calculation of releases of radioactive materials in gaseous and ...

136
NU REG-0016 CALCULATION OF RELEASES OF RADIOACTIVE MATERIALS IN GASEOUS AND LIQUID EFFLUENTS FROM BOILING WATER REACTORS (BWR-GALE CODE) April 1976 ggRREG9 y . ?s S "g \++**+/ Office of Standards Development U. S. Nuclear Regulatory Commission R001100hh .. _.

Transcript of calculation of releases of radioactive materials in gaseous and ...

NU REG-0016

CALCULATION OF RELEASESOF RADIOACTIVE MATERIALS

IN GASEOUS AND LIQUID EFFLUENTSFROM BOILING WATER REACTORS

(BWR-GALE CODE)

April 1976

ggRREG9

y . ?s

S"g

\++**+/

Office of Standards DevelopmentU. S. Nuclear Regulatory Commission

R001100hh.. _.

. _ . . _

_ _ _

O

Available fromNational Technical Information Service

Springfield, Virginia 22161

Price: Printed Copy $6.00 ; Microfiche $2.25

O

__.

NUREG-0016

Calculation of Releases of Radioactive Materialsin Gaseous and Liquid Effluents From

Boiling Water Reactors(CWR-GALE Code)

April 1976

Office of Standards DevelopmentU.S. Nuclear Regulatory Commission

Washington, D.C. 20555

TABLE OF CONTENTS

~

Page-CHAPTER 1. CUR-CALE CODE

1.1 Introduction 1 -1. . . .

1.2 Definitions 1-2. . .

1.3 Gaseous Source Tenns 1-4. . . . . .

1.4 Liquid Source Terms . 1-4. .. .

1.5 Instructions for Completing BWR-CALE Code Input Data Cards 1-5. .

1.5.1 Parameters Included in the BWR-GALE Code 1-5.. .. .

.. . . . .. . 1-81.5.2 Parameters Required for the BWR-GALE Code

C_HAPTER 2. PRINCIPAL PARAMETERS USED IN BWR SOURCE TERM CALCULATIONS AND THEIR BASES

2-12.1 Introduction . . . .. . . . . ..

2.2 Principal Parameters and Their Bases . . 2-1

2-12.2.1 Thennal Power Level . . . ... ..

2.2.2 Plant Capacity Factor 2 -1. . .. .

. . 2-1?.2.3 Radionuclide Concentrations in the Reactor Coolant.2.2.4 Gaseous Releases from Building Ventilation lystems. 2-11. .

2-192.2.5 Iodine Input to the Main Condenser Offgas Treotment System. . .

2.2.6 Turbine Gland Scaling System Exhaust.. 2-19. .

2.2.7 Main Condenser Mechanical Vacuum Pump. 2-27. ..

2.2.8 Air Inleakage to the Main Condenser. 2-28. . ... . . .

2.2.9 Holdup Times for Charcoal Delay Systems. . 2-28..

2.2.10 Cecontamination Factors for Cryogenic Distillation. 2-292.2.11 Decontamination Factor for the Charcoal Adsorbers and HEPA filters. 2-292.2.12 Liquid Waste Inputs. 2-32. .. . .

2.2.13 Chemical Wastes from Regeneratior, of Condensate Demineralizers.. 2-32..

2.2.14 Detergent Waste. 2-32. . . .

2.2.15 Tritium Releases. 2-36. . . .

2.2.16 Decontamination Factors for Demineralizers. 2-36.

2.2.17 Decontamination Factors for Evaporators. 2-38.. .. . ..

2.2.18 Decontamination Factors for Reverse Osmosis. .. 2-38. .

2.2.19 Guidelines for Calculating Liquid Waste Holdup Times. 2-39..

2.2.20 Adjustment to liquid Radwaste Source Terms for AnticipatedOperational Occurrences 2-39. . ....... .. . .

2-422.2.21 Guidelines for Rounding Off Numerical Values.. . . . ..

2.2.22 Ca rbon-14 Releases. .. . . . 2-42. .. ... . . ...

2-432.2.23 Argon-41 Releases. .. .. .... . . . .... . ...

CHAPTER 3. INPUT FDRPAT, SAMPLE PRDBLEM, AND FORTRAN LISTING OF THE BWR-GALE CODE

3-13.1 Introduction .. . . . .. .. .. . .. . ..

3-13.2 Input Data Sheets . ...... ..... .. . . . .. . ...

3.3 Sample Problem - Input and Ottat 3-4.. .. . . .... . .. .

3.4 Listing of BWR. GALE Code 3-11. . ... .. .... . .. . .

3.4.1 Nuclear Data Library 3-11... . . . . .. . ...... ..

3.4.2 rortran Program Listing 3-11

9.. . . ... .. . . . . ..

111

TABLE OF CONTENTS (Cont'd)

Page

CHAPTER 4.DATA NEEDED FOR RADI0 ACTIVE SOURCE TERM CALCULATIONS FOR E0! LING .ATERRACTDi<SC

-

4.1 General. . . . 4 -1

4.2 Nuclear Steam Supply System.4-1.. . . . .

4.3 Reactor Coolant Cleanup System.. . . . 4-l

4.4 Condensate Demineralizers.. . . . . 4-1

4.5 Liquid Waste Processing Systems. 4 -l. . . . . .

4.6 Main Condenser and Turbine Gland Seal Air Renoval Systems. 4-2

4.7 Ventilation a nd Exhaust Systems. 4-2. ..

REFERE' ICES. .

R -1... . .. .. . . .

O

Oiv

LIST OF TABLES

Table Page

1-1 Releases from Building Ventilation Systems Prior to Treatment.. . 1-6

1 -2 BWR Liquid Wastes 1-10.. . . .... . . . . . . . .

1-3 Decontamination Factors for BWR Liquid Waste Treatment Systems . 1-12

. . . . . 2-22 -1 Plant Capacity Factors at Operating BWRs

2-2 Radionuclide Concentrations in Boiling Water Reactor Coolant andliain Steam. . . . . .... .. . . . . 2-3

2-52-3 Parameters Used to Describe the Reference Boiling Water Reactor. . .

2 -4 Values Used in Determining Adjustment Factors for Boiling Water Reactors. 2-6

2-72-5 Adjustment Factors for Boiling Water Reactors. . . . .

2-6 Summary of Noble Gas Release Rates for Operating BWRs (1971-1972). . . 2-12

2-7 Sumnary of Noble Gas Release Rates for Operating BWRs (1973-1974). 2-13. ...

2-8 Reactor Vessel Halogen Carryover Factors Observed at Operating BWRs. 2-14..

2-9 Gaseous Releases from Ventilation Systems.. 2-15. . . . . . .. .

