Can recent advances in stroke rehabilitation technologies be of benefit to children

75
Can recent advances in stroke rehabilita2on technologies be of benefit to children? Jane Burridge Prof of Restora2ve Neuroscience University of Southampton Bri2sh Paediatric Neurology Associa2on Friday January 31 st 2014

Transcript of Can recent advances in stroke rehabilitation technologies be of benefit to children

Can  recent  advances  in  stroke  rehabilita2on  technologies  be  of  

benefit  to  children?    

Jane  Burridge  

Prof  of  Restora2ve  Neuroscience  

University  of  Southampton  

   

 

 

 

   

 

   

   

   

 

Bri2sh  Paediatric  Neurology  Associa2on    Friday  January  31st  2014  

Grown-­‐ups  like  to  play  games  but  children  like  to  play  even  more  

What  this  talk  is  about  

•  Drivers  for  the  use  of  technology  in  neurorehabilita2on  •  Differences  between  CP  and  stroke  •  Neuroplas2city  -­‐  a  key  factor  in  rehabilita2on  •  Current  evidence  for  technologies  in  stroke  and  CP  •  Where  to  now?  

–  Evidence  is  cri2cal,  but  is  the  RCT  appropriate?  –  Development  of  technologies    

Clinical  and  Social  drivers  for  the  use  of  technologies  in  neurorehabilita2on  

•  Cost  effec2veness:  – More  intensive  therapy  without  increased  therapist  2me  

–  Home-­‐based  therapy  

•  Technological  advances  •  Advances  in  understanding  of  neuroplas2city  

   

•  Most  neurorehabilita2on,  including  CP,  prac2ced  today  is  based  on  tradi2onal  concepts  developed  over  many  years.  

•  But  this  is  also  an  era  for  the  development  of  new  approaches.  

The  goal  of  physical  therapy  

•  develop  coordina2on  •  build  strength  •  improve  balance  

•  control  spas2city  and  maintain  flexibility  

•  op2mize  physical  func2on  

•  maximize  independence  

Conven2onal  Therapy  

•  Neuro-­‐development  Treatment  (Bobath)  

•  Exercise  and  Func2onal  Strength  Training  •  Mul2-­‐modal  approach  to  managing  spas2city  and  preven2ng  contractures  

Evidence  for  conven2onal  therapy  in  stroke  

•  Shi[  from  compensa2on  to  recovery  •  No  clear  evidence  that  any  par2cular  therapy    approach  is  superior  to  another1-­‐5  

•  Evidence  that  outcomes  are  related  to  therapy  intensity,  but  stronger  evidence  from  cohort  studies  that  RCTs  

•  The  effect  of  conven2onal  therapy  on  neuroplas2city  following  stroke  is  unknown  

1Stern  et  al,  1970  2Logigian  et  al,  1983  3Dickstein  et  al,  1986  4Lord  and  Hall,  1986  5Wagenaar  et  al,  1990.  

The  great  hope  for  sensory-­‐motor  rehabilita2on  

 

•  Advances  in  understanding  of  neuroplas2city  •  Technological  advances  in  motor  training  devices,  including  robo2cs  that  may  enhance  recovery  beyond  current  approaches  

Differences  between  Stroke  and  CP  –  how  it  may  affect  rehabilita2on  research  and  approaches  

Stroke   CP  

Recovery  of  previously  learnt  motor  behaviours  

Absence  of  normal  learnt  motor  behaviours  

Less  poten2al  for  neuroplas2city  within  the  adult  nervous  system  

More  poten2al  for  neuroplas2city  in  children  

Fully  developed  nervous  and  MSK  system    

‘Moving  target’  The  child  is  developing  adding  complexity  

Hemiplegia  with  a  classic  pabern  of  symptoms  

Very  varied  presenta2on  with  cogni2ve  and  learning  problems    

Hyper-­‐acute  treatment  e.g.  thrombolysis  shows  clear  benefits    

Hyper-­‐acute  treatment  not  appropriate  

Recovery  is  associated  with  changes  in  the  lesioned  cortex  as  well  as  non-­‐lesioned  

Persistent  low  thresholds  for  MEPs  from  the  non-­‐lesioned  and  increasing  from  the  lesioned    -­‐  loss  of  connec2vity  (compe22ve  withdrawal)1  

Aisen  et  al.  CP:  clinical  care  and  neurological  rehabilita2on.  Lancet  Neurology    10;  844-­‐848.  2011    

