Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell...

7
Journal of Ethnopharmacology 123 (2009) 439–445 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jethpharm Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines Mariana Laundry de Mesquita a , José Elias de Paula b , Cláudia Pessoa c , Manoel Odorico de Moraes c , Letícia Veras Costa-Lotufo c , Raphael Grougnet d , Sylvie Michel d , Franc ¸ ois Tillequin d , Laila Salmen Espindola a,a Laboratório de Farmacognosia, Universidade de Brasília, Brasília, Brazil b Laboratório de Anatomia Vegetal, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil c Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, P.O. Box-3157, 60430–270, Fortaleza, Brazil d Laboratoire de Pharmacognosie de l’Université Paris Descartes, UMR/CNRS N 8638, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France article info Article history: Received 6 February 2009 Received in revised form 16 March 2009 Accepted 18 March 2009 Available online 26 March 2009 Keywords: Brazilian Cerrado plants Glaucarubinone Cytotoxic activity MTT assay Traditional use abstract The search for new anti-cancer drugs is one of the most prominent research areas of natural prod- ucts. Numerous active compounds isolated from Brazilian Cerrado plant species have been studied with promising results. Aim of the study: To investigate the cytotoxic potential of 412 extracts from Brazilian Cerrado plants used in traditional medicine belonging to 21 families against tumor cell lines in culture. Material and method: Maceration of 50 plant species resulted in 412 hexane, dichloromethane, ethanol and hydroalcohol extracts. The cytotoxicity of the extracts was tested against human colon carcinoma (HCT-8), melanoma (MDA-MB-435), and brain (SF-295) tumor cell lines, using the thiazolyl blue test (MTT) assay. Bioassay-guided fractionation was performed for one active extract. Results and Conclusions: Twenty-eight of the 412 tested extracts demonstrated a substantial antiprolifer- ative effect, at least 85% inhibition of cell proliferation at 50 g/mL against one or more cell lines. Those extracts are obtained from different parts of Anacardiaceae, Annonaceae, Apocynaceae, Clusiaceae, Fla- courtiaceae, Sapindaceae, Sapotaceae, Simaroubaceae and Zingiberaceae. Complete dose-response curves were generated and IC 50 values were calculated for these active extracts against four cell lines HCT-8, MDA-MB-435, SF-295 and HL-60 (leukemia), and their direct cytotoxic effects were determined. In sum- mary, 14 extracts of 13 species showed toxicity in all tested tumor cell lines, with IC 50 values ranging from 0.1 to 19.1 g/mL. The strongest cytotoxic activity was found for the hexane extract of Casearia sylvestris var. lingua stem bark, with an IC 50 of 0.1 g/mL for HCT-8, 0.9 g/mL for SF-295, 1.2 g/mL for MDA-MB- 435, and 1.3 g/mL for HL-60, and Simarouba versicolor root bark, with an IC 50 of 0.5 g/mL for HCT-8, 0.7 g/mL for SF-295, 1.5 g/mL for MDA-MB-435, 1.1 g/mL for HL-60. Bioassay-guided fractionation of the last extract led to the isolation of glaucarubinone, which showed pronounced activity against the four cell lines studied. Further studies of the active extracts are necessary for chemical characterization of the active compounds and more extensive biological evaluations. © 2009 Elsevier Ireland Ltd. All rights reserved. 1. Introduction Cancer is an ailment that affects more or less 200 types of cells. The major characteristic is the lack of control of the cell prolifera- tion, differentiation and death, invading organs and tissues. There are many difficulties in the treatment but the more frequently are the drug resistance, toxicity, and low specificity. Corresponding author at: Campus Universitário Darcy Ribeiro, Asa Norte, Postal Code 70910-900, Brasília, DF, Brazil. Tel.: +55 61 33073046; fax: +55 61 32730105. E-mail address: [email protected] (L.S. Espindola). Plant molecules, their semi-synthetic and synthetic derivatives are important sources of antitumor drugs. According to Cragg and Newman (2000), over 50% of the drugs in clinical trials for anti- cancer activity were isolated from natural sources or are related to them. We can include the Vinca alkaloids, vinblastine and vin- cristine, isolated from Catharanthus roseus (Apocynaceae) (Levêque and Jehl, 2007; Magnotta et al., 2007), the lignans derivatives etoposide and teniposide (Allen et al., 2005; Choi et al., 2008), the semi-synthetic derivatives of epipodophyllotoxin, isolated from species of the genus Podophyllum (Berberidaceae), as well as the taxanes isolated from species of the genus Taxus (Taxaceae) (Kelland, 2005; Kingston and Newman, 2007), the semi-synthetic derivatives of camptothecin, irinotecan and topotecan, isolated 0378-8741/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.jep.2009.03.018

Transcript of Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell...

Ca

MLFa

b

c

d

a

ARRAA

KBGCMT

1

Ttat

C

0d

Journal of Ethnopharmacology 123 (2009) 439–445

Contents lists available at ScienceDirect

Journal of Ethnopharmacology

journa l homepage: www.e lsev ier .com/ locate / je thpharm

ytotoxic activity of Brazilian Cerrado plants used in traditional medicinegainst cancer cell lines

ariana Laundry de Mesquitaa, José Elias de Paulab, Cláudia Pessoac, Manoel Odorico de Moraesc,etícia Veras Costa-Lotufoc, Raphael Grougnetd, Sylvie Micheld,rancois Tillequind, Laila Salmen Espindolaa,∗

Laboratório de Farmacognosia, Universidade de Brasília, Brasília, BrazilLaboratório de Anatomia Vegetal, Instituto de Biologia, Universidade de Brasília, Brasília, BrazilDepartamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, P.O. Box-3157, 60430–270, Fortaleza, BrazilLaboratoire de Pharmacognosie de l’Université Paris Descartes, UMR/CNRS N◦ 8638, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France

r t i c l e i n f o

rticle history:eceived 6 February 2009eceived in revised form 16 March 2009ccepted 18 March 2009vailable online 26 March 2009

eywords:razilian Cerrado plantslaucarubinoneytotoxic activityTT assay

raditional use

a b s t r a c t

The search for new anti-cancer drugs is one of the most prominent research areas of natural prod-ucts. Numerous active compounds isolated from Brazilian Cerrado plant species have been studied withpromising results.Aim of the study: To investigate the cytotoxic potential of 412 extracts from Brazilian Cerrado plants usedin traditional medicine belonging to 21 families against tumor cell lines in culture.Material and method: Maceration of 50 plant species resulted in 412 hexane, dichloromethane, ethanoland hydroalcohol extracts. The cytotoxicity of the extracts was tested against human colon carcinoma(HCT-8), melanoma (MDA-MB-435), and brain (SF-295) tumor cell lines, using the thiazolyl blue test(MTT) assay. Bioassay-guided fractionation was performed for one active extract.Results and Conclusions: Twenty-eight of the 412 tested extracts demonstrated a substantial antiprolifer-ative effect, at least 85% inhibition of cell proliferation at 50 �g/mL against one or more cell lines. Thoseextracts are obtained from different parts of Anacardiaceae, Annonaceae, Apocynaceae, Clusiaceae, Fla-courtiaceae, Sapindaceae, Sapotaceae, Simaroubaceae and Zingiberaceae. Complete dose-response curveswere generated and IC50 values were calculated for these active extracts against four cell lines HCT-8,MDA-MB-435, SF-295 and HL-60 (leukemia), and their direct cytotoxic effects were determined. In sum-mary, 14 extracts of 13 species showed toxicity in all tested tumor cell lines, with IC50 values ranging from