2-10 Annual Iodine-131 Releases from Reactor Building Ventilation Systems,. .. . . . . .... .. . 2-16Normal Operation.

2-11 Comparison Between Iodine-131 Releases from Peactor Building DuringNormal Operation and Releases During Plant Outages.. 2-16. . . .. ..... .

2-12 Annual Iodine-131 Releases from Turbine Building Ventilation Systems2-17During Normal Operation. . . . . .. . . .. .. ..

2-13 Comparison Between Iodine-131 Releases from Turbine Building DuringNormal Operation and Releases During Plant Outages. .. . . ..... 2-17

2-14 Annual Icdine-131 Releases from Radwaste Building Ventilation Systems,2-18Normal Operetion. . . ... .. . .. . .... . .. ..

2-15 Comparison Between Iodine-131 Releases from Radwaste Building DuringNormal Operation and Releases During Plant Outages. 2-18... ... . . ... ....

2-16 Releases of Noble Gases from the Reactor Building Ventilation System. 2-20.

2-17 Releases of Noble Gases from the Turbine Building Ventilation System. 2-20...

2-18 Releases of Noble Gases from the Radwaste Building Ventilation System.. 2-20....

2-19 Particulate Release Rates from Reactor Building Ventilation System,2-21Normal Operation. .. . ..... . . . .. . . . ... .. . ... .

2-20 Particulate Release Rates from Reactor Building Ventilation System,Short-Tem Shutdown (2 Days / Event).. . . . . .... . . .. .. .. ...... . 2-21

2-21 Particulate Release Rates from Reactor Building Ventilation System.2-22Refueling Shutdown. . . .. . . .. . . ... .... .... ... . .. ...

y

LIST OF TABLES (Cont'd)

IlhJg Page,

2-22 Particulate Release Rates from Turbine Building Ventilation System,2-22Normal Operation. . . .

.

2-23 Particulate Release Rates from Turbine Building Ventilation System,2-23Short-Term Shutdown. . . . . ... .. . .. .

2-24 Particulate Release Rates from Turbine Building Ventilation System.2 23Refueling Shutdown. . . . . .

2-25 Particulate Release Rate from Radwaste Building Ventilation System,2-24Normal Operation. . . . . .

2-26 Particulate Release Rate from Radwaste Building Ventilation System.Short-Tern Shutdown.. 2-24. . . .. . . . . .

2-27 Particulate Release Rate from Radwaste Building Ventilation System,2-25Refueling Shutdown. . . . . ..

2-28 lodine-131 Releases ' rom the Main Condenser Air Fjectors. 2-26.. .

2-29 Particulate Release Rate from Vermont Yankee Mechanical Vacuum Pump.. . 2-27and Gland Exhaust Condenser Vent, Short-Term Shutdown. ..

2-30 Particulate Release Rate from Vernont Yankee Vacuum Pump and GlandExhaust Condenser Vent, Refueling Shutdown.. 2-27. . . .

2-31 BWR Liquid Wastes... . 2-33. .. . . . . ..

2-32 Calculated Annual Release of Radioactive Materials in Untreated Detergent2-34Waste from a BWR and PWR... . .. ... . . ... ... . .. .

2-33 Ginna Nuclear Power Station - Radionuclide Distribution of Detergent Waste. 2-35

2-34 Tritium Release Data from Operating BWRs. 2-37. . .

2-35 Reverse Osmosis Decontamination factors, Ginna Station. .. 2-40..... . .

2-36 Reverse Osmosis Decontamination Factors, Point Beach.... 2-41..... . .. . ..

2-37 Expected Reverse Osmosis Decontamination factors for Specific Nuclides. 2-41. ...

2-38 Frequency and Extent of Unplanned Liquid Radwaste Releases from2-42Operating Plants. . .... .. ... . .... . . ....

Ovi

LIST OF FIGURES

Figure Page

2-1 Removal Paths for the Reference Boiling Water Reactor.. 2-8. . . .. .

2-2 Krypton and Xenon K Values as a function of Reciprocal Temperature. . . 2-30..

2-3 Ef fect of Moisture Content on the Dynamic Adsorption Coefficient.. .. . 2-31. .

2-4 Charcoal Moisture as a Function of Relative Humidity. . 2-31. ..

vii

CHAPTER 1. BWR-GALE CODE

1.1 INTP.0 DUCTION

The BWR-GALE (Roiling Water Peactor Gaseous and liquid Effluents) Code is a computerizedmathematical model for calculating the release of radioactive material in gaseous and liquideffluents frcn boiling water reactors (BWRs). The calculatians are based on data generated fromoperating reactors, field tests, laboratory tests, and plant-specific design considerationsincorporated to reduce the quantity of radioactive materials that may be released to theenvironment.

The average quantity of radioactive material released to the environment from a nuclearpower reactor during normal operation is called the " source term,' since it is the source orinitial nurt'er used in calculating the en/ironmental impact of radioactive releases. The calcu-lations perforced by the BWR-GALE Code are based on (1) standardized primary and secondary coolantactivities derived from Ameria n Nuclear Society (ANS) 18.1 Working Group recommendations (Ref. 1),(2) release and transport mechanisms that result in the appearance of radioactive material inliquid and gaseous waste st:eams, and (3) plant-specific design features used to reduce thequantities of radioactive materials ultimately released to the environs.

In a BWR, water is converted to steam by heat from the fuel elements in the reactor. Thesteam expands through a turbine and then is condensed and returned to the reactor. The principalrechanisms that af fect the concentrations of radioactive materials in the reactor coolant are (1)fission product leakage to the coolant from defects in the fuel cladding and fission productgeneration in tramp uranium, (2) corrosion products activated in the core, (3) radioactivityremoved by the reactor coolant cleanup system, (4) radioactivity removed by the condensatedemineralizers, (5) radioactivity removed throug5 the steam-jet ejectors, and (6) radioactivityremoved due to reactor coolant leakage. These mechanisms are described briefly in the followingparagraphs.

Fission product enter the coolant as a result of defects in the fuel cladding and from thetramp uraniu- on the ;ladding surfaces, while corrosion products are activated in the reactorcore. These impurities must be continuously removed from the reactor coolant ta prevent damageto the fuel element, and other reactor components. The renoval is accomplished in two ways: (1)after passing through the turbine, the condensed steam is processed through the condensate cleanupsystem (e.g., demineralizers) and returned to the reactor for reuse and (2) a side stream ofreactor coolant is continuously withdrawn, processed through the reactor cleanup system (deminer-alizers), and returned to the reactor vessel. Both cleanup systems remove particulates and ionicimpurities from the reactor coolant. The materials collected by the demineralizers are removedperiodically by chenical regeneration or by replacement of resins. The liquid wastes areprocessed in the liquid waste treatment system, and the spent ion exchange resins are transferredto the solid waste treatment system and prepared for offsite shipment.