Evidence  for  Neuroplas2city  associated  with  recovery  and  prac2ce  

Donald Hebbe (1904 – 1985) strengthening connections

A B A B

“When  an  axon  of  cell  A  is  near  enough  to  excite  a  cell  B  and  repeatedly  or  persistently  takes  part  in  firing  it,  some  growth  process  or  metabolic  change  takes  place  in  one  or  both  cells  such  that  A’s  efficiency,  as  one  of  the  cells  firing  B,  is  increased”  

 

•  First  of  all  it’s  a  chemical  change  that  enables  calcium  ions  to  flow  more  freely  and  so  make  the  synapse  more  likely  to  fire  

•  Subsequently  there  is  a  structural  change  which  makes  the  connec2ons  more  permanent  

•  Add  enables  the  learning  of  new  motor  behaviours  

Hebb’s  Rule;  neurons  that  fire  together  wire  together  

strengthen

weaken

14  

Flexibility  of  the  motor  cortex:  implica2ons  for  rehabilita2on  

•  Hebbian  learning  –  fire  together  –  wire  together  •  Areas  have  the  ability  to  adapt  their  func2on  –  rather  than  acquiring  new  func2ons  

•  Intensive  training  of  one  cor2cal  area  may  be  at  the  expense  of  other  surrounding  areas  

15  

Neuroplas2c  changes  in  response  to  environment  

•  In  the  absence  of  sensory  input  and  motor  ac2va2on  (learnt  non-­‐use)  –  Constraint  Induced  Therapy  (CIT)  –  rat  model  (Taub)  

•  In  response  to  repe22ve,  successful  and  challenging  prac2ce  with  posi2ve  feedback  

•  Changes  in  excitability  in  response  to:  –  Peripheral  s2mula2on  and  paired  associa2ve  s2muli  (PAS)  –  Repe22ve  Transcranial  Magne2c  S2mula2on  (rTMS)  –  Transcranial  direct  current  s2mula2on  (tDCS)  

•  Synaptogenesis  –  e.g.  An2-­‐Nogo  A  

Hummel & Cohen Lancet Neurology 2006

16  

Representa2on  of  the  hand  in  the  motor  cortex  of  the  squirrel  monkey    

Evidence-­‐Based  Treatment  

•  How  does  this  basic  research  translate  into  clinical  prac2ce?  •  Well  designed,  rigorously  conducted  randomized  controlled  

clinical  trials  are  a  recent  development  in  rehabilita2on  •  Rehabilita2on  does  not  fit  into  the  tradi2onal  model  -­‐  so  

useful  for  conduc2ng  pharmacological  trials  

Problems  with  experimental  studies  of  motor  treatments  following  stroke  (and  maybe  CP)  

•  We  do  not  know  which  are  the  cri2cal  variables  to  control  –  Time  a[er  stroke  onset  –  Type  and  severity  of  neurological  deficits  

•  Difficulty  in  providing  true  control  treatment  •  Delivery  of  interven2ons  

–  Therapist  –  pa2ent  interac2on  –  Dose  /  delivery  –  clinically  appropriate  vs.  standardized  

•  Current  research  suggests  that  technology  is  not  superior  to  intensive  therapy  

•  We  need  a  beber  understanding  of  the  mechanisms  -­‐  who  benefits,  when  and  why    

Natural  History  

•  The  RCT  is  an  inadequate  tool  to  advance  stroke  (and  maybe  CP)  rehabilita2on  

•  There  are  too  many  (and  unknown)  variables  to  control  •  If  we  could  control  them,  then  findings  would  not  be  generalizable  •  We  have  such  an  inadequate  understanding  of  the  mechanisms  of  

recovery  that  designing  a  RCT  is  based  on  guesswork  •  To  answer  our  ques2ons    at  this  stage  Natural  History  studies  may  

be  more  useful      •  Recording  medical  treatment,  therapy  and  psychosocial  data  with  

retrospec2vely  analysis    •  Cohort  studies  of    intensity  of  stroke  therapy  show  beber  outcomes  

that  RCTs  

Objec2ve  measurement  

•  Lack  of  valid  and  reliable  objec2ve  measurement  tools  is  cri2cal  to:  –  Evalua2ng  therapy  –  Understanding  mechanisms  of  recovery  

•  Technology  has  the  poten2al  to  provide  this  –  e.g.  –  Neuroimaging  and  TMS  

– Wearable  sensors  (e.g.  iner2al  sensors  –  ac2vity)  

Technology  in  Stroke  Rehabilita2on  (mainly  upper  limb)  and  parallels  in  CP  

Why  use  it?  