0.1 to 19.1 �g/mL. The strongest cytotoxic activity was found for the hexane extract of Casearia sylvestrisvar. lingua stem bark, with an IC50 of 0.1 �g/mL for HCT-8, 0.9 �g/mL for SF-295, 1.2 �g/mL for MDA-MB-435, and 1.3 �g/mL for HL-60, and Simarouba versicolor root bark, with an IC50 of 0.5 �g/mL for HCT-8,0.7 �g/mL for SF-295, 1.5 �g/mL for MDA-MB-435, 1.1 �g/mL for HL-60. Bioassay-guided fractionation ofthe last extract led to the isolation of glaucarubinone, which showed pronounced activity against the four

studore ex

cell lines studied. Furtheractive compounds and m

. Introduction

Cancer is an ailment that affects more or less 200 types of cells.he major characteristic is the lack of control of the cell prolifera-

ion, differentiation and death, invading organs and tissues. Therere many difficulties in the treatment but the more frequently arehe drug resistance, toxicity, and low specificity.

∗ Corresponding author at: Campus Universitário Darcy Ribeiro, Asa Norte, Postalode 70910-900, Brasília, DF, Brazil. Tel.: +55 61 33073046; fax: +55 61 32730105.

E-mail address: [email protected] (L.S. Espindola).

378-8741/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.oi:10.1016/j.jep.2009.03.018

ies of the active extracts are necessary for chemical characterization of thetensive biological evaluations.

© 2009 Elsevier Ireland Ltd. All rights reserved.

Plant molecules, their semi-synthetic and synthetic derivativesare important sources of antitumor drugs. According to Cragg andNewman (2000), over 50% of the drugs in clinical trials for anti-cancer activity were isolated from natural sources or are relatedto them. We can include the Vinca alkaloids, vinblastine and vin-cristine, isolated from Catharanthus roseus (Apocynaceae) (Levêqueand Jehl, 2007; Magnotta et al., 2007), the lignans derivativesetoposide and teniposide (Allen et al., 2005; Choi et al., 2008),

the semi-synthetic derivatives of epipodophyllotoxin, isolated fromspecies of the genus Podophyllum (Berberidaceae), as well asthe taxanes isolated from species of the genus Taxus (Taxaceae)(Kelland, 2005; Kingston and Newman, 2007), the semi-syntheticderivatives of camptothecin, irinotecan and topotecan, isolated

4 thnop

fe

so2i(2tntil

2

2

d2itoH

(hta4LM

2

(Mtmtw(p5ttut2ftcumBt5

ptpt

40 M.L. de Mesquita et al. / Journal of E

rom Camptotheca acuminata (Nyssaceae), and several others (Craggt al., 1993, 1994; Wang, 1998).

Brazil has the biggest vegetal diversity in the world, and plants,ince the ancient times, have being used to treat a large amountf diseases including cancer (Brandão et al., 2008; Kviecinski et al.,008; Braga et al., 2007). Many compounds with biological activ-

ties were obtained from Cerrado, Brazil’s second largest biomeEspindola et al., 2004; de Mesquita et al., 2005a; Rodrigues et al.,005). The search for new drugs exhibiting activity against severalypes of cancer is one of the most interesting subjects in the field ofatural products research. The present study investigated the cyto-oxic potential of 412 extracts from 50 Brazilian Cerrado plants usedn traditional medicine belonging to 21 families against tumor cellines in culture.

. Materials and methods

.1. Preparation of crude extracts

The plants were selected during an ethnomedicinal survey con-ucted under the guidance of traditional healers (Espindola et al.,000), and collected in Brasília, the Federal District of Brazil. Botan-

cal identification was performed by Prof. José Elias de Paula ofhe Vegetal Anatomy Laboratory, Institute of Biology, Universityf Brasília. The voucher botanic specimens are deposited at theerbarium (UB) of said institution (Table 1).

The air-dried and powdered parts of different amount of plants±400 g) were submitted to exhaustive extractions with 4 × 2 L ofexane, dichloromethane, ethanol and 90% hydroethanolic solutionhrough a maceration process. The crude extracts were obtainedfter the evaporation of the solvents under reduced pressure at0 ◦C, which is a technique routinely used at the Pharmacognosyaboratory of the University of Brasília Health Science School (deesquita et al., 2007).

.2. MTT assay

The cytotoxicity of the extracts was tested against HCT-8human colon carcinoma), HL-60 (leukemia), SF-295 (brain) and

DA-MB-435 (melanome) tumor cell lines (National Cancer Insti-ute, Bethesda, MD, USA). Cells were cultured in RPMI-1640

edium, supplemented with 10% fetal calf serum, 2 mM glu-amine, 100 �g/mL streptomycin and 100 U/mL penicillin at 37 ◦Cith 5% CO2. For experiments, cells were plated in 96-well plates

105 cells/well for adherent cells or 0.3 × 106 cells/well for sus-ended cells in 100 �L of medium). After 24 h, the extracts at0 �g/mL, or in serial dilution dissolved in DMSO (1%) were addedo each well and incubated for 3 days (72 h). Control groups receivedhe same amount of DMSO. Doxorubicin (0.01–0.58 �g/mL) wassed as positive control. Growth of tumoral cells was quantified byhe ability of living cells to reduce the yellow dye 3-(4,5-dimethyl-- thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) to a blueormazan product (Mosmann, 1983). At the end of 72 h incubation,he medium in each well was replaced by fresh medium (200 �L)ontaining 0.5 mg/mL of MTT. Three hours later, the formazan prod-ct of MTT reduction was dissolved in DMSO, and absorbance waseasured using a multi-plate reader (DTX 880 Multimode Detector,

eckman Coulter Inc., Fullerton, CA, USA). Drug effect was quan-ified as the percentage of control absorbance of reduced dye at50 nm.

In our screening program to the discovery and development ofotential anticancer natural compounds, we adopted the criteria ofhe American National Cancer Institute to consider a crude extractromising for further purification based in the IC50 values lowerhan 30 �g/mL (Suffness and Pezzuto, 1990). In this context, we first

harmacology 123 (2009) 439–445

assay the extracts in a single concentration of 50 ug/mL to selectthose that inhibited cell growth at least 85%. Using this approach,we reduced the number of “false positive” extracts that we assayed.

2.3. Statistical analysis

Data are presented as mean ± S.E.M. The IC50 values wereobtained by nonlinear regression using the GRAPHPAD program(Intuitive Software for Science, San Diego, CA).

3. Results and discussion

In our search for natural products with anticancer activity, weprepared hexane, dichloromethane, ethanol, and hydroethanoliccrude extracts of 50 native plants from the Brazilian Cerrado. Plantspecies and the parts of plants used for extract preparation, aswell as the voucher number are shown in Table 1. Of the 412extracts tested, 28 demonstrated a substantial antiproliferativeeffect, inhibiting at least 85% of tumor cell proliferation at 50 �g/mL.Complete dose-response curves were generated and IC50 valueswere calculated for these active extracts (Table 2) against four celllines (MDA-MB-435, HCT-8, SF-295, and HL-60). The reported tra-ditional uses for those species, as well as their vernacular namesare reported in Table 3. Among the 28 extracts, 19 showed IC50lower than 30 �g/mL, 14 showed IC50 lower than 20 �g/mL, and 6lower than 5 �g/mL against the four cell lines. Take in account thatthe criteria of the American National Cancer Institute to considera crude extract promising for further purification, is the IC50 beinglower than 30 �g/mL (Suffness and Pezzuto, 1990), the extracts withlimited published information were selected for bioassay-guidedfractionation.

