Comment on "Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and...

9
Comment Comment on Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria), by S. Maouche, M. Meghraoui, C. Morhange, S. Belabbes, Y. Bouhadad, H. Haddoum. [Tectonophysics, 2011, 509, 6980] K. Pedoja a, , H. Djellit b , C. Authemayou c , J. Deverchere c , P. Strzerzynski d , A. Heddar b , M. Nexer a , A. Boudiaf e a Laboratoire de Morphodynamique Continentale et Côtière, CNRS, Université de Caen, 14000 Caen, France b CCRAAG entre de Recherche en Astronomie Astrophysique et Géophysique, Route de l'Observatoir Bp 63 Bouzareah, Alger, Algeria c Université de Brest (UBO), UMR 6538 Domaines Océaniques, 29238 Plouzané, France d Laboratoire de Géologie, Bâtiment des Sciences naturelles Faculté des Sciences et Technique, Université De Maine 1 Avenue O. Messiaen 72000 Le Mans, Cedex 09, France e Consultant Géologue, Spécialiste des Risques, 42 rue du Moulin à Vent, 34200 Sète, France abstract article info Article history: Received 2 July 2012 Received in revised form 27 August 2012 Accepted 28 August 2012 Available online 2 October 2012 Keywords: Marine terrace Coastal tectonic Algeria Uplift Based on geomorphologic analyses and leveling survey of Quaternary coastal indicators (i.e. marine terraces and notches) along of a 50-km-long coastal stretch of the Algerian coast west of Algiers, Maouche et al. (2011) interpret the coastal segment to have undergone high uplift rates, i.e. 0.841.19 mm/yr since last in- terglacial maximum (MIS 5e, 122 ± 6 ka in Table 1, ~140 ka in Maouche et al., 2011) and ~2.5 mm/yr for the last 31 ka. This uplift was said to be due to repeated seismic events that would have occurred during the last ~ 140 ka, and more particularly during the late Pleistocene. We raise major issues about the interpretation proposed by Maouche et al. (2011). These issues deal with 1) the use of previous chronological data and the chronostratigraphy proposed, 2) processes involved in the cre- ation of coastal staircase morphology on the coast west of Algiers, 3) anomalously high uplift rates compared to other available data on the same geomorphic features (marine terraces) in the same setting of reactivated passive margins, and 4) the fold geometry used for modeling of fold growth and its implications for coseismic surface deformation and uplift estimates. In other words, we contest the statements that coseismic deformation is the cause of staircase morphology on the Mediterranean coast west of Algiers and that very large (M > 7) earthquakes have occurred there in the past. © 2012 Elsevier B.V. All rights reserved. 1. Introduction Maouche et al. (2011) propose a rather provocative interpretation for the recent tectonic history of the Algerian coast around Algiers. According to their statements, this coastal segment experienced high uplift rates, mainly due to repeated seismic events that would have occurred during the last ~ 140 ka, and more particularly in the last 31 ka. In other words, according to these authors, the active tectonics of this region is associated with large shallow earthquakes (M6.5), numerous thrust faults and surface fault-related folds. Here, we raise issues concerning the following: 1) erroneous use of previous and original chronological data and the consequent morpho-chrono-stratigraphical interpretation that results into unre- alistic regional uplift rates; 2) processes invoked to create the coastal staircase morphology west of Algiers (i.e. strong coseismic compo- nent); 3) the questionable interpretation proposed in this article (Maouche et al., 2011) when compared to other studies on coastal deformation for this re-activated passive margin (see Pedoja et al. (2011) and Table 1 for synthesis), 4) the use of a poorly constrained data on fold geometry that has an impact on the coseismic uplift es- timates. These considerations lead us to question the unrealistically elevated uplift rates proposed by Maouche et al. (2011) and their coseismic hypothesis for the origin of uplift in the coastal area around Algiers. Tectonophysics 601 (2013) 236244 Corresponding author. Tel.: +33 2 31 56 57 17. E-mail address: [email protected] (K. Pedoja). 0040-1951/$ see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tecto.2012.08.043 Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto

Transcript of Comment on "Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and...

Tectonophysics 601 (2013) 236–244

Contents lists available at SciVerse ScienceDirect

Tectonophysics

j ourna l homepage: www.e lsev ie r .com/ locate / tecto

Comment

Comment on “Active coastal thrusting and folding, and uplift rate of the SahelAnticline and Zemmouri earthquake area (Tell Atlas, Algeria)”, by S. Maouche,M. Meghraoui, C. Morhange, S. Belabbes, Y. Bouhadad, H. Haddoum.[Tectonophysics, 2011, 509, 69–80]

K. Pedoja a,⁎, H. Djellit b, C. Authemayou c, J. Deverchere c, P. Strzerzynski d, A. Heddar b,M. Nexer a, A. Boudiaf e

a Laboratoire de Morphodynamique Continentale et Côtière, CNRS, Université de Caen, 14000 Caen, Franceb CCRAAG entre de Recherche en Astronomie Astrophysique et Géophysique, Route de l'Observatoir Bp 63 Bouzareah, Alger, Algeriac Université de Brest (UBO), UMR 6538 Domaines Océaniques, 29238 Plouzané, Franced Laboratoire de Géologie, Bâtiment des Sciences naturelles Faculté des Sciences et Technique, Université De Maine 1 Avenue O. Messiaen 72000 Le Mans, Cedex 09, Francee Consultant Géologue, Spécialiste des Risques, 42 rue du Moulin à Vent, 34200 Sète, France

⁎ Corresponding author. Tel.: +33 2 31 56 57 17.E-mail address: [email protected] (K. Pedoja)

0040-1951/$ – see front matter © 2012 Elsevier B.V. Allhttp://dx.doi.org/10.1016/j.tecto.2012.08.043

a b s t r a c t

a r t i c l e i n f o

Article history:Received 2 July 2012Received in revised form 27 August 2012Accepted 28 August 2012Available online 2 October 2012

Keywords:Marine terraceCoastal tectonicAlgeriaUplift

Based on geomorphologic analyses and leveling survey of Quaternary coastal indicators (i.e. marine terracesand notches) along of a 50-km-long coastal stretch of the Algerian coast west of Algiers, Maouche et al.(2011) interpret the coastal segment to have undergone high uplift rates, i.e. 0.84–1.19 mm/yr since last in-terglacial maximum (MIS 5e, 122±6 ka in Table 1, ~140 ka in Maouche et al., 2011) and ~2.5 mm/yr for thelast 31 ka. This uplift was said to be due to repeated seismic events that would have occurred during the last~140 ka, and more particularly during the late Pleistocene.We raise major issues about the interpretation proposed by Maouche et al. (2011). These issues deal with 1)the use of previous chronological data and the chronostratigraphy proposed, 2) processes involved in the cre-ation of coastal staircase morphology on the coast west of Algiers, 3) anomalously high uplift rates comparedto other available data on the same geomorphic features (marine terraces) in the same setting of reactivatedpassive margins, and 4) the fold geometry used for modeling of fold growth and its implications for coseismicsurface deformation and uplift estimates.In other words, we contest the statements that coseismic deformation is the cause of staircase morphology onthe Mediterranean coast west of Algiers and that very large (M>7) earthquakes have occurred there in thepast.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Maouche et al. (2011) propose a rather provocative interpretationfor the recent tectonic history of the Algerian coast around Algiers.According to their statements, this coastal segment experiencedhigh uplift rates, mainly due to repeated seismic events that wouldhave occurred during the last ~140 ka, and more particularly in thelast 31 ka. In other words, according to these authors, the activetectonics of this region is associated with large shallow earthquakes(M≥6.5), numerous thrust faults and surface fault-related folds.

.

rights reserved.

