document de travail - International Nuclear Information System ...

295
Accès à l’électricité en Afrique subsaharienne : retours d’expérience et approches innovantes Anjali Shanker (IED) avec les contributions de Patrick Clément (Axenne), Daniel Tapin et Martin Buchsenschutz (Nodalis Conseil) Contact : Valérie Reboud, département Technique opérationnel, division Environnement et Equipement ([email protected]) 122 Agence Française de Développement Direction de la Stratégie Département de la Recherche 5 rue Roland Barthes 75012 Paris - France www.afd.fr Département de la Recherche document de travail Agence Française de Développement Avril 2012

Transcript of document de travail - International Nuclear Information System ...

Accès à l’électricité en Afrique subsaharienne :

retours d’expérience et approches innovantes

Anjali Shanker (IED) avec les contributions de Patrick Clément (Axenne), DanielTapin et Martin Buchsenschutz (Nodalis Conseil)

Contact : Valérie Reboud, département Technique opérationnel, divisionEnvironnement et Equipement ([email protected])

Age

nce

Fra

nçai

se d

e D

ével

oppe

men

t

122

Age

nce

Fra

nçai

se d

e D

ével

oppe

men

t

Agence Française de Développement

Direction de la Stratégie

Département de la Recherche

5 rue Roland Barthes

75012 Paris - France

www.afd.fr

Département de la Recherche

documentde travail

Age

nce

Fra

nçai

se d

e D

ével

oppe

men

t

Avril 2012

Mise en page : Eric Thauvin

Directeur de la publication : Dov ZERAH

Directeur de la rédaction : Robert PECCOUD

ISSN : 1958-539X

Dépôt légal : 2ème trimestre 2012.

Avertissement

Les analyses et conclusions de ce document sont formulées sous la responsabilité de son auteur. Elles ne reflètent pas néces-

sairement le point de vue de l’AFD ou des institutions partenaires.

Remerciements

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

3

La présente étude a été réalisée pour l’Agence Française de Développement (AFD) par le consortium Innovation énergie

développement (IED), Axenne et Nodalis Conseil.

Ce document a été rédigé par Anjali Shanker, directrice générale déléguée (IED) avec les contributions de Patrick Clément

(Axenne), Daniel Tapin et Martin Buchsenschutz (Nodalis Conseil). Le rédacteur tient à remercier tous ceux qui ont contribué

à ce travail, et en particulier Valérie Reboud, Christian de Gromard, Laurence Breton-Moyet et Carl Bernadac (AFD), ainsi que

Denis Rambaud-Méasson (IED).

Un comité de pilotage s’est réuni à plusieurs reprises ; ses apports, lors de séances de travail, ont permis d’élaborer la

substance de ce texte. Nous tenons donc à remercier tous les membres pour leurs précieuses contributions : l’Agence de

l’environnement et de la maîtrise de l’énergie (ADEME), Electricité de France (EDF), Electriciens sans frontières (ESF), l’Ecole

nationale des ponts et chaussées, la fondation Energie pour le monde, et Total énergies renouvelables.

Sommaire

Résumé exécutif 7

Introduction 17

1 L’accès aux services électriques en Afrique subsaharienne : enjeux et approche methodologique 21

1.1 Des infrastructures et des systèmes électriques insuffisants pour sous tendre un développement

économique et social durable : les défis à relever 21

1.2 Systématiser une vision et une planification opérationnelle globale : l’accès pour quoi faire, et avec quels moyens ? 27

1.3 Analyse et enseignements des impacts des programmes passés 29

1.4 Des dynamiques d’accès impactées par les réformes sectorielles 34

1.5 Etablir des prérogatives claires pour chacun des acteurs 37

2 Un continuum de solutions technico-économiques et organisationnelles 45

2.1 Cadrage technico-économique 45

2.2 Des solutions techniques complémentaires au réseau interconnecté 53

2.3 Distribution et gestion clientèle : des marges de manœuvre importantes 67

3 Un besoin de financements structurés 77

3.1 Pour généraliser l’accès aux services électriques, des montants de financement requis au-delàdes ordres de grandeur des flux de la coopération internationale 77

3.2 Principes historiques 79

3.3 Quelques clés pour fixer les niveaux tarifaires 81

3.4 Mettre en place les mécanismes de financement nécessaires pour garantir l’accès à un service 85électrique pour tous

Bibliographie 93

Liste des sigles et abréviations 97

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

5

Cette étude a été réalisée dans l’objectif de développer de

nouvelles approches et une capitalisation méthodologique

sur la thématique de l’accès pour tous aux services

électriques en Afrique subsaharienne.

La première partie de cette étude est consacrée à une

analyse des enjeux : le faible niveau de taux d’accès en

Afrique subsaharienne doit être mis en perspective avec la

nécessité de concevoir l’équipement et l’aménagement des

territoires en tenant compte des dynamiques de

développements économique et social, ainsi que des

impacts des programmes et des réformes sectorielles

entrepris dans le passé.

La deuxième partie se focalise sur des propositions

opérationnelles basées sur une revue des différentes

options techniques de production – notamment en matière

d’énergies renouvelables – dont les récentes évolutions

présentent, certes, un fort potentiel mais également des

difficultés. L’enjeu essentiel que représente la distribution

est également abordé dans ses multiples dimensions.

La troisième et dernière section porte sur les enjeux

financiers : mobiliser des financements nationaux, reflet

d’un engagement politique fort, est une nécessité ; faire le

meilleur usage possible des rares dons disponibles, un

enjeu majeur. L’analyse fine de la perception des risques

de projet et de la qualité des porteurs permet d’apporter un

éclairage sur des orientations possibles d’une ingénierie

financière à fort impact.

Résumé exécutif

1 Les enjeux de l’accès à une énergie moderne en Afrique subsaharienne

1.1 Des systèmes électriques insuffisants pour sous-tendre un développement

économique et social durable

Actuellement, le taux moyen d’accès à un service

électrique1 dans les pays d’Afrique subsaharienne2 est de

16 % des foyers au total, et moins de 5 % en zones rurales.

Depuis les années 1990, si le pourcentage a favorablement

évolué, le nombre de personnes n’ayant pas accès à l’élec-

tricité a quant à lui augmenté, en raison de la croissance

démographique.

Ainsi l’infrastructure électrique, n’atteint généralement que

moins de 20 % des localités, et ne permet donc pas de sou-

tenir un développement économique et social durable des

usages productifs (irrigation pour l’agriculture, réfrigération,

force motrice, etc.) ni des services sociaux de base (dis-

pensaires) sur l’ensemble du territoire.

La question démographique et migratoire rend cet enjeu de

l’accès à l’énergie moderne d’autant plus complexe que les

populations vivant dans des petites localités isolées et coû-

teuses à électrifier, vont tendre à s’établir dans des villes

secondaires, dotées d’infrastructures économiques et

sociales.

1 Par population ayant accès à l’électricité, on entend généralement, dans les statistiques, lespopulations ayant dans leur maison un accès à l’électricité vendue commercialement. Dansune définition plus élargie, un service par recharge de batteries ou kits solaires peut éventuel-lement être considéré comme un accès au service électrique.

2 Cette étude porte sur l’accès à l’électricité dans les pays d’Afrique subsaharienne. Les paysd’Afrique du Nord – Algérie, Egypte, Libye, Maroc et Tunisie – ne sont pas pris en comptedans les chiffres présentés.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

7

La rentabilité potentielle d’un programme d’accès aux

services oblige à distinguer un programme d’accès visant à

équiper un territoire donné d’une infrastructure essentielle

au développement économique de la zone (où l’on trouverait

donc des centres secondaires à « potentiel économique »)

de la fourniture d’un service généralisé à l’ensemble des

habitants d’une zone, et en particulier aux plus pauvres (qui

peuvent correspondre à des populations périurbaines, à 40

voire 60 % des ménages des localités même importantes

d’un pays), ou aux populations vivant dans des petits

villages ou habitations très isolées.

Ces deux approches se basent sur deux motivations

distinctes, à savoir : une volonté de développement écono-

mique et d’aménagement du territoire pour la première ; un

objectif social, d’équité et d’équilibre géographique pour la

seconde (qui présente un coût élevé).

Se focaliser sur les « pôles de développement » en vue

d’aménager le territoire et de doter les populations d’une

infrastructure de base permet une certaine rentabilité du

service électrique grâce à la fois à la présence d’activités

économiques ainsi qu’à un certain niveau de densité de

population.

Ces villes moyennes doivent donc être considérées comme

prioritaires afin qu’elles puissent devenir de véritables

« pôles de développement » et en vue de maximiser l’im-

pact des rares ressources disponibles pour l’électrification

rurale.

Pour cela, il importe que l’aménagement du territoire s’ac-

compagne d’une vision politique claire des objectifs

(sociaux, économiques) et d’un engagement politique en

matière d’allocation des ressources.

La réponse à la question « l’accès pour quoi faire, et avec

quels moyens ? » ne doit pas pour autant en rester au plan

politique, mais conduire à une priorisation et à la déclinai-

son de plans d’actions opérationnels et réalistes, tenant

compte des réalités financières, organisationnelles et

technologiques du pays.

1.2 Le rôle clé des « pôles de développement »

1.3 Un bénéfice économique réel pour les populations

Les analyses rétrospectives ne sont que peu nombreuses,

mais un certain nombre d’idées phares en ressortent :

• les populations non raccordées au réseau paient – à utili-

sation équivalente d’électricité fournie à partir du kérosène,

de piles et batteries rechargeables – un prix de l’énergie qui

représente plusieurs fois celui des populations raccordées,

atteignant souvent 10 USD par mois. Il existe donc une

réelle capacité à payer le service électrique ;

• le coût de raccordement s’élève souvent à des montants

rédhibitoires de 100 à 300 USD, difficiles à mobiliser en une

seule fois ;

• avec le raccordement, on observe généralement un mon-

tant de dépenses constant, et donc de la consommation,

pour des prix unitaires plus faibles ; ceci est à la fois un

avantage et un frein : c’est un avantage certain pour le petit

commerce et l’artisanat, préalablement utilisateurs d’électri-

cité et donc équipés, mais le coût d’acquisition des équipe-

ments d’usages pour les nouveaux clients demeure un frein

aux consommations ;

• l’accès à l’énergie a des impacts sociaux et économiques

significatifs (éclairage public, services de santé, etc.),

même s’il est difficile de distinguer avec précision le rôle de

l’électricité de celui des autres infrastructures dans cette

amélioration des conditions de vie de la population.

Si la rentabilité économique est réelle, ce qui est en soi un

fort élément de confort dans l’allocation de ressources à ce

secteur, les questions de financement restent à résoudre.

En effet, un pays qui a encore, en milieux industriel et

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

8

urbain aisé, un faible taux d’accès à l’électricité, une

qualité de service médiocre et un besoin de financement

récurrent pour couvrir les coûts d’exploitation et d’entretien,

ne pourra que très difficilement faire de l’accès en zones

rurales et périurbaines une priorité nationale.

1.4 Des dynamiques d’accès impactées par les réformes sectorielles

Au milieu des années 1990, face au constat de l’inefficaci-

té générale des compagnies d’électricité du secteur public,

une vague de réformes systématique a été lancée, appe-

lant de ses vœux une plus forte participation du secteur

privé.

Aujourd’hui, le modèle institutionnel d’une agence et/ou un

fonds chargé(e) selon les cas, de concevoir, développer

et/ou exploiter des systèmes électriques en milieu rural

et/ou semi urbain s’est imposé. On observe néanmoins que

les pays africains ayant conservé leur société nationale

d’électricité historique présentent aujourd’hui les taux d’ac-

cès à l’électricité les plus élevés : Côte d’Ivoire, 39 % ;

Ghana, 60 % (82 % en zone urbaine et 29 % en zones

rurales) ; Afrique du Sud, 70 %. L’équilibre entre zones ren-

tables (villes, côtes densément peuplées) et zones peu ren-

tables (rurales) semble facilité par une gestion globale

unique. Faut-il pour autant à nouveau concentrer tous les

efforts sur les compagnies nationales d’électricité ? Une

réponse positive serait particulièrement discutable dans un

contexte où une rentabilité financière leur est souvent

demandée, et où l’électrification rurale et périurbaine peut

parfois sortir de leur mandat et de leurs priorités. Il faut lais-

ser aux nouvelles structures et organisations le temps

nécessaire à leur maturation avant de tirer des conclusions

définitives.

En ce qui concerne les opérateurs privés, on ne peut que

constater qu’ils ont peu de raisons de s’intéresser à l’éner-

gie en zone rurale, ce créneau étant peu rentable et com-

plexe à gérer, à moins d’un fort taux de cofinancement par

l’Etat, qui permettrait une certaine rentabilité de la conces-

sion. Toutefois, de nombreuses structures non gouverne-

mentales ont acquis une grande expérience des milieux

ruraux africains et jouent un rôle pionnier dans l’émergen-

ce de solutions techniques et organisationnelles innovantes ;

elles peuvent être des opérateurs potentiels des zones à

faibles revenus et à consommation énergétique peu éle-

vée, en collaboration étroite avec les organisations locales

d’usagers, les municipalités et les collectivités locales.

1.5 Etablir des prérogatives claires pour chacun des acteurs

La multiplication des structures – compagnie nationale,

fonds/agence, régulateur, ministère – en préalable à des

réalisations significatives, n’assure pas forcément les trois

fonctions de financement, de régulation et de mise en

œuvre. Force est de constater qu’elle engendre souvent

une dispersion des compétences et une concurrence entre

institutions pour l’appropriation de projets dotés de budgets

et pour occuper des responsabilités aux « frontières » de

ces trois fonctions.

Fonction de financement : si la large majorité des pays

d’Afrique subsaharienne sont maintenant dotés de fonds

d’électrification rurale (depuis que la compagnie d’électrici-

té n’assure plus le financement de ce sous-secteur), ces

derniers ne sont souvent que des comptes par lesquels

transitent les maigres subventions recueillies au niveau de

la coopération internationale et n’offrent pas des méca-

nismes de financement aboutis. Le rôle croissant des col-

lectivités locales pourra favoriser un changement.

Fonction de régulation : in fine, la question à laquelle le

régulateur devra répondre est celle du caractère suffisam-

ment incitatif et transparent pour attirer des investissements

du secteur privé, et dans quelles proportions. Est-il réaliste

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

9

d’envisager des concessions d’électrification rurale (avec

des investissements privés) ou faut-il plutôt envisager des

franchises, voire un affermage dans un premier temps,

avec un investissement public largement majoritaire, et un

gestionnaire privé ? Comment gérer la question de la régu-

lation tarifaire, de la péréquation ou non ? Le simple fait de

créer une agence de régulation ad hoc ne permettra pas

forcément la formulation et la mise en vigueur d’un cadre

clair et crédible.

Fonction industrielle/mise en œuvre : la compagnie

nationale a, dans le passé, joué un rôle central en agissant

à la fois en tant que société d’électricité, qui a la réelle

capacité technique et organisationnelle de réaliser un pro-

gramme d’envergure, et également en tant que contrepartie,

qui présente un bilan et un compte de résultat qui lui per-

mettent d’être un emprunteur (certes public et souvent avec

la garantie de l’Etat) sur le long terme. Le désengagement

de la compagnie nationale des géographies rurales pose la

question du développement du savoir-faire en ingénierie et

de la supervision des travaux, indispensable pour maintenir

une fourniture de qualité, sur l’ensemble du territoire.

Ces questions sont d’autant plus essentielles que les

options technologiques pour répondre aux demandes se

multiplient et se complexifient.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

10

Historiquement, la situation d’économies d’échelle des

grands ouvrages et des interconnections légitimait une

organisation en monopole public. Ce contexte a amené à

structurer les modes et outils de financement sur de

grandes opérations en prêtant directement aux Etats, ou

avec la garantie de l’Etat. Or, depuis les années 1990, le

paradigme des technologies et de la situation financière

des contreparties a évolué.

La plupart des pays africains connaissent un important

retard d’investissement dans les grands ouvrages et

réseaux interconnectés très capitalistiques, qui s’amortis-

sent sur une longue période (en raison de la crise financiè-

re générale qui a démarré dans les années 1980) ; ce

retard affecte tant la qualité de contrepartie des compa-

gnies d’électricité que des Etats eux-mêmes.

Bon nombre de pays, bien que riches en ressources natu-

relles, se trouvent contraints d’effectuer des investisse-

ments thermiques (turbines à gaz ou fioul lourd), peu coû-

teux en capital et à temps de construction rapide, mais qui

subissent aujourd’hui de plein fouet l’augmentation du

cours des hydrocarbures.

Le paradigme des énergies renouvelables s’en trouve com-

plètement transformé :

• la production d’électricité de petite et moyenne puissance,

à partir de technologies anciennes, à base d’énergies

renouvelables, devient compétitive (c’est le cas de la petite

hydro, des gazogènes ou de la cogénération) ;

• l’industrialisation de nouvelles filières, suite à des décen-

nies de recherche, connaît un nouveau dynamisme, ren-

dant ces technologies plus fiables et baissant les coûts d’in-

vestissements (c’est le cas du photovoltaïque3 et du biogaz

industriel) ;

• les récentes évolutions de l’électrotechnique permettent

de gérer de la production distribuée sur les réseaux, en

symbiose avec un suivi fin de la demande conduisant à des

réseaux « intelligents » (smart grids) ;

• les solutions hybrides, qui permettent de combiner la

flexibilité de production d’un groupe diesel avec le faible

coût de production à long terme des énergies renouve-

lables, offrent une solution pour s’affranchir des problèmes

d’intermittence des ressources renouvelables

Ainsi, en Afrique subsaharienne, étant donné les deux

tendances actuelles à la fois de difficultés à mobiliser des

sommes importantes pour des ouvrages de production

significatifs4, et d’évolution de l’électrotechnique (qui per-

met aujourd’hui d’envisager un réseau électrique important

alimenté en de multiples points par des centrales de taille

moyenne), on s’oriente peut être vers un nouveau schéma

de production avec plus d’ouvrages de taille moyenne et

répartis, intégrés dans des réseaux « intelligents », dans un

contexte où les économies d’échelle ne jouent plus le

même rôle qu’autrefois.

Si l’extension du réseau est la première des options pour

étendre l’accès – dès lors que des ouvrages importants à

faible coût de kWh et les réseaux existent – la petite pro-

duction locale avec un réseau de distribution associé offre

de plus en plus de perspectives dans un contexte où ces

dorsales de transport de l’énergie électrique n’existent pas

encore, qui plus est avec le désengagement de la compa-

2 Un continuum de solutions techniques et organisationnelles

2.1 Cadrage technico-économique

3 Le kWh PV pour des unités de plus de 5 MW était annoncé par les constructeurs en 2009à moins de 25 cents / kWh et aux environs de 3 000 EUR/kW crête installé à l’investissementen Europe.4 A l’heure actuelle, 93 % du potentiel en énergie hydraulique économiquement réalisable surle continent africain (estimé à 937 TWh/an, soit un dixième du total mondial) reste inexploité.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

11

gnie nationale. On dispose donc d’une « boite à outils des

technologies » très diversifiée, qui permet de répondre de

manière plus fine aux caractéristiques des demandes

rurales : extension du réseau vers des zones ayant des

besoins importants et justifiant le coût d’investissement

élevé dans les lignes ; mini réseaux avec une production

locale thermique ou hybride si la ressource est disponible,

dans les localités ayant les niveaux de demande corres-

pondants ; petite production (individuelle) répartie pour les

populations et les petits villages très isolés.

Cette évolution technologique impose aussi de faire

progresser les cadres organisationnels et contractuels qui

les portent : autoriser l’autoproduction industrielle pour ses

besoins propres et la revente de l’excédent à un tarif

intéressant ; permettre la production par des petits produc-

teurs privés indépendants, qui implique d’autoriser ces tiers

à accéder au réseau (afin de transporter l’électricité du

point de production aux lieux de consommation) et de fixer

clairement les modalités du tarif d’achat. Ces dispositions

d’un cadre réglementaire clair sont un prérequis à l’engage-

ment des opérateurs pour développer l’accès à l’énergie en

zones rurales. Pour autant, la question de la capacité à

assurer la maintenance et la mise en œuvre de ces techno-

logies au niveau local reste posée.

2.2 Des solutions techniques complémentaires au réseau interconnecté

L’électronique permet aujourd’hui l’intégration d’une

production distribuée, mobilisant les ressources locales ;

cette nouvelle possibilité impose de bien comprendre les

atouts et les faiblesses de ces filières technologiques, ainsi

que les opportunités qu’elles offrent. Il est central de

confronter cette analyse aux caractéristiques de la deman-

de, ainsi que du contexte technique et social local, car il n’y

a pas de solution idéale unique, mais bien des solutions

plus ou moins appropriées à un contexte donné.

Historiquement, en raison du coût d’investissement faible,

de la simplicité de la technologie et du court temps des

travaux, les groupes diesel ont été très largement installés

pour l’électrification des centres ruraux, ainsi que des

centres secondaires éloignés du réseau interconnecté.

Aujourd’hui, ces localités souffrent de l’explosion du prix du

carburant, tendance qui ne va pas en s’améliorant.

Paradoxe ultime : à force de maximiser la mise en place

rapide d’un service universel, ce sont les solutions

thermiques, qui sont aujourd’hui les moins coûteuses à l’in-

vestissement et les plus maîtrisés localement, qui sont

favorisées.

A contrario, malgré un fort potentiel, le très faible nombre

d’installations de pico (individuelle), micro (villageoise :

10 kW à 200-500 kW) ou mini hydro (200/500 kW à 5/15

MW) est saisissant en comparaison avec le continent asia-

tique. On dénombre très peu d’unités de fabrication de tur-

bines sur le continent africain (quelques ateliers en Ethiopie

et au Nigéria), mais de nombreux pays disposent d’une

base industrielle pour assurer la maintenance de telles ins-

tallations. Les études sont longues et coûteuses, les

risques d’hydrologie et de génie civil nécessitant des

études souvent complexes. Amortir des ouvrages de mini

ou micro hydro nécessite un certain niveau de demande, ou

la proximité du réseau auquel revendre. Cependant, une

fois l’ouvrage mis en service, il fonctionne pour ainsi dire

tout seul et à coût pratiquement nul pour une décennie à un

demi-siècle.

Tout comme l’hydroélectricité, la production d’électricité à

partir de biomasse dépend de la disponibilité locale de la

ressource. Pour ce qui est de la production d’électricité

pour les services ruraux, il existe essentiellement quatre

filières distinctes : la cogénération5, le biogaz6, le biodiesel7

et la gazéification8. Toutes, contrairement à l’hydroélectricité5 Production combinée de chaleur et d’électricité.6 Production d’un gaz pauvre pour la combustion à partir de fermentation anaérobie, qui peutéventuellement s’injecter dans un groupe diesel rectifié.7 Production de biodiesel en cycle court à partir d’oléagineux, utilisable dans des moteurs diesel.8 Pyrolyse du résidu agricole : combustion partielle et lente qui permet de produire un gaz uti-lisable dans un moteur diesel rectifié.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

12

nécessitent au quotidien des opérateurs qualifiés et une

maintenance régulière et assez lourde des équipements. Il

convient aussi de distinguer, d’une part, le développement

de plantations dédiées à la production d’électricité, qui va

toucher à une problématique agricole et de développement

rural et, d’autre part, la valorisation de résidus agricoles ou

d’une agro-industrie. Dans la pratique, le choix de filière est

fonction du contexte : la présence d’une agroindustrie, et

donc d’une maîtrise technologique locale avec revente d’un

excédent pour l’électrification rurale, offrira des avantages

certains au plan de la maîtrise locale, alors que l’installation

d’une multiplicité de petits systèmes villageois va nécessi-

ter le développement de savoir-faire locaux.

Le photovoltaïque connait des baisses de coût de produc-

tion qui rendent le kWh PV (photovoltaïque) de plus en plus

souvent compétitif par rapport aux autres modes de

production en Afrique (en particulier les réseaux alimentés

par sources thermiques). Ainsi, alors que pendant plusieurs

décennies, les applications du PV en Afrique étaient

limitées au kit solaire ou aux applications communautaires

(santé, pompage, etc.) pour des régions isolées, cette

technologie offre des perspectives à fort impact pour

l’accès durable aux services électriques par l’alimentation

de mini réseaux (hybrides).

Poussés par les grands programmes européens, japonais

et américains qui ont engendré des investissements impor-

tants dans les capacités de production ainsi que dans

l’électronique d’intégration des renouvelables aux réseaux

(smart grids), les industriels ont largement développé leur

capacité de production et ont désormais atteint le « un euro

du Watt crête » pour les panneaux. Ce pourrait bien

devenir la première option d’hybridation car l’ensoleille-

ment, constant sur le territoire, est une ressource moins

difficile à mobiliser que la biomasse ou l’hydraulique. Les

points faibles du PV demeurent sa production nécessaire-

ment diurne (alors qu’en zones rurales, la demande est

souvent nocturne), ainsi que son coût d’investissement

particulièrement élevé, qui nécessite une ingénierie

financière complexe.

2.3 Distribution et gestion clientèle : des marges de manœuvre importantes

Une fois le choix du mode de production effectué (énergies

renouvelables, extension réseau, groupe diesel), se pose la

question de la distribution vers les foyers et de la gestion

clientèle. Soulignons que l’objectif d’accès pour tous

n’implique pas automatiquement un même niveau de

service pour tous, car tous les usagers n’ont pas les mêmes

besoins en quantité d’énergie (moteurs ou éclairage) ou en

qualité de service (service 24h/24 ou quelques heures par

jour). La mise en place de systèmes de pico-électrification9

permet aux populations sans connexion individuelle mais

établies dans la « zone de couverture », d’accéder à un

service minimal ; si ces systèmes permettent de diminuer

l’exclusion de certaines populations, il serait erroné de les

considérer comme étant forcément couvertes et donc non

éligibles à un service « plein ».

Il existe un fort potentiel de diminution des coûts ; encore

faut-il prendre le temps de bien choisir parmi les options

offertes. En effet, outre la question de l’adaptation des

normes à la demande, les pratiques usuelles conduisent

souvent à surestimer cette dernière et, donc, à surdimen-

sionner les réseaux (section des câbles, capacités des

transformateurs). On peut arriver à une diminution pouvant

9 Par pico-électrification, on entend des services de recharge de batterie ou encore des sys-tèmes portables faisant appel à des équipements (lampes, etc.) très efficaces et parfois asso-ciés à un petit panneau individuel.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

13

aller jusqu’à 30 % des coûts d’investissements, en faisant

évoluer ces pratiques ainsi que les politiques d’achat et la

gestion des programmes.

En matière de gestion, la distribution par le réseau corres-

pond à une vente unitaire d’énergie (compteur), alors que

la distribution d’électricité dans des zones à faibles

demandes correspond souvent à une vente de service

(nombre de points lumineux, heures de service, etc.). De

plus en plus, en zones rurales, la société civile et les ONG

locales ou organisations villageoises prennent en charge la

gestion de la clientèle, voire de la distribution. Cette

évolution convient bien à la société d’électricité qui

l’appelle souvent de ses vœux, car elle préfère en effet

vendre en gros à un seul distributeur. On observe actuelle-

ment un foisonnement d’innovations contractuelles en la

matière. L’innovation peut ainsi ne pas être technique mais

fondée sur des dispositifs sociaux qui permettront de

faciliter l’accès. En outre, certains outils et méthodes

(compteurs intelligents, à prépaiement, ou collectifs) per-

mettent d’améliorer l’efficacité de la gestion et d’augmenter

le taux de couverture de la clientèle.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

14

Les évolutions technologiques impliquent de nouveaux

schémas techniques et d’organisation ; ces changements,

nous l’avons vu, engendrent des configurations de risques

de projet et de contrepartie, ainsi que des profils de

rentabilité et de cash flow différents que par le passé. Qui

plus est, dans la mesure où l’on cherche à mobiliser des

investisseurs privés, il est clair que leurs attentes en termes

de rentabilité et leur perception des risques seront très

différentes de celles d’une structure de service public.

L’opérateur privé, suivant qu’il est une entreprise ou la

communauté locale, aura aussi certaines attentes

concernant sa rémunération. Les instruments de finance-

ment doivent ainsi être repensés afin d’offrir, entre autres,

des maturités plus longues et des mécanismes de partage

des risques suffisamment attractifs pour mobiliser les

acteurs visés.

3 Un besoin de financements structurés

3.1 Pour généraliser l’accès, mobiliser des montants de financement supérieurs aux flux

actuels de la coopération internationale

L’Agence internationale de l’énergie (AIE) estime qu’avec

un investissement de 35 Md USD/an (soit 6 % de l’investis-

sement prévu dans le secteur de l’électricité), la question

de l’accès de près de 1,6 milliard de personnes à l’énergie

moderne serait résolue à l’horizon 2030. On est bien loin de

ces ordres de grandeur, à en juger par une revue de la

Banque mondiale sur son propre portefeuille, où l’on

constate que les flux annuels se limitent à 500 M EUR.

Rappelons toutefois qu’aucun pays n’a atteint des taux

d’accès significatifs sans un effort national conséquent ;

il serait donc illusoire de ne compter que sur les flux

internationaux pour résoudre le problème.

3.2 Pierres d’achoppement : péréquation tarifaire et modes de subvention

Le secteur électrique en lui-même est loin de générer les

surplus permettant d’autofinancer les investissements

nécessaires à l’extension du service. Le taux d’électrifica-

tion initial étant très faible en Afrique subsaharienne (10 à

20 %), les subventions croisées ne permettront pas à elles

seules d’atteindre des taux d’accès d’envergure.

Dans les zones rurales et périurbaines, le poids des clients

domestiques dans la tranche sociale (généralement à

niveau tarifaire faible) ainsi que les coûts d’investissement

élevés (dus à l’isolement rural), impliquent des coûts du

kWh beaucoup plus élevés qu’en zone urbaine mixte. Afin

de mieux refléter les coûts, et arguant des dépenses

énergétiques élevées avant électrification (kérosène, piles,

etc.), certains pays justifient et appliquent la différentiation

des tarifs sur le territoire en fonction des coûts. Même si ces

tarifs demeurent inférieurs à une solution hors réseau, cette

application ne résout pas pour autant la question de l’ac-

ceptabilité sociale de ces tarifs différenciés. Cette question

est renforcée par le fait que, dans les pays fortement

dépendants aux hydrocarbures, les distributeurs sont de

plus en plus autorisés à effectuer des ajustements tarifaires

pour refléter leurs coûts de carburants.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

15

Il est, à l’évidence, nécessaire de repenser l’approche

même du financement de l’électrification rurale, et certaine-

ment d’envisager des approches innovantes fondées sur

une nouvelle relation entre technologie, organisation et

financement.

On ne peut se passer de financements à très long terme

(trente ans et plus), voire d’une subvention10 initiale, pour

le financement des investissements en milieu rural (ce qui

a été, et demeure parfois encore, le cas de l’ensemble des

pays de l’Organisation de coopération et de développement

économiques – OCDE). L’implication de l’Etat, qui peut se

refinancer, est nécessaire.

Dans ce contexte, les fonds d’électrification rurale doivent

être amenés à jouer le rôle de véritables intermédiaires

financiers : ils doivent impérativement être plus qu’une

simple caisse par laquelle transitent les dons, ne serait-ce

que parce que les montants disponibles sont très loin d’être

à la hauteur des investissements nécessaires. L’utilisation

de ces dons (précieux et rares) comme catalyseur de prêts

apparaît comme une évidence : en bonification de prêts

(allongement du terme suivant le profil des cash flows des

projets ou de la baisse du taux) ; en préparation de projets

de qualités pour conforter investisseurs et financeurs ; en

garantie partielle pour mieux partager les risques de projet

et de contrepartie, et donc mobiliser des financements

privés et bancaires ; etc. Les banques locales, qui n’offrent

de concours que sur des périodes de l’ordre de cinq ans au

maximum, ne souhaitent en réalité pas s’engager sur ce

secteur à faible rentabilité, sauf dans le cas de banques de

développement à mandat particulier. Les investisseurs,

quant à eux, sont réticents à mobiliser un capital sur des

projets qui ne permettent que des temps de retour sur

investissement long, dans des contextes où les cadres

réglementaires et politiques restent à stabiliser. Sur ce type

d’investissements de long terme, le partage des risques est

bien au cœur de la problématique de mobilisation de

l’épargne nationale et, plus largement, des investisse-

ments.

3.3 Adapter les mécanismes de financement au profil de risque et de rentabilité des

projets d’accès

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

16

10 Ou, plus généralement, d’emprunts concessionnels.

Tableau 1. Financements AFD et FFEM (1993-2008) dans le domaine de l’électrification rurale (M EUR)*

AFD FFEM

Burkina 0,38 0,22

Mauritanie 2,21 0,76

Tunisie 13,72

Maroc - PERG prêt 1 30,49

Maroc - PERG prêt 2 45,73

Maroc - PERG prêt 3 50,00

Maroc - PERG solaire

Maroc - PERG prêt 5 45,00

Afrique du Sud 41,44

Kenya - urbain 25,00

Kenya - rural 30,00284,00 1,00

Total 284,95100 %

Moyenne annuelle 18,9 0,10

Afrique subsaharienne 57,60 1,00

Lecture du tableau. Si l’on inclut le Maroc, la Tunisie et

l’Afrique du Sud, les financements dans le domaine de l’ac-

cès aux services électriques ont totalisé un investissement

global de 284 M EUR sur le continent africain au cours des

15 dernières années (1993-2008), et seulement 57,6 M EUR

en Afrique subsaharienne – soit moins de 4 M EUR/an.

Ils se concentrent sur trois pays d’ Afrique subsaharienne :

Le Burkina Faso, le Kenya, la Mauritanie et l’électrification

rurale dite « décentralisée » ne représente que 1 % des

engagements financiers globaux de l’AFD dans le secteur.

* PERG : Programme d'électrification rural global.

Source : auteurs.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

17

Introduction

Le développement de l’accès11 à un service énergétique

moderne fait partie des domaines d’intervention de l’AFD,

qui inscrit ses interventions de financement dans le cadre

des objectifs du Millénaire pour le développement (OMD).

Ceux-ci visent à soutenir la croissance économique,

réduire la pauvreté et favoriser la préservation de

l’environnement.

Les orientations stratégiques actuelles de l’AFD et le consen-

sus mondial sur l’enjeu de l’accès à un service énergétique

moderne, en lien avec les OMD (cf. encadré 1), ont conduit

cette institution à retenir ce domaine d’intervention comme un

secteur d’importance croissante et, dans le cadre du présent

travail, à se focaliser sur l’accès au service électrique.

Cette étude a été réalisée dans l’objectif de développer de

nouvelles approches et une capitalisation méthodologique

sur la thématique de l’accès pour tous aux services

électriques en Afrique subsaharienne. C’est pourquoi

l’analyse rétrospective, déjà largement documentée, ne

fera l’objet que de passages succincts servant de base à la

formulation d’approches concrètes. Si l’expérience de

l’AFD dans le secteur a été largement analysée, pour

autant, les projets de l’AFD dans le domaine de l’accès au

service électrique ne représentent, à ce jour, qu’une partie

modeste à la fois de son propre portefeuille et de l’en-

semble des projets d’accès aux services électriques en

Afrique subsaharienne.

11 Par accès on entend à la fois en zones rurales et urbaines.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

18

Objectif 1 - Réduire l'extrême pauvreté et la faim

Réduire de moitié, entre 1990 et 2015, la part de la population dont le revenu est inférieur à un dollar par jour.

Réduire de moitié, entre 1990 et 2015, la part de la population qui souffre de la faim.

L’accès à des services énergétiques abordables permet le développement des entreprises.

L’éclairage permet de prolonger l’activité commerciale au-delà des heures d’éclairage naturel.

L’utilisation de machines améliore la productivité.

La fourniture d’énergie peut être assurée par des entreprises locales de petite taille, créatrices d’emploi.

La privatisation des services énergétiques peut lever des fonds gouvernementaux pour l’investissement dans les services sociaux.

Les combustibles propres et efficaces réduisent la part importante des revenus des ménages dépensés pour la cuisson, l’éclairage et le

chauffage.

95 % des aliments de base doivent être cuits avant d’être consommés, et nécessitent de l’eau pour leur cuisson.

Pertes d’après récolte réduites grâce à une meilleure conservation : séchage/fumage/réfrigération/ congélation.

L’énergie pour l’irrigation permet d’améliorer la production de nourriture et l’accès à une meilleure nutrition.

Objectif 2 - Assurer l’éducation primaire pour tous

D’ici à 2015, donner à tous les enfants, garçons et filles, partout dans le monde, les moyens d’achever un cycle complet d’études primaires.

L’énergie permet l’accès à l’eau, l’hygiène, l’éclairage et des espaces chauffés/tempérés, participant à la réduction des taux d’absentéisme

et d’abandon par la création d’un meilleur environnement pour les enfants et les enseignants.

L’électricité permet l’accès dans les écoles et les foyers aux médias à des fins de communication et d’éducation (éducation à distance).

L’accès à l’énergie permet l’utilisation d’équipements utiles à l’enseignement : rétroprojecteurs, ordinateurs, imprimantes, photocopieurs,

équipements scientifiques, etc.

Les systèmes énergétiques modernes et les bâtiments à conception efficace réduisent les coûts énergétiques et, par conséquent, le coût de

l’école, permettant aux familles les plus pauvres un meilleur accès à l’éducation.

Objectif 3 - Promouvoir l’égalité des sexes et l’autonomisation des femmes

Éliminer les disparités entre les sexes dans les enseignements primaire et secondaire d’ici à 2005 si possible et à tous les niveaux de l’en-seignement en 2015 au plus tard.

La disponibilité de services énergétiques modernes libère les filles et les jeunes femmes du temps alloué aux activités de survie (collecte de

bois de chauffe, d’eau, cuisson inefficace, récoltes manuelles).

Les équipements de cuisson propres réduisent l’exposition à la pollution de l’air et les effets néfastes sur la santé.

Les éclairages de qualité permettent d’étudier à la maison et de suivre des cours du soir ; l’éclairage public améliore la sécurité des femmes ;

des services énergétiques abordables et de qualité ouvrent la voie aux entreprises féminines.

Objectif 4 - Améliorer la santé maternelle

Réduire de trois quarts, entre 1990 et 2015, le taux de mortalité maternelle.

Les services énergétiques sont requis pour permettre l’accès à de meilleurs services médicaux pour les mères, tels que la réfrigération des

médicaments, la stérilisation des équipements et des salles d’opérations

Le travail excessif et de lourds travaux manuels peuvent endommager la santé générale d’une femme enceinte.

Encadré 1. Le rôle de l’énergie dans l’atteinte des OMD

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

19

La Banque mondiale est la principale institution internatio-

nale engagée dans le financement de l’accès aux services

énergétiques modernes. Ses financements dédiés à l’accès

(Banque internationale pour la reconstruction et le dévelop-

pement – BIRD, Association internationale de développe-

ment – IDA et Fonds pour l’environnement mondial – FEM)

s’inscrivent dans un financement global du secteur

électrique comprenant la production, le transport et la

distribution. Pour la période 2000-2008, environ 35 % des

montants alloués avaient une composante « accès au

service électrique ». Le total des financements s’élevait à

5,6 Md USD, soit une moyenne annuelle de 627 M USD qui

s’est accélérée sur la période, passant d’environ 500

M USD/an entre 2000 et 2005 à environ 800 M USD/an

entre 2005 et 2008. Une analyse plus fine montre que deux

pays (l’Ethiopie et le Ghana) ont reçu presque la moitié des

financements alloués à l’« accès au service électrique »,

soit plus de 400 M USD/an. A titre de comparaison, ce

montant est similaire aux financements alloués par l’AFD à

l’Office national de l’électricité (ONE) pour le Programme

d'électrification rural global (PERG) durant une dizaine

d’années.

L’Union européenne est devenue un acteur important du

financement de l’accès à l’énergie et des projets d’énergies

renouvelables sur le continent africain : outre la réalisation

de projets dans le cadre des programmations nationales ou

régionales, elle a lancé en 2006 un programme sectoriel

– la Facilité énergie – qui concerne spécifiquement la

problématique de l’accès. Entre fin 2007 et mi-2008,

75 conventions ont été signées pour un budget global

consolidé de 435 M EUR, dont 45 % (198 M EUR) financés

en subvention par la Facilité énergie. Une seconde tranche

d’un montant équivalent a été lancée pour la période

2010-2011. Notons aussi que la coopération bilatérale

allemande joue également un rôle significatif dans le

domaine des énergies renouvelables.

La première partie de cette étude sera consacrée à une

analyse des enjeux de l’accès aux services électriques en

Afrique subsaharienne, à partir de laquelle une approche

sera élaborée afin d’aboutir à des propositions opération

nelles. On ne peut que constater le faible niveau de taux

d’accès, mais que dire des dynamiques économiques et

sociales dans une perspective d’équipement du territoire ?

Nous chercherons à tirer les enseignements d’une analyse

des impacts des programmes passés, ainsi que des

réformes sectorielles pour proposer une approche

méthodologique qui sera fonctionnelle.

La deuxième partie de l’étude est consacrée à des proposi-

tions opérationnelles, basées sur une revue des différentes

options de production. Seront particulièrement analysés les

évolutions remarquables des énergies renouvelables et les

enjeux essentiels de la distribution.

La troisième et dernière section portera sur les questions

de financement, la nécessité de mobiliser des

financements nationaux et de faire levier sur les dons.

Objectif 5 - Combattre le VIH/SIDA, le paludisme et d’autres maladies

D’ici 2015, avoir stoppé la propagation du SIDA, du paludisme et autres maladies majeures, et commencé à inverser la tendance.

L’électricité dans les dispensaires permet leur ouverture la nuit, la rétention du personnel qualifié, l’utilisation d’équipements spéciaux

(stérilisation, réfrigération des médicaments), l’entreposage des vaccins et des médicaments.

L’énergie est requise pour le développement, la fabrication et la distribution de médicaments et vaccins.

1.1.1 En Afrique, les taux d’accès des

populations restent faibles après plusieurs

décennies de progression décevante

Défi pour le développement, infrastructure reconnue néces-

saire pour atteindre les OMD, l’accès aux services

électriques occupe une place de plus en plus importante

dans les politiques de développement des Etats africains et

dans la stratégie d’appui au développement de la

communauté internationale.

Actuellement, le taux moyen d’accès des foyers à un servi-

ce électrique12 dans les pays d’Afrique subsaharienne13

est de 16 %, et de moins de 5 % en zones rurales. Depuis

les années 1990 environ, si le pourcentage a favorable-

ment évolué, le nombre de personnes sans accès à un ser-

vice électrique a, quant à lui, augmenté, en raison de la

croissance démographique.

1 L’accès aux services électriques en Afrique subsaharienne : enjeux etapproche méthodologique

1.1 Des infrastructures et des systèmes électriques insuffisants pour sous-tendre un

développement économique et social durable : les défis à relever

Carte 1. Taux d’accès aux services électriques sur le continent africain

Source : auteurs.

12 Tout au long de ce document, par population ayant accès à l’électricité, on entend lespopulations ayant dans leur maison un accès à l’électricité vendue commercialement.13 Cette étude porte sur l’accès à l’électricité dans les pays d’Afrique subsaharienne. Les

pays d’Afrique du Nord – Maroc, Algérie, Tunisie, Libye et Egypte – ne sont pas pris en comp-te dans les chiffres présentés.

Population ayant accès à l’électricité

(% de la population totale)

Pas de données<1010...2020...3030...50>50

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

21

Ce pourcentage doit cependant être relativisé. Un foyer

branché au réseau peut en effet en faire bénéficier

plusieurs autres, par branchement plus ou mois « pirate » ;

les services de recharge de batteries permettent un service

minimal d’éclairage et d’accès à l’audiovisuel aux ménages

non raccordés ou vivant dans des localités aux alentours.

Le défi à relever est de taille : les pays d’Afrique subsaha-

rienne ont, par rapport au reste du monde, les taux les plus

faibles d’accès à l’électricité, tant en matière d’accès des

personnes à un service à leur domicile, qu’en matière de

taux d’électrification des localités. A titre d’exemple, en

Inde, si le taux d’accès de la population se limite à 40 % en

zones rurales et à 60 % en zones urbaines, plus de 95 %

des localités sont desservies. L’infrastructure permet ainsi

des usages productifs (irrigation pour l’agriculture) et le

fonctionnement des services de sociaux de base (dispen-

saires) sur l’ensemble du territoire. C’est loin d’être le cas

en Afrique subsaharienne, où l’infrastructure électrique,

bien moins étendue, n’atteint généralement que moins de

20 % des localités.

Angola 16 13 7,4 15

Bénin 9 79 60,2 22 26

Botswana 1,758 3 42,6 39 27 2

Burkina Faso 14 50 82,1 17 75 3 1

Burundi 8 305 90,3

Cap-Vert 0,518 129 42,7

Cameroun 17 36 46,3 47 5 20

RCA 4 7 62,1 <1 0,2

Tchad 10 8 75,1 1

Comores 0,614 275 63 50

Congo (Rép. dém.) 59 26 68,4 6 20 1 1

Congo RDC 4 12 40,2 20 44,6 5,6

Côte d'Ivoire 18 58 55,4 39 8 26

Djibouti 0,806 35 13,9

Guinée équatoriale 0,515 18 61,1

Erythrée 5 45 80,9 20 82 2

Ethiopie 73 73 84,2 22 22 <1

Gabon 1,406 5 16,4 48

Gambie 1,553 155 46,1 5

Ghana 23 99 53 49 82

Guinée 9 37 67,4 6 35 1

Guinée-Bissau 1,633 58 70,4 5

Kenya 35 62 79,5 14 29 6,8

Lesotho 1,789 59 81,3 11

Liberia 3,38 35 59,5

Madagascar 19 33 73,4 1 5 4

Malawi 13 140 83,2 7 30 1

Mali 14 11 70,0 16 30 5

Tableau 2. Taux d’accès au service électrique et d’électrification dans les zones urbaines et rurales de 48 pays

d’Afrique subsaharienne (en 2004, 2005, 2006, 2008 et 2009)

Pays

Population

totale (millions)

Densité

(hab./km²)

Pourcentage de la

population vivant

en zone rurale

Pourcentage de la

population ayant

accès à l'électricité

Pourcentage de la

population ayant

accès à l'électricité

en zone urbaine

Pourcentage de la

population ayant

accès à l'électricité

en zone rurale

Pourcentage des

localités alimentées

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

22

Mauritanie 3 3 59,7

Maurice 1,253 617 57,6 94

Mozambique 20 26 66,3 6 17 0,6

Namibie 2 2 65,4 34

Niger 14 11 83,3 8 30 0,1 1

Nigeria 145 159 52,7 20

Rwanda 9 375 81,8 <1

Sao Tomé et Principe 0,16 167 42,0

Sénégal 12 62 58,6 32 67 4,5 15

Seychelles 0,86 186 47,1 <1

Sierra Leone 6 79 60 5

Somalie 8,485 14 36,1

Afrique du Sud 47 39 41,2 70 85 52

Soudan 37 16 60,1 15

Swaziland 1,126 65 75,9 1

Tanzanie 38,5 25 76,2 11 36 2

Togo 6 116 60,6 12 17 3 18

Ouganda 30 152 87,5 9 21 2,1

Zambie 12 16 65 19 25 1,4

Zimbabwe 13 34 64,5 34 80 18

Sources : Banque mondiale (2008), PNUD (2007), CEDEAO et UEMOA (2006), Review of national framework for involvement of agro-industries in rural electri-fication, projet PACEAA (Poverty Alleviation through Cleaner Energy for Agro-Industry in Africa), 2009, Mostert (2008), African Energy Policy Research Network(AFREPEN), 2004, données récoltées dans le cadre du Club des agences d’électrification rurale, enquête congolaise des ménages (2005), ministère de l’Energieérythréen, Réseau international d’accès aux énergies durables (RIAED), 2005.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

23

Pays

Population

totale (millions)

Densité

(hab./km²)

Pourcentage de la

population vivant

en zone rurale

Pourcentage de la

population ayant

accès à l'électricité

Pourcentage de la

population ayant

accès à l'électricité

en zone urbaine

Pourcentage de la

population ayant

accès à l'électricité

en zone rurale

Pourcentage des

localités alimentées

Carte 2. Part de la population rurale dans la population en Afrique subsaharienne

<5050...70>70

Population rurale% de la population totale

Source : PNUD (2008).

Ce sont, entre autres, l’absence de services publics de

base (eau, électricité, accès aux soins), la pénibilité et les

aléas des activités rurales, ainsi que le manque

d’alternatives qui poussent les populations à quitter les

campagnes. Les infrastructures urbaines ploient sous cette

pression démographique et l’absence de plans

d’urbanisation et d’aménagement (ou, lorsqu’ils existent, le

manque de volonté politique et de moyens pour les mettre

en œuvre et les respecter) conduit à la multiplication des

zones d’habitats précaires et/ou non contrôlées. Dans

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

24

1.1.2 Maximiser l’impact économique et social

dans une dynamique d’urbanisation accélérée :

les pôles de développement

“African urbanization is a poverty-driven process and not

the industrialization-induced socio-economic transition it

represented in the world’s other major regions”14

(L’urbanisation africaine est un processus engendré par la

pauvreté, et non la transition socioéconomique, induite par

l’industrialisation, comme cela a été le cas dans les autres

grandes régions du monde), UN-Habitat, 2008.

Quels sont les défis principaux à relever pour aboutir à des

avancées réelles ? Si l’Afrique est encore le continent le

moins urbanisé au monde, le taux d’urbanisation est déjà

supérieur à 60 % dans une vingtaine de pays.

Entre 1980 et 2030, le Programme des Nations unies pour

le développement (PNUD) prévoit que la population

africaine totale sera multipliée par 3 ; la population rurale

par 2 ; la population urbaine par 7. Ainsi, alors que le

pourcentage de la population urbaine est déjà passé de 24 %

à 33 % entre 1980 et 2000, il devrait continuer de croître

jusqu’à atteindre 48 % en 2030.

14 PNUD (2008),“The State of African Cities”.

quinze grandes villes africaines, l’accès à l’électricité dans

les bidonvilles est en moyenne de 11 %15.

Contrairement à l’histoire de l’électrification dans les pays

industrialisés, ce ne sont pas la croissance économique et

l’emploi générés par l’industrialisation qui engendrent la

migration rurale (avec un bassin de population ayant des

revenus et une richesse globale permettant d’investir dans

les infrastructures). Ce sont en effet bien souvent

l’insécurité, la précarité économique et le rêve d’un

« eldorado urbain » qui poussent les populations hors des

zones rurales vers zones urbaines précaires.

D'une analyse de la répartition de la population selon la

taille des localités16, il ressort qu’il existe un stade

intermédiaire entre la grande ville et les zones rurales

isolées, qui rassemblent encore un pourcentage non

négligeable de la population totale.

Graphique 1. Répartition de la population en fonctionde la taille des localités

Source : auteurs d’après CEMAC, CEDEAO.

Lecture du graphique. Plus d’un quart de la population d’un

échantillon de pays des zones de la Communauté écono-

mique et monétaire d'Afrique centrale (CEMAC) et de la

Communauté économique des pays d'Afrique de l'Ouest

(CEDEAO) vit dans des agglomérations de plus de 2 000

habitants. C’est (en moyenne) le cas pour 27 % de la popu-

lation du Burkina Faso, du Mali, du Niger et de la

République de Côte d’Ivoire (RCI) ; 32 % vivent dans des

localités de plus de 10 000 habitats (i.e. en zone urbaine,

sur le graphique). Dans les pays de la CEMAC (Cameroun,

Congo, Gabon, Guinée équatoriale et Tchad), 30 % de la

population vit dans des localités de plus de 1 000 habitants

(en moyenne), et 51 % en zone urbaine.

Une étude, menée17 en Amérique latine sur la place des

villes intermédiaires dans l’urbanisation globale, met en évi-

dence l’attraction des mégalopoles (i.e. villes de plus d’un

million d’habitants) et leur rapidité d’expansion : leur

nombre est passé de 83 à 325 durant la deuxième moitié du

XXe siècle, au détriment de la croissance des villes d’impor-

tance secondaire. Pourtant, par leurs liens plus étroits avec

les zones rurales, et les services proposés non seulement

aux citadins, mais également aux populations rurales envi-

ronnantes, ces centres intermédiaires représentent une

opportunité dans les interactions entre zones urbaines et

zones rurales. Il est donc crucial de donner à ces localités

les moyens de jouer ce rôle charnière, et de développer leur

attractivité pour les populations qui n’envisagent plus leur

avenir en zones rurales.

De plus, la présence d’activités économiques et de niveaux

de population importants et concentrés permettent, dans

une certaine mesure, une rentabilité du service électrique.

Deux possibilités techniques sont alors envisageables :

l’extension du réseau pour les centres proches du réseau

existant, ou bien la production isolée, avec le développe-

ment d’un mini réseau pour desservir la zone définie.

1.1.3 La question du service aux localités

isolées

L’électrification des localités isolées représente un investis-

sement important, pour un faible nombre de clients, dispo-

sant généralement d’une capacité à payer très limitée. Ces

localités ne présentant généralement pas de perspective de

création de richesse, se posent alors les questions de ren-

tabilité et de pérennisation (qui imposent un recours majeur

à l’aide publique, limitée et aléatoire, qui nuit gravement à

la pérennité des projets). Qui plus est, les densités de popu-

15 PNUD (2008), ibid.16 Etudes menées dans les zones de la CEMAC et de la CEDEAO/IED.17 Cf. Bolay et Rabinovich (2004).

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

25

lation sont faibles en Afrique subsaharienne, comparées à

la densité de la France (100 hab/km²) et de l’Europe en

général (115 hab/km2) ; les densités sont particulièrement

faibles en Afrique centrale. Or, plus la densité est faible,

plus le coût de connexion d’un foyer est élevé, comme

l’illustre l’évolution des coûts du PERG au Maroc (gra-

phique 3).

Carte 3. Densités de population en Afrique

<10

10...30

30...70

70...150

>150

Ces larges zones peu denses et coûteuses à desservir, où

vivent des populations ayant de faibles revenus, ne sont

donc pas rentables. Et les populations vivant dans ces loca-

lités très dispersées vont inexorablement être amenées à

se concentrer quelque peu. La responsabilité revient donc

au politique et au planificateur de décider, en toute connais-

sance de cause, de l’allocation des ressources vers telle ou

telle zone et d’effectuer le choix de la technologie la plus

appropriée, en se focalisant en priorité sur les « pôles de

développement ».

"In the foreseeable future, the intermediate cities (towns

with less than 500,000 inhabitants) will be the localities

where two-thirds of all African urban growth is occurring.

With most of its rapid urban growth adding to the

populations of its intermediate-size cities, Africa needs to

focus on building capacity among its small and medium-

sized cities to deliver and facilitate adequate housing,

livelihoods and services for spiralling numbers of poor urban

dwellers." 18

(Dans un futur proche, les villes intermédiaires – i.e. de

moins de 500 000 habitants – seront les lieux où se produi-

ront les deux tiers de la croissance urbaine de toute

l’Afrique. Compte tenu de la croissance démographique de

ses villes intermédiaires, exacerbée par la rapide croissan-

ce urbaine, l’Afrique doit se concentrer sur le renforcement

des capacités de ses villes de petite et moyenne taille pour

offrir et faciliter la disponibilité de logements, de moyens de

subsistance et de services pour les cohortes d’urbains

pauvres.)

18 Source : UN-Habitat (2008).

Source : PNUD (2008).

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

26

Densité de la populationHabitants au Km 2

Pour que les ressources disponibles, mais rares, aient un

impact maximal, il est essentiel d’avoir une vision politique

claire des objectifs (sociaux, économiques) et de s’engager

politiquement, tout en s’assurant que l’on dispose effective-

ment des opérateurs qui puissent fonctionner dans un

cadre contractuel clair.

Conjuguant le choix technico-économique et l’opérateur

responsable, on peut distinguer les segments suivants :

1- l’extension du réseau électrique dans le cadre de la

concession nationale de la compagnie d’électricité (natio-

nale ou privatisée) ;

2- l’électrification des bourgs et des centres secondaires et,

plus largement, des pôles de développement hors de la

concession nationale de la compagnie d’électricité : d’un

point de vue technique, ces localités peuvent être

alimentées par le réseau national ou par des moyens de

production locaux avec un réseau de distribution moyenne

tension (MT) et basse tension (BT) associé qui peut

intégrer une seule ou plusieurs localités ;

3- l’électrification des localités très isolées et de petite taille,

où l’extension du réseau serait très coûteuse, se fait

généralement par des systèmes individuels ou limités aux

services communs – typiquement le PV, ou encore par

réseaux villageois (généralement diesel) – ;

4- l’électrification périurbaine, c’est à dire des quartiers

situés à la périphérie des grandes agglomérations et, plus

largement, la question de la densification des connections,

qui est donc celle de l’accès généralisé des populations,

une fois le service disponible dans la zone.

En conjuguant option technico-économique et institution en

charge, on aboutit à la segmentation suivante (tableau 3) :

1.2 Systématiser une vision et une planification opérationnelle globale : l’accès pour

quoi faire, et avec quels moyens ?

Viable économiquement

Non rentable, nécessite un

soutien public

Grisé : peut être assuré par

l’opérateur national

Tableau 3. Segmentation des contextes d’accès au service électrique

Source : auteurs.

Lecture du tableau. Les schémas A et B sont partie intégrante d’une politique de développement d’un pays et de l’amé-

nagement de son territoire ; les schémas C et E se conçoivent dans une logique de complément spatial au schéma B

(et fonction des ressources disponibles) ; les schémas D et F ont des coûts d’investissement et de gestion importants

qu’il faut chercher à maîtriser (on mettra en évidence leurs spécificités organisationnelles et techniques).

* Agence d’électricité rurale ou Fonds d’électricité rurale

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

27

Compagnie d’électricité

(Publique ou privée)AER ou FER*

Opérateurs spécialisés

(ONGs, ministères…)

Electrification des pôles de

développement à l’intérieur des zones

de concession principale

Viable

A

Electrification des pôles en dehors des

zones de concession principales

Viable

BViable

Localités isoléesNon rentable Non rentable

C

Non rentable

E

Zones périurbainesNon rentable

D

Non rentable

F

Il importe d’être lucide quant à la rentabilité potentielle d’un

programme d’accès aux services et donc de distinguer19 :

1- un programme d’accès visant à équiper un territoire

donné d’une infrastructure essentielle au développement

économique de la zone, où l’on trouverait donc des centres

secondaires à « potentiel économique ». Un tel programme

« d’aménagement du territoire » se caractérise par des

niveaux de consommation unitaires plus importants et une

capacité à payer plus élevée qui, associés à une densité

plus élevée de population (et donc à des coûts d’investisse-

ments mieux maîtrisés), présentent une certaine

perspective de rentabilité. On ne cherchera pas forcément

à ce stade à connecter 100 % de la population ;

2- le fait d’apporter un service généralisé à l’ensemble des

habitants d’une zone, et en particulier aux plus pauvres, i.e.

les populations périurbaines, 40 à 60 % des ménages des

localités (même importantes) d’un pays et les populations

vivant dans des petits villages ou des habitations très

isolées. Les niveaux de consommation de ces clients ne

sauraient dépasser 50 kWh/mois, et représentent des

dépenses maximales de 5 EUR/mois. A ceci s’ajoute le fait

que, plus la population est dispersée, plus le coût d’inves-

tissement par connexion sera élevé. Dans ces zones, le

paradigme de base est une subvention totale des

investissements et un tarif qui permet de couvrir les frais de

fonctionnement.

Ces deux approches tiennent de deux motivations

distinctes, à savoir : une volonté de développement

économique et d’aménagement du territoire pour la

première ; un objectif social d’équité et d’équilibre

géographique pour la seconde (qui présente un coût élevé).

C’est au niveau politique que doit être apportée la réponse

en termes de priorité d’allocation de ressources rares

(cf. encadré 2).

Encadré 2. Equiper l’ensemble d’un territoire d’une infrastructure productive : un enjeu politique en Inde et au Maroc

L’Inde a aujourd’hui pratiquement terminé l’électrification de l’ensemble des localités de son territoire. Pour les 5 % des localités restantes,

et 40 % de la population qui n’est pas encore connectée, le gouvernement indien a mis en place un programme, très clairement social, qui

subventionne à 90 % le coût d’alimentation des localités et à 100 % le coût de branchement des ménages. Ceci vient pratiquement un demi-

siècle après le lancement du programme d’électrification rurale, qui avait pour objectif d’apporter une énergie bon marché aux agriculteurs

pour leur permettre d’irriguer leurs cultures et atteindre ainsi l’autosuffisance alimentaire ; l’objectif premier du programme avait été une éner-

gie pour l’industrie.

Le Maroc a, lui aussi, lancé son programme d’électrification rurale à une époque de grande sécheresse, conjointement avec un programme

d’accès à l’eau potable. Le premier objectif visé était de fournir une infrastructure aux localités.

En réalité, bien que la plupart des pays aient atteint un

certain niveau d’accessibilité, ils ont à l’origine opté pour

électrifier en priorité les pôles de développement. Ce choix

semble logique : il permet au secteur de dégager une

certaine rentabilité, pour atteindre un équilibre financier

sectoriel avec des subventions croisées entre segments.

Notons que les expériences d’électrification des popula-

tions et des sites isolés, en particulier par kits solaires, ont

montré des limites intrinsèques en Afrique subsaharienne.

En effet, dans les pays engagés dans des projets majeurs

d’électrification rurale, ce schéma d’électrification est un

complément aux schémas A et B (ex : Laos, Maroc et

Sénégal). Ces programmes importants d’accès des popula-

tions isolées à travers les kits solaires demeurent

confrontés à deux questions majeures :

- des usages générateurs de revenus marginaux, en

conséquence de quoi on se trouve à cibler des clients d’un

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

28

19 La segmentation proposée ne doit pas conduire à opposer les schémas d’électrification“hors conception” et “par extension du réseau de la concession nationale”, comme certainesanalyses actuelles tendent à le faire, mais bien à illustrer leur complémentarité.

niveau de revenu d’entrée assez élevé ou à subventionner

considérablement l’investissement ;

- la question du coût réel de maintenance du parc à long

terme (gestion financière et technique), qui ne doit pas être

sous estimée.

Pour ce qui est de l’électrification périurbaine ou de la

population rurale domestique la plus isolée ou la plus

pauvre, l’analyse se focalisera sur les montages

organisationnels visant à diminuer les coûts de gestion et

les pertes. On touche ici d’ores et déjà du doigt l’impérieu-

se nécessité d’une vision claire des objectifs d’un program-

me d’électrification, de son coût, d’une programmation réa-

liste des investissements et des choix techniques, et des

impacts recherchés. Le graphique 3 présente, à travers le

cas du Burkina Faso, un exemple des moyens nécessaires

à un tel exercice.

Graphique 2. Les ressources nécessaires au développement d’une démarche planifiée et coordonnée – l’exemple

du Burkina Faso

En 2008-2009, au Burkina Faso (15 millions d’habitants répartis dans 8 000 localités), la réalisation d’un plan national

d’électrification rurale coordonné par la direction générale de l’Energie (DGE) a pris 12 mois, plus 6 mois de dissémi-

nation. Ce plan a permis une implication multisectorielle. Son budget global était de 400 000 EUR.

Source : IED.

L’étude précise et la quantification des impacts socio-

économiques et financiers de l’électrification rurale sont

relativement récentes. En effet, jusqu’à la fin des années

1990, ni les décideurs nationaux, ni les bailleurs de fonds

ne s’interrogeaient sur les coûts et les bénéfices de l’élec-

trification rurale, cette activité étant considérée dans les

politiques nationales comme une infrastructure nécessaire

au développement et un service public qui devait être

accessible au plus grand nombre, dont les retombées

socioéconomiques bénéfiques étaient évidentes, et qui

devait donc être généralisé. On ne trouve ainsi que peu

d’études d’envergure sur le sujet20 , la question étant le

plus souvent abordée sous l’angle de l’intensité capitalis-

tique des investissements et des bénéfices attendus (diffi-

ciles à évaluer). Ce n’est que récemment que l’anticipation

de l’impact sur la pauvreté est devenue un critère d’évalua-

tion à moyen et long terme des actions de développement

et des programmes d’électrification. L’indice de développe-

ment humain (IDH) ou les OMD, quant à eux, ne tiennent

pas directement compte de l’accès à l’énergie. Dès lors, la

problématique de l’accès à l’énergie tourne autour de

plusieurs questions : les bénéfices engendrés par les

1.3 Analyse et enseignements des impacts des programmes passés

20 Banque mondiale et Fondation de l’Institut politique de développement et de managementde la recherche aux Philippines, 2001 - Banque Mondiale et Agence suédoise de développe-ment international, 2005 - ONE/AFD, 2003 - IEG-World Bank, 2008

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

29

Enquêtes et collecte de données

Définition pôles de développement (Régions)

Construction de la «vision» nationale

Réalisation des plans d’électrification (Process)

Restitution / validation (Régions)

Animation Comité National de Coordination

Formation aux outils / démarche

programmes d’accès en zones rurales et urbaines sont-ils

quantifiables et si oui, comment ? L’accès à l’électricité est-

il un catalyseur de croissance économique pour les zones

rurales d’Afrique subsaharienne ? L’électrification rurale

et/ou les programmes d’accès (urbains et ruraux) doivent-

ils être érigés en priorité nationale ?

1.3.1 Un accès difficile et coûteux mais une

réelle capacité à payer

Le milieu « rural pauvre » est peu attractif pour les opéra-

teurs, qui privilégient naturellement la desserte aux clients

les plus « rentables », notamment ceux dont la desserte est

la moins coûteuse (car plus proche du réseau) et les plus

gros consommateurs. Ils adoptent ainsi une approche

extensive de l’électrification, ne cherchant que rarement

– et c’est une préoccupation très récente – à densifier la

clientèle (pauvre) autour d’une infrastructure existante. On

observe ainsi souvent des réseaux qui passent à côté de

clients « pauvres » pour aller chercher un « gros client ». On

peut s’interroger sur la logique du distributeur qui aurait

peut-être intérêt à densifier pour mieux amortir son investis-

sement. De plus, dans une communauté reliée au réseau,

on constate que de nombreux foyers ne sont pas en mesu-

re de supporter le paiement des coûts de raccordement, qui

s’élèvent parfois à des montants rédhibitoires de 100 à 300

USD, difficiles à mobiliser en une seule fois (cf. carte 4), en

dépit d’une capacité avérée à payer la facture mensuelle

d’électricité. En effet, les populations non raccordées au

réseau paient, à utilisation équivalente d’électricité fournie à

partir du kérosène, de piles et batteries rechargeables, un

prix de l’énergie qui représente plusieurs fois celui des

populations raccordées, tant en valeur absolue qu’en

équivalent kWh. Ce prix s’élève assez communément de

3 à 10 USD/mois. Les dépenses énergétiques représentent

un pourcentage bien plus élevé des revenus des popula-

tions d’Afrique subsaharienne que des populations des

pays de l’OCDE. C’est ainsi que, paradoxalement, les taux

de connexion dans des zones électrifiées ont tendance à

« saturer » assez rapidement.

Carte 4. Population vivant avec mois de 1 dollar par jour et par personne, Afrique

Source : PNUD (2008).

Lecture de la carte. En Afrique subsaharienne, environ 300 millions de personnes (sur 680 millions) vivent avec l’équi-

valent d’un dollar par jour. Ce pourcentage est supérieur à 60 % dans sept pays parmi les 31 renseignés ; il est le plus

faible en Afrique du Sud, où il atteint pourtant déjà 10 %. Ainsi, sur la base d’un tarif de 0,12 USD/kWh (domestique,

sur le réseau interconnecté), on obtient pour 100 kWh de consommation mensuelle une facture de 12 USD, soit 9 %

du revenu de cinq personnes (un foyer). Ce tarif moyen est souvent supérieur à 0,50 USD en zone rurale.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

30

<15

15...30

30...45

70...150

>150

1.3.2 Evolution des dépenses des ménages :

une consommation plus importante à des prix

unitaires plus faibles

Dès lors que les ménages ont les moyens de se raccorder,

l’accès à l’électricité favorise, dans un premier temps, la

substitution quasi totale des usages immédiatement

concernés (piles, bougies, pétrole lampant, recharges de

batteries) et, donc, une réduction des dépenses énergé-

tiques. Dans un second temps, les classes moyennes et

pauvres voient leurs dépenses d’électricité augmenter en

raison d’un plus large recours à l’utilisation d’équipements

électriques : le taux d’équipement en téléviseur est multiplié

par deux la première année d’électrification, alors que l’on

constate une diminution des dépenses énergétiques pour

les catégories riches, déjà équipées (cf. graphique 3).

Graphique 3. Les impacts de l’électrification rurale – l’exemple du Maroc (2010)

NE : Non électrifié, V : Village, PV : Photovoltaïque

1.3.3 Un avantage certain pour le petit

commerce et l’artisanat préalablement

utilisateurs d’électricité

Les ménages qui voient leurs revenus augmenter sont ceux

qui possèdent déjà un capital productif qui se trouve valori-

sé par l’utilisation de l’électricité. Ainsi, 70 % des activités

commerciales constatent un accroissement de leur chiffre

d’affaires (Groupe indépendant d’évaluation – IEG, Banque

mondiale, 2008), et l’impact est bien entendu conséquent

sur le développement des activités artisanales nécessitant

l’utilisation d’appareils électriques productifs. En revanche,

l’artisanat traditionnel est peu touché. Pour ce type d’activi-

tés, l’impact est perçu notamment en termes de rallonge-

ment du temps de travail, qui permet une amélioration de

leur niveau de productivité. Une revue des études de cas ne

montre pas non plus d’effets d’industrialisation significatifs.

En effet, pour les petits entrepreneurs déjà équipés, chan-

ger leur outil de production implique un investissement sup-

plémentaire qui, en général, ne se fait pas avant que le

renouvellement ne soit nécessaire.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

31

Electrifié NE dans VE NE dans V NE NE dans V PV PV dans V PV Total

Source : Axenne.

Gaz pour réfrigérateur

Recharge de batterie pour TV

Piles pour radio

Bougies

Piles pour lampe torche

Gaz pour lampe

Pétrole pour lampe

C’est dans le domaine social que les projets d’électrification

rurale ont un impact significatif : sur la santé, l’éducation,

les migrations et sur la condition des femmes.

► Les impacts sur la santé sont principalement liés au

respect de la chaîne du froid (vaccins, médicaments) et à

l’extension des horaires d’ouverture des centres de santé

(particulièrement pour les accouchements)21. Il convient

également de mentionner d’autres bénéfices liés (i) à

l’amélioration des connaissances sanitaires par le

développement de l’accès à l’information télévisuelle, et (ii)

à l’amélioration des conditions sanitaires de stockage de la

nourriture grâce à la réfrigération. On observe également

une corrélation positive avec la disponibilité en eau potable

tout au long de l’année, élément fondamental de santé, en

particulier des enfants, dans des contextes où les diarrhées

et autres maladies générées par l’eau demeurent encore

aujourd’hui une cause essentielle de mortalité infantile.

► Les impacts sur l’éducation sont principalement liés à

l’amélioration de la qualité de l’accueil et de l’enseignement :

un bon enseignant est plus enclin à accepter un poste dans

une zone électrifiée que dans une zone qui ne l’est pas. De

même, les enfants vivant dans un foyer électrifié ont géné-

ralement un meilleur niveau scolaire car ils peuvent étudier

le soir, après l’école22.

► L’impact de l’électrification sur les flux migratoires et

l’exode rural est beaucoup plus difficile à apprécier.

Différentes études ont cependant montré qu’elle permettait

de réduire l’émigration et l’exode vers les grandes villes, et

d’augmenter l’attractivité des centres secondaires équipés

(qualifiés de ruraux ou non). Elle renforce également le

sentiment de sécurité dans les villages et permet une

meilleure cohésion sociale grâce à l’éclairage public.

1.3.4 Des impacts sociaux et d’aménagement significatifs

Tableau 4. Impacts de l’électrification sur la santé – l’exemple du Maroc (2010)

Village non électrifié Village électrifié

Réfrigérateurs électrifiés 50 % 100 %

Conservation de vaccins 60 % 95 %

Passage régulier d’un médecin 40 % 85 %

Pratique d’accouchements médicalisés 0 % 42 %

Source : Axenne.

21 Pour rappel, la réduction des mortalités infantile et maternelle figure dans les quatrième etcinquième OMD.22 Source : étude ESMAP Philippines (2003)

Encadré 3. Impact de l’électrification sur les flux migratoires et l’exode rural

En raison des critères de sélection généralement appliqués, la mise en œuvre du PERG aurait facilité le regroupement des populations. La

part de l'habitat dispersé aurait été réduite de 35 à 28 %, et celle de l'habitat éclaté, divisée par trois, passant de 6 à 2 %. Les programmes

d'électrification rurale auraient ainsi eu un impact important sur la réorganisation spatiale des villages. Dans une certaine mesure, avec sa

politique de construction de « dorsales », l'ONE encourage ce réaménagement de l'espace et ce regroupement de populations à proximité

du réseau interconnecté.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

32

► L’impact de l’électrification sur les femmes est lié au fait

qu’elles sont les premières bénéficiaires du développement

du petit commerce. Au Ghana, des groupes de femmes se

sont organisés pour fabriquer et vendre des repas sur les

lieux de fréquentation de la télévision communautaire. En

Afrique du Sud, des groupes de femmes gèrent et dévelop-

pent une activité de location d’espaces réfrigérés.

L’électrification permet un allongement de la durée journa-

lière de travail des femmes et favorise donc, dans certains

cas, leur émancipation économique.

► Plus largement, l’électrification engendre une véritable

transformation sociale liée à la connectivité, et à l’accès à

l’information et à la formation grâce à l’audiovisuel. La

diffusion massive des moyens de communication audiovi-

suels, facilitée par l’électrification, permet d’atteindre plus

largement le monde rural ; des programmes éducatifs

permettent aux populations d’acquérir, à travers l’image,

une connaissance plus large du monde. L’explosion des

cybercafés et de la connectivité par Internet (à des niveaux

de pénétration inattendus dans les zones rurales) engendre

des transformations que l’on a encore du mal à appréhender.

1.3.5 Quelle rentabilité économique pour laNation ?

Tenter de définir un principe général ou des règles à propos

des impacts quantitatifs et qualitatifs des programmes

d’électrification (rurale) est difficile : la plupart du temps, les

approches coûts et bénéfices sont fonction d’un contexte

spécifique et leur évaluation, puis traduction en « équiva-

lent monétaire », est un exercice coûteux et quelque peu

subjectif.

Dans le cadre du programme marocain d’électrification

rurale, le taux de rentabilité économique global est de

l’ordre de 8 %, en retenant les paramètres suivants (étude

PERG 2004) :

• le taux de croissance de la consommation individuelle et

les dynamiques d’équipement ;

• les dépenses d’équipement induites et leur rentabilité pour

le consommateur ;

• la rentabilité financière du programme (opérateur

électrique).

Ce taux passe à environ 20 % en intégrant les externalités

positives (plus difficiles à chiffrer) :

• les avantages sociaux en termes de santé, éducation, et

de satisfaction des usagers ;

• les avantages environnementaux ;

• les avantages économiques locaux en termes de création

d’emplois ;

• les avantages économiques globaux (macroscopiques) en

termes de création d’emplois par le processus d’électrification.

Ces taux de rentabilité économique, que l’on retrouve dans

d’autres pays (cf. tableau 5), conjugués avec une volonté à

payer supérieure au prix de l’électricité, ne suffisent para-

doxalement pas à mobiliser les investissements requis pour

la mise en œuvre de programmes d’envergure.

Tableau 5. Taux de rentabilité économique de neuf programmes d’électrification rurale

Taux de rentabilité économique des composants d'électrification rurale

Pays Projet Extension de réseau Décentralisé collectif Décentralisé individuel

Cambodge Rural Electrification and Transmission 19,80 22,30 11

Honduras Rural Infrastructure Project 33 20 30

Inde Renewable Resources Development 14 41

Laos Southern Provinces Rural Electrification 60,50 26

Mozambique Energy reform and acces 22,70 14,50

Nicaragua Rural Electrification 40 23 27

Pérou Rural Electrification Project 22,60 23,80

Philippines Rural Power Project 26,40 21,50 48

Sri Lanka Renewable energy for Rural Energy 15,20 10,90

Source : IEG (2008).

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

33

La ressource n’est pas forcément disponible : un pays qui

a encore, en milieu industriel et urbain aisé, un faible taux

d’accès à l’électricité, une qualité de service médiocre et

un besoin de financement récurrent pour couvrir les coûts

d’exploitation et d’entretien, pourra très difficilement faire

de l’accès en zones rurales et périurbaines une priorité

nationale. La réussite d’une politique nationale d’accès à

l’électricité en milieu rural et périurbain (accès pour tous,

avec de fortes considérations sociales) dépend fortement

de la situation du secteur de l’électricité en milieu urbain

et industriel.

Or, dans la quasi-totalité des pays d’Afrique

subsaharienne, l’Etat – avec l’appui du secteur privé – ne

parvient pas à offrir à l’industrie et aux consommateurs

aisés l’énergie électrique dont ils ont besoin ; on constate

même une tendance à une dégradation du service et à

une augmentation des coupures.

Cette question nous ramène ainsi au choix de la population

cible et à la question de la vision. Dans plusieurs projets

d’électrification rurale, l’objectif consistant à atteindre « les

plus pauvres des plus pauvres »23 a conduit à l’échec, à

cause de l’insuffisante solvabilité des bénéficiaires et du trop

faible impact économique de l’électricité, incapable d’amélio-

rer cette solvabilité à court ou moyen terme. Ce débat sur le

choix des populations cibles est loin d’être clos ; il est systé-

matique dans les approches Output-Based Aid (OBA). Dans

les analyses effectuées à l’échelle régionale ou nationale, il

est devenu courant d’identifier les « gros consommateurs »

potentiels qui pourraient permettre d’assurer un niveau mini-

mum de revenus à l’opérateur, et ceux qui apportent un

impact économique et social significatif. Il s’avère toutefois

souvent que hôpital, l’administration, l’école, etc. sont les

plus mauvais payeurs ; or, desservir les industriels exige de

pouvoir offrir une certaine qualité de service.

1.4 Des dynamiques d’accès impactées par les réformes sectorielles

Au milieu des années 1990, face au constat de

l’inefficacité générale des compagnies d’électricité du

secteur public, de nombreuses réformes ont été lancées.

Pour le sujet qui nous intéresse, sur plus de 40 pays

d’Afrique subsaharienne, près de la moitié se sont engagés

dans la création d’une agence et/ou d’un fonds d’électrifica-

tion rurale (AER, FER). Sur la vingtaine de pays ayant opté

pour une organisation du secteur électrique partagée entre

une compagnie d’électricité (nationale ou privatisée) et un

FER/AER la quasi-totalité a bénéficié d’un appui de la

Banque mondiale pour sa mise en place. Ainsi, un modèle

institutionnel a émergé des différentes initiatives dont le

point focal est cette AER et/ou ce FER, chargé(e) selon les

cas, de concevoir, développer et exploiter des systèmes

électriques en milieux rural et semi urbain.

Leur action s’inscrit dans le cadre d’un « périmètre »

d’électrification rurale et semi ou péri urbaine aux contours

mal définis, le plus souvent simplement juxtaposé à celui

des systèmes électriques urbains. Ceci a pour

conséquence de rendre difficile la nécessaire coordination

de la fonction de planification des deux secteurs, la

recherche de synergies et d’une efficience globale – qui

devraient être de la responsabilité d’un ministère fort. Pour

autant, ces deux périmètres régis par des règlementations

(différentes ou communes) connaissent des évolutions

respectives qui influent les unes sur les autres (extension

du réseau, domaine réservé exclusivement au « hors

concession », etc.). Ces évolutions et leur interface (tarif de

rachat et de revente au réseau, indemnisation des opéra-

teurs/investisseurs en cas d’extension de la « Concession

nationale ») constituent des éléments clés de la cohérence

des politiques nationales d’extension de l’accès au service

électrique. Mal clarifiés, ils peuvent être un blocage à

l’extension du service.

Il y a lieu, aujourd’hui, de s’interroger sur la capacité de ce

modèle institutionnel à accélérer ou à favoriser l’accès aux

services électriques, qui n’a pas significativement évolué

dans le passé récent, que ce soit en termes d’accès des

populations dans les zones électrifiées ou, en termes de

pourcentage, des localités couvertes par le réseau.

23 Objectif jugé comme prioritaire par les bailleurs de fonds dans le cadre de la stratégiemondiale de lutte contre la pauvreté.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

34

1.4.1 Constat du rôle clé d’un opérateur central,

« le champion » public

On observe que les pays africains ayant conservé leur

société nationale d’électricité historique présentent aujour-

d’hui les taux d’accès à l’électricité les plus élevés : Afrique

du Sud : 70 % ; Côte d’Ivoire : 39 % ; Ghana : 60 % (82 %

en zone urbaine et 29 % en zones rurales). L’équilibre entre

zones rentables (i.e. villes et côtes densément peuplées) et

zones peu rentables (i.e. rurales) semble facilité par une

gestion globale unique.

L’organisation institutionnelle du Maroc et la Tunisie, qui ont

aujourd’hui électrifié tout leur territoire, partagent les

caractéristiques suivantes :

• un opérateur unique qui a pendant longtemps constitué

l’instrument privilégié de développement de l’accès à

l’électricité ;

• une centralisation/déconcentration sans faille de l’admi-

nistration ;

• une approche, jusqu’à un passé très récent, strictement

publique ;

• une très forte volonté politique de développer l’électrifica-

tion par extension du réseau de l’opérateur unique ou domi-

nant, mais aussi par le recours aux autres modes d’électri-

fication ;

• une absence de distinguo entre l’urbain et le rural, l’en-

semble étant inclus dans le périmètre d’intervention de

l’opérateur dominant ;

• l’absence, pendant longtemps, d’instrument de formalisa-

tion d’une stratégie sectorielle et de régulateur.

La volonté politique et la mobilisation de ressources natio-

nales ont, dans ces deux pays, joué un rôle fondamental,

relayées et mises en œuvre par un opérateur public unique

relativement efficace.

Pendant de nombreuses années, des pays à développe-

ment économique intermédiaire, tels le Cameroun ou la

Côte d’Ivoire, ont adopté la même stratégie que le Maroc et

la Tunisie. Les pays n’ont pas fait de distinction entre

l’urbain et le rural, même si l’opérateur de distribution

dispose d’un périmètre d’intervention bien défini et s’ouvre

à l’intervention alternative des collectivités territoriales sur

le financement des infrastructures. L’évolution s’est ensuite

infléchie vers la libéralisation progressive du secteur et les

adaptations institutionnelles qui ont découlé de cette libéra-

lisation (un régulateur, des privatisations, des sociétés de

patrimoine, une AER). Si ces situations comportent des

dynamiques certaines, l’absence d’un encadrement rigou-

reux et d’un cadre réglementaire clair, en d’autres termes

d’un pilote légitime, conduit à des situations de blocage.

1.4.2 Un « trop plein » d’acteurs institutionnels

aussi inefficace que leur absence

Dans un certain nombre de cas, les environnements institu-

tionnels sont sans doute trop « riches » en intervenants, ce

qui dénote une absence de décantation et/ou de simplifica-

tion post-réforme sectorielle.

Ainsi la Mauritanie a été, sur le plan institutionnel, un « bon

élève » des bailleurs de fonds. Le secteur de l’électricité y

dispose d’une lettre de politique sectorielle, d’un code de

l’électricité prônant une ouverture complète du secteur,

d’un ministère affichant un organigramme assez exemplai-

re, d’un opérateur public que l’on a (vainement) tenté de

privatiser, d’une autorité de régulation, d’une AER et d’une

agence pour l’accès universel aux services de base

(APAUS). On constate cependant un décalage considé-

rable entre les textes, les faits, l’existence et le fonctionne-

ment des institutions. Le concept d’APAUS retenu aurait dû

entrainer tout à la fois une optimisation de la coordination,

de la création et de la gestion des services de base en

même temps qu’une recherche visant une réduction systé-

matique des coûts (quant à l’utilisation des énergies

domestiques et renouvelables, au choix des investisse-

ments à réaliser et à la gestion des systèmes). Or, dans les

faits, le dispositif entraîne une concurrence avec les

agences sectorielles – de l’eau ou de l’électrification rurale –

pour la réalisation de projets et l’appropriation budgétaire.

1.4.3 Une adéquation nécessaire entre le

marché de l’électricité rural et le nombre, la

taille et l’efficacité des opérateurs

Le Sénégal, exemplaire dans la démarche conceptuelle,

dispose d’un arsenal institutionnel qui a su prendre en

compte l’exhaustivité d’une vision prospective – les lettres

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

35

de politique sectorielles; les leçons de tentatives infruc-

tueuses de réformes – privatisation de la Société nationale

d’électricité du Sénégal (SENELEC) ; les fonctions de la

Commission de régulation du secteur de l’électricité, de

plus en plus crédible; l’existence d’un opérateur dominant

(SENELEC) ; le rôle d’une AER qui s’efforce de développer

une démarche de partenariat public-privé (PPP) et dont le

dispositif intègre à la fois les mécanismes et les outils

économiques, financiers, juridiques et fiscaux nécessaires

à une attraction renforcée des opérateurs pour le sous-

secteur, SENELEC, PPP.

Des études menées sur une période de 10 ans ont conduit

à diminuer le nombre de concessions de 20 à 11 pour

qu’elles puissent présenter un certain niveau de rentabilité.

Peu de candidats se sont montrés intéressés par le premier

appel d’offres de concession, remporté par la société

nationale marocaine, l’ONE.

On doit dès lors s’interroger sur l’existence d’un « marché »

d’opérateurs disposant de la taille et des moyens critiques

pour soumissionner. Promotion insuffisante du sous

secteur et/ou absence d’un « champion » ? Attente trop

importante quant à l’intérêt et la capacité du secteur privé à

prendre des risques, notamment en matière d’investisse-

ments, sur un secteur financièrement sinistré ?

A l’inverse, les schémas burkinabè et malien privilégient les

petits opérateurs nationaux villageois, ce qui nécessite en

contrepartie de très fortes subventions à l’investissement

(environ 80 %), ces opérateurs se situant dans un complé-

ment de démarche globale. En effet, si plus de 60 projets

de candidature spontanée d’électrification rurale (PCASER)

financés par l’Agence malienne pour le développement de

l'énergie domestique et l'électrification rurale (AMADER)

desservent les zones rurales maliennes, leur taille unitaire

est de moins de 250 kW et ils ne sauraient, seuls, résoudre

la question de l’accès à l’électricité sur l’ensemble du terri-

toire national.

Si la démarche institutionnelle est prospective et peut être

ambitieuse, elle doit cependant être le fruit d’une recherche

d’un optimum entre la réalité du secteur, ses moyens et ses

ressources, ses capacités d’évolution et les objectifs qui lui

sont assignés. De plus, la démarche doit être exhaustive

quant à l’affectation des rôles et des responsabilités et doit

permettre d’assurer l’exercice optimal des fonctions

nécessaires au développement et à la bonne marche du

sous-secteur.

1.4.4 Une sophistication de la structure

n’assure pas forcément les trois fonctions :

financement, régulation et industrielle

Dans la majorité des pays africains, les principales caracté-

ristiques de l’organisation de l’électrification rurale et de

l’accès post-réforme sont :

• un repositionnement de l’Etat sur ses fonctions

régaliennes : réglementation, promotion, protection de

l’intérêt général, création de la fonction de régulation ;

• les AER, et une reconnaissance timide de ce besoin de

subvention croisée ;

• une segmentation du système électrique pour permettre

l’introduction de la concurrence, notamment sur la produc-

tion ;

• un accès des entreprises privées à ces activités sous

réserve de l’obtention d’autorisations, de licences ou de

concessions, et de leur existence réelle.

Malheureusement, la création de structures pour l’électrifi-

cation n’a souvent pas été accompagnée, ni par les

politiques nationales, ni par une dotation de ressources

financières et humaines qui permette réellement d’atteindre

les objectifs qui leur étaient fixés.

Les règles du jeu sont trop souvent mal définies et les

moyens trop faibles pour entraîner un développement

conséquent. Ces agences peuvent jouer plusieurs rôles :

projet pilote d’électrification décentralisée, appel d’offre à

gérer des concessions, incitateur pour les opérateurs pri-

vés souhaitant investir dans un projet d’électrification

décentralisée, planification de l’extension du réseau

(Association des énergies renouvelables – ADER, à

Madagascar) éventuellement en finançant ce volet.

On constate que la multiplication des structures, en

préalable à des réalisations significatives, aboutit à une

dispersion des compétences et à une concurrence entre

institutions pour occuper des responsabilités « frontières ».

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

36

Cette concurrence ne permet pas de réunir les moyens

humains, techniques et politiques nécessaires pour

atteindre l’objectif commun : mener des réalisations

ambitieuses tout en s’assurant que les fonctions

nécessaires pour atteindre les objectifs des programmes

d’accès soient assurées (fonction de financement,

industrielle et de régulation).

1.5 Etablir des prérogatives claires pour chacun des acteurs

Aboutir à des réalisations effectives nécessite une cohéren-

ce de la politique nationale d’accès à l’électricité avec l’en-

vironnement institutionnel et réglementaire qui l’accom-

pagne (fonction de régulation). Il s’agit donc de disposer

(i) d’une réelle volonté politique de soutenir les projets

d’électrification et d’en assurer la pérennité, (ii) d’orienta-

tions économiques claires et de moyens financiers suffi-

sants (fonction de financement), (iii) ainsi que des struc-

tures capables d’assurer la fourniture, l’installation et l’opé-

ration des ouvrages (fonction industrielle).

1.5.1 Financement de l’accès : comment

mobiliser les fonds nécessaires pour atteindre

les objectifs politiques ?

Etant donné leurs niveaux de rentabilité et leurs temps de

retour, les projets d’électrification, en particulier rurale,

nécessitent l’apport de subventions publiques. On

considère que 50 % du financement de l’électrification

rurale en France s’est fait sous forme de subvention. Si il y

a une volonté politique de desservir les populations rurales

et périurbaines, la fonction de financement doit être réflé-

chie avec lucidité, et en tenant compte de différents

paramètres :

- le profil des investissements : ils sont certes économique-

ment rentables, mais sur le long terme (au minimum au

bout de 10 ou 30 ans). Les risques peuvent être non négli-

geables, liés d’une part au pouvoir d’achat des populations

(pauvres) et, d’autre part, à la connaissance des technolo-

gies de production ;

- il est évidemment illusoire d’attendre d’un investisseur

privé qu’il s’implique dans un tel investissement à long

terme ;

- les montants nécessaires pour équiper un territoire sont

très importants, et exigent une mobilisation très significati-

ve de ressources nationales, qui pourront ensuite faire

levier sur des financements internationaux. A l’échelle du

continent, ce n’est certainement pas à raison de projets de

quelques dizaines de millions d’euros de dons que l’on

résoudra la question de l’accès pour le plus grand nombre.