Different species from the families Alismataceae, Asteraceae,Bignoniaceae, Burseraceae, Magnoliaceae, Malphighiaceae, Meli-aceae, Mimosaceae, Monimiaceae, Rubiaceae, Solanaceae andVochysiaceae did not show significant cytotoxic activity in thescreen, while those extracts from different parts of Anacar-diaceae, Annonaceae, Apocynaceae, Clusiaceae, Flacourtiaceae,Sapindaceae, Sapotaceae, Simaroubaceae and Zingiberaceae werefound to be active.

The strongest cytotoxic activities were detected for the hex-ane extracts of Casearia sylvestris var. lingua leaves, stem bark andwood, and root wood, and Simarouba versicolor root bark; and theethanol extract of the Simarouba versicolor root bark, as well as forthe dichloromethane extract of Schinus terebinthifolius var. raddi-anus all presenting IC50 values lower than 5 �g/mL. The results alsoindicated IC50 values ranging from 5 to 20 �g/mL against all celllines tested for the hexane extracts of Xylopia aromatica root wood,Kielmeyera coriacea root bark and wood, Cupania vernalis leaves;for the dichloromethane extract of Calophyllum brasiliense root; forthe ethanol extracts of Annona crassiflora root bark, and Simaroubaversicolor fruits, and Serjania lethalis stem bark.

Phytochemical studies revealed the presence of quassinoids,triterpenoids, steroids and flavonoids in Simarouba versicolor(Ghosh et al., 1977; Arriaga et al., 2002). Bioassay-guided frac-tionation of the hexane extract of Simarouba versicolor root barkled to the isolation of glaucarubinone which was identified bycomparison of the spectroscopic data (IR, MS, 1H NMR, 13C NMR)with literature (Polonsky et al., 1975; Grieco et al., 1993). The iso-lated compound seemed to be the active principle of S. versicolor,showing a pronounced activity against the four tested cell lines,with IC50 values of 0.07 �g/mL (HL-60), 0.31 �g/mL (MDA-MB-435),

0.15 �g/mL (HCT-8) and 0.24 �g/mL (SF-295).

This compound, first isolated from Simarouba glauca byGaudemer and Polonsky (1965), was previously obtained fromSimarouba versicolor (Ghosh et al., 1977; Arriaga et al., 2002), andfrom other Simaroubaceae species, such as Pierrodendron kerstingii

M.L. de Mesquita et al. / Journal of Ethnopharmacology 123 (2009) 439–445 441

Table 1Plants and parts of plants used for the in vitro cytotoxic assay against the cancer tumor cell lines: MDA-MB-435, HCT-8 and SF-295.

Family Plant species Parts of plant tested (Solvents)l Voucher number

Alismataceae Echinodorus macrophyllus (Kunth) Micheli La (h, hs, d) (UB) 3748Anacardiaceae Schinus terebinthifolius var. radiannus Engl. L (h, hs, d), SWb (h, hs, d), SBc (h), RWd (h, hs, d),

RBe (h)(UB) 3753

Annonaceae Annona crassiflora Mart. L (h, e), SW (h, e), SB (h, e), RW (e), RB (e) (UB) 3700Cardiopetalum calophyllum Schltdl. L (h, e), SW (h, e), SB (h, e), RW (e), Rf (h, e) (UB) 3703Duguetia furfuracea (A. St.-Hil.) Saff. L (h, e), RW (h, e), RB (h, e), Sg (h, e) (UB) 3679Xylopia aromatica Mart. L (h, e), SW (h, e), SB (h, e), RW (h, e), RB (h, e) (UB) 3699Xylopia emarginata Mart. L (h, e), SW (h, e), SB (h, e), RW (h, e), RB (h, e) (UB) 3690

Apocynaceae Aspidosperma macrocarpon Mart. L (h, e), SW (h, e), SB (h, e), RW (h, e), RB (h, e) (UB) 3692Aspidosperma tomentosum Mart. L (h, d, Hs), SW (h, d, hs), SB (h, d, hs), S (h), R (h, d) (UB) 3744Condylocarpon isthmicum (Vell.) A. DC. L (h, e), SW (h, e), SB (h, e) (UB) 3663Hancornia pubescens Nees & Mart. L (h, e), RW (h, e), RB (h, e) (UB) 3677Himatanthus obovatus (Müll. Arg.) Woodson L (h, e), RW (h, e), RB (h, e) (UB) 3678Peschiera affinis var. campestris Rizzini SW (h, e), SB (h, e), R (h, e) (UB) 3717

Asteraceae Eremanthus glomerulatus Less. L (h, e), SW (h, e), SB (h, e), RW (h, e), RB (h, e) (UB) 3721Eremanthus sphaerocephalus (DC. ex Baker) Ch (h, e) (UB) 3708

Piptocarpha macropoda (DC.) Baker L (h, e), SB (h, e) (UB) 3680Piptocarpha rotundifolia Baker L (h, e), SB (h, e), RW (h, e), RB (h, e) (UB) 3676Bignoniaceae Anemopaegma arvense Stellfed ex J.F.Souza L (h, e), S (h, e), R (h, e), Fi (h, e) (UB) 3691

Anemopaegma chamberlaynii Bureau & K.Schum. S (h, e) (UB) 3715Arrabidaea florida DC. L (h, hs, d, e), FSj (h, d), S (h, d), R (h, hs, d) (UB) 3714

Cybistax antisyphilitica (Mart.) Martius. L (h, e), S (h, e), SW (h, e), SB (h, e), F (h, e) (UB) 3696Tabebuia caraiba (Mart.) Bureau L (h, e), SW (hs, h, e, d), SB (h, e), RW (e), RB (h, e) (UB) 3701Burseraceae Protium heptaphyllum March. L (h, e), SW (h, e), SB (h, e), RW (h, e), RB (h,e) (UB) 3689

Protium ovatum Engl. L (h, e), SB (h), R (h, e), S (h), F (h, e) (UB) 3694

Clusiaceae Calophyllum brasiliense Cambess. L (h, hs, d), SW (h, hs, d), SB (h, hs, d), RB (h, d), R(h, hs, d)

(UB) 3754

Kielmeyera coriacea Mart. & Zucc. L (h, d), SW (h), RW (h, d), RB (h), SB (h, hs, d), F (h) (UB) 3745Flacourtiaceae Casearia sylvestris var. lingua (Cambess.) Eichler. L (h, e), SW (h), SB (h, e), RW (h, e), RB (e), F (h, e) (UB) 3693Magnoliaceae Talauma ovata A.St.-Hil. L (h, e), SB (h, e), SW (h, e) (UB) 3738Malphighiaceae Byrsonima crassa Nied. L (h, hs, d), SB (h, hs, d), SW (h, hs, d), RB (h), RW (h) (UB) 3743Meliaceae Guarea guidonea Sleumet. L (h, e), S (h, e), R (h, e) (UB) 3712

Guarea kunthiana A. Juss. L (h, e), F (h, e), S (h, d, e), R (e) (UB) 3710

Mimosaceae Enterolobium ellipticum Benth. L (h, hs, d), S (h, Hs, d), SW (h), SB (h), RB (h), RW(h, Sh, d)