Here, we raise issues concerning the following: 1) erroneous useof previous and original chronological data and the consequentmorpho-chrono-stratigraphical interpretation that results into unre-alistic regional uplift rates; 2) processes invoked to create the coastalstaircase morphology west of Algiers (i.e. strong coseismic compo-nent); 3) the questionable interpretation proposed in this article(Maouche et al., 2011) when compared to other studies on coastaldeformation for this re-activated passive margin (see Pedoja et al.(2011) and Table 1 for synthesis), 4) the use of a poorly constraineddata on fold geometry that has an impact on the coseismic uplift es-timates. These considerations lead us to question the unrealisticallyelevated uplift rates proposed by Maouche et al. (2011) and theircoseismic hypothesis for the origin of uplift in the coastal areaaround Algiers.

237K. Pedoja et al. / Tectonophysics 601 (2013) 236–244

2. Use of previous and new chronological data andchrono-stratigraphy proposed

Our major issue with Maouche et al. (2011) concerns the use ofchronological data, both with the re-use of some dates and with theirinterpretation of 14C dates. Based on these dates, Maouche et al.(2011) postulate that the upper marine terrace (T1) of the Sahel anti-cline has been carved out during the last interglacial maximumhighstand (MIS 5e, 122 ka) and that the lower terraces (T6 and T7)are respectively 30 and 14 ka. Due to the erroneous chronostratigraphicinterpretation, Maouche et al. (2011) calculate a very high uplift rate(0.84–1.2 mm/yr), which has amajor impact on earthquakemagnitudeestimates. Also, this uplift rate is not discussedwith respect to previous-ly published uplift rates of 0.13 and 0.11 mm/yr (Table 1; Meghraoui etal., 1996; Morel andMeghraoui, 1996) based on some of the same data.

Most of Maouche et al.'s (2011) interpretation relies on a two U/Thdate on seashells taken in coastal deposits around Tipaza andperformed by Stearns and Thurber (1965). Maouche et al. (2011) usethe dates to correlate the shoreline angle of the upper terrace of thesequence (T1) describe at 175–185 m, a correlation we contest for thefollowing reasons. In the original article, Stearns and Thurber (1965)present a short description of the outcrop where the samples (two forthe Algerian coast, respectively L-779A and L-779B in their study)were taken. For the first sample, L-779A-A, they propose a correlationof the narrow marine terrace (i.e. bench) where the sample was takento what is called “basse plage quaternaire” (low Quaternary beach-deposits) by French-speaking authors (Dalloni, 1949 in Saoudi, 1989;Lamothe, 1911 in Saoudi, 1989; Vita-Finzi, 1967). The second sample,L-779B, was taken in the mouth of the Oued Rhiran, midway betweenBérard and Tipaza. This means that the samples were taken in low Qua-ternary beach-deposits and certainly not in deposits of a marine terraceraised at 175–185 m. The methods yielded ages of 140±10 (L-779a)and 125±10 ka (L-779B). “Classical interpretation” (e.g. Saoudi,1989; Vita-Finzi, 1967) of this date suggest the occurrence of last inter-glacial maximum paleoshoreline (MIS 5e) at altitudes below 10 mabove mean sea-level (~6 m as suggested in Saoudi (1989). Note thatwell-developed low standing terrace was observed during field workbymembers of our team). Please also note that this classical interpreta-tion was formerly accepted by some of the co-authors of Maouche et al.(2011) (e.g. Meghraoui et al., 1996; Morel and Meghraoui, 1996) butthis is not mentioned or discussed in Maouche et al. (2011).

In their paper, Maouche et al. (2011) also propose a compilation of14C dates obtained in the zone (supplementary materials 1) to whichthey add new dates. Our concerns are twofold. First, Maouche et al.(2011) regard old ages (> 30 ka) as relevant whereas such data aregenerally dismissed by other authors working on the same morphol-ogies in other parts of the world because too close to the limit of themethod (e.g. Pedoja et al., 2006). Second, Maouche et al. (2011) con-sider ages obtained on charcoal, which is often found as a conse-quence of anthropogenic use of the land. Without clearly showingthat human occupation was coeval with formation (carving) of thepreserved paleocoast (e.g. marine terrace), one can only interpretsuch an age as a minimum value. Consequently, T7 and T6 ages areprobably older than those stated by Maouche et al. (2011).

Based on their age assignments for T1 and T7, the intermediatemarine terraces (T6–T2) thus have been correlated with other rela-tively high sea-stands between 120 ka and 30 ka (Figure 6 ofMaouche et al., 2011). However, these relatively high sea-stands (be-tween −60 m and −80 m for MIS 3, see Siddal et al., 2006) are notrecorded as emerged paleocoasts except for sequences located on tec-tonically active (subduction, collision) coastlines with uplift ratescommonly >1.5 mm/yr, such as the Mahia Peninsula in New Zealand(Berryman, 1992, 1993a,b); on the Huon Peninsula in Papua NewGuinea (e.g. Chappell, 1974); in Vanuatu archipelago (Cabioch andAyliffe, 2001; Galipaud and Pineda, 1998; Jouannic et al., 1980,1982; Taylor et al., 1980, 1982, 1985, 1987); and in the Ryukyus

archipelago (Ikeda et al., 1991; Ikeya and Ohmura, 1983; Inagakiand Omura, 2006; Konishi et al., 1970 ; Maejima et al., 2005 ; Otaand Omura, 1992; Sasaki et al., 2004).

Maouche et al. (2011) also make a mistaken correlationconcerning the T4 marine terrace (their Figure 6), which does nothave the same high sea-level correlation in Profile P1compared withProfiles P2 and P3. We also note that the authors did not includeany sea-level correction (see Figure 6) nor discuss the apparentabsence, in their interpretation, of the globally frequently preservedMIS 5a terrace (see Pedoja et al., 2011).

3. Process involved in the creation of staircase morphology on theAlgerian coast west and east of Algiers: coseismic versusinterseismic uplift

We disagree with Maouche et al.'s (2011) interpretation that thesequence of marine terraces on the Sahel anticline was upliftedthrough coseismic uplift, with our argument based on the misappliedchronology, as discussed above, and on timing and geomorphology.Typically, and in our suggested alternative interpretation, a broadstaircase topography of coastal marine terraces such as present onthe Sahel anticline would be associated with Quaternary sea-levelfluctuations and more particularly interglacial periods (stage andsubstage) superimposed on a rising coastline, producing a classicmarine-terrace sequence (Lajoie, 1986). The summit (oldest) ofsuch sequences can be found at altitudes of a few hundred metersand several kilometers inland. The height differences between adja-cent paleocoasts are generally >10 m (see Figure 4A in Pedoja et al.(2011) for a cross section of such sequences).

The sequence of marine terraces located on the Sahel area describeand interpreted by Maouche et al. (2011) is developed over a50-km-long stretch of coast between Ain Benian and Tipaza and locallyreaches more than 3.5 km inland (see Figure 4B in Maouche et al.,2011). The landscape is characterized by widespread development ofa low sequence of four marine terraces superceded bywide, compoundmarine surfaces called “rasa” that can be wider than 2 km (e.g. Saoudi,1989). The scale of the Algerian marine terrace sequence fits the classicglacioeustatic model and does not fit with the worldwide observationon the size of coseismic sequence of coastal indicators.

Whereas Maouche et al. (2011) ascribe terraces as old as ~140 kaand up to 200 m in elevation as co-seismically generated, elsewherecoseismic coastal uplift has been described only for the Holoceneepoch and generally only for the later Holocene since glacioeustaticallydriven sea level slowed and reached approximately its present level ~5–6 ka. Documented cases of coseismic uplift describe staircase topogra-phy reaching only a few tens of meters altitude at most: e.g., ~30 m inOiso Bay, Japan (Ota, 1980, 1985) and in northern California (Merrittsand Bull, 1989; Merritts et al., 1991) and extending at most b1 km in-land; the height difference between each step is usually on the scaleof 3–5 m. The ages and elevation of the these co-seismically generatedsteps are not consistent with eustatic sea-level change (Ota andYamaguchi, 2004), as Maouche et al. (2011) seem to indicate in theircase (their Figure 4).