Comme l’illustrent les montants mobilisés au Maroc au

Kenya ou au Ghana (cf. encadré 4), il faut souligner l’impor-

tance historique (i) des montants en jeu, qui relèvent d’un

vrai choix politique en matière d’allocation des ressources

nationales, et (ii) du rôle central de la compagnie nationale,

qui agit à la fois en tant que société d’électricité (qui a la

réelle capacité technique et organisationnelle de réaliser un

programme d’une telle envergure) et qui présente un bilan

et un compte de résultat qui lui permet d’être un emprunteur

– certes public et souvent avec la garantie de l’Etat – sur le

long terme.

Force est de constater que les pays présentant une organi-

sation « post réformes » (i.e. la large majorité des pays

d’Afrique subsaharienne, dotés maintenant de fonds d’élec-

trification rurale) sont dans des situations « non abouties »

en matière de mécanismes de financement. En général,

ces « fonds » ne sont que des comptes par lesquels transi-

tent les maigres subventions recueillies au niveau de la

coopération internationale.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

37

Si la création de fonds spécialisés peut constituer une

étape importante de la pérennisation des ressources

nécessaires au développement et à la consolidation du

sous-secteur, il est aujourd’hui avéré que la taille de ces

fonds et le montant de leurs ressources sont trop

modestes, et leurs sources et leurs modes de financement

trop aléatoires. Faire de ces fonds des établissements

financiers (droit de prêter et d’emprunter) spécialisés,

élargir leur domaine d’action aux garanties d’un certain

nombre d’opérations et aux financements de petits opéra-

teurs locaux (qui ne pourraient, sans l’intervention de ce

fonds, accéder aux concours des banques commerciales)

sont des fonctions de financement qui restent souvent à

remplir.

Encadré 4. La mobilisation de financements pour l’électrification d’un territoire – exemples du Maroc et du Ghana

Le Maroc, qui compte 32,2 millions d’habitants, a réussi l’électrification quasi globale de son territoire (plus de 90 % des 30 000 localités),

en l’espace de 15 ans. Le budget engagé à fin 2008 était de l’ordre de 1 770 M EUR, dont 53 % en mobilisation de fonds nationaux (fonds

propres, FP) et le solde en prêts concessionnels à moyen/long termes (47 %). Concernant la part nationale, 55 % a été mobilisée par l’ONE

(sur ses fonds propres), 20 % par les budgets des communes et 25 % en contribution des usagers. Ces sommes – 230 EUR/connexion pour

les foyers et 190 EUR/connexion pour les communes – peuvent bénéficier d’un versement échelonné accordé par l’ONE.

Au Ghana, pays de 22 millions d’habitants, une aide financière importante et continue de la Banque mondiale (IDA), complétée par le

soutien de partenaires bilatéraux24, a permis au pays de passer d’un taux d’électrification de l’ordre de 15 % en 1989 à 60 % en 2009. Le

budget consacré à l’électrification rurale au cours de la dernière décennie est de l’ordre de 2 Md USD, avec une participation des finance-

ments nationaux et locaux de l’ordre de 15 %. Dans le cadre du programme autonome d’électrification rurale (Ghana's Self-Help

Electrification Programme, SHEP) piloté par le ministère de l’Energie (avec le soutien technique de la société d’électricité du Ghana -

Electricity Company of Ghana, ECG), l’objectif est d’atteindre un taux d’électrification de 80 % en 2010 et de garantir pour toutes les

communautés (4 220 villages de plus de 500 habitants) un approvisionnement en électricité à l’horizon 2015. Le coût moyen par foyer est

de l’ordre de 250 EUR (avec possibilité d’échelonner les paiements).

Graphique 4. Mobiliser des fonds au sein d’une compagnie d’électricité: exemple de l’ONE, Maroc

Source : auteurs.

24 Allemagne, Commission européenne, Espagne, Etats-Unis, France, Italie, Royaume-Uniet Suisse.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

38

FP

53%

KFW

1%

AFD

14%

BID

8%

JBIC

8%

BEI

9%

FADES

4%

FK

3%

Notons ici l’évolution du rôle des collectivités locales qui

jouent un rôle central dans des pays comme la France, où

elles demeurent propriétaires des réseaux de distribution :

ces entités bénéficient de responsabilités croissantes liées,

notamment, au mouvement de décentralisation administra-

tive qui gagne de nombreux pays en Afrique. En outre, de

plus en plus de programmes d'électrification intègrent des

composantes de promotion des usages productifs de l'élec-

tricité (au Burkina ou au Sénégal, par exemple) ; celle-ci

apparaît sans doute comme l’une des nouvelles priorités

des secteurs électriques en développement. Elle requiert

un appui public qui peut être porté par la collectivité locale,

dont la responsabilité est, dans ce cas, d'associer, dans le

cadre de partenariats innovants, des acteurs privés aux

intérêts communs : l'usager rural, le distributeur

d'électricité, l'équipementier électrique et le partenaire

financier. On l’a vu, les collectivités locales ont joué un rôle

central dans le cas du PERG Marocain, et historiquement

en France, où elles demeurent propriétaires des réseaux

de distribution dont elles confient l’opération à un

concessionnaire (EDF).

1.5.2 Régulation économique et financière :

politique tarifaire et cadre contractuel pour

mobiliser les acteurs privés

Au sein de ce thème très « général » de régulation, on peut

intégrer des thématiques très différentes les unes des

autres :

• les mécanismes de révision, le suivi-évaluation, le

contrôle, les sanctions, le règlement des différents dans

leurs aspects juridiques, techniques et économiques ;

• l’adaptation de la qualité du service à la demande en

zones rurales et, donc, le recours à des normes et des

standards techniques, ainsi que des pratiques appropriées,

déterminant pour optimiser les coûts d’investissement

(à hauteur du tiers du montant de l’investissement de distri-

bution ; cette dernière thématique sera traitée dans la

partie technique) ;

• le choix, la formation, les contrôles (et, donc, les sanc-

tions) de la structure en charge de la régulation ;

Force est de constater que les pays qui ont réussi l’électri-

fication de leur territoire ne se sont engagés dans la

création d’une agence de régulation qu’une fois une solide

infrastructure électrique en place. Ce n’est qu’ensuite

qu’ont été abordées les questions liés à la multiplicité

d’opérateurs et à la fin du monopole intégré (production,

transport, distribution), nécessitant la mise en place de

règles (en France, en Inde, au Maroc, etc.). Souvent, dans

un premier temps, le ministère peut cumuler les fonctions

de planification et de formulation de politiques ainsi que de

régulation. La compagnie publique étant dominante, c’est

elle qui, de facto, édicte souvent les règles de la régulation.

Le fait de créer une agence de régulation ad hoc ne suffira

pas à garantir le bon fonctionnement de la régulation.

On examinera ci-après deux composantes : une première,

tenant de la viabilité économique et financière ; une secon-

de, liée au cadre contractuel nécessaire pour favoriser la

mobilisation des partenaires privés

►Questions relatives à la viabilité économique et financière

- Financement des investissements : la viabilité et la

pertinence du modèle par rapport aux ressources finan-

cières disponibles (générées par le service électrique lui-

même et externes à ce dernier) ; le niveau de subvention à

l’investissement qui permet une rentabilité suffisamment

attractive pour un opérateur privé (Notons par exemple le

cas du Cambodge, qui vient d’abandonner cette voie pour

opter pour des franchises sur investissements nationaux).

- Financement de l’exploitation, de l’entretien et de la main-

tenance des équipements (qui doivent, en principe, être

couverts par les recettes tarifaires) ; il s’avère quasiment

impossible dans des contextes dépendant du thermique.

- Subventions croisées entre différents clients, et donc caté-

gories tarifaires, mais au sein même du secteur électrique :

l’équilibre est-il possible, ou faut-il des ressources exté-

rieures au secteur ?

- Principes tarifaires : péréquation, i.e. peut-on se permettre

un même tarif pour une catégorie de clients où que l’on soit

sur le territoire, avec des coûts très différents, sans

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

39

déraisonnablement remettre en cause l’équilibre financier

du secteur ? La capacité à payer sur l’ensemble du territoi-

re n’est pas homogène et la différentiation tarifaire (soit un

tarif évoluant en fonction des coûts et des contextes) est

difficilement acceptable.

- Coût et prix de l’électricité : on observe une très grande

différence entre les pays dépendants du thermique (tels le

Burkina Faso) et ceux ayant une production hydroélec-

trique amortie (comme le Cameroun). Le prix de l’énergie

en Afrique subsaharienne est élevé, conformément aux

normes internationales. Le tarif moyen de la région à

augmenté, passant de 0,07 USD/kWh en 2001 à 0,13

USD/kWh en 2005, atteignant près de deux fois celui des

autres parties du monde en développement et un niveau

comparable à celui des pays à revenu élevé. Ces hausses

ont été particulièrement importantes dans les pays dépen-

dants de systèmes de production d'énergie diesel, où les

prix ont augmenté de 0,08 USD/kWh en moyenne, en

réaction à la flambée des prix du pétrole. Malgré ces

augmentions, les tarifs moyens dans ces pays restent

considérablement en-dessous des coûts moyens d'opéra-

tion, à 0,27 USD/kWh.

Les pays et compagnies d’électricité sont aujourd’hui néan-

moins rattrapés par la réalité économique : le Kenya,

dépendant majoritairement de l’hydroélectricité, connaît

actuellement une forte période de sécheresse, combinée à

un sous-investissement dans son outil de production. La

compagnie nationale, Kenya Power Lighting Corporation

KPLC, se trouve obligée de recourir à la production

thermique et d’en répercuter le surcoût dans le tarif. Ainsi,

le fuel surcharge actuellement appliqué, conduit à doubler

le tarif (d’environ 0,10 à 0,20 USD), d’un mois sur l’autre,

les consommateurs voyant ainsi leur facture augmenter

sans en être préalablement avertis. L’observation des

niveaux de tarifs pratiqués en Afrique subsaharienne

implique trois constats : ces tarifs sont en moyenne élevés ;

ils sont le reflet de coûts de production très variables (les

pays riches en hydrocarbures, comme le Nigeria, ou dispo-

sant d’une énergie hydroélectrique bon marché, comme la

Zambie, peuvent pratiquer des niveaux de tarifs faibles) ;

un pays ayant une structure de coûts de production (comme

Madagascar), malgré une forte motivation sociale (comme le

démontre la tranche tarifaire « sociale » à moins de 50 % du

tarif domestique classique) ne pourra jamais atteindre les

niveaux des pays disposant de ressources bon marché.

Graphique 5. Montant de la mobilisation financière pour un programme national d’accès à l’électricité : exemples

du Maroc et du Ghana

Source : auteurs.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

40

30

25

20

15

10

5

0

te d

’Iv

oir

e

Bu

rkin

a F

as

o

Ma

li

ga

l

Gh

an

a

Nig

eri

a

Tc

ha

d

Ca

me

rou

n

- Coût du branchement : le niveau des tarifs de l’électricité

reflète ces structures de coûts très contrastés et

l’expérience montre que la principale barrière à l’accès est

celle des coûts de branchement élevés, qui sont à la

charge des usagers : des coûts de 100 à 300 EUR s’obser-

vent couramment en Afrique subsaharienne : ils sont à

comparer aux dépenses énergétiques annuelles moyennes

qui sont en général inférieures à 50 EUR. Le « montage

financier » d’un projet ou d’un programme d’électrification

rurale (notamment le niveau de subvention retenu pour

couvrir ces frais de branchement) a une incidence très

importante sur le prix du service. En outre, un coût de bran-

chement excessif génère (i) des phénomènes de « toile

d’araignée », i.e. de branchements « pirates » (Bénin), (ii)

un faible taux de connexion (Bénin et Kenya) et (iii), lorsqu’il

est associé à une sous-optimisation technique, un ralentis-

sement de la densification de la clientèle (Kenya).

Les pays sérieusement engagés dans une densification

développent une réflexion sur le coût initial de connexion :

• subvention par l’intermédiaire d’un FER (Burkina Faso,

Ouganda, Sénégal, etc.) ;

• partage des coûts d’investissements (coûts de raccorde-

ment) entre les différents acteurs : foyers bénéficiaires,

autorités locales, gouvernement, opérateur privé, etc. ;

• emprunt auprès de banques commerciales, de banques

villageoises ou d’institutions de microfinance pour le finan-

cement du coût de connexion (Kenya) ;

• épargne préalable (République centrafricaine, RCA) ;

• fonds spécifique géré par la compagnie d’électricité, doté

par un bailleur de fonds et dédié au financement des coûts

de raccordement. Ce fonds, basé sur un mécanisme

revolving permet ainsi à l’usager d’étaler dans le temps le

paiement du coût de connexion ; la reconstitution du fonds

ainsi alimenté permet de multiplier les raccordements.

► Questions relatives au cadre contractuel, pour favoriser

la mobilisation des partenaires privés

Le secteur ne parvenant pas à dégager les ressources

nécessaires pour réaliser des programmes d’accès

exhaustifs, et l’Etat ne disposant pas des moyens

nécessaires, c’est vers les investisseurs privés que s’orien-

te la recherche de financement. L’instrument de régulation

financière peut largement varier suivant les contextes :

- système de cost plus : le concessionnaire déclare ses

coûts et une marge déterminée sur coût est autorisée ;

- régulation du retour sur investissement : le concessionnai-

re déclare ses coûts et les prix de vente sont autorisés en

fonction d’un taux de retour sur investissement (TRI) prédé-

terminé ;

- niveau des prix de vente autorisés : tarifs de vente dans

le cadre d’une concession de distribution ;

- termes du contrat de rachat d’énergie produite par l’unité

de génération25 : par le distributeur national, ou par de gros

clients situés à une certaine distance (ce qui nécessite la

permission de l’accès des tiers au réseau, ATR) ;

- participation aux investissements par un fonds public et

modalités (par branchement, par kW, etc.).

In fine, la question à laquelle le régulateur devra répondre

est celle du caractère suffisamment incitatif et transparent

du cadre pour attirer des investissements du secteur privé,

et dans quelles proportions : est-il réaliste d’envisager des

concessions d’électrification rurale (avec des investisse-

ments privés) ou faut-il plutôt envisager des franchises,

voire un affermage dans un premier temps, avec un inves-

tissement public et un gestionnaire privé ? Suit une autre

question, qui concerne la propriété de l’infrastructure, bien

souvent floue dans les programmes d’accès : elle devrait

certainement rester publique mais de multiples options sont

envisageables, depuis une société de patrimoine nationale

jusqu’à la municipalité locale.

► Questions relatives aux caractéristiques de la demande

Les caractéristiques de la demande et sa dynamique ont

évidemment un impact central sur la rentabilité économique

et financière des investissements de production et de distri-

bution. On observe généralement, en zones rurales

(et périurbaines), une demande majoritairement domes-

tique et faible par ménage, dominée par des besoins

d’audiovisuel et d’éclairage. Cette consommation est

caractérisée par une « pointe » très importante le soir,

parfois 3 à 4 fois supérieure à celle du matin, avec une

base de jour très faible. Le développement de cette

25 Ces termes doivent être différentiés, notamment dans les contextes caractérisés par unedisponibilité de ressources hydroélectriques et de biomasse, à temps de retour long ; il en estde même pour les conditions de raccordement, qui sont souvent contraignantes.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

41

demande de jour est central pour la rentabilité des

systèmes, afin de mieux rentabiliser les investissements à

travers un taux d’utilisation plus important. Qui plus est,

dans de telles zones, la demande sature bien souvent avec

des taux de connexion de l’ordre de 50 % des foyers, voire

moins en raison de coûts de branchement élevés. La

demande unitaire des foyers ne peut augmenter qu’avec

leur équipement en électroménager et, donc, l’accroisse-

ment de leurs revenus. L’augmentation des usages produc-

tifs et commerciaux, elle-même positivement corrélée avec

le développement économique et l’augmentation des

revenus, va de pair avec l’amélioration de la rentabilité des

programmes d’accès.

1.5.3 La fonction industrielle et de services :

quels opérateurs pour réaliser les programmes

d’accès ?

(Extrait d’un document de la GTZ) :

“(…) the efficiency / know how objective of Private Sector

Participation (PSP) deserves attention. If infrastructure sec-

tors are to benefit from the creativity, flexibility and efficien-

cy of private sector players, and if local private sector capa-

city and public sector governance are preventing success

on this account, then the aim for PSP translates into a need

for Private sector Development on local level. Developing a

functioning private sector in turn requires building capacity

on micro, meso as well as macro level. What’s more, if

improved efficiency, accountability and creativity are the pri-

mary goal of reform, then PSP would even include the

improvement of public utilities by applying private sector

based management best practices (covering issues such

as salary structure, transparent incentives, competition and

benchmarking).”

L’efficacité et/ou le savoir-faire de la participation du secteur

privé (PSP) mérite que l’on y prête attention. Si les secteurs

de l’infrastructure doivent bénéficier de la créativité, de la

flexibilité et de l’efficacité des acteurs du secteur privé, et si

c’est pour cette raison que la capacité du secteur privé local

et la gouvernance du secteur public en empêchent la réus-

site, alors le but de la PSP se traduit par un nécessaire

développement du secteur privé au niveau local.

Ceci nécessite, à son tour, un renforcement des capacités

aux niveaux micro, meso mais également macro. Enfin, si

les premiers objectifs de la réforme sont le renforcement de

l’efficacité, de la redevabilité et de la créativité, alors la PSP

devrait inclure l’amélioration de services publics via l’appli-

cation des “best practices” de gestion issues du privé

(concernant des domaines tels que la structure salariale,

la transparence des incentives, la compétition et le bench-

marking).

Le premier bilan tiré aujourd’hui des contrats de conces-

sions et/ou de privatisations mis en œuvre dans le secteur

de l’électricité urbaine est pour le moins mitigé. Les objec-

tifs minima à atteindre par les concessionnaires œuvrant

dans des zones rentables (en application des dispositions

des contrats de concession) devaient être de les obliger et

de les inciter à investir dans l’outil de production (et, donc,

de mobiliser des financements à relativement long terme)

et d’assurer la desserte des populations les plus pauvres,

en particulier en zones périurbaines. Or, dans la grande

majorité des cas, les concessionnaires n’ont pas atteint ces

objectifs. Le bilan révèle que le niveau d’investissement

réalisé est plus modeste que celui initialement prévu et que

les populations les plus démunies restent encore dans l’at-

tente d’un service sécurisé. En revanche les projets de type

Build Operate Transfer (BOT, de production pure) ou

Independent Power Producer (IPP, producteur indépen-

dant), dans lesquels l’investisseur privé négocie un contrat

de rachat d’énergie électrique avec la compagnie d’électri-

cité, connaissent un plus grand succès. On retrouve trois

opérateurs potentiels.

1. L’opérateur historique (compagnie nationale publique ou

privé) : suite à la vague des réformes du secteur, peu de

pays africains ont conservé leur système centralisé. Les

plus cités sont le Maroc (pour ses résultats d’électrification

exceptionnels ces dernières années), la Tunisie, le Kenya,

le Ghana (qui affichent un taux de couverture relativement

élevé) et, dans une certaine mesure, la Côte d’Ivoire, le

Gabon et le Cameroun. Dans ces pays, la société nationa-

le s’est souvent préoccupée de l’extension du réseau,

même dans les zones les plus reculées, en allouant une

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

42

part de son budget dans les projets d’électrification rurales

non rentables, financés en partie par des taxes sur les

consommations (partiellement par des apports de l’Etat ou

des collectivités locales). L’intensification, tant en zones

rurales que périurbaines, vient dans un second temps.

2. Les opérateurs privés : ils ont peu de raisons de s’inté-

resser à l’énergie en zone rurale, ce créneau étant peu ren-

table, à moins d’un fort taux de cofinancement par l’Etat, qui

permet une certaine rentabilité de la concession, générale-

ment mixte (production et distribution). Le territoire est alors

divisé (i) en plusieurs concessions géographiques, l’Etat

proposant chaque concession au plus offrant (Sénégal), et

(ii) en zones non électrifiées, rurales, où l’absence de ren-

tabilité oblige l’Etat à mettre en place une AER gérant un

FER. Ces deux organes (parfois fusionnés en un seul) sont

chargés de gérer et financer des projets qui sont étudiés au

cas par cas, financés selon les fonds disponibles et l’éven-

tuelle planification du ministère. C’est par exemple le cas des

PCASER, au Mali, où des petites et moyennes entreprises

(PME) prennent en concession un village donné, prenant en

charge la production d’électricité et la distribution, avec une

subvention à l’investissement de 75 % accordée par l’AER

(AMADER). Dans le cas de la Mauritanie, c’est l’AER qui, en

pratique, garde la responsabilité d’assurer elle-même la

maintenance des kits solaires ou groupes diesel.

3. Structures non gouvernementales : disposant d’une

grande expérience des milieux ruraux africains, ces entités

sont des opérateurs potentiels des zones à faibles revenus

et à consommation énergétique peu élevée. Les ONG ont,

de plus, de réelles capacités à définir des montages

organisationnels innovants et de s’appuyer sur des

partenariats locaux solides. On observe ainsi de plus en

plus, dans le domaine de la gestion de la distribution,

l’émergence de structures très locales, qu’il s’agisse de

revendeurs locaux ou de structures coopératives, qui opè-

rent tant en zones périurbaines que dans des villages. Par

ailleurs, si l’évolution de la fonction confirme une présence

de plus en plus régulière d’entreprises privées, notons que

leurs rôle et responsabilité varient. Cette variation est

directement liée à la réticence qu’ont les opérateurs publics

et les agences spécialisées à confier l’intégralité de la

gestion des systèmes électriques à des opérateurs privés.

Elle s’explique également, pour les petits systèmes et

réseaux, par le manque d’expérience et de capacité tech-

nique des entreprises candidates à la gestion de ces

systèmes. Avec le désengagement de la compagnie

nationale des géographies rurales, se pose la question du

développement du savoir-faire en ingénierie, supervision

des travaux indispensable pour maintenir une fourniture de

qualité et d’envergure nationale.

Schéma 1. Les opérateurs potentiels de l’accès à l’électricité

Source : auteurs.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

43

• Opérateur historique

→ Vente en gros→ Vente au détail

• Concessionnaire

→ Géographique→ Technologique

• Coopératives villageoises

• Collectivités locales

• Compagnies de services à l’énergie

(ESCO)

• Associations et ONG

• Revendeurs privés locaux de systèmes

autonomes

Electrification centralisée

Electrification décentralisée

Caractère primordial de la

maintenance

Extrait de ESMAP26 (2007)

“Today’s levels of energy services fail to meet the needs of

the poor. Worldwide, two billion people rely on traditional

biomass fuels for cooking and 1.6 billion people do not have

access to electricity. (…) This lack of access to quality ener-

gy services, especially electricity, is a situation which

entrenches poverty, constrains the delivery of social

services, limits opportunities for women and girls, and

erodes environmental sustainability at the local, national

and global levels. Ignoring the situation will undermine

economic growth and exacerbate the health and

environmental problems now experienced in many parts of

the world.”

Les niveaux de services énergétiques actuels ne satisfont

pas les besoins des pauvres. Dans le monde, 2 milliards

dépendent des bio combustibles traditionnels pour cuisiner

et 1,6 milliard n’ont pas accès à l’électricité. (…) Ce

manque d’accès à des services énergétiques de qualité,

surtout à l’électricité, est une situation qui aggrave la pau-

vreté, entrave la fourniture de services sociaux, limite les

opportunités pour les femmes et les filles, et détériore la

soutenabilité environnementale (qui freine la protection de

l’environnement) aux niveaux local, national et mondial.

Ignorer cette situation va ébranler la croissance écono-

mique et exacerber les problèmes actuellement rencontrés,

dans de nombreuses régions du mode, dans les secteurs

de la santé et de l’environnement.

La mise en place d’une infrastructure d’électrification rurale

est un enjeu central pour permettre le développement. Si

les cadres institutionnel et organisationnel nécessaires se

mettent peu à peu en place, de quelles options technolo-

giques disposons-nous aujourd’hui pour relever cet enjeu ?

2 Un continuum de solutions technico-économiques et organisationnelles

2.1 Cadrage technico-économique

2.1.1 Grande production centralisée ou

production répartie, évolution du coût des

énergies renouvelables

Compte tenu de la faible étendue des réseaux dans les

pays d’Afrique subsaharienne, un programme visant à

maximiser l’accès au service électrique peut, suivant les

contextes, aussi bien consister en :

1. l’extension et/ou le renforcement d’un réseau MT pour

atteindre des localités prioritaires. Pour pouvoir alimenter

ce réseau, encore faut-il qu’il y ait une production d’énergie

en quantité et qualité suffisantes et à un prix abordable ;

2. l’investissement dans une unité de production (renouve-

lable ou diesel) de 500 kW à quelques MW pour desservir

une région et, éventuellement, être raccordée au réseau

pour la vente d’excédents, que l’on appelle souvent « pro-

duction répartie » ;

26 Energy Sector Management Assistance Program.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

45

3. la création d’un réseau isolé avec sa production propre

(généralement en dessous de 500 kW) pour une petite

localité ou une grappe de localités (« réseaux villageois ») ;

4. la mise en place d’un parc d’unités PV, pico hydro,

petits moteurs, individuels ou reliant quelques familles, i.e.

« production individuelle répartie » (généralement en des-

sous de 5kW) ;

5. la densification des connexions au niveau de réseaux

existants.

Le paradigme technologique est en pleine évolution. Sur

les vastes territoires peu densément peuplés où vit encore

près de la moitié de la population africaine, étendre le

réseau, à partir de sources de production de plusieurs

dizaines, voire centaines, de MW est une option très capi-

talistique. Avec la baisse des coûts d’investissements, la

production locale (hydroélectricité, biomasse-électricité,

PV) offre de nouvelles perspectives : la taille unitaire des

capacités de production est plus petite, ce qui permet de

diminuer les investissements unitaires. Outre la question du

coût d’investissement initial, on se doit de tenir compte de

celui du kWh en intégrant les coûts variables de production

et de maintenance sur la durée de vie de l’équipement. En

effet, alors que la production thermique par groupes diesel

offre la très importante flexibilité de pouvoir être générée

sur le lieu de consommation (et donc de s’affranchir du coût

du transport de l’électricité et des pertes), les énergies

renouvelables doivent se rentabiliser dans un contexte plus

difficile :

- le potentiel de production (hydroélectricité, éolien, bio-

masse, etc.) doit être localisé à proximité de la demande

ou, à défaut, le coût supplémentaire de la ligne pour trans-

porter l’électricité devra être intégré ;

- la production est intermittente (heures du jour pour le

solaire ou fonction du vent pour l’éolien) et connait des

variations saisonnières : niveau d’ensoleillement, disponibi-

lité de la biomasse, hydrologie variable selon la saison (des

pluies / sèche). Celles-ci peuvent nécessiter la mise en

place du stockage, ou d’un back up de production diesel27.

Le coût de production de l’électricité va donc très largement

dépendre du facteur d’utilisation de l’ouvrage, i.e. son fac-

teur de charge. En effet, le coût du kWh produit va beau-

coup varier suivant qu’un investissement donné fonctionne

à pleine capacité (1 000 heures ou 7 000 heures par an).

Enfin, l’arbitrage entre production à partir d’énergies renou-

velables ou production thermique fossile (charbon ou fioul)

revient bien souvent à arbitrer entre un investissement très

capitalistique mais à faible coût de fonctionnement, et un

investissement peu coûteux mais lourd en charges

annuelles.

Bien souvent, les solutions les moins coûteuses en termes

de coût du kWh actualisé ne sont pas mises en œuvre, tant

pour des raisons de maîtrise des technologies que de

barrière à l’investissement initial. Par ailleurs, en raison du

retard accumulé dans les investissements, pris par l’urgen-

ce, bien des pays (même dotés de ressources naturelles et

donc de potentiels de production d’énergie peu coûteux)

n’ont d’autre choix que d’investir dans des ouvrages

rapides à mettre en service et à faible coût d’investissement

initial, même s’ils s’en trouvent très rapidement pénalisés

en termes de coût du kWh (cf. encadré 5).

Encadré 5. Conséquence du retard pris dans les investissements sur les coûts de production moyens – l’exemple du Cameroun

Au Cameroun, les centrales aujourd’hui existantes sur le Réseau interconnecté Sud (RIS) sont au nombre de neuf : deux centrales hydro-

électriques (Edéa et Song Loulou) et sept centrales thermiques (Limbé, Oyomabang 1 et 2, Logbada, Bassa 2 et 3 et Bafoussam). Alors que

de nombreuses centrales hydroélectriques de taille diverses ont été étudiées dans le passé, selon l’Agence de régulation du secteur élec-

trique (ARSEL), les centrales qui verront le jour à l’horizon 2010 sont les centrales thermiques de Dibamba (en service en 2009) et de Kribi

(en service en 2010), la centrale thermique au gaz de Kribi avec un contrat take or pay et la centrale thermique à fuel lourd de Dibamba.

Aucune donnée prévisionnelle n’est aujourd’hui disponible.

27 Groupe diesel de secours, que l’on démarre lorsque la production par énergies renouve-lables n’est pas possible.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

46

Soulignons ici l’évolution très rapide des technologies : le

kWh PV pour des unités de plus de 5 MW était annoncé par

les constructeurs en 2009 à moins de 0,25 EUR/kWh et aux

environs de 3 000 EUR/kW installé à l’investissement en

Europe. Avec l’évolution des prix du fioul, l’électrification PV,

biomasse ou hydroélectrique est maintenant compétitive.

Choisir une technologie de production et l’organisation de

l’électrification est donc de plus en plus compliqué : de

nouvelles options arrivent à maturité technologique et en

phase de production de masse, les incertitudes sur les prix

du pétrole augmentent, et de multiples risques (dont clima-

tiques) apparaissent. De plus, la production répartie peut

être bien mieux gérée grâce aux évolutions de l’électrotech-

nique. Ainsi, alors que, jusqu’à présent, les compagnies

d’électricité étaient réticentes à intégrer plus de 30 % de

cette production, cette limite évolue rapidement, grâce aux

smart grids.

2.1.2 Production centralisée et réseaux

Avant de pouvoir parler d’accès des populations les plus

pauvres, encore faut-il qu’il y ait une énergie disponible en

quantité suffisante, à un coût raisonnable et avec une

qualité de service adéquate28, car les niveaux tarifaires

reflètent avant tout les coûts.

La grande hydraulique est aujourd’hui freinée en raison des

débats sur les impacts environnementaux. Si cette situation

évolue positivement, des incertitudes croissantes

émergent, liées aux changements climatiques et à la

mobilisation financière. La géothermie pourrait également

connaitre un renouveau : l'expansion de la géothermie le

long du Rift (qui s'entend du Mozambique, au sud, à

Djibouti, au nord) laisse augurer d’importantes perspectives

en termes de ressource potentielle énergétique (le potentiel

global est de l’ordre de 7 000 MW). On observe aussi un

intérêt grandissant pour l’éolien.

Cela étant, les grands IPP qui se mettent en place sont

essentiellement au gaz ou au fioul lourd (barges d’urgence

ou groupes mobiles). Ce sont la production de charbon

propre et les nouvelles technologies de gaz (Integrated

Gasification in Combined Cycle – IGCC, i.e. centrale

thermique à gazéification de charbon intégrée à un cycle

combiné) qui offrent les perspectives les plus importantes.

Ces transactions sont longues et complexes : une fois le

cadre légal ouvert, les PPA se négocient au coup par coup,

avec de très importants coûts de transaction que l’on ne

peut pas amortir sur des petits investissements.

Historiquement, en Europe, la baisse du coût du kWh livré

s’est faite dans un paradigme de grande production

centralisée et de réseaux interconnectés (et d’économies

d’échelle rendues possible dans un contexte de monopole).

Aujourd’hui, un consensus se dégage sur la pertinence à

développer une production indépendante répartie,

raccordée au réseau électrique national. Les raisons sont

multiples : enjeux environnementaux et d’indépendance

énergétique, valorisation des ressources locales (vent, eau,

biomasse), réduction des pertes de transport et de distribu-

tion, baisse des coûts d’investissement des options

techniques de production locale, plus grande sécurité

d’approvisionnement en rapprochant les lieux de produc-

tion et de consommation, etc.

Pour éviter de se retrouver dans ce genre de situation, le Sénégal envisage sérieusement de développer des sources de production d’élec-

tricité qui pourraient être intégrées sur le réseau électrique interconnecté et non-interconnecté à partir d’énergies renouvelables (hors gran-

de hydroélectricité). Les principales filières étudiées sont l’éolien, la biomasse (bagasse de canne à sucre) et le solaire PV.

28 C’est-à-dire sans trop de coupures quand il s’agit d’une demande industrielle ou de déles-tages trop longs pour la production agricole, mais également sans un niveau de fiabilité trèscouteux à garantir, qui ne correspondra pas aux caractéristiques d’une demande rurale.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

47

Graphique 6. Coût du kWh actualisé de différentes options de production (en cents EUR/kWh)

Graphique 7. Evolution des coûts d’investissement de 2005 à 2015

Source : ESMAP (2007)

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

48

Wind 100MV 2005

(CF-30%) 2015

Solar thermal with storage 2005

30 MW (CF-50 %) 2015

Biomass Steam 50 MW 2005

CF-80 %) 2015

MSW Landfill Gas 5 MW 2005

CF-80 %) 2015

Geothermal 50 MW 2005

CF-89 %) 2015

Mini hydro 5 MW 2005

CF-45%) 2015

Large hydro 100 MW 2005

CF-50%) 2015

Diesel generator (Base) 2005

CF-50%) 2015

Gas Combined Turbines (Peak) 2005

CF-10%) 2015

Gas Combined Cycle 2005

CF-10%) 2015

Coal Steam 300 MW 2005

CF-80%) 2015

Coal AFBC 300 MW 2005

CF-80%) 2015

Coal IGCC 300 MW 2005

CF-80%) 2015

Oil Steam 300 MW 2005

CF-80%) 20150 2 4 6 8 10 12 14 16 18

Cycle combiné : 5.1 cents / kWh

Diesel 5 MW base et pointe

100

90

80

70

60

50

40

30

20

10

0

cts

€/k

Wh

Sol

aire

PV

0,0

5 kW

0,3

kW

25 k

W

5 00

0 kW

Win

d 0,

3 kW

100

kW

1 00

0 kW

10 0

00K

W

PV

-win

d-hy

brid

0,3

kW

100

kW

Sol

aire

ther

miq

ue a

vec

stoc

kage

sans

sto

ckag

e

Géo

ther

miq

ue 2

00 k

W

20 0

00 k

W

Fla

sh 5

0 00

0kW

Gaz

éific

atio

n bi

omas

se 1

00 k

W

20 0

00 k

W

Bio

mas

se v

apeu

r 50

000

kW

Bio

gas/

déch

ets

50 0

00 k

W

Bio

gas

60 k

W

Pic

o/M

icro

-hyd

ro 0

,3 k

W

1 kW

100

kW

Min

i-hyd

ro 1

00 0

00kW

Larg

e-hy

dro

100

000

kW

Pum

ped

Sto

rage

150

000

kW

Source : ESMAP (2007)

En Afrique subsaharienne, étant donné les deux tendances

actuelles concernant les difficultés à mobiliser des sommes

importantes pour des ouvrages de production significa-

tifs29, et l’évolution de l’électrotechnique (qui permet

d’envisager un réseau électrique important alimenté en de

multiples points par des centrales de taille moyenne), on

s’oriente peut être vers un nouveau schéma de production

avec plus d’ouvrages de taille moyenne et répartis, dans un

contexte où les économies d’échelle ne jouent plus le

même rôle que dans le passé.

Si maîtriser les coûts de production est une condition

nécessaire, elle n’est pas suffisante. En effet, les coûts du

transport HT ou MT et de la distribution MT et BT pour par-

venir à donner accès aux populations nécessite de rajouter

jusqu’à 50 %, voire 100 % sur l’investissement de

production.

Encadré 6. La part de la production dans le coût kWh – l’exemple du Cambodge

Au Cambodge, où moins de 10 % de la population a accès au service électrique, le coût moyen de production d’EDC (compagnie d’électri-

cité) et d’achat aux IPP (gaz et fioul lourd) est de 0,15 USD/kWh et les importations du Vietnam (IGCC) coûtent environ 0, 8 USD/kWh. Le

coût moyen s’élève donc à environ 0,11 USD/kWh. En considérant que les foyers ruraux à proximité consommeront 50 kWh par mois à un

facteur de charge de 30 %, le coût moyen estimé du transport et de la distribution supplémentaire (ainsi que les pertes techniques) est 0,13

USD/kWh. La production ne compte donc que pour la moitié du coût du kWh.

2.1.3 La production décentralisée : des enjeux

réglementaires et d’organisation complexes

Pour desservir des clients, il faut bien distinguer l’activité de

distribution de celle de production. En outre, dans de nom-

breux cas, les opérateurs en charge des deux tâches sont

bien distincts. Comme le montre le schéma 2, le distributeur

va donc être amené à acheter en gros l’énergie soit :

A - au réseau interconnecté au niveau d’une sous-station

ou d’un transformateur ;

B - à un producteur indépendant (500 kW à 15 MW) qui

exploite une production locale répartie et qui va vendre à un

ou plusieurs des clients suivants : la société de distribution

rurale ; le réseau interconnecté ; un /des gros consomma-

teur(s) ;

C - à une industrie qui fait de l’autoproduction pour

sécuriser son alimentation et qui revend l’excédent.

Les deux autres cas de figure sont les suivants :

D - un concessionnaire unique fait de la production et de la

distribution au sein d’une ou plusieurs localités, et donc de

l’électrification villageoise (généralement de moins de 500

kW) ; de très nombreux mini réseaux diesel dans cette

configuration existent en Afrique ;

E - la gestion d’un parc de solutions dîtes « individuelles

réparties », c'est-à-dire où le générateur est localisé sur le

lieu de l’usager, et où on fait donc l’économie d’un réseau

de distribution (typiquement le kit solaire individuel ou de la

pico hydro).

29 A l’heure actuelle, 93 % du potentiel en énergie hydraulique réalisable économiquementsur le continent africain (estimé à 937 TWh/an, soit un dixième du total mondial) resteinexploité.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

49

Nous nous intéressons, dans cette sous-partie, à la petite

production répartie et aux réseaux villageois (B, C et D

dans la liste ci-avant), dont les cadres réglementaires peu-

vent être variés, avec des sources de production différentes

(groupes diesel, énergies renouvelables).

La production isolée du réseau principal n’est pas toujours

mise en œuvre par la compagnie d’électricité qui se

consacre plutôt à des ouvrages de taille plus importante et

centralisés. Il s’agit donc d’opportunités pour le PPP, avec

des investissements unitaires moins élevés mais qui vont

nécessiter la mise en place d’un cadre de réglementation

pour apporter aux investisseurs les garanties nécessaires à

leur engagement (sur des investissements qui demeurent

de long terme, i.e. plus de 5 ans).

La première étape consiste souvent à autoriser la produc-

tion pour les besoins propres de l’industrie (sécurité,

qualité d’approvisionnement, éloignement du réseau

national), l’autoproduction, puis éventuellement la revente

d’excédents. Cette possibilité va être potentiellement très

importante pour la rentabilité de l’agroindustrie, ou repré-

senter une diversification importante pour la rentabilité de

l’autoproducteur, suivant les conditions de rachat autori-

sées par réglementation. En tant que telle, la revente

d’excédents n’est porteuse de solution à la problématique

de l’accès que si il s’avère que l’acheteur est un distributeur

rural, ou si le distributeur national va mobiliser cette éner-

gie pour la desserte rurale.

La seconde étape consiste à autoriser la production d’élec-

tricité par le secteur privé ; en définir le cadre est souvent

laborieux et complexe, et contribue (ou pas) à l’accès des

populations aux services, suivant différents cas de figure.

- Un producteur indépendant, pour rentabiliser son investis-

sement, peut chercher à revendre l’énergie à une société

de son groupe, ou à un client extérieur, à un prix négocié

entre les deux parties et dans un cadre réglementaire rela-

tivement flexible. Toutefois, ceci nécessite que le propriétai-

re des réseaux autorise l’utilisation du réseau, ou encore

l’ATR ; en Inde, ce wheeling scheme, où le transporteur

prélève un pourcentage de l’énergie transitée, fût un des

déclencheurs de la production indépendante. de même,

avec cette ouverture, les cimentiers marocains sont deve-

nus des développeurs de centrales éoliennes dans le nord

du pays pour alimenter des usines situées dans le sud. Ce

schéma résulte généralement d’une volonté d’intégrer un

certain pourcentage de production renouvelable; elle ne

contribue pas directement à l’accès des populations, mais

à celle de l’industrie, qui génère des emplois.

- Si la réglementation ne permet que le rachat par la com-

pagnie d’électricité, il est essentiel que les modalités du

Schéma 2. Sources d’alimentation possible pour un distributeur.

Source : auteurs.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 201250

Power Purchase Agreement (PPA), soient claires. En effet,

il ne suffit pas qu’elle soit autorisée, encore faut-il qu’il y ait

engagement de rachat sur une durée suffisemment longue

pour permettre le remboursement des prêts (et non limité à

un an renouvelable comme en Indonésie). Il faut également

que le mode de calcul du tarif de rachat soit clairement défi-

ni, les deux schémas de base étant le cost plus et le coût

évité de la compagnie nationale acheteuse (et non comme

au Kenya où, pour l’heure, seul un tarif maximal est publié).

Comme dans le cas de la revente d’excédents, ce schéma

n’est pas directement porteur de contribution à l’électrifica-

tion rurale, sauf si la compagnie d’électricité va opérer des

extensions pour desservir des zones non desservies, grâce

à cette énergie.

- En revanche, si l’acheteur est un distributeur (ou la compa-

gnie nationale qui va entreprendre un programme rural), la

contribution à l’accès est évidente. Encore faut-il que de tels

distributeurs ruraux existent, et que le producteur indépen-

dant soit prêt à leur vendre sa production, au vu de la quali-

té de la contrepartie qu’ils représentent. Un distributeur rural

(coopérative coopérative ou association villageoise) n’est en

effet pas forcément considéré comme un client de première

catégorie par un investisseur. Se pose ensuite la question de

savoir comment le prix d’achat du distributeur est déterminé,

car il est lui-même généralement contraint par une grille tari-

faire aux usagers déterminée par la réglementation. Le sys-

tème est donc complexe, et ce genre de cadre n’en est qu’au

stade embryonnaire en Afrique.

Encadré 7. Quels acheteurs pour rentabiliser la petite production indépendante privée ? Illustrations en Inde, en Indonésie et aux

Philippines

En Inde, où l’offre nationale est déficitaire, des conditions de rachat ont été mises en places pour permettre à une sucrerie de rentabiliser un

surcoût d’investissement de cogénération. Ainsi, toutes les sucreries du pays disposent de cogénérations permettant de tirer le meilleur parti

du résidu de biomasse. En Indonésie, la revente d’excédents n’est permise qu’au coût variable de production, et avec des contrats s’étalant

sur une période d’un an. Résultat : aucun autoproducteur ne s’engage dans cette voie.

Aux Philippines, ce sont des coopératives qui sont en charge de la distribution rurale. Elles appliquent la tarification imposée par le régula-

teur et rachètent l’électricité en gros à ce tarif, moins un certain pourcentage qui doit couvrir l’amortissement du réseau de distribution, les

pertes techniques et leur marge. Si ce prix de rachat est inférieur pour le producteur au coût de l’énergie livré au point d’achat, le produc-

teur doit justifier de son coût de production au régulateur, ce qui lui donne droit à une compensation de manière à pouvoir maintenir une

certaine rentabilité.

Schéma 3. Coopératives et petite industrie : l’enjeu de la rentabilité

Source : auteurs.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

51

- L’électrification par mini réseaux villageois par un opéra-

teur unique en charge de la production et de la distribution

est un cas de figure aujourd’hui assez fréquent, lorsqu’il est

opéré à partir de groupes diesel (cf. 2.1.4). Il s’agit toutefois

d’une configuration complexe quand on raisonne à partir

d’énergies renouvelables :

• le juste dimensionnement de la production par rapport à la

demande est essentiel, étant donné les coûts d’investisse-

ments importants, pour éviter une sous utilisation de l’équi-

pement qui conduit à un coût élevé du kWh ;

• les études (hydrologie, saisonnalité de la biomasse, etc.)

sont longues et coûteuses et donc proportionnellement

d’autant plus chères que l’investissement relatif est modes-

te ; on n’est pour l’heure généralement pas dans une confi-

guration où les compétences nationales, voire locales, sont

suffisantes pour les réaliser ;

• souvent, pour assurer une continuité de service, on est

amené à surdimensionner l’investissement, ou à s’équiper

d’un groupe diesel de secours ;

• l’arbitrage coût d’investissement et coût du kWh demeure

complexe.

2.1.4 Production thermique ou renouvelable, la

place des solutions hybrides.

Compte tenu du cadre contractuel complexe ayant servi de

base à cette analyse, il convient de situer à nouveau la rai-

son pour laquelle cette étude s’intéresse à cette production

répartie : 50 % de la population vit loin des réseaux exis-

tants et, même dans les cas où elle se situe à leur proximi-

té, ceux-ci sont bien souvent insuffisamment alimentés

pour satisfaire la demande en bout de ligne. Dès lors, quel-

le source de production choisir ?

- La production locale par groupe diesel et/ou fioul lourd est

très largement répandue et reste la technologie de référen-

ce ; elle est maîtrisée et s’installe rapidement n’importe où.

- L’investissement dans une source de production d’énergie

renouvelable est bien plus complexe : la ressource (rivière,

biomasse, site éolien) n’est pas forcément située à proximi-

té du point de consommation. La production est intermitten-

te (i.e. connait des variations instantanées – vent, journa-

lières – soleil, et saisonnières – pluies) ; les études et le

temps de préparation sont donc plus longs.

- En revanche, si l’investissement est plus coûteux, les

coûts de fonctionnement sont ensuite très faibles sur la

durée de vie de l’ouvrage (qui s’étend de 15 à 50 ans

suivant la technologie). Encore faut-il avoir les moyens

d’investir aujourd’hui en prévision d’une production de si

long terme.

La réalité de la situation nous le montre bien : la plupart des

capitales provinciales non raccordées au réseau sont

alimentées par des groupes fioul ou diesel. Il n’y a en

réalité que très peu de petites centrales hydroélectriques et

de cogénération en fonctionnement en Afrique ; lorsqu’elles

fonctionnent, elles répondent à des besoins essentielle-

ment (voire totalement) d’autoproduction industrielle.

Paradoxe ultime : à maximiser la mise en place rapide d’un

service universel, on en vient à privilégier les solutions

thermiques. Les solutions hybrides, c'est-à-dire combinant

la flexibilité de production d’un groupe diesel avec le faible

coût de production à long terme des énergies renouve-

lables, permet de s’affranchir des problèmes d’intermitten-

ce de la production et offre aujourd’hui des perspectives

extrêmement prometteuses (cf. tableau 6).

- Pour une production « en base » hydro ou cogénération,

on évite un problème de surdimensionnement, de barrage

(retenue) ou de stockage coûteux, avec un back up diesel.

- Pour un mini réseau alimenté principalement avec un

générateur diesel, injecter des kWh PV lorsqu’ils sont

produits pendant la journée, permet de réduire les coûts du

diesel et la dépendance aux fluctuations de coûts ;

- Pour un mini réseau alimenté principalement avec un

générateur diesel, on peut directement substituer une par-

tie du fioul consommé, en injectant du biodiesel ou du gaz

(pour 40 à 80 %) à la place du diesel.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

52

2.2.1 La production par groupes diesel :

scénario par défaut

Historiquement, en raison de son coût d’investissement

faible, de la simplicité de sa technologie et du court temps

de travaux, cette option technique a été la plus favorisée,

tant pour l’électrification des centres ruraux que celle des

centres secondaires. Dans bien des pays, la faiblesse de la

charge dans ces bourgs et petits centres, ainsi que la faible

densité de population ne pouvaient justifier d’étendre le

réseau interconnecté. C’est ainsi que, typiquement, dans

des zones sahéliennes telles qu’au Burkina Faso, au Mali

ou en Mauritanie, le groupe électrogène demeure le choix

technique de base pour l’électrification rurale, même si, sur

une durée de vie de 20 ans, l’option diesel est coûteuse.

Ainsi, le coût du kWh d’un groupe électrogène, est lié jus-

qu’à 80 % au coût du diesel, rendant cette option moins

rentable, a fortiori en prenant en compte les frais de trans-

port du carburant dans les zones isolées. A un euro par

litre, le coût du carburant sur 5 à 10 ans dépasse l’amortis-

sement de panneaux solaires aux prix actuels.

Les raisons principales du choix du diesel comme solution

de référence sont les suivantes :

- le faible coût d’investissement pour une unité de produc-

tion : environ 600 EUR/kW, lorsqu’une option PV représen-

te un investissement dix fois supérieur, c'est-à-dire un

nombre de connexions immédiates dix fois moindre. Dans

cette situation, les sociétés d’électrification préfèrent justi-

fier les emprunts nécessaires par un grand nombre de

connexions ;

- le fait que la technologie est éprouvée et que les compé-

tences nécessaires à l’entretien sont présentes partout, ce

qui évite les coûts de formation nécessaires pour l’implan-

tation de technologies moins développées (solaire, gazéifi-

cation, etc.).

Même dans des pays riches en ressources naturelles

comme le Cameroun, l’Ouganda, la RCA et la République

démocratique du Congo (RDC), les contextes politiques et

économiques nationaux n’ont pas permis la conduite de

grands programmes de valorisation de la biomasse ou de

la petite hydro-électricité (faute de financements et d’incita-

Tableau 6 Les énergies renouvelables : coûts d’investissement et de kWh

Source : Global Chance 2007.

2.2 Des solutions techniques complémentaires au réseau interconnecté

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

53

Filière Invest. EUR/kW Coût ct EUR/kWh Capacité mondiale installée Fonctionmt (h/an)

Photovoltaïque

-Sur réseau 3 000-7 000 20 - 40

-Isolé 7 000-12 000 35 - 100

Eolien

-Terrestre 1 000 4 - 8 94 GW 2 000-2 500

-Off shore 1 200-1 500 4 - 8 1,2 GW 2 500-3 000

Hydraulique

-Grande 1 400-2 000 2 - 8 3 000-8 000

-Petite <10MW 900-4 000 1 - 9,5 48 GW 3 000-8 000

Géothermie 1 000-3 900 1,2 - 9 8,9 GW 8 000

Charbon 900-1 400 4,2 - 5,6 8 000

Fuel / diesel 400-1 500 15 - 20 indifférent

tions). On reste encore bien souvent dans la situation où, à

budget fixe, un opérateur (compagnie nationale d’électricité

ou concessionnaire) sera plus évalué sur le nombre de

connections immédiatement réalisées que sur le coût à

long terme du service rendu. Dans un avenir proche, le

groupe électrogène restera donc incontournable. Toutefois,

avec l’augmentation du prix du carburant, les solutions à

privilégier doivent en premier lieu viser la baisse de la

consommation de diesel, en intégrant systématiquement

l’efficacité des équipements d’usage et saisir toute opportu-

nité d’hybridation.

2.2.2 La petite hydro : importants besoins en

capital financier et savoir-faire

Dans de nombreux pays, les ressources hydrauliques sont

abondantes et offrent des opportunités de développement

multiples, couvrant toutes les gammes de puissance, de

quelques centaines de watts à quelques mégawatts. Le très

faible nombre d’installations de pico (individuelle), micro

(villageoise, 10 kW à 200-500 kW) ou mini hydro (200/500

kW à 5/15 MW) est flagrant, en comparaison avec le conti-

nent asiatique.

On dénombre très peu d’unités de fabrication de turbines

sur le continent africain (quelques ateliers en Ethiopie et au

Nigéria), mais de nombreux pays disposent d’une base

industrielle pour assurer la maintenance de telles installa-

tions. Des expériences de promotion de la filière hydro,

couvrant un large éventail de puissance, peuvent servir de

base d’enseignement pour l’Afrique subsaharienne : projet

GTZ micro hydro en Indonésie (développement de la fabri-

cation locale ; gamme < 100 kW), ou encore développe-

ment au Sri Lanka à travers un dispositif incitatif de tarif de

rachat. Sur le continent africain, une initiative de dévelop-

pement des petites centrales hydroélectriques pour les

usines de thé a été lancée en Afrique de l’Est avec l’appui

du Global Environment Facility (GEF) du Programme des

Nations unies pour l’environnement (PNUE) dans laquelle

le consultant intervient (unités hydro électriques de 500 kW

à 5 MW) ; une initiative régionale, au stade d’identification

de sites (PNUD, GEF en Afrique de l’Ouest et centrale) ;

des projets pilote menées en Afrique australe (Rwanda,

Tanzanie, Zambie) par l’Organisation des Nations unies

pour le développement industriel (ONUDI) et des

coopérations bilatérales.

► Mini hydro (200/500 kW – 5/15 MW) : enjeux de renta-

bilité technico-économique et impact sur l’accès

Ces projets sont d’autant plus difficiles à mettre en œuvre

qu’ils sont souvent surdimensionnés pour une demande

rurale locale. L’amortissement est impossible sur la deman-

de domestique uniquement (< 100kWh/mois par foyer). La

rentabilité du projet dépend alors de la présence de clients

importants (type industriel) ou bien de la possibilité de

revente au réseau. Ces clients, gros consommateurs et

disposant de capacités de payer importantes, permettent

d’amortir l’investissement et de couvrir les coûts de fonc-

tionnement afin de développer une composante rurale à un

tarif plus faible. Ce montage n’est possible qu’en présence

d’un cadre institutionnel et d’une législation clairs pour la

revente au réseau, comme décrit ci-avant.

Dans les zones abondamment dotées en eau, la production

d’hydroélectricité se justifie dans la mesure où les coûts de

fonctionnement sont quasiment nuls (car réduits à l’entre-

tien de la turbine). Les obstacles majeurs sont l’importance

des coûts d’investissement et la complexité des études de

conception (voir ci-après). En ordre de grandeur, suivant la

turbine, la partie électromécanique d’un ouvrage va coûter

500 à 1 500 USD/kW, la partie du génie civil pouvant varier

de 500 à 3 000 USD/kW.

Suivant le site, le génie civil nécessaire peut être plus ou

moins coûteux (i.e. conduite d’eau, bassin de décantation,

conduite forcée, prise d’eau et, plus rarement, retenue

d’autant plus importante que l’on voudra stocker de l’eau

pour une durée longue ; bâtiment abritant le générateur ;

etc.). S’y ajoutent les coûts liés aux études nécessaires

concernant l’identification de sites et la conception des

ouvrages ou d’hydrologie, qui requièrent également des

compétences peu présentes localement, en Afrique.

La réalisation de ces différentes étapes implique également

un temps de gestation très long qui rend plus difficile l’ad-

hésion des partenaires sur toute la vie du projet, qui peut

s’étendre sur plusieurs années (cf. tableau 7).

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

54

La production d’hydro-électricité au fil de l’eau est constan-

te au cours d’une journée, contrairement à la demande. Si

l’offre doit suivre la demande, il faut un ouvrage de stocka-

ge (coûteux) pour pouvoir turbiner le soir. Au-delà de ce

stockage journalier, la production sur l’année est dépen-

dante de l’hydrologie et de ses variations saisonnières.

Faut-il donc s’engager dans des ouvrages de génie civil

important pour assurer une garantie de puissance sur

l’année ?

La présence d’un back up (source thermique non dépen-

dante de la ressource naturelle) peut être nécessaire à un

service fiable, et une alternative intéressante aux impor-

tants ouvrages de génie civil : dimensionner un ouvrage

pour qu’il ne soit que peu utilisé sur une année conduit à un

coût du kWh élevé.

► Hydroélectricité villageoise (micro, de 10 à 100 ou

500 kW) : de nombreuses contraintes

Pour de plus petits ouvrages dits « villageois », il n’est pas

envisageable de se lancer dans des études longues et

complexes, à coûts élevés, à amortir sur un peu de kWh. Il

n’est possible de développer l’hydroélectricité au niveau vil-

lageois, pour alimenter un mini-réseau que dès lors qu’il est

au fil de l’eau (sans stockage d’eau) et de conception

simple. Le génie civil est réduit (il suffit d’une conduite d’eau

et d’un petit bâtiment pour la turbine) et les études néces-

saires bien moindres. Le génie civil peut être majoritaire-

ment local, en formant les acteurs concernés pour, dans un

premier temps, assurer l’entretien de la centrale et éviter

ainsi l’abandon du projet dès la première panne. Dans un

second temps, on peut développer une filière locale de

production de turbines pour minimiser les importations qui

génèrent des coûts importants, et favoriser ainsi le dévelop-

pement local.

Ce schéma nécessite toutefois de pouvoir être largement

répliqué (pour amortir les coûts de formation), de disposer

d’un véritable savoir-faire et d’être facilité par une législa-

tion claire. Il faut bénéficier de soutiens aux niveaux (i) du

développement de compétences, (ii) de l’investissement et

(iii) lors de la définition des conditions de tarification. Il s’agit

donc d’une démarche de longue haleine qui requiert un réel

engagement politique au niveau de l’Etat, comme cela a pu

être le cas au Sri Lanka.

► La pico hydro : un transfert de compétences nécessaire

La pico hydro est l’utilisation de la force hydraulique par des

turbines de faible puissance (typiquement inférieures à

5 kW), à usage individuel ou partagé entre quelques

familles à l’instar des systèmes PV. Les turbines néces-

saires présentent la caractéristique d’allier la partie méca-

nique et la partie électronique en une seule pièce.

L’utilisation de cette technologie est donc accessible à tous.

Les turbines peuvent être installées avec une petite dériva-

tion d’eau pour créer un dénivelé, mais également directe-

ment dans le courant d’une rivière. Leur utilisation deman-

de donc très peu de savoir-faire. Cependant, elles ne peu-

vent turbiner ni dans des périodes d’étiage, ni dans le cas

d’une trop grande hydrologie. Pour maintenir des prix de

vente bas, la plupart des équipements chinois et vietna-

miens ne disposent ni de régulation ni de protection, ce qui

pose des problèmes de sécurité aux équipements d’usage

et aux utilisateurs.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

55

Durée - dates Coûts Financeur Nombre de sites

Etude de cadrage 4 mois GEF, PNUE, Banque africaine 8 pays

Préfaisabilités Nov. 05 – mars 06 178 000 EUR de développement (BAD) 19 sites

Faisabilités 5 mois 180 000 EUR GEF, UNEP, BAD 2 sites

Oct. 07 - mars 08

Etudes de la composante 3 ans 272 000 EUR GEF, UNEP, BAD 4 sites

électrification rurale Jan 07 – dec 2010

Réalisations 1 site en cours de réalisation 1 site (génie civil, électromécanique,1 site en discussion réseau de distribution, supervision) : GEF, UNEP, BAD 6 sites4 études de faisabilités en cours 5,5 M EUR (2,833 MW)

Tableau 7. Calendrier et coûts de la conception de sites hydro-électriques

Source : auteurs.

De nombreux pays d’Afrique présentent une hydrologie

permettant l’installation de pico hydro dans les villages iso-

lés. Le développement de cette filière, actuellement non

exploitée sur le continent, peut donc se faire soit via l’impor-

tation des turbines asiatiques, soit via le développement

d’une filière locale. Un transfert de technologie entre les

deux continents semble donc approprié et nécessaire au

développement d’un marché. Une fois la fabrication assu-

rée, le coût d’une turbine est accessible même aux popula-

tions rurales à faibles revenus puisque – pour les matériels

d’entrée de gamme – on trouve dans les zones rurales du

Laos des turbines « cotées » 200 W pour un prix de 30 USD.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

56

Encadré 8. Pico hydro au Laos

La pico hydro s’est développée de façon très spontanée en Asie. Au Laos, même s’il est difficile de donner un nombre certain, on estime

qu’il existe 60 000 turbines. Une filière de production s’est développée, en Chine et au Viêtnam en particulier. Les turbines produites sont

souvent d’une qualité moyenne, et leur durée de vie est évaluée à 3 ans environ. Mais il est possible de contrôler la production, comme l’AER

a tenté de le faire au Viêtnam (en plaçant sur le marché des turbines de meilleure qualité à des prix compétitifs) ou aux Philippines (qui ont

développé leur marché en important ces turbines de meilleure qualité que celles venant de Chine). L’électricité produite est instable, et les

appareils ménagers reliés à cette source voient leur durée de vie diminuer dans ces conditions, puisque les utilisateurs n’installent pas spon-

tanément un régulateur. Au Laos, par exemple, les ménages remplacent leur ampoules jusqu’à trois fois par mois.

Enfin, si la facilité de mise en œuvre de la pico hydro représente un avantage pour l’électrification rurale (la mise en place d’une turbine étant

simple), l’utilisation d’électricité par des personnes manquant de sensibilisation sur ses dangers, couplée au manque de protection des ins-

tallations, exposent les utilisateurs à de nombreux risques. Les discussions avec ces derniers font ainsi état de plusieurs accidents. Le déve-

loppement de la pico hydro doit donc se faire parallèlement à une sensibilisation des utilisateurs à son utilisation.

Les coûts se situent entre 20 EUR pour quelques centaines de Watts, et 500 à 1 000 EUR pour quelques kW30.

2.2.3 La bioélectricité : des filières techniques

et des problématiques d’accès à différencier

► La production d’électricité à partir de biomasse :

ressources et filières

Tout comme l’hydroélectricité, la production d’électricité à

partir de biomasse dépend de la disponibilité locale de la

ressource. Il convient dès lors de bien distinguer, d’une

part, le développement de plantations dédiées à la

production d’électricité, qui va toucher à une problématique

agricole et de développement rural et, d’autre part, la

valorisation de résidus agricoles ou d’une agroindustrie.

Il serait néanmoins erroné de systématiquement considé-

rer cette ressource comme gratuite car les usages concur-

rentiels se développent (briquettes de balle de riz, produc-

tion de papier, usages pour la cuisson, etc.). La production

de biocarburants à grande échelle pour le transport ou le

petit biogaz individuel ou communautaire pour la cuisson

ne seront pas examinés ici.

Pour ce qui est de la production d’électricité pour les ser-

vices ruraux, quatre filières essentielles doivent être distin-

guées :

30 Pour plus d’informations, visiter le site du projet Village Off-Grid Promotion and Support,mené par le gouvernement du Laos : www.vopslaos.org

- la cogénération

- le biogaz

- le biodiesel

- la gazéification

► Cogénération autour d’une agroindustrie

Une cogénération (production combinée de chaleur et

d’électricité) est particulièrement pertinente dans l’agroin-

dustrie où il existe des besoins de chaleur (typiquement les

sucreries). Elle n’est appropriée qu’à partir de 500 kW, voire

du MW. Il est bien sûr possible de se limiter à la production

d’électricité et de ne pas valoriser la production de chaleur

si ce n’est pas nécessaire au processus.

Cette filière est technologiquement très largement

répandue et éprouvée en Asie et en Amérique latine, où

toutes les sucreries d’Inde, du Brésil et de la Thaïlande en

particulier sont équipées de telles unités. Elle s’applique de

plus en plus à des domaines tels que la production d’huile

de palme, les unités de décorticage de riz ou l’industrie de

transformation du bois. Peu de projets existent en Afrique

subsaharienne, en dehors de quelques installations en

Afrique du Sud, en Ouganda, en Tanzanie et au Zimbabwe.

Un programme ambitieux est cependant actuellement

lancé avec le soutien du PNUE/GEF afin de développer la

cogénération en Ethiopie, au Kenya, au Malawi, en

Ouganda, au Soudan, au Swaziland et en Tanzanie (pro-

gramme Cogen for Africa, coordonné par l’ONG

Afrepren/FWD31).

Traditionnellement, les unités agroindustrielles sont dotées

de chaudières basse température et basse pression, et

sont autosuffisantes. La même quantité de résidu, avec une

chaudière haute pression et haute température, permet de

produire significativement plus d’électricité. Mais le surcoût

d’investissement ne pourra se justifier pour l’agroindustrie

que si elle peut revendre cette électricité à un prix suffisam-

ment attractif pour rentabiliser son investissement.

En Afrique subsaharienne, le potentiel est considérable,

que ce soit dans les zones sucrières ou dans les unités de

transformation du bois. C’est cependant le cadre réglemen-

taire – et la proximité du réseau électrique – qui inciteront

au développement de cette filière : à moins d’un tarif de

rachat attractif pour alimenter le réseau ou les localités

avoisinantes, les industriels se contenteront d’utiliser une

chaudière de base pour leur propre consommation.

La cogénération s’est essentiellement développée de façon

autarcique depuis plusieurs décennies. Les rendements

des chaudières évoluent, le développement du réseau

électrique également, et c’est aujourd’hui une filière

mature, dont le potentiel s’étend puisque la revente au

réseau devient de plus en plus fréquemment possible. Les

quantités de biomasse disponibles permettent de produire

un surplus d’électricité, vendu à l’extérieur. Une partie peut

être envoyée sur le réseau (s’il existe) au tarif national, afin

de rémunérer l’agroindustrie, une autre peut également

cibler des villages aux alentours, à un tarif plus bas, (dès

lors qu’il existe une structure de distribution pour acheter).

Pour permettre la mise en place d’un tel schéma, contri-

buant à l’accès des populations (qui se situeront logique-

ment à proximité des bassins d’emploi où se trouvent les

agroindustries), il est impératif de disposer d’un cadre insti-

tutionnel clair car la technologie est maintenant mature et

ne pose pas de difficultés. Le développement de la filière

est cependant d’abord motivé par la rentabilisation pour les

agroindustries, ce qui est d’ailleurs au plan mondial un fac-

teur clé dans la détermination du prix du sucre, par

exemple.

► Du biogaz individuel au biogaz industriel

Le biogaz consiste en la fermentation anaérobie de déchets

plus ou moins liquides, qui permet de produire du méthane,

que l’on peut utiliser en combustion directe (éclairage,

cuisson) ou en mélange dans un groupe diesel ou dans une

petite turbine. Il existe des installations électriques jusqu’à

plusieurs MW dans des unités d’élevage de cochons et de

volailles en Asie du Sud Est. Des dizaines d’unités sont

d’ores et déjà en fonctionnement en Malaisie et en

Thaïlande et, si le processus de méthanisation (digestion

anaérobie) exige un certain entourage technologique, ces

unités n’en fonctionnent pas moins depuis plusieurs

années. L’adéquation au contexte de l’Afrique subsaharien-

ne est certainement plus lointaine du fait du faible nombre

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

57

31 Energy, Environment and Development Network for Africa, ONG basée à Nairobi.

d’élevages de taille importante. En revanche, le biogaz

« individuel » (pour production de gaz de cuisson ou éclai-

rage individuel) ou de taille moyenne (permettant de faire

fonctionner un moteur de quelques dizaines de kW jusqu’à

500 kW intermittent) a un fort potentiel. Soulignons que

l’ajustement peut être délicat, en fonction de la

température, de l’humidité et du résidu utilisé.

Il existe aujourd’hui des millions de biogaz dits « individuels

ou communautaires » en Inde et en Chine qui permettent

aux paysans de produire, à partir de deux têtes de bétail, le

gaz nécessaire à leurs besoins de cuisson et d’éclairage.

La filière dite de « biogaz industriel », qui consiste à valori-

ser les déchets d’élevages intensifs, est très largement éta-

blie dans des pays comme le Danemark, où ce gaz satisfait

plus de 15 % des besoins de chauffage et de la production

d’électricité. Aux Philippines, où il existe des normes envi-

ronnementales strictes concernant le traitement des

effluents liquides, les biogaz sont systématiquement inté-

grés dans les unités d’élevage d’ovins, ce qui permet de

traiter à la fois la question de la pollution locale (effluents

liquide) et d’améliorer la rentabilité de l’opération à travers

la valorisation du gaz en électricité. Si cette filière présente

un intérêt évident pour augmenter la part des renouvelables

dans le mix énergétique, le lien avec la problématique d’ac-

cès n’est pas direct.

La taille qui nous semble la plus porteuse de potentiel pour

l’accès rural, dès lors que la législation permet la revente à

des conditions attractives, est celle des biogaz permettant

de produire 50 à 500 kW électriques, à partir de déchets

d’agroindustries, voire de plantations. La complexité de

cette filière ne doit pas être sous-estimée, car le processus

de « digestion anaérobie » est à adapter suivant le type de

biomasse et son niveau de liquidité. Néanmoins, on com-

mence à voir quelques projets émerger en Afrique, comme

au Kenya par exemple.

► Biocarburants en filière courte et gazéification : diminuer

la part du fioul dans les consommations des groupes

La gazéification permet de valoriser des résidus de biomas-

se en les transformant par pyrolyse en gaz utilisable dans

un moteur classique, de même que le biodiesel peut se

mélanger au diesel. La gazéification de résidus bois, balle

de riz, coquille de noix de coco, café, palmeraies, coupes et

élagage de plantation de hévéas présente un potentiel très

important allant de quelques dizaines de kW à 1 ou 2 MW.

Le processus de gazéification (pyrolyse) est spécifique à

chaque résidu, d’où une certaine délicatesse du processus

d’industrialisation. Celle-ci s’est jusqu’à présent surtout

appuyée sur des structures universitaires avant de passer

à un stade d’industrialisation (en particulier en Inde) et la

réplication est moins aisée que pour le groupe électrogène

« universel » : elle demande en effet une certaine capacité

du tissu industriel local. Cependant, des programmes de

transfert de savoir-faire et de diffusion ciblés sont tout à fait

possibles et sont actuellement initiés, comme par exemple

un transfert depuis l’Inde vers le Cambodge pour les gazo-

gènes utilisant la balle de riz pour des capacités de 100 à

300 kW. Dans le contexte africain, on s’intéressera plus

particulièrement à l’injection de ce gaz dans les groupes

électrogènes plutôt que la production de gaz seul, risquée

du point de vue de la continuité du service.

En pratique, le gazogène permet de rendre autonome un

village ayant un potentiel de biomasse suffisant. La filière

gazéification connaît quelques exemples dans l’électrifica-

tion rurale (à Madagascar, ou à travers un projet d’envergu-

re nationale en Inde). Le problème le plus largement

rencontré est celui de la maintenance d’une telle unité, qui

demande des compétences locales : qualité du combus-

tible, apports d’air et gestion de la température, filtration du

gaz. Un transfert local de la technologie permet de diminuer

les coûts, le gazogène pouvant être réalisé à partir de

matériaux locaux. En l’état actuel de maîtrise des filières

dans les contextes qui nous intéressent, il est préférable

d’utiliser ces filières en hybride diesel plutôt qu’en tant que

combustible unique.

Au niveau des biocarburants, les agrocarburants dits

« de première génération » ont atteint une maturité techno-

logique et représentent une source d’énergie qui peut être

développée localement. On distingue plusieurs voies :

- l’éthanol obtenu par fermentation et distillation de biomas-

se riche en sucre, amidon ou cellulose (canne à sucre, sor-

gho doux/maïs, blé, manioc). Il doit être utilisé en mélange

ou bien, comme les huiles végétales, dans des moteurs

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

58

adaptés. Sa transformation est coûteuse et concerne sur-

tout les transports ;

- les huiles végétales pures, obtenues par presse de

biomasse oléagineuse (en Afrique, huile de palme, jatro-

pha, colza, soja, algues, etc.), peuvent être utilisées dans

des tracteurs ou moteurs fixes avec des contraintes au

démarrage ;

- le biodiesel, obtenu par estérification de ces huiles végé-

tales peut être utilisé dans tout moteur diesel (< 30 %, plus

avec des adaptations simples).

On en est encore aujourd’hui à des approches pilote, des

questions ouvertes en matière de superficie, d’intrants, de

rendements et de puissance. Les premières analyses

conduisent à penser que, dans de bonnes conditions (ren-

dements raisonnables sans besoin de trop d’intrants), le

biodiesel serait compétitif avec le diesel à partir de 70

USD/baril, dans des zones isolées.

Ces options offrent une grande flexibilité, puisque biogaz et

biocarburants sont injectés sans modification dans le grou-

pe diesel, et parce que toute fluctuation dans la production

de biomasse est compensée par un apport diesel plus

important (cf. encadré 9). Les difficultés vont provenir des

questions concernant :

- la fiabilité de l’approvisionnement en biomasse (résidus,

usages concurrentiels, saisonnalité) et, en cas de planta-

tions dédiées, la question de la gestion de la plantation ;

- la compétence technique, qui doit être présente au niveau

de chaque village et qui nécessite la mise en place d’un

véritable réseau de techniciens locaux, ce qui, dans le

cadre d’un programme d’envergure, doit s’envisager en

partenariat avec une AER.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

59

Encadré 9. Exemples de projets de biodiesel et de gazéification

L’université de Louvain a réalisé une étude de faisabilité d’un projet biomasse-électricité en milieu rural au Burkina Faso. Se basant sur

différents types de biomasses disponibles et sur plusieurs technologies différentes, l’étude a montré que le rendement dépendait de la bio-

masse utilisée, et que le bois restait le meilleur candidat à la gazéification (même si les tiges de coton, entre autres, permettent également

des rendements intéressants). L’option « tout bois » demande un investissement initial plus cher, mais permet de produire un kWh moins

cher qu’une option « dual fuel » (utilisant 20 % de diesel et 80 % de bois).

Quelle que soit l’option retenue, le coût du kWh produit est 25 à 33 % inférieur à celui issu de la filière classique. Les chercheurs ont égale-

ment développé un type de gazogène en béton, facile à mettre en œuvre.

Si le combustible bois est le plus répandu, et si l’on peut considérer que la gazéification bois est compétitive avec le diesel dès lors qu’il

coûte plus de 0,90 USD/litre, la filière balle de riz se développe également. Ainsi, la PME Cambodia commercialise des gazogènes balle de

riz Angkur (Inde) aux prix de 65 000 USD pour 150 kW et 75 000 USD pour 200 kW.

Au Mali, le Programme national de valorisation énergétique de la plante pourghère (PNVEP) a pour objectif le développement de l’utilisation

de l’huile de pourghère pour l’électrification rurale et le carburant des véhicules. La première phase (2004-2008) prévoyait l’installation de

cinq groupes électrogènes ainsi alimentés, pour un budget de 700 millions FCFA. Le village pilote de Kéléya a ainsi vu la mise en service

d’un groupe électrogène de 50 kW, avec une unité d’extraction d’huile de pourghère et la culture de 0,5 ha de cette plante. Vingt abonnés

(incluant la majorité des bâtiments administratifs) ont ainsi pu être connectés sur un réseau de 2 km. A plus grande échelle, on pourrait

imaginer que l’AMADER (qui a financé plusieurs groupes et petits réseaux diesel) appuie la mise en place d’une unité de production de

biodiesel avec une obligation d’achat de la part des PCASER financés.

2.2.4 Le Photovoltaïque (PV) : une baisse des

prix assurée ?

La chute tant attendue du prix du panneau PV est, depuis

début 2009, sérieusement amorcée. Alors qu’il y a quelques

années, un kit solaire de 50 Wc valait 500 USD, on trouve

aujourd’hui des équipements fabriqués en Asie (et certifiés en

Europe) pour moins de la moitié de ce prix. Poussés par les

grands programmes européens, japonais et américains qui

ont engendré des investissements importants dans les capa-

cités de production ainsi que dans l’électronique d’intégration

des renouvelables aux réseaux (smart grids), les industriels

ont largement développé leur capacité de production, et le

« un Euro du Watt crête », tant attendu, sera bientôt atteint. Il

est certes essentiel de ne pas confondre prix du panneau et

coût total du système, notamment pour les systèmes isolés,

pour lesquels il faut rajouter le coût du stockage de l’énergie

électrique produite pendant la journée (batteries pour l’éclai-

rage ou château d’eau pour le pompage).

► Mini réseaux PV-diesel hybrides : une filière à très fort

potentiel

Le PV pourrait bien devenir la première option d’hybridation :

l’ensoleillement est constant sur le territoire et la ressource

moins difficile à mobiliser que la biomasse ou l’hydraulique.

Le point faible du PV est sa production nécessairement

diurne, alors qu’en zones rurales, la demande est souvent

nocturne. Le stockage de l’électricité en batteries reste très

coûteux, alors qu’en injection directe sur le (mini) réseau

pendant la journée (donc nécessairement sur un réseau

fonctionnant 24h/24), il est compétitif par rapport au diesel,

comme le montre l’exemple de la Mauritanie (cf. encadré

10). De plus, dès lors que l’on injecte moins de 20 % d’élec-

tricité solaire, la gestion de la production intermittente ne

pose pas problème.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

60

Schéma 4. Les étapes d’un projet de biodiesel et de gazéification

Source : auteurs.

► Kits solaires : les leçons tirées des programmes

Les projets de kits solaires se sont rapidement développés

depuis 20 ans et ont été à un moment donné porteurs de

l’espoir d’une électrification « totale » des zones rurales. S’il

est vrai que le prix du kit solaire domestique « typique » de

50 Wc (éclairage et audiovisuel pour 3 à 6 h par jour) a

diminué de près de 50 % en l’espace de 15 ans, ce sché-

ma d’électrification n’a pas apporté l’impact escompté, en

particulier pour les raisons suivantes :

- le service apporté se limite à l’éclairage, la téléphonie et

l’audiovisuel et (pour quelques heures par jour et pour les

systèmes les plus puissants) peut inclure la ventilation et un

peu de réfrigération. Si la « connectivité » devient un

facteur clé du développement, on n’en constate pas moins

que, si elles doivent choisir entre du PV maintenant et le

réseau plus tard, les populations préfèrent souvent attendre

quelques années supplémentaires pour avoir le « vrai »

service électrique de puissance ;

- la gestion technique et financière (maintenance de l’élec-

tronique, remplacement des batteries et des lampes basse

consommation - LBC, collecte des paiements) s’avère bien

plus coûteuse qu’escompté à l’origine. On ne peut « amor-

tir » le coût d’un gestionnaire local que sur un grand

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

61

Schéma 5. Les étapes du projet

Source : AIE PVPS Tâche 9.

Encadré 10. Exemple d’un projet hybride PV-diesel en Mauritanie

La ville de M’Bout en Mauritanie est actuellement alimentée par une centrale thermique de 280 kW. Une étude a été menée pour l’installa-

tion d’un réseau hybride PV-diesel, avec une injection de 20 kW PV. L’injection est réalisée en faible quantité afin de diminuer la consom-

mation de diesel, mais sans nécessiter de batterie pour le stockage de l’énergie solaire.

Le calcul des coûts a montré que la production d’électricité PV (en prenant un investissement PV à 7 000 EUR du Wc) reviendrait au même

coût que l’électricité diesel à partir de 0,75 EUR/l diesel. Le prix étant à 0,83 EUR/l en novembre 2008, l’investissement PV était ainsi à

l’époque rentable.

Les coûts d’investissement baissent, ici coûts

conservateurs pour petites opérations isolées

nombre de systèmes dans le rayon le plus limité possible.

Or, il est évident que si les populations sont concentrées,

on préfèrera des options de mini réseaux. Ainsi, en particu-

lier avec la flambée des prix du pétrole, le coût du transport

vient à représenter un poids considérable dans les coûts

récurrents des programmes. Et dans la réalité, plus le

programme est important, plus on va vers des zones

reculées (donc dispersées et à faible revenu), plus les

coûts de gestion augmentent. Il s’agit donc de « désécono-

mies » d’échelle. Si le prépaiement (cf. 2.3.2) peut présen-

ter une option intéressante (au moins pour les paiements

mensuels), le compteur à prépaiement ne peut s’amortir

que sur un système de taille relativement importante (plus

de 100 Wc).

Une littérature foisonnante a été produite sur ces sujets

(voir AIE Photovoltaic Power Systems: Deployment in

Developing Regions)32.

On distingue trois principaux schémas de diffusion de kits

solaires.

► Une approche « commerciale », où les usagers paient

l’intégralité du prix du système ; cette approche présente

les caractéristiques suivantes :

● des facilités de paiement peuvent être accordées par les

installateurs ou par une structure de (micro) crédit locale.

Pour ce faire, les installateurs (qui sont en général des PME

locales) doivent pouvoir bénéficier d’un refinancement; la

rareté de ce type de facilités est un blocage à la diffusion

du système ;

● les facilités de paiement ne s’étendent pas sur plus de 3

ans, et les usagers versent des mensualités de 8 à 15 USD

par mois (pour les systèmes individuels domestiques), ce

qui ne permet l’accès qu’au segment de population le plus

aisé ;

● une fois l’installation faite, ou le crédit remboursé, l’usa-

ger est propriétaire du système solaire et doit assumer la

responsabilité de sa maintenance ;

● l’installateur ne mettra en place une antenne locale pour

la maintenance que si le « marché » le justifie (Bien

souvent, cela se fait à travers des boutiques de vente de

matériel électrique et électronique au niveau des districts

ou des provinces) ;

● ce marché est florissant, par exemple en Afrique de l’Est,

où il existe de nombreux riches propriétaires agricoles qui

s’équipent de systèmes PV significatifs ; il ne concerne pas

les travailleurs agricoles ni les petits propriétaires ;

● pour que les populations moins aisées puissent bénéfi-

cier de ce service, une subvention importante à l’investisse-

ment est nécessaire (50 % du coût), qui peut être considé-

rée comme prioritaire sur les ressources publiques, ou pas.

► Une approche de service dite “fee for service” : le client

paie une somme initiale lors de l’installation (équivalent, par

exemple, à un coût de connexion dans le cas d’un service

en réseau) puis une redevance fixe mensuelle, et le presta-

taire se charge du fonctionnement et de la maintenance.

Pour certains programmes, la propriété des équipements

revient à l’usager au bout de 10 ans par exemple ; pour

d’autres, le concessionnaire doit s’assurer du renouvelle-

ment (dans le cas de figure où le réseau ne serait pas

arrivé) ; enfin, dans de nombreux cas, cette question de

propriété reste floue. De nombreux programmes de ce type

ont maintenant été mis en œuvre, et l’on bénéficie d’un

retour d’expérience de plusieurs années. La conclusion est

relativement unanime : le potentiel de ce type d’approche

est tout à fait considérable, et le développement d’équipe-

ments d’usages de plus en plus efficaces permet d’amélio-

rer le service offert par l’électricité d’origine PV (qui reste

chère). Cependant, on n’atteint une viabilité globale qu’à

partir du moment où le fonctionnement est totalement local,

et à des coûts locaux. Les compétences se développent et

la démultiplication nationale passera par une volonté

politique de diffuser ce type de schéma et les compétences

nécessaires : les niveaux des redevances mensuelles peu-

vent, suivant les cas et le choix des politiques, ne couvrir

que le fonctionnement et le remplacement de l’électronique

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

62

32 Une dizaine de guides pratiques depuis le financement jusqu’à l’accréditation des forma-teurs y figurent. www.iea-pvps.org –Tasks – Ongoing – Task 9.

(batteries, onduleur, régulateur) de tous les panneaux (ou

une partie seulement). La coopération internationale

demeure largement présente sur ce créneau, notamment à

travers des ONG et fondations, qui ont l’habitude de tra-

vailler en forte symbiose avec les communautés locales.

► PV pour des usages communautaires, sociaux, voire

productifs :

● Par usages communautaires, on entend des services tels

que l’éclairage public ou l’éclairage d’une salle commune,

qui sont souvent appréciés dans la dynamique villageoise.

Le prix doit en être couvert par la communauté villageoise;

● Les usages productifs sont très rares pour des applica-

tions solaires en raison du coût élevé du kWh solaire qui ne

permet pas véritablement des usages de puissance. On

observe néanmoins, dans des zones où l’eau est rare, l’uti-

lisation de l’électricité solaire pour l’irrigation au goutte à

goutte (impliquant peu de déplacement d’eau);

● Il faut distinguer de ces usages dits « productifs », les ser-

vices directement ou indirectement générateurs de revenus :

recharge de téléphone portable, éclairage de nuit permet-

tant aux femmes d’augmenter les heures de tissage, etc.

● Le PV permet également de satisfaire certains usages

sociaux essentiels, tels que la mise en place de systèmes

de pompage pour l’eau potable, l’éclairage de dispensaires,

la réfrigération de vaccins. Se pose toujours, pour ces

applications, la question du financement de l’investisse-

ment : en général, le secteur électrique ne prend pas la res-

ponsabilité de ces investissements, et ils doivent être sup-

portés par les structures et/ou les ministères en charge de

la santé ou du développement rural par exemple, voire les

communautés elles-mêmes, ce qui n’est pas forcément

chose aisée. En effet, les programmes ont pour habitude

de financer l’investissement initial pour un groupe diesel, et

c’est ensuite bien souvent à la communauté locale d’assu-

mer les coûts récurrents, ce qui pose de sérieux problèmes.

Passer à un investissement solaire implique que le finan-

ceur de l’investissement soit prêt à un investissement bien

plus important et se dote des moyens de maîtriser cette

technologie. On s’oriente d’ailleurs de plus en plus vers des

services payants pour pouvoir couvrir les frais de fonction-

nement a minima.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

63

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

64

Technologie

mature et

réparable

localement

Fourniture aisée,

nombreux représen-

tants locaux

Travaux de

construction

maitrisés

Rapiditité

des travaux

et de mise en

service

Nombreux techni-

ciens formés pou-

vant assurer la main-

tenance

Coût d'in-

vestisse-

ment

Coût d'exploita-

tion

Simplicité du

montage financier

Impact environ-

nemental

Diesel SS SS S SS SS S WW S WW

Hydro - avec retenue SS S S WW W W SS W W

Option au fil de l'eau

(peu Génie civil) S S

Besoin de formation

Co-génération (> 500

kW, galment >2MW) SS S S S SS S S SS S

biogaz industriel >

500 kW SS WW W S S S S SS S

Généralement

associé à une

agro-industrie

Chaudières, moteurs

disponible, pb est

l'ingénierie et le

rachat d'excédents

Localisation près d'une

agro-industrie - donc

d'ingénieurs et une

demande

Industriel porteur du

projet

Permet de valoriser

les déchets

gazogène 20 - 500 kW WW W S W S W W W

Portage en zones

rurales difficile Effluents

Solaire - systèmes PV

domestiques et com-

munautaires isolés, le

PV diesel hybride en

mini réseau, le PV rac-

cordé au réseau. SS SS SS S S WW SS WW SS

Réseaux PV et PV-

diesel SS W S S W WW S WW SS

Dès lors que

les pièces de

rechange sont

disponibles

Tableau 8. Analyse SWOT des options techniques

Strengths, Weaknesses, Opportunities, Threats : forces, faiblesses, opportunités, menaces

forces et faiblesses

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 201265

Variabilité du coût

du kWh

Coût du kWh à

Long terme

Configuration de

production qui

s'adapte à la

demande

Localisation de la

production /

demande

Solutions hybrides

pour augmenter

l'optimum global

Sensibilité aux

facteurs

externes

Lourdeur de la

procédure admini-

trative

Cadre réglemen-

taire stable et for-

mulé

Diesel TT TT SS SS O TT

Hydro - avec

retenue S SS S WW O O TT O

Option au fil de

l'eau (peu Génie

civil) W OO T

Production en un site

spécifique possibilité

du réseau Hydrologie Démarre ds qq pays

Co-génération (>

500 kW, galment

>2MW) S S S S T T T

biogaz industriel >

500kW S S S S O T T T

Usages concur-

rents de la bio-

mass

Pour revente d'excé-

dents

Peu ou pas de pays

ont une politique

gazogène 20 -

500kW S S S S OO T T T

Collecte, plantations

Nécessité contrats

LT

Peu ou pas de pays

ont une politique

Solaire - systèmes

PV domestiques et

communautaires

isolés, le PV diesel

hybride en mini

réseau, le PV rac-

cordé au réseau. SS S S SS O OO O O

Réseaux PV et PV-

diesel SS S W SS O OO T T

Compétitif sur cer-

tains segments, et

qui s'améliore

Production diurne

pose problème stock-

age / demande noc-

turne

Modularité vz aug-

mentation demande

Importation des com-

posants à haute

technicité

Simple car en

général pas de con-

nection réseau début

de politiques d'incita-

tions fiscales

opportunités (o) et menaces

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

66

Potentiel dans le conti-

nent

Appétit investisseurs -

risques maitrisés

Appétit investiss - temps

de retour sur invest

Appétit investiss -

rentabilité à LT

Savoirs faire d'ingénierie

technique nationale Fabrication nationale

Diesel OO O TT T

Hydro - avec retenue OO TT TT OO TT O

Option au fil de l'eau

(peu Génie civil) T O

Variations géog. Formation au due diligence

Besoin d'ingé. Financière

innovante

Besoin d'ingé. Financière

innovante

Besoin formation et con-

trôle qualité

Petites turbines avec le

marché…

Co-génération

(> 500 kW, galment

>2 MW) O O O OO T O

biogaz industriel >

500 kW 0 T O O TT TT

Besoin d'information et for-

mation (biogaz)

gazogène 20 - 500 kW OO T OO O TT T

Solaire - systèmes PV

domestiques et commu-

nautaires isolés, le PV

diesel hybride en mini

réseau, le PV raccordé

au réseau. OO O T T OO O

Réseaux PV et PV-diesel OO O TT O O O

Au plan technologique, les

pb sont connus et la

ressource maîtrisable

Grand intérêt des investis-

seurs et industriels malgre

investissements de petite

taille

Ingénierie à batir, facile-

ment transférable

La qualification d'opportu-

nité se limite ici à

l'assemblage

Source : auteurs.

opportunités (o) et menaces

2.3.1 Un potentiel important de diminution des

coûts… en se donnant le temps du choix des

options

Les techniques de distribution ont un impact sur les coûts

d’investissements et, donc, sur la rentabilité du secteur.

Des approches innovantes peuvent également permettre

d’atteindre un segment de clientèle jugé a priori non

rentable (cas des foyers ruraux et périurbains). Le mode

d’électrification doit être par conséquent conçu de manière

intégrée pour optimiser non seulement les coûts d’investis-

sement mais aussi les coûts d’opération et de maintenance

ainsi que les frais de gestion de la clientèle.

Les pratiques usuelles conduisent souvent à surestimer la

demande et, par conséquent, à surdimensionner les

réseaux (section des câbles, capacités des transforma-

teurs). Ces pratiques sont souvent la conséquence d’un

manque d’ouverture aux technologies alternatives et d’une

certaine méfiance vis-à vis des technologies légères,

considérées comme dévalorisantes. Cependant, en matiè-

re de normes et standards, l’utilisation plus généralisée de

réseaux monophasés, un dimensionnement plus serré des

transformateurs, l’adaptation des contraintes sur les

poteaux, l’acceptation de sections de câbles adaptées en

fonction de la demande effective sont autant de moyens qui

permettent une réduction significative des coûts d’investis-

sements. Très fréquemment, les études se limitent à

reproduire des habitudes de choix d’équipements héritées

des pratiques sans réel dimensionnement spécifique alors

qu’un juste dimensionnement implique de (i) fixer les pers-

pectives et définir les prévisions de charge, (ii) spécifier les

limites techniques (surcharges, chutes de tension, démar-

rage de moteur) et de (iii) renforcer les sections amont des

réseaux et réduire les sections aval

Il s’agit de solutions structurelles, qui nécessitent de chan-

ger fondamentalement les pratiques et sont, de ce fait,

souvent difficiles à mettre en œuvre. Une approche optimi-

sée de la dimension technologique peut permettre des

économies globales de l’ordre de 30 % par rapport à des

pratiques habituelles, ou de prolonger de 10 ans la durée

de vie des réseaux. La réduction des coûts est un proces-

sus long, qui nécessite l’adhésion de tous les acteurs et

une forte volonté politique pour changer des habitudes

établies depuis longtemps.