Padioactive ga;es are removed from the condensing steam in the main condenser by the steam-jet air ejectors. This source of gaseous waste is treated principally by delaying the rel(ase topermit radioactive decay. Alternative treatment methods include holdup lines, long-term holdupsystems using charcoal delay systems, and cryogenic distillation.

Another potential release point of radioactive material is the exhaust from the turbinegland sealing system. A sidestream of prinary steam flows through the turbine gland seal. Thesteam is condensed and returned to the condenser hotwell for reuse in the reactor. However,noble gases, activation gases, radioactive particulates, and iodine that remain in the gaseousphase nust be vented. The treatment provided this source of gaseous waste is normally a two-ninute holdup line that permits decay of the short-lived noble and activation gases before theyare released to the environment. Clean steam (nonradioactive steam) may be used in place ofprimary steam to eliminate the gland seal as an activity release point.

Following plant shutdowns, mechanical vacuum pumps are used to reestablish the main condenservacuum. In addition, the mechanical vacuum pumps may be used during plant shutdowns to maintain aslight condenser vacuum and thereby prevent outleakage of gases from the main condenser. Ifrequired to meet the design objectives of Appendix I, the effluent from the mechanical vacuum pumpeffluent could be processed through charcoal adsorbers for removal of radiciodine prior to release.

1-1

In addition to the above release points, the EWR-GALE Code, the calculational model used forEWR source term calculations, considers releases from the turbine, containment, auxiliary, andradwaste buildings due to leakage from contaminated systems. Such leakage from systems containingmain steam or reactor coolant may have an appreciable effect on the radioactive source term.Leakage may occur through valve stems, pump seals, and flanged connections. The amount of air-borne radioactive material released is a function of reactor coolant temperature, pressure, andactivity at the point where the leak occurs. Included with the leaking steam or coolant arenuble gases, iodine, and particulates that are released directly to the building atmospherc. Insome cases, leakage may be reduced by special design features such as vacuum leaknff drains or" clean" steam on the valve bonnets in addition to normal precautions such as backseating valvesand using all-welded systems Leakage can also be reduced by the use of closed leakoff drainsand by increased maintenance.

Liquid waste sourcas include liquid streams used to sluice (transfer), backwash, regenerate,and rinse demineralizer resins; laundry waste water; personnel shower wastes; laboratory drainwastes; decontamination wastes; and water collected in equiprent drains and floor drains.

This chapter provides a step-by-step explanation of the FWR-GALE Code and a description ofthe parareters that have been built into the Code for use with all BWR source term calculations.These parameters, which apply generically to all BWRs, have been incorporated into the Code toeliminate the need for their entry on input data cards. This chapter also describes the entriesrequired to be entered on input data cards used by the Code. Explanations of the data required,along with acceptable means for calculating such data, are given for each input data card.Chapter 2 gives the principal source tern parameters developed for use with the BWR-GALE Code andexplains the bases for each parameter. Chapter 3 contains a sample data input sheet and aFORTRAN listing of the BWR-GALE Code. Chapter 4 lists the information needed to generate sourceterms that an applicant is required to submit with the application.

1.2 DEFINITIDNS

The following definitions apply to terms used in this report:

Activation Gases: The gases (including oxygen, nitrogen, and argon) that become radioactive dueto Irradiation in the core.

Ch mical Waste Strean: Normally liquids that contain relatively high concentrations of decon-tFinitioin~wintis~o~r chemical cor;,ounds other than detergents. These liquids originate primarily

~

from resin regenerants and laboratory waste.

Decontamination Factor (DFJ: The ratio of the initial amount of a nuclide in a strean (specifiedin terms of concentration or activity of radiaoctive materials) to the final amount of thatnuclide in a stream following treatment by a given process.

Detercent Waste Stre3n: Liquids that contain detergent, soaps, or similar organic naterials.These liquids consist principally of laundry, personnel shower, and equipment decontaminationwastes and nornally have a low radioactivity content.

Ef fective Full Power Days: The number of days a plant would havc to operate at 100; iicensedpower to produce the Tiltegrated thermal power output during a calendar year; i.e. ,

D.TEffective Full Power Days = { (\*

""=

whPre

P is the ith power level, in MWt;g

P is the license power level, in MWt; and

T is che time of operation at power level i, in days.g

Fission Product: A nuclide produced either by fission or by subsequent radioactive decay orneutron activation of the nuclides forred in the fission process.

Ol-2

Gaseous Effluent Stream: Processed gaseous waste containing radioactive materials resulting fromthe operation of a nuclear power reactor.

H i g h_-Pu ri t y Waste Stream: Liquids, rormally of low conductivity, consisting primarily of liquidwaste collected from building equipment drains, valve and pump seal leakoffs, denineralizer back-wash, ultrasonic resin cleaning, and resin transfer. These liquids are normally reused as primarycoolant makeup water after processing.

Liquid Effluent Stream: Processed liquid wastes containing radioactive materials resulting fromthe operation of a nuclear power reactor.

low-Pur_ity, Waste Stream: Liquids, normally of high conductivity and not of primary quality, col-lected from building surps, uncollected valve and purp seal leakoffs, miscellaneous vents, andfloor drains.

PartitionCoefficient1PC): The ratio of the concentration of a nuclide in the gas phase to theconcentration of that nuclide in the liquid phase when the liquid and gas ar 3 at equilibrium.

PartitionFactodPfl: The ratio of the quantity of a nuclide in the gas phase to the totalquantity in both the liquid and gas phases when the liquid and gas are at equilibrium.

Plant _Cayacity Factor: The ratio of the average net power to the rated power capacity.

Radioactive Halogens _: The isotopes of fluorine, chlorine, bromine, and iodine. The radioactiveisotopes of iodine are the key isotopes considered in dose calculations.

Radioactive Noble Gases: The radioactive isotopes of helium, neon, argon, krypton, xenon, andradon, which are characterized by their chemical inactivity. The radioactive isotopes of kryptonand xenon are the key elements considered in dose calculations.

Radioactive Release Rate: The average quantity nf radioactive material released to the environ-nent from a nuclear power reactor during normal operation including anticipated operationaloccurrences.