4. Uplift rate comparison along the North African margin: why amajor anomaly along the Sahel coast?

If major co-seismic events had occurred during the last 140 ka inAlgeria or nearby, as proposed by Maouche et al. (2011), additionalsequences of repeated uplifts similar in age should be present andidentified west and east of the study area. Moreover, the interpreta-tion by Maouche et al. (2011) produces a 10 times faster uplift ratesthan what was described before by some of the same co-authors ofthis article (Meghraoui et al., 1996; Morel and Meghraoui, 1996).This change in interpretation should be at least mentioned inMaouche et al. (2011), if not discussed.

Table 1Altitude of MIS 5e coastal indicators and consequent uplift rates. C: cape, SSC: straight segment of coast, I: island,M: mixed, B: bay, E.E.: “en échelon”, BD: beach deposits, MT: marine terrace. Uplift rates*=uplift rates given by authors. Upliftrates**=uplift calculated using eustatic correction (3±1 m as in Siddal et al., 2006) and uplift rates***=uplift rates calculated without eustatic correction. Modified and updated from Pedoja et al. (2011). Dating methods: AA: amino acidracemization, U/Th: uranium–thorium decay, OSL: optically stimulated luminescence, TL: thermoluminescence, 14C: 14 carbon.

Number Oceanand/or

Country Lat 1 Lon 1 Lat2 Lon2 Geography Name Minimumcoastallength(km)

No. ofpalaeo-shoreline

Maximumaltitudeof sequence

Data on MIS 5epalaeoshoreline

Data on MIS 5e

Maxelevation(m)

MoE Nature Eustasy(m)

MoE Age(ka)

MoE

1 Mediterranean Lybia 31°54′0.00″N

15°20′60.00″E

31°54′0.00″N

15°20′60.00″E

C West Lybia * >1 * 8 2 BD 3 1 122 6

2 Tunisia 33°09′57.98″N

11°33′28.13″E

33°09′57.98″N

11°33′28.13″E

C Allouet el Gounna 6 >1 * 4 1 BD 3 1 122 6

3 33°16′38.10″N

11°17′41.65″E

33°16′38.10″N

11°17′41.65″E

SSC Bhiret al Bibane 20 >1 * 0 1 BD 3 1 122 6

4 33°38′N 11°E 33°31′N 10°53′44″E

C North Cape of ZarzisPeninsula

12 >1 * 6 1 BD 3 1 122 6

5 33°53′44.42″N

10°49′18.74″E

33°38′02.67″N

10°53′02.90″E

I Jerba Island 115 >1 * 5 1 BD 3 1 122 6

6 33°38′15.49°N

10°29′44.26″E

33°39′16.66″N

10°33′59.66″E

M South East Gulf of Gabes 7.5 >1 * 3.5 1 BD 3 1 122 6

7 34°39′N 11°01′E 34°39′N 11°01′E I Malitah * >1 * 4 1 BD 3 1 122 68 35°29′N 11°02′E 35°29′N 11°02′E C Mahdia * >1 * 13 1 BD 3 1 122 69 36°01′N 10°30′E 36°01′N 10°30′E C Sahel/Al Mahadhibah * >1 * 32 1 BD 3 1 122 610 36°29′

45.59″N10°49′6.61″E

36°29′45.59″N

10°49′6.61″E

SSC Sidi Jabroun * >1 * 40 1 MT 3 1 122 6

11 36°50′13.31″N

11°06′20.25″E

36°27′28.84″N

10°48′36.33″E

SSC East Cape Bon betweenKelibia and Nabeul

50 >1 * 13 1 BD 3 1 122 6

12 37°03′N 10°54′32″E

37°03′N 10°54′32″E

C Sidi Da'ud * >1 * 7 1 BD 3 1 122 6

13 36°46′N 10°33′E 36°46′N 10°33′E B Tunis * >1 * 7 1 BD 3 1 122 614 37°16′

07.01″N10°04′06.59″E

37°16′07.01″N

10°04′06.59″E

C El Metline * >1 * 10 1 BD 3 1 122 6

15 37° 6′9.13″N

8°59′4.64″E

37°6′9.13″N

8°59′4.64″E

C Cape Negro * 1 6 5 1 BD 3 1 122 6

16 Algeria 36°47′53.12″N

2°54′7.62″E

36°47′53.12″N

2°54′7.62″E

C Aïn Benian 4 3 150 30 1 MT 3 1 122 6

17 36°38′40.75″N

2°41′0.46″E

36°38′40.75″N

2°41′0.46″E

SSC Bou Ismail 4 3 150 1 1 MT 3 1 122 6

18 36°35′40.48″N

2°34′21.33″E

36°35′40.48″N

2°34′21.33″E

B Rocher plat * >1 * 22 1 MT 3 1 122 6

19 36°35′29.00″N

2°27′0.15″E

36°35′29.00″N

2°27′0.15″E

B Tipaza * >1 * 20 1 MT 3 1 122 6

20 36°37′56.48″N

2°24′6.81″E

36°37′56.48″N

2°24′6.81″E

C Ras El Amouch * 3 150 20 1 MT 3 1 122 6

21 35°51′30.79″N

0°18′41.61″W

35°51′30.79″N

0°18′41.61″W

C Arzew * >1 * 38 1 MT 3 1 122 6

22 35°34′29.78″N

1°10′50.15″W

35°34′29.78″N

1°10′50.15″W

C Figalo * >1 * 45 1 MT 3 1 122 6

23 Morocco 35°21′6.95″N

2°57′25.59″O

35°21′6.95″N

2°57′25.59″O

M North Melilla * >1 * 3 1 MT 3 1 122 6

24 35°24′40.13″N

3° 0′8.39″W

35°21′28.58″N

2°58′7.48″W

C Cap des trois fourches 18 1 6 6 1 MT 3 1 122 6

25 C Punta Negri 5 3 65 6 1 MT 3 1 122 6

238K.Pedoja

etal./

Tectonophysics601

(2013)236

–244

and/or coastallength(km)

palaeo-shoreline altitudeof sequence

palaeoshoreline

Maxelevation(m)

MoE Nature Eustasy(m)

MoE Age(ka)