(UB) 3739

Stryphnodendron adstringens (Mart.) Coville L (h, hs, d), F (h), SB (h, d), SW (h, Hs, d), RB (h), RW(h)

(UB) 3740

Monimiaceae Siparuna cujabana A.DC. L (h, e), F (h, e), S (h, e), R (h, e) (UB) 3737Siparuna guianensis Aubl. L (h, e), SB (h, e), SW (h, e) (UB) 3712Rubiaceae Palicourea rigida H.B. & K. L (h, hs, d), S (h), SB (h), R (h) (UB) 3722

Sabicea brasiliensis Wernham F (h, e), R (h, e) (UB) 3709

Sapindaceae Cupania vernalis Cambess. L (h, e), SW (h, e), SB (h, e), R (e), RW (h, e), RB (h, e) (UB) 3695Magonia pubescens A.St. -Hil. L (h, e), SB (h, e), R (h, e), F (h, e), RB (h, e), RW (h, e) (UB) 3702Matayba guianensis Aubl. SW (h, e), SB (h, e), RB (h, e), RW (h, hs, d) (UB) 3697Serjania lethalis A. St. -Hil. L (h, e), SW (h, e), SB (h, e), RB (h, e) (UB) 3716Sapotaceae Crysophyllum soboliferum Rizzini L (h, e) (UB) 3733Pouteria gardneri (Mart. & Miq.) Baehni L (h, e), SW (h, e), R (h, e), RW (h, e), RB (h, e) (UB) 3672Pouteria ramiflora (Mart.) Radlk. L (h, e), SW (h, e), SB (h, e), RW (h, e), RB (h, e) (UB) 3671Pouteria torta Radlk. L (h, e), SW (e), RB (h), RW (h, e) (UB) 3674Simaroubaceae Simarouba versicolor A. St. -Hil. L (h, e), F (h, e), S (e), SB (h, e), RB (h, e) (UB) 3724Solanaceae Solanum licocarpum A. St.-Hil. L (h) (UB) 3720

Vochysiaceae Qualea grandiflora Mart. L (h, hs, d), S (d), SB (h), SW (h, hs, d, e), R (h, hs, e),RB (hs, d), FS (h, hs, d)

(UB) 3746

Qualea parviflora Mart. F (h), SB (h, hs, d), SW (h), RB (h, hs), RW (h, hs, d),FS (h)

(UB) 3742

Zingiberaceae Renealmia alpinia (Rottb.) Maas L (h,e), RZk (h, hs, d) (UB) 3719

a L: leaves.b SW: stem wood.c SB: stem bark.d RW: root wood.e RB: root bark.f R: root (wood + bark).g S: stem (wood + bark).h C: capitulum.i F: fruits.j FS: fruits + seeds.k RZ: rhizome.l Solvents: h, hexane; hs, 90% hydroethanolic solution; d, dichloromethane; e, ethanol.

442 M.L. de Mesquita et al. / Journal of Ethnopharmacology 123 (2009) 439–445

Table 2In vitro cytotoxicity of the plant extracts on four tumor cell lines measured by the MTT assay.a.

Plant species Part of plant tested (solventb) Cell linek IC 50 (�g/mL)

SF-295 HCT-8 MDA-MB-435 HL-60

Schinus terebinthifolius var. raddianus Lc h 28.9 5.4 1.9 1.1L d 41.8 4.2 2.3 1.1

Annona crassiflora RBd e 8.2 14.9 9.5 6.0RWe e 15.2 24.9 13.3 13.4

Xylopia aromatica RW h 14.6 17.1 19.1 5.9Himatanthus obovatus L e 21.8 28.8 27.6 40.4

RW e 12.9 11.9 10.9 25.0

Calophyllum brasiliense Rf d 17.6 4.7 3.0 6.4Kielmeyera coriacea SBg h 22.8 16.3 34.9 26.1

SWh h 17.3 7.8 >50 10.1RW h 9.7 5.4 14.1 17.9RB h 6.4 5.2 10.6 15.4

Casearia sylvestris var. lingua L h 1.7 3.2 2.1 1.4SB h 0.9 0.1 1.2 1.3RB e 21.9 32.7 18.0 26.2RW h 1.6 1.7 1.1 3.3FRi h 28.0 31.2 18.2 33.7SW h 0.9 1.3 0.5 2.1

Cupania vernalis L h 8.9 14.2 4.0 6.8Magonia pubescens RW e 23.5 15.3 7.9 15.4Serjania lethalis SB e 9.4 8.0 11.2 9.3

RB h 13.6 20.9 15.4 28.9

Pouteria torta RW e 30.2 37.9 21.0 31.7Simarouba versicolor RB h 0.7 0.5 1.5 1.1

RB e 0.1 0.1 0.5 0.2FR e 5.0 4.3 16.6 8.2

Renealmia alpinia RZj h 5.9 >50 26.9 –RZ d 10.5 33.4 28.4 –

a Results are represented by means of three replicates.b Solvents used in extraction: h: hexane, e: ethanol; d: dichloromethane; (−) not tested.c L: leaves.d RB: root bark.e RW: root wood.f R: root (wood + bark).g SB: stem bark.h SW: stem wood.

d HL-6

(AetnPeisbt

rCl2saTt

i(

i FR: fruits.j RZ: rhizome.k SF-295 (brain); HCT-8 (human colon carcinoma); MDA-MB-435 (melanome) an

Kupchan and Lacadie, 1975), Odyendyea gabonensis (Waterman andmpofo, 1984), Simarouba amara (O’Neill et al., 1988) and Ailanthusxcelsa (Joshi et al., 2003). Glaucarubinone was previously foundo be active against leukemia cells (Ghosh et al., 1977), humanasopharynx epidermoid carcinoma (KB) (Wright et al., 1993), and-388 lymphocytic leukemia in mice (Kupchan et al., 1976; Griecot al., 1993). The proposed mechanism of action of quassinoids,ncluding glaucarubinone, is related to the inhibition of the proteinynthesis (Hall et al., 1983). Other biological activities of glaucaru-inone are reported, like antiprotozoal (Wright et al., 1993), insec-icidal (Polonsky et al., 1989) and antilarval (Leskinen et al., 1984).

Previous phytochemical studies of Kielmeyera coriacea extractsevealed the presence of xanthones, terpenes, and biphenyls (Garciaortez et al., 1998), and some of those compounds showed bio-

ogical activity as antibacterial and antifungal (Garcia Cortez et al.,002; Silva et al., 2009). Obici and collaborators (2008) demon-trated that dichloromethane extracts of Kielmeyera coriacea stemppeared to have no toxicity in rats after oral acute administration.

he cytotoxic activity of this plant is reported for the first time inhis study.

The flowers, stalks and leaves of Schinus terebinthifolius are usedn traditional medicine for the treatment of tumors and leprosySchmourlo et al., 2005), showing that our results are in good

0 (leukemia).

agreement with the medicinal use of this species. Biological activ-ities in vitro and in vivo are reported for Schinus terebinthifoliusextracts, like antibacterial, antifungal, antileishmanial and cicatriz-ing (Schmourlo et al., 2005; de Lima et al., 2006; Santos et al., 2006;Lucena et al., 2006; Braga et al., 2007). Another work demonstratedits low oral toxicity in mice (Pires et al., 2004). Some pharmacologi-cal activities have been described for this species, but the anticanceractivity of Schinus terebinthifolius variety raddianus have never beenevaluated.