Des marges de manœuvre existent également en termes

de gestion de programme, et plus particulièrement dans les

politiques d’achat et de mise en œuvre des installations :

alors que les pratiques usuelles reposent sur des contrats

clés en main qui évitent la mise en place de structures de

maîtrise d‘œuvre, passer par une centrale d’achat et

segmenter les approvisionnements peut réduire de 20 à

30 % le coût d’acquisition des fournitures.

Bien entendu cette implication locale nécessite un renforce-

ment de la capacité de maîtrise d’ouvrage/maîtrise d’œuvre

pour garantir la qualité des approvisionnements ainsi que

des installations. Ce renforcement implique des coûts qui

absorbent une partie des gains : la mise en place de telles

capacités ne peut bien entendu se réaliser que dans le

cadre d’un programme d’électrification d’envergure.

Restituer la maîtrise d’œuvre au niveau national doit égale-

ment permettre de réviser les coûts d’installation et de pose

du matériel électrique. Dans certains programmes d’électri-

fication réalisés clés en main, le coût de la pose peut

atteindre 50 % du coût global : une maîtrise d’œuvre natio-

nale veillera à réduire ce type de coûts en créant une

concurrence sur l’activité de pose. L’organisation de négo-

ciations avec les entreprises, un travail de recherche de

nouveaux fournisseurs et un nouvel appel d’offres dans le

cadre d’un programme d’électrification rurale au Burkina

Faso ont permis de baisser le coût total de réalisation de

deux mini réseaux de près de 35 %.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

67

2.3 Distribution et gestion clientèle : des marges de manœuvre importantes

Une nouvelle approche dans la mise en œuvre d’un

programme peut également, et ce n’est pas là le moindre

intérêt de la solution, inciter au développement d’une filière

nationale regroupant des entreprises capables d’intervenir

directement sur le programme d’électrification (dimension-

nement, pose, etc.), ou indirectement (fourniture de

poteaux bois, équipements électriques, etc.). Il en est de

même pour les entreprises appelées à intervenir en

exploitation, en entretien et en maintenance préventive sur

les installations. Un travail de recensement national favori-

sera la création et la mise à jour d’un vivier d’entreprises

opératrices et de fournisseurs d’équipements potentiels.

2.3.2 Adapter la gestion clientèle aux contextes

locaux

► Coûts et organisation

Les deux principaux modèles de base de tarification sont

liés aux techniques de distribution : paiement au forfait pour

un service électrique (ex : fee-for-service, montant en

fonction d’un nombre de lampes ou d’une durée d’usage)

ou limiteur de puissance ; paiement au prorata des quanti-

tés d’électricité consommées dans une logique réseau

(compteur). L’approche usuelle peut se résumer ainsi :

- réseau de distribution électrique = vente unitaire d’énergie

- électrification à faibles demandes = vente de service.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

68

Encadré 11. Réduire les coûts grâce à une optimisation, en amont, des choix techniques et du dimensionnement – Bénin

Grâce aux optimisations décrites ci-après, le projet permet d’électrifier, à coût constant, 102 localités au lieu des 56 initialement prévues.

- Dérivation biphasée : gain de 20 % par rapport à une dérivation triphasée.

- Utilisation du Single Wire Earth Return (SWER) : gain jusqu’à 70 % par rapport à une antenne triphasée. L’introduction du SWER doit

nécessairement passer par un minimum d'étapes d’appropriation nationale afin de s'assurer que les projets puissent être réalisés d’une

façon aussi flexible que possible.

- Utilisation systématique des poteaux bois partout où cela est techniquement possible et économiquement rentable (gain de 5 à 15 % sur

la ligne).

- Utilisation d’un logiciel de calcul mécanique des réseaux aériens (en particulier pour l’optimisation des lignes en technique suspendue).

- Dans le cadre d’un projet, la segmentation des approvisionnements a permis une réduction conséquente du prix du km de ligne : de 12

MFCFA à 10 MFCFA (-20 %).

- Approvisionnement sur les marchés internationaux pour chaque composant (câbles, transformateurs, …) et sous-traitement de la pose seu-

lement : les prix y sont très inférieurs à tous les autres pays d’Afrique centrale.

Source : IED – Projet d’électrification rurale au Bénin, financement GTZ-AFD-facilité Energie de la Commission européenne.

Les compagnies d’électricité, gouvernées par des cultures

de l’offre, sont donc engagées dans des logiques de

gestion de la clientèle assise sur la vente unitaire de l’éner-

gie qui se concrétise par le cycle suivant : comptage de

l’énergie-facturation-recouvrement.

En Afrique, les pertes dites « non techniques » sur les

réseaux de distribution d’électricité sont souvent

supérieures à 10 % (fraude, vol, etc.). S’y ajoutent les

impayés, qui représentent eux aussi souvent plus de 10 %

de l’électricité distribuée, si bien que les pertes totales

(incluant également les pertes techniques liées à l’état du

réseau) pour les compagnies d’électricité peuvent parfois

atteindre ou dépasser 30 %. L’amélioration de la gestion de

la clientèle passe notamment par un meilleur recouvrement

de la facturation. Celle-ci se heurte à des limites financières

évidentes : les compagnies d’électricité ne peuvent se per-

mettre d’augmenter leurs coûts de recouvrement des fac-

tures ( qui atteignent en moyenne 10 % du chiffre d’affaires)

par une augmentation du personnel dédié à la collecte des

règlements, unitairement faibles dans des zones à faibles

revenus.

Face à ces contraintes, des nouvelles approches organisa-

tionnelles de la gestion clientèle se développent. Ces

nouveaux schémas reposent sur une meilleure prise en

compte des caractéristiques socioéconomiques de la clien-

tèle, ce qui représente une évolution importante dans les

compagnies électriques, souvent caractérisées par un

faible intérêt pour les interfaces avec le client. Ainsi, on évo-

lue vers des schémas organisationnels variés qui visent à

l’allègement des coûts de relevés de consommation et de

traitement de la facturation : mise en place de compteurs

groupés (un compteur pour plusieurs clients), et vente

forfaitaire mensuelle dans les zones périurbaines caractéri-

sées par des demandes en énergie faibles.

Ces approches requièrent l’implication des communautés

locales (traditionnelles, coopératives). En Erythrée, par

exemple, chaque village se dote d’un comité d’électrification

en charge du suivi de la clientèle à l’intérieur du village. La

compagnie électrique vend ainsi l’énergie en gros au village

qui est en charge de la distribution de détail et, donc, de la col-

lecte du paiement correspondant auprès de chaque usager.

Cependant, lorsque les concessionnaires principaux se

désengagent de l’interface client, se pose la question de la

responsabilité de la qualité du service en bout de ligne : com-

ment le concessionnaire peut-il être responsable de la quali-

té de service offert par la coopérative en bout de ligne ?

► Un outil de gestion clientèle à suivre : le prépaiement

Le prépaiement est un mode de gestion commercial qui

vise à faire payer au client un service avant que ce service

soit utilisé. C’est un mode de paiement très pratiqué dans

la téléphonie sans fil (rechargement de téléphones

portables avec des cartes) et de plus en plus dans d’autres

secteurs marchands comme le gaz et même l’eau. Cette

recharge de crédit peut être achetée chez le distributeur

d’électricité, chez un revendeur agréé, par l’intermédiaire

d’un dispositif de vente automatique ou même par télépho-

ne portable (voire, dans certains cas, via Internet). Le

prépaiement électrique est connu depuis longtemps,

notamment en Angleterre où il dessert 50 % de la popula-

tion. En Afrique du Sud, la plupart des villes ont été

équipées de prépaiement électrique dans le cadre du pro-

gramme national d’équipement appelé “Power for All”

(électricité pour tous). Des pays africains, tels que le Maroc,

le Sénégal, le Gabon ou la Côte d’Ivoire, ont lancé des

projets de prépaiement en raison des problèmes de recou-

vrement que connaissent les compagnies d’électricité

nationales. A ce jour, on estime qu’il y a plus de 4 millions

de compteurs installés en Afrique du Sud, 50 000 au

Nigéria, 40 000 en Namibie, 10 000 en Côte d’Ivoire et au

Sénégal.

Le prépaiement est basé sur le précomptage de l’électrici-

té. Ainsi le compteur à prépaiement mesure l’énergie

consommée et la compare au niveau de crédit disponible

acheté par le client. Ce compteur suspend l’alimentation en

cas d’épuisement du crédit ou de dépassement de puissan-

ce souscrite.

Si le prépaiement rencontre aujourd’hui un réel succès,

c’est qu’il présente de nombreux avantages :

- pour la compagnie de distribution électrique, le prépaie-

ment permet d’améliorer la trésorerie (puisque les clients

paient avant d’utiliser l’électricité), de limiter les défauts de

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

69

recouvrement (puisque le client ne reçoit pas d’électricité

s’il n’a pas payé par avance), de diminuer les frais de

relevé de compteur et de limiter les fraudes quand on

utilise des compteurs split (cf. ci-après) ;

- pour le client, le prépaiement permet d’anticiper sa

consommation, de payer au fur et à mesure de ses capaci-

tés financières, d’ajuster sa consommation et d’éviter des

factures « imprévues ».

On distingue deux types de systèmes de prépaiement :

- le prépaiement unidirectionnel : les consommateurs

achètent un crédit d’électricité à l’aide d’une clé, d’un code

ou d’une carte à puce selon le type de compteur ; le

montant correspondant est alors crédité sur leur compteur.

Les informations ne circulent que dans un seul sens :

vendeur-compteur ;

- le prépaiement bidirectionnel, plus complexe : si le crédit

d’électricité s’acquiert, là aussi, à l’aide d’une clé, d’un code

ou d’une carte à puce (selon le type de compteur), une fois

le code saisi, les informations circulent dans les deux sens,

depuis le compteur et vers le compteur. Ce dernier est

crédité et fournit à la fois des données telles que les

relevés, les codes d’erreur, etc. Lorsque le support est

rechargé par le point de vente, les données stockées sont

transmises au système de gestion centrale. Ce système

permet au distributeur de récupérer des informations du

compteur qui pourront l’aider à mieux gérer sa production :

consommation du client, fraude, comparaison de la puis-

sance appelée et souscrite.

Alors que le post paiement nécessite un grand nombre d’in-

terventions (notamment en cas de problème de recouvre-

ment), le prépaiement réduit les opérations et les interac-

tions entre le distributeur et le client ; ce dernier point est

d’ailleurs l’objet de critiques.

Dans le cycle du prépaiement, la trésorerie du distributeur

est toujours excédentaire (énergie payée > énergie

consommée) alors que, dans le cas du paiement

conventionnel, elle est toujours déficitaire33, car même au

moment de la facture d’une tranche, la consommation de la

période suivante a débuté, et a remis la trésorerie du distri-

buteur en négatif vis-à-vis du client (énergie consommée >

énergie payée).

Le prépaiement est un outil permettant l’amélioration du

recouvrement, puisque l’énergie n’est dispensée qu’une

fois payée. Suivant différents distributeurs électriques afri-

cains, le prépaiement permettrait de couvrir les 15 % de

créances annuelles qui ne sont jamais payées34. Le pré-

paiement n’est cependant pas, à lui seul, un outil de lutte

contre la fraude. Il aurait même tendance à l’encourager,

dans la mesure où les contrôles physiques sont moins fré-

quents puisqu’il n’y a plus de relevés de compteur. Certains

clients peuvent lors être tentés de « shunter » le compteur

(i.e. se connecter au réseau en mettant un câble avant le

compteur)35.

Le prépaiement est souvent vu comme un moyen de dis-

penser de l’énergie pour les plus pauvres car les distribu-

teurs peuvent équiper des zones commercialement ris-

quées sans crainte de non paiement massif. Pour être un

outil de lutte contre la pauvreté, il convient toutefois d’appli-

quer à ces zones pauvres des tarifs équivalents aux tarifs

conventionnels, notamment le tarif social, ce qui est main-

tenant possible grâce à de nombreux logiciels de gestion

de prépaiement36.

Au-delà de l’avantage incontestable de l’amélioration des

taux de recouvrement, le prépaiement ne saurait être

considéré comme la réponse universelle aux dysfonction-

nements de la gestion de la distribution, auxquels doit faire

face une compagnie d’électricité dans un pays en dévelop-

pement. La mise en place d’un système de prépaiement

doit être évaluée et appréciée à la lumière des éléments

suivants :

- l’évolution des tâches : le prépaiement introduit des chan-

gements multiples dans les organisations de distribution, à

commencer par la diminution des relevés de compteurs.

Cette innovation, qui peut permettre un redéploiement des

fonctions chez le distributeur voire une réduction des

effectifs, repose cependant sur des technologies plus

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

70

33 A l’exception de l’avance de paiement (caution). 34 Dans certains pays, les clients institutionnels (administrations, police) ont tendance à nepas payer leurs factures. La mise en place du prépaiement est une mesure possible pour lesmettre devant leurs responsabilités.35 Cependant, les systèmes de prépaiement proposent diverses techniques antifraude : l’ins-tallation de compteurs split (clavier d’enregistrement des coupons et compteur séparés), avecle compteur installé sur le poteau, ce qui rend plus difficile la dérivation des compteurs : l’ins-tallation de câbles coaxiaux inviolables entre le poteau et le compteur (dans le cas des comp-teurs monoblocs). Cette solution est relativement chère, et ne peut s’appliquer que dans lescas de distance faible entre le poteau et le compteur, et de risque élevé de fraude.36 La différenciation des tarifs de l’énergie a longtemps représenté un obstacle technique, carles premiers systèmes de prépaiement n’étaient pas capables de gérer différents tarifs.

complexes que le comptage traditionnel, qui nécessitent

des compétences plus élevées et une adaptation sensible

des personnels existants, notamment en ce qui concerne

l’installation des compteurs et des systèmes informatiques

de gestion ;

- une fraude toujours possible : le prépaiement n’implique

pas automatiquement une diminution des pratiques

frauduleuses liée à l’absence de présence physique des

releveurs de compteurs ;

- les coûts d’investissement : même s’ils peuvent être

rapidement rentabilisés par les gains en termes de recou-

vrement et d’amélioration de la trésorerie, il demeure que

les compteurs à prépaiement sont plus chers que les

compteurs traditionnels ( de l’ordre de 30 à 40 %) ;

- une consommation réduite : différents travaux ont mis en

évidence une diminution moyenne de la consommation

électrique par foyer de l’ordre de 20 % lors de la mise en

place d’un système de prépaiement ;

- une clientèle qui doit être diversifiée : le prépaiement ne

doit pas s’adresser uniquement à une clientèle pauvre ;

pour assurer sa rentabilité et bénéficier de ses effets

positifs pour le distributeur (réduction des frais de gestion,

économie de trésorerie, réduction du non-paiement), il se

doit d’être valorisé sur les clientèles les plus aisées et les

petits industriels, plus susceptibles d’entraîner des effets

d’échelle ;

- une introduction en zones rurales qui demeure délicate :

dans certaines régions rurales, les distances aux points de

vente sont pénalisantes, la téléphonie mobile, quand la

couverture existe, offrant des perspectives intéressantes

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

71

Encadré 12. Prépaiement : retours d’expérience au Sénégal, en Côte d’Ivoire et en Afrique du Sud

Introduit à partir de 2006 au Sénégal, le prépaiement a rencontré un réel succès notamment dans la capitale. Dans ce pays, les clients ont

le choix de garder leur ancien compteur ou de recourir au prépaiement. Le nouveau compteur électrique se présente sous la forme d’une

unité centrale munie d’un clavier (qui permet de taper le code inscrit sur le ticket de rechargement) et d’un écran (pour suivre la consomma-

tion). La première tranche d’investissement s’élève à 450 000 EUR, représentant 75 000 EUR d’équipements système et 375 000 EUR

d’achat de 5 000 compteurs. Du côté de la SENELEC, à volume de client constant, on constate que le nouveau système améliore la

trésorerie de la compagnie à hauteur de 30 %, alors que dans le même cadre d’analyse on constate une économie de 15 % dans la

consommation d’énergie des ménages. Du côté des consommateurs, le nouveau système est plutôt bien accueilli et les raisons qui

poussent les clients à se connecter relèvent de plusieurs aspects :

- plus de flexibilité et de visibilité dans la gestion du budget électricité ;

- des temps d’accès aux comptoirs plus courts (les comptoirs prépaiement sont prioritaires et moins surchargés) ;

- un avantage tarifaire : le système de facturation mis en place au Sénégal prévoit que les premiers kWh sont les plus chers, et que leur prix

ne cesse ensuite de décroître (tarif par bloc descendant). Ainsi les clients achètent de quoi combler les premières tranches, puis massive-

ment dans la troisième tranche en fin de mois, ce qui leur permet de couvrir leur besoin en électricité pour les deux mois suivants au tarif de

la troisième tranche de la période précédente.

Depuis la fin des années 1990 en Côte d’Ivoire, la Compagnie ivoirienne d’électricité (CIE) réfléchit à l’intégration des compteurs à prépaie-

ment dans son système de gestion de la distribution. Ainsi, dès 2000, une expérimentation a été initiée par la compagnie qui a mis en place

environ 5 000 compteurs à prépaiement. Ils se sont très rapidement révélés peu performants et la CIE a décidé, en 2004, de lancer une nou-

velle campagne de test en utilisant un nouveau modèle de compteur fabriqué en Afrique du Sud. Actuellement, plus de 30 000 compteurs

de nouvelle génération sont en cours d’expérimentation. Actuellement, la diffusion massive des compteurs à prépaiement n’est pas autori-

sée par le gouvernement, qui attend un avis de l’Autorité nationale de régulation du secteur de l'électricité (ANARE) pour définitivement adop-

ter ce système de comptage. Cette nouvelle approche de la distribution s'appuie principalement sur certaines agences de la CIE et sur les

critères suivants : les quartiers à forte expansion, les quartiers précaires et les résiliés débiteurs (fraudeurs).

Concernant cette expérimentation, la CIE souhaite souligner les impacts suivants : une baisse remarquable des créances douteuses ; une

réelle possibilité de redéployer un personnel pléthorique employé aux opérations de facturation et de recouvrement ; une amélioration de la

trésorerie sur les zones concernées de l’ordre de 20 %. La CIE déplore cependant la permanence des cas de fraude, et notamment les

opérations de détournement de réseau en amont du compteur (Notons que, pour protester contre la mise en place des nouveaux

compteurs, de nouveaux types de sabotage des installations sont apparus).

Du côté des utilisateurs et des consommateurs, les éléments d’appréciation sont les suivants : un abonnement rapide et peu coûteux ; pas

de remise de caution à l'abonnement ; pas de coupures pour impayés ; un retour du service immédiat après recharge ; des difficultés d'approvi-

sionnement en crédit d'énergie dans certaines agences CIE (générant des files d'attente) ; une trop grande utilisation de termes anglo-saxons

dans les informations affichées par le compteur Taurus ; une nécessaire formation à l’utilisation du prépaiement (savoir lire les codes, etc.).

Engagé depuis 1992 dans le programme Energy for All, l’Afrique du Sud a très vite développé le recours au prépaiement. On compte ainsi,

à ce jour, plus de 4 millions de compteurs à prépaiement mis en place sur l’ensemble du pays, principalement dans les zones périurbaines

(townships). En effet, la volonté politique d’étendre ce nouveau système de gestion de la distribution reposait sur un principe fort, interdisant

les impayés : fonctionnant comme un système d’avance sur consommation, ce type de compteur ne peut pas créer de « débranchés ». Ce

système permet donc a priori aux ménages pauvres d’éviter la spirale vers l’exclusion plus ou moins définitive du service et les saisies mobi-

lières puis immobilières. Le compteur à prépaiement limite, en quelque sorte, pour les ménages défavorisés, les conséquences possibles

du non-paiement. Cette nouvelle technologie a été également motivée par le moyen de rendre accessible l'électricité dans les zones où le

comptage de l’énergie, la facturation et le recouvrement s’avéraient particulièrement difficiles. Au-delà de ces zones difficiles d’accès, la nou-

velle approche a rapidement concerné d’autres contextes géographiques et socioéconomiques (centres urbains, zones rurales). Toutefois,

les premières expériences de prépaiement se sont révélées peu concluantes : au début des années 1990, la société nationale d'électricité

Eskom a enregistré entre 40 et 60 % de compteurs défectueux, entraînant des pertes de recettes et des coûts de remplacement importants.

Les systèmes initiaux fonctionnant avec une carte magnétique ont été remplacés par des systèmes bidirectionnels qui se sont révélés beau-

coup plus fiables. Le coût moyen actuel d’un compteur à prépaiement est de l’ordre de 50 EUR (soit trois fois plus que le coût d’un comp-

teur conventionnel).

Les principaux constats, soulignés par différents travaux d’évaluation, sont les suivants : hausse significative des recettes liées à la vente

d’énergie ; amélioration de la trésorerie de 20 à 70 % selon les zones géographiques (une zone de consommation d’énergie importante

implique une amélioration de la trésorerie plus importante qu’ une zone de faible consommation) ; accroissement de l'efficacité opération-

nelle (réduction des coûts de lecture de compteur, de facturation et d’encaissement [MRBC] de l’ordre de 10 % ; suppression des coûts de

déconnexion et connexion ; bonne acceptation du système par les consommateurs qui apprécient de pouvoir contrôler leur consommation

d'électricité en fonction de leur capacité à payer ; nombreuses pratiques frauduleuses au sein du système d’encaissement des paiements

(durant les premières années de mise en place du système) : nombre de vendeurs disparaissaient avec la recette liée à la vente de cartes

prépayées (grâce à des processus de gestion concertés et à la mise en place de circuits de vente innovants37, ces incidents ont été

progressivement réduits) ; dans les zones à faible niveau de consommation électrique le retour sur investissement sur les compteurs de

prépaiement est faible ; le recul temporel montre que les conditions de succès de la mise place d’un système de prépaiement ne dépendent

pas uniquement de la technologie de comptage déployée, mais aussi des compétences et des implications de l'équipe de gestion du site

concerné.

Les autorités sud-africaines ont mis en place un important programme d’électrification décentralisée basé sur la diffusion de kits PV. Ainsi

KES, société de services décentralisés (SSD) créée par EDF et Total, met en œuvre un programme d’électrification rurale décentralisée sur

la province du KwaZulu-Natal Central qui desservira 15 000 clients. Le mode de gestion retenu est une redevance basée sur un forfait

mensuel avec un compteur à prépaiement. Ce type de système de prépaiement en milieu rural connaît des dysfonctionnements inattendus.

En effet, chaque client doit se rendre à un point de vente relativement éloigné de son domicile, ce qui génère des coûts de déplacement non

négligeables pour un foyer dont les revenus sont peu élevés. Face à cette contrainte, le choix du consommateur est d’abandonner progres-

sivement l’utilisation de son générateur PV. On mesure ainsi l’effet pervers d’un système qui protège le maître d’ouvrage de nombreux

impayés, mais qui génère une perte implicite de clientèle.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

72

37 Revendeur GSM en Afrique du Sud : ce mode de vente est utilisé par des revendeurs qui, disposant d’un compte d’avance basé dans un serveur de vente, transmettent les ordres d’achat decrédit par SMS et reçoivent, par le même canal, le code à 20 chiffres à transmettre au client, sur un carnet à souche. Pour cela, le revendeur doit déposer un fonds d’avance ; sa marge est ensui-te de 5 % sur toutes les transactions.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

73

2.3.3 Points spécifiques au périurbain

En Afrique, le nombre de villes millionnaires ne cesse

d’augmenter. En 2000, sur l'ensemble du continent, une

trentaine d'agglomérations urbaines comptaient plus d'un

million d'habitants. Ce phénomène de croissance urbaine,

essentiellement lié à l’exode rural causé par la pauvreté,

pose de nombreux problèmes de gestion, d’autant qu’une

proportion importante de l’habitat est précaire, dans des

zones non viabilisées – les bidonvilles –, où le service est

souvent piraté. La ville africaine est dévoreuse d'espace et,

au fur et à mesure de son extension, les charges des diffé-

rents équipements urbains deviennent très lourdes du fait

de la longueur des réseaux (eau, assainissement, électrici-

té, voies publiques, transports). Le phénomène urbain

constitue une préoccupation majeure, même dans le cas

des centres urbains moins peuplés, car le rythme de leur

croissance démographique est sans rapport avec celui du

développement des capacités de production économique.

Un accès élargi aux services d'électricité proposé à des

coûts réduits peut conduire à améliorer la santé, la sécuri-

té, et la génération de revenus au sein des communautés

des bidonvilles. La population des quartiers périurbains

pauvres est toutefois marginalisée par l’opérateur

électrique qui a une perception négative de ce segment de

marché, pour plusieurs raisons socioéconomiques et

techniques, parmi lesquelles :

- la faible consommation unitaire de ces ménages, qui les

rend non prioritaires ;

- le caractère informel de l’habitat et, plus généralement, le

problème foncier dans les bidonvilles (non pas l’habitat

social) : les résidents sont locataires auprès de grands

propriétaires riches qui n’habitent jamais le quartier et sont

soit difficiles à identifier et à atteindre, soit squatteurs ;

- la faible capacité de paiement des ménages, et plus parti-

culièrement l’impossibilité de payer les coûts de connexion ;

- les problèmes de sécurité au niveau de l’accès des agents

de la compagnie d’électricité et les risques de piratage des

connexions et de vandalisme des installations (transforma-

teur, câble en cuivre, etc.).

Pour résoudre ces problèmes, différentes expériences ont

été menées sur plusieurs continents. Au-delà des particula-

rismes locaux, les recommandations communes suivantes

peuvent permettre d’atteindre des objectifs d’électrification

périurbaine :

- mettre en place chez l’opérateur une ingénierie sociale

solide capable d'étudier et d'organiser la communauté, et

s’appuyer sur des interfaces éventuelles (ONG, coopéra-

tives, organisations de quartier) entre la communauté et

l’opérateur ;

- développer des partenariats avec les organisations et les

institutions locales déjà actives dans l'amélioration des

conditions de vie des populations ;

- définir une approche technique spécifique du réseau

fondée sur la réduction des coûts ainsi que sur la sécurisa-

tion de celui-ci ;

- définir des tarifs ainsi que des conditions de paiement

adaptés à la sociologie du bidonville (introduction des

tranches 1 ampère) ;

- identifier et établir des relations avec des groupes de

femmes : celles-ci sont souvent perçues dans les commu-

nautés des bidonvilles comme étant plus dignes de

confiance et capables de faire passer efficacement des

messages ;

- si la décision d’électrifier un quartier est prise, viser à

l’électrification du plus grand nombre possible de ménages

(taux de raccordement de 50 % au moins) afin de limiter les

candidats au branchement pirate.

Si les initiatives et les innovations se multiplient, la systé-

matisation du cadre juridique (franchises locales ?) et des

responsabilités reste une question en suspens.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

74

Encadré 13. Le cas de l’électrification des quartiers périphériques au Kenya

Il n’existe pas de statistiques officielles concernant la population des quartiers périurbains pauvres qui se sont développés autour des

grandes villes, notamment Nairobi. Toutefois, une analyse menée en 2006 sur la base de combinaison de critères de densité de population

et de taux de pauvreté a permis d’estimer le nombre d’habitants des bidonvilles à environ 2,5 millions, soit près de 0,7 million de ménages38 .

Des enquêtes menées dans les quartiers périurbains de Nairobi révèlent des revenus monétaires des ménages très faibles : environ 315

USD/habitant/an

Ces enquêtes montrent également que les dépenses énergétiques constituent une part importante dans le budget de ces ménages, estimé

en moyenne à 30 % des revenus monétaires dans les quartiers périurbains pauvres. La part des dépenses substituables par l’électricité

représente 16 % des revenus dans les bidonvilles, et 8 % dans les zones rurales.

Le faible niveau de revenus, qui implique la faible capacité de paiement des ménages, constitue une forte contrainte pour l’accès à l’électri-

cité, tant au niveau des frais de connexion exigés par la compagnie d’électricité (35 000 ksh, soit environ 500 USD), qu’au niveau de la

facture mensuelle d’électricité (en moyenne 0,12 USD/kWh, sans le coût d’ajustement des variations de prix du combustible qui peut

doubler le prix du kWh).

Compte tenu de leurs spécificités socioéconomiques (faible demande, solvabilité, densité, caractère informel de l’habitat, insécurité, etc.),

ces quartiers se sont retrouvés à la marge de tous les programmes et stratégies officiels de connexion électrique. De ce fait, les populations

se rabattent souvent sur une offre informelle chère et non sécurisée. Alors qu’une nouvelle politique de connexion a été adoptée en 2005

avec l’objectif de connecter 150 000 nouveaux clients par an jusqu’en 2010, la compagnie nationale, KPLC, a dû mettre en place progres-

sivement les outils nécessaires pour atteindre cet objectif :

- une nouvelle approche de tarification des coûts de raccordement, plus juste et plus transparente, notamment en ce qui concerne les nou-

velles zones urbaines concernées par l’extension du réseau ;

- une stratégie marketing plus proactive et orientée vers le client qui intègre également les quartiers périurbains pauvres. Pour mobiliser

concrètement ce marché, des arrangements administratifs ont toutefois dû être trouvés, notamment en ce qui concerne la connexion des

logements informels sans tenir compte des titres de propriété ou de location.

Ainsi KPLC a lancé en 2008 un projet pilote dans le quartier périurbain pauvre de Kibera pour tester de nouvelles options techniques et de

distribution avant de la diffuser à grande échelle :

- normes techniques de réseau MT allégées ;

- boîtes de connexion posées en haut de poteaux en bois. Chacune comprend dix contrôleurs de charge (disjoncteurs miniatures) calibrés

pour se déclencher lorsque la charge dépasse 1,5 kVa dans l’objectif de limiter la charge demandée au niveau de chaque connexion ;

- les clients finaux ne disposent pas de compteurs : leur point d'alimentation est un tableau métallique standard composé d’une prise

électrique, d’un interrupteur avec le point lumineux associé et d’un fusible ; la prise de terre est de la responsabilité des utilisateurs finaux ;

- compte tenu de la nature de la solution technique adoptée, les coûts de connexion sont moins élevés que les solutions classiques. Par

ailleurs, afin d’encourager les ménages des zones des quartiers périurbains pauvres à se raccorder, KPLC a fixé les frais de connexion à

environ 220 USD, au lieu de 500 USD ;

- l’énergie est facturée de manière forfaitaire (5 USD par mois pour les clients résidentiels) estimée sur la base d’un nombre d’heures moyen

d’utilisation de puissance disponible (40 kWh par mois en moyenne) ;

- un client principal est responsable de la collecte des paiements des forfaits mensuels auprès des clients de son groupe d’utilisateurs finaux,

de la même manière qu’il le pratique d’ores et déjà pour la collecte des loyers des logements. Cette responsabilité fait l’objet d’un contrat

entre le propriétaire (ou mandataire du propriétaire) du groupe de logements et KPLC ;

- dans le cas où un client final ne paie pas sa facture, KPLC procède à la coupure du service électrique sur l’ensemble du groupe de clients

auquel il appartient, et ce à partir de la boîte de connexion (située en haut du poteau électrique).

38 International Livestock Research Institute, 2004.

Source : Annexe.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

75

2.3.4 La pico électrification : un complément

pour maximiser l’impact d’un investissement

d’accès

Un plan directeur d’électrification doit, au-delà de la dimen-

sion réseau/hors réseau, considérer scrupuleusement le

segment de marché qui ne peut supporter les coûts, soit de

connexion soit de service énergétique, comme par exemple

un kit solaire individuel (solar home system). Ce segment

représente la partie la plus pauvre de la population qui a

cependant des dépenses énergétiques qui correspondent

au prix payé pour l’éclairage (bougies, torches, lampes à

pétrole, etc.), pour l’audiovisuel (piles pour la radio), ainsi

que de plus en plus fréquemment, pour l’usage ponctuel de

la téléphonie mobile. Le pétrole lampant et les piles sèches

représentent en effet des couts monétaires élevés, de

l’ordre de 40 à 80 EUR par an. De plus, l’usage de la lampe

à pétrole génère des impacts conséquents en termes de

santé et d’environnement : d’après une étude de la GTZ39,

on estime que l’équivalent de 1,3 million de barils sont

consommés chaque jour ; cette consommation, qui

représente 190 millions de tonnes de CO2 par an,

engendre des risques sanitaires et de sécurité (incendie)

très élevés.

Pour atteindre les plus pauvres, de nouvelles approches

technologiques se développent autour du concept de pico

électrification. Ces développements concernent la pico

hydro ainsi que les petits systèmes PV dont la puissance

nominale est inférieure à 30 Wc regroupés sous l’appella-

tion « pico électrification » (plus largement applicable à

toute forme de recharge de batterie40). Ces systèmes se

démarquent de la lanterne solaire classique car ils visent

une utilisation multifonctionnelle : en plus de l’éclairage, qui

bénéficie du développement rapide des diodes électrolumi-

nescentes (Light-Emitting Diode, LED41), ces systèmes

permettent des recharges de piles et de batteries en inté-

grant des prises 12 V et des contrôleurs de charge – ce qui

permet donc également d’avoir un service informatique.

Une étude de la GTZ, datée de 2009, estime ainsi que le coût

moyen d’une lampe solaire multifonctionnelle est de 7

EUR/mois sur 2 ans (pour un investissement de 170 USD), alors

que les dépenses traditionnelles typiques sont de 12 EUR/mois,

soit 280 EUR environ sur 2 ans, dont 120 pour l’éclairage.

Si le coût initial d’acquisition demeure une barrière

majeure, la valeur de cet investissement relève typique-

ment du périmètre d’intervention des organismes de micro-

crédit. Dans le cadre d’un programme d’envergure, il sera

opportun d’impliquer ces organismes dans un mécanisme

de distribution de petits systèmes assis sur des crédits de

faible montant et de durée courte (6 mois à 2 ans). On peut

aussi s’appuyer sur la présence ou la mise en place

d’opérateurs locaux, qui pourront développer des systèmes

de location de lampe solaire multifonctionnelle (franchise).

Dans ces deux approches (location ou vente à crédit), la

marge possible de l’intermédiaire réside dans la différence

entre la dépense substituable et le coût d’usage mensuel

du petit système. Etant donné la quantité très faible

d’énergie requise pour ce type de service, il serait judicieux

de systématiser cette composante de pico électrification en

bout de ligne de chaque réseau en attachant la plus

grande importance à l’efficacité des équipements d’usage

pour maximiser la portée des faibles consommations

d’énergie. Ceci permettrait à la fois d’assurer un service

minimum pour les populations isolées (mais localisées

dans la « zone d’influence » du mini réseau), et de générer

une activité locale.

De toute évidence, les marges que l’opérateur de ce type

de service peut espérer réaliser sont très faibles, et le

service doit être assuré par des structures localement

implantées. Aujourd’hui, les populations bénéficiant de ce

type de service ne sont pas comptabilisées comme ayant

accès à un service électrique, car il est tout à fait minimal et

ne permet que de satisfaire de très faibles puissances, qui

ne sauraient entrainer un développement quelconque.

39 Etude GTZ : www.gtz.de/de/dokumente/gtz2010-en-picopv-booklet.pdf40 Un marché de la très faible puissance se développe autour de la lampe torche alimentéepar un petit module PV (5 Wc) ou par une dynamo. Ce produit, dont le prix de vente est del’ordre de 10 EUR, est peu fiable, et son efficacité lumineuse demeure faible.41 L’utilisation de technologie LED joue un rôle important en réduisant la consommationd'énergie dans l'éclairage. L’avantage de l’association des cellules photovoltaïques et de LEDréside dans la combinaison aisée des deux produits car les tensions cellules photovoltaïqueset tension LED peuvent être facilement assorties. La technologie LED offre une luminositéplus de huit fois supérieure à celle des lampes incandescentes.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

76

Encadré 14. Exemples de services de recharge de batteries - Cambodge et Laos

Au Cambodge, la recharge de batterie (service complémentaire fourni par les opérateurs de mini réseaux diesel) est largement répandue.

Elle permet aux foyers situés dans la périphérie du réseau de « payer ce qu’ils consomment » ; et à ceux vivant hors du village, mais qui s’y

rendent les jours de marché, de faire recharger leur batteries.

Le coût (commercial) de la recharge sur des groupes diesel est de 0,25 USD par recharge pour une batterie de 40 Ah, et de 0,50 USD pour

une batterie de 150 Ah.

Au Laos, un programme mené sur cinq villages de recharge de lampes LED sur des systèmes PV est facturé 1 USD/mois aux usagers, et

permet de rembourser l’investissement en 18 mois. La rémunération de l’opérateur villageois est minimale, son engagement vis-à-vis de la

communauté primant sur sa rémunération.

Source : IED.

Pour permettre l’accès de tous au service électrique, la

première étape consiste à produire de l’énergie électrique

en quantité suffisante pour satisfaire les besoins écono-

miques et sociaux, à un coût suffisamment abordable pour

permettre un équilibre économique du programme d’accès.

L’atteinte de cet équilibre ne signifie pas nécessairement

que les usagers soient en mesure de payer l’intégralité du

coût du service, mais que les finances publiques soient en

mesure de supporter la différence entre ce coût du service

livré et le tarif pratiqué, et que ce coût, tant en investisse-

ment qu’en fonctionnement et maintenance dans la durée,

ait été correctement appréhendé ex ante, lors de la concep-

tion même du programme.

A l’échelle mondiale, les besoins d’investissements sont

considérables. L’AIE, dans son rapport World Energy

Outlook publié en 2009, estime que la demande mondiale

d’électricité va continuer à croitre à un taux annuel de

2,5 % d’ici 2030, et que 80 % de la croissance interviendra

dans les pays hors OCDE. L’augmentation de la capacité

électrique installée représente 4 800 GW (soit 5 fois le parc

existant aux Etats-Unis), dont 28 % aura lieu en Chine. La

part des énergies renouvelables dans la production totale

passera de 2,5 à 8,6 % en 2030, alors que la part de

l’hydroélectricité diminuera de 16 à 14 %, celle du charbon

restant dominante à 44 %.

Face aux besoins, qui demeurent colossaux, un constat est

pour le moins inquiétant : les investissements dans le

secteur énergétique se sont effondrés en 2009 dans le

contexte de crise économique. Celui-ci concerne autant

l’exploration pétrolière par les multinationales que les

ménages, qui achètent moins d’équipements neufs et

performants. Ceci aura des répercussions importantes sur

l’efficacité énergétique à long terme. Fin 2008 et début

2009, l’investissement dans les énergies renouvelables a

diminué davantage proportionnellement à celui dans les

autres types de production électrique ; il a chuté de près

d’un cinquième en 2009 – et aurait atteint une diminution de

30 % sans les plans de soutien gouvernementaux.

Le repli de l’investissement dans le secteur énergétique

aura des conséquences potentiellement graves pour la

sécurité énergétique, le changement climatique et la

pauvreté énergétique. Freiner l’augmentation des capacités

à moyen terme pour les projets ayant des temps de gesta-

tion longs conduira à des déficits à long terme, et risque de

mener à une flambée des prix au moment où la demande

se redressera. Pourra-t-on mobiliser les financements

requis ? Ils sont estimés, dans le scénario de base de l’AIE,

à 1 100 Md USD annuellement d’ici 2030, dont 600 Md/an

pour le secteur électrique, et environ 300 Md/an dans les

pays en développement.

Ce scénario de référence, nous amène inexorablement

vers une concentration de carbone de plus de 1 000 ppm

de CO² équivalent, jugée très dangereuse car entraînant

une augmentation moyenne des températures de 6°C. Le

scénario de 450 ppm, soit 2°C d’augmentation des tempé-

ratures moyennes avec une probabilité de 50 %, sobre en

carbone, développé par l’AIE, implique un investissement

supplémentaire de 10 000 Md USD d’ici 2030. Celui-ci

serait compensé par des gains économiques, dans le

domaine de la santé entre autres, et une diminution de la

facture énergétique dans les bâtiments, les transports, …

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

77

3 Un besoin de financements structurés

3.1 Pour généraliser l’accès aux services électriques, des montants de financement

requis au-delà des ordres de grandeur des flux de la coopération internationale.

Dans ce contexte, améliorer l’accès de près de 1,6 Md de

personnes à l’énergie moderne, soit un cinquième de la

population mondiale, reste une gageure. 85 % de ces per-

sonnes vivent en milieu rural, en Afrique subsaharienne et

en Asie du Sud. Dans le scénario de référence de l’AIE, leur

nombre ne diminuerait que de 200 millions à l’horizon 2030,

et augmenterait sur le continent africain. L’AIE estime

qu’avec un investissement de 35Md USD/an, soit 6 %

de l’investissement global prévu dans le secteur de

l’électricité, la question serait résolue à l’horizon 2030. On

est bien loin de ces ordres de grandeur, à en juger par une

revue de la Banque mondiale sur son propre portefeuille,

où l’on constate que les flux se limitent à 500 M EUR

annuellement (cf. tableau 9).

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

78

Tableau 9. Investissement de la Banque mondiale dans des programmes d’accès (2003-2005) – en M USD

Région Grid Grid Rural Off-grid Rural Energy Total

Peri-urban Electrification Electrification Fund

Afrique $76,60 $35,20 $30,20 $31,20 $173,20

Asie orientale Pacifique $0,00 $235,00 $3,70 $8,30 $247,00

Am. latine Caraïbes $0,00 $3,00 $7,00 $0,00 $10,00

Asie du Sud $26,00 $0,00 $5,50 $24,60 $56,10

Afrique du Nord Médit. $0,00 $0,00 $0,00 $0,00 $0,00

Europe orientale Can. $0,00 $0,00 $0,00 $0,00 $0,00

Total $102,60 $273,20 $46,40 $64,10 $486,30

Source : ESMAP 2007.

A l’évidence, on ne pourra se contenter de la coopération

internationale pour financer les programmes d’accès : de

manière schématique, les projets d’accès font intervenir,

outre l’usager, l’Etat, l’opérateur (privé ou public) et les

organismes de financement (cf. schéma 6).

Bien évidemment, la structure de financement d’un projet

ou d’un programme d’électrification rurale, et notamment le

« coût moyen pondéré du capital » ainsi que la durée des

emprunts, les éventuelles périodes de grâce, la durée du

projet (notamment par rapport à la rémunération du capital)

ont une incidence très importante sur le prix du service.

Schéma 6. Acteurs et circuits de financement de l’électrification rurale

Source : auteurs.

• Les institutions financières multilatérales ou bilatérales

octroient des prêts concessionnels ou des dons aux Etats ;

ils sont alloués au financement des infrastructures élec-

triques, généralement sous forme de prêt ou de subvention,

ou encore d’apport en capital à l’opérateur électrique.

• Ces mêmes institutions peuvent parfois accorder des con-

cours aux opérateurs, généralement avec la garantie de

l’Etat.

• Les Etats participent au financement des infrastructures

électriques à travers leur propre budget d’investissement

(hors aides extérieures).

• Les banques privées nationales ou internationales peu-

vent également accorder des prêts ou apporter une part de

capital à l’opérateur électrique.

• Enfin l’usager paie le service à travers le tarif, augmenté

généralement de redevances spécifiques pour couvrir une

partie du remboursement des investissements. Plus glob-

alement, les paiements des usagers se décomposent en

trois parties : (i) une contribution initiale au branchement ;

(ii) une prime fixe qui dépend de l’abonnement (niveau de

puissance souscrite et qui doit amortir l’investissement de

l’opérateur) et (iii) une part variable qui est fonction de la

consommation.

Pour établir un lien plus direct entre la politique tarifaire et

le montant de subvention requis, il convient de déterminer

quel est l’équilibre financier visé par les tarifs appliqués. Il y

a schématiquement trois niveaux d’équilibre visés :

■ le « petit équilibre » : les recettes tirées des ventes

permettent de couvrir les dépenses de fonctionnement et

d’exploitation courante du service ;

■ l’« équilibre d’exploitation » : les recettes permettent de

couvrir non seulement le fonctionnement et l’exploitation

courante mais également toutes les opérations de mainte-

nance et de renouvellement courantes ;

■ le « grand équilibre » : les recettes permettent de couvrir

toutes les charges, i.e. les charges d’exploitation et finan-

cières liées notamment aux investissements.

Les mécanismes de subvention permettent de compenser

l’écart entre l’équilibre atteint effectivement par les recettes

du service, par application de la grille tarifaire (redevances

incluses), et le « grand équilibre ». Se pose la question de

la capacité au global, de l’Etat, de payer cette subvention.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

79

3.2 Principes historiques

Un principe de base d’équité, dit de la « péréquation » est

que pour tout consommateur d’une certaine catégorie

(niveau de consommation, caractéristiques socioéco-

nomiques, i.e. client domestique ou industriel, etc.) un kWh

doit être payé le même prix, où que l’on se trouve sur le ter-

ritoire national, donc quel que soit le coût de ce kWh sur le

territoire. Ce principe n’est tenable que dès lors que les

bénéfices réalisés dans certains lieux ou sur certaines

tranches tarifaires permettent de compenser au global les

pertes en d’autres lieux ; ou alors, que l’Etat ait les moyens,

au niveau macroéconomique, de payer la différence.

Un recul sur l’histoire de l’électrification dans les pays

industrialisés nous rappelle que dans la première phase

d’électrification au cours de la première moitié du XXe

siècle, le service électrique était assuré par des opérateurs

privés, pour les besoins de l’industrie, et donc à des prix

différenciés, reflétant les coûts. Certains opérateurs ont

ensuite progressivement desservi les populations dans le

« bassin d’emploi » de ces industries. Le principe de péré-

quation n’a été appliqué que bien plus tard, lors de la natio-

nalisation et de l’intégration de ces différentes compagnies

en une structure nationale : on a pu « se payer » ce princi-

pe d’équité grâce à un socle de ventes profitables exis-

tantes, et un appui très significatif de l’Etat à l’investisse-

ment.

Cet appui à l’investissement par des financements à long

terme et publics est parfaitement logique dans une structu-

re industrielle d’économies d’échelles, où plus l’investisse-

ment est important, plus le coût moyen est faible.

Concrètement, dans ce schéma, l’intérêt général est d’avoir

de grands ouvrages qui irriguent l’ensemble du territoire par

un réseau interconnecté. De ce schéma très intensif en

capital découle la structuration du secteur en un « monopo-

le naturel » et, qui plus est, public.

Dans les contextes de certains pays d’Afrique subsaharien-

ne, la première étape (de production locale pour satisfaire

des besoins industriels rentables) n’a pas encore été

franchie. Peut-on alors, dès à présent, « se payer » la péré-

quation, ou ne viendra-t-elle peut-être que dans un second

temps, comme en France (cf. encadré 15) ? Un argument

en faveur de la « différentiation tarifaire » est que, dans des

zones non électrifiées, les populations ont des factures

mensuelles à partir de ressources traditionnelles (lampes à

kérosène, piles sèches, petits moteurs pétrole individuels,

etc.) élevées, et donc souvent une vraie capacité à payer.

S’il peut paraître tout à fait injuste de faire payer à un « rural

pauvre » beaucoup plus cher qu’à un « urbain riche », peut

être vaut-il quand même mieux un service cher en zones

rurales que pas de service du tout, ou un secteur en faillite ?

Mais ceci relève d’arbitrages politiques nationaux qu’il

importe de faire en connaissance de cause, et avec prag-

matisme.

Par ailleurs, les évolutions technologiques actuelles engen-

drent des schémas industriels où des ouvrages de taille

moyenne/petite sont parfois (voire souvent) les plus appro-

priés, ce qui affaiblit la légitimité du monopole naturel de

production et ouvre voie à une structuration plus éclatée, où

l’investissement privé de taille moyenne retrouve toute sa

place avec toute la problématique des smart grids. Cette

évolution ne nous dédouane pas pour autant de la nécessi-

té d’une très forte coordination nationale, d’une part

technique (programmation de la production et des réseaux

de transport eux relèvent encore tout à fait du monopole

naturel) et d’autre part financière pour assurer une mobili-

sation financière suffisante.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

80

Encadré 15. Petite histoire de l’électrification en France : le rôle du Fonds d'amortissement des charges d'électrification (FACE)

En France, la mise en place de l’infrastructure nationale s’est faite à travers une forte implication étatique par la nationalisation, en 1936, de

plusieurs structures privées qui étaient dédiées à la production d’électricité pour des zones industrielles. EDF ainsi créée a pu, d’une part,

mobiliser une taxe sur les ventes de kWh pour financer ce programme d’accès (dont il existait un volume significatif au préalable à l’électri-

fication des populations rurales et périurbaines) et, d’autre part, mobiliser des financements à long terme et à faible taux d’intérêts grâce à

la garantie de l’Etat.

Le poids relatif des populations urbaines et rurales et celui des consommations respectives permettaient, dès 1937, de bâtir un système de

péréquation efficace, c'est-à-dire qui soit à la fois une charge acceptable par les consommateurs des villes et suffisamment productif pour

financer significativement les investissements ruraux. En 1937, avec 90 % de la population nationale électrifiée et une consommation d'élec-

tricité basse tension de 3,1 milliards de kWh en 1938 (contre 1,8 milliard en 1926), les prélèvements sur le kWh basse tension permettent

en effet de supporter l'effort public d'investissement électrique.

Au fur et à mesure que se développe l'électrification rurale, le produit financier de cette péréquation augmente en proportion directe avec le

nombre de kWh consommés, tandis que la demande de financement diminue. On dispose ainsi d'un mécanisme durable d'autofinancement

du réseau électrique par ses clients : le Fonds d'amortissement des charges d'électrification - FACE.

En France, les taux de prélèvement sur les kWh ont été ajustés en fonction des besoins de financement, tout en respectant jusqu'à

3.3.1 Le poids des clients domestiques

Dans le cadre de programmes d’accès, les clients sont très

majoritairement domestiques et à niveaux de consomma-

tion unitaire faible : gérer de nombreux petits consomma-

teurs a évidemment un coût pour la compagnie de service

et les faibles marges sont peu incitatives.

Outre la question spatiale, avec un éloignement et une

faible densité qui viennent augmenter les coûts d’investis-

sement et de fonctionnement, une forme de subvention

croisée est généralement pratiquée entres catégories

sociales : les clients BT, et plus particulièrement la catégo-

rie dite « sociale », représentent généralement le plus

grand nombre de consommateurs pour des consomma-

tions unitaires modestes, donc des recettes proportionnel-

lement faibles pour l’opérateur, comme l’illustre la réparti-

tion des consommateurs de KPLC (Kenya), où la tranche

domestique représente 25 % des ventes pour 85 % des

clients à gérer. On comprend que la compagnie d’électrici-

té soit bien plus intéressée par les consommateurs

industriels où, comme à Madagascar, les clients MT/HT

représentent plus de 40 % des ventes pour moins de 1 %

des clients à gérer.

L’analyse tarifaire et de profitabilité doit néanmoins se faire

de manière fine, en tenant notamment compte de la prime

fixe, qui peut représenter 50 % du prix du kWh pour les

ménages qui consomment peu. On se rend ainsi compte

qu’au Kenya, les ménages de la tranche inférieure à 50

kWh mensuels paient leur kWh plus cher que ceux de la

tranche 51 à 300 kWh.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

81

aujourd'hui le rapport de 1 à 5 entre les clients ruraux et urbains. Fixés en 1937 à 2,80 % en zone urbaine et 0,56 % en zone rurale, ils seront

d'abord augmentés en 1954 à 3,80 % en ville et 0,75 % dans les campagnes, avant de diminuer régulièrement au fur et à mesure

qu'augmentent les consommations, pour atteindre en 2000 2,3 %, pour le taux maximal applicable dans les communes urbaines, et 0,46 %,

pour le taux minimal applicable dans les communes rurales.

Le FACE apporte encore aujourd’hui une aide financière aux maîtres d'ouvrage des réseaux des communes sous régime électrification rura-

le. Cette aide correspond à 65 % du montant TTC des travaux d'extension, de renforcement ou d'intégration des réseaux dans l'environne-

ment, les réseaux concernés étant les réseaux basse tension (BT) et les extensions moyenne tension (HTA) nécessaires à l'alimentation des

nouvelles zones BT desservies. Ce sont les collectivités locales – ou les communes pour la distribution, qui décident des investissements

locaux, apportent leur part de financement, et les réseaux de distribution leur appartiennent. Le budget annuel d'aides FACE était d'environ

345 M EUR en 2008. En ce qui concerne la contribution au service public de l’électricité (CSPE) dans les zones non interconnectées

(ZNI : DOM TOM et Corse), elle a été de près de 667 M EUR en 2008 (pour 3 millions d'habitants).

Ces subventions "croisées" méritent d'être mises en regard des exigences de rentabilité que l’on a pour les programmes d’équipement en

Afrique.

Source : GRET (2005).

3.3 Quelques clés pour fixer les niveaux tarifaires

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

82

Tableau 10. Kenya (2008)

Tableau 11. Jirama - Madagascar (2007)

Tableau 12. Côte d’Ivoire

Tarif Type de consommateurs Nb d'abonnés 2008 % Consommations 2008 - MWh %

A0 Domestique 895 043 84,41 1 255 24,92

A1 Petits commerciaux 158 676 14,96 590 11,72

B Irrigation 3 738 0,35 996 19,78

C Grands commerciaux 518 0,05 2 108 41,86

D Off peak 668 0,06 74 1,47

E Eclairage public 1 740 0,16 13 0,26

Total 1 060 383 100 5 036 100

Source : KPLC Annual Report 2007-2008.

Source : Jirama.

Type de consommateurs Nb abonnés 2007 % Ventes 2007 (MWh) %

MT/HT 899 0,23 340 339 42,35

Particuliers BT 383 559 96,9 408 159 50,78

Administrations BT 1 977 0,5 11 918 1,48 -

Collectivités 1 661 0,42 9 415 1,17

Cessions JIRAMA 7 753 1,96 33 889 4,22

BT 463 383 57,65

Total 395 849 100 803 722 100

Le cas de la Côte d’Ivoire illustre également cette inégale répartition de la consommation sur le territoire national : les zones urbaines y

enregistrent dix fois plus d'abonnés que les zones rurales. La capitale économique, Abidjan, regroupe à elle seule 40 % des abonnements

et 70 % de la consommation totale, alors que cette ville ne compte que 20 % de la population du pays. En plus de cette disparité, la consom-

mation d'un abonné rural représente moins de 40 % de celle d'un abonné urbain.

Total Rural

Taux d’accès 24 % (38 % avec fraude) 6 %

Population ayant accès 4 320 000 594 000 = 13 % des abonnés

Consommation moyenne / habitant 300 kWh 150 kWh

Consommation totale 1 296 GWh 89,1GWh = 6,8 % de la consommation totale

Source : auteurs.

Encadré 16. Kenya, Madagascar : répartition des consommations par catégorie tarifaire

3.3.2 Péréquation tarifaire : quel coût pour la

nation ?

Dans le schéma dit de « péréquation », les usagers situés

dans les zones les moins coûteuses à électrifier vont

couvrir, de fait, une partie des coûts d’électrification des

zones les plus coûteuses, d’abord en exploitation et ensui-

te en investissement si cela est possible. Au Maroc, les

tarifs de vente de l’électricité sont fixés par l’Etat et sont

uniformes sur tout le périmètre de distribution de l’ONE, qui

compte à la fois des villes et des villages.

La contribution des usagers et des collectivités est la même

sur tout le périmètre rural visé par le PERG, et est indépen-

dante du coût de revient de l’électrification du village consi-

déré. L’ONE applique donc un système de péréquation,

non seulement sur le tarif de vente de l’électricité, mais

également sur cette participation aux investissements des

usagers et des collectivités bénéficiaires. Pour la consom-

mation moyenne d’un ménage rural (52 kWh/mois), la fac-

ture d’électricité atteint 53 DH par mois, auxquels se rajou-

tent 40 DH de redevance PERG.

A la suite de cet ambitieux programme d’électrification rura-

le, la rentabilité de l’ONE paraît affaiblie pour les raisons

suivantes :

- les coûts de distribution en milieu rural sont 2,5 fois plus

élevés que ceux du milieu urbain ;

- les consommations d’énergie en milieu rural sont faibles,

tandis que le nombre d’abonnés ruraux augmente ;

- les tarifs BT ont très peu augmenté depuis 1996, alors que

les tarifs MT et HT ont connu une baisse sensible.

Le PERG a donc eu un impact défavorable sur les résultats

de l’ONE alors même que s’amorce l’électrification des

ménages les plus « chers » à raccorder, c’est-à-dire ceux

situés dans les zones les plus faiblement peuplées.

Au Mozambique, afin de pouvoir assurer sa fonction socia-

le, EdM pratique deux types de subventions croisées entre

des groupes de consommateurs individuels :

- une subvention croisée géographique entre les zones

rurales (particulièrement septentrionales) et les zones

urbaines (principalement Maputo) ;

- une subvention croisée qui s’opère à travers un système

tarifaire variable par paliers ; ainsi, les plus gros consom-

mateurs (généralement les ménages les plus riches) paient

plus cher par unité d’électricité que plus petits (les ménages

les plus pauvres).

EdM fait une distinction de tarifs entre la basse/moyenne

tension (essentiellement les ménages et les petites entre-

prises) et la haute tension (les affaires et l’industrie). Les

utilisateurs de haute tension peuvent obtenir des tarifs indi-

viduels négociés en fonction du volume de consommation

et des périodes d’utilisation (heures de pointe ou creuses).

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

83

Tableau 13. Programme de branchements périurbains au Kenya, prévisions pour

les 750 000 branchements sur 5 ans

Catégories Clients(%)

Cons

moy.

kW/m

Ventes

énergie

(%)

Recettes

(MkSh)

Bénéfice

d'expl.

(MKsh)

Domestique (AO) 90 117 64 924 227

<50 kWh/mois 35 15 3 133 -145

51-300 kWh/mois 55 107 30 649 242

301- 3 000 kWh/mois 9 525 29 129 119

3 000-7 000 kWh/mois 0,1 3 549 2 13 11

Petits commerces A1 10 428 36 643 190

Source : auteurs.

EdM dispose également d’un programme pour attirer

l’investissement privé, notamment à travers un système

d’incitation et de prix spéciaux pour les entreprises et les

industries de l’agroindustrie, ce qui permet de faire de la

tarification un instrument d’aménagement du territoire et du

développement économique.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

84

Tableau 14. Répartition des consommations au Mozambique - EdM (2006)

Tarifs Consommation (GWh) % Nb abonnés %

Commercial BT 183,2 10,06 38 790 9,33

Gros consommateurs BT 88,5 4,86 1 477 0,36

Domestiques BT 516,5 28,36 373 795 89,93

Agriculture BT 0,07 0 24 0,01

MT – HT 534,8 29,36 1 581 0,38

Export 498,3 27,36

Total 1821,37 100 415 667 100

Source : EdM.

Aujourd’hui, le niveau tarifaire moyen est de 8 cents par

kWh, tandis que le tarif de coût marginal à long terme

(CMLT) est de 9,1 cents par kWh. EdM peut procéder à des

ajustements tarifaires de manière indépendante dans les

limites de son contrat de concession conclu avec le gouver-

nement. Les ajustements tarifaires non prévus dans le

contrat doivent être approuvés par le gouvernement.

3.3.3 Différentiation des tarifs

Le cas de l’électrification rurale au Mali est une illustration

particulièrement intéressante de la différentiation des tarifs.

L’Etat malien a amorcé la libéralisation du secteur de

l’électricité en 200042. L’AMADER (AER) régule, contrôle

et participe au financement du développement de l’activité

d’électrification rurale, notamment dans toutes les localités

où la puissance installée est inférieure ou égale à 250 kW43.

Ainsi, des opérateurs publics ou privés locaux qui souhai-

tent fournir un service public de l’électricité peuvent, à leur

initiative, soumettre un PCASER à l’AMADER pour deman-

der une autorisation et une subvention, limitée à 80 % des

coûts d’investissements. Les tarifs et formules tarifaires

sont libres, mais approuvés et publiés par l'AMADER sur la

base d’un plan d’affaires prévisionnel présenté par l’opéra-

teur. Le tarif de l’électricité couvre les charges d’exploitation

et les charges financières, et inclut également un retour sur

investissement pour l’opérateur sur les 15 années que dure

l’autorisation. Le taux communément admis est de l’ordre

de 8 % en réel, ce qui est faible comparativement aux

grands projets d’infrastructures où il est généralement de

l’ordre de 15 % ; l’opérateur se rémunère sous forme de

« dividendes actionnaires ». L’AMADER a prévu un proces-

sus de révision tarifaire qui tient compte de l’évolution des

conditions économiques et techniques et de leur impact sur

le coût du service.

Sur quatre cas étudiés44, en estimant la consommation

d’énergie correspondant au forfait, la fourchette tarifaire

s’établit à 350-700 FCFA/kWh (hors frais de raccordement)

– soit entre 0,55 EUR et plus d’1 EUR. Seul le village de

Koumantou, qui a bénéficié de subventions de l’AMADER,

pratique le prix minimum observé, alors que le tarif social

de l’électricité sur le périmètre EDM-SA était de 59

FCFA/kWh en 2007.

Actuellement, en réalité, les tarifs pratiqués par les PCA-

SER atteignent des niveaux de plus de 0,50 EUR/kWh,

bien au-dessus de la capacité à payer des usagers ruraux.

Ceci est dû à la flambée du prix du gasoil que la subvention

42 Modalités prévues dans une loi n° 00-019/P-RM du 15 mars 2000. 43 La Commission de régulation de l’électricité et de l’eau (CREE) détermine la politique tari-faire44 Cf. Ease et Improves (2007).

presque totale de l’investissement initial n’arrive pas à

compenser, ce qui milite pour la mobilisation d’énergies

renouvelables. Ainsi, l’AMADER, refinancée par l’Etat, se

voit obligée aujourd’hui d’accorder une subvention à l’ex-

ploitation aux PCASER, sous forme d’exonération de taxes

sur le gasoil.

Plus généralement, dans les pays fortement dépendants

des hydrocarbures, les distributeurs sont, dans le cadre de

leurs concessions, de plus en plus autorisés à effectuer des

ajustements tarifaires pour refléter leurs coûts. Ainsi, au

Kenya, les soucis d’hydrologie sur le parc de production

interconnecté ont obligé KPLC à mobiliser des groupes

thermiques coûteux, ce qui les amène à appliquer une sur-

taxe temporaire (fuel surcharge) qui augmente actuelle-

ment le tarif de 50 %, d’un mois sur l’autre

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

85

3.4 Mettre en place les mécanismes de financement nécessaires pour garantir l’accès à

un service électrique pour tous

Le taux d’électrification initial étant très faible en Afrique

subsaharienne (10 à 20 %), les subventions croisées ne

permettront pas, à elles seules, d’atteindre des taux d’ac-

cès d’envergure. On ne peut se passer d’une subvention

initiale (ou, plus généralement, d’emprunts concessionnels)

pour financer des investissements en milieu rural, ou de

financements sur 30 ans, mobilisés sur deniers de l’Etat,

qui peut lui-même se refinancer. Lorsque l’on part de taux

d’équipements en infrastructure faibles, se pose la question

des zones/clients à desservir en priorité, ainsi que celle

d’un rythme d’équipement qui se doit d’être à la mesure des

financements effectivement mobilisables.

La flambée du prix du baril, les risques climatiques, ainsi

que les avancées des avancées technologiques sont autant

de facteurs qui accroissent l’intérêt des énergies renouve-

lables, malgré le coût élevé du premier investissement.

L’heure est clairement aux innovations financières pour

mieux cerner et partager les risques, de manière aussi à

mobiliser les investissements privés.

En outre, la clé de voute de l’équipement d’un territoire

national, en particulier en infrastructure électrique, est de

pouvoir s’appuyer sur une structure capable de mobiliser,

puis d’organiser la mise en œuvre des fonds requis.

3.4.1 Bien mesurer l’envergure des

financements requis et ne pas sous-estimer

l’importance de l’apport national et d’une

contrepartie d’envergure et de qualité

Le Maroc, qui compte 30 millions d’habitants, a réussi

l’exploit majeur de passer à un taux d’électrification des

localités de 15 % à plus de 90 % en 15 ans, ce qui a néces-

sité un investissement de près de 2 Md EUR sur la période.

Rappelons que près de la moitié provient de ressources

nationales (25 % financés par les bénéficiaires et 20 % par

les communes) ; l’ONE finance le solde à travers une taxe

sur les ventes de kWh qui a rapporté, en 15 ans, environ

500 M EUR (soit 30 M EUR par an). Evidemment, sans cet

apport national, les bailleurs de fonds internationaux ne se

seraient pas engagés dans cet ambitieux programme. Les

montants levés en prêt atteignent ainsi une moyenne de 70

M EUR par an, grâce au fait qu’une structure nationale cré-

dible – l’ONE – se porte emprunteur. Ainsi, au fil du temps,

les bailleurs peuvent envisager des prêts non souverains,

en prenant donc directement le risque sur l’ONE.

Au Sénégal, le périmètre rural a été découpé en douze

« concessions d’électrification rurale ». Chacune d’elle sera

attribuée à un opérateur unique, dans le cadre d’un appel

d’offres international. L’opérateur unique est tenu d’appli-

quer une tarification identique à service identique sur

l’ensemble de sa concession et ce, indépendamment des

techniques d’électrification utilisées. Les subventions sont

comprises entre 50 et 80 % du montant total des investis-

sements, et financées sur fonds nationaux ou mobilisation

de bailleurs de fonds. Au lancement de l’appel d’offres,

l’ASER précise le montant de subvention disponible et les

opérateurs soumissionnaires sont sélectionnés sur la base

(i) du nombre de branchements qu’ils s’engagent à réaliser,

(ii) du prix et, indirectement, (iii) des financements addition-

nels qu’ils apportent sous forme de fonds propres et d’em-

prunts.

La première concession, située dans la région de Saint-

Louis-Dagana-Podor (nord, superficie de 19 000 km2,

362 000 habitants et 41 000 ménages), a été attribuée à

l'ONE après un appel d'offres international, pour une durée

de 25 ans. Un prêt de 5 M USD de la Banque mondiale est

utilisé comme subvention de base du gouvernement séné-

galais au concessionnaire. L'investissement total est 14,9

M USD sur 3 ans. Dans son offre, l’ONE a proposé 2,3 fois

plus de raccordements que ce qui était demandé dans l’ap-

pel d’offres, et 50 % de plus que son concurrent. Pour cela,

il a proposé un plan de financement incluant une large part

d’emprunt, qui a été possible grâce au fait que l’ONE dispo-

se déjà de références (track record) significatives d’emprunts

auprès de bailleurs de fonds internationaux, contractés pour

l’électrification de leur propre territoire national. On s’interroge

légitimement sur la possibilité de répliquer un tel schéma…

Qu’en est-il des dynamiques actuelles en Afrique subsaha-

rienne ? Une revue des programmes en cours montre que

les volumes les plus importants sont mobilisés dans les

pays ayant des structures nationales porteuses. En se

focalisant sur la Banque mondiale, on fait les observations

suivantes :

• les prêts sont, pour la quasi-totalité, octroyés aux Etats qui

ensuite rétrocèdent aux différentes structures nationales

sous forme de dons ou de prêts. Les volumes les plus

importants des concours pour des programmes d’accès

(urbains ou ruraux) sont dans les pays dotés de compa-

gnies d’électricité d’envergure, qui ont donc la capacité de

les absorber et de les rembourses. Il est intéressant d’ob-

server le montant du prêt en mobilisation annuelle au

regard de la population du pays, en gardant à l’esprit que le

Maroc a eu besoin d’emprunter 70 M EUR/an sur une

période de 15 ans, avec des maturités de plus de dix ans,

pour équiper un pays d’environ 30 millions d’habitants ;

voici quelques exemples :

- Ethiopie : 60 millions d’habitants ; 5 ans (2003) ; 133 M

EUR, soit 27 M EUR/an ; seulement 35 M pour l’accès, dont

80 % en extension du réseau ; rôle central de EEPCo ;

- Ghana : 20 millions d’habitants ; 5 ans (2008) ; 135 M

EUR, soit 27 M EUR/an ; 35 % pour l’extension du réseau

et volonté de travailler avec des banques de développe-

ment nationales ;

- Mozambique : 20 millions d’habitants ; 4 ans (2003) ;

54 M EUR, soit 13 M EUR/an ; 50 % pour le réseau périur-

bain, rôle central d’EDM ;

• un second groupe de concours se focalise sur les FER ;

la grande limite de ce schéma est que l’Etat fait un don au

fonds, qui lui-même n’a souvent de fonds que le nom. Ce

dernier est en réalité un compte bancaire qui va faire tran-

siter une subvention à l’investissement à un opérateur, qui

n’a généralement aucune ou de très partielles et rares obli-

gations de remboursement :

- Cameroun : 16 millions d’habitants ; 6 ans (2008) ; 47 M

EUR, soit 8 M EUR/an, pour l’essentiel dédié au « fonds »

qui a mis près d’une décennie à se mettre en place ;

- Guinée : 8 millions d’habitants ; 4 ans (2003) ; 11 M EUR,

soit 3 M EUR/an – doté pour l’essentiel à un « fonds » qui

n’avait pas le droit de prêter ; un partenariat a été recher-

ché avec une banque, rémunérée, mais qui a refusé de

prendre un risque de prêt et s’est limitée à faire transiter la

subvention ;

- Mali : 10 millions d’habitants ; 5 ans (2005) ; 25 M EUR,

soit 5 M EUR/an – à l’AMADER pour l’essentiel qui transite

les subventions à l’investissement ;

- Ouganda : 23 millions d’habitants ; 5 ans (2009) ; 62 M

EUR, soit 12 M EUR/an (dont un tiers pour l’extension du

réseau à la compagnie d’électricité, et un tiers pour des pro-

grammes intersectoriels gérés par des ministères usagers

en subvention).

On déduit de ces observations que les pays ayant réussi un

changement d’échelle sont aussi ceux qui ont un opérateur

central crédible, tant techniquement que financièrement.

La Banque mondiale utilise des instruments type Adaptable

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

86

Programme Loan (APL) ou Special Impact Loan (SIL) qui

s’inscrivent généralement dans la durée et méritent atten-

tion: les maturités des prêts mentionnées ci-dessus sont

celles d’une première tranche, qui, si elle est réalisée avec

succès45, entraîne la mobilisation d’une seconde tranche.

De tels programmes peuvent faire l’objet d’accords sur 10

ou 20 ans.

3.4.2 Intérêt de structurer les FER comme de

véritables intermédiaires financiers

Une revue des structures existantes nous amène à conclu-

re qu’aujourd’hui, les FER en Afrique subsaharienne ne

sont pas structurés comme intermédiaires financiers. Ils ne

peuvent donc pas (i) emprunter, (ii) se refinancer à travers

l’émission d’obligations, (iii) prêter aux opérateurs locaux,

ni (iv) mobiliser les banques nationales avec des instru-

ments de mitigation des risques.

Pour ce qui concerne les banques locales, en réalité elles

ne souhaitent pas s’engager sur ce secteur méconnu et à

faible rentabilité, sauf dans le cas de banques de dévelop-

pement à mandat particulier. Ainsi, les fonds sont générale-

ment un compte pour transférer des subventions, et les

agences internationales octroient des prêts sectoriels aux

gouvernements qui en rétrocèdent une partie comme don

au FER. Il n’y a aucun effet de levier sur don dans les sous-

secteurs de l’électrification rurale ou périurbaine.

Naturellement, les montants de dons mobilisables au

niveau de la coopération internationale ne représentent pas

des sommes à la hauteur des enjeux.

Il est crucial de changer de paradigme pour faire levier sur

les montants de dons, qui resteront modestes au regard

des enjeux. Il est donc essentiel de suivre les recomman-

dations suivantes :

• établir la structure légale du fonds en tant qu’institution

financière à part entière, ou encore coupler ce fonds avec

une structure de financement dédiée, agrée comme telle

par la réglementation bancaire nationale ;

• doter cette structure des capacités techniques et

financières en matière d’évaluation de projet et de prépara-

tion de pipeline de projets ;

• formuler le plan d’affaires du fonds, fondé sur un plan à

long terme qui propose un mix de projets avec différents

niveaux de rentabilité pour permettre un certain niveau de

subventions croisées, et qui s’engage à soutenir les

premiers porteurs de projets pour créer un effet de démons-

tration ;

• faire une dotation de démarrage, dans la perspective d’un

fonds revolving pour des études préparatoires en particulier ;

• impliquer les banques en évaluant leur appétence et leur

perception du risque pour ensuite mettre en place des

mécanismes de partage de risque adéquat (cofinancement,

contre-garanties, etc.) ;

• avoir une vision de pérennisation à long terme du méca-

nisme de financement, avec l’augmentation progressive de

la contribution nationale (émission d’obligation, taxe au

kWh, etc.).

Pour illustrer ces recommandations, trois schémas sont ici

proposés :

- Schéma 1 = situation actuelle : le FER reçoit de la part de

l’Etat des dons qui peuvent provenir du budget de l’Etat ou

d’opérations de la coopération internationale (rétrocession

de prêts/dons à l’Etat – généralement sous forme de dons).

Il est rare que l’institution de coopération effectue une

transaction directe avec le fonds (dont les statuts ne le per-

mettent pas forcément). Le FER peut être doté de capaci-

tés techniques, évalue des projets d’électrification rurale et

les subventionne suivant des règles qui lui sont propres. On

espère que les opérateurs ayant bénéficié de subventions

puissent ensuite arriver à équilibrer leur opération. Bien

souvent, ce n’est cependant pas le cas : au Burkina Faso,

malgré une subvention de 80 % à l’investissement, des

subventions au fonctionnement ont dû être mises en place.

Dans cette situation, le rôle du fonds se limite, au plan

financier, à verser des subventions.

- Schéma 2 = évolutions à court terme : le fonds devient le

bras financier d’une AER et développe une planification de

l’électrification rurale, où apparaissent des opérations qui

peuvent présenter une certaine rentabilité : centres secon-

daires, agroindustries, etc. On fait émerger un portefeuille

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

87

45 Cette réalisation est évaluée par certains indicateurs établis au préalable, comme la miseen place d’une loi de PPA ou le nombre de localités connectées.

d’opérations qui nécessitent des niveaux de subventions

plus ou moins importants. Le fonds se dote de statuts lui

donnant une autonomie financière et la capacité d’intermé-

diation financière au titre de la législation nationale. Ainsi,

dès lors qu’il se trouve doté de fonds nationaux réguliers

(une taxe affectée, par exemple), qu’il peut prêter à des

opérateurs, même avec un fort taux de concession (et donc

produire des recettes), on en vient à avoir comme interlocu-

teur une structure avec un bilan, à laquelle les institutions

peuvent donc prêter, avec laquelle des fonds (nationaux ou

internationaux de placement) peuvent dialoguer et des

banques nationales de développement peuvent interagir,

notamment en partage des risques. Ainsi, banques nationales

et investisseurs développent un certain niveau de confiance.

- A moyen terme, le fonds en vient à confirmer son autono-

mie de gestion, sa crédibilité et son fonctionnement en tant

que structure de financement spécialisée. Des opérations

pilote ayant été démontrées, les banques nationales vien-

nent également participer au tour de table et financer des

opérateurs. Pour mobiliser ces crédits, voire des investisse-

ments nationaux, le fonds peut aussi être amené à dévelop-

per des instruments de garantie ou de partage du risque

afin de maximiser la participation de ces sources de finan-

cement privé. A terme, le fonds doit envisager lui-même de

lever des financements sur les marchés obligataires natio-

naux ou internationaux, et progressivement se libérer des

besoins de financement de la coopération internationale.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

88

Schéma 7. Etapes de structuration d’un fonds d’électrification rurale

Si cette vision peut paraître utopique, c’est la seule qui

permette réellement de mobiliser des financements à la

hauteur des enjeux de l’électrification rurale dans les pays.

A titre d’exemple et de comparaison, l’Inde s’est clairement

engagée dans cette voie il y a 50 ans, avec la création

d’une entreprise (financière) spécialisée, la Rural

Electrification Corporation (cf. encadré 17), qui s’est

d’abord consacrée à financer les extensions de réseaux et

devenir le véritable centre de formation et de recherche sur

les techniques adaptées au contexte indien. Etant arrivée à

la fin du programme d’électrification, elle alloue des fonds

aux programmes plus décentralisés. Suivant la même

logique, un département des Energies renouvelables a vu

le jour en 1982, pour devenir ministère en I992, cette struc-

ture politique et de planification se dotant, dès 1987, d’une

institution financière spécialisée dans le financement des

énergies renouvelables : l’Indian Renewable Energy

Development Agency (IREDA)46. Grâce à ces deux

structures, plus de 95 % des localités sont aujourd’hui

couvertes (60 % d’électrification des ménages), et l’Inde

figure parmi les leaders mondiaux de l’éolien.

En 2010, le pays a lancé un très ambitieux programme

solaire visant :

- 1 100 MW de grandes centrales et PV dans le bâti d’ici

2013, puis 20 000 MW en 2022 ;

- 200 MW de PV hors réseau y compris hybrides pour 2013

et 2 000 MW pour 2022.

C’est grâce aux outils de financement disponibles, et à leur

ancienneté, que des investisseurs privés, tant indiens qu’in-

ternationaux, ainsi que la Banque asiatique de développe-

ment (avec tous ses instruments : assistance technique,

prêts concessionnels et commerciaux) se positionnent sur

le programme.

Cet exemple illustre l’importance cruciale d’affecter de

manière fine les dons et les prêts concessionnels et com-

merciaux aux bons segments afin de maximiser leur impact

et leur effet de levier.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

89

Source : auteurs.

46 http://www.ireda.gov.in

Encadré 17. Le financement de l’électrification rurale en Inde : la Rural Electrification

Corporation – REC

La REC a été constituée en 1969 en tant que société de financement. C’est aujourd’hui une entreprise publique d’Etat, cotée en bourse,

d’une valeur nette de 750 M EUR. Sa raison sociale est le financement et la promotion de projets d’électrification rurale sur le territoire natio-

nal. Elle apporte des concours financiers aux compagnies d’électricité des différents Etats de l’Union indienne, aux coopératives d’électrifi-

cation rurale, sociétés privées et publiques. La REC dispose de bureaux dans la capitale centrale (New Delhi) et dans les capitales provin-

ciales qui ont pour mandat de coordonner les bouclages financiers avec les collectivités territoriales et autres financeurs locaux, appuyer la

formulation de projets et programmes, suivre le décaissement et la mise en œuvre de projets. Elle est également dotée d’un centre impor-

tant de recherche et de formation.

La mission de la REC est formulée comme suit (2009) :

« Faciliter la mise à disposition d’un service électrique pour le développement et l’amélioration des conditions de vie des populations ruraleset semi-urbaines.

Agir comme un organisme de développement efficace et compétitif, à l’écoute de ses clients pour le financement et la promotion de projetsde production d’électricité, économies d’électricité et de renforcement des réseaux de distribution à travers le territoire national. »

Historiquement, la REC, en application de la politique nationale, s’est consacrée à l’électrification villageoise et à la mise en place de pompes

pour l’irrigation, considérées alors comme priorités. Une localité était définie comme étant électrifiée dès lors qu’un usage de l’électricité y

était constaté, quelle que soit sa localisation sur le territoire. Ainsi, en 2005, 81 % des localités du pays étaient électrifiées, et plus de 110

000 villages devaient encore l’être ; 12 millions de pompes électrifiées permettaient d’irriguer 34 millions d’hectares.

Ce n’est qu’en un second temps, et après trois décennies, que l’on s’est véritablement intéressé à la question de l’accès des populations à

un service. En 2004, deux critères supplémentaires apparurent pour qu’une localité puisse être définie comme électrifiée : les services

publics (santé, centres communautaires, écoles, etc.) devaient l’être, ainsi qu’au moins 10 % de la population.

En effet, au début du XXe siècle et avec une consommation par habitant qui est passée de 15kWh/ habitant en 1950 à 600 kWh par

habitant en 2005, l’accès au service électrique moderne est nécessaire pour atteindre des taux de croissance économiques de 8 à 10 % par

an, et pour toute la population. Ainsi, l’accès des 50 % de foyers ruraux, soit quelque 60 millions de foyers, est devenu un objectif.

La REC octroie essentiellement des prêts à long terme (15 à 35 ans) aux compagnies d’électricité publiques et privées pour la production

(renouvelable ou non), le transport et la distribution. Les taux d’intérêts en 2009 étaient de 10 à 12 %, révisables annuellement ou tous les

3 ans, mais il faut tenir compte d’une inflation qui est passée de 4 % à près de 13 %.

Pour donner accès à l’ensemble de la population et aux villages encore non desservis, un programme spécifique a été formulé en 2005 : le

Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY) ; en voici les principales composantes :

- renforcement des réseaux de distribution MT, création des infrastructures MT, distribution, production décentralisée et réseaux locaux : ces

investissements, qui doivent être présentés sous forme de projets, peuvent bénéficier de subventions à l’investissement à hauteur de 90 % ;

- financement d’infrastructures productives et sociales : pompes d’irrigation, PME, artisanat local, chaînes de froid, santé, éducation et com-

munication ; présentés sous forme de projets, ils peuvent également bénéficier des mêmes taux de subvention ;

- subvention de 100 % accordée pour le branchement de base l(éclairage, audiovisuel) aux foyers vivant sous le seuil de pauvreté (i.e. avec

moins de 2 USD par jour) ;

- développement de franchises de distribution, où une structure locale (privée, associative ou coopérative) assume la responsabilité du servi-

ce de distribution sur un territoire irrigué par un transformateur ; ces franchises bénéficient également des mêmes soutiens à l’investissement.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

90

Les besoins de financements sont estimés comme suit, la part de subvention provenant des taxes sur l’ER et d’allocations gouvernemen-

tales (sur une période théorique de 5 ans) :

- électrification des villages isolés et renforcement des réseaux : 1 160 M EUR

- électrification des foyers sous le seuil de pauvreté : 500 M EUR

- renforcement des réseaux en zones déjà électrifiées : 670 M EUR

TOTAL 2 330 M EUR

dont 90 % de subvention (solde financé sur FP ou par REC) 2 100 M EUR

supplément de 1 % pour appuis de formation ou recherche 230 M EUR

Si ces sommes peuvent impressionner au premier abord, il importe de les relativiser par rapport aux performances, à l’expérience et au bilan

de la REC.

En 2008, la REC a été classée parmi les compagnies étatiques les plus performantes de l’Inde, et ses performances qualifiées comme «

excellentes » par l’auditeur public depuis 1993. Elle envisage maintenant d’exporter ses services et son savoir-faire.

Quelques chiffres clés pour 2007-2008 (taux de conversion : 70 INR/EUR) :

capitaux propres 122 M EUR

emprunts au gouvernement 11 M EUR

emprunts à Life Insurance Company 500 M EUR

emprunts par émissions d’obligations 3 200 M EUR

emprunts auprès d’autres banques (dont coopération) 600 M EUR

nombre de projets évalués et approuvés dans l’année : environ 750

total des prêts en cours 5 500 M EUR

intérêts collectés sur l’année 505 M EUR

bénéfices avant impôts 187 M EUR

bénéfices après impôts 123 M EUR

distribution de dividendes 37 M EUR

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

91

3.4.3 Combiner de manière innovante prêts et

dons pour mieux partager les risques des

projets et maximiser l’effet de levier à partir

des rares ressources disponibles en subvention

Compte tenu des caractéristiques économiques des projets

d’accès, la bonification des financements est une nécessi-

té, avec la composante subvention visant plus particulière-

ment :

• le renforcement de capacités : cadres institutionnel et

réglementaire ; capacités sur les nouvelles technologies ;

capacités de gestion d’opérations locales ; formations des

banques ;

• les études amont et la planification stratégique; l’inventaire

des ressources ; les études de faisabilité (quitte à en réin-

tégrer le coût dans le financement du projet si celui-ci en

vient à se réaliser) ;

• le soutien à la mise en œuvre : montage financier, études

d’ingénierie et d’exécution, maîtrise d’œuvre, renforcement

de capacités des opérateurs ;

• le soutien à l’investissement : partage des risques, adap-

tation des termes des concours financiers aux profils

économique et financier des projets (durée, taux, période

de grâce), subventions à l’investissement.

Les incertitudes et risques liés aux projets d’accès, d’élec-

trification rurale, et faisant appel à des énergies renouve-

lables sont d’ordre multiples.

- Pour le risque projet, les risques liés au projet lui-même

sont d'ordre techniques : le premier concerne la disponibili-

té de la ressource et ses aléas (hydrologie, météo, vent,

ensoleillement, disponibilité de la biomasse). Des études

(souvent longues et coûteuses) sont donc nécessaires pour

prendre en compte ces aspects et permettre une mise en

œuvre de projets d'énergie renouvelables. Le second

risque technique est lié à la construction, en particulier le

génie civil pour l'hydroélectricité notamment. Ce risque de

construction fait porter un risque réel de dépassement des

coûts initialement prévus.

- Pour le risque lié au contexte du projet, la demande anti-

cipée et la vitesse de son développement doivent être ana-

lysées avec prudence. En effet, les cadres réglementaires

de tarifs de rachat ou d'accès des tiers au réseau n'offrent

souvent de la visibilité que sur quelques années, alors que

le temps de retour du projet est supérieur à cinq ans et qu'il

faut attendre 8 ou 10 ans pour une rentabilité intéressante.

Enfin, un dernier risque du projet est lié à la faible expé-

rience, au niveau technique comme au niveau de la gestion

de projets, des opérateurs locaux qui se lancent dans ce

type de nouvelles opérations…

- ce qui nous amène au risque de contrepartie : compte

tenu des éléments listés ci-avant, les banques commer-

ciales ou de développement classiques sont réticentes face

à ces nouveaux projets, et ne disposent pas des compé-

tences requises, voire des instruments de prêt à long

terme, pour évaluer les projets et les financer. Elles en vien-

nent donc à se focaliser sur la qualité des contreparties et

à demander de forts niveaux de garantie à partir d’une ana-

lyse classique du bilan des entreprises à qui il faut prêter.

Il incombe donc aux structures du financement de l’accès

ou aux FER de chercher à mobiliser des prêts et d’affecter

les dons afin d'améliorer le niveau de rentabilité du projet,

et ainsi augmenter son attractivité pour le bailleur.

Pour ce faire, il est nécessaire d’établir, en premier lieu, et

en coordination avec le planificateur, une liste de projets

prioritaires (tant pour des raisons économiques que

sociales ou d’aménagement du territoire) et analyser leur

rentabilité ainsi que leur « portage », de manière à décider

de manière réaliste, étant données les ressources dispo-

nibles, quel portefeuille il est possible de développer et de

soutenir. Il faudra certainement, initialement au moins,

subventionner/pré financer les études dont le coût peut être

réintégré dans le financement du projet. On pourra égale-

ment utilement mener des analyses stratégiques d’opportu-

nité sur de nouvelles technologies (telles que le PV diesel

hybride ou le biodiesel en tant que carburant pour l’électri-

fication rurale) pour afficher des priorités aux investisseurs,

et donc subventionner au niveau nécessaire des projets

innovants à caractère démonstratifs ou d’apprentissage, en

escomptant une baisse des coûts dans la durée. Des sub-

ventions seront nécessaires pour les projets sociaux, en ayant

conscience du caractère à « fonds perdus » de ces opérations.

La formation des banquiers, opérateurs, prestataires

nationaux, etc. doit également accompagner la mise en

place d’instruments de garanties partielles, qui les encoura-

geraient à s’engager sur le long terme et à prendre des

risques de projet ou de contrepartie (qu’ils refuseraient

sinon). Dans des contextes d’investissements privés, où

c’est l’apport en capital (equity) qui fait défaut, on pourra

envisager d’investir au capital de certaines opérations.

Au regard des enjeux du développement de l'accès et des

perspectives de financements qui pourraient lui être

alloués, il convient donc de repenser la structuration des

projets d'électrification rurale et périurbains pour parvenir à

une utilisation de la subvention la plus efficace possible

(cette dernière étant nécessaire pour ce type de projets qui,

même bien structurés, ne peuvent atteindre les niveaux de

rentabilité possibles en milieux urbain et industriel).

Actuellement rares, les subventions doivent être utilisées

de manière raisonnée et ciblée sur le financement des

actions non rentables du projet afin de permettre la conci-

liation de la péréquation et de l'équilibre financier.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

92

Bibliographie

AFD (2004), Compte-rendu du Conseil de surveillance - Renforcement de la distribution électrique à Nairobi et Mombasa,

Paris.

AFD (2005), Compte-rendu du Conseil de surveillance - Extension du réseau électrique dans six provinces rurales du Kenya,

Paris.

AFD (2008a), Aide-mémoire, Identification du projet d’électrification rurale Mauritanie CMR3009, Paris.

AFD (2008b), Aide-mémoire, Projet de fourniture de services énergétiques, Mission d’appui pour l’élaboration des procédures

de gestion du fonds d’électrification rurale, Paris.

AFD (2008c), Compte rendu de mission, Identification du projet d’électrification rurale, Mauritanie CMR3009, Paris.

AIE (2009), World Energy Outlook 2009, Paris.

BANQUE MONDIALE (2008a) World Development Report, Washington DC.

BANQUE MONDIALE (2008b), Designing Sustainable Off-Grid Rural Electrification Projects: Principles and Practices,

Operational Guidance for World Bank Group Staff, Washington DC.

BANQUE MONDIALE (2006), An investment Framework for Clean Energy and Development: A progress Report, Washington, DC.

BOLAY, C et A. RABINOVICH (2004), Intermediate Cities in Latin America, Risk and Opportunities of Coherent Urban

Development, Elsevier, Londres.

BPOBA (2007), OBA in Senegal, Designing Technology-Neutral Concessions for Rural Electrification, Banque mondiale,

Washington DC.

BURGEAP (2006), The Elaboration of a National Rural Electrification Framework in Ghana, Inception Report, Concept Note

and Workshop, Boulogne-Billancourt.

CBS - INTERNATIONAL LIVESTOCK RESEARCH INSTITUTE (2004), The Geographic Dimensions of Well-Being in Kenya:

Where are the Poor?

CEDEAO et UEMOA (2006), Livre blanc pour une politique régionale sur l’accès aux services énergétiques des populations

rurales et périurbaines pour l’atteinte des objectifs du Millénaire pour le développement.

CRE (2005), « La péréquation des tarifs d’utilisation des réseaux nécessite un outil adapté : le fonds de péréquation de l’élec-

tricité » fiche n° 4, Paris.