MoE

35°16′14.38″N

3° 8′24.76″W

35°16′22.74″N

3°6′49.86″W

26 35°11′29.12″N

3°19′54.75″W

35°13′2.91″N

3°12′55.19″W

SSC Sidi Mekhfi 13 4 150 6 1 MT 3 1 122 6

27 35°12′6.10″N

3°27′10.80″W

35°12′6.10″N

3°27′10.80″W

C Afraou Point 5 4 145 8 1 MT 3 1 122 6

28 35°14′51.97″N

3°46′3.67″W

35°13′12.19″N

3°33′34.35″W

C Ras Tarf 18 4 170 10.5 1 MT 3 1 122 6

29a 35°15′17.74″N

3°55′43.47″W

35°15′17.74″N

3°55′43.47″W

P Al Hoceima * >1 * 0 1 BD 3 1 122 6

29b 35°15′17.74″N

3°55′43.47″W

35°15′17.74″N

3°55′43.47″W

P Al Hoceima * 3 55 5 1 MT 3 1 122 6

30 35°29′42.98″N

5° 8′57.55″W

35°29′42.98″N

5°8′57.55″W

E.E. North of Oued Laou * >1 * 6 1 MT 3 1 122 6

31 35°32′48.45″N

5°14′1.51″O

35°32′48.45″N

5°14′1.51″O

B Azla * >1 * 3 1 MT 3 1 122 6

32 35°52′5.65″N

5°21′5.94″O

35°52′5.65″N

5°21′5.94″O

B South Ceuta * >1 * 7 1 MT 3 1 122 6

33 Atlantic 35°55′2.50″N

5°24′8.23″W

35°55′2.50″N

5°24′8.23″W

C Djebel Moussa/Ras Leona * 6 115 8 2 MT 3 1 122 6

34 35°54′23.28″N

5°28′51.07″O

35°54′23.28″N

5°28′51.07″O

C Punta Ceres * >1 * 13 1 MT 3 1 122 6

35 35°49′47.59″N

5°35′4.33″W

35°49′47.59″N

5°35′4.33″W

M Ksar es Srhir * >1 * 20 1 MT 3 1 122 6

36 35°49′47.04″N

5°43′9.26″W

35°49′47.04″N

5°43′9.26″W

C Talaa Cherif * 3 95 15 1 MT 3 1 122 6

37 35°45′35.45″N

5°56′19.42″W

35°45′35.45″N

5°56′19.42″W

C Cape Spartel 0.65 >1 5 5 1 MT 3 1 122 6

38 35°27′48.14″N

6° 2′18.35″O

35°27′48.14″N

6°2′18.35″O

C Assilah * >1 * 3 1 MT 3 1 122 6

39 35°11′16.48″N

6°10′15.24″W

35°11′16.48″N

6°10′15.24″W

SSC Larache * >1 * 9 1 BD 3 1 122 6

40 34° 5′16.58″N

6°47′14.06″W

34°5′16.58″N

6°47′14.06″W

SSC Sidi Moussa * 3 * 4.5 1 BD/sea-cave

3 1 122 6

41 33°40′49.45″N

7°26′25.27″W

33°31′45.34″N

7°49′33.34″W

E.E. Casablanca 50 4 55 2 2 MT 3 1 122 6

42 32°58′22.77″N

8°44′11.38″W

32°58′22.77″N

8°44′11.38″W

SSC Oualidia * >1 * 6.5 1.5 BD 3 1 122 6

43 30°37′49.35″N

9°53′18.79″O

30°37′49.35″N

9°53′18.79″O

C Cap Ghir * >1 * 4 1 MT 3 1 122 6

44 30°37′24.65″N

9°51′37.94″O

30°37′24.65″N

9°51′37.94″O

C Imi Ifrane * >1 * 6.5 1 MT 3 1 122 6

45 30°30′14.60″N

9°41′2.37″O

30°30′14.60″N

9°41′2.37″O

SSC Tamghart * >1 * 6 1 MT 3 1 122 6

46 30°28′49.55″N

9°40′24.44″O

30°28′49.55″N

9°40′24.44″O

SSC Bouzellou * >1 * 3.5 1 MT 3 1 122 6

47a 30°26′56.80″N

9°39′15.24″O

30°26′56.80″N

9°39′15.24″O

C Agadir N 17 9 360 8 1 MT 3 1 122 6

47b 30°31′24.32″N

9°41′24.22″W

30°25′22.06″N

9°37′33.70″W

C Agadir N * >1 * 28 1 MT 3 1 122 6

48 29°43′10.02″N

9°54′55.87″O

29°22′30.13″N

10°10′40.72″O

SSC Tiznit-Sidi Ifnit 60 8 130 5 1 MT 3 1 122 6

49 28°17′3.55″N

11°31′26.19″W

25°54′18.99″N

14°28′10.33″W

M Western Sahara 1–3 340 4 50 6.5 1.5 MT 3 1 122 6

(continued on next page)

239K.Pedoja

etal./

Tectonophysics601

(2013)236

–244

Table 1 (continued)

Number Chronostratigraphy Uplift rates Inferred maxduration ofregistration

Dating method Dating performedon

Reference Confidenceon data

Uplift rates* Uplift rates** Uplift rates withouteustasy***

Rates Errorrate

Rates MoE Maxrate

Minrate

Rates MoE Maxrate

Minrate

1 MIS 5e * * 0.04 0.02 0.07 0.04 0.07 0.02 0.08 0.05 MIS 5e AA/U/Th/OSL/14C/ Shells, sands… Ferranti et al., 2006 32 MIS 5e * * 0.01 0.02 0.02 −0.01 0.03 0.01 0.04 0.02 * Malacology Stombus bubonius

and ShellsBouaziz et al., 2003;Jedoui et al., 2001, 2003

4

3 MIS 5e * * −0.02 0.02 −0.01 −0.04 0.00 0.01 0.01 −0.01 * Malacology Stombus buboniusand Shells

Bouaziz et al., 2003;Jedoui et al., 2001, 2003

4

4 MIS 5e * * 0.02 0.02 0.04 0.01 0.05 0.01 0.06 0.04 * OSL/malacology Sand/Stombusbubonius and Shells

Bouaziz et al., 2003;Jedoui et al., 2001, 2003;Mauz et al., 2009

4

5 MIS 5e * * 0.02 0.02 0.03 0.00 0.04 0.01 0.05 0.03 * Malacology Stombus buboniusand Shells

Bouaziz et al., 2003;Jedoui et al., 2001, 2003

4

6 MIS 5e * * 0.00 0.02 0.02 −0.01 0.03 0.01 0.04 0.02 * Malacology Stombus buboniusand Shells

Bouaziz et al., 2003;Jedoui et al., 2003

4

7 MIS 5e * * 0.01 0.02 0.02 −0.01 0.03 0.01 0.04 0.02 * Malacology Stombus buboniusand Shells

Bouaziz et al., 2003 2

8 MIS 5e * * 0.08 0.02 0.10 0.07 0.11 0.01 0.12 0.10 * OSL/malacology/U/Th Sand/Stombusbubonius and Shells

Bernat et al., 1985;Bouaziz et al., 2003;Mauz et al., 2009

2

9 MIS 5e * * 0.24 0.02 0.26 0.22 0.26 0.02 0.28 0.25 * Malacology/U/Th Stombus buboniusand Shells

Bouaziz et al., 2003;Cornu et al., 1993;McLaren and Rowe, 1996;Wood, 1994

2

10 MIS 5e * * 0.30 0.02 0.33 0.28 0.33 0.02 0.35 0.31 MIS 11/13 Morpho-stratigraphy/malacology

Stombus buboniusand Shells

Chakroun et al., 2009;Elmejdoub and Jedoui, 2009

2

11 MIS 5e * * 0.08 0.02 0.10 0.07 0.11 0.01 0.12 0.10 * Malacology Stombus buboniusand Shells

Bouaziz et al., 2003;Chakroun et al., 2009

2

12 MIS 5e * * 0.03 0.02 0.05 0.02 0.06 0.01 0.07 0.05 * OSL/malacology Sand/Stombusbubonius and Shells

Bouaziz et al., 2003;Mauz et al., 2009

3

13 MIS 5e * * 0.03 0.02 0.05 0.02 0.06 0.01 0.07 0.05 * Malacology Stombus buboniusand Shells

Bouaziz et al., 2003 2

14 MIS 5e * * 0.06 0.02 0.07 0.04 0.08 0.01 0.09 0.07 * OSL/malacology Sand/Stombusbubonius and Shells

Bouaziz et al., 2003; Mauz et al., 2009 3

15 MIS 5 * * 0.02 0.02 0.03 0.00 0.04 0.01 0.05 0.03 * Morpho-stratigraphy Shells Miossec, 1977 116 Holocene, MIS 5 * * 0.22 0.02 0.24 0.20 0.25 0.01 0.26 0.23 Late Pliocene Morpho-stratigraphy Shells Saoudi, 1989; Vita-Finzi, 1967 317 MIS 5e * * −0.02 0.02 0.00 −0.03 0.01 0.01 0.02 0.00 Late Pliocene Morpho-stratigraphy Shells Saoudi, 1989; Vita-Finzi, 1967 318 MIS 5e 0.13 * 0.16 0.02 0.17 0.14 0.18 0.01 0.19 0.17 Late Pliocene Malacology Shells Meghraoui et al., 1996;