The Brazilian flora is rich in plants from the family Annonaceae,and extracts from many Annona show numerous properties asantitumor, antiparasitic, antibacterial, antinflammatory and insec-ticidal (Yeh et al., 2005; de Mesquita et al., 2005b). The majorconstituents identified in the members of the Annonaceae are, typ-ically, acetogenins (Zeng et al., 1996; Liu et al., 1999; Bermejo et al.,2005), that exhibited in vitro anticancer activities (Ishimaru et al.,2007; Liaw et al., 2008; Takahashi et al., 2008), which could explainthe anticancer activity observed for Annona crassiflora, and other

Annonaceae like X. aromatica.

The indigenous population from South America used Caseariasylvestris to cure diseases like cancer, diarrhea, chests colds,flu, topical leprosy and snake bites (da Silva et al., 2008).Several cytotoxic clerodane diterpenes were isolated from

M.L. de Mesquita et al. / Journal of Ethnopharmacology 123 (2009) 439–445 443

Table 3Reported traditional uses of plants species identified to have anticancer activity.

Plant species Vernacular name Traditional use

Schinus terebinthifolius Aroeira, Pimenta-rosa The decoction (30%) of flowers, stalks and leaves are used for the treatmentof tumors and lepra (Schmourlo et al., 2005).

Annona crassiflora Araticum The plant is used for diarrhea (Rodrigues and Carvalho, 2001).Xylopia aromatica Pimenta de macaco In Colombia, this plant is used against malaria (Blair et al., 1991). The seeds

and stem bark possess carminative, stimulant and aphrodisiac properties(Suffredini et al., 2007).

Himatanthus obovatus Tiborna The plant is used for cancer, herpes and verminoses (de Mesquita et al.,2005b).

Calophyllum brasiliense Guanandi, guarandi The infusion and bath prepared from the stem bark is used for rheumatism,varicose, haemorrhoids and chronic ulcers (Guimarães et al., 1993) and theleaves for the treatment of inflammatory processes (Noldin et al., 2006).

Kielmeyera coriacea Pau-santo The aqueous extract is used against malaria, esquistossomosis,leishmaniosis, fungic and bacterians infections (Zagoto et al., 2006). Thisplant is used in rituals carried out by the Krahô Indians (Rodrigues andCarlini, 2005)

Casearia sylvestris Erva-de-lagarto This specie is used as an antiinflamatory, analgesic, antibiotic, anti-cancer(de Mesquita et al., 2005b).

Cupania vernalis Camboatã vermelho, Olho de cotia The plant is used to treat fever and inflamation, as well as tonic (deMesquita et al., 2005b; Napolitano et al., 2005).

Magonia pubescens Tingui Soap for dermatitis and seborrhei is producted with this specie which isalso used to treat head louse infestation or as insecticid (de Souza andFelfili, 2006).

Serjania lethalis Timbó For external use this plant is employed as analgesic, antiinflamatory andpiscicide (Napolitano et al., 2005), and has ichtiotoxic properties (deMesquita et al., 2005b).

Pouteria torta Curiola –Simarouba versicolor Pau-paraíba/Mata-barata A decoction of the root and bark is employed to treat weakness (Mendes

and Carlini, 2007). Asher rind and fruits have anti-helmintic,anti-hemorragic, anti-diarrheic, anti-disenteric, anti-dispepsy,anti-syphilitic, febrifuge and snake venom neutralizer properties(Fernandes et al., 2004).

Renealmia alpinia Pacoseroca Leaves are traditionally used as febrifuge (Zhou et al., 1997), roots to treat

eaCC(Ps12

M2a(adcoa

pataU(Oba

sb

xtracts of Casearia membranacea leaves and twigs (Shen etl., 2004; Shen et al., 2005) and roots (Chen et al., 2008);asearia nigrescens leaves and flowers (Williams et al., 2007);asearia grewiifola fruits (Kanokmedhakul et al., 2007) and barkKanokmedhakul et al., 2005); and Casearia lucida bark (Sairakash et al., 2002). Casearia sylvestris var. lingua is an endemicpecies of Cerrado, and the antiprotozoal activity of diterpene

was reported (Espindola et al., 2004; de Mesquita et al.,005b).

Previous studies showed the pronounced antiplasmodial (deesquita et al., 2007) and antileishmanial (de Mesquita et al.,

005b) activity of Cupania vernalis and the antilarval (Rodrigues etl., 2006), antibacterial (de Lima et al., 2006), and antileishmanialde Mesquita et al., 2005b) activities of Serjania lethalis. The in vitronticancer activity against human cancer cell lines for those Sapin-aceae is novel. The anticancer activity of those species may beorrelated with their use in the traditional medicine for treatmentf inflammations (Napolitano et al., 2005; Ono, 2008; Chandrika etl., 2008).

Several xanthones, coumarines, terpenoids and phenolic com-ounds were isolated from Calophyllum brasiliense with remarkablectivities including anti-HIV (Huerta-Reyes et al., 2004), antibac-erial (Pretto et al., 2004), trypanocidal (Abe et al., 2005), andnticancer against the cell lines KM-12 (colon adenocarcinome),-251 (gliome), PC-3 (prostate), and K-562 and HL-60 (leukemias)

Reyes-Chilpa et al., 2004; Ito et al., 2006; Suffredini et al., 2007).ur results are in good agreement with those previously reported

y Ito and collaborators concerning the anticancer activity in vitrogainst HL-60 cells of Calophyllum brasiliense.

To conclude, all these data suggest that extracts from the plantpecies studied desserve further investigations in order to isolateioactive secondary metabolites with cytotoxic properties. Exper-

wounds and malignant ulcers (Fenner et al., 2006), and the plant is alsoused for snake bites (Núnez et al., 2004) and fungic infections (Ficker et al.,2003).

iments are in process to analyze fractions of the active extracts, inorder to determine the chemical structure of those compounds andto perform more extensive biological evaluations.

Acknowledgments

This work was financially supported by Capes (Coordenadoriade Apoio à Pesquisa e Ensino Superior), CNPq (Conselho Nacionalde Desenvolvimento Científico e Tecnológico) and FAPDF (Fundacãode Apoio à Pesquisa do Distrito Federal). The authors wish to thankthe technical assistance of Silvana Franca.

References

Abe, F., Nagafuji, S., Okawa, M., Kinjo, J., Akahane, H., Ogura, T., Martinez-Alfaro,M.A., Reyes-Chilpa, R., 2005. Trypanocidal constituents in plants 5. Evaluation ofsome Mexican plants for their trypanocidal activity and active constituents in theseeds of Persea Americana. Biological & Pharmaceutical Bulletin 28, 1314–1317.

Allen, J.D., Dort, S.C.V., Buitelaar, M., Tellingen, O.V., Schinkel, A.H., 2005. Mousebreast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resis-tance and transport, but etoposide oral availability is limited primarily byp-glycoprotein. Cancer Research 63, 1339–1344.

Arriaga, A.C., De Mesquita, A.C., Pouliquen, Y.B., De Lima, R.A., Cavalcante, S.H., DeCarvalho, M.G., De Siqueira, J.A., Alegrio, L.V., Braz-Filho, R., 2002. Chemical con-stituents of Simarouba versicolor. Anais da Academia Brasileira de Ciências 74,415–424.

Bermejo, A., Figadere, B., Zafra-Polo, M.C., Barrachina, I., Estornell, E., Cortes, D.,2005. Acetogenins from Annonaceae. Recent progress in isolation, synthesis, andmechanisms of action. Natural Product Reports 22, 269–303.