Reactor Coolant (Primary _Co_oJntl: The fluid circulated through the reactor to remove heat. Ina BWR, the fluid allowed to boil in the reactor vessel to generate steam and power the turbine.The reactor coolant activity is considered to be constant over a range of power levels, coolantand cleanup flav;s, and reactor coolant volumes. The radionuclide distributions and concentra-tions for the reactor coolant and main steam are based on the values proposed in the ANS 18.1(Ref. 1) Working Group draft standard for BWRs. Provisions are made in the BWR-GALE Code, inaccordance with the recommendations of the draft standard, for adjusting reactor coolant concen-trations should the plant be designed to parameters that are outside the ranges considered in thestandard. The radionuclide concentrations used are representative of measured values based onthe available data. The radionuclides are divided into the following categories:

1. Noble gases

2. Halogens (Br,1)

3. Cesium and Rubidium

4. Water activation products

5. Other nuclides (as listed in Table 2-2 of Chapter 2 of this document)

Recenerant Solutions Waste Stream: Liquids containing regeneration chemical compounds thatcriginate f rom regeneration of the condensate demineralizer resins.

Source Tem: The calculated average quantity nf radioactive material released to the environmentf ron a nuclear power reactor during normal operation including anticipated operational occur-rences. The source term is the isotopic distr"ltion of radioactive materials used in evaluatingthe impact of radioactive releases on the env'nnment.

Tramp Uranium: The uranium present on the cladding of a fuel rod.

1-3

1.3 GASE0US SOURCE TERMS

The following sources are considered in calculating the release of radioactive materials(noble gases, radioactive particulates, and iodine) in gaseous effluents from norral operationincluding anticipated operational occurrences:

1. Main condenser offgas system,

2. Turbine gland sealing system,

3. Mechanical vacuum pumps, and

4 Ventilation exhaust air from the containment, auxiliary, radwaste, and turbinebuildings.

The releases of radioactive materials in ventilation exhaust air from buildings not coveredin 4. above are calculatcd to be negligible when compared to the gaseous source term from thesources listed above and are therefore not considered individually in the source term calculations.

Calculations show that approximately 9.5 Ci/yr of carbon-14 will be released from a EWR.All carbon-14 releases are arsumed to be in the form of a vapor from the main condenser evacua-tion system vent.

Argon-41 is formed in the drywell by neutron activation of stable, naturally occurringargon-40 in the drywell air. The argon-41 is released to the environment when the drywell isvcnted or purged. Based on releases reported by licensees in semiannual reports, it is expectedthat, independent of power level, approximately 25 Ci/yr of argon-41 will be released to theenvironment.

The releases of radioactive materials in gaseous effluents are based on measurements madeat operating CWRs. The radiciodire, radioactive particulate, and noble gas release rates arespecified in the BWR-GALE Code and are modified only as needed to reflect treatment processes.Gaseous releases for building ventilation exhaust systems and the main condenser offgas systemare based on the average of actual measurements.

The BWR-GALE Code also calculates tritium releases through the ventilation exhaust systems.The annual quantity of tritium a/ailable for release is calculated using a functional relation-ship derived from measured liquid and vapor tritium releases at operating BWRs and consideringthe integrated thermal power output during the calendar year in which the releases occurred.This relaticnship expresses total tritium as a function of power output. The tritium releasesthrough the ventilation exhaust systems are assumed to be the total tritium available for releaseminus the tritium calculated to be released through the liquid pathway. Except for tri tium, theradioactivity released in ventilation air is considered to be independent of the power level.Releases from the mechanical vacuum pump are also considered to be independent of the powerlevel.

Chapter 2 provides iodine and particulate decontamination factors for removal equipment andparameters for calculating holdup times for nohle gases and for calculating tritium releases.

1.4 LIj]UID 5_0URCE TERS

The following sources are considered in calculating the release of radioactive materials inliquid ef fluents f rom normal operations including anticipated operational occurrences:

1. Processed liquid wan es from the high-purity waste system,

2. Proce; sed liquid wastes from the Icw-purity waste system,

3. Processed liquid wastes f rom the chenital waste system,

4 Processed liquid regenerant wastes, and

5. Detergent wastes.

The radioactivity input to the liquid radwaste treatment system is based on flow rates ofthe liquid waste streams and their radioactivity levels, expressed as a fraction of the primaryreactor coolant activity (PCA). The primary coolant activity (PCA) is based on the recomnenda-tions of the ANS 18.1 Working Group (Ref.1), which considers a noble cas release rate of 60,000aci/sec af ter a 30-minute decay.

1-4

Radionuclide removal by the liquid radwaste treatment system is tased on the followingparameters:

1. Decay during collection and processing and

2. Removal by the proposed treatment systems, e.g., filtration, ion exchange, evaporation,

reverse osmosis, and plateout.

For BWRs using a deep-bed condensate demineralizer. the inventory of radionuclides collectedon the demineralizer resins is calculated by considering the flow rate of condensate at mainsteam activity that is processed through the deuineralizers and radionuclide renoval using thedecontamination factors given in Chapter 2. The radioactivity content of +he demineralizerregenerant solution is obtained by considering that all of the activity is removed from theresins at the interval dictated by the regeneration frequency.

Methods for calculating collection and processing times and the decontamination factors forradwaste treatment equipment are given in this chapter. The liquid radioactive source terms areadjustcd to corpensate for equipment downtime and anticipated operational occurrences.

For plants having an onsite laundry, a standard detergent source term, adjusted for thetreatment provided, is added to the adjusted source term,

l.S INSTPUCTIONS FOR COMPLETING BWR-GALE CODE INPUT CATA CARDS

1.5.1 PARAMETERS INCLUDED IN THE BWR-GALE CODE

The parameters listed below are built into the EWR-SALE Code since they are generallyapplicable to all BWR source tern calculations and do not require entry on input data cards.

1.5.1.1 Plant Capacity Factor

0.80 (292 effective full power days per year),

1.5.1.2 Radienuclide Concentrations in the Reactor Coolant and Main Steam

See Chapter 2, Tables 2-2 through 2-5 of this document.

1.5.1.3 Noble Gas, Iodire, and Particulate Releases From Buildina Ventilation Systens Prior toTrratrent

See Table 1-1.

1.5.1.4 Radioifdine Input Rate to Main Condenser Offcas System

5 Ci/yr per reactor downstream of main condenser air ejectors.

1.5.1.5 Main Condenser Vacuum Pumo Release

Xe-133 -- 2300 Ci/yr

Xe-135 -- 350 Ci/yr

I-131 -- 0.03 Ci/yr

1.5.1.6 Charcoal Celay Systems

for a charcoal delay systen used to treat the offgases from the main condenser air ejector,the BWR-GALE Code calculates the holdup times for Kr and Xe. Iodine releases from charcoal delaysystens are negligible due to the large quantities of charcoal used in the system. The holduptimes for noble gases are calculated by the Code using the following eouation, and the data areentered on Cards 31-35.