Morel and Meghraoui, 19963

19 MIS 5e 0.11 * 0.14 0.02 0.16 0.12 0.16 0.01 0.18 0.15 Late Pliocene U/Th Shells Meghraoui et al., 1996;Morel and Meghraoui, 1996;Stearns and Thurber, 1965

3

20 Holocene, MIS 5 * * 0.14 0.02 0.16 0.12 0.16 0.01 0.18 0.15 Late Pliocene Morpho-stratigraphy Shells Saoudi, 1989; Vita-Finzi, 1967 321 MIS 5e 0.25 * 0.29 0.02 0.31 0.27 0.31 0.02 0.33 0.29 Late Pliocene Malacology Shells Meghraoui et al., 1996;

Morel and Meghraoui, 19962

240K.Pedoja

etal./

Tectonophysics601

(2013)236

–244

duration ofregistration

on on dataUplift rates* Uplift rates** Uplift rates without

eustasy***

Rates Errorrate

Rates MoE Maxrate

Minrate

Rates MoE Maxrate

Minrate

22 MIS 5e 0.31 * 0.34 0.02 0.37 0.32 0.37 0.02 0.39 0.35 Late Pliocene Malacology Shells Meghraoui et al., 1996;Morel and Meghraoui, 1996

2

23 MIS 5 0.00 0.02 0.02 −0.02 0.02 0.01 0.03 0.02 U/Th/malacology Shells Cadet et al., 1977 324 MIS 5 * * 0.02 0.02 0.04 0.01 0.05 0.01 0.06 0.04 U/Th/malacology Shells Angelier et al., 1976 325 MIS 5 * * 0.02 0.02 0.04 0.01 0.05 0.01 0.06 0.04 * U/Th/malacology Shells Angelier et al., 1976 326 MIS 5 * * 0.02 0.02 0.04 0.01 0.05 0.01 0.06 0.04 * U/Th/malacology Shells Angelier et al., 1976 327 MIS 5 * * 0.04 0.02 0.06 0.02 0.07 0.01 0.07 0.06 * U/Th/malacology Shells Angelier et al., 1976 328 MIS 5 * * 0.06 0.02 0.08 0.04 0.09 0.01 0.10 0.08 * U/Th/malacology Shells Angelier et al., 1976 329a MIS 5e * * −0.02 0.02 −0.01 −0.04 0.00 0.01 0.01 −0.01 * U/Th/malacology Shells Ferranti et al., 2006 229b MIS 5 * * 0.02 0.02 0.03 0.00 0.04 0.01 0.05 0.03 * U/Th/malacology Shells Angelier et al., 1976 330 MIS 5 * * 0.02 0.02 0.04 0.01 0.05 0.01 0.06 0.04 * U/Th/malacology Shells Angelier et al., 1976;

El Gharbaoui, 19774

31 MIS 5 0.00 0.02 0.02 −0.02 0.02 0.01 0.03 0.02 * U/Th/malacology Shells Cadet et al., 1977 332 MIS 5 0.03 0.02 0.05 0.02 0.06 0.01 0.07 0.05 * U/Th/malacology Shells Cadet et al., 1977 333 MIS 5 * * 0.04 0.02 0.07 0.02 0.07 0.02 0.08 0.05 * U/Th/malacology Shells/Travertine Angelier et al., 1976;

Cadet et al., 1977; El Kadiri et al., 20103

34 MIS 5 0.08 0.02 0.10 0.07 0.11 0.01 0.12 0.10 * U/Th/malacology Shells Cadet et al., 1977 335 MIS 5 * * 0.14 0.02 0.16 0.12 0.16 0.01 0.18 0.15 * U/Th/malacology Shells Angelier et al., 1976; Cadet et al., 1977 336 MIS 5 * * 0.10 0.02 0.12 0.08 0.12 0.01 0.13 0.11 * U/Th/malacology Shells Angelier et al., 1976; Cadet et al., 1977 337 MIS 5 * * 0.02 0.02 0.03 0.00 0.04 0.01 0.05 0.03 * U/Th/malacology Shells Angelier et al., 1976;

Stearns and Thurber, 19653

38 MIS 5 0.00 0.02 0.02 −0.02 0.02 0.01 0.03 0.02 * U/Th/malacology Shells Cadet et al., 1977 339 MIS 5e * * 0.05 0.02 0.07 0.03 0.07 0.01 0.08 0.06 * U/Th Shells Angelier et al., 1976; Ferranti et al.,

2006;Stearns and Thurber, 1965

3

40 MIS 5e * * 0.01 0.02 0.03 0.00 0.04 0.01 0.05 0.03 * TL/OSL/U/Th Sand, Shells Aberkan et al., 1987;Barton et al., 2009; Plaziat et al., 2006

4

41 MIS 5, 7, 9 * * −0.01 0.02 0.02 −0.03 0.02 0.02 0.03 0.00 Since MIS 25 U/Th/OSL/AA Shells Chabli et al., 2005; Coque and Jauzein,1965;Lefèvre and Raynal, 2002;Occhietti et al., 2002; Rhodes et al, 2006;Texier et al., 1994, 2002

5

42 MIS 5e * * 0.03 0.02 0.05 0.01 0.05 0.01 0.07 0.04 * U/Th/malacology Shells Ferranti et al., 2006 343 MIS 5e * * 0.01 0.02 0.02 −0.01 0.03 0.01 0.04 0.02 * U/Th/malacology Shells Plaziat et al., 2008; Weisrock et al., 1999 344 MIS 5e * * 0.03 0.02 0.05 0.01 0.05 0.01 0.06 0.04 Pliocene U/Th/malacology Shells Plaziat et al., 2008; Weisrock et al., 1999 345 MIS 5e * * 0.02 0.02 0.04 0.01 0.05 0.01 0.06 0.04 Pliocene U/Th/malacology Shells Plaziat et al., 2008; Weisrock et al., 1999 346 MIS 5e * * 0.00 0.02 0.02 −0.01 0.03 0.01 0.04 0.02 Pliocene U/Th/malacology Shells Plaziat et al., 2008; Weisrock et al., 1999 347a MIS 5e * * 0.04 0.02 0.06 0.02 0.07 0.01 0.07 0.06 Pliocene U/Th/malacology Shells El Gharbaoui et al., 1994; Giresse, 1989;

Plaziat et al., 2008; Stearns and Thurber,1965; Weisrock et al., 1999

3

47b MIS 5a, e, 7 0.14 0.050 0.20 0.02 0.22 0.19 0.23 0.01 0.24 0.22 Pliocene U/Th Shells El Gharbaoui et al., 1994; Giresse, 1989;Meghraoui et al., 1998;Stearns and Thurber, 1965

3

48 MIS 6 0.02 0.02 0.03 0.00 0.04 0.01 0.05 0.03 Mid Pliocene Morpho-stratigraphy Shells Westaway et al., 2009 249 MIS 5 * * 0.03 0.02 0.05 0.01 0.05 0.01 0.07 0.04 >MIS 5e U/Th/

morpho-stratigraphy/14C

Shells Brebion and Ortlieb, 1976;Hoang et al., 1978; Ortlieb, 1975;