EASE et IMPROVES (2007), Opérateurs électriques en milieu rural au Mali et au Burkina Faso.

EDF, Study of Non-Electrified Households in Electrified Areas in Kenya, Rapport interne.

GRET (2005), « Comment se sont-ils électrifiés ? Deux études de cas de politique nationale d'électrification : France, Etats-

Unis », Etudes et travaux en ligne n°3, Paris.

IED (2004), Rapport de synthèse sur les prix obtenus dans le cadre de l’appel d’offres pour l’électrification de six localités en

Mauritanie – étude comparative.

IEG (2008), The Welfare Impact of Rural Electrification: a Reassessment of the Costs and Benefits, Banque mondiale,

Washington DC.

MASSE, R. (2008), Evaluation des SSD au Mali, Maroc et Afrique du Sud – Rapport de synthèse, GRET, Paris.

MASSE, R. (2005), Histoire de l’électrification rurale en France, GRET, Paris.

MASSE, R. (2004), Financer le développement de l’électrification rurale, GRET, Paris.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

93

MINISTERE DES MINES, DE L’ENERGIE ET DE L’HYDRAULIQUE, (2005), Programme d’action pour l’électrification des localités

rurales du Bénin, ABERME, Paris.

ONU (2008), Renforcer l’épargne intérieure en Afrique, Afrique Renouveau, Vol. 22#3, New York.

PNUD (2008), Rapport mondial sur le développement humain 2007-2008, PNUD, New York.

PRAXIS (2008), Harmonisation de la méthodologie d’élaboration des plans locaux d’électrification rurale des concessions,

Rapport final.

UN-HABITAT (2008), The State of African Cities, A Framework for Addressing Urban Challenges in Africa, UN-HABITAT, Nairobi.

Rapports internes / Documents de programmes

ADEDJOUMON, C. (2008), Capitalisation de projets d’électrification rurale financés par l’AFD en Afrique de 1994 à 2008,

Rapport interne.

AFD (2005), Evaluation rétrospective d’un projet d’électrification rurale dans le Ganzourgou (Burkina Faso), Rapport interne

EDF, Study to Identify Scope of Works for a Rural Electrification Project in Kenya, Rapport interne.

EDF, AXENNE et ABERDARE, Review of Customer Connection Policy, « Renforcement de la distribution électrique à Nairobi et

Mombasa »; Rapport interne.

HEURAUX, C. (2009), Présentation de l’enquête SSD, EDF,, Rapport interne.

KOTY, C. (2007), Situation du secteur de l’énergie et perspectives, ministère des Mines, de l'Energie et de l'Eau du Bénin,

Rapport interne.

MINISTÈRE DE L’ENERGIE, KENYA (2005), Road Map for Reform of the Rural Electrification Programme, Rapport interne.

MMEE, GTZ, AFD et CE (2008), Document de programme, Programme d’électrification rurale par raccordement au réseau.

MOSTERT, W. (2008), Review of Experiences with Rural Electrification Agencies - Lessons for Africa, Draft Report prepared for

the European Union Energy Initiative-Partnership Dialogue Facility (EUEI-PDF), EUEI-PDF, Rapport interne.

NIANG, A., « La stratégie de développement de l’électrification rurale », présentation ASER, Dakar, Rapport interne.

Etudes de projets

CEMAC, CEDEAO, IED (2006) : études menées dans les zones de la CEMAC (Cameroun, RCA, Congo, Gabon, Guinée

équatoriale, Tchad) et de la CEDEAO (Bénin, Burkina Faso, Cap Vert, Côte d’Ivoire, Gambie, Ghana, Guinée, Guinée Bissau),

IED.

Etude réalisée en 2001 aux Philippines dans le cadre d’un partenariat entre la Banque mondiale et la Fondation de l’Institut

de politique de développement et de management de la recherche aux Philippines.

Etude réalisée au Vietnam en 2005, à l’initiative de la Banque mondiale et de l’Agence suédoise de développement interna-

tional venant en accompagnement d’un projet d’électrification de 150 M USD.

ONE, en partenariat avec l’AFD (2003) : étude d’impact des effets de l’électrification selon ses différentes formes, sur les

ménages et les usagers non domestiques. La Banque mondiale a publié une étude d’impact à partir de données de différents

continents, les localités rurales et sur l’environnement naturel.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

94

Banque mondiale (2008), PNUD (2007), CEDEAO et UEMOA (2006), Review of national framework for involvement of agro-

industries in rural electrification, projet PACEAA (poverty alleviation through cleaner energy for agro-industry in Africa), 2009 ,

Mostert (2008), African Energy Policy Research Network (AFREPEN), 2004,, données récoltées dans le cadre du Club des

agences d’électrification rurale, enquête congolaise des ménages (2005 ) ministère de l’Energie érythréen, Réseau interna-

tional d’accès aux énergies durables (RIAED), 2005

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

95

Liste des sigles et abréviations

ADEME Agence de l’environnement et de la maîtrise de l’énergie

ADER Association des énergies renouvelables

AER Agence d’électrification rurale

AFD Agence Française de Développement

AFREPEN African Energy Policy Research Network

AIE Agence internationale de l’énergie

AMADER Agence malienne pour le développement de l'énergie domestique et l'électrification rurale

ANARE Autorité nationale de régulation du secteur de l'électricité

APAUS Agence pour l’accès universel aux services

APL Adaptable Programme Loan

ARSEL Agence de régulation du secteur électrique

ATR Accès des tiers au réseau

BAD Banque africaine de développement

BIRD Banque internationale pour la reconstruction et le développement

BOT Build Operate Transfer

BT Basse tension

CEDEAO Communauté économique des Etats de l'Afrique de l'Ouest

CEMAC Communauté économique et monétaire d'Afrique centrale

CIE Compagnie ivoirienne d’électricité

CMLT Coût marginal à long terme

CREE Commission de régulation de l’électricité et de l’eau

CSPE Contribution au service public de l’électricité

DGE Direction générale de l’Energie

ECG Electricity Company of Ghana

EDF Electricité de France

EdM Electricité du Mali

ERD Electrification rurale décentralisée

ESF Electriciens sans frontières

ESMAP Energy Sector Management Assistance Program

FACE Fonds d’amortissement des charges d’électrification

FEM Fonds pour l’environnement mondial

FER Fonds d’électrification rurale

FFEM Fonds français pour l’environnement mondial

FP Fonds propres

GEF Global Environment Facility

GRET Groupe de recherche et d'échanges technologiques

GTZ Deutsche Gesellschaft für Technische Zusammenarbeit

IDA International Development Association

IDH Indicateurs du développement humain

IED Innovation énergie développement (consortium)

IEG Groupe indépendant d'évaluation

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

97

IGCC Integrated Gasification in Combined Cycle

IPP Independant Power Producer

IREDA Indian Renewable Energy Development Agency

KES Société de services décentralisés

KPLC Kenya Power Lighting Corporation

LBC Lampe basse consommation

LED Light-Emitting Diode

MRBC Meter Reading, Billing and Collection

MT Moyenne tension

OBA Output-Based Aid

OCDE Organisation de coopération et de développement économiques

OMD Objectifs du Millénaire pour le développement

ONE Office national de l’électricité

ONG Organisation non gouvernementale

ONUDI Organisation des Nations unies pour le développement industriel

PACEAA Alleviation through Cleaner Energy for Agro-Industry in Africa

PCASER Projet de candidature spontanée d’électrification rurale

PCH Petites centrales hydroélectriques

PERG Programme d’électrification rural global

PME Petites et moyennes entreprises

PNUD Programme des Nations unies pour le développement

PNUE Programme des Nations unies pour l'environnement

PNVEP Programme national de valorisation énergétique de la plante pourghère

PPA Power Purchase Agreement

PPP Partenariat public-privé

PSP Participation du secteur privé

PV Photovoltaïque

PVPS Photovoltaic Power Systems Programme

RCA République centrafricaine

RCI République de Côte d’Ivoire

RDC République démocratique du Congo

REC Rural Electrification Corporation

RGGVY Rajiv Gandhi Grameen Vidyutikaran Yojana

RIAED Réseau international d’accès aux énergies durables

RIS Réseau interconnecté Sud

SENELEC Société nationale d'électricité du Sénégal.

SHEP Self-Help Electrification Programme (Ghana)

SIL Special Impact Loan

SSD Société de services décentralisés

SWER Single Wire Earth Return

SWOT Strengths, Weaknesses, Opportunities, Threats

TRI Taux de retour sur investissement

UEMOA Union économique et monétaire ouest-africaine

WEO World Energy Outlook

ZNI Zones non interconnectées

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

98

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

99

Série Documents de travail / Working Papers SeriesPubliés depuis janvier 2009 / published since January 2009

Les numéros antérieurs sont consultables sur le site : http://recherche.afd.fr

Previous publications can be consulted online at: http://recherche.afd.fr

N° 78 « L’itinéraire professionnel du jeune Africain » Les résultats d’une enquête auprès de jeunes leaders Africains sur

les « dispositifs de formation professionnelle post-primaire »

Richard Walther, consultant ITG, Marie Tamoifo, porte-parole de la jeunesse africaine et de la diaspora

Contact : Nicolas Lejosne, département de la Recherche, AFD - janvier 2009.

N° 79 Le ciblage des politiques de lutte contre la pauvreté : quel bilan des expériences dans les pays en développement ?

Emmanuelle Lavallée, Anne Olivier, Laure Pasquier-Doumer, Anne-Sophie Robilliard, DIAL - février 2009.

N° 80 Les nouveaux dispositifs de formation professionnelle post-primaire. Les résultats d’une enquête terrain au Cameroun,

Mali et Maroc

Richard Walther, Consultant ITG

Contact : Nicolas Lejosne, département de la Recherche, AFD - mars 2009.

N° 81 Economic Integration and Investment Incentives in Regulated Industries

Emmanuelle Auriol, Toulouse School of Economics, Sara Biancini, Université de Cergy-Pontoise, THEMA,

Comments by : Yannick Perez and Vincent Rious - April 2009.

N° 82 Capital naturel et développement durable en Nouvelle-Calédonie - Etude 1. Mesures de la « richesse totale »

et soutenabilité du développement de la Nouvelle-Calédonie

Clément Brelaud, Cécile Couharde, Vincent Géronimi, Elodie Maître d’Hôtel, Katia Radja, Patrick Schembri,

Armand Taranco, Université de Versailles - Saint-Quentin-en-Yvelines, GEMDEV

Contact : Valérie Reboud, département de la Recherche, AFD - juin 2009.

N° 83 The Global Discourse on “Participation” and its Emergence in Biodiversity Protection

Olivier Charnoz. - July 2009.

N° 84 Community Participation in Biodiversity Protection: an Enhanced Analytical Framework for Practitioners

Olivier Charnoz - August 2009.

N° 85 Les Petits opérateurs privés de la distribution d’eau à Maputo : d’un problème à une solution ?

Aymeric Blanc, Jérémie Cavé, LATTS, Emmanuel Chaponnière, Hydroconseil

Contact : Aymeric Blanc, département de la recherche, AFD - août 2009.

N° 86 Les transports face aux défis de l’énergie et du climat

Benjamin Dessus, Global Chance.

Contact : Nils Devernois, département de la Recherche, AFD - septembre 2009.

N° 87 Fiscalité locale : une grille de lecture économique

Guy Gilbert, professeur des universités à l’Ecole normale supérieure (ENS) de Cachan

Contact : Réjane Hugounenq, département de la Recherche, AFD - septembre 2009.

N° 88 Les coûts de formation et d’insertion professionnelles - Conclusions d’une enquête terrain en Côte d’Ivoire

Richard Walther, expert AFD avec la collaboration de Boubakar Savadogo (Akilia) et de Borel Foko (Pôle de Dakar)

Contact : Nicolas Lejosne, département de la Recherche, AFD - octobre 2009.

N° 89 Présentation de la base de données. Institutional Profiles Database 2009 (IPD 2009)

Institutional Profiles Database III - Presentation of the Institutional Profiles Database 2009 (IPD 2009)

Denis de Crombrugghe, Kristine Farla, Nicolas Meisel, Chris de Neubourg, Jacques Ould Aoudia, Adam Szirmai

Contact : Nicolas Meisel, département de la Recherche, AFD - décembre 2009.

N° 90 Migration, santé et soins médicaux à Mayotte

Sophie Florence, Jacques Lebas, Pierre Chauvin, Equipe de recherche sur les déterminants sociaux de la santé et

du recours aux soins UMRS 707 (Inserm - UPMC)

Contact : Christophe Paquet, département Technique opérationnel (DTO), AFD - janvier 2010.

N° 91 Capital naturel et developpement durable en Nouvelle-Calédonie - Etude 2. Soutenabilité de la croissance néo-

calédonienne : un enjeu de politiques publiques

Cécile Couharde, Vincent Géronimi, Elodie Maître d’Hôtel, Katia Radja, Patrick Schembri, Armand Taranco

université de Versailles – Saint-Quentin-en-Yvelines, GEMDEV

Contact : Valérie Reboud, département Technique opérationnel, AFD - janvier 2010.

N° 92 Community Participation Beyond Idealisation and Demonisation: Biodiversity Protection in Soufrière, St. Lucia

Olivier Charnoz, Research Department, AFD - January 2010.

N° 93 Community participation in the Pantanal, Brazil: containment games and learning processes

Participation communautaire dans le Pantanal au Brésil : stratégies d’endiguement et processus d’apprentissage

Olivier Charnoz, département de la Recherche, AFD - février 2010.

N° 94 Développer le premier cycle secondaire : enjeu rural et défis pour l'Afrique subsaharienne

Alain Mingat et Francis Ndem, IREDU, CNRS et université de Bourgogne

Contact : Jean-Claude Balmès, département Education et formation professionnelle, AFD - avril 2010

N° 95 Prévenir les crises alimentaires au Sahel : des indicateurs basés sur les prix de marché

Catherine Araujo Bonjean, Stéphanie Brunelin, Catherine Simonet, CERDI - mai 2010.

N° 96 La Thaïlande : premier exportateur de caoutchouc naturel grâce à ses agriculteurs familiaux

Jocelyne Delarue, Département de la Recherche, AFD - mai 2010.

N° 97 Les réformes curriculaires par l’approche par compétences en Afrique

Francoise Cros, Jean-Marie de Ketele, Martial Dembélé, Michel Develay, Roger-François Gauthier, Najoua Ghriss,

Yves Lenoir, Augustin Murayi, Bruno Suchaut, Valérie Tehio - juin 2010.

N° 98 Les coûts de formation et d’insertion professionnelles - Les conclusions d’une enquête terrain au Burkina Faso

Richard Walther, Boubakar Savadogo, consultants en partenariat avec le Pôle de Dakar/UNESCO-BREDA.

Contact : Nicolas Lejosne, département de la Recherche, AFD - juin 2010.

N° 99 Private Sector Participation in the Indian Power Sector and Climate Change

Shashanka Bhide, Payal Malik, S.K.N. Nair, Consultants, NCAER

Contact : Aymeric Blanc, Research Department, AFD - June 2010.

N° 100 Normes sanitaires et phytosanitaires : accès des pays de l’Afrique de l’Ouest au marché européen - Une étude empirique

Abdelhakim Hammoudi, Fathi Fakhfakh, Cristina Grazia, Marie-Pierre Merlateau.

Contact : Marie-Cécile Thirion, département de la Recherche, AFD - juillet 2010.

N° 101 Hétérogénéité internationale des standards de sécurité sanitaire des aliments : Quelles stratégies pour les filières

d’exportation des PED ? - Une analyse normative

Abdelhakim Hammoudi, Cristina Grazia, Eric Giraud-Héraud, Oualid Hamza.

Contact : Marie-Cécile Thirion, département de la Recherche, AFD - juillet 2010.

N° 102 Développement touristique de l’outre-mer et dépendance au carbone

Jean-Paul Ceron, Ghislain Dubois et Louise de Torcy.

Contact : Valérie Reboud, AFD - octobre 2010.

N° 103 Les approches de la pauvreté en Polynésie française : résultats et apports de l’enquête sur les conditions de vie en 2009

Javier Herrera, IRD-DIAL, Sébastien Merceron, Insee - novembre 2010.

Contact : Cécile Valadier, département de la Recherche

N° 104 La gestion des déchets à Coimbatore (Inde) : frictions entre politique publique et initiatives privées

Jérémie Cavé, Laboratoire Techniques, Territoires et Sociétés (LATTS), CNRS - décembre 2010.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

100

N° 105 Migrations et soins en Guyane - Rapport final à l’Agence Française de Développement dans le cadre du contrat

AFD-Inserm

Anne Jolivet, Emmanuelle Cadot, Estelle Carde, Sophie Florence, Sophie Lesieur, Jacques Lebas, Pierre Chauvin

Contact : Christophe Paquet, département Technique opérationnel (DTO), AFD - décembre 2010.

N° 106 Les enjeux d'un bon usage de l'électricité : Chine, Etats-Unis, Inde et Union européenne

Benjamin Dessus et Bernard Laponche avec la collaboration de Sophie Attali (Topten International Services),

Robert Angioletti (Ademe), Michel Raoust (Terao)

Contact : Nils Devernois, département de la Recherche, AFD - février 2011.

N° 107 Hospitalisation des patients des pays de l’Océan indien - Prises en charges spécialisées dans les hôpitaux de la Réunion

Catherine Dupilet, Dr Roland Cash, Dr Olivier Weil et Dr Georges Maguerez (cabinet AGEAL)

En partenariat avec le Centre Hospitalier Régional de la Réunion et le Fonds de coopération régionale de la Réunion

Contact : Philippe Renault, AFD - février 2011.

N° 108 Peasants against Private Property Rights: A Review of the Literature

Thomas Vendryes, Paris School of Economics - February 2011.

N° 109 Le mécanisme REDD+ de l’échelle mondiale à l’échelle locale - Enjeux et conditions de mise en oeuvre

ONF International

Tiphaine Leménager, département de la Recherche, AFD - mars 2011.

N° 110 L’aide au Commerce : état des lieux et analyse

Aid for trade: A survey

Mariana Vijil, Marilyne Huchet-Bourdon et Chantal Le Mouël

AGROCAMPUS OUEST, INRA, Rennes - avril 2011.

N° 111 Métiers porteurs : le rôle de l’entrepreneuriat, de la formation et de l'insertion professionnelle

Sandra Barlet et Christian Baron, GRET

Nicolas Lejosne, département de la Recherche, AFD ([email protected]) - avril 2011.

N° 112 Charbon de bois et sidérurgie en Amazonie brésilienne : quelles pistes d’améliorations environnementales ?

L’exemple du pôle de Carajas

Ouvrage collectif sous la direction de Marie-Gabrielle Piketty, Cirad, UMR Marchés,

Contact : Tiphaine Leménager, département de la Recherche, AFD ([email protected]) - avril 2011.

N° 113 Gestion des risques agricoles par les petits producteurs Focus sur l'assurance-récolte indicielle et le warrantage

Guillaume Horréard, Bastien Oggeri, Ilan Rozenkopf sous l’encadrement de :

Anne Chetaille, Aurore Duffau, Damien Lagandré

Contact : Bruno Vindel, département des Politiques alimentaires, AFD - mai 2011.

N° 114 Analyse de la cohérence des politiques commerciales en Afrique de l’Ouest

Jean-Pierre Rolland, Arlène Alpha, GRET

Contact : Jean-René Cuzon ([email protected]), département PSP, AFD - juin 2011

N° 115 L’accès à l’eau et à l’assainissement pour les populations en situation de crise :

comment passer de l’urgence à la reconstruction et au développement ?

Julie Patinet (Groupe URD) et Martina Rama (Académie de l’eau),

sous la direction de François Grünewald (Groupe URD)

Contact : Thierry Liscia ([email protected]), département du Pilotage stratégique et de la Prospective,

N° 116 Formation et emploi au Maroc : état des lieux et recommandations

Jean-Christophe Maurin ([email protected]) et Thomas Mélonio ([email protected]), AFD - septembre 2011.

N° 117 Student Loans : Liquidity Constraint and Higher Education in South Africa

Marc Gurgand, Adrien Lorenceau, Paris School of Economics

Contact : Thomas Mélonio ([email protected]), Research Department, AFD - September 2011.

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

101

N° 118 Quelle(s) classe(s) moyenne(s) en Afrique ? Une revue de littérature

Dominique Darbon, IEP Bordeaux, Comi Toulabor, LAM Bordeaux

Contacts : Virginie Diaz et Thomas Mélonio, département de la Recherche, AFD

N° 119 Les réformes de l’aide au développement en perspective de la nouvelle gestion publique

Jean-David Naudet, division Evaluation et Capitalisation, AFD

N° 120 Fostering low-carbon growth initiatives in Thailand

EDDEN Research Unit of CNRS (French National Research Center) at the University of Grenoble : Prof. Patrick

Criqui (CNRS, Scientific Director), Dr. Pierre-Olivier Peytral (EDDEN Lab, Economist) Dr. Jean-Christophe Simon

(IRD, Senior Economist)

Contact : Cécile Valadier, Research Department, AFD ([email protected])

N°121 Interventionnisme public et handicaps de compétitivité : analyse du cas polynésien

Florent Venayre, Maître de conférences en sciences économiques, université de la Polynésie française et

LAMETA, université de Montpellier

Contact : Cécile Valadier, département de la Recherche, AFD

© AFD Document de travail n° 122 • Accès à l’électricité en Afrique subsaharienne • avril 2012

102

Access to Electricity in Sub-Saharan Africa:Lessons Learned and Innovative Approaches

Anjali Shanker (IED) with the contribution from Patrick Clément (Axenne),Daniel Tapin et Martin Buchsenschutz (Nodalis Conseil)

Contact: Valérie Reboud, (AFD) Technical Operations Department,Environment and Equipment Division ([email protected])

Age

nce

Fran

çais

e de

Dév

elop

pem

ent

122

Age

nce

Fran

çais

e de

Dév

elop

pem

ent

Agence Française de DéveloppementDirection de la StratégieDépartement de la Recherche

5 rue Roland Barthes75012 Paris - Francewww.afd.fr

Research Department

WorkingPaper

Age

nce

Fran

çais

e de

Dév

elop

pem

ent

October 2013

Layout: Eric Thauvin

Publication Director: Anne PAUGAM

Editorial Director: Alain HENRY

ISSN: 1958-539X

Copyright registration: 3rd Quarter 2013

Disclaimer

The analyses and conclusions in this working paper are the authors’ own. They do not necessarily reflect the point of view of

Agence Française de Développement or its partner institutions.

Acknowledgements

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

3

This study was conducted for Agence Française de Développement (AFD) by the Innovation Energie Développement (IED)

consortium, Axenne and Nodalis Conseil.

This paper was written by Anjali Shanker, Managing Director (IED), with contributions from Patrick Clément (Axenne),

Daniel Tapin and Martin Buchsenschutz (Nodalis Conseil). The author wishes to thank all those who have contributed to this

work, and in particular Valérie Reboud, Christian de Gromard, Laurence Breton Moyet and Carl Bernadac (AFD), as well as

Denis Rambaud-Méasson (IED).

A Steering Committee met several times and the substance of this text has been defined thanks to its contributions during the

working sessions. We would therefore like to thank all the members for their invaluable contributions: The French Environment

and Energy Agency (ADEME), Electricité de France (EDF), Electricians without Borders (ESF), the École des Ponts ParisTech,

the Énergies pour le Monde foundation and Total Renewable Energies.

Contents

Executive summary 7Introduction 17

1 Access to electricity services in Sub-Saharan Africa: Challenges and methodological approach 211.1 Power systems insufficient to underpin sustainable economic and social development 211.2 Develop a systematic vision and overall operational planning: Access for what purpose and

with what resources? 271.3 Analysis and lessons learned from the impact of past programs 291.4 Access dynamics affected by sector reforms 341.5 Establish clear prerogatives for each stakeholder 37

2 A continuum of technical, economic and organizational solutions 452.1 Technical and economic framework 452.2 Complementary technical solutions for the interconnected grid 532.3 Distribution and customer management: Substantial leeway 67

3 A need for structured financing 773.1 Widespread access to electricity services: The need to mobilize more financing than

the current flows from international cooperation 773.2 Historical principles 793.3 Keys for setting tariff levels 813.4 Establishing the financing mechanisms required to guarantee access to an electricity service for all 85

List of acronyms and abbreviations 93

References 97

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

5

This study was conducted with the aim of developing new

approaches and a methodological capitalization on the

topic of access to electricity services for all in Sub-Saharan

Africa.

The first section of the study analyzes the challenges

involved. The low level of access rates in Sub-Saharan

Africa must be put into perspective with the need for

equipment design and territorial development. This, in turn,

must consider the dynamics of economic and social

development, as well as the impact of past programs and

sector reforms.

The second section focuses on operational proposals,

based on a review of the various technical options for

power generation, especially for renewable energy, whose

recent advances certainly have strong potential but also

difficulties. The key challenge for distribution is addressed

in its multiple dimensions.

The third and last section concerns the financial challenges:

there is a need to mobilize national financing, which reflects

a strong political commitment, and to make the best

possible use of the scarce grants available, which is a major

challenge. An in-depth analysis of how the project risks and

quality of the promoter are perceived may provide insight

into possible future directions for high-impact financial

engineering.

Executive summary

1 1. The challenges for access to modern energy in Sub-Saharan Africa

1.1 Power systems insufficient to underpin sustainable economic and social development

In Sub-Saharan African countries1, the average rate of

access to an electricity supply2 stands at 16% of the total

number of households and less than 5% in rural areas.

While this percentage has improved since the 1990s, the

number of people without access to electricity has actually

risen due to population growth.

Less than 20% of communities are generally connected to

power infrastructure. It therefore does not support the

sustainable economic and social development of sources of

production (irrigation, refrigeration, motive power, etc.), or

of basic social services (health centers) throughout the

region.

Demographic and migratory issues make this challenge of

access to modern energy even more complex. Indeed,

communities living in small remote villages – where

electrification is costly – will tend to migrate to secondary

cities, which have economic and social infrastructure.

1 This study focuses on access to electricity in Sub-Saharan African countries. North Africancountries – Algeria, Egypt, Libya, Morocco and Tunisia – are not included in these figures.

2 In statistics, this generally indicates the share of the population with access tocommercially sold electricity at home. In a broader definition, a battery recharge or solar kitservice may also be considered as access to an electricity service.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

7

Defining the potential profitability of a program to provide

access to electricity services requires making a distinction

between two types of program. The first aims at equipping

a given area (where there are secondary centers with

"economic potential") with essential infrastructure for its

economic development. The second aims at providing

a widespread service to all the residents of an area,

especially the poorest (this may be peri-urban communities,

which account for 40 to 60% of households, even in a

country’s cities), or communities living in small villages or

very remote dwellings.

The rationale behind these two approaches is different: the

aim of the first is economic development and spatial

planning; the second has a social target of equity and

geographical balance (which comes at a high cost).

Focusing on "development centers" for spatial planning and

the provision of basic infrastructure for communities allows

a certain level of profitability to be achieved for electricity

services, as these centers have both economic activities

and a certain level of population density.

These medium-sized cities should thus be considered as

priorities in order for them to become fully-fledged "deve-

lopment centers" and to maximize the impact of the scarce

resources available for rural electrification.

To this end, spatial planning must go hand-in-hand with a

clear political vision of the social and economic objectives,

along with a political commitment to resource allocation.

However, the answer to the question "access for what

reason and with what means?" should not remain at a

political level. It must lead to a prioritization and to the

implementation of realistic and operational action plans that

fully take account of the financial, organizational and

technological realities of the country.

1.2 The key role of "development centers"

1.3 A real economic benefit for communities

Few ex post analyses are available, but they do bring to

light a number of key facts:

• Communities not connected to the power grid pay – for an

equivalent use of electricity supplied by kerosene or

(rechargeable) batteries – an energy price that is several

times higher than connected communities. It is often as

much as USD 10 per month. There is consequently a real

ability to pay for electricity services;

• The connection fee often stands at between USD 100 and

USD 300 – a prohibitive amount that is difficult to pay as a

lump sum;

• Once the connection is made, the expenditure – and

therefore consumption – generally remains stable with

lower unit prices. This is both an advantage and an

impediment, as it is clearly an advantage for small shops

and craft trades, which were already electricity users and

are thus equipped, but the cost of acquiring electrical

equipment for new clients stems consumption;

• Access to energy has a significant social and economic

impact (street lighting, health services, etc.), although it is

difficult to clearly identify the role played by electricity in

improving living conditions for communities compared to

other infrastructure.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

8

While there is clearly economic profitability, which in itself is

extremely reassuring for the allocation of resources to this

sector, the issue of financing still needs to be resolved.

Indeed, a country where the access rate to electricity in

affluent industrial and urban areas remains low, with poor

service quality and a need for recurrent financing to cover

operating and maintenance costs, will find it very difficult to

make access in rural and peri-urban areas a national

priority.

1.4 Access dynamics affected by sector reforms

In the mid-1990s, the general inefficiency of electricity

companies in the public sector prompted a wave of

reforms, calling for greater private sector participation.

Today, the institutional model that has become the norm is

that of an agency and/or fund to design, develop and/or

operate power systems in rural or peri-urban areas.

However, African countries that have maintained their tradi-

tional national power companies today have the highest

access rates to electricity: Côte d’Ivoire, 39%; Ghana, 60%

(82% in urban areas and 29% in rural areas); South Africa,

70%. The balance between profitable areas (towns and

densely populated coastal areas) and unprofitable (rural)

areas would appear to be easier to achieve in the case of a

single overall management. Does this mean that all efforts

should, once again, focus on national power companies? A

positive answer would be particularly questionable in view

of the fact that they are often required to be financially pro-

fitable, and that rural and peri-urban electrification may fall

outside their remit and their priorities. The new entities and

organizations should be given the time they need to reach

maturity before drawing any definitive conclusions.

As far as private operators are concerned, it is clear that

they have few reasons to take an interest in energy supply

to rural areas. Indeed, this niche has low profit levels and is

difficult to manage, unless there is a high level of State

cofinancing, which would give the concession a certain

degree of profitability. However, many non-governmental

entities have acquired extensive experience in Africa’s rural

areas and play a pioneering role in developing innovative

technical and organizational solutions. They can be potential

operators in low-income areas with low energy consumption,

working closely with local users’ organizations, municipa-

lities and local government.

1.5 Establish clear prerogatives for each stakeholder

The multiplication of entities – national companies,

funds/agencies, regulators, ministries – prior to implementing

large-scale projects, does not necessarily provide the three

functions of financing, regulation and implementation. It is

clear that this often leads to a fragmentation of compe tencies,

as well as competition between institutions to take owner-

ship of projects that have budgets and to hold responsibilities

at the “frontiers" of these three functions.

Financing function: While most Sub-Saharan African

countries today have rural electrification funds (since power

companies stopped financing this sub-sector), they are

generally mere accounts through which the meager grants

from international cooperation are transferred and they do

not have well-developed financing mechanisms. The increa-

singly important role of local authorities could bring about

changes to this.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

9

Regulation function: A regulator must ultimately answer the

following questions: Does the project have sufficient

incentives and is it transparent enough to attract private

sector investment, and if so, to what extent? Is it realistic to

envisage rural electrification concessions (with private

investment), or should franchises or affermage with mainly

public investment and a private manager initially be

planned? Should the question of tariff regulation involve

equalization or not? The simple fact of creating an ad hoc

regulatory agency does not necessarily allow a clear and

credible framework to be defined and implemented.

Industrial/implementation function: In the past, the national

company played a central role as it was both a power

company, which has the real technical and organizational

capability to carry out a large-scale program, and a

counterpart, which publishes a balance sheet and

profit-and-loss account, allowing it to be a long-term

borrower (public, of course, and often with a State

guarantee). The withdrawal of national companies from

rural areas may have an adverse effect on the development

of expertise in engineering and works supervision, which is

essential in order to maintain a quality nationwide power

supply.

These issues are becoming even more essential with the

multiplication of ever more complex technological options to

meet electricity demand.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

10

Historically, the economies of scale of large-scale infra-

structure and interconnections justified a public monopoly

situation. This context led to a structuring of the ways and

means of financing such large operations by lending

directly to the State, or with a State guarantee. However,

since the 1990s the paradigm of technologies and the

financial situation of counterparts has evolved.

Most African countries have a serious investment shortfall

in both large-scale infrastructure and in highly capital-

intensive interconnected power grids, which must be

amortized over a long period due to the general financial

crisis that started in the 1980s. This shortfall affects both the

quality of the counterparts of electricity companies and the

States themselves.

Despite being rich in natural resources, a number of

countries are obliged to invest in thermal power (gas turbines

or heavy fuel oil). It may come at a low cost in terms of

capital and can be rapidly built, but is today feeling the full

brunt of the increase in the price of hydrocarbons.

The paradigm of renewable energy has been completely

transformed:

• Small- and medium-power generation, using old

technology based on renewable energy sources, is

becoming competitive (this is the case for small hydro-

power plants, gasifiers and cogeneration);

• The industrial development of new sectors, after

decades of research, is experiencing a new dynamism,

which makes these technologies more reliable and

lowers investment costs (this is the case for photo -

voltaics3 and industrial biogas);

• Recent developments in electrical engineering allow the

production distributed on the grids to be managed, in

conjunction with a close monitoring of demand, which

leads to "smart grids";

• Hybrid solutions, combining the production flexibility of

a diesel generator with the low, long-term generation

cost of renewable energy, offer an alternative to overco-

me the problems of intermittency found in renewable

energy sources.

Consequently, given the two main current trends in

Sub-Saharan Africa – difficulties in raising large amounts of

financing for large-scale generation facilities4 and the

development of electrical engineering (which today offers

the possibility of a major power grid supplied at several

points by medium-sized power plants) – there may be a

shift towards a new generation scheme. This would involve

geographically distributed medium-sized facilities

integrated into smart grids, in a context where economies of

scale no longer play the same role that they used to.

While grid extensions are the first option for scaling up

access – provided there are large-scale plants with a low

cost per kWh and grids – there is increasing scope for

small-scale local generation with the associated distribution

grid. This is in a context whereby the main power

transmission grids do not yet exist and, moreover, the

national power company has left the playing field. We thus

have a highly diversified "technological toolbox" that allows

2. A continuum of technical and organizational solutions

2.1 Technical and economic framework

3 In 2009, the kWh for units over 5 MW was announced by manufacturers at less than EUR0.25/kWh, with a cost of about EUR 3,000/kW installed peak power at the time of investmentin Europe.4 Today, 93% of the economically feasible hydropower available in Africa (estimated at937 TWh/year, i.e. 10% of the world total) remains untapped.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

11

a more targeted response to the characteristics of rural

demand. This includes: grid extensions to areas with strong

demand, thus justifying the high investment cost in

the power lines; mini grids with local thermal or hybrid

production – if the resource is available – in areas that have

corresponding levels of demand; small-scale (stand-alone)

generation geographically distributed for very remote

communities and small villages.

This technological development also requires progress in

the relevant organizational and contractual frameworks:

authorize industrial self-generation for own needs and the

resale of the surplus at an attractive tariff; allow power

generation by small independent private producers, which

implies authorizing access to the grid by these third-parties

(for power transmission from the generation point to the

consumption site), and clearly define the conditions for

the feed-in tariff. These provisions of a clear regulatory

framework are a prerequisite for the commitment by

operators to develop access to energy in rural areas.

However, the question remains over the capacity to ensure

the maintenance and implementation of these technologies

at the local level.

2.2 Complementary technical solutions for the interconnected grid

Electronics today allows the integration of distributed

generation mobilizing local resources; this new possibility

requires a sound understanding of the strengths and

weaknesses of these technology sectors, as well as of the

opportunities they offer. It is important to compare this

analysis with the characteristics of the demand, and with

the local technical and social context, as no single ideal

solution exists, but several more-or-less suitable solutions

for a given context.

Historically, diesel generators were widely installed for the

electrification of rural centers and small towns far from

the interconnected grid, due to their low investment cost,

technological simplicity and rapid installation. Today,

however, these areas suffer from skyrocketing fuel prices; a

trend that is not improving. The ultimate paradox is that,

by means of maximizing the rapid installation of a universal

service, it is thermal solutions that are favored today, as

they have the lowest investment cost and are the most

effectively controlled locally.

In contrast, despite their high potential, the very small

number of pico (stand-alone), micro (village-size: 10 to

200-500 kW), or mini hydropower plants (200-500 kW to

5-15 MW) is striking in comparison with Asia. Africa has

very few turbine manufacturers (there are a few workshops

in Ethiopia and Nigeria), but many countries have the

industrial basis to provide the maintenance of such

facilities. Studies are long and costly, as the hydrological

and civil engineering risks often require complex

investigations. The amortization of mini- or micro-hydro

plants requires a certain level of demand, or the proximity

of a grid to sell to. Nevertheless, once such a plant has

been commissioned, it operates virtually alone and at a cost

that is practically nil, and this for a decade to half century.

Like hydropower, power generation from biomass depends

upon the local availability of the resource. In terms of power

generation for rural services, there are mainly four

distinct sectors: cogeneration5, biogas6, biodiesel7 and

gasification8. Unlike hydropower, they all need qualified

operators on a daily basis and regular intensive maintenance

of the equipment. A distinction should also be made between

the development of plantations destined for power gene -

ration, involving agricultural and rural development issues,

5 Combined generation of heat and electricity.6 Generation of low-grade gas for combustion from anaerobic fermentation, which may beinjected into a rectified diesel engine.7 Generation of biodiesel in a short cycle from oilseeds, usable in diesel engines.8 Pyrolysis of agricultural residue: partial / slow combustion producing gas for use in arectified diesel engine.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

12

and the use of agricultural or agro-industry residues. In

practice, the choice of sector depends on the context: the

existence of an agro-industry, and thus of local techno -

logical skills with the possibility of surplus sales for rural

electrification, will clearly provide advantages in the field of

local control, whereas the installation of many small village-

based systems will require the development of local

expertise.

The generation costs for photovoltaics are falling, making

the PV (photovoltaic) kWh increasingly competitive

compared to other generation methods in Africa (especially

for grids supplied by thermal sources). Consequently, while

in past decades PV applications in Africa were limited to

solar kits or community applications (health, pumping, etc.)

for remote regions, this technology offers high-impact

prospects for sustainable access to electricity services

provided by (hybrid) mini grids.

Industries have widely developed their generation capacity

and have now reached the "one euro per peak watt" level

for the panels. They have been driven by large-scale

European, Japanese and American programs that have led

to major investments in generation capacity, as well as in

electronics to integrate renewable energy sources into

smart grids. This might well become the first option for

hybridization, as the almost constant sunshine in the region

is a resource that is easier to mobilize than biomass or

hydropower. The weak points of PV are its necessarily

diurnal generation (whereas in rural areas the demand is

often at night), and its particularly high investment cost,

which requires complex financial engineering.

2.3 Distribution and customer management: Substantial leeway

Once the generation method has been selected (renewable

energy, grid extension, diesel generator), the issue is raised

as to the distribution to households and customer

management. It should be stressed that the objective of

"access for all" does not automatically mean "equal service

level for all", as users do not all have the same needs for

energy quantity (engines or lighting) or service quality

(continuous service or a few hours a day). Setting up pico

electrification9 systems allows communities without

individual connections, but in a "covered area", to have

access to a minimum service. However, while these

systems reduce the exclusion of certain communities, it

would be wrong to consider them as effectively covered and

thus not eligible for a "full" service.

There is considerable potential for decreasing costs, but the

right option should be carefully selected. Indeed, in addition

to the issue of adapting standards to demand, it is common

practice to overestimate this demand, and thus to oversize

the grid (cable sections, transformer capacity, etc.). By

changing such practices, procurement policies and program

management, it is possible to save up to 30% on the

investment cost.

In the management field, distribution through the grid

corresponds to a (metered) unit sale of energy, whereas

electricity distribution in areas of weak demand often

corresponds to a service sale (number of lighting units,

hours of service, etc.). In rural areas, civil society and local

NGOs or village organizations increasingly handle customer

management and even distribution. This development suits

the power companies – they even call for it – as they

effectively prefer to sell in bulk to a single distributor. Today,

there is a proliferation of this type of contractual innovation.

Innovation is thus not necessarily technical, it can be based

on social systems that facilitate access. In addition, certain

tools and methods (smart, prepaid or collective meters)

improve both management efficiency and the rate of customer

coverage.

9 Pico electrification means battery recharge services or portable systems using highlyefficient equipment (lamps, etc.). It is sometimes associated with an individual solar panel.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

13

Technological developments require new technical and

organizational plans. We have seen that such changes lead

to different project and counterpart risk configurations and

profitability and cash flow profiles than in the past.

Moreover, as the aim is to mobilize private investors, it is

clear that their expectations in terms of profitability and their

risk perception are very different from those of a public

service entity. The private operator, depending on whether

it is an enterprise or a local community, will also have

certain expectations in terms of its remuneration. The

financing instruments must thus be redesigned in order to

offer, among other things, longer maturities and risk-sharing

mechanisms that are sufficiently attractive to mobilize the

targeted stakeholders.

3 A need for structured financing

3.1 Widespread access to electricity services: The need to mobilize more financing thanthe current flows from international cooperation

The International Energy Agency (IEA) estimates that, with

an investment of USD 35bn a year (i.e. 6% of the planned

investment in the power sector), the challenge of access to

modern energy for almost 1.6 billion people will be resolved

by 2030. Judging by a World Bank review of its own port -

folio that mentions an annual flow limited to EUR 500m, we

are far from the IEA's order of magnitude. However, it

should be borne in mind that no country has reached

significant access rates without a major national effort. It

would thus be unrealistic to rely solely on international flows

to resolve the problem.

3.2 Stumbling blocks: Tariff equalization and subsidy methods

The power sector in itself is far from generating the surplus

required to self-finance the investments needed for service

extension. As the initial rate of electrification in

Sub-Saharan Africa is very low (10 to 20%), cross subsidies

alone will not be sufficient to reach very high access rates.

In rural and peri-urban areas, the weight of domestic

customers in the social bracket (generally with a low tariff

level), as well as the high investment costs (due to rural iso-

lation), imply much higher kWh costs than in mixed urban

areas. In order to better reflect costs, some countries use

the argument of the high energy expenditure prior to

electrification (kerosene, batteries, etc.) to justify and apply

a tariff differentiation based on costs. Even if these tariffs

remain lower than an off-grid solution, this application does

not solve the issue of the social acceptability of these

differentiated tariffs. This issue is exacerbated by the fact

that in countries highly dependent upon hydrocarbons,

distributors are increasingly authorized to make tariff

adjustments in order to reflect their fuel costs.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

15

It is obviously necessary to rethink the approach to

financing rural electrification itself, and certainly to envisage

innovative approaches based on a new relationship

between technology, organization and financing.

Very long-term financing (30 years or more), or even an

initial subsidy10, are essential to finance investments in

rural areas (which has been, and occasionally still is, the

case for all member countries of the Organisation of

Economic Co-operation and Development – OECD). The

involvement of the State, which can refinance itself, is

required.

In this context, rural electrification funds must play a role as

real financial intermediaries: it is vital for them to be more

than a simple bank through which grants transit, if only

because the amounts available are very far from the

required investments. The use of such invaluable and

scarce grants as a catalyst for loans seems evident: for

subsidized loans (longer maturities based on the cash flow

profile of projects or the lower interest); for the preparation

of high quality projects to secure investors and financiers;

for partial guarantees to enhance the distribution of project

and counterpart risks and thus help raise private and bank

funds; etc. Local banks, which generally lend for a

maximum 5-year period, in reality do not want to invest in

this low-profit sector, with the exception of development

banks with a specific mandate. Investors, for their part, are

reluctant to invest capital in projects with a long return on

investment period, in a context where the regulatory and

political frameworks have not yet been stabilized. For this

type of long-term investment, risk sharing lies at the core

of the issue of mobilizing national savings and, more

generally, investments.

3.3 Keys for setting tariff levels

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

16

10 Or, more generally, concessional loans.

Table 1. AFD and FGEF rural electrification financing (1993-2008) (EUR M)

AFD FGEFBurkina-Faso 0,38 0,22Mauritania 2,21 0,76Tunisia 13,72Morocco - PERG loan 1 30,49Morocco - PERG loan 2 45,73Morocco - PERG loan 3 50,00Morocco - PERG solarMorocco - PERG loan 5 45,00South Africa 41,44Kenya - urban 25,00Kenya - rural 30,00

284,00 1,00Total 284,95

100 %Annual average 18,90 0,10Sub-Saharan Africa 57,60 1,00

Explanation of Table. When Morocco, Tunisia and South

Africa are included, financing for access to electricity

services has accounted for a total investment of EUR 284m

in Africa over the past 15 years (1993-2008) and only EUR

57.6m in Sub-Saharan Africa – i.e. less than EUR 4m a

year.

It focuses on three Sub-Saharan African countries:

Burkina Faso, Kenya and Mauritania. "Decentralized" rural

electrification only accounts for 1% of AFD’s total financial

commitments in the sector.

*PERG: Global Rural Electrification Program. Source: Authors.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

17

Introduction

The development of access11 to modern energy services is

one of AFD's fields of action; its financing operations fall

within the framework of the Millennium Development Goals

(MDGs), which aim to support economic growth, reduce

poverty and promote the conservation of the environment.

AFD’s present strategic orientations and the worldwide

consensus on the issue of access to modern energy

services, in connection with the MDGs (see Box 1), have

led the institution to define this area of operation as a

sector of increasing importance and, as discussed in this

paper, to focus on access to electricity services.

This study was carried out with the objective of developing

new approaches and a methodological capitalization on the

topic of access to electricity services for all in Sub-Saharan

Africa. It is for this reason that the already widely docu -

mented ex post analysis will only be covered in a few

succinct passages, which will serve as the basis for the

definition of concrete approaches. While AFD's experience

in this sector has been widely analyzed, its projects in the

field of access to electricity services today only account for

a small share of both its own portfolio and of all the projects

for access to electricity services in Sub-Saharan Africa.

11 “Access” means in both rural and urban areas.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

18

Goal 1 – Reduce Extreme Poverty and Hunger

Halve, between 1990 and 2015, the proportion of people whose income is less than $1 a day

Halve, between 1990 and 2015, the proportion of people who suffer from hunger

Access to affordable energy services allows the development of companies.

Lighting allows commercial activities to continue beyond daylight hours.

The use of machines improves productivity.

Small, job-creating local companies can supply energy.

Privatizing energy services can free up government funds for investments in social services.

Clean and efficient fuels reduce high domestic expenditure for cooking, lighting and heating.

95% of basic food has to be cooked before consumption and needs water to be cooked.

Better conservation reduces post-harvesting food loss: drying/smoking/cooling/freezing.

Energy for irrigation improves food production and access to better nutrition.

Goal 2 – Achieve Universal Primary Education

Ensure that, by 2015, children everywhere, boys and girls alike, will be able to complete a full course of primary schooling

Energy gives access to water, hygiene, lighting and heated/cooled spaces, which helps reduce absenteeism and dropout rates by creatinga better environment for children and teachers.

Electricity allows schools and households to access media for communication and education purposes (distance learning).

Access to energy allows useful equipment for teaching to be used: overhead projectors, computers, printers, photocopiers, scientificequipment, etc.

Modern energy systems and efficiently designed buildings reduce energy costs and therefore schooling costs, providing better accessto education for the poorest.

Goal 3 – Promote Gender Equality and Empower Women

Eliminate gender disparity in primary and secondary education, preferably by 2005, and in all levels of education no later than 2015

Modern energy services liberate girls and young women from the time allocated to survival activities (collecting firewood and water,inefficient cooking, manual harvesting).

Clean cooking equipment reduces exposure to air pollution and its harmful effects on health.

Quality lighting allows home study and evening classes to be attended; public lighting increases the safety of women; affordable andquality energy services pave the way for women’s entrepreneurship

Goal 4 – Improve Maternal Health

Reduce by three-quarters, between 1990 and 2015, the maternal mortality ratio

Energy services are needed to provide access to better medical services for mothers, such as drug refrigeration, equipment sterilization andoperating theaters.

Excessive and heavy manual work can damage the general health of pregnant women.

Box 1. The role of energy in achieving the MDGs

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

19

The World Bank is the main international institution

engaged in financing access to modern energy services. Its

financing for access (International Bank for Reconstruction

and Development – IBRD, International Development

Association – IDA, and Global Environmental Facility –

GEF) is part of the overall financing of the electricity sector,

including generation, transmission and distribution. For

2000-2008, about 35% of amounts allocated had an

"access to electricity services" component. Total financing

amounted to USD 5.6bn, i.e. an annual average of USD

627m. It was scaled up during this period, from about USD

500m a year from 2000 to 2005 to about USD 800m a year

between 2005 and 2008. Closer analysis shows that two

countries (Ethiopia and Ghana) received almost half of the

financing allocated to "access to electricity services", i.e.

over USD 400m a year. By way of comparison, this amount

is similar to the funds allocated by AFD to Morocco’s

National Electricity Authority (ONE) for its Global Rural

Electrification Program (PERG) for a ten-year period.

The European Union has become a major stakeholder in

financing access to energy and renewable energy projects

in Africa. In addition to projects carried out as part of

national or regional programming, in 2006, it launched a

sector program – the Energy Facility –, which specifically

concerns the issue of access. Between late 2007 and

mid-2008, 75 agreements were signed for an overall conso-

lidated budget of EUR 435m, including 45% (EUR 198m)

financed by an Energy Facility grant. A second tranche for

an equivalent amount was launched for 2010-2011. Finally,

it should be noted that German bilateral cooperation also

plays a major role in the field of renewable energy.

The first section of this study analyzes the challenges of

access to electricity services in Sub-Saharan Africa. An

approach leading to operational proposals is formulated on

the basis of this analysis. It is clear that the rate of access

is low, but what can be said about the economic and social

dynamics from a perspective of territorial equipment? We

seek to learn lessons from an analysis of the impact of both

past programs and sector reforms, in order to propose a

functional methodological approach.

The second section of this study covers operational

proposals, based on a review of the different production

options. The analysis will specifically focus on the

remarkable development of renewable energy and the

critical issues related to distribution.

The third and last section addresses issues related to

financing and the need to mobilize national funds and

leverage grants.

Goal 5 - Combat HIV/AIDS, Malaria and other Diseases

Have halted by 2015 the spread of AIDS, malaria and other major diseases and begun to reverse the trend

Electricity in health centers allows them to open at night, qualified staff are retained, special equipment can be used (sterilization, drugrefrigeration), vaccines and drugs can be stored.

Energy is needed to develop, manufacture and distribute drugs and vaccines.

1.1.1 In Africa, access rates for communitiesremain low after several decades ofdisappointing progress

As a development challenge and as infrastructure

recognized as being necessary for the achievement of

the MDGs, access to electricity services is becoming

increasingly central to the development policies of African

States and to the international community’s development

support strategy.

Today, the average rate of access to an electricity service12

for households in Sub-Saharan African13 countries stands

at 16%, but less than 5% in rural areas. While the trend for

this percentage has been positive since around the 1990s,

the number of people without access to an electricity

service has increased due to population growth.

1 Access to electricity services in Sub-Saharan Africa: Challenges andmethodological approach

1.1 Power systems insufficient to underpin sustainable economic and social development:The challenges to be met

Map 1. Rate of access to electricity services in Africa

Source: Authors.

12 Throughout this document, "population having access to electricity" means people whohave access to commercially sold electricity at home. 13 This study covers access to electricity in the Sub-Saharan African countries. The NorthAfrican countries – Algeria, Egypt, Libya Morocco and Tunisia – are not considered in thefigures presented.

Population with access to electricity(% of total population)

No data<1010...2020...3030...50>50

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

21

This percentage should, however, be put into perspective.

A household connected to the grid may well let others

benefit through more-or-less illegal hook-ups; battery

recharge services provide a minimum lighting service and

access to audiovisual content for households that are not

connected or live in outlying areas.

There is a major challenge ahead: Sub-Saharan African

countries have the lowest access rates to electricity in the

world, both in terms of direct access to a service at home

for people, and the electrification rate for communities. For

instance, in India, while the access rate of the population is

only 40% in rural areas and 60% in urban areas, over 95%

of communities are connected. The infrastructure thus

allows productive activities (irrigation for agriculture) and

basic social services (health centers) to operate throughout

the country. This is far from being the case in Sub-Saharan

Africa, where the much less extensive power infrastructure

generally reaches less than 20% of communities.

Angola 16 13 7,4 15Bénin 9 79 60,2 22 26Botswana 1,758 3 42,6 39 27 2Burkina Faso 14 50 82,1 17 75 3 1Burundi 8 305 90,3Cape-Verde 0,518 129 42,7Cameroon 17 36 46,3 47 5 20Central African Rep 4 7 62,1 <1 0,2 Chad 10 8 75,1 1Comoros 0,614 275 63 50Congo (Dem Rep.) 59 26 68,4 6 20 1 1Congo 4 12 40,2 20 44,6 5,6 Côte d'Ivoire 18 58 55,4 39 8 26Djibouti 0,806 35 13,9 Equatorial Guinea 0,515 18 61,1Erytrea 5 45 80,9 20 82 2Ethiopia 73 73 84,2 22 22 <1Gabon 1,406 5 16,4 48Gambia 1,553 155 46,1 5Ghana 23 99 53 49 82Guinea 9 37 67,4 6 35 1Guinea-Bissau 1,633 58 70,4 5Kenya 35 62 79,5 14 29 6,8Lesotho 1,789 59 81,3 11Liberia 3,38 35 59,5Madagascar 19 33 73,4 1 5 4 Malawi 13 140 83,2 7 30 1Mali 14 11 70,0 16 30 5

Table 2. Rate of access to electricity and electrification services in the urban and rural areas of 48 Sub-SaharanAfrican countries (in 2004, 2005, 2006, 2008 and 2009)

CountriesTotal

population(millions)

Populationdensity

(inhab./km²)

Percentage ofthe populationliving inrural areas

Percentage ofthe populationhaving accessto electricity

Percentage ofthe populationhaving accessto electricityin urban areas

Percentage ofthe populationhaving accessto electricityin rural areas

Percentageof areas withpower supply6

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

22

Mauritania 3 3 59,7Maurice 1,253 617 57,6 94Mozambique 20 26 66,3 6 17 0,6Namibia 2 2 65,4 34Niger 14 11 83,3 8 30 0,1 1Nigeria 145 159 52,7 20Rwanda 9 375 81,8 <1Sao Tomé et Principe 0,16 167 42,0Senegal 12 62 58,6 32 67 4,5 15Seychelles 0,86 186 47,1 <1 Sierra Leone 6 79 60 5Somalia 8,485 14 36,1South Africa 47 39 41,2 70 85 52 Sudan 37 16 60,1 15Swaziland 1,126 65 75,9 1Tanzania 38,5 25 76,2 11 36 2Togo 6 116 60,6 12 17 3 18Uganda 30 152 87,5 9 21 2,1Zambia 12 16 65 19 25 1,4Zimbabwe 13 34 64,5 34 80 18

Sources: World Bank (2008); UNDP (2007); ECOWAS and WAEMU (2006); Review of national framework for involvement of agro-industries in rural electrifi cation,PACEAA project (2009); Mostert (2008); African Energy Policy Research Grid (2004); data collected by the Club of Rural Electrification Agencies, Congolese hou-sehold survey (2005); Eritrean Ministry of Energy; RIAED (2005).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

23

CountriesTotal

population(millions)

Populationdensity

(inhab./km²)

Percentage ofthe populationliving inrural areas

Percentage ofthe populationhaving accessto electricity

Percentage ofthe populationhaving accessto electricityin urban areas

Percentage ofthe populationhaving accessto electricityin rural areas

Percentageof areas withpower supply6

Map 2. Share of the rural population in Sub-Saharan Africa

<5050...70>70

Rural population% of total population

Source: UNDP (2008).

The reasons why people leave the countryside are, among

others, the absence of basic public services (water,

electricity, healthcare), the hardship and hazards of rural

life, and the lack of alternatives. This population pressure

and the absence of urbanization and development plans

place an excessive burden on urban infrastructure.

Even when such planning exists, the lack of political will

and resources to implement and respect such plans, often

leads to a proliferation of areas with precarious and/or

uncontrolled housing. In fifteen major African cities,

access to electricity in slums stands at 11%15 on

average.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

24

1.1.2 Maximizing economic and social impactswithin a process of accelerated urbanization:Development centers

“African urbanization is a poverty-driven process and

not the industrialization-induced socio-economic transition

it represented in the world’s other major regions”,14 UN-

Habitat, 2008.

What are the main challenges for achieving real headway?

While Africa is still the least urbanized continent in the

world, the urbanization rate is already over 60% in about

twenty countries.

The United Nations Development Programme (UNDP)

forecasts that between 1980 and 2030, Africa’s total

population will see a threefold increase, the rural

population a twofold increase, and the urban population a

sevenfold increase. Consequently, while the percentage

for the urban population had already grown from 24% to

33% between 1980 and 2000, it is expected to increase

to 48% by 2030.

14 UNDP (2008), “The State of African Cities”. 15 UNDP (2008), ibid.

By contrast with the history of electrification in

industrialized countries, it is not economic growth and the

jobs created by industrialization that lead to rural

migration (with a population base having overall revenues

and wealth to allow investments in infrastructure). Indeed,

it is very often insecurity, economic instability and the

dream of an "urban Eldorado" that prompt communities to

migrate from rural areas to precarious urban areas.

An analysis of population distribution according to the

size of localities16 (Graph 1) clearly shows that there is an

intermediate stage between a large city and remote

rural areas, which continue to be home to a substantial

percentage of the total population.

Graph 1. Population distribution in terms of localitysize

Source: Authors, from CEMAC, ECOWAS, 2006.

Explanation of graph: Over a quarter of the population in a

sample of countries in the zones of the Economic and

Monetary Community of Central Africa (CEMAC) and

the Economic Community of West African Countries (ECO-

WAS) lives in villages with over 2,000 inhabitants. On ave-

rage, this is the case for 27% of the population of Burkina

Faso, Mali, Niger and Côte d’Ivoire; 32% live in towns with

more than 10,000 inhabitants (i.e. in urban areas on the

graph). In CEMAC countries (Cameroon, Chad, Congo,

Equatorial Guinea and Gabon), 30% of the population lives

in villages with over 1,000 inhabitants (on average), and

51% in urban areas.

A study conducted in Latin America17 on the place of

medium-sized towns in overall urbanization highlights the

attraction of megalopolises (i.e. cities with over a million

inhabitants) and their rapid growth: their number rose from

83 to 325 during the second half of the 20th Century, to the

detriment of the growth of secondary towns. The latter,

however, provide an opportunity in terms of interactions

between urban and rural areas, due to their stronger links

with rural areas, and the services proposed not only to town

dwellers but also to the surrounding rural community. It is

thus crucial to give such towns the means to play this key

role, and to develop their attractiveness for communities

who see no future for themselves in rural areas.

Moreover, the presence of economic activities and of high

and concentrated population levels allows the electricity

service to be profitable to a certain extent. Two technical

possibilities are thus possible: extend the grid to other

centers near the existing one, or stand-alone generation

with the development of a mini-grid to serve the defined

area.

1.1.3 The issue of service to isolated localities

The electrification of isolated localities requires major

investment, for a small number of customers who generally

have a limited financial capacity. As such localities seldom

show prospects of creating wealth, the question is raised

over profitability and sustainability (which requires extensive

recourse to – limited and random – public assistance. This

seriously jeopardizes the sustainability of projects).

Moreover, population densities are low in Sub-Saharan

Africa (Figure 4), compared to the density in France

(100 inhab./km²) and Europe in general (115 inhab./km2).

The densities are particularly low in Central Africa. The

problem is that the lower the population density, the higher

the connection costs, as shown by the evolving PERG costs

in Morocco (Graph 3).

16 Studies conducted in the CEMAC and ECOWAS/IED zones.17 See Bolay and Rabinovich (2004).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

25

Urban (>10,000 inhab) Large villages Small villages and (>2000 inhab) dispersed habitat

Map 3. Population densities in Sub-Saharan Africa

<1010...3030...7070...150>150

These vast low-density areas, where low-income

communities live, are costly to serve and are thus

unprofitable. However, the communities living in such

highly dispersed locations will inexorably need to densify to

some extent. The responsibility thus lies with politicians and

planners to decide, with full knowledge of the facts,

which areas to allocate resources to and to select the most

appropriate technology, focusing on the "development

centers" as a priority.

"In the foreseeable future, the intermediate cities (towns

with less than 500,000 inhabitants) will be the localities

where two-thirds of all African urban growth is occurring.

With most of its rapid urban growth adding to the popula-

tions of its intermediate-size cities, Africa needs to focus on

building capacity among its small and medium-sized cities

to deliver and facilitate adequate housing, livelihoods and

services for spiraling numbers of poor urban dwellers."18

18 Source: UN-Habitat (2008).

Source: UNDP (2008).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

26

Population densityInhabitants per km²

In order for the available – but scarce – resources to have

the highest possible impact, it is essential to have a clear

political vision of the social and economic objectives and to

make a political commitment, while ensuring that operators

are available who can function in a clear contractual

framework.

When the technical-economic choice and the operator

responsible are combined, the following segments can be

distinguished:

1- Extension of the power grid as part of the national

concession of the (public or private) electricity company;

2- Electrification of villages and secondary centers and,

more generally, of the development centers outside the

national concession of the electricity company: technically

speaking, these localities can be supplied by the national

grid, or by local generation capacity with an associated

medium-voltage (MV) and low-voltage (LV) distribution grid

that can serve one or more localities;

3- Electrification of very isolated and small localities, where

extending the grid will be very costly. It is generally imple-

mented with systems that are stand-alone or limited to

common services, typically PV, or via village grids

(generally diesel-powered);

4- Peri-urban electrification, i.e. neighborhoods located

around the major conurbations and, more generally, the

issue of densifying connections, and therefore that of

widespread access for communities once the service is

available in the area.

Combining the technical-economic option and the institution

responsible thus leads to the following segmentation

(Table 3):

1.2 Develop a systematic vision and overall operational planning: Access for what purposeand with what resources?

Table 3. Segmentation of contexts of access to the electricity service

Explanation of Table. Options A and B are integral parts of a country's development and spatial planning policy; options

C and E must be seen as a spatial complement to option B (and in terms of the available resources); options D and F

have high investment and management costs that need to be controlled (their organizational and technical specificities

will be discussed later).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

27

Electricity company(public or private) REA or REF* Specialized operators

(NGOs, ministries, etc.)

Electrification of development centersinside the main concession areas

ViableA

Electrification of centers outside themain concession areas

ViableB

Viable

Isolated localities Not profitableNot profitable

CNot profitable

E

Outlying urban areasNot profitable

DNot profitable

F

Source: Authors

It is important to be lucid about the potential profitability of a

service access program and make a distinction between:19

1- An access program to equip a given area with the

essential infrastructure for its economic development,

where there are therefore secondary centers with

"economic potential". This type of "territorial development"

program is characterized by higher unit energy

consumption levels and a greater ability to pay which,

combined with a higher population density (and therefore

better controlled investment costs), offers some prospects

of profitability. At this stage, the aim is not necessarily to

connect the entire population;

2- The provision of a universal service to all the residents of

an area, and in particular to the poorest, i.e. peri-urban

communities, 40 to 60% of households in villages and even

quite large towns in a country, and communities living in

small villages or isolated dwellings. The consumption levels

of such customers will not exceed 50 kWh/month,

representing maximum expenses of EUR 5/month. In

addition, the more dispersed the population, the higher the

investment cost per connection will be. In these areas, the

basic paradigm is a complete subsidy of the investments

and a tariff that covers operating costs.

These two approaches are based on two distinct objectives:

economic and territorial development for the first, and social

equity and geographical balance for the second (which has

a high cost).

The response in terms of the priority of allocating scarce

resources must come from the political level (see Box 2).

Box 2. Equipping an entire territory with productive infrastructure: A political issue in India and Morocco

Today, India has virtually finished the electrification of all its localities. For the 5% of remaining localities, and the 40% of the population that is not yet connected,

the Indian government has set up a very clearly social program, which subsidizes 90% of the supply cost for localities and 100% of household connection fees.

This comes almost half a century after launching a rural electrification program that aimed to supply cheap energy to farmers to allow them to irrigate their crops

and thus achieve food self-sufficiency. The initial objective of the program had been energy for industry.

Morocco also launched its rural electrification program during a period of severe drought, together with a program for access to drinking water. The primary

objective was to provide infrastructure to the localities.

In reality, despite the fact that most countries have reached

a certain level of access for all, they started out with a

priority aim of electrifying the development centers. This

seems a logical choice, as it allows the sector to show

some profits and thus reach a financial equilibrium with

cross subsidies between segments.

It should be noted that the experience of electrification for

isolated communities and sites, in particular with solar kits,

has shown intrinsic limits in Sub-Saharan Africa. Indeed, in

countries engaged in major rural electrification projects, this

electrification scheme is a complement to schemes A and B

(e.g. Laos, Morocco and Senegal). These major programs

to give isolated communities access to electricity through

solar kits face two main issues:

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

28

19 The proposed segmentation must not lead to opposing "off-design" and "extending thenational concession grid" electrification schemes, as certain analyses today tend to do. It mustillustrate their complementary character.

- Electricity use will generate a marginal level of income,

which means that either customers with a fairly high

income will be targeted, or that the investment has to be

quite heavily subsidized;

- The actual long-term maintenance cost of the facilities

(technical and financial management) should not be unde-

restimated.

Graph 2. The resources required to develop a planned and coordinated approach – the example of Burkina Faso

In 2008-2009, in Burkina Faso (15 million inhabitants in over 8,000 localities), the implementation of a national rural

electrification plan coordinated by the Direction Générale de l’Energie (DGE) took 12 months, plus 6 months of

dissemination. The plan included multi-sector involvement and its overall budget stood at EUR 400,000.

Source: IED.

The detailed study and quantification of the socioeconomic

and financial impacts of rural electrification are relatively

recent. Indeed, until the late 1990s, neither national

decision-makers nor donors questioned the costs and

benefits of rural electrification. The reason for this was

that this activity was considered in national policies as

infrastructure required for development, as well as a public

service that should be accessible to the majority. In short, its

beneficial socio-economic spin-offs were evident and there-

fore had to be made generally available. Consequently,

there are few comprehensive studies available on this

subject.20 The issue is also generally addressed from a

viewpoint of the capital intensity of the investments and the

expected benefits (difficult to assess). It is only recently that

the anticipation of the impact on poverty has become

an assessment criterion for medium- and long-term

development actions and electrification programs. Neither

the Human Development Index (HDI) nor the MDGs, for

their part, directly consider access to energy. The issue of

access to energy therefore revolves around several

1.3 Analysis and lessons learned from the impact of past programs

20 World Bank and Foundation of the Political Institute for Research Development andManagement of the Philippines, 2001; ONE/AFD, 2003; World Bank and SwedishInternational Development Agency, 2005; IEG-World Bank, 2008.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

29

Surveys and data collection

Definition of the regional development center (Regions)

Construction of the national "vision"

Implementation of the electrification plans (Process)

Feedback / validation Regions)

Activities National Coordination Committee

Training in handling tools

As far as the electrification of peri-urban areas or of the

most isolated and poorest rural domestic communities is

concerned, the analysis should focus on the organizational

arrangements that aim at reducing management costs and

losses. This points to the vital importance of having a clear

vision of the objectives of an electrification program and its

cost, of realistic programming for the investments and tech-

nical choices and of the targeted impacts. Graph 2 shows

an example of the means required for this type of exercise

via the case of Burkina Faso.

questions: Are the benefits generated by energy access

programs in rural and urban areas quantifiable, and, if so,

how? Is access to electricity a catalyst for economic growth

in the rural areas of Sub-Saharan Africa? Must rural electri-

fication and/or energy access programs (urban and rural)

be made a national priority?

1.3.1 Difficult and costly access, but a realability to pay

The "rural poor" environment holds little attraction for

operators, who naturally prefer to supply more "profitable"

customers, especially those whose energy supply involves

the lowest cost (as they are close to the grid) and who

consume the most. They therefore adopt an extensive

approach to electrification and only rarely seek to densify

(poor) customers around existing infrastructure, and even

this is a very recent concern. Grids thus often bypass "poor"

customers and seek out the "big customers”. This type of

operator logic is potentially questionable, as their interest

might also lie in densifying the grid in order to amortize its

investment more effectively. Moreover, in a community

already hooked up to the grid, many households cannot

afford to pay the connection fees. They can be at the

prohibitive amount of between USD 100 and USD 300,

which may be difficult to raise in a lump sum (see Map 4),

even though there is clearly the ability to pay the monthly

electricity bill. Indeed, communities which are not connec-

ted to the grid often pay – for equivalent uses of the electri-

city supplied from kerosene, standard batteries and rechar-

geable batteries – an energy price several times higher than

the connected communities, both in absolute terms and in

equivalent kWh. This cost is generally between USD 3 and

USD 10 a month. Energy expenditure represents a much

higher percentage of the incomes of populations in Sub-

Saharan Africa than for populations in OECD countries.

This is why, paradoxically, connection rates in electrified

areas tend to "saturate" fairly rapidly.

Map 4. Population living with <1 dollar/day/person, Africa (in population percentage)

Source: UNDP (2008).

Explanation of map. In Sub-Saharan Africa, about 300 million people (out of 680 million) live with the equivalent of one

dollar a day. This percentage is over 60% in seven of the 31 countries surveyed. It is the lowest in South Africa, where

it still is as much as 10%. Thus, based on a tariff of USD 0.12/kWh (domestic, on the interconnected grid), the bill for a

monthly consumption of 100 kWh will be for USD 12, i.e. 9% of the income of five people (a household). However, the

average tariff is often over USD 0.50 in rural areas.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

30

no data< 1515...3030...4545...60> 60

1.3.2 Trends in household expenditure: Higherconsumption with lower unit costs

As soon as households can afford to be connected, access

to electricity initially promotes an almost complete

replacement for the immediately concerned uses (batteries,

candles, lamp oil, battery recharges) and thus a reduction

of energy expenditure. The middle classes and poor

subsequently see their electricity expenditure increase due

to an increased use of electrical equipment: television sales

double in the first year after electrification, while energy

expenditure often drops among the rich categories that are

already equipped (see Graph 3).

Graph 3. The impact of rural electrification - The example of Morocco (2010)

E: Electrified, NE: Not electrified, V: Village, PV: Photovoltaics.

1.3.3 A definite advantage for small shops andcraft businesses already using electricity

The households whose income will increase are those

whose existing productive capital will increase in value

because of electricity use. For instance, 70% of commercial

activities note an increase in their turnover (IEG, World

Bank 2008), and there will obviously be a major impact for

the development of craft activities requiring the use of

productive electrical apparatus. However, traditional craft

activities are only marginally affected, as the impact for this

type of activity mainly lies in the possibility of longer working

hours, thus raising productivity.

A review of case studies does not show significant

industrial ization effects either. Indeed, for small entrepreneurs

who are already equipped, changing their production facilities

requires additional investment and they generally will not do

so until renewal is necessary.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

31

Electrified NE in E V NE in NE V NE in PV V PV in PV V Total

Source: Axenne.

Refrigerator gas

Battery recharge for TV use

Batteries for radios

Candles

Batteries for electric torches

Gas for lamps

Lamp oil

Dh

It is in the social sector that rural electrification projects

have a significant impact: on health, education, migration

and the status of women.

► The impacts on health are mainly related to the continui-

ty of the cold chain (vaccines, drugs) and to longer opening

hours at health centers (in particular for childbirth).21

Other benefits worth noting relate to (i) improved health

knowledge through the development of access to television

information, and (ii) improved health conditions for food

storage thanks to refrigeration. We also see a positive

correlation with the availability of drinking water throughout

the year, a fundamental factor for public health, especially

for children, in a context where diarrhea and other

water-borne diseases are today still one of the main causes

of child mortality.

► The impacts on education mainly concern the

improvement in the quality of intake and education: a good

teacher will be more inclined to accept a position in an area

with electricity than an area without. Similarly, children living

in a home with electricity generally have a better grade level

as they can study in the evening after school.22

► The impact of electrification on migratory flows and the

rural exodus is much more difficult to evaluate. Various

studies have, however, shown that it reduces migrations to

major cities, and increases the attractiveness of secondary

towns with an electricity service, whether or not they are

qualified as rural. It also strengthens the feeling of safety in

villages and fosters greater social cohesion thanks to public

lighting.

1.3.4 Significant social and development impacts

Table 4. Impacts of electrification on health – The example of Morocco (2010)

Village without electricity Village with electricityElectrical refrigerators 50 % 100 %

Conservation of vaccines 60 % 95 %Regular visits by a doctor 40 % 85 %

Medically assisted childbirth 0 % 42 %

Source: Axenne.

21 As a reminder, the reduction of infant and maternal mortality is part of the fourth and fifthMDG.22 Source: ESMAP Philippines (2003).

Box 3. Impact of electrification on migratory flows and rural exodus in Morocco

The implementation of the Global Rural Electrification Program (PERG) is thought to have facilitated the regrouping of communities, due tothe selection criteria generally applied. Dispersed housing was reduced from 35% to 28%, and that of scattered dwellings was divided bythree, falling from 6% to 2%. The rural electrification programs thus had a major impact on the spatial reorganization of villages. To a certaindegree, ONE, with its policy of constructing "backbone" grids, promotes this spatial redevelopment and the regrouping of communities nearthe interconnected grid.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

32

► The impact of electrification on women is related to the

fact that they are the first to benefit from the development

of small shops. In Ghana, groups of women organized

themselves to prepare and sell food in places where

community TVs were installed. In South Africa, groups of

women manage and develop an activity of refrigerated

space rentals. Electrification allows longer working days for

women, which supports their economic empowerment in

some cases.

► More generally speaking, electrification brings about a

real social transformation, which is related to connectivity

and access to information and training thanks to audiovi-

sual media. The massive distribution of audiovisual

communication media, facilitated by electrification, allows

better coverage of the rural world; educational

programs help people, through images, to acquire a better

understanding of the world. The proliferation of Internet

cafés and the connectivity through Internet (at unexpected

penetration levels in rural areas) lead to changes that are

still difficult to fully grasp.

1.3.5 What is the economic benefit for thenation?

It is difficult to attempt to define a general principle or rules

concerning the quantitative and qualitative impacts of (rural)

electrification programs. Most of the time, cost-benefit

approaches depend on a specific context, and their

evaluation and translation into a "monetary equivalent" is a

costly and somewhat subjective exercise.

For the Moroccan rural electrification program, the overall

economic rate of return stands at around 8%, based on the

following parameters (PERG study, 2004):

• Growth of individual consumption and of equipment

dynamics;

• The induced equipment expenditure and its cost

effectiveness for the consumer;

• The financial profitability of the program (electricity

operator).

This rate rose to about 20% by integrating the positive

externalities (more difficult to assess):

• Social benefits in terms of health, education and user

satisfaction;

• Environmental benefits;

• Local economic benefits in terms of job creation;

• General economic (macroscopic) benefits in terms of job

creation through the electrification process.

Such economic rates of return, as found in other countries

(see Table 5), combined with a higher willingness to pay

than the cost of the actual electricity, are paradoxically not

sufficient to raise the investments required to implement

large-scale programs.

Table 5. Economic rate of return for nine rural electrification programs

Economic rate of return for nine rural electrification programs

Country Project Grid extension Collective scattered Individual scattered

Cambodia Rural Electrification and Transmission 19.80 22.30 11Honduras Rural Infrastructure Project 33 20 30

Inde Renewable Resources Development 14 41Laos Southern Provinces Rural Electrification 60.50 26

Mozambique Energy reform and acces 22.70 14.50 Nicaragua Rural Electrification 40 23 27

Peru Rural Electrification Project 22.60 23.80Philippines Rural Power Project 26.40 21.50 48

Sri Lanka Renewable energy for Rural Energy 15.20 10.90

Source: IEG (2008).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

33

The resource is not necessarily available: a country that

still has a low access rate to electricity, poor service

quality and a recurrent need for financing to cover its ope-

rating and maintenance costs in its affluent industrial and

urban areas would have great difficulty in making access

to electricity in rural and peri-urban areas a national

priority. The success of a national policy for access in rural

and peri-urban areas (access for all, with major social

considerations) strongly depends on the situation of the

electricity sector in urban and industrial areas.

However, in almost all Sub-Saharan African countries, the

State – with private sector support – does not manage to

offer industry and its affluent customers the electricity they

need. In fact, there is even a trend of service deterioration

and an increase in the number of power cuts.

This issue thus brings us to the choice of target population

and the question of objectives. In several rural

electrification projects, the objective of reaching

the "poorest of the poorest"23 has failed due to the

insufficient solvency of the beneficiaries and to the fact

that the economic impact of electricity is too low and is

unable to improve this solvency in the short or medium

term.

This debate on the choice of target populations is far from

closed, and is systematic in Output-Based Aid (OBA)

approaches. In regional or national-scale analyses, it now

is common to identify the potential "large customers" that

might ensure a minimum revenue for the operator, and

those that have a significant economic and social impact.

However, the reality is often that hospitals, adminis -

trations, schools, etc. are the worst payers, whereas serving

industry requires that a certain quality of service needs to

be maintained.

1.4 Access dynamics affected by sector reforms

In the mid-1990s, many reforms were launched due to the

general inefficiency of public sector electricity companies.

With regard to the focus of our topic, out of more than

40 Sub-Saharan African countries, almost half have set up

a rural electrification agency (REA) and/or rural electrifi -

cation fund (REF). Out of the twenty or so countries that

opted for an organization of the electricity sector shared

between a national or privatized electricity company and an

REF/REA, almost all benefited from World Bank assistance

for its establishment. This created an institutional model for

the various initiatives, whose focal point is this REA and/or

REF, in charge of – as the case may be – designing,

developing and operating power systems in rural and semi-

urban areas.

Their action falls within a “perimeter” of rural and semi- or

peri-urban electrification with poorly defined contours, most

often simply juxtaposed to that of urban power systems.

The necessary coordination of the planning function of

both sectors and efforts to seek synergies and general

efficiency, which should be the responsibility of a strong

ministry, are thus made difficult. Nevertheless, these two

perimeters, which are governed by different or common

regulations, are experiencing respective developments that

influence each other (grid extensions, area exclusively

reserved for the “off-concession”, etc.). These develop-

ments and their interface (feed-in and resale tariff to the

grid, compensation for operators/investors in case of an

extension of the "national concession") are key elements for

coherent national policies to extend access to electricity

services. If they are poorly defined, they can block the

service extension.

Today, we should question whether this institutional model

has the capacity to accelerate or promote access to electri-

city services. It has not changed significantly in the recent

past, either in terms of access for communities in electrified

areas, or in terms of the percentage of localities covered by

the grid. 23 Objective considered by donors as a high priority item in the global poverty reduction strategy.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

34

1.4.1 The key role of a central operator as a"public champion"

We see that the African countries that kept their traditional

national electricity company today have the highest access

rates to electricity: South Africa: 70%, Côte d’Ivoire: 39%,

Ghana: 60% (82% in urban areas and 29% in rural areas).

The equilibrium between profitable areas (i.e. towns

and densely populated coastal areas) and areas of low

profitability (i.e. rural areas) seems facilitated by a single

overall management system.

The institutional organization in Morocco and Tunisia, both

of which today have nationwide electrification, shares the

following characteristics:

• A single operator that has for a long time been the main

instrument for developing access to electricity;

• A clear centralization/deconcentration of the administration;

• A strictly public approach until quite recently;

• A very strong political will to develop electrification by

extending the grid of the single or dominant operator, but

also by using other electrification methods;

• No distinction between urban and rural areas, all being

included within the area of activity of the dominant operator;

• The lack, for a long time, of an instrument to formalize a

sectoral and regulatory strategy.

In both these countries, the political will and mobilization of

national resources have played a key role. This is relayed

and implemented by a relatively efficient single public

operator.

For many years, some countries with an intermediate

economic development, such as Cameroon or Côte

d’Ivoire, adopted the same strategy as Morocco and

Tunisia. They made no distinction between urban and rural,

even if the distribution operator had a well-defined field of

action and had opened to the alternative intervention by

local and regional authorities for infrastructure financing.

Since then, the sector has moved towards a progressive

liberalization and its resulting institutional changes (a regu-

lator, privatizations, asset holding companies, REAs). While

such situations may have their own dynamics, the absence

of a rigorous oversight and clear regulatory framework – in

other words of a legitimate manager – often leads to

situations of deadlock.

1.4.2 Too many institutional stakeholders arejust as inefficient as too few

In some cases, the institutional environment has too many

stakeholders, which is shown by the fact that there is no

clarification and/or simplification following a sector reform.

Mauritania, for instance, has been a “good pupil” in the eyes

of its donors from an institutional perspective. The

electricity sector has a sectoral policy letter, an electricity

code advocating the complete opening of the sector, a

ministry with a rather exemplary organization chart, a public

operator, which has been subject to privatization attempts

(in vain), a regulatory authority, an REA, and an agency for

universal access to basic services (APAUS). We see,

however, quite a gap between the texts, the facts, and the

existence and functioning of the institutions. The APAUS

concept that has been defined should have led to optimal

coordination, the creation and management of basic

services, and to efforts to achieve systematic cost reduction

(for the use of domestic and renewable energies, the

choice of future investments, and system management). In

reality, however, the system has led to competition with the

sectoral agencies – for water and rural electrification – for

project implementation and budget allocation.

1.4.3 A necessary match between the ruralelectricity market and the number, size andefficiency of operators

Senegal’s conceptual approach is exemplary and it has an

institutional arsenal that has fully taken account of a

forward-looking vision – the sectoral policy letters; lessons

learned from fruitless reform attempts – privatization of the

national electricity company (SENELEC); the functions of

the Electricity Sector Regulatory Commission, which is

increasingly credible; the existence of a dominant operator

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

35

(SENELEC); the role of an REA, which is seeking to

develop a public-private partnership (PPP) under a

mechanism integrating the economic, financial, legal and

fiscal tools required to enhance the attractiveness for

operators of the sub-sector, SENELEC and PPPs.

Studies covering a period of 10 years have led to a

reduction in the number of concessions from 20 to 11 to

allow them to have a certain level of profitability. Few

candidates were interested in the first bid invitation for

concessions, which was won by ONE, Morocco’s national

electricity company.

This raises the question as to whether a "market" of

operators exists with the critical size and means to submit

bids. Is it due to an insufficient promotion of the sub-sector

and/or the absence of a "champion"? Are expectations too

great concerning the interest and capacity of the private

sector to take risks, especially for investments, in a

financially depressed sector?

Conversely, the frameworks in Burkina Faso and Mali

favor small and local national village operators. However,

this requires heavy investment subsidies (about 80%), as

the operators work in conjunction with an overall

approach. Indeed, while over 60 projects for spontaneous

applications for rural electrification (PCASER), financed

by the Malian agency for the Development of Household

Energy and Rural Electrification (AMADER), supply Mali’s

rural areas, their unit size is generally below 250 kW and,

by themselves, they would never be able to resolve the

issue of nationwide access to electricity for all.

While the institutional approach is forward-looking and

maybe ambitious, it must, however, result from a search

for an optimum between the reality of the sector, its means

and its resources, its capacity to develop, and the

objectives assigned to it. Moreover, the approach must be

exhaustive in terms of assigning roles and responsibilities,

and must ensure the optimal exercise of the functions

required for the development and smooth running of the

sub-sector.

1.4.4 A sophisticated structure does notnecessarily fulfill the three financing,regulatory and industrial functions

In most African countries, the main characteristics of the

organization of post-reform rural electrification and access

are:

• A repositioning of the State for its sovereign functions:

regulation, promotion, protection of the general interest,

creation of the regulatory function;

• REAs, and a tentative recognition of the need for cross

subsidies;

• A segmentation of the power system to allow the

introduction of competition, particularly for generation;

• Access by private enterprises to these activities provided

they obtain authorizations, licenses or concessions, and

that they actually exist.

Unfortunately, the creation of entities for electrification has

often not been supported, either by national policies, or by

an allocation of financial and human resources that would

really allow them to achieve the objectives assigned to

them.

The rules of the game are too often poorly defined and the

resources too few to create significant development. These

agencies may play several roles: running a pilot project for

decentralized electrification, organizing a bid invitation for

concession management, giving incentives to private

operators that wish to invest in a decentralized electrifi -

cation project, and planning grid extensions (Renewable

Energy Association, ADER, in Madagascar), possibly by

financing this component.

We see that the multiplication of entities, prior to

the creation of large-scale infrastructure, leads to a

fragmentation of competences and competition between

institutions to hold “borderline” responsibilities. This

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

36

competition makes it impossible to gather the human,

technical and political means required to achieve the

common objective: implement ambitious projects, while

ensuring that the functions required to achieve the

objectives of access programs are available (financing,

industrial and regulatory functions).

1.5 Establish clear prerogatives for each stakeholder

Achieving effective results requires a coherent national

policy for access to electricity, with the corresponding insti-

tutional and regulatory environment (regulation function). It

is thus necessary to have: (i) a real political will to support

electrification projects and ensure they are sustainable,

(ii) clear economic orientations and sufficient financial

resources (financing function), and (iii) structures that can

provide, install and operate the infrastructure (industrial

function).

1.5.1 Financing access: How to mobilize thefunds required to achieve the politicalobjectives?

Given their level of profitability and their return on

investment time, electrification projects, especially rural

projects, require the provision of public subsidies. It is esti-

mated that about 50% of rural electrification financing in

France was through subsidies. While there is the political

will to provide rural and peri-urban communities with

an electricity service, the financing function must be

considered with lucidity, and by taking account of the

following parameters:

- The investment profile: investments are certainly econo -

mically profitable, but in the long term (a minimum of

between 10 and 30 years). The risks can be non-negligible

and are related to both the purchasing power of (poor)

communities, as well as to the understanding of generation

technologies;

- It is obviously unrealistic to expect private investors to

get involved in this type of long-term investment;

- Substantial amounts are needed to equip a territory. This

requires a large-scale mobilization of national resources

that can subsequently leverage international financing. At

the level of the continent, the issue of universal access will

certainly not be resolved through projects with grants of a

few tens of millions of euros.

As illustrated by the amounts mobilized in Morocco,

Kenya and Ghana (see Box 4), we must stress the

historical importance of: (i) the amounts involved that stem

from a real political choice in terms of national resource

allocation, and (ii) the central role of the national company,

which acts as an electricity company (with a real technical

and organizational capacity to implement a program of

this size) and publishes a balance sheet and profit-and-

loss account. This allows it to be a long-term borrower,

admittedly public and often with a State guarantee.

It is clear that the countries with a "post-reform"

organization (i.e. most Sub-Saharan African countries,

which now have a rural electrification fund) are in an

"unfinished" situation in terms of funding mechanisms. In

general, these "funds" are simply accounts through which

the meager grants from international cooperation transit.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

37

While the creation of specialized funds can be an important

stage in ensuring the sustainability of the financial

resources required for the development and consolidation

of the sub-sector, today it is clear that the size of these

funds and the amount of their resources are often too

limited, and their sources and financing methods too

random. It is often necessary to change these funds into

specialized financial institutions (right to lend and borrow),

and to extend their field of action to guarantees for a certain

number of operations and to financing for small local

operators (who would not have access to commercial bank

financing without the support of these funds).

Box 4. Mobilizing funds for regional electrification – The examples of Morocco and Ghana

Morocco, with 32.2 million inhabitants, has almost achieved nationwide electrification (over 90% of the 30,000 localities) in the space of15 years. The budget committed at the end of 2008 was in the region of EUR 1,770m, 53% of which was mobilized from national funds(equity) and the remainder from medium- to long-term concessional loans (47%). 55% of the national share was mobilized by ONE (on itsown equity), 20% came from municipal budgets and 25% from user contributions. These amounts – EUR 230/connection for households andEUR 190/connection for municipalities – could benefit from instalment payments granted by ONE.

In Ghana, a country with 22 million inhabitants, major and continuous financial assistance from the World Bank (IDA), completed withsupport from bilateral partners,24 has allowed the country to go from an electrification rate of about 15% in 1989 to 60% in 2009. The ruralelectrification budget over the past decade has been in the region of USD 2bn, with a participation of national and local financing of around15%. The objective of Ghana's Self-Help Electrification Program, SHEP, steered by the Ministry for Energy (with technical support from theElectricity Company of Ghana, ECG), was to reach an electrification rate of 80% in 2010 and to guarantee all communities (4,220 villageswith over 500 inhabitants) an electricity supply by 2015. The average cost per household stands at about EUR 250 (with the possibility ofpaying by instalments).

Graph 4. Mobilizing funds by an electricity company: The example of ONE, Morocco

Source: Authors.

24 European Commission, France, Germany, Italy, Spain, United Kingdom, United States andSwitzerland.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

38

Equity53%

KFW1%

AFD14%

IDB8%

JBIC8%

EIB9%

FADES4%

FK3%

We should note here the changing role of local authorities,

which play a central role in countries like France, where

they remain owners of the distribution grids. These entities

benefit from increasing responsibilities, related especially to

the administrative decentralization movements, which are

gaining momentum in a number of African countries.

Moreover, an increasing number of electrification programs

integrate components to promote productive uses of

electricity (Burkina Faso and Senegal, for example). This

clearly appears to be one of the new priorities of the deve-

loping electricity sectors. It requires public assistance,

which may be provided by the local authority, which is

responsible, in this case, for associating private players

with common interests via innovative partnerships: the rural

user, electricity distributor, electrical equipment supplier

and financial partner. In the case of the Moroccan PERG

and, historically, France, local authorities have played a

central role while remaining owners of the distribution grids

whose operation they entrust to a licensee (EDF in France).

1.5.2 Economic and financial regulation: tariffpolicy and contractual framework for themobilization of private stakeholders

Themes that are all different from each other can be

included in this very "general" topic of regulation:

• Mechanisms for review, monitoring-evaluation, control,

sanctions and settling the legal, technical and economic

aspects of disputes;

• Adapting service quality to demand in rural areas, thus

using appropriate technical standards and practices that

will be decisive factors for optimizing investment costs (up

to a third of the amount invested in distribution; this topic

will be discussed in the technical section);

• The selection, training and control (and therefore sanctions)

of the regulatory entity.

It is clear that the countries that have succeeded in

the electrification of their territory only set up a regulatory

agency once a sound electricity infrastructure was in place.

It was only after that issues concerning the plethora of

operators and the end of the integrated monopoly (gene-

ration, transmission, distribution) were addressed, requiring

the introduction of rules (in France, India, Morocco, etc.).

Initially, the ministry can often cumulate the functions of

planning, policy formulation and regulation. As the public

company is dominant, it often edicts de facto rules and

regulations. The fact of creating an ad hoc regulatory

agency will not be sufficient to ensure that the regulation

functions correctly.

Two components will be analyzed below. The first concerns

economic and financial viability; the second relates to the

contractual framework required to foster the mobilization of

private partners.