MyT = 0.262 7py,;

l-5

TABLE l-1RELEASES FROM BUILOING VENTILATION SYSTEMS PRIOR TO TREATMENT

(in C1/yr per Reactor)

CONTAINMENT AUXILIARY TURBINE * RADWASTENUCLIDE BUILDING BUILDING BUILDING BUILDING

Kr-83m *+ ** ** **

Kr-85m 3 3 68 **

Kr-85 ** ** ** **

Kr-87 3 3 190 **

Kr-88 3 3 230 **

Kr-89 ** ** ** **

Xe-131m ** ** ** **

Xe-133m ** ** ** **

Xe-133 66 66 280 10

Xe-135m 46 46 650 **

Xe-135 34 34 630 45

Xe-137 ** ** ** **

Xe-138 7 7 1440 **

I-131 0.17 0.17 0.19 0.046

I-133 0.68 0.68 0.76 0.18Co-60 0.01 0.01 0.002 0.09Co-58 0.0006 0.0006 0.0006 0.0045

Cr-51 0.0003 0.0003 0.013 0.009Mn-54 0.003 0.003 0.0006 0.036

Fe-59 0.0004 0.0004 0.0005 0.015

Zn-65 0.002 0.002 0.0002 0.001

Zr-95 0.0004 0.0004 0.0001 0.00005

Sr-89 0.00009 0.00003 0.006 0.0005

Sr-90 0.000005 0.000005 0.00002 0.0003

Sb-124 0.0002 0.0002 0.0003 0.00005

Cs-134 0.004 0.004 0.0003 0.0045

Cs-136 0.0003 0.0003 0.00505 0.00045

Cs-137 0.005 0.005 0.0006 0.009

Ba-140 0.0004 0.0004 0.011 0.0001

Ce-141 0.0001 0.0001 0.0006 0.0026

*For special design feature to control leakage from valves in lines 2-1/2 inchesand larger, reduce the turbine building leakage rates by a factor of five.

**Less than 1 Ci/yr per reactor for noble gases.

Ol-6

where

K is the dynamic adsorption coefficient, in cm /g,

M is the mass of charcoal, in 10 lb,

T is the holdup time, in hr, and3

10 N is the number of condenser shells times 10, in f t / min per shell,

1.5.1.7 CrypSenic Distillation System

for a cryogenic distillaticn system, the BWR-GALE Code uses a partition factor (PF) of0.0001 for Xe and I and a PF of 0.00025 for Kr to calculate Xe, I, and Kr losses during separa-tion by distillation. The Xe, I, and Kr separated by distillatiJn are con:idered to be releasedfollowing 90-day holdup. The calculated releases are the sum total of the noble gases andiodine released from the overheads during distillation without holdup and the noble gases andiodine released following 90-day holdup.

1.5.1.8 De ontamination Factors for Condensate Demineralizers

OtherDemineralizer Halogens Cs, R; Nuclides

Deep bed 10 2 10

Powdex 10 2 10

Note: For a system using filter /demineralizers (Powdex), a zero is entered for regenera-tion frequency on Card 6, as explained later in Section 1.5.2.6.

1.5.1.9 Detergent Wastes

The radionuclides listed in Table 2-32 of Chapter 2 are assumed to be released unlesstreatment is provided or laundry is not processed on site.

1.5.1.10 Tritium Re_ leases

Total tritium release equals 0.025 Ci/yr per MWt. The quantity of tritium released tnroughthe liquid pathway is the calculated annual volumetric liquid release times 0.01 t.Ci/ml oftritiun in liquid waste. The cifference between the total release and liquid release is theamount considered to be released through the plant ventilation exhaust systems.

1 S.1.11 Regyneration of Condensate Demiaeralizers

Flow rates and concentrations of radioactive materials routed to the liquid radwaste systemfrom the chemical regeneration of the condensate demineralizers ara based on the followingparameters:

1. Liquid flow to the demineralizer is based on the radioastivity of the main steam.

2. All radionuclides rcmoved from the condensate by the demineralizers are removed fromthe demineralizer resins during chemical regeneration. The regenerant waste radioactivity isadjusted for radionuclide decay during operation of the demineralizers.

3. The radioactivity in the regenerant wastes is adjusted for radionuclide decay on theresins during demineralizer operation.

1.5.1.12 AyQusp ent to liquid Radwaste Source Terms for Anticipated Operational Occurrences

1. The calculated source term is increased by 0.15 Cl/yr per reactor using the sameisotopic distribution as for the calculated source term to account for anticipated occurrencessuch as operator errors resulting in unplanned releases

2. Evaporators are assumed to be unavailable for two consecutive days per week for main-tenance. If a two-day holdup capacity or an alternative evaporator is availatle, no adjustmentis reeded. If less than a two-day capacity is available, the waste excess is assumed to behandled as follows:

1-7

[lign-Purit Lor Low-Purity Waste--Processed tnrough an alternative system (ifa.aVailable) using a discharge fraction consistent with the lower purity system.

b. Chemical Waste--Discharged to the environment to the extent holdup capacity oran alternative evaporator is not available.

1.5.2 FMAMETERS REMRED FOR THE BWR-GALE CODE

The parameters described in the following sections must be entered on input data cards.Complete the cards designated below by "(SAR/ER)" from information given in the Safety An31ysisand Environmental Reports. Complete the remaining cards (i.e., those not designated below as"(SAR/ER)" cards) using the principal source term parameters specified below and discussed inChapter 2.

1.5.2.1 Card 1: NameofPeactorlSAR/ERlEnter in spaces 33-60 the name of the reactor.

1.5.2.2 Card 2: Thennal Power Level (SARf ERl

Enter in spaces 73-80 the maximum thermal power level (in MWt) evaluated for safety cen-siderations in the Safety Analysis Report.

Note: Adjust all power-dependent parameters to this power level .

1.5.2.3 Card 3: Total Steam Flow Rate _(SAR/ER)_6Enter in spaces 73-80 the total steam flow rate from the reactor (in 10 lb/hr),

1.5.2.4 Card 4: tiass of Coolant in Reactor Vessel J AR/ER)6Enter in spaces 73-80 the mass of water in the reactor vessel (in 10 lb).

1.5.2.5 Card 5: Cleanap_Denineralizer Flew (SAR/ER)

Enter in spaces 73-80 the primary coolant flow rate (in 10 lb/hr) through the reactorcoolant cleanup system demineralizers.

1.5.2.6 Card 6: Condensate Demineralizer Regeneration Time

For deep-bed condensate demineralizers, use a 3.5-day regeneration frequency. If ultrasonicresin cleaning is used, assume a 7-day regeneration frequency. Multiply the frequency by thenumber of denineralizers and enter the calculated number of days in spaces 73-80. For filter /denineralizers (Pow 1ex), enter zeros in spaces 73-80.

1.5.2.7 Card 7: Fraction of Feedwater Through Condensate Demineralizer (SAR/ERj_

Enter in spaces 73-80 the fraction of feedwater processed through the condensatedemineralizers.

