.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Houlle P, Steuer P, Voegel J C, and Cuisinier F J G (1998) First ex-perimental evidence for human dentine crystal formation involvingconversion of octacalcium phosphate to hydroxyapatite. Acta Crysa-tallogr. D Biol. Crystallogr. 54: 1377–1381.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Weiner S (2006) Transient precursor strategy in mineral formationon bone. Bone 39: 431–433.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Crane N J, Popescu V, Morris M D, Steenhuis P, and Ignelzi M AJr (2006) Raman spectroscopic evidence for octacalcium phosphateand other transient mineral species deposited during intramembra-nous mineralization. Bone 39: 434–442.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Grøn P, Campen J, and Lindstron I (1967) Human dental calculusinorganic, chemical and crystallographic composition. Arch. Oral Biol.12: 829–837.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 LeGeros R Z (1974) Variations in the crystalline components of hu-man dental calculus. 1: Crystallographic and spectroscopic methodsof analysis. J. Dent. Res. 53: 45–50.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Saxton C A (1968) Identification of octacalcium phosphate in hu-man dental calculus by electron diffraction. Arch. Oral Biol. 13: 243–246.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 Kani T, Kani M, Moriwaki Y, and Doi Y (1983) Microbeam x-raydiffraction analysis of dental calculus. J. Dent. Res. 62: 93–95.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Sundberg M, and Friskopp J (1985) Crystallography of supragingivaland subgingival human dental calculus. Scand. J. Dent. Res. 93: 30–38.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 Driessens F C M, and Verbeeck R M H (1989) Possible pathwaysof mineralization of dental plaque. In: Ten Cate J M (ed.), RecentAdvances in the Study of Dental Calculus, pp. 7–17 (IRL Press, Oxford).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 Ronnholm E (1962) The amelogenesis of human teeth as revealed byelectron microscopy: II. The development of the enamel crystallites.J. Ultrastruct. Res. 6: 249–303.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17 Nylen U M, Evans E D, and Omnell K A (1963) Crystal growth in ratenamel. J. Cell Biol. 18: 109–123.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18 Frazier P D (1968) Adult human enamel: an electron microscopicstudy of crystallite size and morphology. J. Ultrastruct. Res. 22: 1–11.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19 Marshall A F, and Lawless K P (1981) TEM study of the central darkline in enamel crystallites. J. Dent. Res. 60: 1773–1782.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Nakahara H (1982) Electron microscopic studies of the lattice im-age and central dark line of crystallites in sound and carious humandentin. Josai Shika Daigaku Kiyo 11: 209–215.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21 Nakahara H, and Kakei M (1983) The central dark line in developingenamel crystallite: an electron microscopic study. Josai Shika DaigakuKiyo 12: 1–7.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22 Nakahara H, and Kakei M (1984) TEM observations on the crystal-lites of dentin and bone. Josai Shika Daigaku Kiyo 13: 259–263.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23 Nakahara H, and Kakei M (1989) Ultrastructural and protein aspectsof apatite formation in vertebrate hard tissues. In: Crick R E (ed.),Origin, Evolution, and Modern Aspects of Biomineralization in Plants andAnimals, pp. 225–235 (Plenum, New York).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24 Kakei M, Nakahara H, Kumegawa M, Yoshikawa M, and Kunii S(2000) Demonstration of the central dark line in crystals of dentalcalculus. Biochim. Biophys. Acta 1524: 189–195.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 Kakei M, Nakahara H, Kumegawa M, Mishima H, and Kozawa Y(2001) High-resolution electron microscopy of the crystallites of fos-sil enamels obtained from various geological ages. J. Dent. Res. 80:1560–1564.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26 Kakei M, Sakae T, Yoshikawa M, and Tamura N (2005) Physicalproperties of the central dark lines in biological apatite of vertebratecalcified tissues and synthetic octacalcium phosphate. J. Fossil Res. 38:43–48.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27 Kakei M, Nakahara H, Tamura N, Itoh H, and Kumegawa M (1997)Behavior of carbonate and magnesium ions in the initial crystallitesat the early developmental stages of the rat calvaria. Ann. Anat. 179:311–316.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28 Gonzales F, and Sognnaes R F (1960) Electronmicroscopy of dentalcalculus. Science 131: 156–158.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29 Sakae T, Yamamoto H, Mishima H, Matsumoto T, and KozawaY (1989) Morphology and chemical composition of dental calculimainly composed of whitlokite. Scanning Microsc. 3: 855–860.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 Nelson D G A, Barry J C, Shields C P, Glena R, and Featherstone J DB (1989) Crystal morphology, composition, and dissolution behaviorof carbonated apatite prepared at controlled pH and temperature. J.Colloid Interface Sci. 130: 467–479.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31 Kakei M, Nakahara H, Kumegawa M, Mishima H, and Kozawa Y(2003) Ultrastructural study on the lattice images of calcium phos-phate minerals in fossil tooth. In: Kobayashi I and Ozawa H (eds),Biomineralization (BIOM2001): Formation, Diversity, Evolution and Appli-cation, pp. 364–368 (Tokai University Press, Kanagawa, Japan).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32 Daculsi G, and Kerbel L M (1980) Ultrastructural study and com-parative analysis of fluoride content of enameloid in sea-water andfresh water sharks. Arch. Oral Biol. 25: 145–151.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33 Santos M, and Gonzalez-Dıaz P F (1980) Ultrastructural study of ap-atites in human urinary calculi. Calcif. Tissue Int. 31: 93–108.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34 Miake Y, Aoba T, Moreno E C, Shimoda S, Prostak K, and Suga S(1991) Ultrastructural studies on crystal growth of enameloid min-erals in elasmobranch and teleost fish. Calcif. Tissue Int. 48: 204–217.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35 Tohda H, Yamakura K, and Yanagisawa T (1995) High-resolutionmicroscopic study of salivary calculus. J. Electron Microsc. 44: 399–404.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36 Barry J C, and Kemp A (2007) High resolution transmission electronmicroscopy of developing enamel in the Australian lungfish, Neocer-atodus forsteri (Osteichthyes: Diponi). Tissue Cell 39: 387–398.

at JSEM

Organisation on D

ecember 23, 2013

http://jmicro.oxfordjournals.org/

Dow

nloaded from