Effects of diet mixing on the absorption of ingested organic carbon in marine copepods

18
Influence of algal food quality on copepod ingestion and gut absorption efficiency (AE) Peter Thor, Dept. of Marine Ecology, Göteborg University, Kristineberg Marine Research Station, Sweden Marja Koski, Dept. of Marine Ecology, Danish Institute for Fisheries Research Kam W. Tang, Virginia Institute for Marine Sciences Sigrún H. Jónasdóttir, Dept. of Marine Ecology, Danish Institute for Fisheries Research

Transcript of Effects of diet mixing on the absorption of ingested organic carbon in marine copepods

Influence of algal food quality on copepod ingestion and gut absorption efficiency (AE)

Peter Thor, Dept. of Marine Ecology, Göteborg University, Kristineberg Marine Research Station, Sweden

Marja Koski, Dept. of Marine Ecology, Danish Institute for Fisheries Research

Kam W. Tang, Virginia Institute for Marine Sciences

Sigrún H. Jónasdóttir, Dept. of Marine Ecology, Danish Institute for Fisheries Research

: Low EPR in Acartia tonsa possibly due to unfavourable fatty acid composition (Støttrup and Jensen 1990)

: Incomplete larval development, low somatic growth rates, and low EPR in Pseudocalanus elongatus (Koski et al. 1998)

: Low EPR and egg production efficiency close to zero in Acartia tonsa (Tang et al. 2001)

algal food quality

Dunaliella tertiolecta

Amphidinium carterae

Phaeocystis globosa

Inge

stio

n, µ

gC µ

gC-1

d-1

0.0

0.2

0.4

0.6 Dun = Dunaliella tertiolecta Amp = Amphidinium carterae Pha = Phaeocystis globosa

**

Inge

stio

n, µ

gC µ

gC-1

d-1

0.0

0.2

0.4

0.6

EP

R, µ

gC µ

gC-1

d-1

0.0

0.1

0.2

0.3

Dun = Dunaliella tertiolecta Amp = Amphidinium carterae Pha = Phaeocystis globosa

**

*** ***

GG

E, %

0.0

20

40

60

Dun = Dunaliella tertiolecta Amp = Amphidinium carterae Pha = Phaeocystis globosa

igGGE =

)( erag −−= iraGGE −

=

Increased GGEs or egg production rates are caused either by lower respiration rates, higher absorption rates, or a combination of these, at any given ingestion rate.

Algal concentration, µgC l-1

0 100 200 300 400 500 600

0

1

2

3

4 T. impellucida (high EPR) D. tertiolecta (low EPR)

Respiration

Thor et al. 2000

AE, %

0

20

40

60

80

100

All *** Dun = Dunaliella tertiolecta Amp = Amphidinium carterae Pha = Phaeocystis globosa

0

20

40

60

80

100

Abs

orpt

ion

rate

, d-1

0.0

0.1

0.2

0.3

Dun = Dunaliella tertiolecta Amp = Amphidinium carterae Pha = Phaeocystis globosa All ***

AE, %

Phaeocystis globosa

14:0

14

:1n5

15

:0

16:0

16

:1n1

3 16

:1n7

16

:1n9

16

:2n4

16

:3n4

16

:4n1

16

:4n3

17

:0

17:1

n7

18:0

18

:1n7

18

:1n9

18

:2n4

18

:2n6

18

:3n3

18

:3n4

18

:3n6

18

:4n3

18

:5n3

20

:0

20:1

n9

20:5

n3

22:6

n3

24:0

0

10

20

Amphidinium carterae

perc

ent

0

10

20

Dunaliella tertiolecta

0

10

20

30

Correlations of fatty acid ingestion rates to EPR

r 18:3n3 16:4n3 20:5n3 16:1n7 18:3n6 18:0 14:0 20:0 16:1n13 18:5n3 22:6n3

EPR 0.838 0.821 0.128 0.314 0.847 0.448 0.247 0.392 0.907 0.093 0.021

r 18:3n3 16:4n3 20:5n3 16:1n7 18:3n6 18:0 14:0 20:0 16:1n13 18:5n3 22:6n3

EPR 0.838 0.821 0.128 0.314 0.847 0.448 0.247 0.392 0.907 0.093 0.021

18:3n3 1.000 0.989 -0.255 0.403 0.997 0.146 0.343 0.601 0.957 -0.299 -0.472

16:4n3 1.000 -0.304 0.268 0.996 0.065 0.207 0.495 0.937 -0.325 -0.446

20:5n3 1.000 0.024 -0.239 0.898 -0.002 -0.293 0.035 0.986 -0.088

16:1n7 1.000 0.331 0.373 0.997 0.935 0.385 -0.143 -0.337

18:3n6 1.000 0.144 0.268 0.534 0.961 -0.271 0.6446

18:0 1.000 0.330 0.111 0.410 0.832 -0.358

14:0 1.000 0.928 0.315 -0.170 -0.308

20:0 1.000 0.500 -0.442 0.9481

16:1n13 1.000 -0.009 -0.688

18:5n3 1.000 0.881

Correlations of fatty acid ingestion rates

Intercorrelation: 18:3n3 ~ 16:4n3 ~ 18:3n6 ~ 16:1n13 22:6n3 ~ 20:5n3 ~ 18:5n3 ~ 18:0 16:1n7 ~ 14:0 ~ 20:0