C rd 8: DilutionFlow(SAR/EM1.5.2.8 J3Enter in spaces 73-80 the annual average flow rate of water (10 gal / min) used to dilute

liquid waste discharged to the environment.

1.5.2.9 Cards 9-20: Liquid Radwaste Treatment jystem Input Parameters

four liquid radwaste inlet streams are considered in the BWR-GALE Code:

1. High-Purity Waste, Cards 9-11

2. Low-Purity Waste, Cards 12-14

3. Chemical Waste, Cards 15-17

4. Regenerant Solutions Waste, Cards 18-20

Ol-8

Three input c3ta cards are used to define the major parameters for each of the four wastestrm Essentially the 53re inforr.aticn is r.eeded on the three inpJE data C3rds used for enhof the foar strer's. The instructions given in this section are applicable to all four wastestrer's , wi th the tollowing exception: the inlet waste activity is not ertered on Card 18 fortM regererant solutions wastes f or systems using regenerable condensate denineralizers sinceth1t activity is calculatpd by the Code.

The entries reg; ired on the ;irst ca rd (9,12, and 15) for the High-Purity , Low-Parity, andEnerical Waste Systens, respectively, are outlined below and described in nore detail in Section1.5.2.9.l.

i. Enter ir. spacos 15-41 the name of the waste inlet stream (e.g., high-purity wastes).

Enter in spaces 42-49 the flow rate (in gal / day) of the inlet strean-

3. Entor in spaces 57-01 the activity of the inlet stream expressed as a fraction of theprima ry coolant ac ti vi ty ( PCA).

On the first card for the Regenerate Solutions Waste System (i .e. , Card 18), enter in spaces73-10 the flow rato of the regenerant solutions waste inlet stream

The second card (10,13,16, and 19) for each waste stream contains the overall systemdecortanination f actors for three categories of radionuclides, as follows:

1. Enter in spaces 21-23 the DF for iodine.

2. Enter in spaces 34-41 the DF for cesium and rubidiun-

3. Erter in spaces 47-54 the CF for other nuclides.

The fellcaing entries are required on the third card (ll, 14, 17, and 20; for each wastes t rea '

l. Enter in spaces 29-33 the waste collection time (in days) prior to processing.

2. Enter in spaces 48-53 the waste processing and discharge time (in days).

3. Enter in spaces 72-77 the average fraction of wastes to be disch3rged after processing.

The following sections explain in rcre detail the use of the parameters in this documentand the inferr.ation given in the SAR/ER to nake the data entries in Cards 9-20 listed above.

1.5.7.9.1 Liquid Laste Flow Ra tes and Activities (Cards 9,12,15, and 18)

Calculate flow rates acd activities to corelete the first card for each liquid radwasteinlet strea- by using tho waste volumes and activities given in Table 1-2. To the input flow

rate: given in the table, add expected f!cws and activities more specific to the plant design asgiven in the 54P/ER. The inlet strears should be combined to fcer the four principal wastestreams (high-purity, low-purity, chemical wastes, and regenerant wastes) considered in thisdocument. Calculate the primary coolant activity (PCA) of each of the four principal inletstrea-; by determining the weighted average activity of the composite stream entering the w3stecollection tanks For example, if inlet streams A, B, and C enter the low-purity W3ste collectortank at aVErdge rates and PCA as listed below:

5trean A 1,000 gal / day at 0.0lPCA

Stream B 2,000 gal / day a t 0. lPCA

Stream C 500 gal / day at 1.0PCA

the composite A, B, C activity would be calculated as follows:

Q000 qal/davjJ0.0lPCA)_+ (_2000 pl/ day](0.lPCA) + (500 gal / day)(1.0PCA) = 0*2PCA__

{l000 gal / day + 2000 gal / day + 500 gal / day)

The entries on Card 12 for this exanple would then be: spaces 18-41, " Low-Purity Waste", spaces42-49, "3500", spaces 57-61, "0.2."

l-9

TABLE l-2BWR LIQUID WASTES

EXPECTE0 OAILY AR RAGE INPUTFLOW RATE (in gal / day)

P'ATT WITHOUT-FRACTION OF THE

- TlANTIiTTH L 'RIf!ARY COOLANTULTRASONIC RESIN ULTRASONIC RESIN ACTIVITY

SOURCE CLEANER CLEANER (PCA)

E uipment Drains3

0rywe11 3,400 3,400 1.00Containment, auxiliary 3,720 3,720 0.01

building, and fuel poolRadwaste building 1,060 1,060 0.01Turbine building 2,960 2,960 0.01Ultrasonic resin cleaner 15,000 - 0.05Resin rinse 2,500 5,000 0.002

Subtotal 28,640 16,140 -

Floor Deains

Urywell 700 700 1.00Containment, auxiliary 2,000 2,000 0.01

building, and fuel poolRadwaste building 1,000 1,000 0.01Turbine building 2,000 2,000 0.01

Subtotal 5,700 5,700 -

Cleanup phase separator 640 640 0.002decant

Laundry drains 450 450 *

Lab drains 500 500 0.02

Regenerants** l,700 3,400 ***

-6Condensate denineralizer - 8,100 2 x 10bac6washt

Chemical lab waste 100 100 0.02

Total 37,730 26,930

*

Listed in BWR-GALE Code; see Table 2-32.**

Deep-bed condensate demineralizers.***

Calculated by CWR-GALE Code.

* Filter /demineralizer (Powdex) condensate denineralizers.

Ol-10

The input flows and activities are entered in units of gal / day and frac +, ion of PCA,respectively.

1.5.2.9.2 Decontamination Factors for Cquipment Used in the Liquid Radwaste Treatment System(Cards 10,13,16, and 19)

The decontamination factors (DFs) should be entered in the second card for each liquid rad-waste inlet stream. The DFs represent the expected equipment perfomance averaged over thelife of the plant, including downtime. The following factors are to tie considered in calculatingoverall decontamination factors for the various systems.

1. DFs are categorized by one of the following types of radionuclides:

a. Halogens

b. Cs, Rb

c. Other nuclides

Mote: A DF of 1 is assumed by the BWR-GALE Code for tritium. Noble gases and wateractivation products are not considered in the liquid code.

2. The systen DF for each inlet stream is the product of the individual equipment DFs ineach of the subsystems.

3. Equipment that is used optionally (as required) and not included in the normal flowscheme should not be considered in calculating the overall system DF.

Table 1-3 shows the decentamination factors to be used for BWR systems.