•  Poten2ally  cost  effec2ve  •  Promotes  self  management,  mo2va2on  and  responsibility  

•  Allows  intensive,  poten2ally  self-­‐directed  training  •  May  lead  to  beber  outcomes  

•  A  means  of  extending  the  rehabilita2on  period  

 

What  is  the  evidence  that  new  approaches  for  enhancing  motor  recovery  are  superior  to  tradi2onal  

approaches?  

Examples  of  upper  limb  technologies  

•  Constraint  Induced  Movement  Therapy  (CIMT)  

•  Robot  therapy  •  Interac2ve  computer  play  and  Virtual  Reality  e.g.  the  Wii  and  systems  that  use  the  Kinect  mo2on  sensing  technology  

•  Peripheral  (NMES)  and  cor2cal  electrical  (tDCS)  and  magne2c  (TMS)  s2mula2on  

Company driven prescribed protocol for use, no RCTs - minimal research evidence

FES: some evidence-based guidelines. Training provided in the UK by the National Clinical FES centre. On some UG/PG therapy programs. Widely different practices

Many different and progressing technologies. COST Action aims to develop guidelines and standards, based on good research evidence

Protocol based on the evidence from EXCITE, but adapted to fit into clinical practice – forced-use

NIBS: protocols based on neurophysiological understanding. Minimal research evidence

Sarah Rosen, 5, struggled to play video games because of mobility issues caused by cerebral palsy. When her father bought a Kinect, she played until she fell asleep in a chair.

Constraint-­‐Induced  Movement  Therapy  

(CIMT)  

CIMT  is  the  most  comprehensively  studied  new  technique  

•  Based  on  animal  models  

•  Extensive  preliminary  data  

•  First  randomized  mul2center  trial  of  a  training  technique  for  stroke  

•  Good  evidence  that  CIMT  is  associated  with  changes  in  cor2cal  re-­‐organiza2on  in  humans  

•  1Cochrane  Review  1Sirtori  V,  Corbeba  D,  Moja  L,  Gam  R.  Constraint-­‐induced  movement  therapy  for  upper  extremi2es  in  stroke  pa2ents  (Review)  Cochrane  2009  

EXCITE  Trial    

•  Very  selec2ve  group  of  subjects    –  3-­‐6  months  post-­‐stroke  – Minimal  motor  criteria:  ability  to  voluntarily  extend  wrist,  thumb  and  two  other  digits  10º  

– Maximal  motor  criteria:  Cannot  be  completely  func2onal  in  real-­‐world  tasks  (<2.5  MAL)  

•  3626  poten2al  subjects  screened,  727  subjects  physically  examined,  229  subjects  actually  enrolled.  

•  Follow  up  every  4  months  for  2  years.  

EXCITE  Interven2on  

•  Wear  “mib”  90%  of  waking  hours  during  2  weeks  interven2on.    

•  Directed  interven2on  6  hrs/day,  5  days/week  •  One-­‐to-­‐one  repe22ve  task  prac2ce  

EXCITE  Outcomes  measures  &  Results  

•  Treatment  N=106:  Control  N=116  •  Primary  outcome  measures:  WMFT  and  MAL  •  Between  baseline  and  post-­‐treatment  assessments  there  was  a  greater  improvement  in  the  CIMT  group  compared  with  controls  which    was  sta2s2cally  significant  (p<0.05)  in  all  outcome  measures  

•  At  12  months,  except  for  the  weight  and  grip  components  of  the  WMFT,  between  group  differences  were  maintained    

CIMT  in  children  with  CP  

•  Strong  body  of  literature  suppor2ng  improved  hand  func2on1  (23  RCTs  total  N=814)  

•  Wide  varia2on  in:  

– Type  of  constraint  – Amount  of  wear  and  exercise  

1Novak  et  al  DMCD  55:885-­‐910  2013  

Guidelines  for  future  research  into  CIMT  in  CP1    

•  Nine  experts  –  reviewed  the  literature  followed  by  a  consensus  mee2ng  

•  Iden2fied  cri2cal  issues  for  future  research  •  Outcome:    

–  All  models  of  CIMT    demonstrated  benefits  (no  large  trials)  