Blair, S., Correa, A., Madrigal, B., Zuluaga, C.B., Franco, H.D., 1991. Plantas antimalári-cas, una revisíon bibliográfica. Universidad de Antioquia, Medellín, p. 214. In:

Osorio, E., Arango, G.J., Jiménez, N., Alzate, F., Ruiz, G., Gutieırrez, D., 2007.Antiprotozoal and cytotoxic activities in vitro of colombian Annonaceae. Journalof Ethnopharmacology, 111, 630–635.

Braga, F.G., Bouzada, M.L., Fabri, R.L., de, O., Matos, M., Moreira, F.O., Scio, E., Coimbra,E.S., 2007. Antileishmanial and antifungal activity of plants used in traditionalmedicine in Brazil. Journal of Ethnopharmacology 111, 396–402.

4 thnop

B

C

C

C

C

C

C

d

d

d

d

d

d

E

E

F

F

F

G

G

G

G

G

G

H

H

I

44 M.L. de Mesquita et al. / Journal of E

randão, M.G., Zanetti, N.N., Oliveira, P., Grael, C.F., Santos, A.C., Monte-Mór, R.L.,2008. Brazilian medicinal plants described by 19th century European naturalistsand in the official Pharmacopoeia. Journal of Ethnopharmacology 120, 141–148.

handrika, P.M., Yakaiah, T., Rao, A.R., Narsaiah, B., Reddy, N.C., Sridhar, V., Rao, J.V.,2008. Synthesis of novel 4, 6- disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia celllines. European Journal of Medicinal Chemistry 43, 846–852.

hen, C.-Y., Cheng, Y.-B., Chen, S.-Y., Chien, C.T., Kuo, Y.-H., Guh, J.-H., Khalil, A.T., Shen,Y.-C., 2008. New bioactive clerodane diterpenoids from the roots of Caseariamembranacea. Chemistry & Biodiversity 5, 162–167.

hoi, H.J., Cho, B.C., Shin, S.J., Cheon, S.H., Jung, J.Y., Chang, J., Kim, S.K., Sohn, J.H.,Kim, J.H., 2008. Combination of topotecan and etoposide as a salvage treat-ment for patients with recurrent small cell lung cancer following irinotecan andplatinum first-line chemotherapy. Cancer Chemotherapy and Pharmacology 61,309–313.

ragg, G.M., Schepartz, S.A., Suffness, M., Grever, M.R., 1993. The taxol supplycrisis. New NCI policies for handling the large-scale production of novel nat-ural product anticancer and anti-HIV agents. Journal of Natural Products 56,1657–1668.

ragg, G.M., Boyd, M.R., Cardellina, J.H., Newman, D.J., Snader, K.M., McCloud, T.G.,1994. Ethnobotany and drug discovery experience of the US National CancerInstitute. In: Chadwick, D.J., Marsh, J. (Eds.), Ciba Foundation “Ethnobotany andthe search for new drugs” Symposium, 185. Wiley and Sons, Chichester, UK, pp.178–196.

ragg, G.M., Newman, D.J., 2000. Antineoplastic agents from natural sources:achievements and future directions. Expert Opinion on Investigational Drugs9, 1–15.

a Silva, S.L., Chaar, J.S., Figueiredo, P.M.S., Yano, T., 2008. Cytotoxic evaluation ofessential oil from Casearia sylvestris Sw. on human cancer cells and erythrocytes.Acta Amazonica 38, 107–112.

e Lima, M.R., de Souza Luna, J., dos Santos, A.F., de Andrade, M.C., Sant’Ana, A.E.,Genet, J.-P., Márquez, B., Neuville, L., Moreau, N., 2006. Anti-bacterial activity ofsome Brazilian medicinal plants. Journal of Ethnopharmacology 105, 137–147.

e Mesquita, M.L., Grellier, P., Blond, A., Brouard, J.-P., Paula, J.E., Espindola, L.S.,Mambu, L., 2005a. New ether diglycosides from Matayba guianensis withantiplasmodial activity. Bioorganic and Medicinal Chemistry 13, 4499–4506.

e Mesquita, M.L., Desrivot, J., Bories, C., Fournet, A., de Paula, J.E., Grellier, P., Espin-dola, L.S., 2005b. Antileishmanial and trypanocidal activity of Brazilian Cerradoplants. Memórias do Instituto Oswaldo Cruz 100, 783–787.

e Mesquita, M.L., Grellier, P., Mambu, L., de Paula, J.E., Espindola, L.S., 2007. In vitroantiplasmodial activity of Brazilian Cerrado plants used as traditional remedies.Journal of Ethnopharmacology 110, 165–170.

e Souza, C.D., Felfili, M.J., 2006. Uso de plantas medicinais na região de Alto Paraísode Goiás, GO, Brasil. Acta Botânica Brasileira 20, 135–142.

spindola, L.S., de Paula, J.E., Silveira, C.E.S., 2000. Curso de Fitoterapia. Producão deRemédios Caseiros com Qualidade. NEPAVI/CEAM/Universidade de Brasília, 208p.

spindola, L.S., Vasconcelos Jr., J.R., de Mesquita, M.L., Marquié, P., de Paula, J.E.,Mambu, L., Santana, J.M., 2004. Trypanocidal activity of a new diterpene fromCasearia sylvestris var. lingua. Planta Medica 70, 1093–1095.

enner, R., Betti, A.H., Mentz, L.A., Rates, S.M.K., 2006. Plantas utilizadas na medic-ina popular brasileira com potencial atividade antifúngica. Brazilian Journal ofPharmaceutical Science 42, 369–394.

ernandes, M.Z.L.C.M., Fernandes, R.M., Viana, G.E.N., Lopes, J.B., 2004. Determinacãoda toxicidade aguda (DL50) do extrato aquoso da Simarouba versicolor St. Hill, emcamundongos. Revista Brasileira de Plantas Medicinais 6, 48–51.

icker, C.E., Smith, M.L., Susiarti, S., Leamanb, D.J., Irawati, C., Arnason, J.T., 2003.Inhibition of human pathogenic fungi by members of Zingiberaceae used by theKenyah (Indonesian Borneo). Journal of Ethnopharmacology 85, 289–293.

arcia Cortez, D.A., Young, M.C.M., Marston, A., Wolfender, J.-L., Hostettmann, K.,1998. Xanthones, triterpenes and a biphenyl from Kielmeyera coriacea. Phyto-chemistry 47, 1367–1374.

arcia Cortez, D.A., Abreu Filho, B.A., Vataru Nakamura, C., Dias Filho, B.P., Marston,A., Hostettmann, K., 2002. Antibacterial Activity of a Biphenyl and Xanthonesfrom Kielmeyera coriacea. Pharmaceutical Biology 40, 485–489.

audemer, A., Polonsky, J., 1965. Structure de la glaucarubinone nouveau principeamer isolé de Simarouba glauca. Phytochemistry 4, 149–153.

hosh, P.C., Larrahondo, J.E., Le Quesne, P.W., Raffauf, R.F., 1977. Antitumor plants.IV. Constituents of Simarouba versicolor. Lloydia 40, 364–369.

rieco, P.A., Collins, J.L., Moher, E.D., Fleck, T.J., Gross, R.S., 1993. Synthetic stud-ies on quassinoids: total synthesis of (−)-chaparrinone, (−)-glaucarubolone,and (+)-glaucarubinone. Journal of the American Chemical Society 115, 6078–6093.