The following example illustrates the calculation of the decontamination factor for a low-purity waste treatment system: Assume that low-purity wastes are collected; processed througha filter, an evaporator, and a mixed-bed polishing domineralizer; and collected for sampling.If required to meet discharge criteria, the contents of the waste sample (test) tank are pro-cessed through a mixed-bed demineralizer for additional radionuclide removal . This example maybe sununarized graphically as:

Demineralizer 2 -,rI :

#L.Pg

Dirty waste F ilter Evaporator b- - -l Demmeralizer 1 W )'ncollector tank

Extracting from Table 1-3 gives the following values for the example:

Filter Eva pora tor Demineralizer 1 Demineralizer 2 Product

3 4Halogens 1 10 10 1 10

4 bCs, Rb 1 10 10 1 10

4 0Other Nuclides 1 10 10 1 10

These values were obtained as follows:

A DF of 1.0 was applied to all nuclides for the filter.

A DF of 10 for halogens and 10 for Cs, Rb, and other nuclides was applied for theradwaste evaporator.

A DF of 10 was applied for halogens, Cs, Rb, and other nuclides and for the evaporatorcondensate polishing demineralizer.

A DF of I was applied to the second demineralizer since this demineralizer's use isoptional and it is not used for normal operations.

The product of the DFs was obtained by combining the first four columns for eachradionuclide.

1-11

TABLE l-3DECpNTAMINATION FACTORS FOR BWR LIQUID WASTE TREATMENT SYSTEMS

^ D TMENT SYSTEM DECONTM11NATIOTTACTORTR

De_mi ne ra l i zer s Anion Cs, Rb Other Nuclides

Mixed-bed reactor 10 2 10coolant cleanup

Condensate (deep bed) 10 2 10

2 2*High-purity waste 10 (10) 10(10) 10 (10)

Low-Purity Waste

2 2!1ixed bed 10 (10) 2(10) 10 (10)2Cation bed 1(1) 10(10) 10 (jg)

oAnion bed 10'(10) 1(1) 1(1)

Powdex (any system) 10(10) 2(10) 10(10)

Evaporators All Nuclides Except Iodine Iodine# 3:liscel'aneous 10 10

2 2Detergent wastes 10 10

Reverse Osmosis All Nuclides

Laendry wastes 30

Other liquid wastes 10

Filters _ 0F of 1.0 for all nuclides

For an ev3 rator polishing demineralizer or for the second denineralizer in series,the CF is given in parentheses.

Ol-12

. . . . -

_

Thus in Card 10 the following would be entered: in spaces 21-28, "10,000", in spaces34-41, "100,000", and in spaces 47-54, "100,000."

1.5.2.9.3 Collection Time for Liquid Wastes (Cards 11, 14, 17, 20 -- Spaces 29-33)

Collection time prior to processing is based on the input flow calculated above. Whereredundant tanks are provided, assume the collection tank to be fi' led to 80T capacity. Ifonly one tank is provided, assume the tank to be filled to 40% capacity. For example, if flowfrom a 1,000-gal / day floor drain is collected in two 20,000-gallon tanks prior to processing,collection time would be calculated as follows:

Collection time (T ) * = 16 daysc OO

Then, for this example, "16" should be entered in spaces 23-33 on Card 14.

1.5.2.9.4 Processing and Discharge Time (Cards 11, 14, 17, 20 -- Spaces 48-53)

Decay during processing and discharge of liquid wastes is shown graphically as follows:

N

_ @Jb TankTank Discharge Canal:

L___ C FlA c

where

A is the capacity of the initial tark in the flow scheme, in gal;

B is the limiting process based on equipment flow capacity, dinensionless;

C is the capacity of the final tank in the flow schene prior to discharge, in gal;

R is the equipment flow capatity of process B, in gal / day;b

R is the flow capacity of the Tank C discharge purp, in gal / day; and

R is the rate of flow of additional wastes inputs to Tank C, in gal / day.g

p, the process time credited for decay, is calculated as follows, in days:

0.MP

T , the discharge time -- 50'> credited for decay, is calculated as follcws, in days:d

, 0.8CT

d R

Af ter performing the above two calculations, calculate whether credit nay be taken fordecay during processing by deter aining whether

0.CC > T R +Rpb g

If so, then

Decay = T + 0.5Tp d

where " Decay" is the new processing and discharge tine to be entered in spaces 48-53 of thethird card for each input stream (Cards 11, 14, 17, and 20).

If , however, 0.8 < Tp(Rb + Ro), T is used for the holdup time during processing, sincep

Tank C may be discharged before Tank A has been completely processed. In this case, the T valuepshould be entered in spaces 48-53 of the third card.

1-13

- -

_ _ _ _ _ _ _ _ ,

For example, for the following input waste stream:

FLOOR DRAINS1,000 G AL/ DAY

li t

FLOOR DRAIN FLOOR DRAIN40 AL/DATANK A TANK B

20,000 GAL 20,000 G AL

WASTESAMPLE,

TANK AWASTE I 40,000 GAL

DEMIN W AST E

100 GAL / EVAPORATORMIN 15 GAL / MIN

WASTESAMPLE.TANKD40,000 G AL b

DISCHARGEPUMP 10 G AL/MIN.

Decay time during processing and discharge would be calculated as follows:

Process Time (T ) = 0.7 dayp (15 i

=n D / day)

Discharge Time (T ) * (10 i in 0 / day)= 3 days

d

Then, checking for decay credit 0.8C/(Rb + d ) = 1.45 days, which is gre ter than T ,o p

p + 0.5T ) or 2.2 days for processing and discharge. The inputtherefore, credit is taken for (T 3

on spaces 48-53 to the Code is 2.2 days for processing and discharge time.

1.5.2.9.5 Fraction of Wastes Discharged (Cards 11, 14, 17, and 20 -- Spaces 72-77)

The percent of the wastes discharged after processing may vary between 1% and 100% based onthe capability of the system to process liquid waste during equipment downtime, waste volumesurges, tritium control requirements, and tank surge capacity. A minimum value of 1% dischargefor high-purity wastes and 10% discharge for other wastes is used when the radwaste system isdesigned for maximu.n waste recycle, the system capacity is sufficient to process wastes forreuse during equipment downtime and anticipated operational occurrences, and a discharge routeis provided.

The BNR-GALE Code calculates the release of radioactive materials in liquid waste from thefour inlet streams after processing. Releases included in each stream are:

1. High-Purity Waste - Combined releases from equipment dra;ns and sumps.

2. Low-Purity Waste - Combined releases from floor drains and sumps.

3. Chemical Waste - Combined releases from laboratory and decontamination wastes and fromdemineralizer regenerant solutions according to the design of the condensate demineralizersystem. If a filter /demineralizer (Powdex) system is used, the laboratory and decontaminationwastes are combined with the low-purity waste or solidified in the solid waste system.

4. Detergent Waste System - Combined releases from laundry operations, equipment decontam-ination solutions, and personnel decontamination showers.