Phaeocystis globosa

14:0

14

:1n5

15

:0

16:0

16

:1n1

3 16

:1n7

16

:1n9

16

:2n4

16

:3n4

16

:4n1

16

:4n3

17

:0

17:1

n7

18:0

18

:1n7

18

:1n9

18

:2n4

18

:2n6

18

:3n3

18

:3n4

18

:3n6

18

:4n3

18

:5n3

20

:0

20:1

n9

20:5

n3

22:6

n3

24:0

0

10

20

Amphidinium carterae

perc

ent

0

10

20

Dunaliella tertiolecta

0

10

20

30

18:3n3

22:6n3

16:1n7

0 0.01 0.02 0.03 0.04 0.0

0.1

0.2

0.3

0.4

0.5

0.6

EPR vs. amount of fatty acids ingested

Fatty acid ingested, µgFA ind-1 d-1

EP

R, µ

gC in

d-1 d

-1

18:3n3

r 2 =0.704

0 0.01 0.02 0.03

22:6n3

r 2 =0.016

0 0.01 0.02 0.03

16:1n7

Fatty acid ingested, µgFA ind-1 d-1

r2=0.099

Intercorrelation: 18:3n3 ~ 16:4n3 ~ 18:3n6 ~ 16:1n13 22:6n3 ~ 20:5n3 ~ 18:5n3 ~ 18:0 16:1n7 ~ 14:0 ~ 20:0

18:3n3

22:6n3

16:1n7

-0.255 0.024

0.403 EPR

U

0.968

0.377

-0.086

0.408

Ingested fatty acids

R2=0.833

Path analysis

Intercorrelation: 18:3n3 ~ 16:4n3 ~ 18:3n6 ~ 16:1n13 22:6n3 ~ 20:5n3 ~ 18:5n3 ~ 18:0 16:1n7 ~ 14:0 ~ 20:0

Phaeocystis globosa

14:0

14

:1n5

15

:0

16:0

16

:1n1

3 16

:1n7

16

:1n9

16

:2n4

16

:3n4

16

:4n1

16

:4n3

17

:0

17:1

n7

18:0

18

:1n7

18

:1n9

18

:2n4

18

:2n6

18

:3n3

18

:3n4

18

:3n6

18

:4n3

18

:5n3

20

:0

20:1

n9

20:5

n3

22:6

n3

24:0

0

10

20

Amphidinium carterae

perc

ent

0

10

20

Dunaliella tertiolecta

0

10

20

30

18:3n3

22:6n3

EPR vs. amount of fatty acids absorbed

18:3n3

r 2 =0.865

Fatty acid absorbed, µgFA ind-1 d-1

0 0.01 0.02 0.0

0.1

0.2

0.3

0.4

0.5

0.6

EP

R, µ

gC in

d-1 d

-1

22:6n3

r 2 =0.057

0 0.01

Fatty acid absorbed, µgFA ind-1 d-1

0 0.01

r 2 =0.062

16:1n7

Intercorrelation: 18:3n3 ~ 16:4n3 ~ 18:3n6 ~ 16:1n13 22:6n3 ~ 20:5n3 ~ 18:5n3 ~ 18:0 16:1n7 ~ 14:0 ~ 20:0

18:3n3

22:6n3

16:1n7

-0.255 0.024

0.403 EPR

U

0.968

0.377

-0.086

0.408

18:3n3

22:6n3

16:1n7

-0.111 0.039

0.116 EPR

U

0.949

0.256

0.194

0.062

Ingested fatty acids Absorbed fatty acids

R2=0.996 R2=0.833

Path analysis

Intercorrelation: 18:3n3 ~ 16:4n3 ~ 18:3n6 ~ 16:1n13 22:6n3 ~ 20:5n3 ~ 18:5n3 ~ 18:0 16:1n7 ~ 14:0 ~ 20:0

Conclusions

• Copepods can obtain optimal algal diets by mixing • Mixing increases carbon AE • Increased AE induces increased EPR • EPR varies significantly with 18:3n3 ingestion • Diet induced variations in EPR can by fully explained by

variations in absorption of the 18:3n3, 22:6n3, and 16:1n7 fatty acid groups