4

241K.Pedoja

etal./

Tectonophysics601

(2013)236

–244

242 K. Pedoja et al. / Tectonophysics 601 (2013) 236–244

On the north African margin, coastal terrace sequences have beencommented upon for more than a century (e.g., Lamothe, 1911 inSaoudi, 1989) with more than 40 publications since 1960 of eitherlocal descriptions (e.g. El Kadiri et al., 2010) or regional studieswith tec-tonic interpretation (e.g. Angelier et al., 1976; Meghraoui et al., 1996;Morel and Meghraoui, 1996). On the coast of Libya, Tunisia, Algeriaand Morocco, coastal sequences including MIS 5e are described formore than 49 sites (Fig. 1, Table 1; see also supplementary data ofPedoja et al. (2011) for the Spanish data). As previous workers do, wenote that the Algerian and Libyan sequences are not as well studied asMoroccan or Tunisian ones. The records mostly consist of marineterraces with associated beach deposits (i.e. “plages soulevées” of theFrench-speaking authors) covered by aeolian and/or colluvial deposits.On the Moroccan and Algerian coasts, the typical morphostratigraphycan be described as two to three lowstand marine terraces overlookedby 1 to 2 rasas (Table 1). In this area, the reported elevation of MIS 5eindicators ranges from 0 to 45 m with a mean of 10 m. Excluding lowconfidence data (i.e. due to bad dating, bad location, etc.), this averagefalls to 6–7 m. The coastal uplift of the northwestern part of the Africanmargin, although still lacking detailed studies, appears rather homoge-neous and is likely related to the collisional setting between Africa andEurasia. This pattern is expressed, for example, by the increase in alti-tude of the MIS 5e indicators on the Tangier peninsula (Table 1, Fig. 1).

5. Fold geometry and modeling of fold growth

Maouche et al. (2011) postulate that the Sahel structure is anonshore asymmetric anticline, and that deformation is co-seismic.Consequently, they apply an elastic dislocation modeling based onthis geometry combined with different scenarios of fault-relatedfold segments in order to estimate the coseismic surface deformationand uplift. They compare these estimates with the occurrence ofuplifted marine terraces and notches along the structure to choosethe best scenario. They thus propose the occurrence of exceptionalM>7 earthquakes in Algeria.

It must be stressed out that previous workers (Aymé et al., 1954;Yassini, 1975) present the Sahel onshore ridge as a monoclinal seriesof Neogene deposits. Fig. 2, which corresponds to a cross section east

Fig. 1. Coastal uplift of the north-western part of the African margin deduced from the elevabove the white arrow, uplift rate supported by Maouche et al. (2011). Eurasian plate hasthe East Lybia and the western Sahara (c.f. Table 1) are not presented on this figure.

of the Mazafran River and valley, indeed illustrates the monoclinalstructure of the Sahel structure onshore. In several points of observa-tion (A, B, C, D, E, F in Fig. 2), the Pliocene series (possibly includingupper Miocene deposits at its base) crops out quite well. The Plioceneseries is composed of two main units: Plaisancian marls at the baseare overlain by Astien molassic sandstones. In some places, themarly Plaisancian deposits include several distinct beds of (bioturbat-ed) hard limestone interspersed in the marl series which, as the over-lying sandstones, depict a clear dip to the SE (Fig. 2). Consequently, ifthe Sahel structure is an anticline, the fold axis must be located in thesea and not onshore. This distinct geometry must be consideredbecause it would significantly modify the spatial distribution of thecoseismic surface deformation calculated by Maouche et al. (2011)along the Sahel ridge using an elastic dislocation modeling.

6. Conclusions

We reiterate what previous workers have demonstrated. First, thehighest marine terrace in the area (T1, 175 m) cannot be correlated tothe last interglacial maximum (MIS 5e). The dates used by Maoucheet al. (2011), obtained by Stearns and Thurber (1965), of c. 130 kacome from deposits b10 m above sea level. Consequently, an upliftrate extrapolated from that age would be on the order of (and nomore than) 0.1 mm/yr and would give an age of >1 Ma for T1 ofMaouche et al. (2011). This uplift rate, consistent with other observa-tions along the northern coast of Africa, is drastically different fromMaouche et al.'s (2011) estimates of ~0.84–1.2 mm/yr. Finally, theco-seismic uplift process proposed byMaouche et al. (2011) for the for-mation of the marine terrace sequence east of Algiers can be rejectedbased on chronology and morphotectonics of well-established cases.

On all these grounds, we reject key parts of the contribution byMaouche et al. (2011) dealing high-frequency coseismic activity,very large (M>7) earthquakes, and finally, very high uplift rates.The Algerian coastal area appears more as a “classical,” slowlyuplifting region during Plio-Quaternary times. Much remains to beunderstood in terms of crustal processes, modalities of the uplift,and chronology of events leading to the formation of the sequenceof marine terraces present on the flank of the Sahel anticline.

ation of MIS 5e paleocoast in the area. * data compiled by Pedoja et al. (2011). In red,been put into brackets because several microblocks are present in the area. Note that

Fig. 2. Cross section illustrated by photos of the east bank of the oued Mazafran. This cross section (actualized from Aymé et al., 1954 and Yassini, 1975) clearly shows the monoclineand not anticline structure of the Sahel, west of Algiers. ABCDEF are detail geolocalized photos.

243K. Pedoja et al. / Tectonophysics 601 (2013) 236–244

Unfortunately, we fail to believe that relevant information and inter-pretation were brought to bear on these issues by Maouche et al.(2011).

References

Aberkan, M., Cahuzac, B., Carbonel, P., 1987. Lagoonal-lacustrine paleoenvironments ofthe Moroccan Atlantic shoreline during the late Pleistocene. Bulletin de l'InstitutScientifique de Rabat 11, 117–123.

Angelier, J., Cadet, J.P., Delibrias, G., Fourniguet, J., Gigout, M., Guillemin, M., Hogrel,M.T., Lalou, C., Pierre, G., 1976. Les déformations du Quaternaire marin, indicateursnéotectoniques. Quelques exemples méditerranéens. Revue de Géographie Phy-sique et de Géologie Dynamique XVIII, 427–448.

Aymé, A., Aymé, J.M., Magné, J., 1954. Etude des terrains néogènes de la Cluse duMazafran (Sahel d'Alger). Bulletin du Sevice de la Carte Géologique 2, 129–150.

Barton, R.N.E., Bouzouggar, A., Collcutt, S.N., Schwenninger, J.-L., Clark-Balzan, L., 2009.OSL dating of the Aterian levels at Dar es-Soltan I (Rabat, Morocco) and implica-tions for the dispersal of modern Homo sapiens. Quaternary Science Reviews 28,1914–1931.

Bernat, M., Paskoff, R., Sanlaville, P., 1985. Datations de terrasses marines de la côte estde la Tunisie: méthode I0–U appliquée aux mollusques fossiles, un example decontamination subactuelleit. Revue de Géologie Dynamique et de Géographie Phy-sique 26, 157–161.

Berryman, K., 1992. A stratigraphic age of Rotoehu Ash and late Pleistocene climate in-terpretation based on marine terrace chronology, Mahia Peninsula, North Island,New Zealand. New Zealand Journal of Geology and Geophysics 35, 1–7.

Berryman, K., 1993a. Distribution, age, and deformation of the late Pleistocene marineterraces at Mahia Peninsula, Hikurangi subduction margin, New Zealand. Tectonics12, 1365–1379.

Berryman, K., 1993b. Age, height, and deformation of Holocene marine terraces at MahiaPeninsula, Hikurangi subduction margin, New Zealand. Tectonics 12, 1347–1364.

Bouaziz, S., Jedoui, Y., Barrier, É., Angelier, J., 2003. Néotectonique affectant les dépôtsmarins tyrrhéniens du littoral sud-est tunisien: implications pour les variations duniveaumarinNeotectonics in the Tyrrhenian marine deposits of the southeastern Tu-nisian coast: implications for sea level changes. Comptes Rendus Geosciences 335,247–254.