uimarães, E.F., Mautone, L., Rizzini, C.T., Mattos Filho, A., 1993. Árvores do JardimBotânico do Rio de Janeiro. Jardim Botânico, Rio de Janeiro, pp. 99-100. In: Sartori,N.T., Canepelle, D., De Sousa Jr., P.T., Martins, D.T.O., 1999. Gastroprotective effectfrom Calophyllum brasiliense Camb. bark on experimental gastric lesions in ratsand mice. Journal of Ethnopharmacology 67, 149-156.

all, I.H., Liou, Y.F., Lee, K.H., Chaney, S.G., Willingham W.Jr., 1983. Antitumor agents.LIX: effects of quassinoids on protein synthesis of a number of murine tumors

and normal cells. Journal of Pharmaceutical Sciences 72, 626–630.

uerta-Reyes, M., Basualdo, M.Del.C., Abe, F., Jimenez-Estrada, M., Soler, C., Reyes-Chilpa, R., 2004. HIV-1 inhibitory compounds from Calophyllum brasilienseleaves. Biological & Pharmaceutical Bulletin 27, 1471–1475.

shimaru, C., Takeuchi, T., Yonezawa, Y., Kuriyama, I., Takemura, M., Kato, I., Sug-awara, F., Yoshida, H., Mizushina, Y., 2007. Inhibitory effect of acetogenins on

harmacology 123 (2009) 439–445

mammalian DNA polymerase and human cancer cell growth. Letters in DrugDesign & Discovery 4, 239–245.

Ito, C., Murata, T., Itoigawa, M., Nakao, K., Kaneda, N., Furukawa, H., 2006. Apopto-sis inducing activity of 4 - substituted coumarins from Calophyllum brasiliensein human leukaemia HL- 60 cells. Journal of Pharmacy and Pharmacology 58,975–980.

Joshi, B.C., Pandey, A., Sharma, R.P., Khare, A., 2003. Quassinoids from Ailanthusexcelsa. Phytochemistry 62, 579–584.

Kanokmedhakul, S., Kanokmedhakul, K., Kanarsa, T., Buayairaksa, M., 2005. Newbioactive clerodane diterpenoids from the bark of Casearia grewiifolia. Journal ofNatural Products 68, 183–188.

Kanokmedhakul, S., Kanokmedhakul, K., Buayairaksa, M., 2007. Cytotoxic clerodanediterpenoids from fruits of Casearia grewiifolia. Journal of Natural Products 70,1122–1126.

Kelland, L.R., 2005. Emerging drugs for ovarian cancer. Expert Opinion EmergingDrugs 10, 413–424.

Kingston, D.G., Newman, D.J., 2007. Taxoids: cancer-fighting compounds fromnature. Current Opinion in Drug Discovery & Development 10, 130–144.

Kupchan, S.M., Uchida, I., Branfman, A.R., 1976. Antileukemic principles isolated fromeuphorbiaceae plants. Science 191, 571–572.

Kupchan, S.M., Lacadie, J.A., 1975. Tumor inhibitors. 101. Dehydroailanthinone, a newantileukemic quassinoid from Pierreodendron kerstingii. The Journal of OrganicChemistry 40, 654.

Kviecinski, M.R., Felipe, K.B., Schoenfelder, T., de Lemos Wiese, L.P., Rossi, M.H.,Goncalez, E., Felício, J.D., Filho, D.W., Pedrosa, R.C., 2008. Study of the antitumorpotential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. Journal ofEthnopharmacology 117, 69–75.

Leskinen, V., Polonsky, J., Bhatnagar, S., 1984. Antifeedant activity of quassinoids.Journal of Chemical Ecology 10, 1497–1507.

Levêque, D., Jehl, F., 2007. Molecular pharmacokinetics of Catharanthus (vinca) alka-loids. Journal of Clinical Pharmacology 47, 579–588.

Liaw, C.-C., Yang, Y.-L., Chen, M., Chang, F.-Rong., Chen, S.-Li., Wu, S.-H., Wu, Y.-C.,2008. Mono-tetrahydrofuran annonaceous acetogenins from Annona squamosaas cytotoxic agents and calcium ion chelators. Journal of Natural Products 71,764–771.

Liu, X.-X., Alali, F.Q., Pilarinou, E., McLaughlin, J.L., 1999. Two bioactive mono-tetrahydrofuran acetogenins, annoglacins A and B, from Annona glabra.Phytochemistry 50, 815–821.

Lucena, P.L., Ribas Filho, J.M., Mazza, M., Czeczko, N.G., Dietz, U.A., Correa Neto, M.A.,Henriques, G.S., Santos, O.J., Ceschin, A.P., Thiele, E.S., 2006. Evaluation of thearoeira (Schinus terebinthifolius Raddi) in the healing process of surgical incisionin the bladder of rats. Acta Cirurgica Brasileira 21, 46–51.

Magnotta, M., Murata, J., Chen, J., De Luca, V., 2007. Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68,1922–1931.

Mendes, F.R., Carlini, E.A., 2007. Brazilian plants as possible adaptogens: anethnopharmacological survey of books edited in Brazil. Journal of Ethnophar-macology 109, 493–500.

Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. Journal of ImmunologicalMethods 16, 55–63.

Napolitano, D.R., Mineo, J.R., de Souza, M.A., de Paula, J.E., Espindola, L.S., Espindola,F.S., 2005. Down-modulation of nitric oxide production in murine macrophagestreated with crude plant extracts from the Brazilian Cerrado. Journal ofEthnopharmacology 99, 37–41.

Noldin, V.F., Isaias, D.B., Cechinel Filho, V., 2006. Gênero Calophyllum: importânciaquímica e farmacológica. Química Nova 29, 549–554.

Núnez, V., Otero, F., Barona, J., Fonnegra, R., Jiménez, S., Osorio, R.G., Quintana, J.C.,Díaz, A., 2004. Inhibition of the toxic effects of Lachesis muta. Crotalus durissuscumanensis and Micrurus mipartitus snake venoms by plant extracts. Pharma-ceutical Biology 42, 49–54.

O’Neill, M.J., Bray, D.H., Boardman, P., Wright, C.W., Phillipson, J.D., Warhurst, D.C.,Gupta, M.P., Correya, M., Solis, P., 1988. Plants as sources of antimalarial drugs,Part 6: Activities of Simarouba amara fruits. Journal of Ethnopharmacology 22,183–190.

Obici, S., Otobone, F.J., da Silva, S.V.R., Ishida, K., da Silva, J.C., Nakamura, C.V., Garcia,C.D.A., Audi, E.A., 2008. Preliminary toxicity study of dichloromethane extract ofKielmeyera coriacea stems in mice and rats. Journal of Ethnopharmacology 115,131–139.

Ono, M., 2008. Molecular links between tumor angiogenesis and inflammation:inflammatory stimuli of macrophages and cancer cells as targets for therapeuticstrategy. Cancer Science 99, 1501–1506.

Pires, O.C., Corsi Taquemasa, A.V., Akisue, G., de Oliveira, F., Pulz Araujo, C.E., 2004.Preliminary comparative analysis of the acute toxicity and median lethal dose(LD50) of the fruit of the Brazilian black pepper (Schinus terebinthifolius Raddi)and black pepper (Piper nigrum L.). Acta Farmaceutica Bonaerense 23, 176–182.