► Issues concerning economic and financial viability

- Investment financing: the viability and relevance of

the model compared to the available financial resources

(generated by the electricity service itself and external to it);

the subsidy level for the investment that allows a sufficient-

ly attractive profitability for a private operator (for example,

we can note the case of Cambodia that has abandoned this

path and has opted for franchises on national investments);

- Financing the operation, servicing and maintenance of

facilities (which should in principle be covered by tariff

revenues); this is almost impossible in cases depending on

thermal power generation;

- Cross subsidies between different customers, and thus

tariff categories, but within the electricity sector itself: is

equilibrium possible, or are resources external to the sector

needed?

- Tariff principles: equalization, i.e. can one apply the same

tariff for a customer category regardless of its geographical

location, with very different costs, without unreasonably

jeopardizing the financial equilibrium of the sector? The

ability to pay is not the same nationwide and a tariff

differentiation (i.e. a tariff that changes depending on costs

and context) is difficult to accept;

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

39

- Cost and price of electricity: there is a considerable

difference between countries that depend on thermal

generation (such as Burkina Faso) and those with

amortized hydropower (such as Cameroon). The energy

price in Sub-Saharan Africa is high, reflecting international

standards. The average tariff in the region rose from USD

0.07/kWh in 2001 to USD 0.13/kWh in 2005, reaching

almost twice the level in other parts of the developing world

and a level comparable to that of high-income countries.

These increases were particularly high in countries depen-

ding on diesel-generated power, where prices rose by USD

0.08/kWh on average, in reaction to skyrocketing oil prices.

Yet, despite these increases, the average tariffs in the

region remain considerably below average operating costs,

at USD 0.27/kWh.

However, both States and power companies have been

caught up by economic reality: Kenya, which mainly

relies on hydropower, is currently experiencing a period of

prolonged drought, combined with underinvestment in its

production facilities. The national company, Kenya Power

Lighting Corporation (KPLC), thus finds itself obliged to

resort to thermal power generation and to pass on this extra

cost in the tariff. The fuel surcharge currently applied

doubles the tariff (roughly between USD 0.10 and USD

0.20) from one month to the next. Consumers thus receive

a much higher bill without prior notice. An analysis of

the electricity tariff levels applied in Sub-Saharan Africa

therefore leads to three observations: these tariffs are, on

average, high; they reflect highly variable generation costs

(countries with abundant hydrocarbon reserves, such as

Nigeria, or that have cheap hydropower, such as Zambia,

can afford to apply low tariffs); a country with a structure of

generation costs (like Madagascar), despite a strong social

motivation (as shown by a "social" tariff block at less than

50% of the normal domestic tariff) will never be able to

reach the levels of countries that have cheap resources;

Graph 5. Amount of financial mobilization for a national electricity access program: The examples of Morocco andGhana compared with other African countries

Source: Authors.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

40

30

25

20

15

10

5

0

RC

I

Bur

kina

Fas

o

Mal

i

Sene

gal

Gha

na

Nig

eria

Cha

d

Cam

eroo

n25

20

15

10

5

0

Mor

occo

Tuni

sia

Alg

eria

Libi

a

Egyp

t

Uga

nda

Ken

ya

Ethi

opia

Zam

bia

RSA

Mad

agas

car

<100 kWh / m

<200 kWh / m,2k W

4k W

- Connection fee: the level of electricity tariffs reflects these

structures with highly contrasting fees, and experience

shows that the main barrier to access is the high

connection fees to be paid by customers. Fees of EUR 100

to EUR 300 are quite normal in Sub-Saharan Africa, which

should be compared with an average yearly energy bill that

generally is less than EUR 50. The "financial package" of

a rural electrification project or program (especially the

subsidy level retained to cover these connection fees) has

a very strong impact on the price of the service. Moreover,

excessive connecting fees generate (i) "spider-web"

phenomena, i.e. “pirate” connections (Benin); (ii) a low

connection rate (Benin and Kenya); and (iii) when associa-

ted with a sub-optimal technique, a slowdown in customer

densification (Kenya).

Countries firmly engaged in grid densification generally

develop reflection on the initial connection fee:

Subsidies through an REF (Burkina Faso, Uganda,

Senegal, etc.);

• Sharing the investment cost (connection cost) between

the different stakeholders: beneficiary households, local

authorities, government, private operators, etc.

• Loans from commercial banks, village banks or micro -

finance institutions to finance the connection fee

(Kenya);

• Prior savings (Central African Republic);

• A specific fund managed by the electricity company,

endowed by donors and dedicated to financing

connection fees. This fund, based on a revolving

mechanism, allows the user to pay for the connection in

instalments; the replenishment of the fund in this way

allows the number of connections to be scaled up.

► Questions concerning the contractual framework to

promote the mobilization of private partners

As the sector cannot earn the resources required to

implement exhaustive access programs, and the State

does not have the necessary means, the search for

financing has been oriented towards private investors. The

instrument for financial regulation can vary depending on

the context:

- Cost-plus system: the licensee declares its costs and a

margin determined on the cost authorized;

- Return on investment regulation: the licensee declares

its costs and the sales prices are authorized according to

a pre-determined rate of return on investment (RRI);

- Authorized sales price level: sales tariffs as part of a

distribution concession;

- Terms of the buy-back contract for energy produced by

the generation unit:25 by the national distributor, or by

major customers located at a certain distance (which

requires permission for access to the grid by third parties);

- Participation in the investments by a public fund and

operating procedures (per connection, per kWh, etc.).

The question the regulator needs to answer is whether the

framework provides sufficient incentives and is sufficiently

transparent to attract private sector investment, and to what

extent: is it realistic to envisage rural electrification conces-

sions (with private investment), or would it not be better to

initially envisage franchises, or an affermage, with public

investment and private management? The next question is

that of the ownership of the infrastructure, which is too often

unclear in access programs: it should certainly remain

public, but a whole host of options are possible, from a

national asset holding company to a local municipality.

► Questions concerning the characteristics of the demand

The characteristics of the demand and its dynamics

obviously have an important impact on the economic

and financial profitability of generation and distribution

investments. In rural (and peri-urban) areas, we generally

see a mostly domestic and weak demand per household,

dominated by audiovisual and lighting needs. This

consumption is characterized by a major evening "peak",

sometimes 3 to 4 times higher than the morning peak, with

a very low daily basis. Developing such daily demand is an

essential point for the profitability of systems in order25 These terms must be differentiated, especially in contexts characterized by theavailability of hydropower and biomass resources with a long return time; the same is true forconnection conditions, which are often binding.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

41

to increase the profitability of the investments through

stronger demand. Moreover, demand in such areas often

saturates with connection rates of about 50% of house-

holds, or even less, due to the high connection fees.

Household unit demand can only increase through a rise in

equipment of domestic appliances and, thus, higher

domestic income levels. The increase in productive and

commercial uses, which is itself positively correlated with

economic development and higher incomes, goes hand-in-

hand with improving the profitability of access programs.

1.5.3 Questions concerning the contractualframework to promote the mobilization ofprivate partners

(Excerpt from a GTZ document)

"(…) the efficiency / knowhow objective of Private Sector

Participation (PSP) deserves attention. If infrastructure

sectors are to benefit from the creativity, flexibility and effi-

ciency of private sector players, and if local private sector

capacity and public sector governance are preventing

success on this account, then the aim for PSP translates

into a need for Private Sector Development on local level.

Developing a functioning private sector in turn requires buil-

ding capacity on micro, meso as well as macro level.

What’s more, if improved efficiency, accountability and

creativity are the primary goal of reform, then PSP would

even include the improvement of public utilities by applying

private sector based management best practices (covering

issues such as salary structure, transparent incentives,

competition and benchmarking)."

Today, a first assessment of the concession and/or privati-

zation contracts used in the urban electricity sector is

mixed, to say the least. The minimum objectives to achieve

for licensees operating in profitable areas (as set out in the

provisions of concession contracts) should have been to

oblige and encourage them to invest in production facilities

(and therefore to mobilize relatively long-term financing)

and to supply the poorest communities, especially in peri-

urban areas. In most cases, however, the licensees have

not achieved these objectives. The assessment shows that

the actual investment level is lower than initially planned,

and that the poorest communities are still waiting for a

secure service. In contrast, Build Operate Transfer (BOT) or

Independent Power Producer (IPP) projects, where a

private investor negotiates an electricity buy-back

agreement with the electricity company, have met with

more success. There are three potential operators:

1. The traditional operator (national public or private

company): Following the wave of sector reforms, few

African countries kept their centralized system. The best

known are Morocco (for its exceptional electrification results

these past years), Tunisia, Kenya and Ghana (which have

a relatively high coverage rate), and, to a certain extent,

Côte d’Ivoire, Gabon and Cameroon. In these countries, the

national company often handled grid extension, even in the

most outlying areas, allocating part of its budget to non-

profitable rural electrification projects, which were partly

financed by taxes on consumption (partly by contributions

from the State or local authorities). Intensification, in both

rural and peri-urban areas, comes later.

2. Private operators: They have little reason to be

interested in energy in rural areas, a niche promising little

profit, except in the case of a high level of co-financing by

the State. This allows a certain degree of profitability for the

concession, which is generally mixed (generation and

distribution). The territory is thus divided into: (i) several

geographical concessions, proposed by the State to the

highest bidder (Senegal), and (ii) non-electrified rural areas

where the absence of profitability obliges the State to set up

an REA managing an REF. These two entities (sometimes

merged into one) are in charge of managing and financing

projects that are studied case-by-case and financed from

available funds, including potential funds from the ministry.

This is, for instance, the case of PCASER in Mali, where

small and medium-sized enterprises (SMEs) take a conces-

sion for a given village, covering power generation and

distribution, with a 75% investment subsidy provided by the

REA (AMADER). In Mauritania, it is the REA that in practice

remains responsible for solar kit or diesel generator

maintenance.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

42

3. Non-governmental entities: With their extensive

experience of Africa’s rural environment, these entities are

potential operators in low-income areas with low energy

consumption. Moreover, NGOs have a real capacity to

define innovative organizational arrangements and to rely

on strong local partners. In the field of energy distribution

management, we increasingly see the emergence of

very local entities, such as local resellers or cooperative

structures, which operate in both peri-urban areas and

villages. Furthermore, while with the development of

the function there are an increasing number of private

enterprises, it should be noted that their roles and

responsibilities vary. This variation is directly related to the

reluctance on the part of public operators and specialized

agencies to entrust the entire management of power

systems to private operators. For small systems and grids,

it can also be explained by the lack of experience and

technical capacity of the candidate companies to manage

these systems. With the national company withdrawing

from rural areas, the question now is how to develop the

expertise in engineering and works supervision that is

essential for maintaining a high-quality nationwide supply.

Diagram 1. Potential operators for providing access to electricity

Source: Authors

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

43

• Historical operator→ Bulk sales→ Retail sales

• Licensee→ Geographical→ Technological

• Village cooperatives • Local authorities• Energy service companies

(ESCOs)• Associations and NGOs• Local private resellers of autonomous sytems

Centralized electrification

Decentralized electrification

Essential character of

maintenance

Excerpt from ESMAP26 (2007)

"Today’s levels of energy services fail to meet the needs of

the poor. Worldwide, two billion people rely on traditional

biomass fuels for cooking and 1.6 billion people do not have

access to electricity. (…) This lack of access to quality energy

services, especially electricity, is a situation which

entrenches poverty, constrains the delivery of social

services, limits opportunities for women and girls, and

erodes environmental sustainability at the local, national

and global levels. Ignoring the situation will undermine

economic growth and exacerbate the health and environ-

mental problems now experienced in many parts of the

world."

Creating infrastructure for rural electrification is a key issue

for development. While the necessary institutional and

organizational frameworks are gradually being established,

what technological options are today available to address

this challenge?

2 A continuum of technical, economic and organizational solutions

2.1 Technical and economic framework

2.1.1 Large-scale centralized generation ordistributed generation: Trends in the cost ofrenewable energies

In view of the low coverage rate of power grids in

Sub-Saharan Africa, a program to maximize access to the

electricity service can, depending on the context, consist of:

1. The extension and/or reinforcement of an MV grid to

reach priority localities. However, to supply this grid, power

generation in sufficient quantity and quality, and at an

affordable cost, is needed;

2. Investment in a renewable or diesel generating unit from

500 kW to several MW to supply a region and, if possible,

be connected to the grid to sell surplus production, which is

commonly called "distributed generation";

26 Energy Sector Management Assistance Program.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

45

- Generation is intermittent (daylight hours for solar, or wind

availability for wind) and experiences seasonal variations:

level of sunshine, availability of biomass, variable

hydrology depending on the season (rainy/dry). This may

require the installation of storage facilities or of a diesel

generation back-up.27

The cost of power generation will thus very much depend

on the load factor of the facilities. Indeed, the cost of a kWh

generated will vary enormously depending on whether a

given investment operates at full capacity or not (1,000 or

7,000 hours a year).

Finally, the choice between generation using renewable

energy or thermal sources (coal or fuel oil) is often based on

a choice between a highly capital-intensive investment, but

with a low operating cost, and a cheap investment with high

annual charges.

The cheapest solutions in terms of the levelized cost per

kWh are often not implemented for reasons of technological

expertise and due to the barriers to the initial investment.

Furthermore, due to delays in investments, many countries

faced with urgent demand (even countries with natural

resources and thus potential for cheap power generation)

have no other choice than to invest in facilities that

are commissioned very quickly and have a low initial

investment cost, even if this very rapidly penalizes them in

terms of the cost per kWh (see Box 5).

Box 5. The consequence of investment delays on average generation costs – The example of Cameroon.

In Cameroon, there are currently nine power plants on the Southern Interconnected Grid (SIG): two hydropower plants (Edea and SongLoulou) and seven thermal power plants (Limbé, Oyomabang 1 and 2, Logbada, Bassa 2 and 3 and Bafoussam). While many hydropowerplant sites with varying sizes were studied in the past, according to the Electricity Sector Regulatory Agency (ARSEL), the plants planned forstart-up by 2010 are the thermal plants in Dibamba (commissioned in 2009) and Kribi (commissioned in 2010), the gas-fired thermal plant inKribi with a "take or pay" contract and the heavy fuel oil-fired plant in Dibamba. No forecast data are currently available.

27 Back-up diesel generator, switched on when renewable energy generation is not possible.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

46

3. The creation of a stand-alone grid with its own generation

(generally below 500 kW) for a small locality or cluster of

localities ("village grids");

4. The creation of a park of PV, pico hydro and small-

engine units, either stand-alone or connecting several

families, i.e. "stand-alone distributed generation" (usually

below 5 kW);

5. The densification of connections to existing grids.

The technological paradigm is constantly changing.

Extending the grid over the vast and sparsely populated

areas where almost half of the African population still lives,

using generation sources of tens or hundreds of MW,

is a highly capital-intensive option. Local generation (hydro-

power, biomass-electricity, PV), with its lower investment

costs, offers new opportunities: the unit size of the

generation capacity is smaller, which reduces unit

investments. In addition to the issue of the initial investment

cost, it is necessary to take account of the cost per kWh, by

integrating the variable generation and maintenance

costs over the equipment lifespan. Indeed, while thermal

generation by diesel generators offers the considerable

flexibility of being able to be generated on the consumption

site (thus avoiding the cost of power transmission and

losses), renewable energy has to be made profitable in a

much more difficult context:

- The generation potential (hydropower, wind, biomass,

etc.) must be located near the demand or, if this is not

possible, the additional cost of the power transmission line

must be integrated;

The extremely rapid development of technologies should be

emphasized here: in 2009, manufacturers announced a PV

cost per kWh for units of over 5 MW at less than EUR

0.25/kWh and at about EUR 3,000 per installed kW at the

time of investment in Europe. With recent diesel fuel rises,

PV, biomass and hydroelectric electrification have become

competitive.

It is therefore becoming increasingly complicated to select a

generation technology and organize electrification: new

options are reaching technological maturity and the mass

production phase, uncertainties are growing over oil price

hikes, and a whole host of risks (including climate risk) are

appearing. In addition, distributed generation can be more

effectively managed thanks to new advances in electrical

engineering. Consequently, while up until recently electricity

companies were reluctant to integrate over 30% of this

production, this limit is rapidly increasing thanks to smart

grids.

2.1.2 Centralized generation and grids

Before being able to speak about access for the poorest

communities, energy must be available in sufficient

quantities, at a reasonable cost and with adequate service

quality,28 as tariff levels above all reflect the costs.

Large-scale hydropower projects are today hampered by

debate over environmental impacts. While this situation

is moving in the right direction, there are increasing

uncertainties related to climate change and financial

mobilization. Geothermal energy may also see a revival:

the expansion of geothermal energy along the Rift (which

stretches from Mozambique in the south to Djibouti in

the north) offers major opportunities in terms of potential

energy resources (the overall potential is in the region of

7,000 MW). There is also a growing interest in wind power.

However, the large-scale IPPs that are established today

mainly use gas or heavy fuel oil (emergency barges or

mobile generators). Clean coal generation or the new gas

technologies (Integrated Gasification in Combined Cycle –

IGCC) offer the best opportunities. These transactions are

long and complex: once the legal framework is open, the

PPAs are negotiated on a case-by-case basis, with very

high transaction costs that cannot be amortized on small

investments.

Historically, in Europe, the reduction in the cost per kWh

delivered took place within a paradigm of large centralized

production and interconnected grids (and economies of

scale made possible by a monopoly situation). Today, there

is growing consensus on the relevance of developing

distributed independent generation, connected to the

national power grid. There are many reasons for this:

environmental issues and energy independence, use

of local resources (wind, water, biomass), reduction of

transmission and distribution losses, lower investment

costs for the technical options of local generation, greater

security of supply by reducing the distance between

generation and consumption sites, etc.

Senegal, to avoid finding itself in this type of situation, is seriously considering developing power generation sources that can be integratedinto the interconnected and non-interconnected grids using renewable energy (excluding large hydro). The main sectors studied are wind,biomass (sugarcane bagasse) and PV solar.

28 I.e. without too many power cuts in the case of industrial demand or prolonged load-shedding in the case of agricultural production, but also without having to guarantee a verycostly level of reliability, which would not correspond to the characteristics of rural demand.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

47

Graph 6. Levelized cost per kWh for different generation options (in EUR cents /kWh)

Graph 7. Trends in investment costs from 2005 to 2015

Source: ESMAP (2007)

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

48

Wind 100MV 2005(CF-30%) 2015Solar thermal with storage 200530 MW (CF-50 %) 2015Biomass Steam 50 MW 2005CF-80 %) 2015MSW Landfill Gas 5 MW 2005CF-80 %) 2015Geothermal 50 MW 2005

CF-89 %) 2015Mini hydro 5 MW 2005CF-45%) 2015Large hydro 100 MW 2005CF-50%) 2015Diesel generator (Base) 2005CF-50%) 2015Gas Combined Turbines (Peak) 2005CF-10%) 2015Gas Combined Cycle 2005CF-10%) 2015Coal Steam 300 MW 2005CF-80%) 2015Coal AFBC 300 MW 2005CF-80%) 2015Coal IGCC 300 MW 2005

CF-80%) 2015Oil Steam 300 MW 2005

CF-80%) 20150 2 4 6 8 10 12 14 16 18

Levelized cost per kWh

Combined cycle: 5.1 cents/kWh

Diesel 5 MW basic and peak

1009080706050403020100

cts€

/kW

h

Solar PV 0,05 kW

0,3 kW

25 kW

5 000 kW

Wind 0,3 kW

100 kW

1 000 kW

10 000KW

PV-wind-hybrid 0,3 kW

100 kW

Solar thermal with storage

no storage

Geothermal 200 k

W

20 000 kW

Flash 50 000k

W

Biomass gasification 100 k

W

20 000 kW

Biomass vapour 50 000 kW

Biogas/wastle 50 000 kW

Bio

gas

60 kW

Pico/Micro-hydro 0,3 kW 1 kW

100 kW

Mini-hydro 100 000kW

Large-hydro 100 000 kW

Pumped Storage 150 000 kW

Source: ESMAP (2007)

In Sub-Saharan Africa, given the two current trends –

the difficulty to raise significant amounts for large-scale

generation infrastructure,29 and the development in

electrical engineering (which means that a sizeable power

grid fed by multipoint medium-sized power plants can

be envisaged) – there is a possible shift towards a

new generation scheme, with more medium-sized and

distributed plants, in a context where economies of scale no

longer play the same role as in the past.

Controlling generation costs may be a prerequisite, but it is

not sufficient. Indeed, the cost of HV or MV transmission

and of MV and LV distribution to provide access to commu-

nities requires adding up to 50%, or even 100%, to the

production investment.

Box 6. The share of generation in the cost per kWh – The example of Cambodia

In Cambodia, where less than 10% of the population has access to the electricity service, the average generation cost of EDC (electricitycompany) and for buying from IPPs (gas and heavy fuel oil) stands at USD 0.15/kWh. Imports from Vietnam (IGCC) cost about USD0.08/kWh. The average cost thus stands at about USD 0.11/kWh. In view of the fact that nearby rural households consume 50 kWh per monthwith a load factor of 30%, the average cost for additional transmission and distribution (as well as for technical losses) is USD 0.13/kWh.Generation thus only accounts for half of the kWh cost.

2.1.3 Decentralized generation: Complexregulatory and organizational issues

In order to serve customers, it is important to distinguish

between the distribution activity and the generation activity.

Moreover, in many cases, the operators in charge of these

two tasks are completely separate. As shown in Diagram 2,

the distributor will thus be required to purchase bulk energy

from:

A - The interconnected grid, at a sub-station or transformer;

B - An independent producer (500 kW to 15 MW), which

exploits distributed local generation and sells to one

or more of the following customers: the rural distribution

company; the interconnected grid; one or more major

consumers;

C - An industry that produces its own energy to secure its

supply and sells the surplus.

The two other cases are:

D - A single licensee produces and distributes in one or

several localities – it is therefore village electrification

(generally less than 500 kW); numerous diesel mini-grids

with this configuration are found in Africa;

E – The management of a park of "distributed stand-alone"

solutions, where the generator is located on the site of the

user, thus avoiding the need for a distribution grid (typically,

an individual solar kit or pico hydro).

29 Today, 93% of the economically feasible hydro energy potential in Africa (estimated at937 TWh/year, i.e. one-tenth of the world total), remains unexploited.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

49

In this subsection, we will look at small-scale distributed

generation and at village grids (B, C and D in the list

above), which may have various regulatory frameworks,

with different generation sources (diesel generators,

renewable energy).

Generation isolated from the main grid is not always used

by the electricity company, which focuses more on larger

and centralized infrastructure. Consequently, there are

opportunities for PPPs, with lower unit investments, but

which will require the implementation of a regulatory

framework to give the investors the guarantees they

require for their involvement (for investments that remain

long-term, i.e. over 5 years).

The first stage often involves authorizing industry to

generate for its own needs (security, quality of supply,

distance from national grid), self-generation, with the

possible sale of surplus energy. This possibility may be

very important for the profitability of the agro-industry, or

represent a major diversification for the profitability of the

self-producer, based on the resale conditions authorized

by the regulations. As such, surplus resales will

only solve the problem of access if the buyer is a rural

distributor, or if the national distributor will mobilize this

energy for rural supply.

The second stage involves authorizing power generation

by the private sector; defining the framework for this is

often laborious and complex, and it contributes (or not) to

access to services for communities on various bases:

- For an independent producer to make its investment

profitable, it may seek to resell energy to a company in its

group, or to an external customer, at a price negotiated

by both parties and within a relatively flexible regulatory

framework. This, however, requires that the grid owner

authorizes the use of the grid, or the TPA. In India, this

wheeling scheme, where the carrier levies a percentage

of the energy carried, was one of the triggers of independent

generation.

Similarly, this opportunity turned Moroccan cement

manufacturers into wind farm developers in the north of

the country in order to supply their factories in the south.

Generally, this system results from the aim of integrating

a certain percentage of renewable energy generation;

it does not directly contribute to access for communities,

but for industry, which creates employment.

- If regulations do not allow buy-back by the electricity

company, it is essential that the provisions of the Power

Purchase Agreement (PPA) are clear. Indeed, authorizing

Diagram 2. Possible supply sources for a distributor

Source: Authors.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

50

Economically viableConcessional credit line

Agricultural residue

Electricity company

Rural electrification

Power generation(500kw 10MVV)

Agro-industry

UnprofitableSubsidized investment

it is not enough ; there needs to be a buy-back agreement

over a sufficiently long period to allow the repayment of

loans (it should not be restricted to a single renewable

year as in Indonesia). The calculation method for the buy-

back tariff must also be clearly defined, the two basic

systems being the cost plus system and the cost avoided

by the purchasing national company (and not, as in

Kenya, where at present only a maximum tariff is pub -

lished). As in the case of surplus resales, this system

does not directly contribute to rural electrification, unless

the electricity company carries out grid extensions to sup-

ply unserved areas using this energy.

- However, if the purchaser is a distributor (or the national

company, which will launch a rural program), there is clearly

a contribution to access. But this does require the existence

of such rural distributors and the independent producer must

be willing to sell them its production, depending on their

quality as a counterpart. A rural distributor (cooperative or

village association) is not necessarily considered as a first-

class customer by an investor. There is then the issue of how

the distributor’s purchase price is determined, as it is itself

generally constrained by a tariff structure for users set by

regulation. The system is thus complex and this type of

framework is only in its infancy in Africa.

Box 7. Which buyers can make small-scale private independent generation profitable?Examples from India, Indonesia and the Philippines

In India, where the national electricity supply is insufficient, buy-back conditions have been established to allow a sugar refinery to make anadditional cogeneration investment profitable. Consequently, all the country’s sugar refineries now have cogeneration units, which allow themto optimize the use of biomass residue. In Indonesia, surplus resales are only authorized at a variable generation cost, and with 1-yearcontracts, meaning that none of the self-producers take up this option.

In the Philippines, cooperatives are in charge of rural distribution. They apply tariffs imposed by the regulator and buy back bulk electricity atthis tariff, less a certain percentage that covers the amortization of the distribution grid, technical losses and their margin. If this buy-backprice for the producer is lower than the cost of the energy delivered to the purchase point, the producer must justify its generation cost to theregulator. This entitles it to compensation to allow it to maintain a certain level of profitability.

Diagram 3. Cooperatives and small-scale industry: The stakes of profitability

Source: Authors.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

51

Captivebuyers:private grid

Power generation100 kW to 15 MW

Access to gridby third parties?

Hydrological risk

: Electricity company

Rural electrification Hydro site

- Electrification via mini village grids by a single operator in

charge of generation and distribution is fairly common

today, when it is operated using diesel generators (see

2.1.4). However, in terms of renewable energy it is a

complex configuration:

• It is essential to correctly size generation in terms of

demand, given the substantial investment costs, in

order to ensure the facilities are not underused, which

leads to a high cost per kWh;

• Studies (hydrology, seasonal availability of biomass,

etc.) are long and costly, and thus proportionally even

more expensive since the investment is relatively low;

the expertise required to implement them does not

currently exist at the national or local levels;

• To guarantee service continuity, it is often necessary to

oversize the investment or to acquire a stand-by diesel

generator;

• The decision between the investment cost and the cost

per kWh remains complex.

2.1.4 Thermal or renewable generation: Therole of hybrid solutions.

In view of the complex contractual framework on which this

analysis is based, it is important to reiterate why this

study focuses on this distributed generation: 50% of the

population lives far from existing grids and, even if a grid is

nearby, it is generally not sufficiently supplied to meet

demand at the end of the line. Which generation source

should therefore be selected?

- Local generation by a diesel and/or heavy fuel oil

generator is very widespread and remains the reference

technology; it is controlled and can be rapidly installed

anywhere;

- Investment in a renewable energy generation source is

much more complex: the resource (river, biomass, wind

farm site) is not necessarily located near the consumption

point. Generation is intermittent (i.e. is subject to sudden

changes – wind, daily – sun, and seasonal changes – rain-

fall); the studies and preparation time are thus longer;

- By contrast, while the investment cost is higher, the

subsequent operating costs are very low over the lifespan

of a facility (15 to 50 years, depending on the technology).

However, it is necessary to have the means to invest today

with a view to such long-term generation.

The reality of the situation clearly shows that most off-grid

provincial capitals are supplied by fuel oil or diesel

generators. There are, in fact, very few small-scale hydro-

power or cogeneration plants in operation in Sub-Saharan

Africa; when they operate, they mainly (or fully) meet the

needs of industrial self-generation. The ultimate paradox is

that by maximizing the rapid implementation of a universal

service, thermal solutions are chosen. Hybrid solutions,

combining the flexibility of generation from a diesel

generator with the low, long-term cost of renewable energy

generation, make it possible to avoid the problems of

intermittent generation and today offer highly promising

prospects (see Table 6):

- For “basic” hydro or cogeneration generation, a problem

of oversizing, of dams (reservoirs) or of costly storage is

avoided with a back-up diesel generator;

- For a mini-grid that is mainly supplied by a diesel

generator, the injection of PV kWh when they are

generated during the day reduces diesel costs and the

dependence on cost fluctuations;

- For a mini-grid that is mainly supplied by a diesel

generator, part of the fuel consumed can be directly

substituted by using biodiesel or gas (40 to 80%) instead of

diesel.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

52

2.2.1 Generation by diesel generators: Defaultscenario

Historically, this option for the electrification of both rural

centers and small towns was favored because of its low

investment cost, the simple technology and the rapidly

implemented works. In many countries, low demand

and low population density did not justify extending the

interconnected grid. For this reason, in many Sahel areas,

such as in Burkina Faso, Mali and Mauritania, the

generator remains the basic technical choice for rural

electrification, despite the fact that with a lifespan of

20 years, the diesel option is expensive. For example,

diesel costs account for up to 80% of the cost per kWh of

a generator, making this option even less attractive

considering the fuel transportation costs in isolated areas.

Even at EUR 1 per litre, the cost of fuel over 5 to 10 years

is higher than the amortization cost of solar panels at

present day prices.

The main reasons for choosing diesel as a reference

solution are:

- The low investment cost for a generation unit: about

EUR 600/kW, whereas a PV option requires an investment

ten times higher, i.e. ten times fewer immediate connections.

In this situation, electrification companies prefer to justify

the loans required by making a large number of

connections;

- The fact that this is mature technology and that the

competencies required for maintenance can be found

everywhere. This avoids the training costs required to

introduce less developed technologies (photovoltaics,

gasification, etc.).

Even in countries rich in natural resources such as

Cameroon, Central African Republic (CAR), the Democratic

Republic of Congo (DRC) and Uganda, national political

Table 6. Renewable energy: Investment and kWh costs

Source: Global Chance 2007.

2.2 Complementary technical solutions for the interconnected grid

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

53

System Invest. EUR/kW Cost EUR ct /kWh Global installed capacity Operation (hrs/year)

Photovoltaics

On grid 3,000 - 7,000 20 - 40

Isolated 7,000 - 12,000 35 - 100

Wind

On land 1,000 4 - 8 94 GW 2 000-2 500

Off shore 1,200 - 1,500 4 - 8 1,2 GW 2 500-3 000

Water power

Major 1,400 - 2,000 2 - 8 3 000-8 000

Small <10 MW 900 - 4 000 1 - 9,5 48 GW 3 000-8 000

Geothermal 1,000 - 3,900 1,2 - 9 8,9 GW 8 000

Coal 900 - 1,400 4,2 - 5,6 8 000

Fuel / diesel 400 - 1 500 15 - 20 indifferent

and economic contexts have not permitted the imple -

mentation of major programs to develop biomass or small

hydropower (mostly through lack of financing and

incentives). We are too often still in the situation whereby

an operator (national power company or licensee)

with a fixed budget, will be assessed on the number of

connections immediately made, rather than on

the long-term cost of the service provided. The diesel

generator will thus still be essential in the immediate future.

However, with rising fuel prices, the solutions to be applied

should first and foremost aim at lowering diesel

consumption, by systematically integrating the efficiency

of the equipment used and seizing all opportunities for

hybridization.

2.2.2 Small hydropower: Major needs forfinancial capital and know-how

Water resources are abundant in many countries, offering a

whole host of development opportunities and covering the

entire power range, from a few hundred watts to several

megawatts. The very small number of pico (stand-alone),

micro (village, 10 to 200-500 kW) or mini hydro

(200/500 kW to 5/15 MW) facilities is evident when compared

with Asia.

There are very few turbine manufacturing units in Africa

(there are a few workshops in Ethiopia and Nigeria), but

many countries have the industrial base to provide the

maintenance for this equipment. Experiences in promoting

hydropower can serve as examples for Sub-Saharan Africa:

the GTZ micro hydro project in Indonesia (development of

local manufacturing; range <100 kW), or development in Sri

Lanka through a buy-back tariff incentive system. In Africa,

an initiative to develop small hydropower plants for tea

factories was launched in East Africa with the support of

Global Environment Facility (GEF) of the United Nations

Environment Programme (UNEP), in which the consultant

is involved (500 kW to 5 MW hydropower units); a regional

initiative at the stage of site identification (UNDP, GEF in

West and Central Africa); pilot projects are being conducted

in Southern Africa (Rwanda, Tanzania, Zambia) by the

United Nations Industrial Development Organization

(UNIDO) and bilateral cooperation.

► Mini hydropower plants (200/500 kW – 5/15 MW): Issues

related to technical-economic profitability and the impact on

access.

These projects are especially difficult to implement

because they are often oversized for local rural demand.

Amortization is impossible from domestic demand alone

(<100 kWh/month per household). Project profitability

consequently depends on the presence of major customers

(industries, for example), or on the possibility of selling to

the grid. These customers, who are large consumers with a

high ability to pay, allow the investment to be amortized and

the operating costs to be covered in order to develop a rural

component at a lower tariff. This arrangement is only

possible if there is a clear institutional framework and

legislation for resale to the grid, as explained above.

In areas with abundant water resources, hydropower

generation is justified by the fact that operating costs are

almost nil (as they simply concern turbine maintenance).

The major obstacles are the scale of the investment costs

and the complexity of the design studies (see below). As

an order of magnitude, and depending on the turbine, the

electromechanical component of a plant will cost between

USD 500 and USD 1,500/kW and the civil engineering

component can vary between USD 500 and USD 3,000/kW.

Depending on the site, the civil engineering required can be

more or less costly (i.e. water pipes, settling pond,

penstock, water intake and, more rarely, a dam, the size of

which depends on how long the water has to be stored;

turbine house, etc.). There is, in addition, the cost of the

studies required to identify sites and for the design of the

infrastructure and hydrology. This also requires expertise

that is rarely found in Africa.

The implementation of these various stages also implies a

long gestation period. This makes it more difficult to ensure

the support of partners over the entire project life, which

may cover several years (see Table 7).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

54

Run-of-River hydropower is continuous throughout the day,

unlike demand. While supply must follow demand, storage

facilities (costly) are required to be able to turbine in the

evening. In addition to this daily storage, generation over

the year depends on hydrology and its seasonal variations.

Consequently, is it necessary to launch major civil

engineering works to guarantee a capacity throughout the

year?

The presence of a back-up (thermal source independent of

the natural resource) may be necessary to ensure a reliable

service, and provide an interesting alternative to major civil

engineering works, as sizing infrastructure that will be used

little throughout the year leads to a high cost per kWh.

► Village hydropower (micro, 10 to 100 or 500 kW): Many

constraints

For smaller, so-called "village" facilities, it is not possible to

consider launching long, complex and costly studies that

have to be amortized on a few kWh. Hydropower at the

village level to feed a mini-grid is only possible if it is run-of-

river (without water storage) and of simple design. The civil

engineering is reduced (all that is needed is a water pipe

and a small building for the turbine) and many fewer studies

are required. Most of the civil engineering can be handled

locally, by training the relevant stakeholders, initially in

plant maintenance, thus ensuring the project will not be

abandoned at the first breakdown. As a second step, a local

turbine production industry can be set up to minimize

imports, which generate high costs, and thus promote local

development.

However, this system needs to be widely replicated (to

amortize the training costs), to benefit from real know-how

and to be facilitated by clear legislation. Support is required

at the level of (i) the development of local skills, (ii) investment

and (iii) during the definition of the tariff conditions. It is

therefore a long-term process, which requires a real political

commitment from the State, as was the case in Sri Lanka.

► Pico hydro: Skills transfer required

Pico hydro is the use of hydropower by low-power turbines

(typically less than 5 kW) for individual use or shared

between a few families, similar to PV systems. The required

turbines combine the mechanical part and electronic part

in a single part. The use of this technology is therefore

accessible to all. The turbines can be installed with a small

water diversion in order to create a difference in height, but

also directly in a river current. It therefore does not require

much know-how to use them. However, they cannot turbine

during low-water periods, or when there are high water

levels. To maintain low sales prices, most of the Chinese

and Vietnamese equipment has neither regulation nor

protection, which poses safety problems for both the

equipment used and the users.

Many African countries have a hydrology that allows pico

hydro to be installed in isolated villages. This sector, which

is currently not exploited in Africa, can thus be developed

either by importing Asian turbines, or via the development

of a local industry. A technology transfer between the two

continents would therefore appear appropriate and

necessary for the development of a market. Once

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

55

Scoping study Duration and dates Costs Financier Number of sitesPre-feasibility 4 months GEF, UNEP, African 8 COUNTRIES

Nov. 05 – March 06 EUR 178, 000 developpement Bank (ADB) 19 sitesFeasibility 5 months EUR 180, 000 GEF, UNEP, ADB 2 sites

Oct. 07 - March 08Studies for the rural 3 years EUR 272, 000 GEF, UNEP, ADB 4 siteselectrification component Jan 07 – Dec 2010Works 1 site under construction 1 site (civil engineering,

1 site under discussion electromechanics, distribution grid GEF, UNEP, ADB 6 sites4 feasability studies of sites supervision): EUR 5.5m (2833 MW)

Table 7. Timetable and design costs for hydropower sites

Source: Authors.

manufacturing is on stream, the cost of a turbine is

affordable, even for low-income rural communities, since –

for low-end material – in the rural areas of Laos, turbines

"rated" 200 W can be found for USD 30.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

56

Box 8. Pico hydro in Laos

Pico hydro developed spontaneously in Asia. In Laos, about 60,000 turbines are operational, although it is difficult to give an exact figure,

and a manufacturing industry has developed, in particular in China and Vietnam. These turbines are often of an average quality and their

lifespan is estimated at about three years. However, it is possible to control production, as the REA attempted to do in Vietnam (by putting

higher quality turbines on the market at competitive prices), or as in the Philippines (which developed their market by importing higher

quality turbines than those from China). The electricity generated is unstable and the lifespan of domestic appliances connected to this

source is shortened in these conditions, as the users do not spontaneously install a regulator. In Laos, for instance, households replace their

light bulbs up to three times a month.

Finally, while the fact that pico hydro is easy to implement is an advantage for rural electrification (it is simple to install a turbine), the use of

electricity by people who are unaware of its dangers, combined with a lack of protection of the facilities, exposes users to a number of risks.

During discussions with these users, they mentioned several accidents. The development of pico hydro must therefore go hand in hand with

awareness-raising for users in terms of how to use it.

Costs range between EUR 20 for a few hundred watts and EUR 500 to EUR 1,000 EUR for a few kW.30

2.2.3 Bioelectricity: Technical sectors andaccess issues to differentiate

► Biomass-based power generation: Resources and

sectors

Like hydropower, biomass-based power generation

depends on the local availability of the resource. It is

thus necessary to make a clear distinction between the

development of plantations for power generation, involving

agricultural and rural development issues, on the one hand,

and the use of agricultural or agro-industry residues, on the

other hand. It would, however, be wrong to systematically

consider this resource as free, as competitive, commercial

uses are being developed (rice husk briquettes, paper

manufacturing, uses for cooking, etc.) Large-scale biofuel

generation for transportation, or small individual or commu-

nity biogas facilities for cooking, will not be discussed here.

Four main power generation sectors for rural services

should be distinguished:

- Cogeneration

- Biogas

- Biodiesel

- Gasification.

30 For more information, visit the site of the Off-Grid Promotion and Support village project,implemented by the government of Laos: www.vopslaos.org

► Agro-industry cogeneration

Cogeneration (the combined production of heat and

electricity) is particularly relevant in the agro-industry,

where there is a need for heat (typically sugar refineries). It

is only appropriate above 500 kW or even one MW. It is, of

course, possible to only produce electricity and not develop

heat production, if it is not required for the process.

This industry is technologically very widespread and proven

in Asia and Latin America, where all the sugar refineries in

India, Brazil and Thailand in particular are equipped with

these units. It is increasingly applied to sectors such

as palm oil production, rice husking plants or the wood

processing industry. There are few projects in Sub-Saharan

Africa, apart from a few facilities in South Africa, Uganda,

Tanzania and Zimbabwe. An ambitious program is,

however, currently being launched, with the support of

UNEP/GEF, to develop cogeneration in Ethiopia, Kenya,

Malawi, Sudan, Swaziland, Tanzania and Uganda (Cogen

for Africa program, coordinated by the NGO

Afrepren/FWD).31

Traditionally, agro-industrial units have low-

temperature/low-pressure boilers and are self-sufficient.

The same quantity of residue, with a high-

temperature/high-pressure boiler, allows a much higher

level of electricity to be generated, but the additional invest-

ment will only be justified for the agro-industry if it can sell

this electricity at a sufficiently attractive price to amortize its

investment.

In Sub-Saharan Africa, the potential is considerable, both in

sugar production areas and wood processing units. It is,

however, the regulatory framework – and the proximity of

an electricity grid – that would provide incentives to develop

this sector. Without an attractive buy-back tariff to supply

the grid or nearby localities, industries will make do with a

basic boiler for their own consumption.

Cogeneration has mainly developed in a self-sufficient

manner over the past decades. Boiler efficiency has impro-

ved, so has the development of the power grid, and it is

today a mature sector with a growing potential, as resale to

the grid is becoming increasingly possible. The available

quantities of biomass produce an electricity surplus, which

is sold externally. A part of it can be fed into the grid (if there

is one) at the national tariff in order to remunerate the

agro-industry, and a part can also target surrounding

villages at a lower tariff (provided a distribution structure

exists to purchase the electricity). In order to establish

this type of scheme, which contributes to access

for communities (who will logically be located near

employment areas where the agro-industries are), it is

essential to have a clear institutional framework, as the

technology is now mature and no longer poses difficulties.

However, the development of the system is primarily

motivated by profitability for agro-industries, which is in any

case a key factor at the worldwide level for determining

sugar prices, for instance.

► From individual biogas to industrial biogas

Biogas is the product of the anaerobic fermentation of

more-or-less liquid waste. The resulting methane can be

used for direct combustion (lighting, cooking), or as mixed

fuel in a diesel generator or small turbine. Electrical

facilities generating up to several MW exist in pig and

chicken farms in Southeast Asia. Dozens of units are

now operating in Malaysia and Thailand, and while the

methanization process (anaerobic digestion) requires a

certain technological supervision, these units have been

operating for several years. The suitability to the context of

Sub-Saharan Africa is certainly farther away, because

of the small number of large livestock farms. However,

"individual" biogas (to produce gas for cooking or lighting at

home) or medium-sized (to run an engine from a few dozen

kW to up to 500 kW, intermittent) has great potential.

However, it should be noted that the adjustment can be

difficult as it depends on the temperature, humidity and the

residue used.

Today, millions of "individual" or community” biogas units

exist in India and China, allowing farmers to produce the

gas required for cooking and lighting from two cow heads.

The so-called "industrial" biogas sector, which uses waste

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

57

31 Energy, Environment and Development Network for Africa, ONG basée à Nairobi.

from intensive farming, is widely established in countries

like Denmark, where this gas covers over 15% of heating

needs and power generation. In the Philippines, where

there are strict environmental standards concerning

the treatment of liquid effluents, biogas generation is

systematically integrated into sheep farms, which solves

both the problem of local pollution (liquid effluents) and

improves the profitability of the operation by using this

gas for power generation. While this sector has clear

advantages in terms of increasing the renewable share in

the energy mix, there is no direct link with the issue of

access.

The size that we feel probably has the best potential for

rural access, when legislation allows its resale under

attractive conditions, is that of biogas producing 50 to

500 kW from agro-industry waste or plantations. However,

the complexity of this sector should not be underestimated,

as the "anaerobic digestion" process must be adapted to

the type of biomass and its degree of liquidity.

Nevertheless, some projects are beginning to emerge in

Africa, in Kenya for instance.

► Short supply chains of biofuel and gasification: Reducing

the share of fuel oil in generator consumption

Gasification allows biomass residues to be used by

transforming them through pyrolysis into a gas that can be

used in a standard engine, just as biodiesel can be mixed

with diesel. The gasification of wood, rice hulks, coconut

shells, coffee, palm oil and rubber plantation pruning

residue presents a huge potential that ranges from several

tens of kW to between 1 and 2 MW. The gasification

process (pyrolysis) is specific for each residue, which

makes its industrial application somewhat difficult. Until

now, it has been especially supported by academic

structures before passing to an industrial stage (especially

in India). Replication of the process is thus not as easy as

for a "universal" generator, as it requires a certain capabi-

lity of the local industrial base. However, targeted skills

transfers and dissemination programs are quite feasible

and are in fact ongoing, such as the transfer of knowledge

from India to Cambodia for gasifiers using rice hulks for a

generation capacity of between 100 and 300 kW. In the

African context, the focus will be more on the injection of

this gas into generators rather than gas production alone,

which is risky in terms of service continuity.

In practice, gasifiers can make villages that have sufficient

biomass potential self-sufficient. There are some examples

of gasification rural electrification (in Madagascar, or via a

nationwide project in India). The most commonly encountered

problem is that of the maintenance of this type of unit, which

requires local skills: quality of the fuel, air supply and

temperature management, gas filtration. A local technology

transfer reduces costs, as the gasifier can be made using

local materials. With the current level of command of these

sectors in the contexts we are considering, it is preferable

to use hybrid diesel in these sectors rather than a single-

fuel source.

In terms of biofuels, the so-called “first-generation”

agrofuels have reached technological maturity and are an

energy source than can be developed locally. There are

several options:

- Ethanol obtained from the fermentation and distillation of

biomass rich in sugar, starch or cellulose (sugarcane, sweet

sorghum or maize, wheat, manioc). It has to be used either

mixed or in specially adapted engines, just like vegetable

oils. Its transformation is expensive, especially due to

transportation costs;

- Pure vegetable oils, obtained from pressing oil-rich bio-

mass (in Africa, palm oil, jatropha, rape seed, soy, algae,

etc.), can be used in tractors or stationary engines, with

special precautions when starting up the engines;

- Biodiesel, obtained from the esterification of such

vegetable oils, can be used in any diesel engine (<30%, or

more after simple modifications).

Today, we are still in the pilot stages of such uses, with

open-ended questions concerning surfaces areas, inputs,

yields and capacity. The initial analyses seem to indicate

that under good conditions (reasonable yields without the

need for too many inputs), biodiesel might be competitive

with diesel above USD 70/barrel in isolated areas.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

58

These options offer a high level of flexibility, because

biogas and biofuels are injected into diesel generators

without being modified, and any fluctuation in biomass

generation can be offset by increasing diesel input (see

Box 9). The difficulties will come from issues concerning:

- The reliability of biomass supply (residues, competitive

uses, seasonal variations) and, in the case of dedicated

plantations, the question of plantation management;

- Technical skills, which have to be found in each village

and require establishing an effective regional network of

local technicians. This has to be planned in partnership

with an REA as part of a large-scale program.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

59

Box 9. Examples of biodiesel and gasification projects

The University of Louvain, Belgium, has conducted a feasibility study for a biomass-electricity project in rural areas in Burkina Faso. Based

on various available types of biomass and on several different technologies, the study showed that yields depended on the biomass used,

and that wood was the best candidate for gasification (although cotton stalks, among others, also gave interesting yields). The "all wood"

option requires a higher initial investment, but produces a cheaper kWh than a "dual fuel" option (using 20% diesel and 80% wood).

Whatever the option selected, the cost per kWh produced is 25 to 33% lower than the kWh produced by a standard system. Researchers

have also developed an easily built concrete gasifier.

While wood is the most common fuel, and we can consider that wood gasification is competitive with diesel when it costs over USD 0.90/litre,

the rice hulk sector is also being developed. Cambodia, for instance, sells its Angkur rice-hulk gasifiers in India at USD 65,000 for a 150 kW

unit and USD 75,000 for a 200 kW unit.

In Mali, the national program to exploit the jatropha (pourghere) plant for energy use (PNVEP) aims to develop the use of jatropha oil for rural

electrification and vehicle fuel. The first phase (2004-2008) installed five generators using this fuel, for a budget of FCFA 700m. A 50 kW

generator was commissioned in the pilot village Kéléya, with a jatropha oil extraction unit and the cultivation of 0.5 ha of this plant. Twenty

subscribers (including most of the administrative buildings) were thus connected to a 2 km grid. On a larger scale, AMADER (which has

already financed several diesel generators and small grids) could support the installation of a biodiesel production unit, with an obligation to

purchase for the PCASER that are financed.

2.2.4 Photovoltaics (PV): Are prices sure to fall?

The much expected reduction in the price of photovoltaic

panels has been well underway since early 2009. While only

a few years ago, a 50 Wc solar kit cost USD 500, today this

equipment, which is manufactured in Asia (and certified in

Europe), can be found for less than half that price. Industry –

driven by major European, Japanese and American pro-

grams, which have led to large-scale investments in genera-

tion capacity and in electronics to integrate renewable energy

into smart grids – has scaled up its generation capacity, and

the eagerly awaited "One Euro per Peak Watt" will soon be

reached. It is essential, however, not to confuse panel price

and the total cost of the system, especially for stand-alone

systems, for which there is also the cost of storing the power

produced during daylight hours (batteries for lighting or water

tower for pumping).

► Hybrid PV/diesel mini grids: A sector with great potential

Photovoltaics might well become the first hybridization option:

sunshine is almost constant in the country and a resource

much easier to mobilize than biomass or water. The weak

point of PV is its necessarily diurnal production, whereas in

rural areas the demand is often nocturnal. Electricity storage

in batteries remains very expensive, whereas in direct

injection into the (mini) grid during the day, it is competitive

with diesel, as is shown by the example of Mauritania

(Box 10). Moreover, as long as less than 20% of solar energy

is injected, there is no problem to manage the intermittent

production.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

60

Diagram 4. The stages of a biodiesel and gasification project

Source: Authors

PLEASER unable to cover

operating costs

Local operator,

Mali : PCASER

Competencepole

Investmentgrant...~ 80%

biodiesel

Rural electrification agency/fund(AMADER)

Technical Financial support

► Solar kits: Lessons learned from programs

Solar kit projects have rapidly developed over the past

two decades and, for a time, gave hope for the "total"

electrification of rural areas. While it is true that the cost of

a "typical" domestic solar kit of 50 Wc (lighting, radio and

TV for 3 to 6 hours a day) has decreased by almost 50%

in 15 years, this electrification scheme has not had the

expected impact, in particular for the following reasons:

- The service provided is limited to lighting, the telephone

and radio/TV (for a few hours a day and for the most

powerful systems). It can include ventilation and some

refrigeration. While "connectivity" is becoming a key

factor of development, we can nevertheless see that if

communities have to choose PV now and the grid later,

they often prefer to wait a few years more to have the "real"

powerful electricity service;

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

61

Diagram 5. The various stages of a project for PV electricity injection

Source: AIE PVPS Task 9.

Box 10. Example of a hybrid PV-diesel project in Mauritania

Today, the town of M’Bout in Mauritania is supplied by a 280 kW thermal power plant. A study was conducted for the installation of a hybridPV/diesel grid, injecting 20 kW PV. The injection is made in small quantities in order to reduce diesel consumption, but without requiring abattery to store the solar energy.

The cost calculation showed that the power generation from photovoltaics, (based on a PV investment of EUR 7,000 per Wc) would costthe same as diesel electricity with a diesel cost starting at EUR 0.75/litre. As its price in November 2008 stood at EUR 0.83/litre, the PVinvestment was profitable at the time.

Lower investment costs can be borne by

small stand-alone operators

Source: IEA PVPS Task 9.

National power company

Borrows and maximizes thenumber of connections overthe short term

But has high operating costsin the long term

National power company

Does not want to use itsborrowing capacity forfew connections per $

Despite the guaranteedlong-term sustainability

Investment EUR 700 /kWkW cost: 80% fuelDiesel at 90 cents/litreCost >30 cents/kWh

Investment EUR 8,000/kWCost: 20-25 cents/kWh with long-term financing and no battery storage

Solar energy injection

Generator

- The technical and financial management (maintenance of

the electronics, replacement of batteries and low-energy

light bulbs – LELBs, payment collection) is much more

costly than initially expected. The cost of local management

can only be "amortized" over a large number of systems in

the smallest possible area. However, it is clear that where

communities are concentrated, the option of mini grids will

be selected. Consequently, and especially since the rise in

oil prices, transportation costs represent a considerable

part of the recurrent costs of programs. In reality, the larger

the program, the more it extends to remote areas

(which are scattered with low incomes), and the more the

management costs will increase. Here we are thus dealing

with "dis-economies" of scale. While prepayment (see

2.3.2) can be an interesting option (at least for monthly

payments), the prepaid meter can only be amortized over a

relatively large system (>100 Wc).

A rich literature exists on these subjects (see IEA

Photovoltaic Power Systems: Deployment in Developing

Regions).32

There are three main methods for distributing solar kits:

► A "commercial" approach, where the users pay the

entire price of the system; this approach has the following

characteristics:

• Installers or a local (micro)-credit structure can grant

payment facilities. To do so, the installers (generally local

SMEs) must be able to benefit from refinancing. However,

the scarcity of this type of facility blocks the dissemination

of the system;

• Payment facilities are for a maximum of three years, and

the users have monthly payments of USD 8 to USD 15

(for individual domestic systems), meaning that only the

wealthiest part of the population will have access;

• Once the installation has been made, or the credit paid

back, the user owns the solar system and is responsible for

its maintenance;

• The installer will only set up a local maintenance office if it

is justified by the "market" (this is commonly done through

shops selling electrical and electronic equipment in districts

or provinces);

• This is a booming market, for example in East Africa,

where many wealthy landowners install large-scale PV

systems; it does not concern agricultural laborers or small

owners;

• For the poorer population segments to benefit from this

service, a major investment subsidy is necessary (50% of

the cost). This may, or may not, be considered as a priority

for public resources.

► A so-called "fee for service" approach: The customer

pays an initial sum at the installation (equivalent, for

instance, to the connection fee for a grid service) and then

a fixed monthly fee, and the supplier handles operations

and maintenance. In certain programs, the user becomes

the owner of the equipment after a certain period, for

instance after 10 years; in others, the licensee must renew

the equipment (in cases where the grid has not yet arrived);

finally, in many cases this question of ownership remains

vague. Many such programs are now operational, and we

can benefit from information feedback covering several

years. The conclusion is relatively unanimous: this type of

approach has considerable potential, and the development

of equipment for increasingly efficient uses makes it

possible to improve the service provided by PV-based

electricity (which remains expensive). However, overall

viability is only reached when operations become entirely

local and with local costs. Skills are being developed and

national scaling up will involve a political will to disseminate

this type of set-up and develop the required expertise.

Monthly fees may, depending on the case and/or for poli -

tical reasons, cover just operation and the replacement of

the electronic components (batteries, rectifier, regulator) of

all the PV panels (or only part of them). International

cooperation is strongly represented in this niche, especially

through NGOs and foundations, which are used to working

closely with local communities.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

62

32 Contains a dozen practical guides, ranging from financing to trainer accreditation.www.iea-pvps.org –Tasks – Ongoing – Task 9.

► PV for community, social or productive uses:

• Community uses include services such as streetlights or

lighting for a village hall. This is often appreciated in village

dynamics. Its cost should be covered by the community;

• Productive uses are very rare for solar applications

because of the high cost of solar kWh, which does not

really allow power uses. However, in areas where water is

scarce, solar energy can be used for drip irrigation (which

involves little water displacement);

• These so-called "productive" uses are different from

services that directly or indirectly generate revenue:

recharging cell phones or night lighting, allowing women to

extend their weaving hours, etc.

• PV also serves certain essential social uses, such as

installing drinking water pumping systems, lighting in

health centers, or the refrigeration of vaccines. However,

for these applications the recurrent question is: Who

finances the investment? In general, the electricity sector

does not pay the cost of these investments, which must be

borne by the structures and/or ministries in charge of health

or rural development, for instance, or even the communities

themselves, which may be difficult. In fact, such programs

generally finance the initial investment for a diesel

generator, and the local community then has to cover the

recurring costs, which can create serious problems.

Changing to a solar investment requires the investor to be

willing to make a much higher investment and to have the

means to command this technology. For this reason, we

increasingly see the use of paid-for services to cover a

minimum of the operating costs.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

63

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

64

Mature

technology,

can be locally

repaired

Easy supply,

many local

representatives

Construction

work well

understood

Rapidity of

works and

of coming

on stream

Many technicians

trained who can

ensure maintenance

Investment

costOperating cost

Simplicity

of financial

arrangement

Environmental

impact

Diesel SS SS S SS SS S WW S WW

Hydro with dam SS S S WW W W SS W W

Run-of-river turbine

(little civil engineering)S S

Need for training

Co-generation (>500

kW <2 MW)SS S S S SS S S SS S

Industrial biogas

>500 kWSS WW W S S S S SS S

Generally

associated with

agro-industry

Boilers and engines

available; problem

is engineering and

buy-back of surplus

Located near

agro-industry,

i.e. engineers

and demand

Industry leads

project

Allows waste

re-use

Gasifier

20 to 500 kWWW W S W S W W W

Difficult

to implement

in rural areas

Effluents

Isolated domestic

and community PV

solar systems, hybrid

PV-diesel in mini grid,

PV connected to grid

SS SS SS S S WW SS WW SS

PV and PV-diesel grids SS W S S W WW S WW SS

As soon as

spare parts

are available

Table 8. SWOT* analysis of the technical options * Strengths, Weaknesses, Opportunities, Threats

STRENGTHS (S) and WEAKNESSES (W)

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

65

Variability of

kWh cost

Long-term

kWh cost

Generation

configuration that

can be adapted to

demand

Location of

generation and

demand

Hybrid solutions

to increase the

overall optimum

Sensitivity to

external factors

Cumbersome

nature of the

administrative

procedure

Stable and

well-formulated

regulatory

framework

Diesel TT TT SS SS O TT

Hydro with dam S SS S WW O O TT O

Run-of-river turbine

(little civil

engineering)

W OO T

Generation on

a specific site

Possibility of a grid

HydrologyStarting

in a few countries

Co-generation

(>500 kW <2 MW)S S S S T T T

Industrial biogas

>500 kWS S S S O T T T

Competing uses

of biomass

For resale

of surplus

Few or no countries

have a specific policy

Gasifier

20 to 500 kWS S S S OO T T T

Collection,

plantations

Requires

contracts LT

Few or no countries

have a specific policy

Isolated domestic

and community

PV solar systems,

hybrid PV-diesel

in mini grid,

PV connected

to grid.

SS S S SS O OO O O

PV and

PV-diesel gridsSS S W SS O OO T T

Competitive in

some segments,

and improving

Diurnal generation

is a problem,

requiring storage

for nocturnal

demand

Modularity versus

increasing demand

Have to import

sophisticated

components

Simple as,

generally,

no connection

to a grid.

Start of fiscal

incentive policies

OPPORTUNITIES (O) and THREATS (T)

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

66

Potential on the

continent

Investors’ appetite –

risks controlled

Investors’ appetite – time

for return on investment

Investors’ appetite –

LT profitability

Engineering expertise

national technique

Manufactured

nationally

Diesel OO O TT T

Hydro with dam OO TT TT OO TT O

Run-of-river option

(little civil engineering)T O

Geographical

variations

Training

in due diligence

Need for innovative

financial engineering

Need for innovative

financial engineering

Need for training

and quality control

Small turbines

with the market

Co-generation

(>500 kW <2 MW)O O O OO T O

Industrial biogas

>500 kW0 T O O TT TT

Need for information

and training (biogas)

Gasifier

20 to 500 kWOO T OO O TT T

Isolated domestic

and community PV

solar systems, hybrid

PV-diesel in mini grid,

PV connected to grid

OO O T T OO O

PV and PV-diesel grids OO O TT O O O

Technologically,

the problems are known

and the resource

controllable

Strong interest

from investors

and industry,

despite small size

of investments

Engineering to be built,

easily transferrable

The definition

of opportunity

is restricted

to assembly here

Source: Authors.

OPPORTUNITIES (O) and THREATS (T)

2.3.1 Significant potential for lowering costs bytaking the time to choose options

Electricity distribution techniques have an impact on

investment costs and, thus, on the profitability of the sector.

Innovative approaches can also help to reach an a priori

non-profitable customer segment (such as rural or

peri-urban households). Electrification systems should thus

be designed in an integrated manner in order to optimize

not only the investment, but also the operating,

maintenance and customer management costs.

Usual practice often leads to overestimating demand and,

consequently, to oversizing the grids (cable sections,

transformer capacity). This practice is often the result of a

lack of openness to alternative technology and a certain

mistrust of light technologies, which are considered as

downgrading. However, in terms of norms and standards,

a more widespread use of single-phase grids, a

more controlled sizing of transformer specifications,

adapting constraints to the poles, and accepting cable

sections that match effective demand, are all ways to

significantly reduce investment costs. Very often, studies

reproduce the usual equipment choices based on practice,

without any specific sizing, whereas a correct sizing

involves: (i) defining the prospects and forecasting the

loads, (ii) specifying the technical limits (overloads, voltage

drops, engine start-ups), and (iii) reinforcing upstream grid

sections and reducing the downstream sections.

These structural solutions require a fundamental change

in practices and, for this reason, are often difficult to

implement. An optimized approach to the technological

dimension can lead to overall savings of around 30%

compared to usual practices, or can extend the lifespan of

the grids by 10 years. Cost reduction is a lengthy process

that requires the support of all stakeholders and a strong

political will to change long-established habits.

Further flexibility exists in terms of program management,

and more specifically in policies for procurement and the

implementation of facilities, whereas usual practice is

based on turnkey contracts that avoid setting up project

management structures. Using a central procurement

service and segmenting supplies can reduce procurement

costs by 20 to 30%.

This local involvement obviously requires building the

capacities of the contracting authority/project management

in order to guarantee the quality of supplies and facilities.

This strengthening implies costs that absorb part of

the gains. This capacity building can, of course, only

be achieved within the framework of a large-scale

electrification program.

Restoring project management to a national level should

also allow a cost review for the installation of electrical

equipment. In certain turnkey electrification programs,

installation costs can be as much as 50% of the overall

cost: national management will ensure that this type of cost

is reduced by creating competition in the installation sector.

The organization of negotiations with companies, the

search for new suppliers and a new bid invitation as part of

a rural electrification program in Burkina Faso led to a

reduction in the total installation cost of two mini grids of

almost 35%.

A new approach to program implementation can also, and

this is the major interest of this solution, give incentives to

set up a national system of companies with a capacity

to directly work on the electrification program (sizing,

installation, etc.) or indirectly (supply of wooden poles, elec-

trical equipment, etc.). The same is true for companies

called on for the operation and preventive maintenance of

the facilities. A national survey will establish and update a

pool of potential operators and equipment suppliers.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

67

2.3 Distribution and customer management: Substantial leeway

2.3.2 Adapting customer management to localconditions

► Costs and organization

The two main basic pricing models are related to

distribution techniques: a lump-sum payment for an

electricity service (e.g. fee-for-service, an amount based

on the number of lamps or a duration of use) or a power

limiter; payment in proportion to the amount of electricity

consumed based on a grid approach (meter). The usual

approach can be summarized as follows:

• Power distribution grid = unit sale of energy,

• Electrification for low demand = sale of service.

Electricity companies, governed by a supply culture, thus

operate from a customer-management logic based on the

unit sale of energy that is materialized by the following

cycle: energy metering-billing-collection.

In Africa, so-called "non-technical" losses on power

distribution grids are often in excess of 10% (fraud, theft,

etc.). There are, in addition, unpaid bills, which are also

often in excess of 10% of the distributed electricity,

meaning that total losses (also including technical losses

due to the state of the grid condition) for electricity

companies can sometimes reach or exceed 30%.

Improving customer management in particular requires

improving billing collection. However, this comes up

against obvious financial limits: the electricity companies

cannot afford to increase their billing collection costs (on

average 10% of turnover) by increasing the number of

staff for payment collection, which on a unitary basis is low

in low-income areas.

Faced with these constraints, new organizational

approaches to customer management are being

developed. These new systems are based on taking more

account of the socio-economic characteristics of

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

68

Box 11. Cost reductions in Benin thanks to upstream optimization of technical and sizing choices

Thanks to the optimization described below, the project has allowed 102 localities to be connected instead of the 56 initially planned, at

constant cost:

- Two-phase derivation: 20% gain compared to a three-phase derivation;

- Use of Single Wire Earth Return (SWER): gain of up to 70% compared to a three-phase antenna. Introducing SWER requires a minimum

of steps to ensure it is appropriated at national level. This ensures that the projects can be implemented in as flexible a way as possible;

- Systematic use of wooden poles wherever it is technically possible and economically profitable (gain of 5% to 15% on the line);

- Use of mechanical calculation software for overhead grids (particularly to optimize lines using the suspended technique);

- As part of a project, segmenting supplies substantially reduced the cost per km of a line: from FCFA 12m to FCFA 10m (-20%);

- Supplies from international markets for each component (cables, transformers, etc.) and only the installation was subcontracted locally, as

the prices are much lower than in all the other Central African countries.

Source: IED – Rural electrification project in Benin, financed GTZ-AFD – European Commission Energy Facility.

customers. This constitutes a major change in electricity

companies, which often have little interest in interfacing

with customers. Consequently, there is a move towards a

variety of organizational approaches, which aim to lower

costs for meter reading and bill processing: installation of

collective meters (one meter for several customers), and

monthly flat-fee sales in peri-urban areas where there is

low energy demand.

These approaches require the involvement of local

communities (traditional, cooperatives). In Eritrea, for

instance, each village sets up an electrification committee

in charge of customer relations inside the village. The

electricity company sells bulk energy to the village, which

is in charge of retail distribution and, thus, of collecting the

corresponding payment from each user.

However, when the main licensees withdraw from the cus-

tomer interface, the question is raised as to service quali-

ty at the end of the line: How can the licensee be respon-

sible for the service quality provided by the cooperative at

the end of the line?

► Prepayment: An interesting customer management tool

Prepayment is a commercial management method that

aims to charge the customer for a service before this

service is used. It is a very practical payment method

for cell phones (cell phone recharge with cards) and

increasingly in other market sectors, such as gas and even

water. This credit recharge can be bought from an electri-

city distributor, from an official sales point, via an automa-

tic sales system, or even with a cell phone (or, in certain

cases, via Internet). Electricity prepayment has existed for

a long time, especially in England where it serves about

half the population. In South Africa, most towns were

equipped with prepaid electricity as part of the national

"Power for All" equipment program. African countries, such

as Côte d’Ivoire, Gabon, Morocco and Senegal have

launched prepayment projects due to the bill collection

problems faced by national electricity companies. Today, it

is estimated that there are over 4 million meters installed in

South Africa, 50,000 in Nigeria, 40,000 in Namibia, and

10,000 in Côte d’Ivoire and Senegal.

Prepayment is based on pre-metering electricity. The

prepayment meter measures the energy consumed and

compares it with the available credit level purchased by

the customer. The meter stops the supply when the credit

is exhausted or when the subscribed power level is

exceeded.

Prepayment is successful today because it offers several

advantages:

- For the electricity distribution company, prepayment

improves cash flow (as customers pay before using the

electricity); it reduces bill collection problems (as the

customer does not get electricity if it has not paid in

advance); it reduces meter-reading costs and limits fraud

when split meters are used (see below);

- For customers, prepayment makes it possible to

anticipate their consumption, “pay as you go” depending

on what they can afford, adapt their consumption and

avoid "unforeseen" bills.

There are two types of prepayment system:

- One-way prepayment: Consumers buy an electricity credit

using a key, code, or smart card, depending on the type of

meter; the corresponding amount is then credited on their

meter. Data only move in one way, from seller to meter;

- Two-way prepayment, which is more complex: while this

electricity credit is again purchased by means of a key,

code, or smart card (depending on the type of meter),

once the code has been entered, the data flow in both

directions, from and to the meter. The meter is credited

and supplies data such as the meter reading, error codes,

etc. When the support is recharged by the sales point, the

data stored are transmitted to the central management

system. This system allows the distributor to recover

meter data that can help it to more effectively manage

generation: customer consumption, fraud, and a

comparison of the subscribed and used power.

While postpayment requires a large number of operations

(especially in the case of collection problems),

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

69

prepayment reduces such operations and interactions

between the distributor and customer; this last point,

however, is subject to criticism.

In the prepayment cycle, the distributor's cash flow is

always positive (paid energy > consumed energy)

whereas in the case of conventional payment, it is always

negative33, as even at the moment of billing for a period,

consumption for the next period has already started,

returning the distributor's cash flow to negative towards

the customer (consumed energy > paid energy).

Prepayment is a tool that improves collection, as the

energy is only distributed once it has been paid for.

According to several African electricity distributors,

prepayment covers the 15% of annual debts that are

never paid.34 Prepayment is, however, not a tool to

combat fraud by itself. In fact, it tends to encourage it,

because physical controls are less frequent as there are

no longer meters to read. Certain customers can thus be

tempted to “shunt” the meter, i.e. hook up to the grid by

putting a cable before the meter.35

Prepayment is commonly seen as a means of supplying

energy to the poorest, as the distributors can equip

commercially risky areas without fears of massive

non-payment. However, to be a tool to fight against

poverty, these poor areas need tariffs that are equivalent

to the conventional ones, especially the social tariff, which

has now become possible thanks to many prepayment

management software packages.36

Beyond the unquestionable advantage of improving the

collection rate, prepayment should not be seen as the

panacea for all the distribution management dysfunctions

a power company needs to face in a developing country.

Setting up a prepayment system must be evaluated and

assessed in the light of the following elements:

- Changes in tasks: Prepayment introduces many

changes in the organization of distribution, starting with

fewer meter readings. This innovation, which can allow a

reassignment of tasks at the distributor’s or even a staff

reduction, is, however, based on technologies that are

more complex than traditional meter reading. This

requires a higher level of skills and a major adaptation of

existing staff, especially concerning meter installation and

computer management systems;

- Fraud remains possible: Prepayment does not

automatically imply fewer fraudulent practices because of

the physical absence of meter readers;

- Investment costs: Even though prepayment meters can

be rapidly amortized due to the gains in terms of collection

and the improvement in cash flow, they are more

expensive than traditional meters (about 30 to 40%);

- Reduced consumption: Various studies have shown

an average decrease in electricity consumption per

household of about 20% when a prepayment system is

installed;

- Customer base must be diversified: Prepayment should

not only address poor customers; in order to ensure that it

is profitable and the distributor benefits from its positive

effects (reduced management costs, cash flow savings,

fewer unpaid bills), it must also be developed for more

affluent customers and small industry, which are more

likely to cause scale effects;

- Introduction in rural areas remains difficult: In some rural

areas, the distance to a sales point is penalizing; when

coverage exists, cell phones offer interesting prospects.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

70

33 Except in the case of advance payment (guarantee). 34 In some countries, institutional customers (administrations, police) tend not to pay theirbills. Setting up prepayment is one of the possible measures to make them face theirresponsibility.35 Prepayment systems propose various anti-fraud techniques: installation of split meters(keyboard to enter coupons and meter are separate), with the meter installed on the pole,which makes bypassing meters more difficult; installation of tamper-proof coaxial cablesbetween the pole and the meter (in the case of monoblock meters). This solution is relativelyexpensive and is only possible when there is a short distance between the pole and the meterand the risk of fraud is high.36 The differentiation of energy tariffs has long been a technical obstacle, as the first pre-payment systems were unable to manage different tariffs.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

71

Box 12. Prepayment: Lessons learned in Senegal, Côte d’Ivoire and South Africa

In Senegal, prepayment was introduced in 2006, where it met with real success, particularly in the capital. In this country, customers canchoose between keeping their old meter or opting for prepayment. The new electricity meter is in the form of a central unit with akeyboard (to enter the code on the recharge ticket) and a screen (to follow consumption). The first tranche of the investment amountedto EUR 450,000, representing EUR 75,000 of system equipment and EUR 375,000 for the procurement of 5,000 meters. For a constantcustomer volume, the new system improved company SENELEC’s cash flow by about 30%, whereas in the same analytical framework,household energy consumption dropped by about 15%. On the consumer side, the new system has been quite well received. Severalreasons give customers incentives to subscribe to a connection:

- More flexibility and visibility in managing the electricity budget;

- Shorter access time to the meters (prepayment meters have priority and are less overloaded);

- A tariff advantage, as the billing system in Senegal has a first block of more expensive kWh that subsequently decreases for eachfollowing block. Consequently, customers buy enough to fill the first blocks, and then massively in the third block by the end of themonth, allowing them to cover their electricity needs for the two following months at the tariff for the third block of the preceding month.

In Côte d’Ivoire, the Compagnie ivoirienne d'électricité (CIE) started planning the integration of prepayment meters into its distributionmanagement system in the late 1990s. In 2000, the company installed about 5,000 prepayment meters as an experiment. However, itrapidly became clear that they were not efficient and in 2004 CIE decided to launch a new test campaign, using a new model of metermanufactured in South Africa. Today, over 30,000 new generation meters are being tested. However, the large-scale distribution ofprepayment meters is not currently authorized by the Government, which is waiting for an opinion from the National Electricity SectorRegulatory Agency (ANARE) before the final adoption of this metering system. This new approach to distribution mainly relies on certainCIE branches and on the following criteria: Rapidly expanding districts, precarious districts, and debtors who have been cut-off for unpaidbills (fraudsters).

CIE wishes to stress the following impacts in terms of this experiment: a remarkable drop in unpaid bills; a real possibility of redeployingthe large numbers of staff working on billing and collection; improved cash flow in the areas in question of about 20%. However, CIEdeplores the persistent fraud, especially hook-ups before the meter. (It should be noted that as a protest against the installation of thenew meters, new types of sabotage of the equipment have appeared.)

Users and consumers evaluate the new meters as follows: rapid and low-cost subscription; no guarantee required for the subscription;no power cuts because of non-payment; immediate service resumption after recharge; difficulties to top up on energy credit in some CIEagencies (creating queues); too many English terms in information displayed on the “Taurus” meter; training required in how to use theprepayment system (to be able to read the codes, etc.).

In South Africa, the “Energy for All” program was launched in 1992 and very rapidly started using prepayment. Today, over 4 millionprepayment meters have been installed nationwide, mainly in the peri-urban townships. Indeed, the political will to extend this newdistribution management system was based on a strong principle that did not allow for unpaid bills. As it operates as a system ofadvance on consumption, this type of meter cannot create "disconnected" people. It therefore a priori allows poor households to avoidthe spiral towards more-or-less permanent exclusion from the service and the seizure of furniture and subsequently property. Theprepayment meter thus to some extent limits the possible consequences of non-payment for poor households. This new technologywas further driven by the fact that it made access to electricity possible in areas where energy metering, billing and collection wereparticularly difficult. Beyond these areas that are difficult to access, the new approach rapidly started covering other geographic andsocioeconomic situations (urban centers, rural areas). Nevertheless, the first prepayment experiences were not convincing: in the early1990s, the national power company Eskom recorded between 40 and 60% of defective meters, causing a major loss of income and highreplacement costs. The initial systems that worked with a magnetic card were replaced by two-way systems, which proved to be muchmore reliable. The average cost of a prepayment meter today is about EUR 50 (three times more than a conventional meter).

The main conclusions from various evaluation studies are as follows: a significant increase in income related to energy sales; improvedcash flow of 20 to 70% depending on the geographical area (an area of high energy consumption increases cash flow more than an areaof weak consumption); increased operational efficiency (reduction of about 10% in meter reading, billing and collection costs – MRBC);suppression of disconnection and connection costs; good acceptance of the system by the consumers, who appreciate the possibility ofcontrolling their electricity consumption depending on their ability to pay; numerous fraudulent practices in the payment collection system(during the first years when the system was set up): many vendors disappeared with the takings from prepaid card sales (thanks toconcerted management processes and the introduction of innovative sales circuits,37 these incidents have gradually been reduced); inareas with low electricity consumption, the return on investment for the prepayment meters is low; hindsight shows that the preconditionsfor the success of installing a prepayment system do not only depend upon the metering technology used, but also on the skills andinvolvement of the management team at the site in question.

The South African authorities have set up a major decentralized electrification program based on the distribution of PV kits. KES, adecentralized-services company (DSC) created by EDF and Total, is implementing a decentralized rural electrification program in theprovince of KwaZulu-Natal Central that will serve 15,000 customers. The management method adopted is that of a fee based on a fixedmonthly price with a prepayment meter. However, this type of prepayment system in a rural environment faces unexpected problems,as each customer must go to a sales point that is relatively far from his home, generating non-negligible travel costs for a low-incomehousehold. Faced with this constraint, the consumer often chooses to gradually abandon the use of his PV generator. This shows theadverse effects of a system that protects the owner against numerous unpaid bills, but which generates an implicit loss for the customer.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

72

37GSM seller in South Africa: this type of sale is used by vendors who, as they have an advance account based in a sales server, transmit the credit purchase orders by text message and receivein return the 20-digit code to be given to the customer on a counterfoil book. For this, the vendor must deposit an advance fund; his margin is then 5% on all transactions.

2.3.3 Specific points in peri-urban areas

In Africa, the number of million-inhabitant cities is

constantly growing, and in the year 2000 there were

about thirty such conurbations on the continent. This

phenomenon of urban growth, essentially due to the rural

exodus caused by poverty, poses many management

problems, especially because much of this housing is

precarious and in unserviced areas – slums – where the

service is often pirated. African cities devour space and

as they expand, the load on the various urban equipment

components becomes very heavy due to the length of

the networks (water, sanitation, electricity, roads,

transportation). The urban phenomenon is a major concern,

even in the case of less-populated urban centers, as the

pace of population growth is disconnected from that of

developing the capacity of economic production. Wider

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

73

access to electricity services at a reduced cost can lead to

improvements in health, security, and the generation of

income within slum communities. However, communities in

poor peri-urban districts are often marginalized by power

companies, which have a negative perception of this

market segment, for several socioeconomic and technical

reasons, including:

- The low unit consumption of these households, which

makes them low-priority;

- The informal character of the housing and, more

generally, the land tenure problem in slums (excluding

social housing): residents are either tenants of wealthy

absentee landlords, who are often difficult to identify and

reach, or squatters;

- The low level of households’ ability to pay, and in

particular the impossibility of paying connection fees;

- Security problems for access by electricity company staff

and the risk of pirated connections and vandalized facilities

(transformers, copper cables, etc.).

To resolve these problems, different experiments have

been carried out worldwide. Beyond local specificities, the

following common recommendations may help in reaching

the objectives of peri-urban electrification:

- Set up a strong social-engineering unit at the operator,

with a capacity to study and organize the community,

assisted by other possible interfaces (NGOs, cooperatives,

neighborhood organizations) between the community and

the operator;

- Develop partnerships with local organizations and insti -

tutions already active in improving living conditions for

communities;

- Design a specific technical approach to the grid, based on

cost reduction and securing the grid;

- Define suitable tariffs and payment conditions for slum

sociology (introduction of 1-ampere blocks);

- Identify and establish relations with women’s groups, who

are often seen in slum communities as being trustworthy

and capable of effectively passing on messages;

- If the decision to electrify a district is taken, target the

largest possible number of households (connection rate

of at least 50%) in order to limit candidates for pirate

connections.

While there are an increasing number of such initiatives and

innovations, the systematization of the legal framework

(local franchises?) and responsibilities is held in abeyance.

Box 13. The case of electrification in Kenya’s outlying districts

No official statistics are available for the population of poor peri-urban districts that have developed around the main cities, in particularNairobi. Nevertheless, an analysis conducted in 2006, based on combining criteria of population density and poverty level, led to anestimate of about 2.5 million slum dwellers, i.e. almost 0.7 million households.38 Surveys conducted in the Nairobi slums show very lowhousehold monetary incomes of around USD 315 per person per year.

These surveys also show that energy expenditure accounts for a large share of these households’ budgets, estimated on average at 30% ofmonetary income in the poor outlying urban districts. The share of expenditure substitutable by electricity accounts for 16% of income inslums and 8% in rural areas.

38 International Livestock Research Institute, 2004.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

74

This low income level, with its concomitant low ability of households to pay, is a major barrier to access to electricity, both for the connectionfee demanded by the electricity company (KSh 35,000, i.e. about USD 500), and for the monthly electricity bill (on average USD 0.12/kWh,without cost adjustments for fuel price variations, which can double the price per kWh).

Given their socioeconomic specificities (low demand, creditworthiness, density, informal character of the housing, insecurity, etc.), thesedistricts have found themselves excluded from all official electricity connection programs and strategies. Consequently, communities oftenfall back on an expensive and unsafe informal supply. While in 2005, a new connection policy was adopted with the objective of connecting150,000 new customers per year until 2010, the national company, KPLC, progressively had to set up the necessary tools to achieve thisobjective:

- A new fairer and more transparent approach to the price structure for connection fees, especially for the new urban areas concerned bysuch grid extensions;

- A more proactive and customer-oriented marketing strategy that also covers the poor peri-urban districts. In order to actually mobilize thismarket, administrative arrangements had to be made, especially for the connection of informal dwellings, without taking account of owner-ship or rental documents.

In 2008, KPLC launched a pilot project in the Kibera slum to test new technical and distribution options prior to rolling them out:

- Lighter technical standards for the MV grid;

- Junction boxes fitted high on wooden poles, each containing ten charge controllers (miniature circuit breakers) set to be triggered whenthe load exceeds 1.5 kVa, with the objective of limiting the load demanded by each connection;

- The final customers do not have meters: their supply point is a standard metal panel with a socket, a switch with an associated light pointand a fuse; grounding is the responsibility of the final users;

- In view of the technical solution adopted, the connection costs are lower than for classic solutions. In addition, to encourage householdsin poor peri-urban areas to connect up, KPLC has set the connection fee at about USD 220, instead of USD 500;

- Energy is billed as a flat fee (USD 5 USD/month for residential customers), based on an average number of hours of use of available power(40 kWh per month on average);

- A main customer is in charge of collecting the monthly flat fees from the customers in his group of final users, as he already did in the pastfor collecting rents. This responsibility comes under a contract between the owner (or the owner’s representative) of the group of dwellingsand KPLC;

- When a final customer does not pay his bill, KPLC cuts the electricity service at the junction box (located at the top of the power pole) forthe whole group of customers to which he belongs,

Source: Axenne.

2.3.4 Pico electrification: A complement tomaximize the impact of access investment

An electrification master plan must, beyond its on-grid/off-

grid dimension, very carefully consider the market segment

that cannot bear the costs either of connection or the

energy service itself, such as a solar-power home system.

This segment represents the poorest part of the population

that, nevertheless, has energy expenses, which correspond

to the price paid for lighting (candles, flashlights, oil lamps,

etc.), for audiovisual equipment (radio batteries) and,

increasingly, for the occasional use of mobile phones. Lamp

oil and dry batteries are effectively expensive items with an

annual cost of EUR 40 to EUR 80. Moreover, the use of oil

lamps has a considerable impact on health and the environ-

ment: a GTZ39 study estimated that this consumes the

equivalent of 1.3 million barrels every day, which, repre-

senting 190 million tons of CO2 per year, causes very high

health and safety (fire) risks.

39 GTZ study: www.gtz.de/de/dokumente/gtz2010-en-picopv-booklet.pdf.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

75

To reach the poorest, new technological approaches

are being developed based on the concept of pico

electrification. These developments concern pico hydro, as

well as small PV systems with a nominal power of less than

30 Wc, grouped under the name "pico electrification" (more

widely applicable to all types of battery recharging).40

These systems differ from the standard solar lantern in that

they have a multifunctional use: in addition to lighting, which

benefits from the rapid development of light-emitting

diodes, LEDs,41 they allow wet- and dry battery recharge

by integrating 12 V sockets and charge controllers, thus

allowing computer use.

A 2009 GTZ study estimated that the average cost of a

multi-function solar lamp is EUR 7/month over two years

(for an investment of USD 170 ), whereas the typical

traditional expenditure stands at EUR 12/month, or about

EUR 280 over two years, including EUR 120 for lighting.

While the initial acquisition cost remains a major barrier, the

amount of this investment typically falls within the sphere of

microfinance institutions. As part of a large-scale program,

it might be appropriate to involve such institutions in a

distribution mechanism for small systems, based on

low-value and short-term (6 to 24 months) credits. Another

possibility is to use local operators or set up operators, who

could develop franchise systems for the rental of multi-

function solar lamps.

In both these approaches (rental or sale on credit), the

possible profit margin for the middleman lies in the

difference between the substitutable expense and the

monthly cost of using the small system. In view of the very

small quantity of energy required for this type of service, it

would make sense to systematize this pico electrification

component at the extremity of each grid, attaching the

greatest importance to the efficiency of user equipment in

order to maximize the scope of low energy consumption.

This would both ensure a minimum service for isolated

populations (but located in the "area of influence" of the

mini grid) and generate a local activity.

In any case, the profit margin that an operator of this type

of service can expect is very small, and the service must

be provided by locally established structures. Today,

communities that benefit from this type of service are not

considered as having access to an electricity service, as it

is very minimal and only provides very low power that will

not result in any development.

Box 14. Examples of battery recharge services – Cambodia and Laos

In Cambodia, battery recharge (an additional service provided by diesel mini-grid operators) is widespread. It allows households on the edgeof the grid to "pay for what they consume", and those living outside the village, but who go there during market days, to have their batteriesrecharged.

The (commercial) cost of the recharge by diesel generators is USD 0.25 for a 40 Ah battery and USD 0.50 USD for a 150 Ah battery.

In Laos, a program conducted in five villages to recharge LED lamps from PV systems is billed USD 1/month to users and allows theinvestment to be repaid in 18 months. The remuneration of the village operator is minimal, as his duty to the community is more importantthan his pay.

Source: IED.40 A very low-power market is being developed for flashlights powered by a small PVmodule (5 Wc) or a dynamo. This product, sold for about EUR 10, is not very reliable, and itslight efficiency remains low.41 The use of LED technology plays an important role by reducing energy consumption inlighting. The advantage of associating photovoltaic cells and LEDs resides in the easycombination of the two products, as their two voltages of photovoltaic cells and LED voltagecan be easily combined. LED technology offers a luminosity more than eight times that ofincandescent lamps.

To provide access to an electricity service for all, the first

step is to produce a sufficient quantity of power to meet

economic and social needs, at a sufficiently affordable cost

to ensure the economic equilibrium of the access program.

Reaching this equilibrium does not necessarily mean that

users are able to pay the entire service cost, but that public

finances can bear the difference between the cost of the

delivered service and the tariff applied. This cost, both

in terms of investment and long-term operation and

maintenance, must also have been correctly assessed

beforehand when the program was designed.

On a worldwide scale, there are considerable investment

needs. In its 2009 World Energy Outlook, the IEA estimates

that global electricity demand will continue to increase at an

annual rate of 2.5% until 2030, and that 80% of this growth

will occur in countries outside the OECD. The increase in

installed power capacity represents 4,800 GW (or five times

the existing park in the United States), 28% of which will be

in China. The share of renewable energy in total generation

will rise from 2.5% to 8.6% by 2030, whereas the share of

hydropower will decrease from 16% to 14%, that of coal will

remain dominant at 44%.

Faced with such needs, which remain colossal, there is a

rather disturbing fact: in 2009, investments in the energy

sector collapsed due to the economic crisis. This concerns

both oil and gas exploration by multinationals as well as

households, which buy less new and efficient equipment.

This will have major repercussions on long-term energy

efficiency. In late 2008 and early 2009, investment in

renewable energy proportionally decreased more than in

the other types of power generation; in 2009, it fell by

almost 20% and would have decreased by 30% without the

government support plans.

This decline in investment in the energy sector will have

potentially serious consequences for energy security,

climate change and energy poverty. Reducing the capacity

increase in the medium term for projects that have a long

gestation period will lead to long-term shortages, and may

well lead to price increases when demand recovers. Will

it be possible to raise the required financing? In the IEA

baseline scenario, it is estimated at USD 1,100bn a year

until 2030, with USD 600bn a year for the electricity sector

and about EUR 300bn a year in developing countries.

This reference scenario inexorably takes us towards a

carbon concentration of over 1,000 ppm CO2 equivalent,

deemed very dangerous as it leads to a potential average

temperature increase of 6 °C. The low-carbon 450 ppm

scenario as developed by the IEA, with a 50% probability

of a 2 °C increase in average temperature, involves an

additional investment of USD 10,000bn by 2030. This

would be compensated by economic gains, in the health

sector among others, and by a lower energy bill for

buildings, transportation, etc.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

77

3. A need for structured financing

3.1 Widespread access to electricity services: The need to mobilize more financing thanthe current flows from international cooperation

In this context, improving access to modern energy for

nearly 1.6 billion people, or one-fifth of the world’s popu-

lation, remains a challenge. Almost 85% of these people

live in rural areas in Sub-Saharan Africa and South Asia. In

the IEA reference scenario, the number would only be

reduced by 200 million by 2030 and would increase in

Africa. IEA estimates that with an investment of USD 35bn

a year, i.e. 6% of the total planned investment in the

electricity sector, the question would be resolved by 2030.

However, we are way off such orders of magnitude, judging

by a World Bank review of its own portfolio, which notes that

flows are limited to EUR 500m a year (Table 9).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

78

Table 9. World Bank investment in access programs (2003-2005) – in USD M

Région Grid Grid Rural Off-grid Rural Energy Total

Peri-urban Electrification Electrification Fund

Africa $76,60 $35,20 $30,20 $31,20 $173,20

E Asia Pacific $0,00 $235,00 $3,70 $8,30 $247,00

L America Car $0,00 $3,00 $7,00 $0,00 $10,00

South Asia $26,00 $0,00 $5,50 $24,60 $56,10

E Europe CA $0,00 $0,00 $0,00 $0,00 $0,00

N Africa Med $0,00 $0,00 $0,00 $0,00 $0,00

Total $102,60 $273,20 $46,40 $64,10 $486,30

Source: ESMAP 2007.

International cooperation will clearly not be sufficient to

finance access programs. Schematically, in addition to

the user, access projects involve the State, the operator

(private or public) and financial institutions (see Diagram 6).

The financing structure of a rural electrification project

or program, and especially the "weighted average cost of

capital", loan duration, any grace periods, and project

duration (especially in terms of return on capital) obviously

also have a major impact on the service price.

Diagram 6. Stakeholders and financing circuits in rural electrification

Source: Authors.