–  Need  for  validated  outcome  measures  

•  Key  ques2ons  to  be  addressed  –  Predic2ve  factors  e.g.  age  –  Is  one  model  superior    -­‐  does  dosage  of  training  maber  

–  Effect  of  repeated  use  

1Eliasson  et  al  DMCN    2014  56:125-­‐137  

Children  and  Robots  

hbp://www.youtube.com/watch?v=sq6Qdz31d-­‐o  

•  There  have  been  no  adequately  powered  RCTs  to  evaluate  robot  therapy  in  CP  

•  There  have  been  no  systema2c  reviews  

•  Evidence  is  based  on  small  studies  and  descrip2ve  reviews    

VA  Robot  Trial  with  stroke  pa2ents1  

•  N=127  subjects  >6  months  post-­‐  stroke  randomized  to:  

 -­‐  Robot-­‐assisted  therapy  (36  x  1  hour  sessions)  

 -­‐  Intensive  conven2onal  therapy  (36    x  1  hour  sessions)  

 -­‐  Usual  care  (effec2vely  no  therapy)  

•  Outcome  measures  

 -­‐  Primary:    Fugl-­‐Meyer  (FM)  

 -­‐  Secondary:    WMFT,  SIS  

1Lo et al, Robot assisted therapy for long-term upper limb impairment after stroke. NEJM 2010

VA  Robot  Trial1  Results  •  Subjects:  

– Robot-­‐assisted  therapy  (RT)  (n=49)  –  Intensive  comparison  therapy  (ICT)  (n=50)  – Usual  care  (UC)  (n=28)  

•  At  12  weeks  there  was  no  significant  difference  in  motor  func2on  between  any  groups  

•  Both  intensive  therapy  and  Robot  assisted  therapy  were  sta2s2cally  significantly  beber  than  usual  care  (at  36  weeks)  (SIS)  

•  There  was  no  difference  between  robot  and  intensive  therapy    

1Lo et al, Robot assisted therapy for long-term upper limb impairment after stroke. NEJM 2010

Summary  of  Evidence  for  UL  Robot  Therapy  

•  Evidence  for  improved  motor  control  (impairment)  and  some  evidence  for  improved  func2on  [Kwakkel  2008,  EBRSR  &  Prange  2006]    

•  Merholz  Cochrane  review  2008  (11  studies  n=328)  –  Safe,  well  accepted  and  improved  func2on  but  lible  evidence  for  improvement  in  ADL.    

•  People  with  moderate  impairment  may  respond  beber  (stroke)  

•  Proximal  training  =  proximal  benefit  

Evidence  for  robots  in  children1  

•  Upper  limb  robot  and  VR  games  (New  jersey  Ins2tute  of  Technology  Robot  Assisted  VR  rehabilita2on  –  NJIT-­‐RAVR)  for  9-­‐12  hours  over  3-­‐weeks  

•  Nine  children  with  CP    

•  Sta2s2cally  significant  improvement  in  kinema2c  (path  length,  smoothness  of  movement  and  speed)  measures  taken  in  the  robot  

•  Sta2s2cally  significant  improvement  in  the  Melbourne  Assessment  (Pmes  for:  forward  reach;  sideways  reach;  hand-­‐to-­‐mouth  and  composite  Pme)  

•  Suggests  improvement  in  motor  performance  and  control  

1Fluet  et  al.  Developmental  Neurorehabilita2on  October  2010;  13(5):  335-­‐345  

Interac2ve  computer  play  as  motor  therapy  

•  Systema2c  review  -­‐  17  studies  (6  upper  limb,  5  lower,  I  fitness  and  5  upper  &  lower  limb)1  

•  Total:  N=187  UL  and  N=114  lower  limb  •  Two  types:    

–  VR  games  e.g.  Wii  –  VR  +  robot  

•   Level  B  evidence  for  LL  and  Level  U  for  UL  •  Lack  of  evidence  mainly  due  to  small,  

heterogenic    samples,  weak  design  •  Promising  trends  especially  in  gross  motor  

func2on  

1Fehlings  et  al  Pediatric  Neurology  20:  127-­‐138  2013  

Using  technologies  to  improve  motor  control  and  co-­‐ordina2on  but  with  real  rather  than  virtual  objects  

Technology  supported  Task  Orientated  Arm  Training  (T-­‐TOAT)  