Polonsky, J., Baskévitch, Z., Gottlieb, H.E., Hagaman, E.W., Wenkert, E., 1975. Carbon-13 Nuclear Magnetic Resonance Spectral Analysis of Quassinoid Bitter Principles.Journal of Organic Chemistry 40, 2499–2504.

Polonsky, J., Bhatnagar, S.C., Griffiths, D.C., Pickett, J.A., Woodcock, C.M., 1989. Activity

of quassinoids as antifeedants against aphids. Journal of Chemical Ecology 15,993–998.

Pretto, J.B., Cechinel-Filho, V., Noldin, V.F., Sartori, M.R.K., Isaias, D.E.B., Cruz,A.B., 2004. Antimicrobial activity of fractions and compounds from Calophyl-lum brasiliense (Clusiaceae/Guttiferae). Zeitschrift fuer Naturforschung C59,657–662.

thnop

R

R

R

R

R

S

S

S

S

S

S

Zeng, L., Ye, Q., Oberlies, N.H., Shi, G., Cu, Z.-M., He, K., 1996. Recent advances in

M.L. de Mesquita et al. / Journal of E

eyes-Chilpa, R., Estrada-Muniz, E., Ramirez Apan, T., Amekraz, B., Aumelas, A.,Jankowski, C.K., Vazquez-Torres, M., 2004. Cytotoxic effects of mammea typecoumarins from Calophyllum brasiliense. Life Sciences 75, 1635–1647.

odrigues, V.E.G., Carvalho, D.A., 2001. Levantamento etnobotânico de plantasmedicinais no domínio cerrado na Região do Alto Rio Grande - Minas Gerais.Ciência e Agrotecnologia 25, 102-123. In: Tempone, A.G., Borborema, S.E.T., deAndrade, H.F.Jr., de Amorim Gualda, N.C., Yogi, A., Carvalho, C.S., Bachiega, D.,Lupo, F.N., Bonotto, S.V., Fischer, D.C.H., 2005. Antiprotozoal activity of Brazilianplant extracts from isoquinoline alkaloid-producing families. Phytomedicine 12,382-390.

odrigues, E., Carlini, E.A., 2005. Ritual use of plants with possible action on thecentral nervous system by the Krahô Indians. Brazil. Phytotherapy Research 19,129–135.

odrigues, A.M.S., De Paula, J.E., Degallier, N., Molez, J.E., Espindola, L.S., 2006. Lar-vicidal activity of some Cerrado plant extracts against Aedes aegypti. Journal ofthe American Mosquito Control Association 22, 314–317.

odrigues, A.M.S., de Paula, J.E., Roblot, F., Fournet, A., Espíndola, L.S., 2005. Larvicidalactivity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia 76,755–757.

ai Prakash, C.V., Hoch, J.M., Kingston, D.G.I., 2002. Structure and stereochemistry ofnew cytotoxic clerodane diterpenoids from the bark of Casearia lucida from theMadagascar rainforest. Journal of Natural Products 65, 100–107.

antos, O.J., Ribas Filho, J.M., Czeczko, N.G., Castelo Branco Neto, M.L., Naufel Jr., C.,Ferreira, L.M., Campos, R.P., Moreira, H., Porcides, R.D., Dobrowolski, S., 2006.Evaluation of aroeira (Schinus terebinthifolius Raddi) extract on the healing pro-cess of gastroraphy in rats. Acta Cirurgica Brasileira 21, 39–45.

chmourlo, G., Mendonca-Filho, R.R., Alviano, C.S., Costa, S.S., 2005. Screening ofantifungal agents using ethanol precipitation and bioautography of medicinaland food plants. Journal of Ethnopharmacology 96, 563–568.

hen, Y.-C., Wang, L.-T., Wang, C.-H., Khalil, A.T., Guh, J.-H., 2004. Two new cytotoxicclerodane diterpenoids from Casearia membranacea. Chemical & PharmaceuticalBulletin 52, 108–110.

hen, Y.-C., Cheng, Y.-B., Ahmed, A.F., Lee, C.L., Chen, S.-Y., Chien, C.-T., Kuo,Y.-H., Tzeng, G.-L., 2005. Cytotoxic Clerodane Diterpenoids from Casearia mem-branacea. Journal of Natural Products 68, 1665–1668.

ilva, F.M., de Paula, J., Espindola, L.S., 2009. Evaluation of the antifungalpotential of brazilian Cerrado medicinal plants. Mycoses, doi:10.1111/j.1439-0507.2008.01647.x.

harmacology 123 (2009) 439–445 445

Suffness, M., Pezzuto, J.M., 1990. Assays related to cancer drug discovery. In:Hostettmann, K. (Ed.), Methods in Plant Biochemistry: Assays for Bioactivity,6. Academic Press, London, pp. 71–133.

Suffredini, I.B., Paciência, M.L.B., Varella, A.D., Younes, R.N., 2007. In vitro cytotoxicactivity of Brazilian plant extracts against human lung, colon and CNS solidcancers and leukemia. Fitoterapia 78, 223–226.

Takahashi, S., Yonezawa, Y., Kubota, A., Ogawa, N., Maeda, K., Koshino, H., Nakata, T.,Yoshida, H., Mizushina, Y., 2008. Pyranicin, a non-classical annonaceous aceto-genin, is a potent inhibitor of DNA polymerase, topoisomerase and human cancercell growth. International Journal of Oncology 32, 451–458.

Wang, H.K., 1998. Plant-derived anticancer agents currently in clinical use or clinicaltrials. The Investigation Drugs Journal 1, 92–102.

Waterman, P.G., Ampofo, S.A., 1984. Cytotoxic quassinoids from Odyendyeagabonensis stem bark: isolation and high-field NMR. Planta Medica 50,261–263.

Williams, R.B., Norris, A., Miller, J.S., Birkinshaw, C., Ratovoson, F., Andriantsifer-ana, R., Rasamison, V.E., Kingston, D.G.I., 2007. Cytotoxic clerodane diterpenoidsand their hydrolysis products from Casearia nigrescens from the rainforest ofMadagascar. Journal of Natural Products 70, 206–209.

Wright, C.W., Anderson, M.M., Allen, D., Phillipson, J.D., Kirby, G.C., Warhurst,D.C., Chang, H.R., 1993. Quassinoids exhibit greater selectivity against Plas-modium falciparum than against Entamoeba histolytica. Giardia intestinalis orToxoplasma gondii in vitro. The Journal of Eukaryotic Microbiology 40, 244–246.

Yeh, S.H., Chang, F.R., Wu, Y.C., Yang, Y.L., Zhuo, S.K., Hwang, T.L., 2005. An anti-inflammatory ent-kaurane from the stems of Annona squamosa that inhibitsvarious human neutrophil functions. Planta Medica 71, 904–909.

Zagoto, J.N., Bracht, A., Pagadigorria, C.L.S., Ishii-Iwamoto, E.L., Cortez, D.A.G.,Yamamoto, N.S., 2006. Effects of the Kielmeyera coriacea extract onenergy metabolism in the rat liver. Journal of Ethnopharmacology 105, 47–54.

annonaceous acetogenins. Natural Products Reports 13, 275–306.Zhou, B.N., Baj, N.J., Glass, T.E., Malone, S., Werkhoven, M.C., van Troon, F., David,

Wisse, J.H., Kingston, D.G., 1997. Bioactive labdane diterpenoids from Renealmiaalpinia collected in the Suriname rainforest. Journal of Natural Products 60,1287–1293.