STATELoan or subsidy or

equity contribution

Loan or grantLoan or capital contribution

FINANCIALINSTITUTION

Tariffs and fees

OPERATOR

SERVICE USER

• Multilateral or bilateral financial institutions award conces-

sional loans or grants to States; they are allocated to

finance power infrastructure, generally in the form of a loan

or grant, or as an equity contribution to the power operator;

• The same institutions can sometimes allocate financing to

operators, generally with a State guarantee;

• States participate in financing power infrastructure via their

own investment budgets (excluding external assistance);

• Private national or international banks can also allocate loans,

or make an equity investment in the power operator's capital;

• The user, finally, pays for the service via the tariff,

generally with additional specific fees to cover part of the

investment repayment. More generally, user payments

break down into three parts: (i) an initial contribution at

the connection; (ii) a fixed premium, which depends on the

subscription (power level subscribed to and which must

amortize the operator's investment); (iii) a variable share

depending on consumption.

To establish a more direct link between the tariff policy

and the amount of subsidy required, it is necessary to

determine the financial equilibrium targeted by the tariffs

applied. Schematically, there are three equilibrium levels:

■ "Minor equilibrium": the income from sales covers the

operating and day-to-day running costs of the service;

■ "Operational equilibrium": the income covers not only

operating and day-to-day running, but also all routine

maintenance and replacement operations;

■ "Major equilibrium": the income covers all charges, i.e.

both operating and financial costs, particularly those related

to investments.

Subsidy mechanisms offset the difference between the

effective equilibrium achieved from service income, by the

application of the tariff schedule (including fees), and "major

equilibrium". The question is raised as to whether the State

has the overall capacity to pay this subsidy.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

79

3.2 Historical principles

A basic principle of equity, called "equalization", is that

each consumer of a certain category (consumption level,

socioeconomic characteristics, i.e. domestic or industrial

customer, etc.) pays the same for a kWh, wherever their

location in the country and thus regardless of the cost per

kWh in their area. This principle is only feasible when the

profits from certain areas or from tariff levels can generally

offset losses in other places, or if the State has the means,

at the macroeconomic level, to pay the difference.

When we look at the history of electrification in

industrialized countries, we see that during the first

electrification phase in the first half of the 20th century, the

electricity service was provided by private operators for the

needs of industry, therefore at different prices that reflected

costs. Certain operators then progressively started serving

communities in the "labor pool" area of these industries.

The equalization principle was only applied much later,

at the time of the nationalization and integration of these

different companies into a national structure. This principle

of equity became "affordable" thanks to a base of existing

profitable sales, and to very substantial State support for

investments.

This support for investment through long-term and public

financing is perfectly logical in an industrial structure of

economies of scale, where the larger the investment, the

smaller its average cost. In practical terms, in this set-up,

the general interest is to have large-scale infrastructure that

serves the entire country through an interconnected grid.

The structuring of the sector into a "natural monopoly",

which is moreover public, results from this highly

capital-intensive set-up.

In the context of certain Sub-Saharan African countries, the

first step (for local generation to meet profitable industrial

needs) has not yet been reached. Consequently, can they

afford equalization at this stage, or will this only be possible

later, as in France (see Box 15)? An argument in favor

of “tariff differentiation” is that in non-electrified areas,

communities have high monthly bills for traditional

resources (kerosene lamps, dry batteries, small individual

oil motors, etc.), and thus often have a real ability to pay.

While it might seem completely unjust to make the "rural

poor" pay more than the "urban rich", is it still not better to

have an expensive service in rural areas than no service

at all, or a bankrupt sector? However, this is a matter for

national political choices that must be informed and made

pragmatically.

Furthermore, today's technological developments lead

to industrial configurations where small-to-medium size

infrastructure is sometimes (even often) the most

appropriate solution. This undermines the legitimacy of the

natural monopoly for generation and paves the way for a

more fragmented structure, where medium-size private

investment has it place with all the issues related to smart

grids. However, this development certainly does not do

away with the need for strong national coordination, both

technical (programming for generation and transmission

grids is still fully within the natural monopoly) and financial

to ensure that sufficient funds are raised.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

80

Box 15. Brief history of electrification in France: The role of the Fund for the Amortization of Electrification Charges (FACE)

In France, the national infrastructure was created via strong State involvement, with the nationalization of several private structures in 1936,

which generated electricity for industrial areas. EDF was thus created and could not only levy a tax on kWh sales to finance this access

program (a significant part of which had already existed from the electrification for rural and peri-urban communities), but could also raise

long-term financing at low interest rates, thanks to the State guarantee.

The relative weight of urban and rural communities, and of their respective consumption levels, made it possible to build an efficient equali-

zation system as early as in 1937, i.e. one that had acceptable charges for city consumers, as well as being sufficiently productive to

finance significant rural investments. In 1937, with 90% of the French population hooked up and a low-voltage electricity consumption of

3.1 billion kWh in 1938 (against 1.8 billion in 1926), the LV kWh fees effectively supported the public effort for investment in electricity.

As rural electrification developed, the financial income from this equalization increased in direct proportion to the amount of kWh consumed,

while demand for financing decreased. There was thus a sustainable mechanism for the self-financing of the power grid by its customers:

the Fund for the Amortization of Electrification Charges – FACE.

In France, the levy rates on kWh have been adjusted in terms of financing needs, while respecting until now the ratio of 1 to 5 between rural

and urban customers. In 1937, they were set at 2.80% in urban areas and 0.56% in rural areas. They were first increased in 1954 to 3.80%

3.3.1 The weight of domestic customers

In the case of access programs, the vast majority of

customers are domestic with low unit consumption levels.

Managing a host of such small consumers obviously has a

cost for the service company and the small margins offer

little incentive.

In addition to the spatial issue, with distance and low

density increasing the investment and operating costs, a

form of cross subsidy is generally applied between social

categories: LV customers, especially the so-called “social”

category, generally account for the largest number of

clients, albeit with modest unit consumptions and therefore

proportionally low revenues for the operator. This is shown

by the consumer breakdown of KPLC (Kenya), where

the domestic bracket represents 25% of sales for 85%

of customers to manage. It is understandable that the

electricity company is much more interested in industrial

consumers where, as in Madagascar, MV/HV customers

account for over 40% of sales for less than 1% of

customers.

However, it is necessary to make a detailed analysis of

tariffs and profitability, in particular by considering the fixed

tariff, which can be as much 50% of the price per kWh for

households that have a low level of consumption. It is thus

seen that in Kenya, the households of the lower bracket of

up to 50 kWh a month pay more for their kWh than those in

the 51 to 300 kWh bracket.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

81

in cities and to 0.75% in rural areas, prior to regularly decreasing as consumption increased, to reach 2.3% in 2000, for the maximum rate

applicable in urban communities, and 0.46% for the minimum rate applicable in rural communities.

Even today, FACE still provides financial assistance to municipal power grid owners under rural electrification regimes. This aid corresponds

to 65% of the full cost, inclusive of tax, of extension, reinforcement or integration works for grids in the relevant area. The grids in question

are the low-voltage (LV) grids and medium-voltage (MV) extensions required to supply the new served LV areas. It is the local authorities –

or municipalities for distribution – that make local investment decisions and contribute their share of financing, and they own the distribution

grids. The annual budget of FACE’s aid stood at about EUR 345m in 2008. The public service contribution for electricity in non-

interconnected zones (NIZs: overseas departments and territories and Corsica) was close to EUR 667m in 2008 (for 3 million inhabitants).

These cross subsidies may be compared with the profitability requirements established for equipment programs in Africa.

Source: GRET (2005).

3.3 Keys for setting tariff levels

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

82

Table 10. Kenya (2008)

Table 11. Jirama - Madagascar (2007)

Table 12. Côte d’Ivoire

Tariff Type of consumer N° of customers 2008 % 2008 consumption (MWh) %

A0 Domestic 895,043 84.41 1,255 24.92

A1 Small shops 158,676 14.96 590 11.72B Irrigation 3,738 0.35 996 19.78C Large trades 518 0.05 2,108 41.86D Off peak 668 0.06 74 1.47E Street lighting 1,740 0.16 13 0.26Total 1,060,383 100.00 5,036 100.00

Source: KPLC Annual Report 2007-2008.

Source: Jirama.

Type of consumer N° of customers 2007 % 2007 sales (MWh) %

MV/HV 899 0.23 340,339 42.35

LV private customers 383,559 96.90 408,159 50.78

LV administrations 1,977 0.50 11,918 1.48

Communities 1,661 0.42 9,415 1.17

Jirama transfers 7,753 1.96 33,889 4.22

LV 463,383 57.65

Total 395,849 100.00 803,722 100.00

The case of Côte d’Ivoire also shows this unequal nationwide distribution of consumption: urban areas have ten times as many customersas rural areas. The economic capital, Abidjan, accounts for 40% of subscriptions and 70% of total consumption, whereas this city only has20% of the Ivorian population. In addition to this disparity, a rural subscriber consumes 60% less than an urban subscriber.

Total Rural

Access rate 24 % (38 % with fraud) 6 %

Population with access 4 320 000 594 000 = 13 % of subscribers

Average per capita consumption 300 kWh 150 kWh

Total consumption 1 296 GWh 89,1GWh = 6,8 % of total consumption

Source: Authors.

Box 16. Kenya, Madagascar: Breakdown of consumption by tariff category

3.3.2. Tariff equalization: What cost for thenation?

In the so-called “equalization” system, users in areas that

are less expensive to electrify will effectively cover part of

the electrification costs in the most expensive areas, first

of all for operation and, if possible, also for investment. In

Morocco, electricity sale tariffs are set by the State and

are the same over the entire distribution area of ONE,

which includes both towns and villages.

The contribution by users and communities is the same

in the entire rural area covered by the PERG, and is

independent of the cost price of electrification for the

relevant village. ONE thus applies an equalization system,

not only on the electricity sale tariffs, but also on this

participation in the investments by beneficiary users and

communities. For the average consumption of a rural

household (52 kWh/month), the electricity bill is MAD 53

month, with an additional MAD 40 of PERG fees.

Following this ambitious rural electrification program,

ONE’s profitability would appear to have fallen for the

following reasons:

- Distribution costs in rural areas are 2.5 times higher than

in urban areas;

- Energy consumption in rural areas is low, while the

number of subscribers is increasing;

- LV tariffs have increased very little since 1996, whereas

MV and HV tariffs have fallen sharply.

The PERG has thus had an unfavorable impact on ONE’s

financial results, just at the time where the electrification

of the most “expensive” households to connect is starting,

i.e. those in the least densely populated areas.

In Mozambique, EdM applies two types of cross subsidy

between groups of individual consumers in order to be

able to fulfill its social function:

- Geographical cross subsidies between rural areas

(especially in the north) and urban areas (mainly Maputo);

- Cross subsidies via a variable stepped tariff system;

consequently, the largest consumers, (generally the

richest households) pay more for an electricity unit than

the smallest (the poorest households).

EdM makes a tariff distinction between low-to-medium

voltage (mainly for households and small enterprises) and

high voltage (business and industry). High voltage users

can obtain individually negotiated tariffs depending on the

volume consumed and periods of use (peak or off-peak

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

83

Table 13. Peri-urban connection program in Kenya, forecasts for the 750,000 connectionsover 5 years

Categories Customers(%)

Average

consommation

kW/m

Energy

sales

(%)

Revenues

(MkSh)

Operator

profits

(MKsh)

Domestic (AO) 90 117 64 924 227

<50 kWh/month 35 15 3 133 -145

51-300 kWh/month 55 107 30 649 242

301- 3 000 kWh/month 9 525 29 129 119

3 000-7 000 kWh/month 0,1 3 549 2 13 11

Small shops A1 10 428 36 643 190

Source: Authors.

hours). EdM also has a program to attract private

investment, in particular via an incentive system and

special prices for agro-businesses and industries, which

allows tariffs to be used as an instrument for territorial and

economic development.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

84

Table 14. Breakdown of consumption in Mozambique - EdM (2006)

Tariffs Consumption (GWh) % N° of subscribers %

Commercial LV 183.20 10.06 38,790 9.33

Large LV consumers 88.50 4.86 1,477 0.36

Domestic LV consumers 516.50 28.36 373,795 89.93

LV agricultural consumption 0.07 0 24 0.01

MV – HV 534.80 29.36 1,581 0.38

Export 498.30 27.36 24 0.01

Total 1,821.37 100.00 415,667 100.00

Source: EdM.

Today, the average tariff level is 8 cents/kWh, whereas the

long-run marginal cost (LRMC) tariff is 9.1 cents/kWh.

EdM can apply independent tariff adjustments within the

limits of its concession contract with the government. Tariff

adjustments that are not provided for in the contract must

be approved by the government.

3.3.3. Tariff differentiation

The case of rural electrification in Mali is a particularly

interesting illustration of tariff differentiation. The State of

Mali started liberalizing the electricity sector in 2000.42

AMADER (REA) regulates, controls and participates in

the financing of the development of rural electrification

activities, especially in all localities where the installed

capacity is less than or equal to 250 kW.43

Consequently, local public or private operators that wish to

supply a public electricity service are free to submit a

PCASER to AMADER to request an authorization and a

subsidy, limited to 80% of the investment costs. Both

tariffs and tariff schedules are free, but are approved and

published by AMADER, based on a provisional business

plan presented by the operator. The electricity tariff covers

operating costs and financial costs, and also includes a

return on investment for the operator over the 15 years

covered by the authorization. The commonly accepted

rate is around 8%, which is low compared to major

infrastructure projects where it is generally around 15%;

the operator is remunerated by “shareholder dividends”.

AMADER has a tariff review process based on changes in

technical and economic conditions and their impact on the

service cost.

Of the four cases studied,44 and by estimating an energy

consumption corresponding to the flat rate, the tariff range

is FCFA 350-700/kWh (excluding connection fees), i.e.

between EUR 0.55 and over EUR 1. Only the village of

Koumantou, which benefited from AMADER subsidies,

applies the minimum rate, whereas the social electricity

tariff within the EDM-SA perimeter stood at FCFA 59/kWh

in 2007.

Today, in reality, the tariffs set by PCASER reach levels of

over EUR 0.50/kWh, which is well above the ability to pay

of most rural users. This is due to the hike in diesel prices,

which is not even offset by almost the entire subsidy for

the initial investment. This is an argument in favor of

42 As provided for in Law n° 00-019/P-RM of 15 March 2000.43The Electricity and Water Regulatory Commission (CREE) sets the tariff policy.44 See Ease and Improves (2007).

renewable energy. AMADER, refinanced by the State,

today thus finds itself obliged to allocate an operating sub-

sidy to PCASER, in the form of an exemption on diesel

taxes.

More generally, in countries that are highly dependent

upon hydrocarbons, distributors are – under their

concessions – increasingly authorized to make tariff

adjustments to reflect their costs. In Kenya for instance,

hydrology problems affecting the interconnected generation

park have obliged KPLC to mobilize expensive diesel

generators. This has meant they have had to apply a

temporary fuel surcharge, which is currently increasing

the tariff by 50% from one month to the next.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

85

3.4 Establishing the financing mechanisms required to guarantee access to an electricityservice for all

As the initial electrification rate is very low in Sub-Saharan

Africa (10 to 20%), cross subsidies alone are not sufficient

to achieve substantial access rates. An initial subsidy is

essential (or more generally concessional loans) to

finance investments in rural areas, or financing over

30 years with funds from the State, which can refinance

itself. When the initial infrastructure equipment rate is low,

the question is raised as to which areas or customers to

serve first. There is also the question of the equipment

rate, which must be proportionate to the funding that can

actually be raised.

Oil price hikes, climate risks and technological advances

are all factors that increase the interest of renewable

energy, despite the high costs of the initial investment.

The time is clearly ripe for financial innovation, in order to

better identify and share risks and also to mobilize private

investment.

In addition, the cornerstone of the equipment of a country,

especially for power infrastructure, is to be to be able to

rely on a structure capable of raising and organizing the

implementation of the required funds.

3.4.1 Effectively gauge the scale of financingrequired, without underestimating theimportance of a national contribution and of amajor, high-quality counterpart

Morocco, with 30 million inhabitants, has succeeded the

remarkable feat of increasing the electrification rate of

localities from 15% to over 90% in 15 years, requiring an

investment of almost EUR 2bn over this period. It should

be remembered that almost half came from national

resources (25% financed by the beneficiaries and 20% by

municipalities). ONE financed the remainder through a tax

on kWh sales which, in 15 years, generated about

EUR 500m (i.e. EUR 30m a year). Without this national

contribution, international donors would obviously not

have participated in this ambitious program. The amounts

raised thus reached an average of EUR 70m a year,

thanks to the fact that a credible national entity – ONE –

was the borrower. The lenders could thus envisage non-

sovereign loans over time by directly taking the risk on

ONE.

In Senegal, rural areas were subdivided into twelve "rural

electrification concessions". Each area was attributed to a

single operator via an international bid invitation. The

single operator was obliged to apply an identical tariff over

its entire concession, independently of the electrification

techniques used. Subsidies covered between 50% and

80% of total investments, and were financed by national

funds or mobilized by donors. At the launch of the

bid invitation, ASER specified the amount of available

subsidies and the bidding operators were selected on the

basis of: (i) the number of connections they undertook

to make, (ii) the price and, indirectly, (iii) the additional

financing they could provide via equity and loans.

The first concession, located in the Saint-Louis-Dagana-

Podor region (north, surface area of 19,000 km2, 362,000

inhabitants and 41,000 households), was attributed to

ONE for 25 years, following an international bid invitation.

The Senegalese Government used a USD 5m World Bank

loan as the basic subsidy to the concessionaire. The total

investment stood at USD 14.9m over 3 years. In its bid,

ONE proposed 2.3 times the number of connections

required by the bid invitation, and 50% more than its

competitor. To achieve this, it proposed a financing plan

including a large loan portion, which was possible as ONE

already had a significant track record for borrowing from

international donors to finance the electrification of its own

national territory. One wonders, legitimately, whether such

a scheme might be reproducible…

What can be said about the present-day dynamics in

Sub-Saharan Africa? A review of ongoing programs shows

that the largest volumes are mobilized in countries with

favorable national structures. Focusing on World Bank

data, the following observations can be made:

• Almost all loans are allocated to States, which then

reallocate the financing to various national structures as

grants or loans. The largest volumes of financing for urban

or rural access programs are in countries with large

electricity companies, which have the capacity to absorb

and pay back the financing. It is interesting to analyze the

loan amount mobilized annually in terms of the national

population, bearing in mind that Morocco had to borrow

EUR 70m a year over a period of 15 years with maturities

of over ten years, to equip a country of some 30 million

inhabitants. Below are a few other examples:

- Ethiopia: 60 million inhabitants; 5 years (2003);

EUR 133m, i.e. EUR 27m a year; only EUR 35m for

access, including 80% for grid extension; central role of

EEPCo;

- Ghana: 20 million inhabitants; 5 years (2008); EUR

135m, i.e. EUR 27m a year; 35% for grid extension and

aims to work with national development banks;

- Mozambique: 20 million inhabitants; 4 years (2003);

EUR 54m, i.e. EUR 13m a year; 50% for the peri-urban

grid; central role of EDM;

• A second group of financing focuses on REFs. The main

limitation of this arrangement is that the State provides

a grant for a fund that is often a fund in name only. In

reality, it is a bank account through which an investment

subsidy will transit to an operator, which generally has

only very partial and few obligations to repay:

- Cameroon: 16 million inhabitants; 6 years (2008); EUR

47m, i.e. EUR 8m a year, mainly for a “fund” that took

almost a decade to set up;

- Guinea: 8 million inhabitants; 4 years (2003); EUR 11m,

i.e. EUR 3m a year, mainly for a “fund” that was not

authorized to lend; a remunerated partnership was sought

with a bank, which refused to take a lending risk and thus

limited itself to channeling the subsidy;

- Mali: 10 million inhabitants; 5 years (2005); EUR 25m,

i.e. EUR 5m a year; mainly to AMADER, which channels

the investment subsidies;

- Uganda: 23 million inhabitants; 5 years (2009); EUR

62m, i.e. EUR 12m a, (including a third for grid extension

to the electricity company, and a third for inter-sectoral

programs managed by the ministries using the subsidy).

These observations show that the countries that have

succeeded in scaling up access to electricity are also

those with a technically and financially credible central

operator. The World Bank uses instruments such as the

Adaptable Program Loan (APL) or Special Impact Loan

(SIL), which are generally long-term and merit attention:

the above-mentioned loan maturities are those of a first

tranche which, if successfully implemented, triggers45 the

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

86

45 This implementation is assessed by means of previously established indicators, such asthe creation of a PPA law or the number of localities connected.

mobilization of a second tranche. These programs can be

subject to 10- to 20-year agreements.

3.4.2 The interest of structuring REFs as truefinancial intermediaries

A review of existing entities leads to the conclusion that

REFs in Sub-Saharan Africa are currently not structured

as financial intermediaries. Consequently, they cannot

(i) borrow, (ii) refinance themselves via bond issues,

(iii) lend to local operators, or (iv) mobilize national banks

with risk mitigation instruments.

Local banks, for their part, in reality do not wish to

venture into this unknown and low-profitability sector,

except in the case of development banks with a specific

mandate. The funds are generally thus bank accounts to

transfer grants, and the international agencies allocate

sectoral loans to governments, which reallocate part of the

amounts as grants to REFs. There is no leverage on

grants in the rural or peri-urban electrification sub-sectors.

Naturally, the amounts of the grants that can be mobilized

at the level of international cooperation are seldom

sufficient to address the challenges.

It is crucial to change paradigm in order to increase grant

amounts, which will remain modest compared to the

challenges. It is thus essential to follow these

recommendations:

• Establish the legal structure of the fund as a full-fledged

financial institution, or combine this fund with a dedicated

financing entity, approved as such by national banking

regulations;

• Give this structure the technical and financial capacities

to appraise projects and prepare a project pipeline;

• Define the fund’s business plan, based on a long-term

plan proposing a mix of projects with different profitability

levels in order to allow a certain level of cross subsidies.

It should also undertake to support the first project deve-

lopers in order to create a demonstration effect;

• Provide a start-up budget with a view to a revolving fund,

especially for preparatory studies;

• Involve banks by assessing their interest and their

perception of the risk in order to subsequently establish

adequate risk-sharing mechanisms (co-financing,

counter-guarantees, etc.);

• Have a long-term sustainability vision of the financing

mechanism, with a progressive increase of the national

contribution (bond issues, kWh tax, etc.).

The three stages below illustrate these recommendations:

- Stage 1 = initial situation: The REF receives grants from

the State that may come from the State budget or from

international cooperation operations (reallocation of

loans/grants to the State – generally in the form of grants).

The cooperation institution rarely makes a direct transaction

with the fund (which may not necessarily be authorized by

its statutes). The REF can be given the technical capacity

to appraise rural electrification projects and subsidizes

them according to its own rules. It is hoped that the

operators that have benefited from these subsidies can

subsequently balance their operation. However, this is

often not the case: in Burkina Faso, despite an 80%

investment subsidy, operating subsidies were necessary.

In this situation, in financial terms, the role of the fund is

confined to paying the subsidies.

- Stage 2 = short-term developments: The fund becomes

the financial arm of an REA and develops rural

electrification planning, which includes operations that

can present a certain level of profitability: secondary

centers, agro-industries, etc. A portfolio of operations is

built up, which require different levels of subsidy. The fund

adopts statutes that give it financial autonomy and

the capacity for financial intermediation under national

legislation. Consequently, as soon as it is allocated

regular national funds (an earmarked tax, for example),

which it can lend to operators, even with a highly conces-

sional rate (and thus generate income), it becomes

a structured partner with a balance sheet. As such,

institutions can lend to it, funds (national or international)

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

87

can dialogue with it, and national development banks

can interact with it, especially for risk sharing. National

banks and investors thus develop a certain amount of

confidence.

- In the medium term: The fund confirms its management

autonomy, its credibility and its functioning as a

specialized financing entity. Once pilot operations have

been successfully demonstrated, the national banks also

join the investment round and finance operators. To

mobilize these credits, or even national investments, the

fund may also develop guarantee or risk-sharing

instruments in order to maximize the participation of these

private financing sources. The fund should eventually

envisage raising funds itself on national or international

bond markets and free itself from the need for financing

from international cooperation.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

88

Diagram 7. Stages in the structuring of a rural electrification fund

InitialSituation

Manufacturer

Manufacturer

Company

Company

Operators

Operators

Fund Transfers

Grant

Grant

National Government

National Government

Concessional loan

Concessional loan

Developmentbanks & agencies

Developmentbanks & agencies

Stage 2

Fund Transfers

Concessionalfinancing

Concessional loans, grants

Rural electrificationfund/agency

Rural electrificationfund/agency

While this vision may seem unrealistic, it is the only one that

actually allows sufficient financing to be raised to meet the

challenges of rural electrification in countries. As an

example and by way of comparison, India clearly took

this path 50 years ago, with the creation of a specialized

(financial) enterprise, the Rural Electrification Corporation

(see Box 17). It initially set out to finance grid extensions

and to become the reference training and research center

for techniques adapted to the Indian context. Once the

electrification program had ended, it started allocating

funds to more decentralized programs. Following the same

logic, a Department of Renewable Energies was

established in 1982 and became a ministry in 1992. In

1987, this political and planning entity set up a financial

institution specialized in financing renewable energy: the

Indian Renewable Energy Development Agency

(IREDA).46 Thanks to these two entities, over 95% of

localities are now covered (60% of household electrifi-

cation), and India is among the world leaders in wind

energy.

In 2010, the country launched a highly ambitious solar

program aiming at:

- 1,100 MW of large-scale power plants and PV on grid by

2013, then 20,000 MW by 2022;

- 200 MW of off-grid PV, including hybrid facilities by 2013,

and 2,000 MW by 2022.

It is thanks to the availability of the long-established

financing tools that private Indian and international

investors, as well as the Asian Development Bank (with all

its instruments: technical assistance, concessional and

commercial loans) are active in this program.

This example illustrates the crucial importance of clearly

allocating grants and concessional and commercial loans to

the right market segments, in order to maximize their

impact and leverage.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

89

Source: Authors.

46 http://www.ireda.gov.in

Manufacturer Company

Operators

GrantNational Government

Concessional loan

Developmentbanks & agencies

Fund Transfers

Concessionalfinancing

Concessional loans, grants

Rural electrificationfund/agency

Concessional loans

Risk-sharing instrumentsFinancial

autonomy throughbond issues, etc.

National banks

Finalsituation

Box 17. Financing rural electrification in India: The Rural Electrification Corporation – REC

REC was created in 1969 as a finance company. Today, it is a listed public enterprise, with a net value of EUR 750m. Its function is tofinance and promote rural electrification projects in India. It provides financial support to electricity companies in the different States of theIndian Union, to rural electrification cooperatives, and private and public companies. REC has offices in the central capital (New Delhi) andin the provincial capitals, which have a mandate to coordinate financial closure with territorial authorities and other local financiers, assist inprogram and project definition, and monitor disbursements and project implementation. It also has a large research and training center.

REC's mandate was defined as follows in 2009:

"Facilitate the provision of an electricity service for the development and improvement of living conditions for rural and semi-urbancommunities.

Act as an effective and competitive development institution, responsive to its customers for the financing and promotion of power generationprojects, electricity savings and reinforcement of distribution grids throughout the country."

Historically, REC, in application of national policy, focused on village electrification and the installation of pumps for irrigation, considered aspriorities at the time. A locality was defined as electrified as soon as electricity use was observed, regardless of its location in the country.Thus, in 2005, 81% of the country's localities were electrified, and over 110,000 villages were awaiting electrification; 12 million electricalpumps irrigated 34 million hectares.

It was only at a second stage, and after three decades, that attention really began to focus on the issue of access to a service forcommunities. In 2004, two additional criteria were introduced for a village to be defined as being electrified: public services (health,community centers, schools, etc.) had to be electrified, as well as at least 10% of the population.

Indeed, at the turn of the 21st Century, and with a per capita consumption that had risen from 15 kWh in 1950 to 600 kWh in 2005, accessto a modern electricity service is necessary in order to achieve an economic growth rate of 8 to 10% a year, and for the entire population.Consequently, access for 50% of rural households, i.e. some 60 million households, has become an objective.

REC mainly allocates long-term loans (15 to 35 years) to public and private electricity companies for generation (renewable or not),transmission and distribution. In 2009, interest rates stood at 10 to 12%, reviewable annually or every three years, but inflation must be takeninto account, which has risen from 4% to almost 13%.

To provide access to the entire population and to villages that are still unserved, a specific program, the Rajiv Gandhi Grameen VidyutikaranYojana (RGGVY), was defined in 2005, with the following main components:

- Strengthen the MV distribution grids, create MV infrastructure, distribution, decentralized generation and local grids: these investments,which must be presented as projects, can benefit from investment subsidies of up to 90%;

- Finance productive and social infrastructure: irrigation pumps, SMEs, local craft industries, cold chains, health, education andcommunication; when presented as projects, they can benefit from the same subsidy levels;

- 100% subsidy for basic connections (lighting, audiovisual) for households living below the poverty line (i.e. with less than USD 2 per day);

- Develop distribution franchises whereby a local entity (private, association or cooperative) takes charge of the distribution service within anarea supplied by a transformer; these franchises again benefit from the same investment support.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

90

Financing needs are estimated as follows, the subsidy portion comes from taxes on RE and Government allocations (over a theoreticalperiod of 5 years):

- Electrification of isolated villages and grid reinforcement: EUR 1,160m- Electrification for households below the poverty line: EUR 500m- Reinforcement of grids in already electrified areas: EUR 670mTOTAL EUR 2,330m

including a 90% subsidy (balance from own capital or REC) EUR 2,100m1% supplement for training support or research EUR 230m

While these amounts may seem impressive at first sight, they should be seen against REC’s performance, experience and balance sheet.

In 2008, REC was ranked among India’s best performing State companies and its performance has been qualified as "excellent" by the publicauditor since 1993. REC now plans to export its services and know-how.

A few key figures for 2007-2008 (exchange rate: INR 70 = EUR 1):Number of projects appraised and approved per year about 750Capital EUR 122mLoans from the government EUR 11mLoans from Life Insurance Company EUR 500mLoans through bond issues EUR 3,200mLoans from other banks (including cooperation) EUR 600mTotal outstanding loans EUR 5,500mInterest collected over the year EUR 505mPre-tax profits EUR 187mAfter-tax profits EUR 123mDistribution of dividends EUR 37m

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

91

3.4.3 Innovative loan/grant blending to enhanceproject risk-sharing and maximize leveragefrom the scarce grant resources available

Subsidized financing is a necessity in view of the economic

characteristics of access projects. The grant component

should specifically target:

• Capacity building: institutional and regulatory frameworks;

capacity for new technologies; capacity to manage local

operations; training of bank staff;

• Preliminary studies and strategic planning; resource

inventories; feasibility studies (even if this means reinte-

grating the cost into the project financing if the project is

implemented);

• Support for implementation: financial arrangements,

engineering and implementation studies, project

management, capacity building for operators;

• Investment support: risk sharing, adapting the terms of

financial support to the economic and financial profiles

of projects (maturity, rate, grace period), investment

subsidies.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

92

There are a whole host of uncertainties and risks related

to projects for access and rural electrification that use

renewable energy sources:

- Project risks: The risks related to the project itself are of

a technical nature. The first concerns the availability of the

resource and its uncertainties (hydrology, weather, wind,

sunshine, availability of biomass). Studies (often long and

costly) are thus needed to take account of these aspects

and allow renewable energy projects to be implemented.

The second technical risk is related to construction,

in particular to civil engineering for hydropower. This

construction risk carries a real risk of cost overruns;

- Risks related to the project context: It is necessary to

carefully analyze the anticipated demand and the speed

of its development. Indeed, regulatory frameworks for

buy-back tariffs or access by third parties to the grid often

only give a visibility for a few years, whereas the return on

a project takes over five years and it is necessary to wait

eight to ten years for significant profitability.

Finally, a last project risk is related to the low level of expe-

rience, both technical and for project management, of local

operators that launch into this type of new operation...

- This leads us to the counterpart risk: In view of the list of

elements above, classic commercial or development banks

are reluctant when faced with these new projects. They do

not have the required expertise, or the instruments for

long-term loans, to appraise projects and finance them.

They then focus on counterpart quality and demand high

levels of guarantee based on a standard analysis of the

balance sheets of the companies requesting loans.

It is therefore up to the entities that finance access or to the

REFs to seek to mobilize loans and allocate grants, in order

to improve the profitability level of the project, and thus

make it more attractive to donors.

To do so, it is first necessary to draw up a list of priority

projects (for economic and social reasons or for spatial

planning reasons), in coordination with the planner, and

analyze their profitability and how they will be led, in order

to make a realistic decision about which portfolio can be

developed and supported given the available resources.

Initially at least, it will certainly be necessary to

subsidize/pre-finance studies, the cost of which can be rein-

tegrated into the project financing. In addition, it would be

useful to carry out strategic opportunity analyses of new

technologies (such as hybrid PV-diesel, or biodiesel as a

fuel for rural electrification). This will show the priorities to

potential investors and allow innovative projects with a

demonstration or pedagogical nature to be subsidized at a

suitable level, while counting on a reduction in costs over

the long term. Grants will be required for social projects,

while being aware that these are operations where funds

are “lost”.

The implementation of partial guarantee instruments must

be combined with training for bankers, operators, national

providers, etc. This would encourage them to become

involved over the long term and to take project or counter-

part risks (which they would otherwise refuse). In a context

of private investment, where equity contributions are

lacking, it might be conceivable to invest in the capital of

certain operations.

In view of the challenges of developing access and the

financing that may be allocated to it, it is thus necessary to

rethink the structuring of rural and peri-urban electrification

projects in order to achieve the most effective use of grants

(as the latter are necessary for this type of project which,

even when it is well structured, cannot reach the levels of

profitability that are possible in urban and industrial areas).

Grants are currently scarce and must be used in a

reasoned and targeted manner to finance the unprofitable

aspects of the project in order to reconcile equalization and

financial balance.

List of acronyms and abbreviations

ADEME Agence de l’environnement et de la maîtrise de l’énergie (French Environment and Energy Management Agency)

ADER Association des énergies renouvelables (Renewable Energy Association, France)

AFD Agence Française de Développement

AFREPEN African Energy Policy Research Network

AMADER Agence malienne pour le développement de l'énergie domestique et électrification rurale (Agency for the

Development of Domestic Energy and Rural Electrification, Mali)

ANARE Autorité nationale de régulation du secteur d'électricité (National Electricity Sector Regulatory Authority)

APAUS Agence pour accès universel aux services (Agency for Universal Access to Services)

APL Adaptable Program Loan

ARSEL Agence de régulation du secteur électrique (Electricity Sector Regulatory Agency)

ADB African Development Bank

BOT Build Operate Transfer

CAR Central African Republic

CEMAC Central African Economic and Monetary Community

CIE Compagnie Ivoirienne d'Electricité Electricity Company of Cote d'Ivoire

CREE Commission de Régulation de l'Electricité et de l'Eau (Electricity and Water Regulatory Commission)

DGE Direction générale de l’Energie (General Directorate for Energy)

DRC Democratic Republic of the Congo

DRE Decentralized Rural Electrification

DSC Decentralized Services Company

ECOWAS Economic Community of West African States

EDF Électricité de France

EdM Électricité du Mali

ESF Électriciens sans frontières (Electricians without Borders)

ESMAP Energy Sector Management Assistance Program

FACE Fonds d’amortissement des charges d’électrification (Fund for the Amortization of Electrification Charges)

FGEF French Global Environment Facility

GEF Global Environment Facility

GRET Groupe de recherche and d'échanges technologiques

GIZ/GTZ Deutsche Gesellschaft für Internationale Zusammenarbeit

HDI Human Development Indicators

IBRD International Bank for Reconstruction and Development

IDA International Development Association

IEA International Energy Agency

IED Innovation énergie développement

IEG Independent Evaluation Group

IGCC Integrated Gasification in Combined Cycle

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

93

IPP Independent Power Producer

IREDA Indian Renewable Energy Development Agency

KPLC Kenya Power Lighting Corporation

LED Light-Emitting Diode

LELB Low Energy Light Bulb

LRMC Long-Run Marginal Cost

LV Low Voltage

MDGs Millennium Development Goals

MRBC Meter Reading, Billing and Collection

MV Medium Voltage

NGO Non-Governmental Organization

NIZ Non-Interconnected Zones

OBA Output-Based Aid

OECD Organisation for Economic Co-operation and Development

ONE Office national d'électricité

PACEAA Poverty Alleviation through Cleaner Energy for Agro-Industry in Africa

PCASER Projet de candidature spontanée d’électrification rurale (Project for Spontaneous Applications for Rural

Electrification)

PERG Programme d’électrification rurale global (Global Rural Electrification Program)

PPA Power Purchase Agreement

PPP Public-Private Partnership

PSP Private-Sector Participation

PV Photovoltaics

PVPS Photo-Voltaic Power Systems

REA Rural Electrification Agency

REC Rural Electrification Corporation

REF Rural Electrification Fund

RGGVY Rajiv Gandhi Grameen Vidyutikaran Yojana

RIAED Réseau international d’accès aux énergies durables (International Network for Access to Renewable Energy)

RRI Rate of Return on Investment

SENELEC Société nationale d'électricité du Senegal

SHEP Self-Help Electrification Program

SIG Southern Interconnected Grid

SIL Special Impact Loan

SMEs Small and Medium-Sized Enterprises

SWER Single Wire Earth Return

SWOT Strengths, Weaknesses, Opportunities, Threats

TPA Third-Party Access

UNDP United Nations Development Programme

UNEP United Nations Environment Programme

UNIDO United Nations Industrial Development Organization

WAEMU West African Monetary and Economic Union

WEO World Energy Outlook

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

94

Internal reports / Program documents

ADEDJOUMON, C. (2008), Capitalization of rural electrification projects financed by AFD in Africa from 1994 to 2008 (in French), Internal

Report.

AFD (2005), Retrospective evaluation of a rural electrification project in the Ganzourgou (Burkina Faso) (in French), Internal Report.

EDF, Study to identify scope of works for a rural electrification project in Kenya, Internal Report.

EDF, AXENNE and ABERDARE, Review of customer connection policy, "Strengthening the electricity distribution in Nairobi and Mombasa",

Internal Report.

HEURAUX, C. (2009), Presentation of the SSD survey, EDF (in French), Internal Report.

KOTY, C. (2007), Situation of the energy sector and perspectives (in French), Ministry of Mines, Energy and Water of Benin, Internal Report.

Ministry for Energy, Kenya (2005), Road map for reform of the rural electrification programme, Internal Report.

MMEE, GTZ, AFD and CE (2008), Program document, rural electrification program through network connection.

MOSTERT, W. (2008), Review of experiences with rural electrification agencies - Lessons for Africa, Draft Report prepared for the European

Union Energy Initiative-Partnership Dialogue Facility (EUEI-PDF), EUEI-PDF, Internal Report.

NIANG, A., "The strategy of the development of rural electrification" (in French), ASER presentation, Dakar, Internal Report.

Project studies

CEMAC, ECOWAS, 2006 IED: Studies carried out in the CEMAC (Cameroon, CAR, Chad, Congo, Gabon, Equatorial Guinea,)

and ECOWAS (Benin, Burkina Faso, Cape Verde, Côte d’Ivoire, Gambia, Ghana, Guinea, Guinea Bissau) areas.

Study carried out in 2001 in the Philippines as part of a partnership between the World Bank and the Foundation of the Institute

for Development Policy and Research Management in the Philippines.

Study carried out in Vietnam in 2005, at the initiative of the World Bank and the Swedish International Development Agency

accompanying an electrification project of USD 150m.

ONE, in partnership with the AFD (2003): Impact study of the effects of electrification in its different forms, on households and

non-domestic users. The World Bank has published an impact study based on data from different continents, rural locations

and on the natural environment.

World Bank (2008), UNDP (2007), ECOWAS and UEMOA (2006), Review of national framework for involvement of agro-

industries in rural electrification, project PACEAA (poverty alleviation through cleaner energy for agro-industry in Africa), 2009,

Mostert (2008), African Energy Policy Research Network (AFREPEN), 2004, data collected in the scope of the Club of

agencies of rural electrification, Congolese household survey (2005), Eritrean Ministry of Energy, International network of

access to sustainable energy (RIAED), 2005.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

95

References

AFD (2004), Supervisory Board Report - Renforcement de la distribution électrique à Nairobi et Mombasa, Paris.

AFD (2005), Supervisory Board Report - Extension du réseau électrique dans six provinces rurales du Kenya, Paris.

AFD (2008a), Aide-mémoire, Identification du projet d’électrification rurale, Mauritanie CMR3009, Paris.

AFD (2008b), Aide-mémoire, Projet de fourniture de services énergétiques, Mission d’appui pour l’élaboration des procédures

de gestion du fonds d’électrification rurale, Paris.

AFD (2008c), Mission Report, Identification du projet d’électrification rurale, Mauritanie CMR3009, Paris.

IEA (2009), World Energy Outlook 2009, Paris.

BOLAY, C and A. RABINOVICH (2004), Intermediate Cities in Latin America, Risk and Opportunities of Coherent Urban

Development, Elsevier, London.

BPOBA (2007), OBA in Senegal, designing technology-neutral concessions for rural electrification, World Bank, Washington

DC.

BURGEAP (2006), The elaboration of a National Rural Electrification Framework in Ghana, Inception Report, Concept Note

and Workshop, Boulogne-Billancourt.

CBS – International Livestock Research Institute (2004), The Geographic Dimensions of Well-Being in Kenya: Where are the

Poor?

ECOWAS and WAEMU (2006), Livre blanc pour une politique régionale sur accès aux services énergétiques des populations

rurales and périurbaines pour l’atteinte des objectifs du Millénaire pour le développement.

CRE (2005), "La péréquation des tarifs d’utilisation des réseaux nécessite un outil adapté: le fonds de péréquation de électri-

cité" Fiche n° 4, Paris.

EASE and IMPROVES (2007), Opérateurs électriques en milieu rural au Mali and au Burkina Faso.

EDF, Study of non-electrified households in electrified areas in Kenya, Internal Report.

GRET (2005), "Comment se sont-ils électrifiés ? Deux études de cas de politique nationale d'électrification: France, United

States", On-line studies and works n° 3, Paris.

IED (2004), Rapport de synthèse sur les prix obtenus dans le cadre de l’appel d’offres pour l’électrification de six localités en

Mauritanie – Comparative study.

IEG (2008), The welfare impact of rural electrification: a reassessment of the costs and benefits, World Bank, Washington DC.

MASSE, R. (2008), Évaluation des SSD au Mali, Maroc and Afrique du Sud – Final report, GRET, Paris.

MASSE, R. (2005), Histoire de l'électrification rurale en France, GRET, Paris.

MASSE, R. (2004), Financer le développement de l’électrification rurale, GRET, Paris.

Ministry of Mines, Energy and Water, France (2005), Programme d’action pour l’électrification des localités rurales du Bénin,

ABERME, Paris.

UNDP (2008), Human development report 2007-2008, UNDP, New York.

PRAXIS (2008), Harmonisation de la méthodologie d’élaboration des plans locaux électrification des concessions, Final

Report.

UN-HABITAT (2008), The state of African cities, a framework for addressing urban challenges in Africa, UN-HABITAT, Nairobi.

UN (2008), Renforcer l’épargne intérieure en Afrique, Afrique Renouveau, Vol. 22#3, New York.

WORLD BANK (2008a), World Development Report, Washington, DC.

WORLD BANK (2008b), Designing sustainable off-grid rural electrification projects: principles and practices, operational

guidance for World Bank Group staff, Washington, DC.

WORLD BANK (2006), An investment framework for clean energy and development: A progress report, Washington, DC.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

97

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

99

Série Documents de travail / Working Papers SeriesPubliés depuis janvier 2009 / published since January 2009

Les numéros antérieurs sont consultables sur le site : http://recherche.afd.fr

Previous publications can be consulted online at: http://recherche.afd.fr

N° 78 « L’itinéraire professionnel du jeune Africain » Les résultats d’une enquête auprès de jeunes leaders Africains sur

les « dispositifs de formation professionnelle post-primaire »

Richard Walther, consultant ITG, Marie Tamoifo, porte-parole de la jeunesse africaine et de la diaspora

Contact : Nicolas Lejosne, département de la Recherche, AFD - janvier 2009.

N° 79 Le ciblage des politiques de lutte contre la pauvreté : quel bilan des expériences dans les pays en développement ?

Emmanuelle Lavallée, Anne Olivier, Laure Pasquier-Doumer, Anne-Sophie Robilliard, DIAL - février 2009.

N° 80 Les nouveaux dispositifs de formation professionnelle post-primaire. Les résultats d’une enquête terrain au Cameroun,

Mali et Maroc

Richard Walther, Consultant ITG

Contact : Nicolas Lejosne, département de la Recherche, AFD - mars 2009.

N° 81 Economic Integration and Investment Incentives in Regulated Industries

Emmanuelle Auriol, Toulouse School of Economics, Sara Biancini, Université de Cergy-Pontoise, THEMA,

Comments by : Yannick Perez and Vincent Rious - April 2009.

N° 82 Capital naturel et développement durable en Nouvelle-Calédonie - Etude 1. Mesures de la « richesse totale »

et soutenabilité du développement de la Nouvelle-Calédonie

Clément Brelaud, Cécile Couharde, Vincent Géronimi, Elodie Maître d’Hôtel, Katia Radja, Patrick Schembri,

Armand Taranco, Université de Versailles - Saint-Quentin-en-Yvelines, GEMDEV

Contact : Valérie Reboud, département de la Recherche, AFD - juin 2009.

N° 83 The Global Discourse on “Participation” and its Emergence in Biodiversity Protection

Olivier Charnoz. - July 2009.

N° 84 Community Participation in Biodiversity Protection: an Enhanced Analytical Framework for Practitioners

Olivier Charnoz - August 2009.

N° 85 Les Petits opérateurs privés de la distribution d’eau à Maputo : d’un problème à une solution ?

Aymeric Blanc, Jérémie Cavé, LATTS, Emmanuel Chaponnière, Hydroconseil

Contact : Aymeric Blanc, département de la recherche, AFD - août 2009.

N° 86 Les transports face aux défis de l’énergie et du climat

Benjamin Dessus, Global Chance.

Contact : Nils Devernois, département de la Recherche, AFD - septembre 2009.

N° 87 Fiscalité locale : une grille de lecture économique

Guy Gilbert, professeur des universités à l’Ecole normale supérieure (ENS) de Cachan

Contact : Réjane Hugounenq, département de la Recherche, AFD - septembre 2009.

N° 88 Les coûts de formation et d’insertion professionnelles - Conclusions d’une enquête terrain en Côte d’Ivoire

Richard Walther, expert AFD avec la collaboration de Boubakar Savadogo (Akilia) et de Borel Foko (Pôle de Dakar)

Contact : Nicolas Lejosne, département de la Recherche, AFD - octobre 2009.

N° 89 Présentation de la base de données. Institutional Profiles Database 2009 (IPD 2009)

Institutional Profiles Database III - Presentation of the Institutional Profiles Database 2009 (IPD 2009)

Denis de Crombrugghe, Kristine Farla, Nicolas Meisel, Chris de Neubourg, Jacques Ould Aoudia, Adam Szirmai

Contact : Nicolas Meisel, département de la Recherche, AFD - décembre 2009.

N° 90 Migration, santé et soins médicaux à Mayotte

Sophie Florence, Jacques Lebas, Pierre Chauvin, Equipe de recherche sur les déterminants sociaux de la santé et

du recours aux soins UMRS 707 (Inserm - UPMC)

Contact : Christophe Paquet, département Technique opérationnel (DTO), AFD - janvier 2010.

N° 91 Capital naturel et developpement durable en Nouvelle-Calédonie - Etude 2. Soutenabilité de la croissance néo-

calédonienne : un enjeu de politiques publiques

Cécile Couharde, Vincent Géronimi, Elodie Maître d’Hôtel, Katia Radja, Patrick Schembri, Armand Taranco

université de Versailles – Saint-Quentin-en-Yvelines, GEMDEV

Contact : Valérie Reboud, département Technique opérationnel, AFD - janvier 2010.

N° 92 Community Participation Beyond Idealisation and Demonisation: Biodiversity Protection in Soufrière, St. Lucia

Olivier Charnoz, Research Department, AFD - January 2010.

N° 93 Community participation in the Pantanal, Brazil: containment games and learning processes

Participation communautaire dans le Pantanal au Brésil : stratégies d’endiguement et processus d’apprentissage

Olivier Charnoz, département de la Recherche, AFD - février 2010.

N° 94 Développer le premier cycle secondaire : enjeu rural et défis pour l'Afrique subsaharienne

Alain Mingat et Francis Ndem, IREDU, CNRS et université de Bourgogne

Contact : Jean-Claude Balmès, département Education et formation professionnelle, AFD - avril 2010

N° 95 Prévenir les crises alimentaires au Sahel : des indicateurs basés sur les prix de marché

Catherine Araujo Bonjean, Stéphanie Brunelin, Catherine Simonet, CERDI - mai 2010.

N° 96 La Thaïlande : premier exportateur de caoutchouc naturel grâce à ses agriculteurs familiaux

Jocelyne Delarue, Département de la Recherche, AFD - mai 2010.

N° 97 Les réformes curriculaires par l’approche par compétences en Afrique

Francoise Cros, Jean-Marie de Ketele, Martial Dembélé, Michel Develay, Roger-François Gauthier, Najoua Ghriss,

Yves Lenoir, Augustin Murayi, Bruno Suchaut, Valérie Tehio - juin 2010.

N° 98 Les coûts de formation et d’insertion professionnelles - Les conclusions d’une enquête terrain au Burkina Faso

Richard Walther, Boubakar Savadogo, consultants en partenariat avec le Pôle de Dakar/UNESCO-BREDA.

Contact : Nicolas Lejosne, département de la Recherche, AFD - juin 2010.

N° 99 Private Sector Participation in the Indian Power Sector and Climate Change

Shashanka Bhide, Payal Malik, S.K.N. Nair, Consultants, NCAER

Contact : Aymeric Blanc, Research Department, AFD - June 2010.

N° 100 Normes sanitaires et phytosanitaires : accès des pays de l’Afrique de l’Ouest au marché européen - Une étude empirique

Abdelhakim Hammoudi, Fathi Fakhfakh, Cristina Grazia, Marie-Pierre Merlateau.

Contact : Marie-Cécile Thirion, département de la Recherche, AFD - juillet 2010.

N° 101 Hétérogénéité internationale des standards de sécurité sanitaire des aliments : Quelles stratégies pour les filières

d’exportation des PED ? - Une analyse normative

Abdelhakim Hammoudi, Cristina Grazia, Eric Giraud-Héraud, Oualid Hamza.

Contact : Marie-Cécile Thirion, département de la Recherche, AFD - juillet 2010.

N° 102 Développement touristique de l’outre-mer et dépendance au carbone

Jean-Paul Ceron, Ghislain Dubois et Louise de Torcy.

Contact : Valérie Reboud, AFD - octobre 2010.

N° 103 Les approches de la pauvreté en Polynésie française : résultats et apports de l’enquête sur les conditions de vie en 2009

Javier Herrera, IRD-DIAL, Sébastien Merceron, Insee - novembre 2010.

Contact : Cécile Valadier, département de la Recherche

N° 104 La gestion des déchets à Coimbatore (Inde) : frictions entre politique publique et initiatives privées

Jérémie Cavé, Laboratoire Techniques, Territoires et Sociétés (LATTS), CNRS - décembre 2010.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

100

N° 105 Migrations et soins en Guyane - Rapport final à l’Agence Française de Développement dans le cadre du contrat

AFD-Inserm

Anne Jolivet, Emmanuelle Cadot, Estelle Carde, Sophie Florence, Sophie Lesieur, Jacques Lebas, Pierre Chauvin

Contact : Christophe Paquet, département Technique opérationnel (DTO), AFD - décembre 2010.

N° 106 Les enjeux d'un bon usage de l'électricité : Chine, Etats-Unis, Inde et Union européenne

Benjamin Dessus et Bernard Laponche avec la collaboration de Sophie Attali (Topten International Services),

Robert Angioletti (Ademe), Michel Raoust (Terao)

Contact : Nils Devernois, département de la Recherche, AFD - février 2011.

N° 107 Hospitalisation des patients des pays de l’Océan indien - Prises en charges spécialisées dans les hôpitaux de la Réunion

Catherine Dupilet, Dr Roland Cash, Dr Olivier Weil et Dr Georges Maguerez (cabinet AGEAL)

En partenariat avec le Centre Hospitalier Régional de la Réunion et le Fonds de coopération régionale de la Réunion

Contact : Philippe Renault, AFD - février 2011.

N° 108 Peasants against Private Property Rights: A Review of the Literature

Thomas Vendryes, Paris School of Economics - February 2011.

N° 109 Le mécanisme REDD+ de l’échelle mondiale à l’échelle locale - Enjeux et conditions de mise en oeuvre

ONF International

Tiphaine Leménager, département de la Recherche, AFD - mars 2011.

N° 110 L’aide au Commerce : état des lieux et analyse

Aid for trade: A survey

Mariana Vijil, Marilyne Huchet-Bourdon et Chantal Le Mouël

AGROCAMPUS OUEST, INRA, Rennes - avril 2011.

N° 111 Métiers porteurs : le rôle de l’entrepreneuriat, de la formation et de l'insertion professionnelle

Sandra Barlet et Christian Baron, GRET

Nicolas Lejosne, département de la Recherche, AFD ([email protected]) - avril 2011.

N° 112 Charbon de bois et sidérurgie en Amazonie brésilienne : quelles pistes d’améliorations environnementales ?

L’exemple du pôle de Carajas

Ouvrage collectif sous la direction de Marie-Gabrielle Piketty, Cirad, UMR Marchés,

Contact : Tiphaine Leménager, département de la Recherche, AFD ([email protected]) - avril 2011.

N° 113 Gestion des risques agricoles par les petits producteurs Focus sur l'assurance-récolte indicielle et le warrantage

Guillaume Horréard, Bastien Oggeri, Ilan Rozenkopf sous l’encadrement de :

Anne Chetaille, Aurore Duffau, Damien Lagandré

Contact : Bruno Vindel, département des Politiques alimentaires, AFD - mai 2011.

N° 114 Analyse de la cohérence des politiques commerciales en Afrique de l’Ouest

Jean-Pierre Rolland, Arlène Alpha, GRET

Contact : Jean-René Cuzon ([email protected]), département PSP, AFD - juin 2011

N° 115 L’accès à l’eau et à l’assainissement pour les populations en situation de crise :

comment passer de l’urgence à la reconstruction et au développement ?

Julie Patinet (Groupe URD) et Martina Rama (Académie de l’eau),

sous la direction de François Grünewald (Groupe URD)

Contact : Thierry Liscia ([email protected]), département du Pilotage stratégique et de la Prospective,

N° 116 Formation et emploi au Maroc : état des lieux et recommandations

Jean-Christophe Maurin ([email protected]) et Thomas Mélonio ([email protected]), AFD - septembre 2011.

N° 117 Student Loans : Liquidity Constraint and Higher Education in South Africa

Marc Gurgand, Adrien Lorenceau, Paris School of Economics

Contact : Thomas Mélonio ([email protected]), Research Department, AFD - September 2011.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

101

N° 118 Quelle(s) classe(s) moyenne(s) en Afrique ? Une revue de littérature

Dominique Darbon, IEP Bordeaux, Comi Toulabor, LAM Bordeaux

Contacts : Virginie Diaz et Thomas Mélonio, département de la Recherche, AFD

N° 119 Les réformes de l’aide au développement en perspective de la nouvelle gestion publique

Jean-David Naudet, division Evaluation et Capitalisation, AFD

N° 120 Fostering low-carbon growth initiatives in Thailand

EDDEN Research Unit of CNRS (French National Research Center) at the University of Grenoble : Prof. Patrick

Criqui (CNRS, Scientific Director), Dr. Pierre-Olivier Peytral (EDDEN Lab, Economist) Dr. Jean-Christophe Simon

(IRD, Senior Economist)

Contact : Cécile Valadier, Research Department, AFD ([email protected])

N°121 Interventionnisme public et handicaps de compétitivité : analyse du cas polynésien

Florent Venayre, Maître de conférences en sciences économiques, université de la Polynésie française et

LAMETA, université de Montpellier

Contact : Cécile Valadier, département de la Recherche, AFD

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

102

Access to Electricity in Sub-Saharan Africa:Lessons Learned and Innovative Approaches

Anjali Shanker (IED) with the contribution from Patrick Clément (Axenne),Daniel Tapin et Martin Buchsenschutz (Nodalis Conseil)

Contact: Valérie Reboud, (AFD) Technical Operations Department,Environment and Equipment Division ([email protected])

Age

nce

Fran

çais

e de

Dév

elop

pem

ent

122

Age

nce

Fran

çais

e de

Dév

elop

pem

ent

Agence Française de DéveloppementDirection de la StratégieDépartement de la Recherche

5 rue Roland Barthes75012 Paris - Francewww.afd.fr

Research Department

WorkingPaper

Age

nce

Fran

çais

e de

Dév

elop

pem

ent

October 2013

Layout: Eric Thauvin

Publication Director: Anne PAUGAM

Editorial Director: Alain HENRY

ISSN: 1958-539X

Copyright registration: 3rd Quarter 2013

Disclaimer

The analyses and conclusions in this working paper are the authors’ own. They do not necessarily reflect the point of view of

Agence Française de Développement or its partner institutions.

Acknowledgements

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

3

This study was conducted for Agence Française de Développement (AFD) by the Innovation Energie Développement (IED)

consortium, Axenne and Nodalis Conseil.

This paper was written by Anjali Shanker, Managing Director (IED), with contributions from Patrick Clément (Axenne),

Daniel Tapin and Martin Buchsenschutz (Nodalis Conseil). The author wishes to thank all those who have contributed to this

work, and in particular Valérie Reboud, Christian de Gromard, Laurence Breton Moyet and Carl Bernadac (AFD), as well as

Denis Rambaud-Méasson (IED).

A Steering Committee met several times and the substance of this text has been defined thanks to its contributions during the

working sessions. We would therefore like to thank all the members for their invaluable contributions: The French Environment

and Energy Agency (ADEME), Electricité de France (EDF), Electricians without Borders (ESF), the École des Ponts ParisTech,

the Énergies pour le Monde foundation and Total Renewable Energies.

Contents

Executive summary 7Introduction 17

1 Access to electricity services in Sub-Saharan Africa: Challenges and methodological approach 211.1 Power systems insufficient to underpin sustainable economic and social development 211.2 Develop a systematic vision and overall operational planning: Access for what purpose and

with what resources? 271.3 Analysis and lessons learned from the impact of past programs 291.4 Access dynamics affected by sector reforms 341.5 Establish clear prerogatives for each stakeholder 37

2 A continuum of technical, economic and organizational solutions 452.1 Technical and economic framework 452.2 Complementary technical solutions for the interconnected grid 532.3 Distribution and customer management: Substantial leeway 67

3 A need for structured financing 773.1 Widespread access to electricity services: The need to mobilize more financing than

the current flows from international cooperation 773.2 Historical principles 793.3 Keys for setting tariff levels 813.4 Establishing the financing mechanisms required to guarantee access to an electricity service for all 85

List of acronyms and abbreviations 93

References 97

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

5

This study was conducted with the aim of developing new

approaches and a methodological capitalization on the

topic of access to electricity services for all in Sub-Saharan

Africa.

The first section of the study analyzes the challenges

involved. The low level of access rates in Sub-Saharan

Africa must be put into perspective with the need for

equipment design and territorial development. This, in turn,

must consider the dynamics of economic and social

development, as well as the impact of past programs and

sector reforms.

The second section focuses on operational proposals,

based on a review of the various technical options for

power generation, especially for renewable energy, whose

recent advances certainly have strong potential but also

difficulties. The key challenge for distribution is addressed

in its multiple dimensions.

The third and last section concerns the financial challenges:

there is a need to mobilize national financing, which reflects

a strong political commitment, and to make the best

possible use of the scarce grants available, which is a major

challenge. An in-depth analysis of how the project risks and

quality of the promoter are perceived may provide insight

into possible future directions for high-impact financial

engineering.

Executive summary

1 1. The challenges for access to modern energy in Sub-Saharan Africa

1.1 Power systems insufficient to underpin sustainable economic and social development

In Sub-Saharan African countries1, the average rate of

access to an electricity supply2 stands at 16% of the total

number of households and less than 5% in rural areas.

While this percentage has improved since the 1990s, the

number of people without access to electricity has actually

risen due to population growth.

Less than 20% of communities are generally connected to

power infrastructure. It therefore does not support the

sustainable economic and social development of sources of

production (irrigation, refrigeration, motive power, etc.), or

of basic social services (health centers) throughout the

region.

Demographic and migratory issues make this challenge of

access to modern energy even more complex. Indeed,

communities living in small remote villages – where

electrification is costly – will tend to migrate to secondary

cities, which have economic and social infrastructure.

1 This study focuses on access to electricity in Sub-Saharan African countries. North Africancountries – Algeria, Egypt, Libya, Morocco and Tunisia – are not included in these figures.

2 In statistics, this generally indicates the share of the population with access tocommercially sold electricity at home. In a broader definition, a battery recharge or solar kitservice may also be considered as access to an electricity service.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

7

Defining the potential profitability of a program to provide

access to electricity services requires making a distinction

between two types of program. The first aims at equipping

a given area (where there are secondary centers with

"economic potential") with essential infrastructure for its

economic development. The second aims at providing

a widespread service to all the residents of an area,

especially the poorest (this may be peri-urban communities,

which account for 40 to 60% of households, even in a

country’s cities), or communities living in small villages or

very remote dwellings.

The rationale behind these two approaches is different: the

aim of the first is economic development and spatial

planning; the second has a social target of equity and

geographical balance (which comes at a high cost).

Focusing on "development centers" for spatial planning and

the provision of basic infrastructure for communities allows

a certain level of profitability to be achieved for electricity

services, as these centers have both economic activities

and a certain level of population density.

These medium-sized cities should thus be considered as

priorities in order for them to become fully-fledged "deve-

lopment centers" and to maximize the impact of the scarce

resources available for rural electrification.

To this end, spatial planning must go hand-in-hand with a

clear political vision of the social and economic objectives,

along with a political commitment to resource allocation.

However, the answer to the question "access for what

reason and with what means?" should not remain at a

political level. It must lead to a prioritization and to the

implementation of realistic and operational action plans that

fully take account of the financial, organizational and

technological realities of the country.

1.2 The key role of "development centers"

1.3 A real economic benefit for communities

Few ex post analyses are available, but they do bring to

light a number of key facts:

• Communities not connected to the power grid pay – for an

equivalent use of electricity supplied by kerosene or

(rechargeable) batteries – an energy price that is several

times higher than connected communities. It is often as

much as USD 10 per month. There is consequently a real

ability to pay for electricity services;

• The connection fee often stands at between USD 100 and

USD 300 – a prohibitive amount that is difficult to pay as a

lump sum;

• Once the connection is made, the expenditure – and

therefore consumption – generally remains stable with

lower unit prices. This is both an advantage and an

impediment, as it is clearly an advantage for small shops

and craft trades, which were already electricity users and

are thus equipped, but the cost of acquiring electrical

equipment for new clients stems consumption;

• Access to energy has a significant social and economic

impact (street lighting, health services, etc.), although it is

difficult to clearly identify the role played by electricity in

improving living conditions for communities compared to

other infrastructure.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

8

While there is clearly economic profitability, which in itself is

extremely reassuring for the allocation of resources to this

sector, the issue of financing still needs to be resolved.

Indeed, a country where the access rate to electricity in

affluent industrial and urban areas remains low, with poor

service quality and a need for recurrent financing to cover

operating and maintenance costs, will find it very difficult to

make access in rural and peri-urban areas a national

priority.

1.4 Access dynamics affected by sector reforms

In the mid-1990s, the general inefficiency of electricity

companies in the public sector prompted a wave of

reforms, calling for greater private sector participation.

Today, the institutional model that has become the norm is

that of an agency and/or fund to design, develop and/or

operate power systems in rural or peri-urban areas.

However, African countries that have maintained their tradi-

tional national power companies today have the highest

access rates to electricity: Côte d’Ivoire, 39%; Ghana, 60%

(82% in urban areas and 29% in rural areas); South Africa,

70%. The balance between profitable areas (towns and

densely populated coastal areas) and unprofitable (rural)

areas would appear to be easier to achieve in the case of a

single overall management. Does this mean that all efforts

should, once again, focus on national power companies? A

positive answer would be particularly questionable in view

of the fact that they are often required to be financially pro-

fitable, and that rural and peri-urban electrification may fall

outside their remit and their priorities. The new entities and

organizations should be given the time they need to reach

maturity before drawing any definitive conclusions.

As far as private operators are concerned, it is clear that

they have few reasons to take an interest in energy supply

to rural areas. Indeed, this niche has low profit levels and is

difficult to manage, unless there is a high level of State

cofinancing, which would give the concession a certain

degree of profitability. However, many non-governmental

entities have acquired extensive experience in Africa’s rural

areas and play a pioneering role in developing innovative

technical and organizational solutions. They can be potential

operators in low-income areas with low energy consumption,

working closely with local users’ organizations, municipa-

lities and local government.

1.5 Establish clear prerogatives for each stakeholder

The multiplication of entities – national companies,

funds/agencies, regulators, ministries – prior to implementing

large-scale projects, does not necessarily provide the three

functions of financing, regulation and implementation. It is

clear that this often leads to a fragmentation of compe tencies,

as well as competition between institutions to take owner-

ship of projects that have budgets and to hold responsibilities

at the “frontiers" of these three functions.

Financing function: While most Sub-Saharan African

countries today have rural electrification funds (since power

companies stopped financing this sub-sector), they are

generally mere accounts through which the meager grants

from international cooperation are transferred and they do

not have well-developed financing mechanisms. The increa-

singly important role of local authorities could bring about

changes to this.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

9

Regulation function: A regulator must ultimately answer the

following questions: Does the project have sufficient

incentives and is it transparent enough to attract private

sector investment, and if so, to what extent? Is it realistic to

envisage rural electrification concessions (with private

investment), or should franchises or affermage with mainly

public investment and a private manager initially be

planned? Should the question of tariff regulation involve

equalization or not? The simple fact of creating an ad hoc

regulatory agency does not necessarily allow a clear and

credible framework to be defined and implemented.

Industrial/implementation function: In the past, the national

company played a central role as it was both a power

company, which has the real technical and organizational

capability to carry out a large-scale program, and a

counterpart, which publishes a balance sheet and

profit-and-loss account, allowing it to be a long-term

borrower (public, of course, and often with a State

guarantee). The withdrawal of national companies from

rural areas may have an adverse effect on the development

of expertise in engineering and works supervision, which is

essential in order to maintain a quality nationwide power

supply.

These issues are becoming even more essential with the

multiplication of ever more complex technological options to

meet electricity demand.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

10

Historically, the economies of scale of large-scale infra-

structure and interconnections justified a public monopoly

situation. This context led to a structuring of the ways and

means of financing such large operations by lending

directly to the State, or with a State guarantee. However,

since the 1990s the paradigm of technologies and the

financial situation of counterparts has evolved.

Most African countries have a serious investment shortfall

in both large-scale infrastructure and in highly capital-

intensive interconnected power grids, which must be

amortized over a long period due to the general financial

crisis that started in the 1980s. This shortfall affects both the

quality of the counterparts of electricity companies and the

States themselves.

Despite being rich in natural resources, a number of

countries are obliged to invest in thermal power (gas turbines

or heavy fuel oil). It may come at a low cost in terms of

capital and can be rapidly built, but is today feeling the full

brunt of the increase in the price of hydrocarbons.

The paradigm of renewable energy has been completely

transformed:

• Small- and medium-power generation, using old

technology based on renewable energy sources, is

becoming competitive (this is the case for small hydro-

power plants, gasifiers and cogeneration);

• The industrial development of new sectors, after

decades of research, is experiencing a new dynamism,

which makes these technologies more reliable and

lowers investment costs (this is the case for photo -

voltaics3 and industrial biogas);

• Recent developments in electrical engineering allow the

production distributed on the grids to be managed, in

conjunction with a close monitoring of demand, which

leads to "smart grids";

• Hybrid solutions, combining the production flexibility of

a diesel generator with the low, long-term generation

cost of renewable energy, offer an alternative to overco-

me the problems of intermittency found in renewable

energy sources.

Consequently, given the two main current trends in

Sub-Saharan Africa – difficulties in raising large amounts of

financing for large-scale generation facilities4 and the

development of electrical engineering (which today offers

the possibility of a major power grid supplied at several

points by medium-sized power plants) – there may be a

shift towards a new generation scheme. This would involve

geographically distributed medium-sized facilities

integrated into smart grids, in a context where economies of

scale no longer play the same role that they used to.

While grid extensions are the first option for scaling up

access – provided there are large-scale plants with a low

cost per kWh and grids – there is increasing scope for

small-scale local generation with the associated distribution

grid. This is in a context whereby the main power

transmission grids do not yet exist and, moreover, the

national power company has left the playing field. We thus

have a highly diversified "technological toolbox" that allows

2. A continuum of technical and organizational solutions

2.1 Technical and economic framework

3 In 2009, the kWh for units over 5 MW was announced by manufacturers at less than EUR0.25/kWh, with a cost of about EUR 3,000/kW installed peak power at the time of investmentin Europe.4 Today, 93% of the economically feasible hydropower available in Africa (estimated at937 TWh/year, i.e. 10% of the world total) remains untapped.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

11

a more targeted response to the characteristics of rural

demand. This includes: grid extensions to areas with strong

demand, thus justifying the high investment cost in

the power lines; mini grids with local thermal or hybrid

production – if the resource is available – in areas that have

corresponding levels of demand; small-scale (stand-alone)

generation geographically distributed for very remote

communities and small villages.

This technological development also requires progress in

the relevant organizational and contractual frameworks:

authorize industrial self-generation for own needs and the

resale of the surplus at an attractive tariff; allow power

generation by small independent private producers, which

implies authorizing access to the grid by these third-parties

(for power transmission from the generation point to the

consumption site), and clearly define the conditions for

the feed-in tariff. These provisions of a clear regulatory

framework are a prerequisite for the commitment by

operators to develop access to energy in rural areas.

However, the question remains over the capacity to ensure

the maintenance and implementation of these technologies

at the local level.

2.2 Complementary technical solutions for the interconnected grid

Electronics today allows the integration of distributed

generation mobilizing local resources; this new possibility

requires a sound understanding of the strengths and

weaknesses of these technology sectors, as well as of the

opportunities they offer. It is important to compare this

analysis with the characteristics of the demand, and with

the local technical and social context, as no single ideal

solution exists, but several more-or-less suitable solutions

for a given context.

Historically, diesel generators were widely installed for the

electrification of rural centers and small towns far from

the interconnected grid, due to their low investment cost,

technological simplicity and rapid installation. Today,

however, these areas suffer from skyrocketing fuel prices; a

trend that is not improving. The ultimate paradox is that,

by means of maximizing the rapid installation of a universal

service, it is thermal solutions that are favored today, as

they have the lowest investment cost and are the most

effectively controlled locally.

In contrast, despite their high potential, the very small

number of pico (stand-alone), micro (village-size: 10 to

200-500 kW), or mini hydropower plants (200-500 kW to

5-15 MW) is striking in comparison with Asia. Africa has

very few turbine manufacturers (there are a few workshops

in Ethiopia and Nigeria), but many countries have the

industrial basis to provide the maintenance of such

facilities. Studies are long and costly, as the hydrological

and civil engineering risks often require complex

investigations. The amortization of mini- or micro-hydro

plants requires a certain level of demand, or the proximity

of a grid to sell to. Nevertheless, once such a plant has

been commissioned, it operates virtually alone and at a cost

that is practically nil, and this for a decade to half century.

Like hydropower, power generation from biomass depends

upon the local availability of the resource. In terms of power

generation for rural services, there are mainly four

distinct sectors: cogeneration5, biogas6, biodiesel7 and

gasification8. Unlike hydropower, they all need qualified

operators on a daily basis and regular intensive maintenance

of the equipment. A distinction should also be made between

the development of plantations destined for power gene -

ration, involving agricultural and rural development issues,

5 Combined generation of heat and electricity.6 Generation of low-grade gas for combustion from anaerobic fermentation, which may beinjected into a rectified diesel engine.7 Generation of biodiesel in a short cycle from oilseeds, usable in diesel engines.8 Pyrolysis of agricultural residue: partial / slow combustion producing gas for use in arectified diesel engine.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

12

and the use of agricultural or agro-industry residues. In

practice, the choice of sector depends on the context: the

existence of an agro-industry, and thus of local techno -

logical skills with the possibility of surplus sales for rural

electrification, will clearly provide advantages in the field of

local control, whereas the installation of many small village-

based systems will require the development of local

expertise.

The generation costs for photovoltaics are falling, making

the PV (photovoltaic) kWh increasingly competitive

compared to other generation methods in Africa (especially

for grids supplied by thermal sources). Consequently, while

in past decades PV applications in Africa were limited to

solar kits or community applications (health, pumping, etc.)

for remote regions, this technology offers high-impact

prospects for sustainable access to electricity services

provided by (hybrid) mini grids.

Industries have widely developed their generation capacity

and have now reached the "one euro per peak watt" level

for the panels. They have been driven by large-scale

European, Japanese and American programs that have led

to major investments in generation capacity, as well as in

electronics to integrate renewable energy sources into

smart grids. This might well become the first option for

hybridization, as the almost constant sunshine in the region

is a resource that is easier to mobilize than biomass or

hydropower. The weak points of PV are its necessarily

diurnal generation (whereas in rural areas the demand is

often at night), and its particularly high investment cost,

which requires complex financial engineering.

2.3 Distribution and customer management: Substantial leeway

Once the generation method has been selected (renewable

energy, grid extension, diesel generator), the issue is raised

as to the distribution to households and customer

management. It should be stressed that the objective of

"access for all" does not automatically mean "equal service

level for all", as users do not all have the same needs for

energy quantity (engines or lighting) or service quality

(continuous service or a few hours a day). Setting up pico

electrification9 systems allows communities without

individual connections, but in a "covered area", to have

access to a minimum service. However, while these

systems reduce the exclusion of certain communities, it

would be wrong to consider them as effectively covered and

thus not eligible for a "full" service.

There is considerable potential for decreasing costs, but the

right option should be carefully selected. Indeed, in addition

to the issue of adapting standards to demand, it is common

practice to overestimate this demand, and thus to oversize

the grid (cable sections, transformer capacity, etc.). By

changing such practices, procurement policies and program

management, it is possible to save up to 30% on the

investment cost.

In the management field, distribution through the grid

corresponds to a (metered) unit sale of energy, whereas

electricity distribution in areas of weak demand often

corresponds to a service sale (number of lighting units,

hours of service, etc.). In rural areas, civil society and local

NGOs or village organizations increasingly handle customer

management and even distribution. This development suits

the power companies – they even call for it – as they

effectively prefer to sell in bulk to a single distributor. Today,

there is a proliferation of this type of contractual innovation.

Innovation is thus not necessarily technical, it can be based

on social systems that facilitate access. In addition, certain

tools and methods (smart, prepaid or collective meters)

improve both management efficiency and the rate of customer

coverage.

9 Pico electrification means battery recharge services or portable systems using highlyefficient equipment (lamps, etc.). It is sometimes associated with an individual solar panel.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

13

Technological developments require new technical and

organizational plans. We have seen that such changes lead

to different project and counterpart risk configurations and

profitability and cash flow profiles than in the past.

Moreover, as the aim is to mobilize private investors, it is

clear that their expectations in terms of profitability and their

risk perception are very different from those of a public

service entity. The private operator, depending on whether

it is an enterprise or a local community, will also have

certain expectations in terms of its remuneration. The

financing instruments must thus be redesigned in order to

offer, among other things, longer maturities and risk-sharing

mechanisms that are sufficiently attractive to mobilize the

targeted stakeholders.

3 A need for structured financing

3.1 Widespread access to electricity services: The need to mobilize more financing thanthe current flows from international cooperation

The International Energy Agency (IEA) estimates that, with

an investment of USD 35bn a year (i.e. 6% of the planned

investment in the power sector), the challenge of access to

modern energy for almost 1.6 billion people will be resolved

by 2030. Judging by a World Bank review of its own port -

folio that mentions an annual flow limited to EUR 500m, we

are far from the IEA's order of magnitude. However, it

should be borne in mind that no country has reached

significant access rates without a major national effort. It

would thus be unrealistic to rely solely on international flows

to resolve the problem.

3.2 Stumbling blocks: Tariff equalization and subsidy methods

The power sector in itself is far from generating the surplus

required to self-finance the investments needed for service

extension. As the initial rate of electrification in

Sub-Saharan Africa is very low (10 to 20%), cross subsidies

alone will not be sufficient to reach very high access rates.

In rural and peri-urban areas, the weight of domestic

customers in the social bracket (generally with a low tariff

level), as well as the high investment costs (due to rural iso-

lation), imply much higher kWh costs than in mixed urban

areas. In order to better reflect costs, some countries use

the argument of the high energy expenditure prior to

electrification (kerosene, batteries, etc.) to justify and apply

a tariff differentiation based on costs. Even if these tariffs

remain lower than an off-grid solution, this application does

not solve the issue of the social acceptability of these

differentiated tariffs. This issue is exacerbated by the fact

that in countries highly dependent upon hydrocarbons,

distributors are increasingly authorized to make tariff

adjustments in order to reflect their fuel costs.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

15

It is obviously necessary to rethink the approach to

financing rural electrification itself, and certainly to envisage

innovative approaches based on a new relationship

between technology, organization and financing.

Very long-term financing (30 years or more), or even an

initial subsidy10, are essential to finance investments in

rural areas (which has been, and occasionally still is, the

case for all member countries of the Organisation of

Economic Co-operation and Development – OECD). The

involvement of the State, which can refinance itself, is

required.

In this context, rural electrification funds must play a role as

real financial intermediaries: it is vital for them to be more

than a simple bank through which grants transit, if only

because the amounts available are very far from the

required investments. The use of such invaluable and

scarce grants as a catalyst for loans seems evident: for

subsidized loans (longer maturities based on the cash flow

profile of projects or the lower interest); for the preparation

of high quality projects to secure investors and financiers;

for partial guarantees to enhance the distribution of project

and counterpart risks and thus help raise private and bank

funds; etc. Local banks, which generally lend for a

maximum 5-year period, in reality do not want to invest in

this low-profit sector, with the exception of development

banks with a specific mandate. Investors, for their part, are

reluctant to invest capital in projects with a long return on

investment period, in a context where the regulatory and

political frameworks have not yet been stabilized. For this

type of long-term investment, risk sharing lies at the core

of the issue of mobilizing national savings and, more

generally, investments.

3.3 Keys for setting tariff levels

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

16

10 Or, more generally, concessional loans.

Table 1. AFD and FGEF rural electrification financing (1993-2008) (EUR M)

AFD FGEFBurkina-Faso 0,38 0,22Mauritania 2,21 0,76Tunisia 13,72Morocco - PERG loan 1 30,49Morocco - PERG loan 2 45,73Morocco - PERG loan 3 50,00Morocco - PERG solarMorocco - PERG loan 5 45,00South Africa 41,44Kenya - urban 25,00Kenya - rural 30,00

284,00 1,00Total 284,95

100 %Annual average 18,90 0,10Sub-Saharan Africa 57,60 1,00

Explanation of Table. When Morocco, Tunisia and South

Africa are included, financing for access to electricity

services has accounted for a total investment of EUR 284m

in Africa over the past 15 years (1993-2008) and only EUR

57.6m in Sub-Saharan Africa – i.e. less than EUR 4m a

year.

It focuses on three Sub-Saharan African countries:

Burkina Faso, Kenya and Mauritania. "Decentralized" rural

electrification only accounts for 1% of AFD’s total financial

commitments in the sector.

*PERG: Global Rural Electrification Program. Source: Authors.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

17

Introduction

The development of access11 to modern energy services is

one of AFD's fields of action; its financing operations fall

within the framework of the Millennium Development Goals

(MDGs), which aim to support economic growth, reduce

poverty and promote the conservation of the environment.

AFD’s present strategic orientations and the worldwide

consensus on the issue of access to modern energy

services, in connection with the MDGs (see Box 1), have

led the institution to define this area of operation as a

sector of increasing importance and, as discussed in this

paper, to focus on access to electricity services.

This study was carried out with the objective of developing

new approaches and a methodological capitalization on the

topic of access to electricity services for all in Sub-Saharan

Africa. It is for this reason that the already widely docu -

mented ex post analysis will only be covered in a few

succinct passages, which will serve as the basis for the

definition of concrete approaches. While AFD's experience

in this sector has been widely analyzed, its projects in the

field of access to electricity services today only account for

a small share of both its own portfolio and of all the projects

for access to electricity services in Sub-Saharan Africa.

11 “Access” means in both rural and urban areas.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

18

Goal 1 – Reduce Extreme Poverty and Hunger

Halve, between 1990 and 2015, the proportion of people whose income is less than $1 a day

Halve, between 1990 and 2015, the proportion of people who suffer from hunger

Access to affordable energy services allows the development of companies.

Lighting allows commercial activities to continue beyond daylight hours.

The use of machines improves productivity.

Small, job-creating local companies can supply energy.

Privatizing energy services can free up government funds for investments in social services.

Clean and efficient fuels reduce high domestic expenditure for cooking, lighting and heating.

95% of basic food has to be cooked before consumption and needs water to be cooked.

Better conservation reduces post-harvesting food loss: drying/smoking/cooling/freezing.

Energy for irrigation improves food production and access to better nutrition.

Goal 2 – Achieve Universal Primary Education

Ensure that, by 2015, children everywhere, boys and girls alike, will be able to complete a full course of primary schooling

Energy gives access to water, hygiene, lighting and heated/cooled spaces, which helps reduce absenteeism and dropout rates by creatinga better environment for children and teachers.

Electricity allows schools and households to access media for communication and education purposes (distance learning).

Access to energy allows useful equipment for teaching to be used: overhead projectors, computers, printers, photocopiers, scientificequipment, etc.

Modern energy systems and efficiently designed buildings reduce energy costs and therefore schooling costs, providing better accessto education for the poorest.

Goal 3 – Promote Gender Equality and Empower Women

Eliminate gender disparity in primary and secondary education, preferably by 2005, and in all levels of education no later than 2015

Modern energy services liberate girls and young women from the time allocated to survival activities (collecting firewood and water,inefficient cooking, manual harvesting).

Clean cooking equipment reduces exposure to air pollution and its harmful effects on health.

Quality lighting allows home study and evening classes to be attended; public lighting increases the safety of women; affordable andquality energy services pave the way for women’s entrepreneurship

Goal 4 – Improve Maternal Health

Reduce by three-quarters, between 1990 and 2015, the maternal mortality ratio

Energy services are needed to provide access to better medical services for mothers, such as drug refrigeration, equipment sterilization andoperating theaters.

Excessive and heavy manual work can damage the general health of pregnant women.

Box 1. The role of energy in achieving the MDGs

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

19

The World Bank is the main international institution

engaged in financing access to modern energy services. Its

financing for access (International Bank for Reconstruction

and Development – IBRD, International Development

Association – IDA, and Global Environmental Facility –

GEF) is part of the overall financing of the electricity sector,

including generation, transmission and distribution. For

2000-2008, about 35% of amounts allocated had an

"access to electricity services" component. Total financing

amounted to USD 5.6bn, i.e. an annual average of USD

627m. It was scaled up during this period, from about USD

500m a year from 2000 to 2005 to about USD 800m a year

between 2005 and 2008. Closer analysis shows that two

countries (Ethiopia and Ghana) received almost half of the

financing allocated to "access to electricity services", i.e.

over USD 400m a year. By way of comparison, this amount

is similar to the funds allocated by AFD to Morocco’s

National Electricity Authority (ONE) for its Global Rural

Electrification Program (PERG) for a ten-year period.

The European Union has become a major stakeholder in

financing access to energy and renewable energy projects

in Africa. In addition to projects carried out as part of

national or regional programming, in 2006, it launched a

sector program – the Energy Facility –, which specifically

concerns the issue of access. Between late 2007 and

mid-2008, 75 agreements were signed for an overall conso-

lidated budget of EUR 435m, including 45% (EUR 198m)

financed by an Energy Facility grant. A second tranche for

an equivalent amount was launched for 2010-2011. Finally,

it should be noted that German bilateral cooperation also

plays a major role in the field of renewable energy.

The first section of this study analyzes the challenges of

access to electricity services in Sub-Saharan Africa. An

approach leading to operational proposals is formulated on

the basis of this analysis. It is clear that the rate of access

is low, but what can be said about the economic and social

dynamics from a perspective of territorial equipment? We

seek to learn lessons from an analysis of the impact of both

past programs and sector reforms, in order to propose a

functional methodological approach.

The second section of this study covers operational

proposals, based on a review of the different production

options. The analysis will specifically focus on the

remarkable development of renewable energy and the

critical issues related to distribution.

The third and last section addresses issues related to

financing and the need to mobilize national funds and

leverage grants.

Goal 5 - Combat HIV/AIDS, Malaria and other Diseases

Have halted by 2015 the spread of AIDS, malaria and other major diseases and begun to reverse the trend

Electricity in health centers allows them to open at night, qualified staff are retained, special equipment can be used (sterilization, drugrefrigeration), vaccines and drugs can be stored.

Energy is needed to develop, manufacture and distribute drugs and vaccines.

1.1.1 In Africa, access rates for communitiesremain low after several decades ofdisappointing progress

As a development challenge and as infrastructure

recognized as being necessary for the achievement of

the MDGs, access to electricity services is becoming

increasingly central to the development policies of African

States and to the international community’s development

support strategy.

Today, the average rate of access to an electricity service12

for households in Sub-Saharan African13 countries stands

at 16%, but less than 5% in rural areas. While the trend for

this percentage has been positive since around the 1990s,

the number of people without access to an electricity

service has increased due to population growth.

1 Access to electricity services in Sub-Saharan Africa: Challenges andmethodological approach

1.1 Power systems insufficient to underpin sustainable economic and social development:The challenges to be met

Map 1. Rate of access to electricity services in Africa

Source: Authors.

12 Throughout this document, "population having access to electricity" means people whohave access to commercially sold electricity at home. 13 This study covers access to electricity in the Sub-Saharan African countries. The NorthAfrican countries – Algeria, Egypt, Libya Morocco and Tunisia – are not considered in thefigures presented.

Population with access to electricity(% of total population)

No data<1010...2020...3030...50>50

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

21

This percentage should, however, be put into perspective.

A household connected to the grid may well let others

benefit through more-or-less illegal hook-ups; battery

recharge services provide a minimum lighting service and

access to audiovisual content for households that are not

connected or live in outlying areas.

There is a major challenge ahead: Sub-Saharan African

countries have the lowest access rates to electricity in the

world, both in terms of direct access to a service at home

for people, and the electrification rate for communities. For

instance, in India, while the access rate of the population is

only 40% in rural areas and 60% in urban areas, over 95%

of communities are connected. The infrastructure thus

allows productive activities (irrigation for agriculture) and

basic social services (health centers) to operate throughout

the country. This is far from being the case in Sub-Saharan

Africa, where the much less extensive power infrastructure

generally reaches less than 20% of communities.

Angola 16 13 7,4 15Bénin 9 79 60,2 22 26Botswana 1,758 3 42,6 39 27 2Burkina Faso 14 50 82,1 17 75 3 1Burundi 8 305 90,3Cape-Verde 0,518 129 42,7Cameroon 17 36 46,3 47 5 20Central African Rep 4 7 62,1 <1 0,2 Chad 10 8 75,1 1Comoros 0,614 275 63 50Congo (Dem Rep.) 59 26 68,4 6 20 1 1Congo 4 12 40,2 20 44,6 5,6 Côte d'Ivoire 18 58 55,4 39 8 26Djibouti 0,806 35 13,9 Equatorial Guinea 0,515 18 61,1Erytrea 5 45 80,9 20 82 2Ethiopia 73 73 84,2 22 22 <1Gabon 1,406 5 16,4 48Gambia 1,553 155 46,1 5Ghana 23 99 53 49 82Guinea 9 37 67,4 6 35 1Guinea-Bissau 1,633 58 70,4 5Kenya 35 62 79,5 14 29 6,8Lesotho 1,789 59 81,3 11Liberia 3,38 35 59,5Madagascar 19 33 73,4 1 5 4 Malawi 13 140 83,2 7 30 1Mali 14 11 70,0 16 30 5

Table 2. Rate of access to electricity and electrification services in the urban and rural areas of 48 Sub-SaharanAfrican countries (in 2004, 2005, 2006, 2008 and 2009)

CountriesTotal

population(millions)

Populationdensity

(inhab./km²)

Percentage ofthe populationliving inrural areas

Percentage ofthe populationhaving accessto electricity

Percentage ofthe populationhaving accessto electricityin urban areas

Percentage ofthe populationhaving accessto electricityin rural areas

Percentageof areas withpower supply6

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

22

Mauritania 3 3 59,7Maurice 1,253 617 57,6 94Mozambique 20 26 66,3 6 17 0,6Namibia 2 2 65,4 34Niger 14 11 83,3 8 30 0,1 1Nigeria 145 159 52,7 20Rwanda 9 375 81,8 <1Sao Tomé et Principe 0,16 167 42,0Senegal 12 62 58,6 32 67 4,5 15Seychelles 0,86 186 47,1 <1 Sierra Leone 6 79 60 5Somalia 8,485 14 36,1South Africa 47 39 41,2 70 85 52 Sudan 37 16 60,1 15Swaziland 1,126 65 75,9 1Tanzania 38,5 25 76,2 11 36 2Togo 6 116 60,6 12 17 3 18Uganda 30 152 87,5 9 21 2,1Zambia 12 16 65 19 25 1,4Zimbabwe 13 34 64,5 34 80 18

Sources: World Bank (2008); UNDP (2007); ECOWAS and WAEMU (2006); Review of national framework for involvement of agro-industries in rural electrifi cation,PACEAA project (2009); Mostert (2008); African Energy Policy Research Grid (2004); data collected by the Club of Rural Electrification Agencies, Congolese hou-sehold survey (2005); Eritrean Ministry of Energy; RIAED (2005).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

23

CountriesTotal

population(millions)

Populationdensity

(inhab./km²)

Percentage ofthe populationliving inrural areas

Percentage ofthe populationhaving accessto electricity

Percentage ofthe populationhaving accessto electricityin urban areas

Percentage ofthe populationhaving accessto electricityin rural areas

Percentageof areas withpower supply6

Map 2. Share of the rural population in Sub-Saharan Africa

<5050...70>70

Rural population% of total population

Source: UNDP (2008).

The reasons why people leave the countryside are, among

others, the absence of basic public services (water,

electricity, healthcare), the hardship and hazards of rural

life, and the lack of alternatives. This population pressure

and the absence of urbanization and development plans

place an excessive burden on urban infrastructure.