A.  A  wireless  iner2al  sensors  

B.  Example  of  drinking  

C.  Picking  up  objects  

D.  Ea2ng  with  a  fork  

•  Pa2ent  mo2va2on  and  system  U2lity  

•  Nine  pa2ents    2x30  mins  /  day  for  4  days  /week  for  8  weeks  

•  Iner2al  sensors  (Phillips  II  Node)  incorpora2ng    accelerometers,  magnetometers,  gyroscopes,  radio  transmiber  and  power  supply  worn  on  the  sternum,  upper  and  lower  arm  

•  Ac2ve  exercise  board  &  so[ware  toolkit  –  real  objects  and  feedback  via  a  PC  –  error  between  expected  and  actual  angles  etc.  

•  Outcome  measures:  ARAT,  Fugl-­‐Meyer,  MAL  (all  improved  sta2s2cally  significantly  @  8  weeks  and  6-­‐months  post  interven2on).  HR  QoL  improved  @  8  weeks  

•  T-­‐TOAT  Training:  repe22ve,  graduated    prac2ce  of  the  components  of  skills  

•  Followed  by  prac2ce  of  the  skill    •  Skills  included:  ea2ng  with  a  

knife  and  fork  and  drinking  from  a  cup  

Timmermans  et  al  IEEE  TNSRE  Vol18  (3)  2010  

LifeCIT    

A  web-­‐based  support  programme  for  people  using  Constraint  Induced  Movement  Therapy  (CIMT)  at  

home  

Jane  Burridge,  Lucy  Yardley,  Ann-­‐Marie  Hughes,  Sebas2en  Pollet  and  Claire  Meagher  

This  presenta2on  presents  independent  research  funded  by  the  Na2onal  Ins2tute  for  Health  Research  (NIHR)  

under  its  Research  for  Pa2ent  Benefit  (RfPB)  Programme  (Grant  Reference  Number  PB-­‐PG-­‐0909-­‐20145).  The  views  expressed  are  those  of  the  authors  and  not  necessarily  those  of  the  NHS,  the  NIHR  or  the  Department  of  Health.  

Constraint  Induced  Movement  Therapy  -­‐  CIMT  

•  Learnt  non-­‐use  –  changes  in  motor  cortex  topology  weakening  of  synap2c  connec2ons  etc.  

•  Intensive  short-­‐term  training  

•  Evidence:  from  animal  models  to  large  clinical  trials  and  systema2c  reviews  (Taub,  1994)  (Sirtori  et  al.,  2009)  

•  CIMT  programme:  –  Constraint  of  the  unaffected  limb  (90%  of  waking  hours)  –  Repe22ve  training  –  1:1  therapy  (6  hours/day  for  2  weeks)  +  ac2vi2es  at  home    

•  Cost  of  therapy  2me  •  Pa2ent  and  carer  burden  -­‐  adherence  &  

mo2va2on  

The  C-­‐Mit  www.odstockmedical.com  

Forced  Use  trial  with  pa2ents  <6  months  post-­‐stroke  

•  Study  design:  ABA  N=10  

•  All  completed  the  trial  

•  No  adverse  events  

!

Burns  A  and  Burridge  JH.  Clinical  Rehabilita2on  2007;  21;  895  

4321

Assessment

60

40

20

Mea

n To

tal A

RA

T sc

ore

29282726252423222120

Participant ID Stacked

•  Mean  change  in  ARAT  score  from  38.3  (SD  13.7)  (A1)  to  53.1  (SD  15.13)  (A4)    

•  Sta2s2cally  significant  changes  (A3-­‐A2)  corrected  for  natural  recovery  (p=0.016)  

•  Lower  func2oning  pa2ents  benefibed  less  

•  Phase  1:  development  (18  months)  (2011-­‐2012)  

•  Phase  2:  mul2-­‐centre  pilot  RCT  (24  months)(2012-­‐2013)  

Phases  of  the  study  

Phase  1:  Prototype  2.  Developed  via  think-­‐aloud  studies  with  12  sub-­‐acute  (<12  weeks)  pa2ents  in  hospital  and  

home    

 Developments  based  on  observed  pa2ents’  behavior  naviga2ng  the  website  and  simultaneous  oral  feedback  

 

•  Forced  use  therapy  –  3  weeks  •  Interac2ve  website  •  Mo2va2ng  support  and  feedback  

•  Exercises  and  games  

•  Minimal  cost:  £50  for  the  constraint  mib  

 