Brebion, P., Ortlieb, L., 1976. Nouvelles recherches géologiques et malacologiques sur leQuaternaire de la province de Tarfaya (Maroc méridional). Geobios 9, 529–550.

Cabioch, G., Ayliffe, L.K., 2001. Raised coral terraces at Malakula, Vanuatu, Southwest Pacific,indicate high sea level duringmarine isotope stage 3. Quaternary Research 56, 357–365.

Cadet, J.P., Fourniguet, J., Gigout, M., Guillemin, M., Pierre, G., 1977. L'histoiretectonique récente (Tortonien à Quaternaire) de l'Arc de Gibraltar et des borduresde la mer d'Alboran. III -néotectonique des littoraux. Bulletin de la SociétéGéologique de France XIX, 591–605.

Chabli, A., Galindo-Zaldivar, J., Akil, M., Marin-Lechado, C., Chalouan, A., Ruano, P., Bargach, K.,Sanz de Galdeano, C., 2005. Déformations néotectonique dans les dépôts plio-quaternaires de la région de Casablanca - Mohammedia (Meseta côtière, Maroc).Revista de la Sociedad Geologica de España 18, 169–178.

Chakroun, A., Zaghbib-Turki, D., Miskovsky, J.-C., Davaud, E., 2009. Two Tyrrheniantransgressive cycles in coastal deposits of the Cap Bon Peninsula, Tunisia.Quaternaire 20, 215–226.

Chappell, J., 1974. Geology of coral terraces, Huon Peninsula, NewGuinea: a studyof quater-nary tectonic movements and sea level changes. Geological Society of America Bulletin85, 553–570.

Coque, R., Jauzein, A., 1965. Le Quaternaire moyen de l'Afrique du Nord. Bulletin del'Association Française pour l'Etude du Quaternaire 2, 117–132.

244 K. Pedoja et al. / Tectonophysics 601 (2013) 236–244

Cornu, S., Pätzold, J., Bard, E., Meco, J., Cuerda-Barcelo, J., 1993. Paleotemperature of thelast interglacial period based on [delta]18O of Strombus bubonius from the westernMediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 1–20(200 KA of global change).

El Gharbaoui, A., 1977. Note préliminaire sur l'évolution géomorphologique de laPéninsule de Tanger. Bulletin de la Société Géologique de France 7, 615–622.

El Gharbaoui, A., Choukri, A., Berrada, M., Falaki, H., Reyss, J.-L., 1994. Datation de deuxniveaux marins sur la côte du Haut Atlas Atlantique à 275000 ans et à 120000 ans.Cahiers de géographie du Québec 38, 241–247.

El Kadiri, K., Sanz de Galdeano, C., Pedrera, A., Chalouan, A., Galindo-Zaldivar, J., Julia, R.,Akil, M., Hlila, R., Ahmamou, M., 2010. Eustatic and tectonic controls on QuaternaryRas Leona marine terraces (Strait of Gibraltar, northern Morocco). Quaternary Re-search 74, 277–288.

Elmejdoub, N., Jedoui, Y., 2009. Pleistocene raised marine deposits of the Cap Bon pen-insula (N-E Tunisia): records of sea-level highstands, climatic changes and coastaluplift. Geomorphology 112, 179–189.

Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G., Mastronuzzi, G., Monaco, C.,Orrù, P., Pappalardo, M., Radtke, U., Renda, P., Romano, P., Sansò, P., Verrubbi, V.,2006. Markers of the last interglacial sea-level high stand along the coast of Italy.Tectonic implications: Quaternary International Quaternary sea-level changes:contributions from the 32nd IGC, 145–146, pp. 30–54.

Galipaud, J.-C., Pineda, R., 1998. Archaeological evidence of differential uplift ofMalo (Van-uatu) during the Late Holocene. Compte Rendu Académie des Sciences, Paris 327,777–779.

Giresse, P., 1989. Quaternary sea-level changes on the Atlantic coast of Africa. In: Tooley,M.J., Shennan, I. (Eds.), Sea-level Changes. Basil Blackwell, London, pp. 249–275.

Hoang, C.T., Ortlieb, L., Weisrock, A., 1978. Nouvelles datations 230Th/234U de terrassesmarines “ouljiennes” du sud-ouest du Maroc et leurs significations stratégique ettectonique. Comptes-Rendus de l'Académie des Sciences: série D 286, 1759–1762.

Ikeda, S., Kasuya, M., Ikeya, M., 1991. ESR ages of middle Pleistocene corals from theRyukyu Islands. Quaternary Research 36, 61–71.

Ikeya, M., Ohmura, K., 1983. Comparison of ESR ages of corals from marine terraceswith 14C and 230Th/234U ages. Earth and Planetary Science Letters 65, 34–38.

Inagaki, M., Omura, A., 2006. Uranium-series age of the highest marine terrace of the UpperPleistocene on Kikai Island, Central Ryukyus, Japan. Quaternary Research 45, 41–48.

Jedoui, Y., Kallel, N., Labeyrie, L.D., Reyss, J.-L., Montacer, M., Fontugne, M., 2001.Variabilité climatique rapide lors du dernier Interglaciaire (stade isotopiquemarin 5e), enregistrée dans les sédiments littoraux du Sud-Est tunisien. ComptesRendus de l'Académie des Sciences 333, 733–740.

Jedoui, Y., Reyss, J.-L., Kallel, N., Montacer, M., Ismaïl, H.B., Davaud, E., 2003. U-series ev-idence for two high Last Interglacial sea levels in southeastern Tunisia. QuaternaryScience Reviews 22, 343–351.

Jouannic, C., Taylor, F.W., Bloom, A.L., Bernat, M., 1980. Late Quaternary uplift, fromemerged reef terraces of Santo and Malekula islands, central New Hebrides islandarc: Un Escap, CCOP/SOPAC. Technical Bulletin 3, 91–108.

Jouannic, C., Taylor, F.W., Bloom, A.L., 1982. Sur la surrection et la déformation d'un arc jeune:l'arc des Nouvelles Hébrides. Travaux et documents ORSTOM, v. 147, pp. 223–246.

Konishi, K., Shlange, S.O., Omura, A., 1970. Neotectonic rates in the central RyukyuIslands derived from 230Th coral ages. Marine Geology 9, 225–240.

Lajoie, K.R., 1986. Coastal tectonics. In: Press, N.A. (Ed.), Active Tectonic. National Aca-demic Press, Washington D. C., pp. 95–124.

Lefèvre, D., Raynal, J.-P., 2002. The plio-pleistocene formations of Casablanca and themarine Quaternary chronostratigraphy of Morocco revisited. Quaternaire 13, 9–21.

Maejima, Y., Matsuzaki, H., Higashi, T., 2005. Application of cosmogenic 10Be to datingsoils on the raised coral reef terraces of Kikai Island, southwest Japan. Geoderma126, 389–399.

Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadad, Y., Haddoum, H.,2011. Active coastal thrusting and folding, and uplift rate of the Sahel Anticlineand Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics 509, 69–80.

Mauz, B., Elmejdoub, N., Nathan, R., Jedoui, Y., 2009. Last interglacial coastal environmentsin the Mediterranean–Saharan transition zone. Palaeogeography, Palaeoclimatology,Palaeoecology 279, 137–146.

McLaren, S.J., Rowe, P.J., 1996. The reliability of uranium series mollusc dates from thewestern Mediterranean basin. Quaternary Science Reviews 15, 709–717.

Meghraoui, M., Morel, J.L., Andrieux, J., Dahmani, M., 1996. Pliocene and Quaternary tec-tonics of the Tell-Riff mountains and Alboran sea, a complex zone of continent–conti-nent convergence. Bulletin de la Société Géologique de France 167, 141–147.