Even when such planning exists, the lack of political will

and resources to implement and respect such plans, often

leads to a proliferation of areas with precarious and/or

uncontrolled housing. In fifteen major African cities,

access to electricity in slums stands at 11%15 on

average.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

24

1.1.2 Maximizing economic and social impactswithin a process of accelerated urbanization:Development centers

“African urbanization is a poverty-driven process and

not the industrialization-induced socio-economic transition

it represented in the world’s other major regions”,14 UN-

Habitat, 2008.

What are the main challenges for achieving real headway?

While Africa is still the least urbanized continent in the

world, the urbanization rate is already over 60% in about

twenty countries.

The United Nations Development Programme (UNDP)

forecasts that between 1980 and 2030, Africa’s total

population will see a threefold increase, the rural

population a twofold increase, and the urban population a

sevenfold increase. Consequently, while the percentage

for the urban population had already grown from 24% to

33% between 1980 and 2000, it is expected to increase

to 48% by 2030.

14 UNDP (2008), “The State of African Cities”. 15 UNDP (2008), ibid.

By contrast with the history of electrification in

industrialized countries, it is not economic growth and the

jobs created by industrialization that lead to rural

migration (with a population base having overall revenues

and wealth to allow investments in infrastructure). Indeed,

it is very often insecurity, economic instability and the

dream of an "urban Eldorado" that prompt communities to

migrate from rural areas to precarious urban areas.

An analysis of population distribution according to the

size of localities16 (Graph 1) clearly shows that there is an

intermediate stage between a large city and remote

rural areas, which continue to be home to a substantial

percentage of the total population.

Graph 1. Population distribution in terms of localitysize

Source: Authors, from CEMAC, ECOWAS, 2006.

Explanation of graph: Over a quarter of the population in a

sample of countries in the zones of the Economic and

Monetary Community of Central Africa (CEMAC) and

the Economic Community of West African Countries (ECO-

WAS) lives in villages with over 2,000 inhabitants. On ave-

rage, this is the case for 27% of the population of Burkina

Faso, Mali, Niger and Côte d’Ivoire; 32% live in towns with

more than 10,000 inhabitants (i.e. in urban areas on the

graph). In CEMAC countries (Cameroon, Chad, Congo,

Equatorial Guinea and Gabon), 30% of the population lives

in villages with over 1,000 inhabitants (on average), and

51% in urban areas.

A study conducted in Latin America17 on the place of

medium-sized towns in overall urbanization highlights the

attraction of megalopolises (i.e. cities with over a million

inhabitants) and their rapid growth: their number rose from

83 to 325 during the second half of the 20th Century, to the

detriment of the growth of secondary towns. The latter,

however, provide an opportunity in terms of interactions

between urban and rural areas, due to their stronger links

with rural areas, and the services proposed not only to town

dwellers but also to the surrounding rural community. It is

thus crucial to give such towns the means to play this key

role, and to develop their attractiveness for communities

who see no future for themselves in rural areas.

Moreover, the presence of economic activities and of high

and concentrated population levels allows the electricity

service to be profitable to a certain extent. Two technical

possibilities are thus possible: extend the grid to other

centers near the existing one, or stand-alone generation

with the development of a mini-grid to serve the defined

area.

1.1.3 The issue of service to isolated localities

The electrification of isolated localities requires major

investment, for a small number of customers who generally

have a limited financial capacity. As such localities seldom

show prospects of creating wealth, the question is raised

over profitability and sustainability (which requires extensive

recourse to – limited and random – public assistance. This

seriously jeopardizes the sustainability of projects).

Moreover, population densities are low in Sub-Saharan

Africa (Figure 4), compared to the density in France

(100 inhab./km²) and Europe in general (115 inhab./km2).

The densities are particularly low in Central Africa. The

problem is that the lower the population density, the higher

the connection costs, as shown by the evolving PERG costs

in Morocco (Graph 3).

16 Studies conducted in the CEMAC and ECOWAS/IED zones.17 See Bolay and Rabinovich (2004).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

25

Urban (>10,000 inhab) Large villages Small villages and (>2000 inhab) dispersed habitat

Map 3. Population densities in Sub-Saharan Africa

<1010...3030...7070...150>150

These vast low-density areas, where low-income

communities live, are costly to serve and are thus

unprofitable. However, the communities living in such

highly dispersed locations will inexorably need to densify to

some extent. The responsibility thus lies with politicians and

planners to decide, with full knowledge of the facts,

which areas to allocate resources to and to select the most

appropriate technology, focusing on the "development

centers" as a priority.

"In the foreseeable future, the intermediate cities (towns

with less than 500,000 inhabitants) will be the localities

where two-thirds of all African urban growth is occurring.

With most of its rapid urban growth adding to the popula-

tions of its intermediate-size cities, Africa needs to focus on

building capacity among its small and medium-sized cities

to deliver and facilitate adequate housing, livelihoods and

services for spiraling numbers of poor urban dwellers."18

18 Source: UN-Habitat (2008).

Source: UNDP (2008).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

26

Population densityInhabitants per km²

In order for the available – but scarce – resources to have

the highest possible impact, it is essential to have a clear

political vision of the social and economic objectives and to

make a political commitment, while ensuring that operators

are available who can function in a clear contractual

framework.

When the technical-economic choice and the operator

responsible are combined, the following segments can be

distinguished:

1- Extension of the power grid as part of the national

concession of the (public or private) electricity company;

2- Electrification of villages and secondary centers and,

more generally, of the development centers outside the

national concession of the electricity company: technically

speaking, these localities can be supplied by the national

grid, or by local generation capacity with an associated

medium-voltage (MV) and low-voltage (LV) distribution grid

that can serve one or more localities;

3- Electrification of very isolated and small localities, where

extending the grid will be very costly. It is generally imple-

mented with systems that are stand-alone or limited to

common services, typically PV, or via village grids

(generally diesel-powered);

4- Peri-urban electrification, i.e. neighborhoods located

around the major conurbations and, more generally, the

issue of densifying connections, and therefore that of

widespread access for communities once the service is

available in the area.

Combining the technical-economic option and the institution

responsible thus leads to the following segmentation

(Table 3):

1.2 Develop a systematic vision and overall operational planning: Access for what purposeand with what resources?

Table 3. Segmentation of contexts of access to the electricity service

Explanation of Table. Options A and B are integral parts of a country's development and spatial planning policy; options

C and E must be seen as a spatial complement to option B (and in terms of the available resources); options D and F

have high investment and management costs that need to be controlled (their organizational and technical specificities

will be discussed later).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

27

Electricity company(public or private) REA or REF* Specialized operators

(NGOs, ministries, etc.)

Electrification of development centersinside the main concession areas

ViableA

Electrification of centers outside themain concession areas

ViableB

Viable

Isolated localities Not profitableNot profitable

CNot profitable

E

Outlying urban areasNot profitable

DNot profitable

F

Source: Authors

It is important to be lucid about the potential profitability of a

service access program and make a distinction between:19

1- An access program to equip a given area with the

essential infrastructure for its economic development,

where there are therefore secondary centers with

"economic potential". This type of "territorial development"

program is characterized by higher unit energy

consumption levels and a greater ability to pay which,

combined with a higher population density (and therefore

better controlled investment costs), offers some prospects

of profitability. At this stage, the aim is not necessarily to

connect the entire population;

2- The provision of a universal service to all the residents of

an area, and in particular to the poorest, i.e. peri-urban

communities, 40 to 60% of households in villages and even

quite large towns in a country, and communities living in

small villages or isolated dwellings. The consumption levels

of such customers will not exceed 50 kWh/month,

representing maximum expenses of EUR 5/month. In

addition, the more dispersed the population, the higher the

investment cost per connection will be. In these areas, the

basic paradigm is a complete subsidy of the investments

and a tariff that covers operating costs.

These two approaches are based on two distinct objectives:

economic and territorial development for the first, and social

equity and geographical balance for the second (which has

a high cost).

The response in terms of the priority of allocating scarce

resources must come from the political level (see Box 2).

Box 2. Equipping an entire territory with productive infrastructure: A political issue in India and Morocco

Today, India has virtually finished the electrification of all its localities. For the 5% of remaining localities, and the 40% of the population that is not yet connected,

the Indian government has set up a very clearly social program, which subsidizes 90% of the supply cost for localities and 100% of household connection fees.

This comes almost half a century after launching a rural electrification program that aimed to supply cheap energy to farmers to allow them to irrigate their crops

and thus achieve food self-sufficiency. The initial objective of the program had been energy for industry.

Morocco also launched its rural electrification program during a period of severe drought, together with a program for access to drinking water. The primary

objective was to provide infrastructure to the localities.

In reality, despite the fact that most countries have reached

a certain level of access for all, they started out with a

priority aim of electrifying the development centers. This

seems a logical choice, as it allows the sector to show

some profits and thus reach a financial equilibrium with

cross subsidies between segments.

It should be noted that the experience of electrification for

isolated communities and sites, in particular with solar kits,

has shown intrinsic limits in Sub-Saharan Africa. Indeed, in

countries engaged in major rural electrification projects, this

electrification scheme is a complement to schemes A and B

(e.g. Laos, Morocco and Senegal). These major programs

to give isolated communities access to electricity through

solar kits face two main issues:

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

28

19 The proposed segmentation must not lead to opposing "off-design" and "extending thenational concession grid" electrification schemes, as certain analyses today tend to do. It mustillustrate their complementary character.

- Electricity use will generate a marginal level of income,

which means that either customers with a fairly high

income will be targeted, or that the investment has to be

quite heavily subsidized;

- The actual long-term maintenance cost of the facilities

(technical and financial management) should not be unde-

restimated.

Graph 2. The resources required to develop a planned and coordinated approach – the example of Burkina Faso

In 2008-2009, in Burkina Faso (15 million inhabitants in over 8,000 localities), the implementation of a national rural

electrification plan coordinated by the Direction Générale de l’Energie (DGE) took 12 months, plus 6 months of

dissemination. The plan included multi-sector involvement and its overall budget stood at EUR 400,000.

Source: IED.

The detailed study and quantification of the socioeconomic

and financial impacts of rural electrification are relatively

recent. Indeed, until the late 1990s, neither national

decision-makers nor donors questioned the costs and

benefits of rural electrification. The reason for this was

that this activity was considered in national policies as

infrastructure required for development, as well as a public

service that should be accessible to the majority. In short, its

beneficial socio-economic spin-offs were evident and there-

fore had to be made generally available. Consequently,

there are few comprehensive studies available on this

subject.20 The issue is also generally addressed from a

viewpoint of the capital intensity of the investments and the

expected benefits (difficult to assess). It is only recently that

the anticipation of the impact on poverty has become

an assessment criterion for medium- and long-term

development actions and electrification programs. Neither

the Human Development Index (HDI) nor the MDGs, for

their part, directly consider access to energy. The issue of

access to energy therefore revolves around several

1.3 Analysis and lessons learned from the impact of past programs

20 World Bank and Foundation of the Political Institute for Research Development andManagement of the Philippines, 2001; ONE/AFD, 2003; World Bank and SwedishInternational Development Agency, 2005; IEG-World Bank, 2008.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

29

Surveys and data collection

Definition of the regional development center (Regions)

Construction of the national "vision"

Implementation of the electrification plans (Process)

Feedback / validation Regions)

Activities National Coordination Committee

Training in handling tools

As far as the electrification of peri-urban areas or of the

most isolated and poorest rural domestic communities is

concerned, the analysis should focus on the organizational

arrangements that aim at reducing management costs and

losses. This points to the vital importance of having a clear

vision of the objectives of an electrification program and its

cost, of realistic programming for the investments and tech-

nical choices and of the targeted impacts. Graph 2 shows

an example of the means required for this type of exercise

via the case of Burkina Faso.

questions: Are the benefits generated by energy access

programs in rural and urban areas quantifiable, and, if so,

how? Is access to electricity a catalyst for economic growth

in the rural areas of Sub-Saharan Africa? Must rural electri-

fication and/or energy access programs (urban and rural)

be made a national priority?

1.3.1 Difficult and costly access, but a realability to pay

The "rural poor" environment holds little attraction for

operators, who naturally prefer to supply more "profitable"

customers, especially those whose energy supply involves

the lowest cost (as they are close to the grid) and who

consume the most. They therefore adopt an extensive

approach to electrification and only rarely seek to densify

(poor) customers around existing infrastructure, and even

this is a very recent concern. Grids thus often bypass "poor"

customers and seek out the "big customers”. This type of

operator logic is potentially questionable, as their interest

might also lie in densifying the grid in order to amortize its

investment more effectively. Moreover, in a community

already hooked up to the grid, many households cannot

afford to pay the connection fees. They can be at the

prohibitive amount of between USD 100 and USD 300,

which may be difficult to raise in a lump sum (see Map 4),

even though there is clearly the ability to pay the monthly

electricity bill. Indeed, communities which are not connec-

ted to the grid often pay – for equivalent uses of the electri-

city supplied from kerosene, standard batteries and rechar-

geable batteries – an energy price several times higher than

the connected communities, both in absolute terms and in

equivalent kWh. This cost is generally between USD 3 and

USD 10 a month. Energy expenditure represents a much

higher percentage of the incomes of populations in Sub-

Saharan Africa than for populations in OECD countries.

This is why, paradoxically, connection rates in electrified

areas tend to "saturate" fairly rapidly.

Map 4. Population living with <1 dollar/day/person, Africa (in population percentage)

Source: UNDP (2008).

Explanation of map. In Sub-Saharan Africa, about 300 million people (out of 680 million) live with the equivalent of one

dollar a day. This percentage is over 60% in seven of the 31 countries surveyed. It is the lowest in South Africa, where

it still is as much as 10%. Thus, based on a tariff of USD 0.12/kWh (domestic, on the interconnected grid), the bill for a

monthly consumption of 100 kWh will be for USD 12, i.e. 9% of the income of five people (a household). However, the

average tariff is often over USD 0.50 in rural areas.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

30

no data< 1515...3030...4545...60> 60

1.3.2 Trends in household expenditure: Higherconsumption with lower unit costs

As soon as households can afford to be connected, access

to electricity initially promotes an almost complete

replacement for the immediately concerned uses (batteries,

candles, lamp oil, battery recharges) and thus a reduction

of energy expenditure. The middle classes and poor

subsequently see their electricity expenditure increase due

to an increased use of electrical equipment: television sales

double in the first year after electrification, while energy

expenditure often drops among the rich categories that are

already equipped (see Graph 3).

Graph 3. The impact of rural electrification - The example of Morocco (2010)

E: Electrified, NE: Not electrified, V: Village, PV: Photovoltaics.

1.3.3 A definite advantage for small shops andcraft businesses already using electricity

The households whose income will increase are those

whose existing productive capital will increase in value

because of electricity use. For instance, 70% of commercial

activities note an increase in their turnover (IEG, World

Bank 2008), and there will obviously be a major impact for

the development of craft activities requiring the use of

productive electrical apparatus. However, traditional craft

activities are only marginally affected, as the impact for this

type of activity mainly lies in the possibility of longer working

hours, thus raising productivity.

A review of case studies does not show significant

industrial ization effects either. Indeed, for small entrepreneurs

who are already equipped, changing their production facilities

requires additional investment and they generally will not do

so until renewal is necessary.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

31

Electrified NE in E V NE in NE V NE in PV V PV in PV V Total

Source: Axenne.

Refrigerator gas

Battery recharge for TV use

Batteries for radios

Candles

Batteries for electric torches

Gas for lamps

Lamp oil

Dh

It is in the social sector that rural electrification projects

have a significant impact: on health, education, migration

and the status of women.

► The impacts on health are mainly related to the continui-

ty of the cold chain (vaccines, drugs) and to longer opening

hours at health centers (in particular for childbirth).21

Other benefits worth noting relate to (i) improved health

knowledge through the development of access to television

information, and (ii) improved health conditions for food

storage thanks to refrigeration. We also see a positive

correlation with the availability of drinking water throughout

the year, a fundamental factor for public health, especially

for children, in a context where diarrhea and other

water-borne diseases are today still one of the main causes

of child mortality.

► The impacts on education mainly concern the

improvement in the quality of intake and education: a good

teacher will be more inclined to accept a position in an area

with electricity than an area without. Similarly, children living

in a home with electricity generally have a better grade level

as they can study in the evening after school.22

► The impact of electrification on migratory flows and the

rural exodus is much more difficult to evaluate. Various

studies have, however, shown that it reduces migrations to

major cities, and increases the attractiveness of secondary

towns with an electricity service, whether or not they are

qualified as rural. It also strengthens the feeling of safety in

villages and fosters greater social cohesion thanks to public

lighting.

1.3.4 Significant social and development impacts

Table 4. Impacts of electrification on health – The example of Morocco (2010)

Village without electricity Village with electricityElectrical refrigerators 50 % 100 %

Conservation of vaccines 60 % 95 %Regular visits by a doctor 40 % 85 %

Medically assisted childbirth 0 % 42 %

Source: Axenne.

21 As a reminder, the reduction of infant and maternal mortality is part of the fourth and fifthMDG.22 Source: ESMAP Philippines (2003).

Box 3. Impact of electrification on migratory flows and rural exodus in Morocco

The implementation of the Global Rural Electrification Program (PERG) is thought to have facilitated the regrouping of communities, due tothe selection criteria generally applied. Dispersed housing was reduced from 35% to 28%, and that of scattered dwellings was divided bythree, falling from 6% to 2%. The rural electrification programs thus had a major impact on the spatial reorganization of villages. To a certaindegree, ONE, with its policy of constructing "backbone" grids, promotes this spatial redevelopment and the regrouping of communities nearthe interconnected grid.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

32

► The impact of electrification on women is related to the

fact that they are the first to benefit from the development

of small shops. In Ghana, groups of women organized

themselves to prepare and sell food in places where

community TVs were installed. In South Africa, groups of

women manage and develop an activity of refrigerated

space rentals. Electrification allows longer working days for

women, which supports their economic empowerment in

some cases.

► More generally speaking, electrification brings about a

real social transformation, which is related to connectivity

and access to information and training thanks to audiovi-

sual media. The massive distribution of audiovisual

communication media, facilitated by electrification, allows

better coverage of the rural world; educational

programs help people, through images, to acquire a better

understanding of the world. The proliferation of Internet

cafés and the connectivity through Internet (at unexpected

penetration levels in rural areas) lead to changes that are

still difficult to fully grasp.

1.3.5 What is the economic benefit for thenation?

It is difficult to attempt to define a general principle or rules

concerning the quantitative and qualitative impacts of (rural)

electrification programs. Most of the time, cost-benefit

approaches depend on a specific context, and their

evaluation and translation into a "monetary equivalent" is a

costly and somewhat subjective exercise.

For the Moroccan rural electrification program, the overall

economic rate of return stands at around 8%, based on the

following parameters (PERG study, 2004):

• Growth of individual consumption and of equipment

dynamics;

• The induced equipment expenditure and its cost

effectiveness for the consumer;

• The financial profitability of the program (electricity

operator).

This rate rose to about 20% by integrating the positive

externalities (more difficult to assess):

• Social benefits in terms of health, education and user

satisfaction;

• Environmental benefits;

• Local economic benefits in terms of job creation;

• General economic (macroscopic) benefits in terms of job

creation through the electrification process.

Such economic rates of return, as found in other countries

(see Table 5), combined with a higher willingness to pay

than the cost of the actual electricity, are paradoxically not

sufficient to raise the investments required to implement

large-scale programs.

Table 5. Economic rate of return for nine rural electrification programs

Economic rate of return for nine rural electrification programs

Country Project Grid extension Collective scattered Individual scattered

Cambodia Rural Electrification and Transmission 19.80 22.30 11Honduras Rural Infrastructure Project 33 20 30

Inde Renewable Resources Development 14 41Laos Southern Provinces Rural Electrification 60.50 26

Mozambique Energy reform and acces 22.70 14.50 Nicaragua Rural Electrification 40 23 27

Peru Rural Electrification Project 22.60 23.80Philippines Rural Power Project 26.40 21.50 48

Sri Lanka Renewable energy for Rural Energy 15.20 10.90

Source: IEG (2008).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

33

The resource is not necessarily available: a country that

still has a low access rate to electricity, poor service

quality and a recurrent need for financing to cover its ope-

rating and maintenance costs in its affluent industrial and

urban areas would have great difficulty in making access

to electricity in rural and peri-urban areas a national

priority. The success of a national policy for access in rural

and peri-urban areas (access for all, with major social

considerations) strongly depends on the situation of the

electricity sector in urban and industrial areas.

However, in almost all Sub-Saharan African countries, the

State – with private sector support – does not manage to

offer industry and its affluent customers the electricity they

need. In fact, there is even a trend of service deterioration

and an increase in the number of power cuts.

This issue thus brings us to the choice of target population

and the question of objectives. In several rural

electrification projects, the objective of reaching

the "poorest of the poorest"23 has failed due to the

insufficient solvency of the beneficiaries and to the fact

that the economic impact of electricity is too low and is

unable to improve this solvency in the short or medium

term.

This debate on the choice of target populations is far from

closed, and is systematic in Output-Based Aid (OBA)

approaches. In regional or national-scale analyses, it now

is common to identify the potential "large customers" that

might ensure a minimum revenue for the operator, and

those that have a significant economic and social impact.

However, the reality is often that hospitals, adminis -

trations, schools, etc. are the worst payers, whereas serving

industry requires that a certain quality of service needs to

be maintained.

1.4 Access dynamics affected by sector reforms

In the mid-1990s, many reforms were launched due to the

general inefficiency of public sector electricity companies.

With regard to the focus of our topic, out of more than

40 Sub-Saharan African countries, almost half have set up

a rural electrification agency (REA) and/or rural electrifi -

cation fund (REF). Out of the twenty or so countries that

opted for an organization of the electricity sector shared

between a national or privatized electricity company and an

REF/REA, almost all benefited from World Bank assistance

for its establishment. This created an institutional model for

the various initiatives, whose focal point is this REA and/or

REF, in charge of – as the case may be – designing,

developing and operating power systems in rural and semi-

urban areas.

Their action falls within a “perimeter” of rural and semi- or

peri-urban electrification with poorly defined contours, most

often simply juxtaposed to that of urban power systems.

The necessary coordination of the planning function of

both sectors and efforts to seek synergies and general

efficiency, which should be the responsibility of a strong

ministry, are thus made difficult. Nevertheless, these two

perimeters, which are governed by different or common

regulations, are experiencing respective developments that

influence each other (grid extensions, area exclusively

reserved for the “off-concession”, etc.). These develop-

ments and their interface (feed-in and resale tariff to the

grid, compensation for operators/investors in case of an

extension of the "national concession") are key elements for

coherent national policies to extend access to electricity

services. If they are poorly defined, they can block the

service extension.

Today, we should question whether this institutional model

has the capacity to accelerate or promote access to electri-

city services. It has not changed significantly in the recent

past, either in terms of access for communities in electrified

areas, or in terms of the percentage of localities covered by

the grid. 23 Objective considered by donors as a high priority item in the global poverty reduction strategy.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

34

1.4.1 The key role of a central operator as a"public champion"

We see that the African countries that kept their traditional

national electricity company today have the highest access

rates to electricity: South Africa: 70%, Côte d’Ivoire: 39%,

Ghana: 60% (82% in urban areas and 29% in rural areas).

The equilibrium between profitable areas (i.e. towns

and densely populated coastal areas) and areas of low

profitability (i.e. rural areas) seems facilitated by a single

overall management system.

The institutional organization in Morocco and Tunisia, both

of which today have nationwide electrification, shares the

following characteristics:

• A single operator that has for a long time been the main

instrument for developing access to electricity;

• A clear centralization/deconcentration of the administration;

• A strictly public approach until quite recently;

• A very strong political will to develop electrification by

extending the grid of the single or dominant operator, but

also by using other electrification methods;

• No distinction between urban and rural areas, all being

included within the area of activity of the dominant operator;

• The lack, for a long time, of an instrument to formalize a

sectoral and regulatory strategy.

In both these countries, the political will and mobilization of

national resources have played a key role. This is relayed

and implemented by a relatively efficient single public

operator.

For many years, some countries with an intermediate

economic development, such as Cameroon or Côte

d’Ivoire, adopted the same strategy as Morocco and

Tunisia. They made no distinction between urban and rural,

even if the distribution operator had a well-defined field of

action and had opened to the alternative intervention by

local and regional authorities for infrastructure financing.

Since then, the sector has moved towards a progressive

liberalization and its resulting institutional changes (a regu-

lator, privatizations, asset holding companies, REAs). While

such situations may have their own dynamics, the absence

of a rigorous oversight and clear regulatory framework – in

other words of a legitimate manager – often leads to

situations of deadlock.

1.4.2 Too many institutional stakeholders arejust as inefficient as too few

In some cases, the institutional environment has too many

stakeholders, which is shown by the fact that there is no

clarification and/or simplification following a sector reform.

Mauritania, for instance, has been a “good pupil” in the eyes

of its donors from an institutional perspective. The

electricity sector has a sectoral policy letter, an electricity

code advocating the complete opening of the sector, a

ministry with a rather exemplary organization chart, a public

operator, which has been subject to privatization attempts

(in vain), a regulatory authority, an REA, and an agency for

universal access to basic services (APAUS). We see,

however, quite a gap between the texts, the facts, and the

existence and functioning of the institutions. The APAUS

concept that has been defined should have led to optimal

coordination, the creation and management of basic

services, and to efforts to achieve systematic cost reduction

(for the use of domestic and renewable energies, the

choice of future investments, and system management). In

reality, however, the system has led to competition with the

sectoral agencies – for water and rural electrification – for

project implementation and budget allocation.

1.4.3 A necessary match between the ruralelectricity market and the number, size andefficiency of operators

Senegal’s conceptual approach is exemplary and it has an

institutional arsenal that has fully taken account of a

forward-looking vision – the sectoral policy letters; lessons

learned from fruitless reform attempts – privatization of the

national electricity company (SENELEC); the functions of

the Electricity Sector Regulatory Commission, which is

increasingly credible; the existence of a dominant operator

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

35

(SENELEC); the role of an REA, which is seeking to

develop a public-private partnership (PPP) under a

mechanism integrating the economic, financial, legal and

fiscal tools required to enhance the attractiveness for

operators of the sub-sector, SENELEC and PPPs.

Studies covering a period of 10 years have led to a

reduction in the number of concessions from 20 to 11 to

allow them to have a certain level of profitability. Few

candidates were interested in the first bid invitation for

concessions, which was won by ONE, Morocco’s national

electricity company.

This raises the question as to whether a "market" of

operators exists with the critical size and means to submit

bids. Is it due to an insufficient promotion of the sub-sector

and/or the absence of a "champion"? Are expectations too

great concerning the interest and capacity of the private

sector to take risks, especially for investments, in a

financially depressed sector?

Conversely, the frameworks in Burkina Faso and Mali

favor small and local national village operators. However,

this requires heavy investment subsidies (about 80%), as

the operators work in conjunction with an overall

approach. Indeed, while over 60 projects for spontaneous

applications for rural electrification (PCASER), financed

by the Malian agency for the Development of Household

Energy and Rural Electrification (AMADER), supply Mali’s

rural areas, their unit size is generally below 250 kW and,

by themselves, they would never be able to resolve the

issue of nationwide access to electricity for all.

While the institutional approach is forward-looking and

maybe ambitious, it must, however, result from a search

for an optimum between the reality of the sector, its means

and its resources, its capacity to develop, and the

objectives assigned to it. Moreover, the approach must be

exhaustive in terms of assigning roles and responsibilities,

and must ensure the optimal exercise of the functions

required for the development and smooth running of the

sub-sector.

1.4.4 A sophisticated structure does notnecessarily fulfill the three financing,regulatory and industrial functions

In most African countries, the main characteristics of the

organization of post-reform rural electrification and access

are:

• A repositioning of the State for its sovereign functions:

regulation, promotion, protection of the general interest,

creation of the regulatory function;

• REAs, and a tentative recognition of the need for cross

subsidies;

• A segmentation of the power system to allow the

introduction of competition, particularly for generation;

• Access by private enterprises to these activities provided

they obtain authorizations, licenses or concessions, and

that they actually exist.

Unfortunately, the creation of entities for electrification has

often not been supported, either by national policies, or by

an allocation of financial and human resources that would

really allow them to achieve the objectives assigned to

them.

The rules of the game are too often poorly defined and the

resources too few to create significant development. These

agencies may play several roles: running a pilot project for

decentralized electrification, organizing a bid invitation for

concession management, giving incentives to private

operators that wish to invest in a decentralized electrifi -

cation project, and planning grid extensions (Renewable

Energy Association, ADER, in Madagascar), possibly by

financing this component.

We see that the multiplication of entities, prior to

the creation of large-scale infrastructure, leads to a

fragmentation of competences and competition between

institutions to hold “borderline” responsibilities. This

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

36

competition makes it impossible to gather the human,

technical and political means required to achieve the

common objective: implement ambitious projects, while

ensuring that the functions required to achieve the

objectives of access programs are available (financing,

industrial and regulatory functions).

1.5 Establish clear prerogatives for each stakeholder

Achieving effective results requires a coherent national

policy for access to electricity, with the corresponding insti-

tutional and regulatory environment (regulation function). It

is thus necessary to have: (i) a real political will to support

electrification projects and ensure they are sustainable,

(ii) clear economic orientations and sufficient financial

resources (financing function), and (iii) structures that can

provide, install and operate the infrastructure (industrial

function).

1.5.1 Financing access: How to mobilize thefunds required to achieve the politicalobjectives?

Given their level of profitability and their return on

investment time, electrification projects, especially rural

projects, require the provision of public subsidies. It is esti-

mated that about 50% of rural electrification financing in

France was through subsidies. While there is the political

will to provide rural and peri-urban communities with

an electricity service, the financing function must be

considered with lucidity, and by taking account of the

following parameters:

- The investment profile: investments are certainly econo -

mically profitable, but in the long term (a minimum of

between 10 and 30 years). The risks can be non-negligible

and are related to both the purchasing power of (poor)

communities, as well as to the understanding of generation

technologies;

- It is obviously unrealistic to expect private investors to

get involved in this type of long-term investment;

- Substantial amounts are needed to equip a territory. This

requires a large-scale mobilization of national resources

that can subsequently leverage international financing. At

the level of the continent, the issue of universal access will

certainly not be resolved through projects with grants of a

few tens of millions of euros.

As illustrated by the amounts mobilized in Morocco,

Kenya and Ghana (see Box 4), we must stress the

historical importance of: (i) the amounts involved that stem

from a real political choice in terms of national resource

allocation, and (ii) the central role of the national company,

which acts as an electricity company (with a real technical

and organizational capacity to implement a program of

this size) and publishes a balance sheet and profit-and-

loss account. This allows it to be a long-term borrower,

admittedly public and often with a State guarantee.

It is clear that the countries with a "post-reform"

organization (i.e. most Sub-Saharan African countries,

which now have a rural electrification fund) are in an

"unfinished" situation in terms of funding mechanisms. In

general, these "funds" are simply accounts through which

the meager grants from international cooperation transit.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

37

While the creation of specialized funds can be an important

stage in ensuring the sustainability of the financial

resources required for the development and consolidation

of the sub-sector, today it is clear that the size of these

funds and the amount of their resources are often too

limited, and their sources and financing methods too

random. It is often necessary to change these funds into

specialized financial institutions (right to lend and borrow),

and to extend their field of action to guarantees for a certain

number of operations and to financing for small local

operators (who would not have access to commercial bank

financing without the support of these funds).

Box 4. Mobilizing funds for regional electrification – The examples of Morocco and Ghana

Morocco, with 32.2 million inhabitants, has almost achieved nationwide electrification (over 90% of the 30,000 localities) in the space of15 years. The budget committed at the end of 2008 was in the region of EUR 1,770m, 53% of which was mobilized from national funds(equity) and the remainder from medium- to long-term concessional loans (47%). 55% of the national share was mobilized by ONE (on itsown equity), 20% came from municipal budgets and 25% from user contributions. These amounts – EUR 230/connection for households andEUR 190/connection for municipalities – could benefit from instalment payments granted by ONE.

In Ghana, a country with 22 million inhabitants, major and continuous financial assistance from the World Bank (IDA), completed withsupport from bilateral partners,24 has allowed the country to go from an electrification rate of about 15% in 1989 to 60% in 2009. The ruralelectrification budget over the past decade has been in the region of USD 2bn, with a participation of national and local financing of around15%. The objective of Ghana's Self-Help Electrification Program, SHEP, steered by the Ministry for Energy (with technical support from theElectricity Company of Ghana, ECG), was to reach an electrification rate of 80% in 2010 and to guarantee all communities (4,220 villageswith over 500 inhabitants) an electricity supply by 2015. The average cost per household stands at about EUR 250 (with the possibility ofpaying by instalments).

Graph 4. Mobilizing funds by an electricity company: The example of ONE, Morocco

Source: Authors.

24 European Commission, France, Germany, Italy, Spain, United Kingdom, United States andSwitzerland.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

38

Equity53%

KFW1%

AFD14%

IDB8%

JBIC8%

EIB9%

FADES4%

FK3%

We should note here the changing role of local authorities,

which play a central role in countries like France, where

they remain owners of the distribution grids. These entities

benefit from increasing responsibilities, related especially to

the administrative decentralization movements, which are

gaining momentum in a number of African countries.

Moreover, an increasing number of electrification programs

integrate components to promote productive uses of

electricity (Burkina Faso and Senegal, for example). This

clearly appears to be one of the new priorities of the deve-

loping electricity sectors. It requires public assistance,

which may be provided by the local authority, which is

responsible, in this case, for associating private players

with common interests via innovative partnerships: the rural

user, electricity distributor, electrical equipment supplier

and financial partner. In the case of the Moroccan PERG

and, historically, France, local authorities have played a

central role while remaining owners of the distribution grids

whose operation they entrust to a licensee (EDF in France).

1.5.2 Economic and financial regulation: tariffpolicy and contractual framework for themobilization of private stakeholders

Themes that are all different from each other can be

included in this very "general" topic of regulation:

• Mechanisms for review, monitoring-evaluation, control,

sanctions and settling the legal, technical and economic

aspects of disputes;

• Adapting service quality to demand in rural areas, thus

using appropriate technical standards and practices that

will be decisive factors for optimizing investment costs (up

to a third of the amount invested in distribution; this topic

will be discussed in the technical section);

• The selection, training and control (and therefore sanctions)

of the regulatory entity.

It is clear that the countries that have succeeded in

the electrification of their territory only set up a regulatory

agency once a sound electricity infrastructure was in place.

It was only after that issues concerning the plethora of

operators and the end of the integrated monopoly (gene-

ration, transmission, distribution) were addressed, requiring

the introduction of rules (in France, India, Morocco, etc.).

Initially, the ministry can often cumulate the functions of

planning, policy formulation and regulation. As the public

company is dominant, it often edicts de facto rules and

regulations. The fact of creating an ad hoc regulatory

agency will not be sufficient to ensure that the regulation

functions correctly.

Two components will be analyzed below. The first concerns

economic and financial viability; the second relates to the

contractual framework required to foster the mobilization of

private partners.

► Issues concerning economic and financial viability

- Investment financing: the viability and relevance of

the model compared to the available financial resources

(generated by the electricity service itself and external to it);

the subsidy level for the investment that allows a sufficient-

ly attractive profitability for a private operator (for example,

we can note the case of Cambodia that has abandoned this

path and has opted for franchises on national investments);

- Financing the operation, servicing and maintenance of

facilities (which should in principle be covered by tariff

revenues); this is almost impossible in cases depending on

thermal power generation;

- Cross subsidies between different customers, and thus

tariff categories, but within the electricity sector itself: is

equilibrium possible, or are resources external to the sector

needed?

- Tariff principles: equalization, i.e. can one apply the same

tariff for a customer category regardless of its geographical

location, with very different costs, without unreasonably

jeopardizing the financial equilibrium of the sector? The

ability to pay is not the same nationwide and a tariff

differentiation (i.e. a tariff that changes depending on costs

and context) is difficult to accept;

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

39

- Cost and price of electricity: there is a considerable

difference between countries that depend on thermal

generation (such as Burkina Faso) and those with

amortized hydropower (such as Cameroon). The energy

price in Sub-Saharan Africa is high, reflecting international

standards. The average tariff in the region rose from USD

0.07/kWh in 2001 to USD 0.13/kWh in 2005, reaching

almost twice the level in other parts of the developing world

and a level comparable to that of high-income countries.

These increases were particularly high in countries depen-

ding on diesel-generated power, where prices rose by USD

0.08/kWh on average, in reaction to skyrocketing oil prices.

Yet, despite these increases, the average tariffs in the

region remain considerably below average operating costs,

at USD 0.27/kWh.

However, both States and power companies have been

caught up by economic reality: Kenya, which mainly

relies on hydropower, is currently experiencing a period of

prolonged drought, combined with underinvestment in its

production facilities. The national company, Kenya Power

Lighting Corporation (KPLC), thus finds itself obliged to

resort to thermal power generation and to pass on this extra

cost in the tariff. The fuel surcharge currently applied

doubles the tariff (roughly between USD 0.10 and USD

0.20) from one month to the next. Consumers thus receive

a much higher bill without prior notice. An analysis of

the electricity tariff levels applied in Sub-Saharan Africa

therefore leads to three observations: these tariffs are, on

average, high; they reflect highly variable generation costs

(countries with abundant hydrocarbon reserves, such as

Nigeria, or that have cheap hydropower, such as Zambia,

can afford to apply low tariffs); a country with a structure of

generation costs (like Madagascar), despite a strong social

motivation (as shown by a "social" tariff block at less than

50% of the normal domestic tariff) will never be able to

reach the levels of countries that have cheap resources;

Graph 5. Amount of financial mobilization for a national electricity access program: The examples of Morocco andGhana compared with other African countries

Source: Authors.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

40

30

25

20

15

10

5

0

RC

I

Bur

kina

Fas

o

Mal

i

Sene

gal

Gha

na

Nig

eria

Cha

d

Cam

eroo

n25

20

15

10

5

0

Mor

occo

Tuni

sia

Alg

eria

Libi

a

Egyp

t

Uga

nda

Ken

ya

Ethi

opia

Zam

bia

RSA

Mad

agas

car

<100 kWh / m

<200 kWh / m,2k W

4k W

- Connection fee: the level of electricity tariffs reflects these

structures with highly contrasting fees, and experience

shows that the main barrier to access is the high

connection fees to be paid by customers. Fees of EUR 100

to EUR 300 are quite normal in Sub-Saharan Africa, which

should be compared with an average yearly energy bill that

generally is less than EUR 50. The "financial package" of

a rural electrification project or program (especially the

subsidy level retained to cover these connection fees) has

a very strong impact on the price of the service. Moreover,

excessive connecting fees generate (i) "spider-web"

phenomena, i.e. “pirate” connections (Benin); (ii) a low

connection rate (Benin and Kenya); and (iii) when associa-

ted with a sub-optimal technique, a slowdown in customer

densification (Kenya).

Countries firmly engaged in grid densification generally

develop reflection on the initial connection fee:

Subsidies through an REF (Burkina Faso, Uganda,

Senegal, etc.);

• Sharing the investment cost (connection cost) between

the different stakeholders: beneficiary households, local

authorities, government, private operators, etc.

• Loans from commercial banks, village banks or micro -

finance institutions to finance the connection fee

(Kenya);

• Prior savings (Central African Republic);

• A specific fund managed by the electricity company,

endowed by donors and dedicated to financing

connection fees. This fund, based on a revolving

mechanism, allows the user to pay for the connection in

instalments; the replenishment of the fund in this way

allows the number of connections to be scaled up.

► Questions concerning the contractual framework to

promote the mobilization of private partners

As the sector cannot earn the resources required to

implement exhaustive access programs, and the State

does not have the necessary means, the search for

financing has been oriented towards private investors. The

instrument for financial regulation can vary depending on

the context:

- Cost-plus system: the licensee declares its costs and a

margin determined on the cost authorized;

- Return on investment regulation: the licensee declares

its costs and the sales prices are authorized according to

a pre-determined rate of return on investment (RRI);

- Authorized sales price level: sales tariffs as part of a

distribution concession;

- Terms of the buy-back contract for energy produced by

the generation unit:25 by the national distributor, or by

major customers located at a certain distance (which

requires permission for access to the grid by third parties);

- Participation in the investments by a public fund and

operating procedures (per connection, per kWh, etc.).

The question the regulator needs to answer is whether the

framework provides sufficient incentives and is sufficiently

transparent to attract private sector investment, and to what

extent: is it realistic to envisage rural electrification conces-

sions (with private investment), or would it not be better to

initially envisage franchises, or an affermage, with public

investment and private management? The next question is

that of the ownership of the infrastructure, which is too often

unclear in access programs: it should certainly remain

public, but a whole host of options are possible, from a

national asset holding company to a local municipality.

► Questions concerning the characteristics of the demand

The characteristics of the demand and its dynamics

obviously have an important impact on the economic

and financial profitability of generation and distribution

investments. In rural (and peri-urban) areas, we generally

see a mostly domestic and weak demand per household,

dominated by audiovisual and lighting needs. This

consumption is characterized by a major evening "peak",

sometimes 3 to 4 times higher than the morning peak, with

a very low daily basis. Developing such daily demand is an

essential point for the profitability of systems in order25 These terms must be differentiated, especially in contexts characterized by theavailability of hydropower and biomass resources with a long return time; the same is true forconnection conditions, which are often binding.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

41

to increase the profitability of the investments through

stronger demand. Moreover, demand in such areas often

saturates with connection rates of about 50% of house-

holds, or even less, due to the high connection fees.

Household unit demand can only increase through a rise in

equipment of domestic appliances and, thus, higher

domestic income levels. The increase in productive and

commercial uses, which is itself positively correlated with

economic development and higher incomes, goes hand-in-

hand with improving the profitability of access programs.

1.5.3 Questions concerning the contractualframework to promote the mobilization ofprivate partners

(Excerpt from a GTZ document)

"(…) the efficiency / knowhow objective of Private Sector

Participation (PSP) deserves attention. If infrastructure

sectors are to benefit from the creativity, flexibility and effi-

ciency of private sector players, and if local private sector

capacity and public sector governance are preventing

success on this account, then the aim for PSP translates

into a need for Private Sector Development on local level.

Developing a functioning private sector in turn requires buil-

ding capacity on micro, meso as well as macro level.

What’s more, if improved efficiency, accountability and

creativity are the primary goal of reform, then PSP would

even include the improvement of public utilities by applying

private sector based management best practices (covering

issues such as salary structure, transparent incentives,

competition and benchmarking)."

Today, a first assessment of the concession and/or privati-

zation contracts used in the urban electricity sector is

mixed, to say the least. The minimum objectives to achieve

for licensees operating in profitable areas (as set out in the

provisions of concession contracts) should have been to

oblige and encourage them to invest in production facilities

(and therefore to mobilize relatively long-term financing)

and to supply the poorest communities, especially in peri-

urban areas. In most cases, however, the licensees have

not achieved these objectives. The assessment shows that

the actual investment level is lower than initially planned,

and that the poorest communities are still waiting for a

secure service. In contrast, Build Operate Transfer (BOT) or

Independent Power Producer (IPP) projects, where a

private investor negotiates an electricity buy-back

agreement with the electricity company, have met with

more success. There are three potential operators:

1. The traditional operator (national public or private

company): Following the wave of sector reforms, few

African countries kept their centralized system. The best

known are Morocco (for its exceptional electrification results

these past years), Tunisia, Kenya and Ghana (which have

a relatively high coverage rate), and, to a certain extent,

Côte d’Ivoire, Gabon and Cameroon. In these countries, the

national company often handled grid extension, even in the

most outlying areas, allocating part of its budget to non-

profitable rural electrification projects, which were partly

financed by taxes on consumption (partly by contributions

from the State or local authorities). Intensification, in both

rural and peri-urban areas, comes later.

2. Private operators: They have little reason to be

interested in energy in rural areas, a niche promising little

profit, except in the case of a high level of co-financing by

the State. This allows a certain degree of profitability for the

concession, which is generally mixed (generation and

distribution). The territory is thus divided into: (i) several

geographical concessions, proposed by the State to the

highest bidder (Senegal), and (ii) non-electrified rural areas

where the absence of profitability obliges the State to set up

an REA managing an REF. These two entities (sometimes

merged into one) are in charge of managing and financing

projects that are studied case-by-case and financed from

available funds, including potential funds from the ministry.

This is, for instance, the case of PCASER in Mali, where

small and medium-sized enterprises (SMEs) take a conces-

sion for a given village, covering power generation and

distribution, with a 75% investment subsidy provided by the

REA (AMADER). In Mauritania, it is the REA that in practice

remains responsible for solar kit or diesel generator

maintenance.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

42

3. Non-governmental entities: With their extensive

experience of Africa’s rural environment, these entities are

potential operators in low-income areas with low energy

consumption. Moreover, NGOs have a real capacity to

define innovative organizational arrangements and to rely

on strong local partners. In the field of energy distribution

management, we increasingly see the emergence of

very local entities, such as local resellers or cooperative

structures, which operate in both peri-urban areas and

villages. Furthermore, while with the development of

the function there are an increasing number of private

enterprises, it should be noted that their roles and

responsibilities vary. This variation is directly related to the

reluctance on the part of public operators and specialized

agencies to entrust the entire management of power

systems to private operators. For small systems and grids,

it can also be explained by the lack of experience and

technical capacity of the candidate companies to manage

these systems. With the national company withdrawing

from rural areas, the question now is how to develop the

expertise in engineering and works supervision that is

essential for maintaining a high-quality nationwide supply.

Diagram 1. Potential operators for providing access to electricity

Source: Authors

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

43

• Historical operator→ Bulk sales→ Retail sales

• Licensee→ Geographical→ Technological

• Village cooperatives • Local authorities• Energy service companies

(ESCOs)• Associations and NGOs• Local private resellers of autonomous sytems

Centralized electrification

Decentralized electrification

Essential character of

maintenance

Excerpt from ESMAP26 (2007)

"Today’s levels of energy services fail to meet the needs of

the poor. Worldwide, two billion people rely on traditional

biomass fuels for cooking and 1.6 billion people do not have

access to electricity. (…) This lack of access to quality energy

services, especially electricity, is a situation which

entrenches poverty, constrains the delivery of social

services, limits opportunities for women and girls, and

erodes environmental sustainability at the local, national

and global levels. Ignoring the situation will undermine

economic growth and exacerbate the health and environ-

mental problems now experienced in many parts of the

world."

Creating infrastructure for rural electrification is a key issue

for development. While the necessary institutional and

organizational frameworks are gradually being established,

what technological options are today available to address

this challenge?

2 A continuum of technical, economic and organizational solutions

2.1 Technical and economic framework

2.1.1 Large-scale centralized generation ordistributed generation: Trends in the cost ofrenewable energies

In view of the low coverage rate of power grids in

Sub-Saharan Africa, a program to maximize access to the

electricity service can, depending on the context, consist of:

1. The extension and/or reinforcement of an MV grid to

reach priority localities. However, to supply this grid, power

generation in sufficient quantity and quality, and at an

affordable cost, is needed;

2. Investment in a renewable or diesel generating unit from

500 kW to several MW to supply a region and, if possible,

be connected to the grid to sell surplus production, which is

commonly called "distributed generation";

26 Energy Sector Management Assistance Program.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

45

- Generation is intermittent (daylight hours for solar, or wind

availability for wind) and experiences seasonal variations:

level of sunshine, availability of biomass, variable

hydrology depending on the season (rainy/dry). This may

require the installation of storage facilities or of a diesel

generation back-up.27

The cost of power generation will thus very much depend

on the load factor of the facilities. Indeed, the cost of a kWh

generated will vary enormously depending on whether a

given investment operates at full capacity or not (1,000 or

7,000 hours a year).

Finally, the choice between generation using renewable

energy or thermal sources (coal or fuel oil) is often based on

a choice between a highly capital-intensive investment, but

with a low operating cost, and a cheap investment with high

annual charges.

The cheapest solutions in terms of the levelized cost per

kWh are often not implemented for reasons of technological

expertise and due to the barriers to the initial investment.

Furthermore, due to delays in investments, many countries

faced with urgent demand (even countries with natural

resources and thus potential for cheap power generation)

have no other choice than to invest in facilities that

are commissioned very quickly and have a low initial

investment cost, even if this very rapidly penalizes them in

terms of the cost per kWh (see Box 5).

Box 5. The consequence of investment delays on average generation costs – The example of Cameroon.

In Cameroon, there are currently nine power plants on the Southern Interconnected Grid (SIG): two hydropower plants (Edea and SongLoulou) and seven thermal power plants (Limbé, Oyomabang 1 and 2, Logbada, Bassa 2 and 3 and Bafoussam). While many hydropowerplant sites with varying sizes were studied in the past, according to the Electricity Sector Regulatory Agency (ARSEL), the plants planned forstart-up by 2010 are the thermal plants in Dibamba (commissioned in 2009) and Kribi (commissioned in 2010), the gas-fired thermal plant inKribi with a "take or pay" contract and the heavy fuel oil-fired plant in Dibamba. No forecast data are currently available.

27 Back-up diesel generator, switched on when renewable energy generation is not possible.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

46

3. The creation of a stand-alone grid with its own generation

(generally below 500 kW) for a small locality or cluster of

localities ("village grids");

4. The creation of a park of PV, pico hydro and small-

engine units, either stand-alone or connecting several

families, i.e. "stand-alone distributed generation" (usually

below 5 kW);

5. The densification of connections to existing grids.

The technological paradigm is constantly changing.

Extending the grid over the vast and sparsely populated

areas where almost half of the African population still lives,

using generation sources of tens or hundreds of MW,

is a highly capital-intensive option. Local generation (hydro-

power, biomass-electricity, PV), with its lower investment

costs, offers new opportunities: the unit size of the

generation capacity is smaller, which reduces unit

investments. In addition to the issue of the initial investment

cost, it is necessary to take account of the cost per kWh, by

integrating the variable generation and maintenance

costs over the equipment lifespan. Indeed, while thermal

generation by diesel generators offers the considerable

flexibility of being able to be generated on the consumption

site (thus avoiding the cost of power transmission and

losses), renewable energy has to be made profitable in a

much more difficult context:

- The generation potential (hydropower, wind, biomass,

etc.) must be located near the demand or, if this is not

possible, the additional cost of the power transmission line

must be integrated;

The extremely rapid development of technologies should be

emphasized here: in 2009, manufacturers announced a PV

cost per kWh for units of over 5 MW at less than EUR

0.25/kWh and at about EUR 3,000 per installed kW at the

time of investment in Europe. With recent diesel fuel rises,

PV, biomass and hydroelectric electrification have become

competitive.

It is therefore becoming increasingly complicated to select a

generation technology and organize electrification: new

options are reaching technological maturity and the mass

production phase, uncertainties are growing over oil price

hikes, and a whole host of risks (including climate risk) are

appearing. In addition, distributed generation can be more

effectively managed thanks to new advances in electrical

engineering. Consequently, while up until recently electricity

companies were reluctant to integrate over 30% of this

production, this limit is rapidly increasing thanks to smart

grids.

2.1.2 Centralized generation and grids

Before being able to speak about access for the poorest

communities, energy must be available in sufficient

quantities, at a reasonable cost and with adequate service

quality,28 as tariff levels above all reflect the costs.

Large-scale hydropower projects are today hampered by

debate over environmental impacts. While this situation

is moving in the right direction, there are increasing

uncertainties related to climate change and financial

mobilization. Geothermal energy may also see a revival:

the expansion of geothermal energy along the Rift (which

stretches from Mozambique in the south to Djibouti in

the north) offers major opportunities in terms of potential

energy resources (the overall potential is in the region of

7,000 MW). There is also a growing interest in wind power.

However, the large-scale IPPs that are established today

mainly use gas or heavy fuel oil (emergency barges or

mobile generators). Clean coal generation or the new gas

technologies (Integrated Gasification in Combined Cycle –

IGCC) offer the best opportunities. These transactions are

long and complex: once the legal framework is open, the

PPAs are negotiated on a case-by-case basis, with very

high transaction costs that cannot be amortized on small

investments.

Historically, in Europe, the reduction in the cost per kWh

delivered took place within a paradigm of large centralized

production and interconnected grids (and economies of

scale made possible by a monopoly situation). Today, there

is growing consensus on the relevance of developing

distributed independent generation, connected to the

national power grid. There are many reasons for this:

environmental issues and energy independence, use

of local resources (wind, water, biomass), reduction of

transmission and distribution losses, lower investment

costs for the technical options of local generation, greater

security of supply by reducing the distance between

generation and consumption sites, etc.

Senegal, to avoid finding itself in this type of situation, is seriously considering developing power generation sources that can be integratedinto the interconnected and non-interconnected grids using renewable energy (excluding large hydro). The main sectors studied are wind,biomass (sugarcane bagasse) and PV solar.

28 I.e. without too many power cuts in the case of industrial demand or prolonged load-shedding in the case of agricultural production, but also without having to guarantee a verycostly level of reliability, which would not correspond to the characteristics of rural demand.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

47

Graph 6. Levelized cost per kWh for different generation options (in EUR cents /kWh)

Graph 7. Trends in investment costs from 2005 to 2015

Source: ESMAP (2007)

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

48

Wind 100MV 2005(CF-30%) 2015Solar thermal with storage 200530 MW (CF-50 %) 2015Biomass Steam 50 MW 2005CF-80 %) 2015MSW Landfill Gas 5 MW 2005CF-80 %) 2015Geothermal 50 MW 2005

CF-89 %) 2015Mini hydro 5 MW 2005CF-45%) 2015Large hydro 100 MW 2005CF-50%) 2015Diesel generator (Base) 2005CF-50%) 2015Gas Combined Turbines (Peak) 2005CF-10%) 2015Gas Combined Cycle 2005CF-10%) 2015Coal Steam 300 MW 2005CF-80%) 2015Coal AFBC 300 MW 2005CF-80%) 2015Coal IGCC 300 MW 2005

CF-80%) 2015Oil Steam 300 MW 2005

CF-80%) 20150 2 4 6 8 10 12 14 16 18

Levelized cost per kWh

Combined cycle: 5.1 cents/kWh

Diesel 5 MW basic and peak

1009080706050403020100

cts€

/kW

h

Solar PV 0,05 kW

0,3 kW

25 kW

5 000 kW

Wind 0,3 kW

100 kW

1 000 kW

10 000KW

PV-wind-hybrid 0,3 kW

100 kW

Solar thermal with storage

no storage

Geothermal 200 k

W

20 000 kW

Flash 50 000k

W

Biomass gasification 100 k

W

20 000 kW

Biomass vapour 50 000 kW

Biogas/wastle 50 000 kW

Bio

gas

60 kW

Pico/Micro-hydro 0,3 kW 1 kW

100 kW

Mini-hydro 100 000kW

Large-hydro 100 000 kW

Pumped Storage 150 000 kW

Source: ESMAP (2007)

In Sub-Saharan Africa, given the two current trends –

the difficulty to raise significant amounts for large-scale

generation infrastructure,29 and the development in

electrical engineering (which means that a sizeable power

grid fed by multipoint medium-sized power plants can

be envisaged) – there is a possible shift towards a

new generation scheme, with more medium-sized and

distributed plants, in a context where economies of scale no

longer play the same role as in the past.

Controlling generation costs may be a prerequisite, but it is

not sufficient. Indeed, the cost of HV or MV transmission

and of MV and LV distribution to provide access to commu-

nities requires adding up to 50%, or even 100%, to the

production investment.

Box 6. The share of generation in the cost per kWh – The example of Cambodia

In Cambodia, where less than 10% of the population has access to the electricity service, the average generation cost of EDC (electricitycompany) and for buying from IPPs (gas and heavy fuel oil) stands at USD 0.15/kWh. Imports from Vietnam (IGCC) cost about USD0.08/kWh. The average cost thus stands at about USD 0.11/kWh. In view of the fact that nearby rural households consume 50 kWh per monthwith a load factor of 30%, the average cost for additional transmission and distribution (as well as for technical losses) is USD 0.13/kWh.Generation thus only accounts for half of the kWh cost.

2.1.3 Decentralized generation: Complexregulatory and organizational issues

In order to serve customers, it is important to distinguish

between the distribution activity and the generation activity.

Moreover, in many cases, the operators in charge of these

two tasks are completely separate. As shown in Diagram 2,

the distributor will thus be required to purchase bulk energy

from:

A - The interconnected grid, at a sub-station or transformer;

B - An independent producer (500 kW to 15 MW), which

exploits distributed local generation and sells to one

or more of the following customers: the rural distribution

company; the interconnected grid; one or more major

consumers;

C - An industry that produces its own energy to secure its

supply and sells the surplus.

The two other cases are:

D - A single licensee produces and distributes in one or

several localities – it is therefore village electrification

(generally less than 500 kW); numerous diesel mini-grids

with this configuration are found in Africa;

E – The management of a park of "distributed stand-alone"

solutions, where the generator is located on the site of the

user, thus avoiding the need for a distribution grid (typically,

an individual solar kit or pico hydro).

29 Today, 93% of the economically feasible hydro energy potential in Africa (estimated at937 TWh/year, i.e. one-tenth of the world total), remains unexploited.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

49

In this subsection, we will look at small-scale distributed

generation and at village grids (B, C and D in the list

above), which may have various regulatory frameworks,

with different generation sources (diesel generators,

renewable energy).

Generation isolated from the main grid is not always used

by the electricity company, which focuses more on larger

and centralized infrastructure. Consequently, there are

opportunities for PPPs, with lower unit investments, but

which will require the implementation of a regulatory

framework to give the investors the guarantees they

require for their involvement (for investments that remain

long-term, i.e. over 5 years).

The first stage often involves authorizing industry to

generate for its own needs (security, quality of supply,

distance from national grid), self-generation, with the

possible sale of surplus energy. This possibility may be

very important for the profitability of the agro-industry, or

represent a major diversification for the profitability of the

self-producer, based on the resale conditions authorized

by the regulations. As such, surplus resales will

only solve the problem of access if the buyer is a rural

distributor, or if the national distributor will mobilize this

energy for rural supply.

The second stage involves authorizing power generation

by the private sector; defining the framework for this is

often laborious and complex, and it contributes (or not) to

access to services for communities on various bases:

- For an independent producer to make its investment

profitable, it may seek to resell energy to a company in its

group, or to an external customer, at a price negotiated

by both parties and within a relatively flexible regulatory

framework. This, however, requires that the grid owner

authorizes the use of the grid, or the TPA. In India, this

wheeling scheme, where the carrier levies a percentage

of the energy carried, was one of the triggers of independent

generation.

Similarly, this opportunity turned Moroccan cement

manufacturers into wind farm developers in the north of

the country in order to supply their factories in the south.

Generally, this system results from the aim of integrating

a certain percentage of renewable energy generation;

it does not directly contribute to access for communities,

but for industry, which creates employment.

- If regulations do not allow buy-back by the electricity

company, it is essential that the provisions of the Power

Purchase Agreement (PPA) are clear. Indeed, authorizing

Diagram 2. Possible supply sources for a distributor

Source: Authors.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

50

Economically viableConcessional credit line

Agricultural residue

Electricity company

Rural electrification

Power generation(500kw 10MVV)

Agro-industry

UnprofitableSubsidized investment

it is not enough ; there needs to be a buy-back agreement

over a sufficiently long period to allow the repayment of

loans (it should not be restricted to a single renewable

year as in Indonesia). The calculation method for the buy-

back tariff must also be clearly defined, the two basic

systems being the cost plus system and the cost avoided

by the purchasing national company (and not, as in

Kenya, where at present only a maximum tariff is pub -

lished). As in the case of surplus resales, this system

does not directly contribute to rural electrification, unless

the electricity company carries out grid extensions to sup-

ply unserved areas using this energy.

- However, if the purchaser is a distributor (or the national

company, which will launch a rural program), there is clearly

a contribution to access. But this does require the existence

of such rural distributors and the independent producer must

be willing to sell them its production, depending on their

quality as a counterpart. A rural distributor (cooperative or

village association) is not necessarily considered as a first-

class customer by an investor. There is then the issue of how

the distributor’s purchase price is determined, as it is itself

generally constrained by a tariff structure for users set by

regulation. The system is thus complex and this type of

framework is only in its infancy in Africa.

Box 7. Which buyers can make small-scale private independent generation profitable?Examples from India, Indonesia and the Philippines

In India, where the national electricity supply is insufficient, buy-back conditions have been established to allow a sugar refinery to make anadditional cogeneration investment profitable. Consequently, all the country’s sugar refineries now have cogeneration units, which allow themto optimize the use of biomass residue. In Indonesia, surplus resales are only authorized at a variable generation cost, and with 1-yearcontracts, meaning that none of the self-producers take up this option.

In the Philippines, cooperatives are in charge of rural distribution. They apply tariffs imposed by the regulator and buy back bulk electricity atthis tariff, less a certain percentage that covers the amortization of the distribution grid, technical losses and their margin. If this buy-backprice for the producer is lower than the cost of the energy delivered to the purchase point, the producer must justify its generation cost to theregulator. This entitles it to compensation to allow it to maintain a certain level of profitability.

Diagram 3. Cooperatives and small-scale industry: The stakes of profitability

Source: Authors.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

51

Captivebuyers:private grid

Power generation100 kW to 15 MW

Access to gridby third parties?

Hydrological risk

: Electricity company

Rural electrification Hydro site

- Electrification via mini village grids by a single operator in

charge of generation and distribution is fairly common

today, when it is operated using diesel generators (see

2.1.4). However, in terms of renewable energy it is a

complex configuration:

• It is essential to correctly size generation in terms of

demand, given the substantial investment costs, in

order to ensure the facilities are not underused, which

leads to a high cost per kWh;

• Studies (hydrology, seasonal availability of biomass,

etc.) are long and costly, and thus proportionally even

more expensive since the investment is relatively low;

the expertise required to implement them does not

currently exist at the national or local levels;

• To guarantee service continuity, it is often necessary to

oversize the investment or to acquire a stand-by diesel

generator;

• The decision between the investment cost and the cost

per kWh remains complex.

2.1.4 Thermal or renewable generation: Therole of hybrid solutions.

In view of the complex contractual framework on which this

analysis is based, it is important to reiterate why this

study focuses on this distributed generation: 50% of the

population lives far from existing grids and, even if a grid is

nearby, it is generally not sufficiently supplied to meet

demand at the end of the line. Which generation source

should therefore be selected?

- Local generation by a diesel and/or heavy fuel oil

generator is very widespread and remains the reference

technology; it is controlled and can be rapidly installed

anywhere;

- Investment in a renewable energy generation source is

much more complex: the resource (river, biomass, wind

farm site) is not necessarily located near the consumption

point. Generation is intermittent (i.e. is subject to sudden

changes – wind, daily – sun, and seasonal changes – rain-

fall); the studies and preparation time are thus longer;

- By contrast, while the investment cost is higher, the

subsequent operating costs are very low over the lifespan

of a facility (15 to 50 years, depending on the technology).

However, it is necessary to have the means to invest today

with a view to such long-term generation.

The reality of the situation clearly shows that most off-grid

provincial capitals are supplied by fuel oil or diesel

generators. There are, in fact, very few small-scale hydro-

power or cogeneration plants in operation in Sub-Saharan

Africa; when they operate, they mainly (or fully) meet the

needs of industrial self-generation. The ultimate paradox is

that by maximizing the rapid implementation of a universal

service, thermal solutions are chosen. Hybrid solutions,

combining the flexibility of generation from a diesel

generator with the low, long-term cost of renewable energy

generation, make it possible to avoid the problems of

intermittent generation and today offer highly promising

prospects (see Table 6):

- For “basic” hydro or cogeneration generation, a problem

of oversizing, of dams (reservoirs) or of costly storage is

avoided with a back-up diesel generator;

- For a mini-grid that is mainly supplied by a diesel

generator, the injection of PV kWh when they are

generated during the day reduces diesel costs and the

dependence on cost fluctuations;

- For a mini-grid that is mainly supplied by a diesel

generator, part of the fuel consumed can be directly

substituted by using biodiesel or gas (40 to 80%) instead of

diesel.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

52

2.2.1 Generation by diesel generators: Defaultscenario

Historically, this option for the electrification of both rural

centers and small towns was favored because of its low

investment cost, the simple technology and the rapidly

implemented works. In many countries, low demand

and low population density did not justify extending the

interconnected grid. For this reason, in many Sahel areas,

such as in Burkina Faso, Mali and Mauritania, the

generator remains the basic technical choice for rural

electrification, despite the fact that with a lifespan of

20 years, the diesel option is expensive. For example,

diesel costs account for up to 80% of the cost per kWh of

a generator, making this option even less attractive

considering the fuel transportation costs in isolated areas.

Even at EUR 1 per litre, the cost of fuel over 5 to 10 years

is higher than the amortization cost of solar panels at

present day prices.

The main reasons for choosing diesel as a reference

solution are:

- The low investment cost for a generation unit: about

EUR 600/kW, whereas a PV option requires an investment

ten times higher, i.e. ten times fewer immediate connections.

In this situation, electrification companies prefer to justify

the loans required by making a large number of

connections;

- The fact that this is mature technology and that the

competencies required for maintenance can be found

everywhere. This avoids the training costs required to

introduce less developed technologies (photovoltaics,

gasification, etc.).

Even in countries rich in natural resources such as

Cameroon, Central African Republic (CAR), the Democratic

Republic of Congo (DRC) and Uganda, national political

Table 6. Renewable energy: Investment and kWh costs

Source: Global Chance 2007.

2.2 Complementary technical solutions for the interconnected grid

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

53

System Invest. EUR/kW Cost EUR ct /kWh Global installed capacity Operation (hrs/year)

Photovoltaics

On grid 3,000 - 7,000 20 - 40

Isolated 7,000 - 12,000 35 - 100

Wind

On land 1,000 4 - 8 94 GW 2 000-2 500

Off shore 1,200 - 1,500 4 - 8 1,2 GW 2 500-3 000

Water power

Major 1,400 - 2,000 2 - 8 3 000-8 000

Small <10 MW 900 - 4 000 1 - 9,5 48 GW 3 000-8 000

Geothermal 1,000 - 3,900 1,2 - 9 8,9 GW 8 000

Coal 900 - 1,400 4,2 - 5,6 8 000

Fuel / diesel 400 - 1 500 15 - 20 indifferent

and economic contexts have not permitted the imple -

mentation of major programs to develop biomass or small

hydropower (mostly through lack of financing and

incentives). We are too often still in the situation whereby

an operator (national power company or licensee)

with a fixed budget, will be assessed on the number of

connections immediately made, rather than on

the long-term cost of the service provided. The diesel

generator will thus still be essential in the immediate future.

However, with rising fuel prices, the solutions to be applied

should first and foremost aim at lowering diesel

consumption, by systematically integrating the efficiency

of the equipment used and seizing all opportunities for

hybridization.

2.2.2 Small hydropower: Major needs forfinancial capital and know-how

Water resources are abundant in many countries, offering a

whole host of development opportunities and covering the

entire power range, from a few hundred watts to several

megawatts. The very small number of pico (stand-alone),

micro (village, 10 to 200-500 kW) or mini hydro

(200/500 kW to 5/15 MW) facilities is evident when compared

with Asia.

There are very few turbine manufacturing units in Africa

(there are a few workshops in Ethiopia and Nigeria), but

many countries have the industrial base to provide the

maintenance for this equipment. Experiences in promoting

hydropower can serve as examples for Sub-Saharan Africa:

the GTZ micro hydro project in Indonesia (development of

local manufacturing; range <100 kW), or development in Sri

Lanka through a buy-back tariff incentive system. In Africa,

an initiative to develop small hydropower plants for tea

factories was launched in East Africa with the support of

Global Environment Facility (GEF) of the United Nations

Environment Programme (UNEP), in which the consultant

is involved (500 kW to 5 MW hydropower units); a regional

initiative at the stage of site identification (UNDP, GEF in

West and Central Africa); pilot projects are being conducted

in Southern Africa (Rwanda, Tanzania, Zambia) by the

United Nations Industrial Development Organization

(UNIDO) and bilateral cooperation.

► Mini hydropower plants (200/500 kW – 5/15 MW): Issues

related to technical-economic profitability and the impact on

access.

These projects are especially difficult to implement

because they are often oversized for local rural demand.

Amortization is impossible from domestic demand alone

(<100 kWh/month per household). Project profitability

consequently depends on the presence of major customers

(industries, for example), or on the possibility of selling to

the grid. These customers, who are large consumers with a

high ability to pay, allow the investment to be amortized and

the operating costs to be covered in order to develop a rural

component at a lower tariff. This arrangement is only

possible if there is a clear institutional framework and

legislation for resale to the grid, as explained above.

In areas with abundant water resources, hydropower

generation is justified by the fact that operating costs are

almost nil (as they simply concern turbine maintenance).

The major obstacles are the scale of the investment costs

and the complexity of the design studies (see below). As

an order of magnitude, and depending on the turbine, the

electromechanical component of a plant will cost between

USD 500 and USD 1,500/kW and the civil engineering

component can vary between USD 500 and USD 3,000/kW.

Depending on the site, the civil engineering required can be

more or less costly (i.e. water pipes, settling pond,

penstock, water intake and, more rarely, a dam, the size of

which depends on how long the water has to be stored;

turbine house, etc.). There is, in addition, the cost of the

studies required to identify sites and for the design of the

infrastructure and hydrology. This also requires expertise

that is rarely found in Africa.

The implementation of these various stages also implies a

long gestation period. This makes it more difficult to ensure

the support of partners over the entire project life, which

may cover several years (see Table 7).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

54

Run-of-River hydropower is continuous throughout the day,

unlike demand. While supply must follow demand, storage

facilities (costly) are required to be able to turbine in the

evening. In addition to this daily storage, generation over

the year depends on hydrology and its seasonal variations.

Consequently, is it necessary to launch major civil

engineering works to guarantee a capacity throughout the

year?

The presence of a back-up (thermal source independent of

the natural resource) may be necessary to ensure a reliable

service, and provide an interesting alternative to major civil

engineering works, as sizing infrastructure that will be used

little throughout the year leads to a high cost per kWh.

► Village hydropower (micro, 10 to 100 or 500 kW): Many

constraints

For smaller, so-called "village" facilities, it is not possible to

consider launching long, complex and costly studies that

have to be amortized on a few kWh. Hydropower at the

village level to feed a mini-grid is only possible if it is run-of-

river (without water storage) and of simple design. The civil

engineering is reduced (all that is needed is a water pipe

and a small building for the turbine) and many fewer studies

are required. Most of the civil engineering can be handled

locally, by training the relevant stakeholders, initially in

plant maintenance, thus ensuring the project will not be

abandoned at the first breakdown. As a second step, a local

turbine production industry can be set up to minimize

imports, which generate high costs, and thus promote local

development.

However, this system needs to be widely replicated (to

amortize the training costs), to benefit from real know-how

and to be facilitated by clear legislation. Support is required

at the level of (i) the development of local skills, (ii) investment

and (iii) during the definition of the tariff conditions. It is

therefore a long-term process, which requires a real political

commitment from the State, as was the case in Sri Lanka.

► Pico hydro: Skills transfer required

Pico hydro is the use of hydropower by low-power turbines

(typically less than 5 kW) for individual use or shared

between a few families, similar to PV systems. The required

turbines combine the mechanical part and electronic part

in a single part. The use of this technology is therefore

accessible to all. The turbines can be installed with a small

water diversion in order to create a difference in height, but

also directly in a river current. It therefore does not require

much know-how to use them. However, they cannot turbine

during low-water periods, or when there are high water

levels. To maintain low sales prices, most of the Chinese

and Vietnamese equipment has neither regulation nor

protection, which poses safety problems for both the

equipment used and the users.

Many African countries have a hydrology that allows pico

hydro to be installed in isolated villages. This sector, which

is currently not exploited in Africa, can thus be developed

either by importing Asian turbines, or via the development

of a local industry. A technology transfer between the two

continents would therefore appear appropriate and

necessary for the development of a market. Once

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

55

Scoping study Duration and dates Costs Financier Number of sitesPre-feasibility 4 months GEF, UNEP, African 8 COUNTRIES

Nov. 05 – March 06 EUR 178, 000 developpement Bank (ADB) 19 sitesFeasibility 5 months EUR 180, 000 GEF, UNEP, ADB 2 sites

Oct. 07 - March 08Studies for the rural 3 years EUR 272, 000 GEF, UNEP, ADB 4 siteselectrification component Jan 07 – Dec 2010Works 1 site under construction 1 site (civil engineering,

1 site under discussion electromechanics, distribution grid GEF, UNEP, ADB 6 sites4 feasability studies of sites supervision): EUR 5.5m (2833 MW)

Table 7. Timetable and design costs for hydropower sites

Source: Authors.

manufacturing is on stream, the cost of a turbine is

affordable, even for low-income rural communities, since –

for low-end material – in the rural areas of Laos, turbines

"rated" 200 W can be found for USD 30.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

56

Box 8. Pico hydro in Laos

Pico hydro developed spontaneously in Asia. In Laos, about 60,000 turbines are operational, although it is difficult to give an exact figure,

and a manufacturing industry has developed, in particular in China and Vietnam. These turbines are often of an average quality and their

lifespan is estimated at about three years. However, it is possible to control production, as the REA attempted to do in Vietnam (by putting

higher quality turbines on the market at competitive prices), or as in the Philippines (which developed their market by importing higher

quality turbines than those from China). The electricity generated is unstable and the lifespan of domestic appliances connected to this

source is shortened in these conditions, as the users do not spontaneously install a regulator. In Laos, for instance, households replace their

light bulbs up to three times a month.

Finally, while the fact that pico hydro is easy to implement is an advantage for rural electrification (it is simple to install a turbine), the use of

electricity by people who are unaware of its dangers, combined with a lack of protection of the facilities, exposes users to a number of risks.

During discussions with these users, they mentioned several accidents. The development of pico hydro must therefore go hand in hand with

awareness-raising for users in terms of how to use it.

Costs range between EUR 20 for a few hundred watts and EUR 500 to EUR 1,000 EUR for a few kW.30

2.2.3 Bioelectricity: Technical sectors andaccess issues to differentiate

► Biomass-based power generation: Resources and

sectors

Like hydropower, biomass-based power generation

depends on the local availability of the resource. It is

thus necessary to make a clear distinction between the

development of plantations for power generation, involving

agricultural and rural development issues, on the one hand,

and the use of agricultural or agro-industry residues, on the

other hand. It would, however, be wrong to systematically

consider this resource as free, as competitive, commercial

uses are being developed (rice husk briquettes, paper

manufacturing, uses for cooking, etc.) Large-scale biofuel

generation for transportation, or small individual or commu-

nity biogas facilities for cooking, will not be discussed here.

Four main power generation sectors for rural services

should be distinguished:

- Cogeneration

- Biogas

- Biodiesel

- Gasification.

30 For more information, visit the site of the Off-Grid Promotion and Support village project,implemented by the government of Laos: www.vopslaos.org

► Agro-industry cogeneration

Cogeneration (the combined production of heat and

electricity) is particularly relevant in the agro-industry,

where there is a need for heat (typically sugar refineries). It

is only appropriate above 500 kW or even one MW. It is, of

course, possible to only produce electricity and not develop

heat production, if it is not required for the process.

This industry is technologically very widespread and proven

in Asia and Latin America, where all the sugar refineries in

India, Brazil and Thailand in particular are equipped with

these units. It is increasingly applied to sectors such

as palm oil production, rice husking plants or the wood

processing industry. There are few projects in Sub-Saharan

Africa, apart from a few facilities in South Africa, Uganda,

Tanzania and Zimbabwe. An ambitious program is,

however, currently being launched, with the support of

UNEP/GEF, to develop cogeneration in Ethiopia, Kenya,

Malawi, Sudan, Swaziland, Tanzania and Uganda (Cogen

for Africa program, coordinated by the NGO

Afrepren/FWD).31

Traditionally, agro-industrial units have low-

temperature/low-pressure boilers and are self-sufficient.

The same quantity of residue, with a high-

temperature/high-pressure boiler, allows a much higher

level of electricity to be generated, but the additional invest-

ment will only be justified for the agro-industry if it can sell

this electricity at a sufficiently attractive price to amortize its

investment.

In Sub-Saharan Africa, the potential is considerable, both in

sugar production areas and wood processing units. It is,

however, the regulatory framework – and the proximity of

an electricity grid – that would provide incentives to develop

this sector. Without an attractive buy-back tariff to supply

the grid or nearby localities, industries will make do with a

basic boiler for their own consumption.

Cogeneration has mainly developed in a self-sufficient

manner over the past decades. Boiler efficiency has impro-

ved, so has the development of the power grid, and it is

today a mature sector with a growing potential, as resale to

the grid is becoming increasingly possible. The available

quantities of biomass produce an electricity surplus, which

is sold externally. A part of it can be fed into the grid (if there

is one) at the national tariff in order to remunerate the

agro-industry, and a part can also target surrounding

villages at a lower tariff (provided a distribution structure

exists to purchase the electricity). In order to establish

this type of scheme, which contributes to access

for communities (who will logically be located near

employment areas where the agro-industries are), it is

essential to have a clear institutional framework, as the

technology is now mature and no longer poses difficulties.

However, the development of the system is primarily

motivated by profitability for agro-industries, which is in any

case a key factor at the worldwide level for determining

sugar prices, for instance.

► From individual biogas to industrial biogas

Biogas is the product of the anaerobic fermentation of

more-or-less liquid waste. The resulting methane can be

used for direct combustion (lighting, cooking), or as mixed

fuel in a diesel generator or small turbine. Electrical

facilities generating up to several MW exist in pig and

chicken farms in Southeast Asia. Dozens of units are

now operating in Malaysia and Thailand, and while the

methanization process (anaerobic digestion) requires a

certain technological supervision, these units have been

operating for several years. The suitability to the context of

Sub-Saharan Africa is certainly farther away, because

of the small number of large livestock farms. However,

"individual" biogas (to produce gas for cooking or lighting at

home) or medium-sized (to run an engine from a few dozen

kW to up to 500 kW, intermittent) has great potential.

However, it should be noted that the adjustment can be

difficult as it depends on the temperature, humidity and the

residue used.

Today, millions of "individual" or community” biogas units

exist in India and China, allowing farmers to produce the

gas required for cooking and lighting from two cow heads.

The so-called "industrial" biogas sector, which uses waste

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

57

31 Energy, Environment and Development Network for Africa, ONG basée à Nairobi.

from intensive farming, is widely established in countries

like Denmark, where this gas covers over 15% of heating

needs and power generation. In the Philippines, where

there are strict environmental standards concerning

the treatment of liquid effluents, biogas generation is

systematically integrated into sheep farms, which solves

both the problem of local pollution (liquid effluents) and

improves the profitability of the operation by using this

gas for power generation. While this sector has clear

advantages in terms of increasing the renewable share in

the energy mix, there is no direct link with the issue of

access.

The size that we feel probably has the best potential for

rural access, when legislation allows its resale under

attractive conditions, is that of biogas producing 50 to

500 kW from agro-industry waste or plantations. However,

the complexity of this sector should not be underestimated,

as the "anaerobic digestion" process must be adapted to

the type of biomass and its degree of liquidity.

Nevertheless, some projects are beginning to emerge in

Africa, in Kenya for instance.

► Short supply chains of biofuel and gasification: Reducing

the share of fuel oil in generator consumption

Gasification allows biomass residues to be used by

transforming them through pyrolysis into a gas that can be

used in a standard engine, just as biodiesel can be mixed

with diesel. The gasification of wood, rice hulks, coconut

shells, coffee, palm oil and rubber plantation pruning

residue presents a huge potential that ranges from several

tens of kW to between 1 and 2 MW. The gasification

process (pyrolysis) is specific for each residue, which

makes its industrial application somewhat difficult. Until

now, it has been especially supported by academic

structures before passing to an industrial stage (especially

in India). Replication of the process is thus not as easy as

for a "universal" generator, as it requires a certain capabi-

lity of the local industrial base. However, targeted skills

transfers and dissemination programs are quite feasible

and are in fact ongoing, such as the transfer of knowledge

from India to Cambodia for gasifiers using rice hulks for a

generation capacity of between 100 and 300 kW. In the

African context, the focus will be more on the injection of

this gas into generators rather than gas production alone,

which is risky in terms of service continuity.

In practice, gasifiers can make villages that have sufficient

biomass potential self-sufficient. There are some examples

of gasification rural electrification (in Madagascar, or via a

nationwide project in India). The most commonly encountered

problem is that of the maintenance of this type of unit, which

requires local skills: quality of the fuel, air supply and

temperature management, gas filtration. A local technology

transfer reduces costs, as the gasifier can be made using

local materials. With the current level of command of these

sectors in the contexts we are considering, it is preferable

to use hybrid diesel in these sectors rather than a single-

fuel source.

In terms of biofuels, the so-called “first-generation”

agrofuels have reached technological maturity and are an

energy source than can be developed locally. There are

several options:

- Ethanol obtained from the fermentation and distillation of

biomass rich in sugar, starch or cellulose (sugarcane, sweet

sorghum or maize, wheat, manioc). It has to be used either

mixed or in specially adapted engines, just like vegetable

oils. Its transformation is expensive, especially due to

transportation costs;

- Pure vegetable oils, obtained from pressing oil-rich bio-

mass (in Africa, palm oil, jatropha, rape seed, soy, algae,

etc.), can be used in tractors or stationary engines, with

special precautions when starting up the engines;

- Biodiesel, obtained from the esterification of such

vegetable oils, can be used in any diesel engine (<30%, or

more after simple modifications).

Today, we are still in the pilot stages of such uses, with

open-ended questions concerning surfaces areas, inputs,

yields and capacity. The initial analyses seem to indicate

that under good conditions (reasonable yields without the

need for too many inputs), biodiesel might be competitive

with diesel above USD 70/barrel in isolated areas.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

58

These options offer a high level of flexibility, because

biogas and biofuels are injected into diesel generators

without being modified, and any fluctuation in biomass

generation can be offset by increasing diesel input (see

Box 9). The difficulties will come from issues concerning:

- The reliability of biomass supply (residues, competitive

uses, seasonal variations) and, in the case of dedicated

plantations, the question of plantation management;

- Technical skills, which have to be found in each village

and require establishing an effective regional network of

local technicians. This has to be planned in partnership

with an REA as part of a large-scale program.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

59

Box 9. Examples of biodiesel and gasification projects

The University of Louvain, Belgium, has conducted a feasibility study for a biomass-electricity project in rural areas in Burkina Faso. Based

on various available types of biomass and on several different technologies, the study showed that yields depended on the biomass used,

and that wood was the best candidate for gasification (although cotton stalks, among others, also gave interesting yields). The "all wood"

option requires a higher initial investment, but produces a cheaper kWh than a "dual fuel" option (using 20% diesel and 80% wood).

Whatever the option selected, the cost per kWh produced is 25 to 33% lower than the kWh produced by a standard system. Researchers

have also developed an easily built concrete gasifier.

While wood is the most common fuel, and we can consider that wood gasification is competitive with diesel when it costs over USD 0.90/litre,

the rice hulk sector is also being developed. Cambodia, for instance, sells its Angkur rice-hulk gasifiers in India at USD 65,000 for a 150 kW

unit and USD 75,000 for a 200 kW unit.

In Mali, the national program to exploit the jatropha (pourghere) plant for energy use (PNVEP) aims to develop the use of jatropha oil for rural

electrification and vehicle fuel. The first phase (2004-2008) installed five generators using this fuel, for a budget of FCFA 700m. A 50 kW

generator was commissioned in the pilot village Kéléya, with a jatropha oil extraction unit and the cultivation of 0.5 ha of this plant. Twenty

subscribers (including most of the administrative buildings) were thus connected to a 2 km grid. On a larger scale, AMADER (which has

already financed several diesel generators and small grids) could support the installation of a biodiesel production unit, with an obligation to

purchase for the PCASER that are financed.

2.2.4 Photovoltaics (PV): Are prices sure to fall?

The much expected reduction in the price of photovoltaic

panels has been well underway since early 2009. While only

a few years ago, a 50 Wc solar kit cost USD 500, today this

equipment, which is manufactured in Asia (and certified in

Europe), can be found for less than half that price. Industry –

driven by major European, Japanese and American pro-

grams, which have led to large-scale investments in genera-

tion capacity and in electronics to integrate renewable energy

into smart grids – has scaled up its generation capacity, and

the eagerly awaited "One Euro per Peak Watt" will soon be

reached. It is essential, however, not to confuse panel price

and the total cost of the system, especially for stand-alone

systems, for which there is also the cost of storing the power

produced during daylight hours (batteries for lighting or water

tower for pumping).

► Hybrid PV/diesel mini grids: A sector with great potential

Photovoltaics might well become the first hybridization option:

sunshine is almost constant in the country and a resource

much easier to mobilize than biomass or water. The weak

point of PV is its necessarily diurnal production, whereas in

rural areas the demand is often nocturnal. Electricity storage

in batteries remains very expensive, whereas in direct

injection into the (mini) grid during the day, it is competitive

with diesel, as is shown by the example of Mauritania

(Box 10). Moreover, as long as less than 20% of solar energy

is injected, there is no problem to manage the intermittent

production.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

60

Diagram 4. The stages of a biodiesel and gasification project

Source: Authors

PLEASER unable to cover

operating costs

Local operator,

Mali : PCASER

Competencepole

Investmentgrant...~ 80%

biodiesel

Rural electrification agency/fund(AMADER)

Technical Financial support

► Solar kits: Lessons learned from programs

Solar kit projects have rapidly developed over the past

two decades and, for a time, gave hope for the "total"

electrification of rural areas. While it is true that the cost of

a "typical" domestic solar kit of 50 Wc (lighting, radio and

TV for 3 to 6 hours a day) has decreased by almost 50%

in 15 years, this electrification scheme has not had the

expected impact, in particular for the following reasons:

- The service provided is limited to lighting, the telephone

and radio/TV (for a few hours a day and for the most

powerful systems). It can include ventilation and some

refrigeration. While "connectivity" is becoming a key

factor of development, we can nevertheless see that if

communities have to choose PV now and the grid later,

they often prefer to wait a few years more to have the "real"

powerful electricity service;

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

61

Diagram 5. The various stages of a project for PV electricity injection

Source: AIE PVPS Task 9.

Box 10. Example of a hybrid PV-diesel project in Mauritania

Today, the town of M’Bout in Mauritania is supplied by a 280 kW thermal power plant. A study was conducted for the installation of a hybridPV/diesel grid, injecting 20 kW PV. The injection is made in small quantities in order to reduce diesel consumption, but without requiring abattery to store the solar energy.

The cost calculation showed that the power generation from photovoltaics, (based on a PV investment of EUR 7,000 per Wc) would costthe same as diesel electricity with a diesel cost starting at EUR 0.75/litre. As its price in November 2008 stood at EUR 0.83/litre, the PVinvestment was profitable at the time.

Lower investment costs can be borne by

small stand-alone operators

Source: IEA PVPS Task 9.

National power company

Borrows and maximizes thenumber of connections overthe short term

But has high operating costsin the long term

National power company

Does not want to use itsborrowing capacity forfew connections per $

Despite the guaranteedlong-term sustainability

Investment EUR 700 /kWkW cost: 80% fuelDiesel at 90 cents/litreCost >30 cents/kWh

Investment EUR 8,000/kWCost: 20-25 cents/kWh with long-term financing and no battery storage

Solar energy injection

Generator

- The technical and financial management (maintenance of

the electronics, replacement of batteries and low-energy

light bulbs – LELBs, payment collection) is much more

costly than initially expected. The cost of local management

can only be "amortized" over a large number of systems in

the smallest possible area. However, it is clear that where

communities are concentrated, the option of mini grids will

be selected. Consequently, and especially since the rise in

oil prices, transportation costs represent a considerable

part of the recurrent costs of programs. In reality, the larger

the program, the more it extends to remote areas

(which are scattered with low incomes), and the more the

management costs will increase. Here we are thus dealing

with "dis-economies" of scale. While prepayment (see

2.3.2) can be an interesting option (at least for monthly

payments), the prepaid meter can only be amortized over a

relatively large system (>100 Wc).

A rich literature exists on these subjects (see IEA

Photovoltaic Power Systems: Deployment in Developing

Regions).32

There are three main methods for distributing solar kits:

► A "commercial" approach, where the users pay the

entire price of the system; this approach has the following

characteristics:

• Installers or a local (micro)-credit structure can grant

payment facilities. To do so, the installers (generally local

SMEs) must be able to benefit from refinancing. However,

the scarcity of this type of facility blocks the dissemination

of the system;

• Payment facilities are for a maximum of three years, and

the users have monthly payments of USD 8 to USD 15

(for individual domestic systems), meaning that only the

wealthiest part of the population will have access;

• Once the installation has been made, or the credit paid

back, the user owns the solar system and is responsible for

its maintenance;

• The installer will only set up a local maintenance office if it

is justified by the "market" (this is commonly done through

shops selling electrical and electronic equipment in districts

or provinces);

• This is a booming market, for example in East Africa,

where many wealthy landowners install large-scale PV

systems; it does not concern agricultural laborers or small

owners;

• For the poorer population segments to benefit from this

service, a major investment subsidy is necessary (50% of

the cost). This may, or may not, be considered as a priority

for public resources.

► A so-called "fee for service" approach: The customer

pays an initial sum at the installation (equivalent, for

instance, to the connection fee for a grid service) and then

a fixed monthly fee, and the supplier handles operations

and maintenance. In certain programs, the user becomes

the owner of the equipment after a certain period, for

instance after 10 years; in others, the licensee must renew

the equipment (in cases where the grid has not yet arrived);

finally, in many cases this question of ownership remains

vague. Many such programs are now operational, and we

can benefit from information feedback covering several

years. The conclusion is relatively unanimous: this type of

approach has considerable potential, and the development

of equipment for increasingly efficient uses makes it

possible to improve the service provided by PV-based

electricity (which remains expensive). However, overall

viability is only reached when operations become entirely

local and with local costs. Skills are being developed and

national scaling up will involve a political will to disseminate

this type of set-up and develop the required expertise.

Monthly fees may, depending on the case and/or for poli -

tical reasons, cover just operation and the replacement of

the electronic components (batteries, rectifier, regulator) of

all the PV panels (or only part of them). International

cooperation is strongly represented in this niche, especially

through NGOs and foundations, which are used to working

closely with local communities.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

62

32 Contains a dozen practical guides, ranging from financing to trainer accreditation.www.iea-pvps.org –Tasks – Ongoing – Task 9.

► PV for community, social or productive uses:

• Community uses include services such as streetlights or

lighting for a village hall. This is often appreciated in village

dynamics. Its cost should be covered by the community;

• Productive uses are very rare for solar applications

because of the high cost of solar kWh, which does not

really allow power uses. However, in areas where water is

scarce, solar energy can be used for drip irrigation (which

involves little water displacement);

• These so-called "productive" uses are different from

services that directly or indirectly generate revenue:

recharging cell phones or night lighting, allowing women to

extend their weaving hours, etc.

• PV also serves certain essential social uses, such as

installing drinking water pumping systems, lighting in

health centers, or the refrigeration of vaccines. However,

for these applications the recurrent question is: Who

finances the investment? In general, the electricity sector

does not pay the cost of these investments, which must be

borne by the structures and/or ministries in charge of health

or rural development, for instance, or even the communities

themselves, which may be difficult. In fact, such programs

generally finance the initial investment for a diesel

generator, and the local community then has to cover the

recurring costs, which can create serious problems.