The  LifeCIT  concept  

Final  Version  of  the  Website  

Developments  based  on  observed  pa2ents’  behavior  naviga2ng  the  website  and  simultaneous  oral  feedback  

•  Website  naviga2on:    

–  avoid  mul2ple  menu  op2ons  -­‐    linear  progression  through  the  pages  

–  no  scrolling  –  all  informa2on  on  one  page  

•  Clarity  of  instruc2ons:    

–  minimal  text  and  avoiding  ambiguity  

–  mo2va2onal  language  and  illustra2ons  e.g.  ‘congratula2ons’  ‘use  or  lose  it’    

–  Instruc2ons  via  video  with  a  voice-­‐over  rather  than  text  

CP  literature  has  considered  the  importance  of  mo2va2on  in  therapy  

•  Acknowledged  in  both  the  stroke  and  CP  communi2es  that  mo2va2on  and  engagement  and  cri2cal  to  outcomes  

•  And  that  technologies  may  enhance  this  

•  Review  of  CP  mo2va2on  therapies  combines  results  from  studies  of  many  different  technologies  

•  Main  finding:  Mo2va2on  is  rarely  measured  –  despite  claims  that  the  technologies  improve  mo2va2on  

•  Contribu2ng  factors:  loose  defini2on  and  lack  of  consensus  on  the  nature  of  mo2va2on  

•  Mo2va2on  is  mul2faceted  construct  -­‐  need  for  effec2ve  measures  

Func2onal  Electrical  S2mula2on  

•  Foot  drop  recommended  by  (NICE  and  RCP)    

•  Numerous  small  studies  of  upper  limb  applica2ons    

•  Promising  results,  but  not  currently  recommended  except  for  research    

•  Certainly  applicable  to  CP    

Direct  Cor2cal  S2mula2on  

Cor2cal  s2mula2on  is  based  on  the  theory  that  increased  excitability  of  cor2co-­‐spinal  projec2ons  to  pare2c  muscles  facilitates    func2onal  recovery  

tDCS  

•  Current  flows  from  anode  to  cathode  through  the  brain  

•  May  increase  or  decrease  cor2cal  excitability  dependent  on  the  direc2on  and  intensity  of  the  current    

•  The  effects  of  a  single  s2mula2on  session  persist  for  up  to  1  hour  

•  Anodal  tDCS  has  an  excitatory  effect  on  local  cortex  by  depolarizing  neurons  

•  Cathodal  tDCS  has  an  inhibitory  effect  due  to  hyperpolarisa2on    

Meta-­‐analysis  of  evidence  for  cor2cal  s2mula2on  (tDCS  and  TMS)  in  recovery  of  UL  func2on  1  

•  Safe  and  promising  tool  demonstrated  with  mainly  mild  to  moderate  stroke  pa2ents  

•  Methodological  issues  remain  –  rTMS  vs.  tDCS  

–  Dose  –  Time  post-­‐stroke  

–  Type  and  extent  of  lesion  –  Inhibi2on  /  excita2on  

•  There  is  currently  lible  evidence  that  tDCS  or  TMS  is  effec2ve  in  children,  but  the  case  for  explora2on  has  been  proposed2    

73  

1Nowak  et  al.  NeurorehabilitaPon  and  Neural  Repair  641-­‐656  2009  2Adam  Kirton  Seminars  in  Pediatric  Neurology  20:116-­‐126  2013      

Conclusions  

•  Many  technology-­‐based  treatments  seem  to  enhance  motor  recovery  in  stroke  pa2ents  

•  Strong  evidence  for  CIMT  alone  and  in  combina2on  in  stroke  and  some  in  CP  

•  Intensity  of  treatment,  and  probably  task-­‐oriented  training,  are  the  key  variables  –  technologies  may  be  useful  in  achieving  this  

•  Mo2va2on    and  access  to  technologies  •  Technology  is  s2ll  being  developed  and  evaluated  

Conclusions  

•  Currently  there  is  lible  evidence  for  either  conven2onal  or  technology  based  neurorehabilita2on  

•  Providing  high  level  evidence  is  very  difficult  in  our  field  

•  Objec2ve  measurement  is  key  to  achieving  this  

•  Incremental  changes  will  not  achieve  our  ambi2ons  –  a  different  approach  to  providing  rehabilita2on  and  genera2ng  evidence  in  needed  

•  Be  BOLD!