Meghraoui, M., Outtani, F., Choukri, A., De Lamotte, D.F., 1998. Coastal tectonics acrossthe South Atlas Thrust Front and the Agadir Active Zone, Morocco. In: Stewart, I.S.,Vita-Finzi, C. (Eds.), Coastal tectonics: London, Geological Society Special Publica-tions, v. 146, pp. 239–253.

Merritts, D.J., Bull, W.B., 1989. Interpreting Quaternary uplift rates at theMendocino triplejunction, northern California, from uplifted marine terraces. Geology 17, 1020–1024.

Merritts, D.J., Chadwick, O.A., Hendricks, D.M., 1991. Rates and processes of soil evolu-tion on uplifted marine terraces, northern California. Geoderma 51, 241–275.

Miossec, A., 1977. Traces de stationnement de lamer au Quaternaire récent sur le littoral desMogods. Bulletin de l'Association Française pour l'Etude du Quaternaire 14, 112–115.

Morel, J.L., Meghraoui, M., 1996. Goringe-Alboran-Tell tectonic zone: a transpressionsystem along the Africa–Eurasia plate boundary. Geology 24, 755–758.

Occhietti, S., Raynal, J.-P., Pichet, P., Lefèvre, D., 2002. Aminostratigraphie des forma-tions littorales Pléistocènes et Holocènes de la région de Casablanca, Maroc.Quaternaire 13, 55–64.

Ortlieb, L., 1975. Recherches sur les formations Plio-Quaternaires du littoral ouest-saharien (20°30′–20°40′ lat. N). Travaux et Documents de l'ORSTOM, v. 48, p. 284.

Ota, Y., 1980. Tectonic landforms and Quaternary tectonics in Japan. GeoJournal 4, 111–124.Ota, Y., 1985. Marine terraces and active faults in Japan with special reference to co-

seismic events. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic Geomorphology.Allen & Unwin.

Ota, Y., Omura, A., 1992. Contrasting styles and rates of tectonic uplift of coral reef ter-races in the Ryukyu and Daito Islands, Southwestern Japan. Quaternary Interna-tional 15 (16), 17–29.

Ota, Y., Yamaguchi, M., 2004. Holocene coastal uplift in the Western Pacific Rim in thecontext of the Late Quaternary uplift. Quaternary International 120, 105–117.

Pedoja, K., Ortlieb, L., Dumont, J.F., Lamothe, M., Ghaleb, B., Auclair, M., Labrousse, B.,2006. Quaternary coastal uplift along the Talara Arc (Ecuador, Northern Peru)from new marine terrace data. Marine Geology 228, 73–91.

Pedoja, K., Husson, L., Regard, V., Cobbold, P.R., Ostanciaux, E., Johnson, M.E., Kershaw,S., Saillard, M., Martinod, J., Furgerot, L., Weill, P., Delcaillau, B., 2011. Relative sea-level fall since the last interglacial stage: are coasts uplifting worldwide? Earth-Sci-ence Reviews 108, 1–15.

Plaziat, J.-C., Aberkan, M., Reyss, J.-L., 2006. New late Pleistocene seismites in a shore-line series including eolianites, north of Rabat (Morocco). Bulletin de la SociétéGéologique de France 177, 323–332.

Plaziat, J.-C., Aberkan, M., Ahmamou, M., Choukri, A., 2008. The Quaternary deposits ofMorocco, continental evolution. The Geology of Morocco 359–376.

Rhodes, E.J., Singarayer, J.S., Raynal, J.-P., Westaway, K.E., Sbihi-Alaoui, F.Z., 2006. Newage estimates for the Palaeolithic assemblages and Pleistocene succession of Casa-blanca, Morocco. Quaternary Science Reviews Dating the Quaternary: Progress inLuminescence Dating of Sediments, v. 25, pp. 2569–2585.

Saoudi, N.-E., 1989. Pliocène et Pléistocène inférieur et moyen du Sahel Occidentald'Alger: Alger, Entreprise Nationale du Livre . (174 pp.).

Sasaki, K., Omura, A., Murakami, K., Sagawa, N., Nakamori, T., 2004. Interstadial coralreef terraces and relative sea-level changes during marine oxygen isotope stages3–4, Kikai Island, central Ryukyus, Japan. Quaternary International Coastal Envi-ronmental Change during Sea-Level Highstands, IGCP 437 Symposium, Barbados,v. 120, pp. 51–64.

Siddal, M., Chappell, J., Potter, E.-K., 2006. Eustatic sea level during past interglacials. In:Sirocko, F., Claussen, M., Sanchez Goñi, M.F., Litt, T. (Eds.), The Climate of Past Inter-glacials. Elsevier, Amsterdam, pp. 75–92.

Stearns, C.E., Thurber, D.L., 1965. Th230–U234 dates of late Pleistocene marine fossilsfrom the Mediterranean and Moroccan littorals. Quaternaria 7, 29–42.

Taylor, F.W., Isacks, B.L., Jouannic, C., Bloom, A.L., Dubois, J., 1980. Coseismic and Qua-ternary vertical tectonic movements, Santo andMalekula Islands, New Hebrides Is-land Arc. Journal of Geophysical Research 85, 5367–5381.

Taylor, F.W., Jouannic, C., Gilpin, L., Bloom, A.L., 1982. Coral colonies as monitors ofchange in relative level of the land and sea: application to vertical tectonism.Proc.4th Int. Coral Reef Congress, pp. 485–492.

Taylor, F.W., Jouannic, C., Bloom, A.L., 1985. Quaternary uplift of the Torres Islands,northern New Hebrides frontal arc: comparison with Santo and Malekula Islands,central New Hebrides frontal Arc. Journal of Geology 93, 419–438.

Taylor, F.T., Frohlich, C., Lecolle, J., Strecker, M.R., 1987. Analysis of partially emergedcorals and reef terraces in the central Vanuatu arc: comparison of contemporarycoseismic and nonseismic with Quaternary vertical movements. Journal of Geo-physical Research 92, 4905–4933.

Texier, J.P., Evin, J., Occhietti, S., Raynal, J.-P., Lefèvre, D., 1994. Upper Pleistocene andHolocene records on the Casablanca coast (Morocco). Quaternaire 5, 173–180.

Texier, J.P., Lefèvre, D., Raynal, J.-P., El Graoui, M., 2002. Lithostratigraphy of the littoraldeposits of the last one million years in the Casablanca region (Morocco).Quaternaire 13, 23–41.

Vita-Finzi, C., 1967. Late Quaternary alluvial chronology of Northern Algeria. Man 2,205–215.

Weisrock, A., Occhietti, S., Hoang, C.T., Lauriat-Rage, A., Brebion, P., Pichet, P., 1999.Pleistocene littoral sequences of the Atlantic Atlas between Agadir and Cape Rhir,Morocco. Quaternaire 10, 227–244.

Westaway, R., Aït Hssaine, A., Demir, T., Beck, A., 2009. Field reconnaissance of the Anti-Atlas coastline, Morocco. Fluvial and Marine Evidence for Late Cenozoic Uplift:Global and Planetary Change Fluvial Sequences as Evidence for Landscape and Cli-matic Evolution in the Late Cenozoic: A Synthesis of Data From IGCP 518, v. 68, pp.297–310.

Wood, P.B., 1994. Optically stimulated luminescence dating of a Late Quaternary shore-line deposit, Tunisia. Quaternary Geochronology (Quaternary Science Reviews) 13,513–516.

Yassini, I., 1975. Planktonic foraminiferal biozonation of neogene deposits in the“Sahel” of Algier, Algeria. Rivista Italiana di Paleontologia 81, 89–120.