Changing to a solar investment requires the investor to be

willing to make a much higher investment and to have the

means to command this technology. For this reason, we

increasingly see the use of paid-for services to cover a

minimum of the operating costs.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

63

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

64

Mature

technology,

can be locally

repaired

Easy supply,

many local

representatives

Construction

work well

understood

Rapidity of

works and

of coming

on stream

Many technicians

trained who can

ensure maintenance

Investment

costOperating cost

Simplicity

of financial

arrangement

Environmental

impact

Diesel SS SS S SS SS S WW S WW

Hydro with dam SS S S WW W W SS W W

Run-of-river turbine

(little civil engineering)S S

Need for training

Co-generation (>500

kW <2 MW)SS S S S SS S S SS S

Industrial biogas

>500 kWSS WW W S S S S SS S

Generally

associated with

agro-industry

Boilers and engines

available; problem

is engineering and

buy-back of surplus

Located near

agro-industry,

i.e. engineers

and demand

Industry leads

project

Allows waste

re-use

Gasifier

20 to 500 kWWW W S W S W W W

Difficult

to implement

in rural areas

Effluents

Isolated domestic

and community PV

solar systems, hybrid

PV-diesel in mini grid,

PV connected to grid

SS SS SS S S WW SS WW SS

PV and PV-diesel grids SS W S S W WW S WW SS

As soon as

spare parts

are available

Table 8. SWOT* analysis of the technical options * Strengths, Weaknesses, Opportunities, Threats

STRENGTHS (S) and WEAKNESSES (W)

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

65

Variability of

kWh cost

Long-term

kWh cost

Generation

configuration that

can be adapted to

demand

Location of

generation and

demand

Hybrid solutions

to increase the

overall optimum

Sensitivity to

external factors

Cumbersome

nature of the

administrative

procedure

Stable and

well-formulated

regulatory

framework

Diesel TT TT SS SS O TT

Hydro with dam S SS S WW O O TT O

Run-of-river turbine

(little civil

engineering)

W OO T

Generation on

a specific site

Possibility of a grid

HydrologyStarting

in a few countries

Co-generation

(>500 kW <2 MW)S S S S T T T

Industrial biogas

>500 kWS S S S O T T T

Competing uses

of biomass

For resale

of surplus

Few or no countries

have a specific policy

Gasifier

20 to 500 kWS S S S OO T T T

Collection,

plantations

Requires

contracts LT

Few or no countries

have a specific policy

Isolated domestic

and community

PV solar systems,

hybrid PV-diesel

in mini grid,

PV connected

to grid.

SS S S SS O OO O O

PV and

PV-diesel gridsSS S W SS O OO T T

Competitive in

some segments,

and improving

Diurnal generation

is a problem,

requiring storage

for nocturnal

demand

Modularity versus

increasing demand

Have to import

sophisticated

components

Simple as,

generally,

no connection

to a grid.

Start of fiscal

incentive policies

OPPORTUNITIES (O) and THREATS (T)

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

66

Potential on the

continent

Investors’ appetite –

risks controlled

Investors’ appetite – time

for return on investment

Investors’ appetite –

LT profitability

Engineering expertise

national technique

Manufactured

nationally

Diesel OO O TT T

Hydro with dam OO TT TT OO TT O

Run-of-river option

(little civil engineering)T O

Geographical

variations

Training

in due diligence

Need for innovative

financial engineering

Need for innovative

financial engineering

Need for training

and quality control

Small turbines

with the market

Co-generation

(>500 kW <2 MW)O O O OO T O

Industrial biogas

>500 kW0 T O O TT TT

Need for information

and training (biogas)

Gasifier

20 to 500 kWOO T OO O TT T

Isolated domestic

and community PV

solar systems, hybrid

PV-diesel in mini grid,

PV connected to grid

OO O T T OO O

PV and PV-diesel grids OO O TT O O O

Technologically,

the problems are known

and the resource

controllable

Strong interest

from investors

and industry,

despite small size

of investments

Engineering to be built,

easily transferrable

The definition

of opportunity

is restricted

to assembly here

Source: Authors.

OPPORTUNITIES (O) and THREATS (T)

2.3.1 Significant potential for lowering costs bytaking the time to choose options

Electricity distribution techniques have an impact on

investment costs and, thus, on the profitability of the sector.

Innovative approaches can also help to reach an a priori

non-profitable customer segment (such as rural or

peri-urban households). Electrification systems should thus

be designed in an integrated manner in order to optimize

not only the investment, but also the operating,

maintenance and customer management costs.

Usual practice often leads to overestimating demand and,

consequently, to oversizing the grids (cable sections,

transformer capacity). This practice is often the result of a

lack of openness to alternative technology and a certain

mistrust of light technologies, which are considered as

downgrading. However, in terms of norms and standards,

a more widespread use of single-phase grids, a

more controlled sizing of transformer specifications,

adapting constraints to the poles, and accepting cable

sections that match effective demand, are all ways to

significantly reduce investment costs. Very often, studies

reproduce the usual equipment choices based on practice,

without any specific sizing, whereas a correct sizing

involves: (i) defining the prospects and forecasting the

loads, (ii) specifying the technical limits (overloads, voltage

drops, engine start-ups), and (iii) reinforcing upstream grid

sections and reducing the downstream sections.

These structural solutions require a fundamental change

in practices and, for this reason, are often difficult to

implement. An optimized approach to the technological

dimension can lead to overall savings of around 30%

compared to usual practices, or can extend the lifespan of

the grids by 10 years. Cost reduction is a lengthy process

that requires the support of all stakeholders and a strong

political will to change long-established habits.

Further flexibility exists in terms of program management,

and more specifically in policies for procurement and the

implementation of facilities, whereas usual practice is

based on turnkey contracts that avoid setting up project

management structures. Using a central procurement

service and segmenting supplies can reduce procurement

costs by 20 to 30%.

This local involvement obviously requires building the

capacities of the contracting authority/project management

in order to guarantee the quality of supplies and facilities.

This strengthening implies costs that absorb part of

the gains. This capacity building can, of course, only

be achieved within the framework of a large-scale

electrification program.

Restoring project management to a national level should

also allow a cost review for the installation of electrical

equipment. In certain turnkey electrification programs,

installation costs can be as much as 50% of the overall

cost: national management will ensure that this type of cost

is reduced by creating competition in the installation sector.

The organization of negotiations with companies, the

search for new suppliers and a new bid invitation as part of

a rural electrification program in Burkina Faso led to a

reduction in the total installation cost of two mini grids of

almost 35%.

A new approach to program implementation can also, and

this is the major interest of this solution, give incentives to

set up a national system of companies with a capacity

to directly work on the electrification program (sizing,

installation, etc.) or indirectly (supply of wooden poles, elec-

trical equipment, etc.). The same is true for companies

called on for the operation and preventive maintenance of

the facilities. A national survey will establish and update a

pool of potential operators and equipment suppliers.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

67

2.3 Distribution and customer management: Substantial leeway

2.3.2 Adapting customer management to localconditions

► Costs and organization

The two main basic pricing models are related to

distribution techniques: a lump-sum payment for an

electricity service (e.g. fee-for-service, an amount based

on the number of lamps or a duration of use) or a power

limiter; payment in proportion to the amount of electricity

consumed based on a grid approach (meter). The usual

approach can be summarized as follows:

• Power distribution grid = unit sale of energy,

• Electrification for low demand = sale of service.

Electricity companies, governed by a supply culture, thus

operate from a customer-management logic based on the

unit sale of energy that is materialized by the following

cycle: energy metering-billing-collection.

In Africa, so-called "non-technical" losses on power

distribution grids are often in excess of 10% (fraud, theft,

etc.). There are, in addition, unpaid bills, which are also

often in excess of 10% of the distributed electricity,

meaning that total losses (also including technical losses

due to the state of the grid condition) for electricity

companies can sometimes reach or exceed 30%.

Improving customer management in particular requires

improving billing collection. However, this comes up

against obvious financial limits: the electricity companies

cannot afford to increase their billing collection costs (on

average 10% of turnover) by increasing the number of

staff for payment collection, which on a unitary basis is low

in low-income areas.

Faced with these constraints, new organizational

approaches to customer management are being

developed. These new systems are based on taking more

account of the socio-economic characteristics of

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

68

Box 11. Cost reductions in Benin thanks to upstream optimization of technical and sizing choices

Thanks to the optimization described below, the project has allowed 102 localities to be connected instead of the 56 initially planned, at

constant cost:

- Two-phase derivation: 20% gain compared to a three-phase derivation;

- Use of Single Wire Earth Return (SWER): gain of up to 70% compared to a three-phase antenna. Introducing SWER requires a minimum

of steps to ensure it is appropriated at national level. This ensures that the projects can be implemented in as flexible a way as possible;

- Systematic use of wooden poles wherever it is technically possible and economically profitable (gain of 5% to 15% on the line);

- Use of mechanical calculation software for overhead grids (particularly to optimize lines using the suspended technique);

- As part of a project, segmenting supplies substantially reduced the cost per km of a line: from FCFA 12m to FCFA 10m (-20%);

- Supplies from international markets for each component (cables, transformers, etc.) and only the installation was subcontracted locally, as

the prices are much lower than in all the other Central African countries.

Source: IED – Rural electrification project in Benin, financed GTZ-AFD – European Commission Energy Facility.

customers. This constitutes a major change in electricity

companies, which often have little interest in interfacing

with customers. Consequently, there is a move towards a

variety of organizational approaches, which aim to lower

costs for meter reading and bill processing: installation of

collective meters (one meter for several customers), and

monthly flat-fee sales in peri-urban areas where there is

low energy demand.

These approaches require the involvement of local

communities (traditional, cooperatives). In Eritrea, for

instance, each village sets up an electrification committee

in charge of customer relations inside the village. The

electricity company sells bulk energy to the village, which

is in charge of retail distribution and, thus, of collecting the

corresponding payment from each user.

However, when the main licensees withdraw from the cus-

tomer interface, the question is raised as to service quali-

ty at the end of the line: How can the licensee be respon-

sible for the service quality provided by the cooperative at

the end of the line?

► Prepayment: An interesting customer management tool

Prepayment is a commercial management method that

aims to charge the customer for a service before this

service is used. It is a very practical payment method

for cell phones (cell phone recharge with cards) and

increasingly in other market sectors, such as gas and even

water. This credit recharge can be bought from an electri-

city distributor, from an official sales point, via an automa-

tic sales system, or even with a cell phone (or, in certain

cases, via Internet). Electricity prepayment has existed for

a long time, especially in England where it serves about

half the population. In South Africa, most towns were

equipped with prepaid electricity as part of the national

"Power for All" equipment program. African countries, such

as Côte d’Ivoire, Gabon, Morocco and Senegal have

launched prepayment projects due to the bill collection

problems faced by national electricity companies. Today, it

is estimated that there are over 4 million meters installed in

South Africa, 50,000 in Nigeria, 40,000 in Namibia, and

10,000 in Côte d’Ivoire and Senegal.

Prepayment is based on pre-metering electricity. The

prepayment meter measures the energy consumed and

compares it with the available credit level purchased by

the customer. The meter stops the supply when the credit

is exhausted or when the subscribed power level is

exceeded.

Prepayment is successful today because it offers several

advantages:

- For the electricity distribution company, prepayment

improves cash flow (as customers pay before using the

electricity); it reduces bill collection problems (as the

customer does not get electricity if it has not paid in

advance); it reduces meter-reading costs and limits fraud

when split meters are used (see below);

- For customers, prepayment makes it possible to

anticipate their consumption, “pay as you go” depending

on what they can afford, adapt their consumption and

avoid "unforeseen" bills.

There are two types of prepayment system:

- One-way prepayment: Consumers buy an electricity credit

using a key, code, or smart card, depending on the type of

meter; the corresponding amount is then credited on their

meter. Data only move in one way, from seller to meter;

- Two-way prepayment, which is more complex: while this

electricity credit is again purchased by means of a key,

code, or smart card (depending on the type of meter),

once the code has been entered, the data flow in both

directions, from and to the meter. The meter is credited

and supplies data such as the meter reading, error codes,

etc. When the support is recharged by the sales point, the

data stored are transmitted to the central management

system. This system allows the distributor to recover

meter data that can help it to more effectively manage

generation: customer consumption, fraud, and a

comparison of the subscribed and used power.

While postpayment requires a large number of operations

(especially in the case of collection problems),

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

69

prepayment reduces such operations and interactions

between the distributor and customer; this last point,

however, is subject to criticism.

In the prepayment cycle, the distributor's cash flow is

always positive (paid energy > consumed energy)

whereas in the case of conventional payment, it is always

negative33, as even at the moment of billing for a period,

consumption for the next period has already started,

returning the distributor's cash flow to negative towards

the customer (consumed energy > paid energy).

Prepayment is a tool that improves collection, as the

energy is only distributed once it has been paid for.

According to several African electricity distributors,

prepayment covers the 15% of annual debts that are

never paid.34 Prepayment is, however, not a tool to

combat fraud by itself. In fact, it tends to encourage it,

because physical controls are less frequent as there are

no longer meters to read. Certain customers can thus be

tempted to “shunt” the meter, i.e. hook up to the grid by

putting a cable before the meter.35

Prepayment is commonly seen as a means of supplying

energy to the poorest, as the distributors can equip

commercially risky areas without fears of massive

non-payment. However, to be a tool to fight against

poverty, these poor areas need tariffs that are equivalent

to the conventional ones, especially the social tariff, which

has now become possible thanks to many prepayment

management software packages.36

Beyond the unquestionable advantage of improving the

collection rate, prepayment should not be seen as the

panacea for all the distribution management dysfunctions

a power company needs to face in a developing country.

Setting up a prepayment system must be evaluated and

assessed in the light of the following elements:

- Changes in tasks: Prepayment introduces many

changes in the organization of distribution, starting with

fewer meter readings. This innovation, which can allow a

reassignment of tasks at the distributor’s or even a staff

reduction, is, however, based on technologies that are

more complex than traditional meter reading. This

requires a higher level of skills and a major adaptation of

existing staff, especially concerning meter installation and

computer management systems;

- Fraud remains possible: Prepayment does not

automatically imply fewer fraudulent practices because of

the physical absence of meter readers;

- Investment costs: Even though prepayment meters can

be rapidly amortized due to the gains in terms of collection

and the improvement in cash flow, they are more

expensive than traditional meters (about 30 to 40%);

- Reduced consumption: Various studies have shown

an average decrease in electricity consumption per

household of about 20% when a prepayment system is

installed;

- Customer base must be diversified: Prepayment should

not only address poor customers; in order to ensure that it

is profitable and the distributor benefits from its positive

effects (reduced management costs, cash flow savings,

fewer unpaid bills), it must also be developed for more

affluent customers and small industry, which are more

likely to cause scale effects;

- Introduction in rural areas remains difficult: In some rural

areas, the distance to a sales point is penalizing; when

coverage exists, cell phones offer interesting prospects.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

70

33 Except in the case of advance payment (guarantee). 34 In some countries, institutional customers (administrations, police) tend not to pay theirbills. Setting up prepayment is one of the possible measures to make them face theirresponsibility.35 Prepayment systems propose various anti-fraud techniques: installation of split meters(keyboard to enter coupons and meter are separate), with the meter installed on the pole,which makes bypassing meters more difficult; installation of tamper-proof coaxial cablesbetween the pole and the meter (in the case of monoblock meters). This solution is relativelyexpensive and is only possible when there is a short distance between the pole and the meterand the risk of fraud is high.36 The differentiation of energy tariffs has long been a technical obstacle, as the first pre-payment systems were unable to manage different tariffs.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

71

Box 12. Prepayment: Lessons learned in Senegal, Côte d’Ivoire and South Africa

In Senegal, prepayment was introduced in 2006, where it met with real success, particularly in the capital. In this country, customers canchoose between keeping their old meter or opting for prepayment. The new electricity meter is in the form of a central unit with akeyboard (to enter the code on the recharge ticket) and a screen (to follow consumption). The first tranche of the investment amountedto EUR 450,000, representing EUR 75,000 of system equipment and EUR 375,000 for the procurement of 5,000 meters. For a constantcustomer volume, the new system improved company SENELEC’s cash flow by about 30%, whereas in the same analytical framework,household energy consumption dropped by about 15%. On the consumer side, the new system has been quite well received. Severalreasons give customers incentives to subscribe to a connection:

- More flexibility and visibility in managing the electricity budget;

- Shorter access time to the meters (prepayment meters have priority and are less overloaded);

- A tariff advantage, as the billing system in Senegal has a first block of more expensive kWh that subsequently decreases for eachfollowing block. Consequently, customers buy enough to fill the first blocks, and then massively in the third block by the end of themonth, allowing them to cover their electricity needs for the two following months at the tariff for the third block of the preceding month.

In Côte d’Ivoire, the Compagnie ivoirienne d'électricité (CIE) started planning the integration of prepayment meters into its distributionmanagement system in the late 1990s. In 2000, the company installed about 5,000 prepayment meters as an experiment. However, itrapidly became clear that they were not efficient and in 2004 CIE decided to launch a new test campaign, using a new model of metermanufactured in South Africa. Today, over 30,000 new generation meters are being tested. However, the large-scale distribution ofprepayment meters is not currently authorized by the Government, which is waiting for an opinion from the National Electricity SectorRegulatory Agency (ANARE) before the final adoption of this metering system. This new approach to distribution mainly relies on certainCIE branches and on the following criteria: Rapidly expanding districts, precarious districts, and debtors who have been cut-off for unpaidbills (fraudsters).

CIE wishes to stress the following impacts in terms of this experiment: a remarkable drop in unpaid bills; a real possibility of redeployingthe large numbers of staff working on billing and collection; improved cash flow in the areas in question of about 20%. However, CIEdeplores the persistent fraud, especially hook-ups before the meter. (It should be noted that as a protest against the installation of thenew meters, new types of sabotage of the equipment have appeared.)

Users and consumers evaluate the new meters as follows: rapid and low-cost subscription; no guarantee required for the subscription;no power cuts because of non-payment; immediate service resumption after recharge; difficulties to top up on energy credit in some CIEagencies (creating queues); too many English terms in information displayed on the “Taurus” meter; training required in how to use theprepayment system (to be able to read the codes, etc.).

In South Africa, the “Energy for All” program was launched in 1992 and very rapidly started using prepayment. Today, over 4 millionprepayment meters have been installed nationwide, mainly in the peri-urban townships. Indeed, the political will to extend this newdistribution management system was based on a strong principle that did not allow for unpaid bills. As it operates as a system ofadvance on consumption, this type of meter cannot create "disconnected" people. It therefore a priori allows poor households to avoidthe spiral towards more-or-less permanent exclusion from the service and the seizure of furniture and subsequently property. Theprepayment meter thus to some extent limits the possible consequences of non-payment for poor households. This new technologywas further driven by the fact that it made access to electricity possible in areas where energy metering, billing and collection wereparticularly difficult. Beyond these areas that are difficult to access, the new approach rapidly started covering other geographic andsocioeconomic situations (urban centers, rural areas). Nevertheless, the first prepayment experiences were not convincing: in the early1990s, the national power company Eskom recorded between 40 and 60% of defective meters, causing a major loss of income and highreplacement costs. The initial systems that worked with a magnetic card were replaced by two-way systems, which proved to be muchmore reliable. The average cost of a prepayment meter today is about EUR 50 (three times more than a conventional meter).

The main conclusions from various evaluation studies are as follows: a significant increase in income related to energy sales; improvedcash flow of 20 to 70% depending on the geographical area (an area of high energy consumption increases cash flow more than an areaof weak consumption); increased operational efficiency (reduction of about 10% in meter reading, billing and collection costs – MRBC);suppression of disconnection and connection costs; good acceptance of the system by the consumers, who appreciate the possibility ofcontrolling their electricity consumption depending on their ability to pay; numerous fraudulent practices in the payment collection system(during the first years when the system was set up): many vendors disappeared with the takings from prepaid card sales (thanks toconcerted management processes and the introduction of innovative sales circuits,37 these incidents have gradually been reduced); inareas with low electricity consumption, the return on investment for the prepayment meters is low; hindsight shows that the preconditionsfor the success of installing a prepayment system do not only depend upon the metering technology used, but also on the skills andinvolvement of the management team at the site in question.

The South African authorities have set up a major decentralized electrification program based on the distribution of PV kits. KES, adecentralized-services company (DSC) created by EDF and Total, is implementing a decentralized rural electrification program in theprovince of KwaZulu-Natal Central that will serve 15,000 customers. The management method adopted is that of a fee based on a fixedmonthly price with a prepayment meter. However, this type of prepayment system in a rural environment faces unexpected problems,as each customer must go to a sales point that is relatively far from his home, generating non-negligible travel costs for a low-incomehousehold. Faced with this constraint, the consumer often chooses to gradually abandon the use of his PV generator. This shows theadverse effects of a system that protects the owner against numerous unpaid bills, but which generates an implicit loss for the customer.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

72

37GSM seller in South Africa: this type of sale is used by vendors who, as they have an advance account based in a sales server, transmit the credit purchase orders by text message and receivein return the 20-digit code to be given to the customer on a counterfoil book. For this, the vendor must deposit an advance fund; his margin is then 5% on all transactions.

2.3.3 Specific points in peri-urban areas

In Africa, the number of million-inhabitant cities is

constantly growing, and in the year 2000 there were

about thirty such conurbations on the continent. This

phenomenon of urban growth, essentially due to the rural

exodus caused by poverty, poses many management

problems, especially because much of this housing is

precarious and in unserviced areas – slums – where the

service is often pirated. African cities devour space and

as they expand, the load on the various urban equipment

components becomes very heavy due to the length of

the networks (water, sanitation, electricity, roads,

transportation). The urban phenomenon is a major concern,

even in the case of less-populated urban centers, as the

pace of population growth is disconnected from that of

developing the capacity of economic production. Wider

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

73

access to electricity services at a reduced cost can lead to

improvements in health, security, and the generation of

income within slum communities. However, communities in

poor peri-urban districts are often marginalized by power

companies, which have a negative perception of this

market segment, for several socioeconomic and technical

reasons, including:

- The low unit consumption of these households, which

makes them low-priority;

- The informal character of the housing and, more

generally, the land tenure problem in slums (excluding

social housing): residents are either tenants of wealthy

absentee landlords, who are often difficult to identify and

reach, or squatters;

- The low level of households’ ability to pay, and in

particular the impossibility of paying connection fees;

- Security problems for access by electricity company staff

and the risk of pirated connections and vandalized facilities

(transformers, copper cables, etc.).

To resolve these problems, different experiments have

been carried out worldwide. Beyond local specificities, the

following common recommendations may help in reaching

the objectives of peri-urban electrification:

- Set up a strong social-engineering unit at the operator,

with a capacity to study and organize the community,

assisted by other possible interfaces (NGOs, cooperatives,

neighborhood organizations) between the community and

the operator;

- Develop partnerships with local organizations and insti -

tutions already active in improving living conditions for

communities;

- Design a specific technical approach to the grid, based on

cost reduction and securing the grid;

- Define suitable tariffs and payment conditions for slum

sociology (introduction of 1-ampere blocks);

- Identify and establish relations with women’s groups, who

are often seen in slum communities as being trustworthy

and capable of effectively passing on messages;

- If the decision to electrify a district is taken, target the

largest possible number of households (connection rate

of at least 50%) in order to limit candidates for pirate

connections.

While there are an increasing number of such initiatives and

innovations, the systematization of the legal framework

(local franchises?) and responsibilities is held in abeyance.

Box 13. The case of electrification in Kenya’s outlying districts

No official statistics are available for the population of poor peri-urban districts that have developed around the main cities, in particularNairobi. Nevertheless, an analysis conducted in 2006, based on combining criteria of population density and poverty level, led to anestimate of about 2.5 million slum dwellers, i.e. almost 0.7 million households.38 Surveys conducted in the Nairobi slums show very lowhousehold monetary incomes of around USD 315 per person per year.

These surveys also show that energy expenditure accounts for a large share of these households’ budgets, estimated on average at 30% ofmonetary income in the poor outlying urban districts. The share of expenditure substitutable by electricity accounts for 16% of income inslums and 8% in rural areas.

38 International Livestock Research Institute, 2004.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

74

This low income level, with its concomitant low ability of households to pay, is a major barrier to access to electricity, both for the connectionfee demanded by the electricity company (KSh 35,000, i.e. about USD 500), and for the monthly electricity bill (on average USD 0.12/kWh,without cost adjustments for fuel price variations, which can double the price per kWh).

Given their socioeconomic specificities (low demand, creditworthiness, density, informal character of the housing, insecurity, etc.), thesedistricts have found themselves excluded from all official electricity connection programs and strategies. Consequently, communities oftenfall back on an expensive and unsafe informal supply. While in 2005, a new connection policy was adopted with the objective of connecting150,000 new customers per year until 2010, the national company, KPLC, progressively had to set up the necessary tools to achieve thisobjective:

- A new fairer and more transparent approach to the price structure for connection fees, especially for the new urban areas concerned bysuch grid extensions;

- A more proactive and customer-oriented marketing strategy that also covers the poor peri-urban districts. In order to actually mobilize thismarket, administrative arrangements had to be made, especially for the connection of informal dwellings, without taking account of owner-ship or rental documents.

In 2008, KPLC launched a pilot project in the Kibera slum to test new technical and distribution options prior to rolling them out:

- Lighter technical standards for the MV grid;

- Junction boxes fitted high on wooden poles, each containing ten charge controllers (miniature circuit breakers) set to be triggered whenthe load exceeds 1.5 kVa, with the objective of limiting the load demanded by each connection;

- The final customers do not have meters: their supply point is a standard metal panel with a socket, a switch with an associated light pointand a fuse; grounding is the responsibility of the final users;

- In view of the technical solution adopted, the connection costs are lower than for classic solutions. In addition, to encourage householdsin poor peri-urban areas to connect up, KPLC has set the connection fee at about USD 220, instead of USD 500;

- Energy is billed as a flat fee (USD 5 USD/month for residential customers), based on an average number of hours of use of available power(40 kWh per month on average);

- A main customer is in charge of collecting the monthly flat fees from the customers in his group of final users, as he already did in the pastfor collecting rents. This responsibility comes under a contract between the owner (or the owner’s representative) of the group of dwellingsand KPLC;

- When a final customer does not pay his bill, KPLC cuts the electricity service at the junction box (located at the top of the power pole) forthe whole group of customers to which he belongs,

Source: Axenne.

2.3.4 Pico electrification: A complement tomaximize the impact of access investment

An electrification master plan must, beyond its on-grid/off-

grid dimension, very carefully consider the market segment

that cannot bear the costs either of connection or the

energy service itself, such as a solar-power home system.

This segment represents the poorest part of the population

that, nevertheless, has energy expenses, which correspond

to the price paid for lighting (candles, flashlights, oil lamps,

etc.), for audiovisual equipment (radio batteries) and,

increasingly, for the occasional use of mobile phones. Lamp

oil and dry batteries are effectively expensive items with an

annual cost of EUR 40 to EUR 80. Moreover, the use of oil

lamps has a considerable impact on health and the environ-

ment: a GTZ39 study estimated that this consumes the

equivalent of 1.3 million barrels every day, which, repre-

senting 190 million tons of CO2 per year, causes very high

health and safety (fire) risks.

39 GTZ study: www.gtz.de/de/dokumente/gtz2010-en-picopv-booklet.pdf.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

75

To reach the poorest, new technological approaches

are being developed based on the concept of pico

electrification. These developments concern pico hydro, as

well as small PV systems with a nominal power of less than

30 Wc, grouped under the name "pico electrification" (more

widely applicable to all types of battery recharging).40

These systems differ from the standard solar lantern in that

they have a multifunctional use: in addition to lighting, which

benefits from the rapid development of light-emitting

diodes, LEDs,41 they allow wet- and dry battery recharge

by integrating 12 V sockets and charge controllers, thus

allowing computer use.

A 2009 GTZ study estimated that the average cost of a

multi-function solar lamp is EUR 7/month over two years

(for an investment of USD 170 ), whereas the typical

traditional expenditure stands at EUR 12/month, or about

EUR 280 over two years, including EUR 120 for lighting.

While the initial acquisition cost remains a major barrier, the

amount of this investment typically falls within the sphere of

microfinance institutions. As part of a large-scale program,

it might be appropriate to involve such institutions in a

distribution mechanism for small systems, based on

low-value and short-term (6 to 24 months) credits. Another

possibility is to use local operators or set up operators, who

could develop franchise systems for the rental of multi-

function solar lamps.

In both these approaches (rental or sale on credit), the

possible profit margin for the middleman lies in the

difference between the substitutable expense and the

monthly cost of using the small system. In view of the very

small quantity of energy required for this type of service, it

would make sense to systematize this pico electrification

component at the extremity of each grid, attaching the

greatest importance to the efficiency of user equipment in

order to maximize the scope of low energy consumption.

This would both ensure a minimum service for isolated

populations (but located in the "area of influence" of the

mini grid) and generate a local activity.

In any case, the profit margin that an operator of this type

of service can expect is very small, and the service must

be provided by locally established structures. Today,

communities that benefit from this type of service are not

considered as having access to an electricity service, as it

is very minimal and only provides very low power that will

not result in any development.

Box 14. Examples of battery recharge services – Cambodia and Laos

In Cambodia, battery recharge (an additional service provided by diesel mini-grid operators) is widespread. It allows households on the edgeof the grid to "pay for what they consume", and those living outside the village, but who go there during market days, to have their batteriesrecharged.

The (commercial) cost of the recharge by diesel generators is USD 0.25 for a 40 Ah battery and USD 0.50 USD for a 150 Ah battery.

In Laos, a program conducted in five villages to recharge LED lamps from PV systems is billed USD 1/month to users and allows theinvestment to be repaid in 18 months. The remuneration of the village operator is minimal, as his duty to the community is more importantthan his pay.

Source: IED.40 A very low-power market is being developed for flashlights powered by a small PVmodule (5 Wc) or a dynamo. This product, sold for about EUR 10, is not very reliable, and itslight efficiency remains low.41 The use of LED technology plays an important role by reducing energy consumption inlighting. The advantage of associating photovoltaic cells and LEDs resides in the easycombination of the two products, as their two voltages of photovoltaic cells and LED voltagecan be easily combined. LED technology offers a luminosity more than eight times that ofincandescent lamps.

To provide access to an electricity service for all, the first

step is to produce a sufficient quantity of power to meet

economic and social needs, at a sufficiently affordable cost

to ensure the economic equilibrium of the access program.

Reaching this equilibrium does not necessarily mean that

users are able to pay the entire service cost, but that public

finances can bear the difference between the cost of the

delivered service and the tariff applied. This cost, both

in terms of investment and long-term operation and

maintenance, must also have been correctly assessed

beforehand when the program was designed.

On a worldwide scale, there are considerable investment

needs. In its 2009 World Energy Outlook, the IEA estimates

that global electricity demand will continue to increase at an

annual rate of 2.5% until 2030, and that 80% of this growth

will occur in countries outside the OECD. The increase in

installed power capacity represents 4,800 GW (or five times

the existing park in the United States), 28% of which will be

in China. The share of renewable energy in total generation

will rise from 2.5% to 8.6% by 2030, whereas the share of

hydropower will decrease from 16% to 14%, that of coal will

remain dominant at 44%.

Faced with such needs, which remain colossal, there is a

rather disturbing fact: in 2009, investments in the energy

sector collapsed due to the economic crisis. This concerns

both oil and gas exploration by multinationals as well as

households, which buy less new and efficient equipment.

This will have major repercussions on long-term energy

efficiency. In late 2008 and early 2009, investment in

renewable energy proportionally decreased more than in

the other types of power generation; in 2009, it fell by

almost 20% and would have decreased by 30% without the

government support plans.

This decline in investment in the energy sector will have

potentially serious consequences for energy security,

climate change and energy poverty. Reducing the capacity

increase in the medium term for projects that have a long

gestation period will lead to long-term shortages, and may

well lead to price increases when demand recovers. Will

it be possible to raise the required financing? In the IEA

baseline scenario, it is estimated at USD 1,100bn a year

until 2030, with USD 600bn a year for the electricity sector

and about EUR 300bn a year in developing countries.

This reference scenario inexorably takes us towards a

carbon concentration of over 1,000 ppm CO2 equivalent,

deemed very dangerous as it leads to a potential average

temperature increase of 6 °C. The low-carbon 450 ppm

scenario as developed by the IEA, with a 50% probability

of a 2 °C increase in average temperature, involves an

additional investment of USD 10,000bn by 2030. This

would be compensated by economic gains, in the health

sector among others, and by a lower energy bill for

buildings, transportation, etc.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

77

3. A need for structured financing

3.1 Widespread access to electricity services: The need to mobilize more financing thanthe current flows from international cooperation

In this context, improving access to modern energy for

nearly 1.6 billion people, or one-fifth of the world’s popu-

lation, remains a challenge. Almost 85% of these people

live in rural areas in Sub-Saharan Africa and South Asia. In

the IEA reference scenario, the number would only be

reduced by 200 million by 2030 and would increase in

Africa. IEA estimates that with an investment of USD 35bn

a year, i.e. 6% of the total planned investment in the

electricity sector, the question would be resolved by 2030.

However, we are way off such orders of magnitude, judging

by a World Bank review of its own portfolio, which notes that

flows are limited to EUR 500m a year (Table 9).

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

78

Table 9. World Bank investment in access programs (2003-2005) – in USD M

Région Grid Grid Rural Off-grid Rural Energy Total

Peri-urban Electrification Electrification Fund

Africa $76,60 $35,20 $30,20 $31,20 $173,20

E Asia Pacific $0,00 $235,00 $3,70 $8,30 $247,00

L America Car $0,00 $3,00 $7,00 $0,00 $10,00

South Asia $26,00 $0,00 $5,50 $24,60 $56,10

E Europe CA $0,00 $0,00 $0,00 $0,00 $0,00

N Africa Med $0,00 $0,00 $0,00 $0,00 $0,00

Total $102,60 $273,20 $46,40 $64,10 $486,30

Source: ESMAP 2007.

International cooperation will clearly not be sufficient to

finance access programs. Schematically, in addition to

the user, access projects involve the State, the operator

(private or public) and financial institutions (see Diagram 6).

The financing structure of a rural electrification project

or program, and especially the "weighted average cost of

capital", loan duration, any grace periods, and project

duration (especially in terms of return on capital) obviously

also have a major impact on the service price.

Diagram 6. Stakeholders and financing circuits in rural electrification

Source: Authors.

STATELoan or subsidy or

equity contribution

Loan or grantLoan or capital contribution

FINANCIALINSTITUTION

Tariffs and fees

OPERATOR

SERVICE USER

• Multilateral or bilateral financial institutions award conces-

sional loans or grants to States; they are allocated to

finance power infrastructure, generally in the form of a loan

or grant, or as an equity contribution to the power operator;

• The same institutions can sometimes allocate financing to

operators, generally with a State guarantee;

• States participate in financing power infrastructure via their

own investment budgets (excluding external assistance);

• Private national or international banks can also allocate loans,

or make an equity investment in the power operator's capital;

• The user, finally, pays for the service via the tariff,

generally with additional specific fees to cover part of the

investment repayment. More generally, user payments

break down into three parts: (i) an initial contribution at

the connection; (ii) a fixed premium, which depends on the

subscription (power level subscribed to and which must

amortize the operator's investment); (iii) a variable share

depending on consumption.

To establish a more direct link between the tariff policy

and the amount of subsidy required, it is necessary to

determine the financial equilibrium targeted by the tariffs

applied. Schematically, there are three equilibrium levels:

■ "Minor equilibrium": the income from sales covers the

operating and day-to-day running costs of the service;

■ "Operational equilibrium": the income covers not only

operating and day-to-day running, but also all routine

maintenance and replacement operations;

■ "Major equilibrium": the income covers all charges, i.e.

both operating and financial costs, particularly those related

to investments.

Subsidy mechanisms offset the difference between the

effective equilibrium achieved from service income, by the

application of the tariff schedule (including fees), and "major

equilibrium". The question is raised as to whether the State

has the overall capacity to pay this subsidy.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

79

3.2 Historical principles

A basic principle of equity, called "equalization", is that

each consumer of a certain category (consumption level,

socioeconomic characteristics, i.e. domestic or industrial

customer, etc.) pays the same for a kWh, wherever their

location in the country and thus regardless of the cost per

kWh in their area. This principle is only feasible when the

profits from certain areas or from tariff levels can generally

offset losses in other places, or if the State has the means,

at the macroeconomic level, to pay the difference.

When we look at the history of electrification in

industrialized countries, we see that during the first

electrification phase in the first half of the 20th century, the

electricity service was provided by private operators for the

needs of industry, therefore at different prices that reflected

costs. Certain operators then progressively started serving

communities in the "labor pool" area of these industries.

The equalization principle was only applied much later,

at the time of the nationalization and integration of these

different companies into a national structure. This principle

of equity became "affordable" thanks to a base of existing

profitable sales, and to very substantial State support for

investments.

This support for investment through long-term and public

financing is perfectly logical in an industrial structure of

economies of scale, where the larger the investment, the

smaller its average cost. In practical terms, in this set-up,

the general interest is to have large-scale infrastructure that

serves the entire country through an interconnected grid.

The structuring of the sector into a "natural monopoly",

which is moreover public, results from this highly

capital-intensive set-up.

In the context of certain Sub-Saharan African countries, the

first step (for local generation to meet profitable industrial

needs) has not yet been reached. Consequently, can they

afford equalization at this stage, or will this only be possible

later, as in France (see Box 15)? An argument in favor

of “tariff differentiation” is that in non-electrified areas,

communities have high monthly bills for traditional

resources (kerosene lamps, dry batteries, small individual

oil motors, etc.), and thus often have a real ability to pay.

While it might seem completely unjust to make the "rural

poor" pay more than the "urban rich", is it still not better to

have an expensive service in rural areas than no service

at all, or a bankrupt sector? However, this is a matter for

national political choices that must be informed and made

pragmatically.

Furthermore, today's technological developments lead

to industrial configurations where small-to-medium size

infrastructure is sometimes (even often) the most

appropriate solution. This undermines the legitimacy of the

natural monopoly for generation and paves the way for a

more fragmented structure, where medium-size private

investment has it place with all the issues related to smart

grids. However, this development certainly does not do

away with the need for strong national coordination, both

technical (programming for generation and transmission

grids is still fully within the natural monopoly) and financial

to ensure that sufficient funds are raised.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

80

Box 15. Brief history of electrification in France: The role of the Fund for the Amortization of Electrification Charges (FACE)

In France, the national infrastructure was created via strong State involvement, with the nationalization of several private structures in 1936,

which generated electricity for industrial areas. EDF was thus created and could not only levy a tax on kWh sales to finance this access

program (a significant part of which had already existed from the electrification for rural and peri-urban communities), but could also raise

long-term financing at low interest rates, thanks to the State guarantee.

The relative weight of urban and rural communities, and of their respective consumption levels, made it possible to build an efficient equali-

zation system as early as in 1937, i.e. one that had acceptable charges for city consumers, as well as being sufficiently productive to

finance significant rural investments. In 1937, with 90% of the French population hooked up and a low-voltage electricity consumption of

3.1 billion kWh in 1938 (against 1.8 billion in 1926), the LV kWh fees effectively supported the public effort for investment in electricity.

As rural electrification developed, the financial income from this equalization increased in direct proportion to the amount of kWh consumed,

while demand for financing decreased. There was thus a sustainable mechanism for the self-financing of the power grid by its customers:

the Fund for the Amortization of Electrification Charges – FACE.

In France, the levy rates on kWh have been adjusted in terms of financing needs, while respecting until now the ratio of 1 to 5 between rural

and urban customers. In 1937, they were set at 2.80% in urban areas and 0.56% in rural areas. They were first increased in 1954 to 3.80%

3.3.1 The weight of domestic customers

In the case of access programs, the vast majority of

customers are domestic with low unit consumption levels.

Managing a host of such small consumers obviously has a

cost for the service company and the small margins offer

little incentive.

In addition to the spatial issue, with distance and low

density increasing the investment and operating costs, a

form of cross subsidy is generally applied between social

categories: LV customers, especially the so-called “social”

category, generally account for the largest number of

clients, albeit with modest unit consumptions and therefore

proportionally low revenues for the operator. This is shown

by the consumer breakdown of KPLC (Kenya), where

the domestic bracket represents 25% of sales for 85%

of customers to manage. It is understandable that the

electricity company is much more interested in industrial

consumers where, as in Madagascar, MV/HV customers

account for over 40% of sales for less than 1% of

customers.

However, it is necessary to make a detailed analysis of

tariffs and profitability, in particular by considering the fixed

tariff, which can be as much 50% of the price per kWh for

households that have a low level of consumption. It is thus

seen that in Kenya, the households of the lower bracket of

up to 50 kWh a month pay more for their kWh than those in

the 51 to 300 kWh bracket.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

81

in cities and to 0.75% in rural areas, prior to regularly decreasing as consumption increased, to reach 2.3% in 2000, for the maximum rate

applicable in urban communities, and 0.46% for the minimum rate applicable in rural communities.

Even today, FACE still provides financial assistance to municipal power grid owners under rural electrification regimes. This aid corresponds

to 65% of the full cost, inclusive of tax, of extension, reinforcement or integration works for grids in the relevant area. The grids in question

are the low-voltage (LV) grids and medium-voltage (MV) extensions required to supply the new served LV areas. It is the local authorities –

or municipalities for distribution – that make local investment decisions and contribute their share of financing, and they own the distribution

grids. The annual budget of FACE’s aid stood at about EUR 345m in 2008. The public service contribution for electricity in non-

interconnected zones (NIZs: overseas departments and territories and Corsica) was close to EUR 667m in 2008 (for 3 million inhabitants).

These cross subsidies may be compared with the profitability requirements established for equipment programs in Africa.

Source: GRET (2005).

3.3 Keys for setting tariff levels

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

82

Table 10. Kenya (2008)

Table 11. Jirama - Madagascar (2007)

Table 12. Côte d’Ivoire

Tariff Type of consumer N° of customers 2008 % 2008 consumption (MWh) %

A0 Domestic 895,043 84.41 1,255 24.92

A1 Small shops 158,676 14.96 590 11.72B Irrigation 3,738 0.35 996 19.78C Large trades 518 0.05 2,108 41.86D Off peak 668 0.06 74 1.47E Street lighting 1,740 0.16 13 0.26Total 1,060,383 100.00 5,036 100.00

Source: KPLC Annual Report 2007-2008.

Source: Jirama.

Type of consumer N° of customers 2007 % 2007 sales (MWh) %

MV/HV 899 0.23 340,339 42.35

LV private customers 383,559 96.90 408,159 50.78

LV administrations 1,977 0.50 11,918 1.48

Communities 1,661 0.42 9,415 1.17

Jirama transfers 7,753 1.96 33,889 4.22

LV 463,383 57.65

Total 395,849 100.00 803,722 100.00

The case of Côte d’Ivoire also shows this unequal nationwide distribution of consumption: urban areas have ten times as many customersas rural areas. The economic capital, Abidjan, accounts for 40% of subscriptions and 70% of total consumption, whereas this city only has20% of the Ivorian population. In addition to this disparity, a rural subscriber consumes 60% less than an urban subscriber.

Total Rural

Access rate 24 % (38 % with fraud) 6 %

Population with access 4 320 000 594 000 = 13 % of subscribers

Average per capita consumption 300 kWh 150 kWh

Total consumption 1 296 GWh 89,1GWh = 6,8 % of total consumption

Source: Authors.

Box 16. Kenya, Madagascar: Breakdown of consumption by tariff category

3.3.2. Tariff equalization: What cost for thenation?

In the so-called “equalization” system, users in areas that

are less expensive to electrify will effectively cover part of

the electrification costs in the most expensive areas, first

of all for operation and, if possible, also for investment. In

Morocco, electricity sale tariffs are set by the State and

are the same over the entire distribution area of ONE,

which includes both towns and villages.

The contribution by users and communities is the same

in the entire rural area covered by the PERG, and is

independent of the cost price of electrification for the

relevant village. ONE thus applies an equalization system,

not only on the electricity sale tariffs, but also on this

participation in the investments by beneficiary users and

communities. For the average consumption of a rural

household (52 kWh/month), the electricity bill is MAD 53

month, with an additional MAD 40 of PERG fees.

Following this ambitious rural electrification program,

ONE’s profitability would appear to have fallen for the

following reasons:

- Distribution costs in rural areas are 2.5 times higher than

in urban areas;

- Energy consumption in rural areas is low, while the

number of subscribers is increasing;

- LV tariffs have increased very little since 1996, whereas

MV and HV tariffs have fallen sharply.

The PERG has thus had an unfavorable impact on ONE’s

financial results, just at the time where the electrification

of the most “expensive” households to connect is starting,

i.e. those in the least densely populated areas.

In Mozambique, EdM applies two types of cross subsidy

between groups of individual consumers in order to be

able to fulfill its social function:

- Geographical cross subsidies between rural areas

(especially in the north) and urban areas (mainly Maputo);

- Cross subsidies via a variable stepped tariff system;

consequently, the largest consumers, (generally the

richest households) pay more for an electricity unit than

the smallest (the poorest households).

EdM makes a tariff distinction between low-to-medium

voltage (mainly for households and small enterprises) and

high voltage (business and industry). High voltage users

can obtain individually negotiated tariffs depending on the

volume consumed and periods of use (peak or off-peak

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

83

Table 13. Peri-urban connection program in Kenya, forecasts for the 750,000 connectionsover 5 years

Categories Customers(%)

Average

consommation

kW/m

Energy

sales

(%)

Revenues

(MkSh)

Operator

profits

(MKsh)

Domestic (AO) 90 117 64 924 227

<50 kWh/month 35 15 3 133 -145

51-300 kWh/month 55 107 30 649 242

301- 3 000 kWh/month 9 525 29 129 119

3 000-7 000 kWh/month 0,1 3 549 2 13 11

Small shops A1 10 428 36 643 190

Source: Authors.

hours). EdM also has a program to attract private

investment, in particular via an incentive system and

special prices for agro-businesses and industries, which

allows tariffs to be used as an instrument for territorial and

economic development.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

84

Table 14. Breakdown of consumption in Mozambique - EdM (2006)

Tariffs Consumption (GWh) % N° of subscribers %

Commercial LV 183.20 10.06 38,790 9.33

Large LV consumers 88.50 4.86 1,477 0.36

Domestic LV consumers 516.50 28.36 373,795 89.93

LV agricultural consumption 0.07 0 24 0.01

MV – HV 534.80 29.36 1,581 0.38

Export 498.30 27.36 24 0.01

Total 1,821.37 100.00 415,667 100.00

Source: EdM.

Today, the average tariff level is 8 cents/kWh, whereas the

long-run marginal cost (LRMC) tariff is 9.1 cents/kWh.

EdM can apply independent tariff adjustments within the

limits of its concession contract with the government. Tariff

adjustments that are not provided for in the contract must

be approved by the government.

3.3.3. Tariff differentiation

The case of rural electrification in Mali is a particularly

interesting illustration of tariff differentiation. The State of

Mali started liberalizing the electricity sector in 2000.42

AMADER (REA) regulates, controls and participates in

the financing of the development of rural electrification

activities, especially in all localities where the installed

capacity is less than or equal to 250 kW.43

Consequently, local public or private operators that wish to

supply a public electricity service are free to submit a

PCASER to AMADER to request an authorization and a

subsidy, limited to 80% of the investment costs. Both

tariffs and tariff schedules are free, but are approved and

published by AMADER, based on a provisional business

plan presented by the operator. The electricity tariff covers

operating costs and financial costs, and also includes a

return on investment for the operator over the 15 years

covered by the authorization. The commonly accepted

rate is around 8%, which is low compared to major

infrastructure projects where it is generally around 15%;

the operator is remunerated by “shareholder dividends”.

AMADER has a tariff review process based on changes in

technical and economic conditions and their impact on the

service cost.

Of the four cases studied,44 and by estimating an energy

consumption corresponding to the flat rate, the tariff range

is FCFA 350-700/kWh (excluding connection fees), i.e.

between EUR 0.55 and over EUR 1. Only the village of

Koumantou, which benefited from AMADER subsidies,

applies the minimum rate, whereas the social electricity

tariff within the EDM-SA perimeter stood at FCFA 59/kWh

in 2007.

Today, in reality, the tariffs set by PCASER reach levels of

over EUR 0.50/kWh, which is well above the ability to pay

of most rural users. This is due to the hike in diesel prices,

which is not even offset by almost the entire subsidy for

the initial investment. This is an argument in favor of

42 As provided for in Law n° 00-019/P-RM of 15 March 2000.43The Electricity and Water Regulatory Commission (CREE) sets the tariff policy.44 See Ease and Improves (2007).

renewable energy. AMADER, refinanced by the State,

today thus finds itself obliged to allocate an operating sub-

sidy to PCASER, in the form of an exemption on diesel

taxes.

More generally, in countries that are highly dependent

upon hydrocarbons, distributors are – under their

concessions – increasingly authorized to make tariff

adjustments to reflect their costs. In Kenya for instance,

hydrology problems affecting the interconnected generation

park have obliged KPLC to mobilize expensive diesel

generators. This has meant they have had to apply a

temporary fuel surcharge, which is currently increasing

the tariff by 50% from one month to the next.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

85

3.4 Establishing the financing mechanisms required to guarantee access to an electricityservice for all

As the initial electrification rate is very low in Sub-Saharan

Africa (10 to 20%), cross subsidies alone are not sufficient

to achieve substantial access rates. An initial subsidy is

essential (or more generally concessional loans) to

finance investments in rural areas, or financing over

30 years with funds from the State, which can refinance

itself. When the initial infrastructure equipment rate is low,

the question is raised as to which areas or customers to

serve first. There is also the question of the equipment

rate, which must be proportionate to the funding that can

actually be raised.

Oil price hikes, climate risks and technological advances

are all factors that increase the interest of renewable

energy, despite the high costs of the initial investment.

The time is clearly ripe for financial innovation, in order to

better identify and share risks and also to mobilize private

investment.

In addition, the cornerstone of the equipment of a country,

especially for power infrastructure, is to be to be able to

rely on a structure capable of raising and organizing the

implementation of the required funds.

3.4.1 Effectively gauge the scale of financingrequired, without underestimating theimportance of a national contribution and of amajor, high-quality counterpart

Morocco, with 30 million inhabitants, has succeeded the

remarkable feat of increasing the electrification rate of

localities from 15% to over 90% in 15 years, requiring an

investment of almost EUR 2bn over this period. It should

be remembered that almost half came from national

resources (25% financed by the beneficiaries and 20% by

municipalities). ONE financed the remainder through a tax

on kWh sales which, in 15 years, generated about

EUR 500m (i.e. EUR 30m a year). Without this national

contribution, international donors would obviously not

have participated in this ambitious program. The amounts

raised thus reached an average of EUR 70m a year,

thanks to the fact that a credible national entity – ONE –

was the borrower. The lenders could thus envisage non-

sovereign loans over time by directly taking the risk on

ONE.

In Senegal, rural areas were subdivided into twelve "rural

electrification concessions". Each area was attributed to a

single operator via an international bid invitation. The

single operator was obliged to apply an identical tariff over

its entire concession, independently of the electrification

techniques used. Subsidies covered between 50% and

80% of total investments, and were financed by national

funds or mobilized by donors. At the launch of the

bid invitation, ASER specified the amount of available

subsidies and the bidding operators were selected on the

basis of: (i) the number of connections they undertook

to make, (ii) the price and, indirectly, (iii) the additional

financing they could provide via equity and loans.

The first concession, located in the Saint-Louis-Dagana-

Podor region (north, surface area of 19,000 km2, 362,000

inhabitants and 41,000 households), was attributed to

ONE for 25 years, following an international bid invitation.

The Senegalese Government used a USD 5m World Bank

loan as the basic subsidy to the concessionaire. The total

investment stood at USD 14.9m over 3 years. In its bid,

ONE proposed 2.3 times the number of connections

required by the bid invitation, and 50% more than its

competitor. To achieve this, it proposed a financing plan

including a large loan portion, which was possible as ONE

already had a significant track record for borrowing from

international donors to finance the electrification of its own

national territory. One wonders, legitimately, whether such

a scheme might be reproducible…

What can be said about the present-day dynamics in

Sub-Saharan Africa? A review of ongoing programs shows

that the largest volumes are mobilized in countries with

favorable national structures. Focusing on World Bank

data, the following observations can be made:

• Almost all loans are allocated to States, which then

reallocate the financing to various national structures as

grants or loans. The largest volumes of financing for urban

or rural access programs are in countries with large

electricity companies, which have the capacity to absorb

and pay back the financing. It is interesting to analyze the

loan amount mobilized annually in terms of the national

population, bearing in mind that Morocco had to borrow

EUR 70m a year over a period of 15 years with maturities

of over ten years, to equip a country of some 30 million

inhabitants. Below are a few other examples:

- Ethiopia: 60 million inhabitants; 5 years (2003);

EUR 133m, i.e. EUR 27m a year; only EUR 35m for

access, including 80% for grid extension; central role of

EEPCo;

- Ghana: 20 million inhabitants; 5 years (2008); EUR

135m, i.e. EUR 27m a year; 35% for grid extension and

aims to work with national development banks;

- Mozambique: 20 million inhabitants; 4 years (2003);

EUR 54m, i.e. EUR 13m a year; 50% for the peri-urban

grid; central role of EDM;

• A second group of financing focuses on REFs. The main

limitation of this arrangement is that the State provides

a grant for a fund that is often a fund in name only. In

reality, it is a bank account through which an investment

subsidy will transit to an operator, which generally has

only very partial and few obligations to repay:

- Cameroon: 16 million inhabitants; 6 years (2008); EUR

47m, i.e. EUR 8m a year, mainly for a “fund” that took

almost a decade to set up;

- Guinea: 8 million inhabitants; 4 years (2003); EUR 11m,

i.e. EUR 3m a year, mainly for a “fund” that was not

authorized to lend; a remunerated partnership was sought

with a bank, which refused to take a lending risk and thus

limited itself to channeling the subsidy;

- Mali: 10 million inhabitants; 5 years (2005); EUR 25m,

i.e. EUR 5m a year; mainly to AMADER, which channels

the investment subsidies;

- Uganda: 23 million inhabitants; 5 years (2009); EUR

62m, i.e. EUR 12m a, (including a third for grid extension

to the electricity company, and a third for inter-sectoral

programs managed by the ministries using the subsidy).

These observations show that the countries that have

succeeded in scaling up access to electricity are also

those with a technically and financially credible central

operator. The World Bank uses instruments such as the

Adaptable Program Loan (APL) or Special Impact Loan

(SIL), which are generally long-term and merit attention:

the above-mentioned loan maturities are those of a first

tranche which, if successfully implemented, triggers45 the

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

86

45 This implementation is assessed by means of previously established indicators, such asthe creation of a PPA law or the number of localities connected.

mobilization of a second tranche. These programs can be

subject to 10- to 20-year agreements.

3.4.2 The interest of structuring REFs as truefinancial intermediaries

A review of existing entities leads to the conclusion that

REFs in Sub-Saharan Africa are currently not structured

as financial intermediaries. Consequently, they cannot

(i) borrow, (ii) refinance themselves via bond issues,

(iii) lend to local operators, or (iv) mobilize national banks

with risk mitigation instruments.

Local banks, for their part, in reality do not wish to

venture into this unknown and low-profitability sector,

except in the case of development banks with a specific

mandate. The funds are generally thus bank accounts to

transfer grants, and the international agencies allocate

sectoral loans to governments, which reallocate part of the

amounts as grants to REFs. There is no leverage on

grants in the rural or peri-urban electrification sub-sectors.

Naturally, the amounts of the grants that can be mobilized

at the level of international cooperation are seldom

sufficient to address the challenges.

It is crucial to change paradigm in order to increase grant

amounts, which will remain modest compared to the

challenges. It is thus essential to follow these

recommendations:

• Establish the legal structure of the fund as a full-fledged

financial institution, or combine this fund with a dedicated

financing entity, approved as such by national banking

regulations;

• Give this structure the technical and financial capacities

to appraise projects and prepare a project pipeline;

• Define the fund’s business plan, based on a long-term

plan proposing a mix of projects with different profitability

levels in order to allow a certain level of cross subsidies.

It should also undertake to support the first project deve-

lopers in order to create a demonstration effect;

• Provide a start-up budget with a view to a revolving fund,

especially for preparatory studies;

• Involve banks by assessing their interest and their

perception of the risk in order to subsequently establish

adequate risk-sharing mechanisms (co-financing,

counter-guarantees, etc.);

• Have a long-term sustainability vision of the financing

mechanism, with a progressive increase of the national

contribution (bond issues, kWh tax, etc.).

The three stages below illustrate these recommendations:

- Stage 1 = initial situation: The REF receives grants from

the State that may come from the State budget or from

international cooperation operations (reallocation of

loans/grants to the State – generally in the form of grants).

The cooperation institution rarely makes a direct transaction

with the fund (which may not necessarily be authorized by

its statutes). The REF can be given the technical capacity

to appraise rural electrification projects and subsidizes

them according to its own rules. It is hoped that the

operators that have benefited from these subsidies can

subsequently balance their operation. However, this is

often not the case: in Burkina Faso, despite an 80%

investment subsidy, operating subsidies were necessary.

In this situation, in financial terms, the role of the fund is

confined to paying the subsidies.

- Stage 2 = short-term developments: The fund becomes

the financial arm of an REA and develops rural

electrification planning, which includes operations that

can present a certain level of profitability: secondary

centers, agro-industries, etc. A portfolio of operations is

built up, which require different levels of subsidy. The fund

adopts statutes that give it financial autonomy and

the capacity for financial intermediation under national

legislation. Consequently, as soon as it is allocated

regular national funds (an earmarked tax, for example),

which it can lend to operators, even with a highly conces-

sional rate (and thus generate income), it becomes

a structured partner with a balance sheet. As such,

institutions can lend to it, funds (national or international)

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

87

can dialogue with it, and national development banks

can interact with it, especially for risk sharing. National

banks and investors thus develop a certain amount of

confidence.

- In the medium term: The fund confirms its management

autonomy, its credibility and its functioning as a

specialized financing entity. Once pilot operations have

been successfully demonstrated, the national banks also

join the investment round and finance operators. To

mobilize these credits, or even national investments, the

fund may also develop guarantee or risk-sharing

instruments in order to maximize the participation of these

private financing sources. The fund should eventually

envisage raising funds itself on national or international

bond markets and free itself from the need for financing

from international cooperation.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

88

Diagram 7. Stages in the structuring of a rural electrification fund

InitialSituation

Manufacturer

Manufacturer

Company

Company

Operators

Operators

Fund Transfers

Grant

Grant

National Government

National Government

Concessional loan

Concessional loan

Developmentbanks & agencies

Developmentbanks & agencies

Stage 2

Fund Transfers

Concessionalfinancing

Concessional loans, grants

Rural electrificationfund/agency

Rural electrificationfund/agency

While this vision may seem unrealistic, it is the only one that

actually allows sufficient financing to be raised to meet the

challenges of rural electrification in countries. As an

example and by way of comparison, India clearly took

this path 50 years ago, with the creation of a specialized

(financial) enterprise, the Rural Electrification Corporation

(see Box 17). It initially set out to finance grid extensions

and to become the reference training and research center

for techniques adapted to the Indian context. Once the

electrification program had ended, it started allocating

funds to more decentralized programs. Following the same

logic, a Department of Renewable Energies was

established in 1982 and became a ministry in 1992. In

1987, this political and planning entity set up a financial

institution specialized in financing renewable energy: the

Indian Renewable Energy Development Agency

(IREDA).46 Thanks to these two entities, over 95% of

localities are now covered (60% of household electrifi-

cation), and India is among the world leaders in wind

energy.

In 2010, the country launched a highly ambitious solar

program aiming at:

- 1,100 MW of large-scale power plants and PV on grid by

2013, then 20,000 MW by 2022;

- 200 MW of off-grid PV, including hybrid facilities by 2013,

and 2,000 MW by 2022.

It is thanks to the availability of the long-established

financing tools that private Indian and international

investors, as well as the Asian Development Bank (with all

its instruments: technical assistance, concessional and

commercial loans) are active in this program.

This example illustrates the crucial importance of clearly

allocating grants and concessional and commercial loans to

the right market segments, in order to maximize their

impact and leverage.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

89

Source: Authors.

46 http://www.ireda.gov.in

Manufacturer Company

Operators

GrantNational Government

Concessional loan

Developmentbanks & agencies

Fund Transfers

Concessionalfinancing

Concessional loans, grants

Rural electrificationfund/agency

Concessional loans

Risk-sharing instrumentsFinancial

autonomy throughbond issues, etc.

National banks

Finalsituation

Box 17. Financing rural electrification in India: The Rural Electrification Corporation – REC

REC was created in 1969 as a finance company. Today, it is a listed public enterprise, with a net value of EUR 750m. Its function is tofinance and promote rural electrification projects in India. It provides financial support to electricity companies in the different States of theIndian Union, to rural electrification cooperatives, and private and public companies. REC has offices in the central capital (New Delhi) andin the provincial capitals, which have a mandate to coordinate financial closure with territorial authorities and other local financiers, assist inprogram and project definition, and monitor disbursements and project implementation. It also has a large research and training center.

REC's mandate was defined as follows in 2009:

"Facilitate the provision of an electricity service for the development and improvement of living conditions for rural and semi-urbancommunities.

Act as an effective and competitive development institution, responsive to its customers for the financing and promotion of power generationprojects, electricity savings and reinforcement of distribution grids throughout the country."

Historically, REC, in application of national policy, focused on village electrification and the installation of pumps for irrigation, considered aspriorities at the time. A locality was defined as electrified as soon as electricity use was observed, regardless of its location in the country.Thus, in 2005, 81% of the country's localities were electrified, and over 110,000 villages were awaiting electrification; 12 million electricalpumps irrigated 34 million hectares.

It was only at a second stage, and after three decades, that attention really began to focus on the issue of access to a service forcommunities. In 2004, two additional criteria were introduced for a village to be defined as being electrified: public services (health,community centers, schools, etc.) had to be electrified, as well as at least 10% of the population.

Indeed, at the turn of the 21st Century, and with a per capita consumption that had risen from 15 kWh in 1950 to 600 kWh in 2005, accessto a modern electricity service is necessary in order to achieve an economic growth rate of 8 to 10% a year, and for the entire population.Consequently, access for 50% of rural households, i.e. some 60 million households, has become an objective.

REC mainly allocates long-term loans (15 to 35 years) to public and private electricity companies for generation (renewable or not),transmission and distribution. In 2009, interest rates stood at 10 to 12%, reviewable annually or every three years, but inflation must be takeninto account, which has risen from 4% to almost 13%.

To provide access to the entire population and to villages that are still unserved, a specific program, the Rajiv Gandhi Grameen VidyutikaranYojana (RGGVY), was defined in 2005, with the following main components:

- Strengthen the MV distribution grids, create MV infrastructure, distribution, decentralized generation and local grids: these investments,which must be presented as projects, can benefit from investment subsidies of up to 90%;

- Finance productive and social infrastructure: irrigation pumps, SMEs, local craft industries, cold chains, health, education andcommunication; when presented as projects, they can benefit from the same subsidy levels;

- 100% subsidy for basic connections (lighting, audiovisual) for households living below the poverty line (i.e. with less than USD 2 per day);

- Develop distribution franchises whereby a local entity (private, association or cooperative) takes charge of the distribution service within anarea supplied by a transformer; these franchises again benefit from the same investment support.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

90

Financing needs are estimated as follows, the subsidy portion comes from taxes on RE and Government allocations (over a theoreticalperiod of 5 years):

- Electrification of isolated villages and grid reinforcement: EUR 1,160m- Electrification for households below the poverty line: EUR 500m- Reinforcement of grids in already electrified areas: EUR 670mTOTAL EUR 2,330m

including a 90% subsidy (balance from own capital or REC) EUR 2,100m1% supplement for training support or research EUR 230m

While these amounts may seem impressive at first sight, they should be seen against REC’s performance, experience and balance sheet.

In 2008, REC was ranked among India’s best performing State companies and its performance has been qualified as "excellent" by the publicauditor since 1993. REC now plans to export its services and know-how.

A few key figures for 2007-2008 (exchange rate: INR 70 = EUR 1):Number of projects appraised and approved per year about 750Capital EUR 122mLoans from the government EUR 11mLoans from Life Insurance Company EUR 500mLoans through bond issues EUR 3,200mLoans from other banks (including cooperation) EUR 600mTotal outstanding loans EUR 5,500mInterest collected over the year EUR 505mPre-tax profits EUR 187mAfter-tax profits EUR 123mDistribution of dividends EUR 37m

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

91

3.4.3 Innovative loan/grant blending to enhanceproject risk-sharing and maximize leveragefrom the scarce grant resources available

Subsidized financing is a necessity in view of the economic

characteristics of access projects. The grant component

should specifically target:

• Capacity building: institutional and regulatory frameworks;

capacity for new technologies; capacity to manage local

operations; training of bank staff;

• Preliminary studies and strategic planning; resource

inventories; feasibility studies (even if this means reinte-

grating the cost into the project financing if the project is

implemented);

• Support for implementation: financial arrangements,

engineering and implementation studies, project

management, capacity building for operators;

• Investment support: risk sharing, adapting the terms of

financial support to the economic and financial profiles

of projects (maturity, rate, grace period), investment

subsidies.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

92

There are a whole host of uncertainties and risks related

to projects for access and rural electrification that use

renewable energy sources:

- Project risks: The risks related to the project itself are of

a technical nature. The first concerns the availability of the

resource and its uncertainties (hydrology, weather, wind,

sunshine, availability of biomass). Studies (often long and

costly) are thus needed to take account of these aspects

and allow renewable energy projects to be implemented.

The second technical risk is related to construction,

in particular to civil engineering for hydropower. This

construction risk carries a real risk of cost overruns;

- Risks related to the project context: It is necessary to

carefully analyze the anticipated demand and the speed

of its development. Indeed, regulatory frameworks for

buy-back tariffs or access by third parties to the grid often

only give a visibility for a few years, whereas the return on

a project takes over five years and it is necessary to wait

eight to ten years for significant profitability.

Finally, a last project risk is related to the low level of expe-

rience, both technical and for project management, of local

operators that launch into this type of new operation...

- This leads us to the counterpart risk: In view of the list of

elements above, classic commercial or development banks

are reluctant when faced with these new projects. They do

not have the required expertise, or the instruments for

long-term loans, to appraise projects and finance them.

They then focus on counterpart quality and demand high

levels of guarantee based on a standard analysis of the

balance sheets of the companies requesting loans.

It is therefore up to the entities that finance access or to the

REFs to seek to mobilize loans and allocate grants, in order

to improve the profitability level of the project, and thus

make it more attractive to donors.

To do so, it is first necessary to draw up a list of priority

projects (for economic and social reasons or for spatial

planning reasons), in coordination with the planner, and

analyze their profitability and how they will be led, in order

to make a realistic decision about which portfolio can be

developed and supported given the available resources.

Initially at least, it will certainly be necessary to

subsidize/pre-finance studies, the cost of which can be rein-

tegrated into the project financing. In addition, it would be

useful to carry out strategic opportunity analyses of new

technologies (such as hybrid PV-diesel, or biodiesel as a

fuel for rural electrification). This will show the priorities to

potential investors and allow innovative projects with a

demonstration or pedagogical nature to be subsidized at a

suitable level, while counting on a reduction in costs over

the long term. Grants will be required for social projects,

while being aware that these are operations where funds

are “lost”.

The implementation of partial guarantee instruments must

be combined with training for bankers, operators, national

providers, etc. This would encourage them to become

involved over the long term and to take project or counter-

part risks (which they would otherwise refuse). In a context

of private investment, where equity contributions are

lacking, it might be conceivable to invest in the capital of

certain operations.

In view of the challenges of developing access and the

financing that may be allocated to it, it is thus necessary to

rethink the structuring of rural and peri-urban electrification

projects in order to achieve the most effective use of grants

(as the latter are necessary for this type of project which,

even when it is well structured, cannot reach the levels of

profitability that are possible in urban and industrial areas).

Grants are currently scarce and must be used in a

reasoned and targeted manner to finance the unprofitable

aspects of the project in order to reconcile equalization and

financial balance.

List of acronyms and abbreviations

ADEME Agence de l’environnement et de la maîtrise de l’énergie (French Environment and Energy Management Agency)

ADER Association des énergies renouvelables (Renewable Energy Association, France)

AFD Agence Française de Développement

AFREPEN African Energy Policy Research Network

AMADER Agence malienne pour le développement de l'énergie domestique et électrification rurale (Agency for the

Development of Domestic Energy and Rural Electrification, Mali)

ANARE Autorité nationale de régulation du secteur d'électricité (National Electricity Sector Regulatory Authority)

APAUS Agence pour accès universel aux services (Agency for Universal Access to Services)

APL Adaptable Program Loan

ARSEL Agence de régulation du secteur électrique (Electricity Sector Regulatory Agency)

ADB African Development Bank

BOT Build Operate Transfer

CAR Central African Republic

CEMAC Central African Economic and Monetary Community

CIE Compagnie Ivoirienne d'Electricité Electricity Company of Cote d'Ivoire

CREE Commission de Régulation de l'Electricité et de l'Eau (Electricity and Water Regulatory Commission)

DGE Direction générale de l’Energie (General Directorate for Energy)

DRC Democratic Republic of the Congo

DRE Decentralized Rural Electrification

DSC Decentralized Services Company

ECOWAS Economic Community of West African States

EDF Électricité de France

EdM Électricité du Mali

ESF Électriciens sans frontières (Electricians without Borders)

ESMAP Energy Sector Management Assistance Program

FACE Fonds d’amortissement des charges d’électrification (Fund for the Amortization of Electrification Charges)

FGEF French Global Environment Facility

GEF Global Environment Facility

GRET Groupe de recherche and d'échanges technologiques

GIZ/GTZ Deutsche Gesellschaft für Internationale Zusammenarbeit

HDI Human Development Indicators

IBRD International Bank for Reconstruction and Development

IDA International Development Association

IEA International Energy Agency

IED Innovation énergie développement

IEG Independent Evaluation Group

IGCC Integrated Gasification in Combined Cycle

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

93

IPP Independent Power Producer

IREDA Indian Renewable Energy Development Agency

KPLC Kenya Power Lighting Corporation

LED Light-Emitting Diode

LELB Low Energy Light Bulb

LRMC Long-Run Marginal Cost

LV Low Voltage

MDGs Millennium Development Goals

MRBC Meter Reading, Billing and Collection

MV Medium Voltage

NGO Non-Governmental Organization

NIZ Non-Interconnected Zones

OBA Output-Based Aid

OECD Organisation for Economic Co-operation and Development

ONE Office national d'électricité

PACEAA Poverty Alleviation through Cleaner Energy for Agro-Industry in Africa

PCASER Projet de candidature spontanée d’électrification rurale (Project for Spontaneous Applications for Rural

Electrification)

PERG Programme d’électrification rurale global (Global Rural Electrification Program)

PPA Power Purchase Agreement

PPP Public-Private Partnership

PSP Private-Sector Participation

PV Photovoltaics

PVPS Photo-Voltaic Power Systems

REA Rural Electrification Agency

REC Rural Electrification Corporation

REF Rural Electrification Fund

RGGVY Rajiv Gandhi Grameen Vidyutikaran Yojana

RIAED Réseau international d’accès aux énergies durables (International Network for Access to Renewable Energy)

RRI Rate of Return on Investment

SENELEC Société nationale d'électricité du Senegal

SHEP Self-Help Electrification Program

SIG Southern Interconnected Grid

SIL Special Impact Loan

SMEs Small and Medium-Sized Enterprises

SWER Single Wire Earth Return

SWOT Strengths, Weaknesses, Opportunities, Threats

TPA Third-Party Access

UNDP United Nations Development Programme

UNEP United Nations Environment Programme

UNIDO United Nations Industrial Development Organization

WAEMU West African Monetary and Economic Union

WEO World Energy Outlook

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

94

Internal reports / Program documents

ADEDJOUMON, C. (2008), Capitalization of rural electrification projects financed by AFD in Africa from 1994 to 2008 (in French), Internal

Report.

AFD (2005), Retrospective evaluation of a rural electrification project in the Ganzourgou (Burkina Faso) (in French), Internal Report.

EDF, Study to identify scope of works for a rural electrification project in Kenya, Internal Report.

EDF, AXENNE and ABERDARE, Review of customer connection policy, "Strengthening the electricity distribution in Nairobi and Mombasa",

Internal Report.

HEURAUX, C. (2009), Presentation of the SSD survey, EDF (in French), Internal Report.

KOTY, C. (2007), Situation of the energy sector and perspectives (in French), Ministry of Mines, Energy and Water of Benin, Internal Report.

Ministry for Energy, Kenya (2005), Road map for reform of the rural electrification programme, Internal Report.

MMEE, GTZ, AFD and CE (2008), Program document, rural electrification program through network connection.

MOSTERT, W. (2008), Review of experiences with rural electrification agencies - Lessons for Africa, Draft Report prepared for the European

Union Energy Initiative-Partnership Dialogue Facility (EUEI-PDF), EUEI-PDF, Internal Report.

NIANG, A., "The strategy of the development of rural electrification" (in French), ASER presentation, Dakar, Internal Report.

Project studies

CEMAC, ECOWAS, 2006 IED: Studies carried out in the CEMAC (Cameroon, CAR, Chad, Congo, Gabon, Equatorial Guinea,)

and ECOWAS (Benin, Burkina Faso, Cape Verde, Côte d’Ivoire, Gambia, Ghana, Guinea, Guinea Bissau) areas.

Study carried out in 2001 in the Philippines as part of a partnership between the World Bank and the Foundation of the Institute

for Development Policy and Research Management in the Philippines.

Study carried out in Vietnam in 2005, at the initiative of the World Bank and the Swedish International Development Agency

accompanying an electrification project of USD 150m.

ONE, in partnership with the AFD (2003): Impact study of the effects of electrification in its different forms, on households and

non-domestic users. The World Bank has published an impact study based on data from different continents, rural locations

and on the natural environment.

World Bank (2008), UNDP (2007), ECOWAS and UEMOA (2006), Review of national framework for involvement of agro-

industries in rural electrification, project PACEAA (poverty alleviation through cleaner energy for agro-industry in Africa), 2009,

Mostert (2008), African Energy Policy Research Network (AFREPEN), 2004, data collected in the scope of the Club of

agencies of rural electrification, Congolese household survey (2005), Eritrean Ministry of Energy, International network of

access to sustainable energy (RIAED), 2005.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

95

References

AFD (2004), Supervisory Board Report - Renforcement de la distribution électrique à Nairobi et Mombasa, Paris.

AFD (2005), Supervisory Board Report - Extension du réseau électrique dans six provinces rurales du Kenya, Paris.

AFD (2008a), Aide-mémoire, Identification du projet d’électrification rurale, Mauritanie CMR3009, Paris.

AFD (2008b), Aide-mémoire, Projet de fourniture de services énergétiques, Mission d’appui pour l’élaboration des procédures

de gestion du fonds d’électrification rurale, Paris.

AFD (2008c), Mission Report, Identification du projet d’électrification rurale, Mauritanie CMR3009, Paris.

IEA (2009), World Energy Outlook 2009, Paris.

BOLAY, C and A. RABINOVICH (2004), Intermediate Cities in Latin America, Risk and Opportunities of Coherent Urban

Development, Elsevier, London.

BPOBA (2007), OBA in Senegal, designing technology-neutral concessions for rural electrification, World Bank, Washington

DC.

BURGEAP (2006), The elaboration of a National Rural Electrification Framework in Ghana, Inception Report, Concept Note

and Workshop, Boulogne-Billancourt.

CBS – International Livestock Research Institute (2004), The Geographic Dimensions of Well-Being in Kenya: Where are the

Poor?

ECOWAS and WAEMU (2006), Livre blanc pour une politique régionale sur accès aux services énergétiques des populations

rurales and périurbaines pour l’atteinte des objectifs du Millénaire pour le développement.

CRE (2005), "La péréquation des tarifs d’utilisation des réseaux nécessite un outil adapté: le fonds de péréquation de électri-

cité" Fiche n° 4, Paris.

EASE and IMPROVES (2007), Opérateurs électriques en milieu rural au Mali and au Burkina Faso.

EDF, Study of non-electrified households in electrified areas in Kenya, Internal Report.

GRET (2005), "Comment se sont-ils électrifiés ? Deux études de cas de politique nationale d'électrification: France, United

States", On-line studies and works n° 3, Paris.

IED (2004), Rapport de synthèse sur les prix obtenus dans le cadre de l’appel d’offres pour l’électrification de six localités en

Mauritanie – Comparative study.

IEG (2008), The welfare impact of rural electrification: a reassessment of the costs and benefits, World Bank, Washington DC.

MASSE, R. (2008), Évaluation des SSD au Mali, Maroc and Afrique du Sud – Final report, GRET, Paris.

MASSE, R. (2005), Histoire de l'électrification rurale en France, GRET, Paris.

MASSE, R. (2004), Financer le développement de l’électrification rurale, GRET, Paris.

Ministry of Mines, Energy and Water, France (2005), Programme d’action pour l’électrification des localités rurales du Bénin,

ABERME, Paris.

UNDP (2008), Human development report 2007-2008, UNDP, New York.

PRAXIS (2008), Harmonisation de la méthodologie d’élaboration des plans locaux électrification des concessions, Final

Report.

UN-HABITAT (2008), The state of African cities, a framework for addressing urban challenges in Africa, UN-HABITAT, Nairobi.

UN (2008), Renforcer l’épargne intérieure en Afrique, Afrique Renouveau, Vol. 22#3, New York.

WORLD BANK (2008a), World Development Report, Washington, DC.

WORLD BANK (2008b), Designing sustainable off-grid rural electrification projects: principles and practices, operational

guidance for World Bank Group staff, Washington, DC.

WORLD BANK (2006), An investment framework for clean energy and development: A progress report, Washington, DC.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

97

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

99

Série Documents de travail / Working Papers SeriesPubliés depuis janvier 2009 / published since January 2009

Les numéros antérieurs sont consultables sur le site : http://recherche.afd.fr

Previous publications can be consulted online at: http://recherche.afd.fr

N° 78 « L’itinéraire professionnel du jeune Africain » Les résultats d’une enquête auprès de jeunes leaders Africains sur

les « dispositifs de formation professionnelle post-primaire »

Richard Walther, consultant ITG, Marie Tamoifo, porte-parole de la jeunesse africaine et de la diaspora

Contact : Nicolas Lejosne, département de la Recherche, AFD - janvier 2009.

N° 79 Le ciblage des politiques de lutte contre la pauvreté : quel bilan des expériences dans les pays en développement ?

Emmanuelle Lavallée, Anne Olivier, Laure Pasquier-Doumer, Anne-Sophie Robilliard, DIAL - février 2009.

N° 80 Les nouveaux dispositifs de formation professionnelle post-primaire. Les résultats d’une enquête terrain au Cameroun,

Mali et Maroc

Richard Walther, Consultant ITG

Contact : Nicolas Lejosne, département de la Recherche, AFD - mars 2009.

N° 81 Economic Integration and Investment Incentives in Regulated Industries

Emmanuelle Auriol, Toulouse School of Economics, Sara Biancini, Université de Cergy-Pontoise, THEMA,

Comments by : Yannick Perez and Vincent Rious - April 2009.

N° 82 Capital naturel et développement durable en Nouvelle-Calédonie - Etude 1. Mesures de la « richesse totale »

et soutenabilité du développement de la Nouvelle-Calédonie

Clément Brelaud, Cécile Couharde, Vincent Géronimi, Elodie Maître d’Hôtel, Katia Radja, Patrick Schembri,

Armand Taranco, Université de Versailles - Saint-Quentin-en-Yvelines, GEMDEV

Contact : Valérie Reboud, département de la Recherche, AFD - juin 2009.

N° 83 The Global Discourse on “Participation” and its Emergence in Biodiversity Protection

Olivier Charnoz. - July 2009.

N° 84 Community Participation in Biodiversity Protection: an Enhanced Analytical Framework for Practitioners

Olivier Charnoz - August 2009.

N° 85 Les Petits opérateurs privés de la distribution d’eau à Maputo : d’un problème à une solution ?

Aymeric Blanc, Jérémie Cavé, LATTS, Emmanuel Chaponnière, Hydroconseil

Contact : Aymeric Blanc, département de la recherche, AFD - août 2009.

N° 86 Les transports face aux défis de l’énergie et du climat

Benjamin Dessus, Global Chance.

Contact : Nils Devernois, département de la Recherche, AFD - septembre 2009.

N° 87 Fiscalité locale : une grille de lecture économique

Guy Gilbert, professeur des universités à l’Ecole normale supérieure (ENS) de Cachan

Contact : Réjane Hugounenq, département de la Recherche, AFD - septembre 2009.

N° 88 Les coûts de formation et d’insertion professionnelles - Conclusions d’une enquête terrain en Côte d’Ivoire

Richard Walther, expert AFD avec la collaboration de Boubakar Savadogo (Akilia) et de Borel Foko (Pôle de Dakar)

Contact : Nicolas Lejosne, département de la Recherche, AFD - octobre 2009.

N° 89 Présentation de la base de données. Institutional Profiles Database 2009 (IPD 2009)

Institutional Profiles Database III - Presentation of the Institutional Profiles Database 2009 (IPD 2009)

Denis de Crombrugghe, Kristine Farla, Nicolas Meisel, Chris de Neubourg, Jacques Ould Aoudia, Adam Szirmai

Contact : Nicolas Meisel, département de la Recherche, AFD - décembre 2009.

N° 90 Migration, santé et soins médicaux à Mayotte

Sophie Florence, Jacques Lebas, Pierre Chauvin, Equipe de recherche sur les déterminants sociaux de la santé et

du recours aux soins UMRS 707 (Inserm - UPMC)

Contact : Christophe Paquet, département Technique opérationnel (DTO), AFD - janvier 2010.

N° 91 Capital naturel et developpement durable en Nouvelle-Calédonie - Etude 2. Soutenabilité de la croissance néo-

calédonienne : un enjeu de politiques publiques

Cécile Couharde, Vincent Géronimi, Elodie Maître d’Hôtel, Katia Radja, Patrick Schembri, Armand Taranco

université de Versailles – Saint-Quentin-en-Yvelines, GEMDEV

Contact : Valérie Reboud, département Technique opérationnel, AFD - janvier 2010.

N° 92 Community Participation Beyond Idealisation and Demonisation: Biodiversity Protection in Soufrière, St. Lucia

Olivier Charnoz, Research Department, AFD - January 2010.

N° 93 Community participation in the Pantanal, Brazil: containment games and learning processes

Participation communautaire dans le Pantanal au Brésil : stratégies d’endiguement et processus d’apprentissage

Olivier Charnoz, département de la Recherche, AFD - février 2010.

N° 94 Développer le premier cycle secondaire : enjeu rural et défis pour l'Afrique subsaharienne

Alain Mingat et Francis Ndem, IREDU, CNRS et université de Bourgogne

Contact : Jean-Claude Balmès, département Education et formation professionnelle, AFD - avril 2010

N° 95 Prévenir les crises alimentaires au Sahel : des indicateurs basés sur les prix de marché

Catherine Araujo Bonjean, Stéphanie Brunelin, Catherine Simonet, CERDI - mai 2010.

N° 96 La Thaïlande : premier exportateur de caoutchouc naturel grâce à ses agriculteurs familiaux

Jocelyne Delarue, Département de la Recherche, AFD - mai 2010.

N° 97 Les réformes curriculaires par l’approche par compétences en Afrique

Francoise Cros, Jean-Marie de Ketele, Martial Dembélé, Michel Develay, Roger-François Gauthier, Najoua Ghriss,

Yves Lenoir, Augustin Murayi, Bruno Suchaut, Valérie Tehio - juin 2010.

N° 98 Les coûts de formation et d’insertion professionnelles - Les conclusions d’une enquête terrain au Burkina Faso

Richard Walther, Boubakar Savadogo, consultants en partenariat avec le Pôle de Dakar/UNESCO-BREDA.

Contact : Nicolas Lejosne, département de la Recherche, AFD - juin 2010.

N° 99 Private Sector Participation in the Indian Power Sector and Climate Change

Shashanka Bhide, Payal Malik, S.K.N. Nair, Consultants, NCAER

Contact : Aymeric Blanc, Research Department, AFD - June 2010.

N° 100 Normes sanitaires et phytosanitaires : accès des pays de l’Afrique de l’Ouest au marché européen - Une étude empirique

Abdelhakim Hammoudi, Fathi Fakhfakh, Cristina Grazia, Marie-Pierre Merlateau.

Contact : Marie-Cécile Thirion, département de la Recherche, AFD - juillet 2010.

N° 101 Hétérogénéité internationale des standards de sécurité sanitaire des aliments : Quelles stratégies pour les filières

d’exportation des PED ? - Une analyse normative

Abdelhakim Hammoudi, Cristina Grazia, Eric Giraud-Héraud, Oualid Hamza.

Contact : Marie-Cécile Thirion, département de la Recherche, AFD - juillet 2010.

N° 102 Développement touristique de l’outre-mer et dépendance au carbone

Jean-Paul Ceron, Ghislain Dubois et Louise de Torcy.

Contact : Valérie Reboud, AFD - octobre 2010.

N° 103 Les approches de la pauvreté en Polynésie française : résultats et apports de l’enquête sur les conditions de vie en 2009

Javier Herrera, IRD-DIAL, Sébastien Merceron, Insee - novembre 2010.

Contact : Cécile Valadier, département de la Recherche

N° 104 La gestion des déchets à Coimbatore (Inde) : frictions entre politique publique et initiatives privées

Jérémie Cavé, Laboratoire Techniques, Territoires et Sociétés (LATTS), CNRS - décembre 2010.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

100

N° 105 Migrations et soins en Guyane - Rapport final à l’Agence Française de Développement dans le cadre du contrat

AFD-Inserm

Anne Jolivet, Emmanuelle Cadot, Estelle Carde, Sophie Florence, Sophie Lesieur, Jacques Lebas, Pierre Chauvin

Contact : Christophe Paquet, département Technique opérationnel (DTO), AFD - décembre 2010.

N° 106 Les enjeux d'un bon usage de l'électricité : Chine, Etats-Unis, Inde et Union européenne

Benjamin Dessus et Bernard Laponche avec la collaboration de Sophie Attali (Topten International Services),

Robert Angioletti (Ademe), Michel Raoust (Terao)

Contact : Nils Devernois, département de la Recherche, AFD - février 2011.

N° 107 Hospitalisation des patients des pays de l’Océan indien - Prises en charges spécialisées dans les hôpitaux de la Réunion

Catherine Dupilet, Dr Roland Cash, Dr Olivier Weil et Dr Georges Maguerez (cabinet AGEAL)

En partenariat avec le Centre Hospitalier Régional de la Réunion et le Fonds de coopération régionale de la Réunion

Contact : Philippe Renault, AFD - février 2011.

N° 108 Peasants against Private Property Rights: A Review of the Literature

Thomas Vendryes, Paris School of Economics - February 2011.

N° 109 Le mécanisme REDD+ de l’échelle mondiale à l’échelle locale - Enjeux et conditions de mise en oeuvre

ONF International

Tiphaine Leménager, département de la Recherche, AFD - mars 2011.

N° 110 L’aide au Commerce : état des lieux et analyse

Aid for trade: A survey

Mariana Vijil, Marilyne Huchet-Bourdon et Chantal Le Mouël

AGROCAMPUS OUEST, INRA, Rennes - avril 2011.

N° 111 Métiers porteurs : le rôle de l’entrepreneuriat, de la formation et de l'insertion professionnelle

Sandra Barlet et Christian Baron, GRET

Nicolas Lejosne, département de la Recherche, AFD ([email protected]) - avril 2011.

N° 112 Charbon de bois et sidérurgie en Amazonie brésilienne : quelles pistes d’améliorations environnementales ?

L’exemple du pôle de Carajas

Ouvrage collectif sous la direction de Marie-Gabrielle Piketty, Cirad, UMR Marchés,

Contact : Tiphaine Leménager, département de la Recherche, AFD ([email protected]) - avril 2011.

N° 113 Gestion des risques agricoles par les petits producteurs Focus sur l'assurance-récolte indicielle et le warrantage

Guillaume Horréard, Bastien Oggeri, Ilan Rozenkopf sous l’encadrement de :

Anne Chetaille, Aurore Duffau, Damien Lagandré

Contact : Bruno Vindel, département des Politiques alimentaires, AFD - mai 2011.

N° 114 Analyse de la cohérence des politiques commerciales en Afrique de l’Ouest

Jean-Pierre Rolland, Arlène Alpha, GRET

Contact : Jean-René Cuzon ([email protected]), département PSP, AFD - juin 2011

N° 115 L’accès à l’eau et à l’assainissement pour les populations en situation de crise :

comment passer de l’urgence à la reconstruction et au développement ?

Julie Patinet (Groupe URD) et Martina Rama (Académie de l’eau),

sous la direction de François Grünewald (Groupe URD)

Contact : Thierry Liscia ([email protected]), département du Pilotage stratégique et de la Prospective,

N° 116 Formation et emploi au Maroc : état des lieux et recommandations

Jean-Christophe Maurin ([email protected]) et Thomas Mélonio ([email protected]), AFD - septembre 2011.

N° 117 Student Loans : Liquidity Constraint and Higher Education in South Africa

Marc Gurgand, Adrien Lorenceau, Paris School of Economics

Contact : Thomas Mélonio ([email protected]), Research Department, AFD - September 2011.

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

101

N° 118 Quelle(s) classe(s) moyenne(s) en Afrique ? Une revue de littérature

Dominique Darbon, IEP Bordeaux, Comi Toulabor, LAM Bordeaux

Contacts : Virginie Diaz et Thomas Mélonio, département de la Recherche, AFD

N° 119 Les réformes de l’aide au développement en perspective de la nouvelle gestion publique

Jean-David Naudet, division Evaluation et Capitalisation, AFD

N° 120 Fostering low-carbon growth initiatives in Thailand

EDDEN Research Unit of CNRS (French National Research Center) at the University of Grenoble : Prof. Patrick

Criqui (CNRS, Scientific Director), Dr. Pierre-Olivier Peytral (EDDEN Lab, Economist) Dr. Jean-Christophe Simon

(IRD, Senior Economist)

Contact : Cécile Valadier, Research Department, AFD ([email protected])

N°121 Interventionnisme public et handicaps de compétitivité : analyse du cas polynésien

Florent Venayre, Maître de conférences en sciences économiques, université de la Polynésie française et

LAMETA, université de Montpellier

Contact : Cécile Valadier, département de la Recherche, AFD

© AFD Working Paper n° 122 • Access to Electricity in Sub-Saharan Africa • October 2013

102