1.5.2.10 Card 21: Gland Seal Steam Flow

Enter in spaces 73-80 of Card 21 the steam flow (in 10 lb/hr) to the turbine gland seal ,as follows:

1-14

1. If main steam is used for the sealing steam, enter a flow rate 0.001 times the mainsteam flow entered previously on Card 3.

2. If clean (nonradioactive) steam from an auxiliary boiler is used for sealing steam,enter a zero in spaces 73-80.

1.5.2.11 Card 22: Mass of Steam in Reactor Vessel (SAR/ER)6Enter in spLces 73-80 the mass of steam in the reactor vessel (in 10 lb).

1.5.2.12 Card 23: Gland Seal Holdup Tin,e (SAR/ER)_

Enter in spaces 73-80 the design holdup (in hr) for gases vented from the gland sealcondenser.

1.5.2.13 Card 24: Holdup Time for Condenser Air Ejector Offgas (SAR/ER)

Enter in spaces 73-30 the design holdup time (in hr) for offgases from the main condenserair ejector to be processed through the offgas treatment system, e.g., a 10-minute holdup timeprior to cryogenic distillation.

1.5.2.14 Card 15: Containment Building Releases

1. If ventilation exhaust air is treated through charcoal adsorbers, enter YES inspaces 43-45. If no treatment is provided, leave spaces 43-45 blank.

2. If ventilation exhaust air is treated through HEPA filters, enter YES in spaces52-54. If no treatment is provided, leave spaces 52-54 blank.

1.5.2.15 Card 26: Turoine Building Release.s

1. If ventilation exhaust air is treated through charcoal adsorbers, enter YES inspaces 43-45. If no treatment is provided, leave spaces 43-45 blank.

2. If ventilation exhaust air is treated throJgh HEPA filters, enter YES in spaces52-54 If no treatment is provided, leave these spaces blank.

3. If " clean steam" or other acceptable special design features are provided on valves2-1/2 inches and larger to reduce steam leakage, enter YES in spaces 68-70. If the above featuresare not provided, leave spaces 68-70 blank,

l.5.2.16 Card 27: Fraction of Iodine Released from Turbine Gland Seal Condenser Vent

1. Enter 1.0 in spaces 73-80 if the noncondensables are released from the turbinegland seal condenser without treatment or if clean steam is used.

2. Enter 0.1 in spaces 73-80 if, prior to release, the noncondensables are processedthrough charcoal adsorbers having a 90% ef ficiency.

1.5.2.17 Card 28: Fraction of Iodine Released from the Condenser Air Ejector OffgasTreatment System

1. Enter 1.0 in spaces 73-80 if the offgas is released without treatment.

2. Enter 0.1 in spaces 73-80 if, prior to release, the of fgas is processed through acharcoal adsorber having a 90% ef ficiency.

3. Enter a zero in spaces 73-80 if the offgas is processed through a charcoal delaysystem,

4. Enter 1.0 in spaces 73-80 if the of fgas is processed through a cryogenic distilla-tion system (removal of iodine by the cryogenic distillation system is built into the Code - seeCard 30).

1.5.2.18 Card 29: Auxiliary Building Releases

1. If ventilation exhaust air is treated through charcoal adsorbers, enter YES inspaces 43-45. If no treatment is provided, leave blank.

1-15

2. If ventilation effluent il treated throupi HEPA filters, enter YES in spaces 52-54I f no trea tren t is provided, lea ve blank .

1.5.2.19 Card 33: Paduaste Building Peleases

1. If ventilatia, exhaust air is treated through charcoal adsorbers, enter YES inspaces 43-45. If no treatment is provided, leave blank.

2. If ventilation exhaust air is treated through HEPA filters, enter YES in spaces52-54 If no treatment is provided, leave blank.

1.5.2.20 Card 31: Condenser Air Ejector Of fgas Treatr;ent System (SAR/ERlf

1. Enter 1 in space 80 if charcoal delay system is used to treat the of fgas from thecondenser air ejector.

2. Enter 2 in space 80 if tb offgas from the condenser air ejector is processed by thecryogenic distillation.

3. Enter a zero in space 30 if the offgas is not treated either through a charcoal delaysystem or by cryogenic distillation.

Note: Cards J1, 32, 33, and 31 are lef t blank if a charcoal delay system is not used totreat the offgases from the condenser air ejector. The blank cards are included inthe card deck.

1.5.2.21 Card 32- D <namic Adsorption Coef ficient for Krypton

Enter in spaces 73-80 the dynamic adsorption coefficient for Kr based on the system desiqnand the dyna nic adsorption coefficients noted below.

DYNAMIC ADSORPTION COEFFICIENT (cm /g)

OPERATING 77 F OPEPATING 77 F OPEPATIhG 0'FDEW POINT 45*F CEW POINT O'F DEW POINT -20"F

Kr 18.5 25 105

1.5.2.22 Card 33: Dynamic Adsorp_ tion Coefficient for Xenon.

Enter in spaces 73-80 the dynamic adsorption coefficient for Xe based on the system designand dynamic adsorption coefficients noted below.

3DYEAMIC ADSORPTION COEFFICIENT (cm fg)

OPERATING 77'F OPERATING 77'F OPERATING O'FDEW POINT 45'F DEW P3114T 0^F DEW P0ltiT -20'T

Xe 330 440 2410

1.5.2.23 Card 34: Number of Main Condenser Shells (SAR/ER)

Enter in spaces 73-80 the number of shells in the main condenser.

1.5.2.24 Card 35: Mass of Charcoal in Charcoai Dela)Js_ tem (SAR/EPl3Enter in spaces 73-80 the mass of charcoal (in 10 lb) used in Se charcoal delay system.

1.5.2.25 Card 36: Dete ment Wasta

1. If the plant does not have an onsite laundry, enter a zero is, spaces 73-80.

2. If the plant har an onsite laundry and detergent wastes are released without treat-rent, enter 1.0 in spaces 73-30.

3. If detergent wastes are treated prior to discharge, enter the fraction of radionuclidesremaining af ter treatment (1/DF) in spaces 73-80. The parameters in Chapter 2 are used indetermining the DF for the treatment applied to detergent waste.

1-16

CHAPTER 2. PRINCIPAL PARAMETERS USFDIN EWWlRE'TER CALCULATIRd ?a TFEWCASES

-

2.1 INTRODUCTION

The principal pararmters used in source term calculations have been corpiled to standardizethe calculation of radioactive source terms. The source term is defined as the calculatedaverage quantity of radioactive material released annually to the envirornent from a nuclearpnwer reactor during norrial operation, including anticipated operational occurrences. Theparameters used in the calculations are the average values expected over the life of theplant. Norval operaticn includes anticipated operational occurrences that deviate from steady-state opera tion.

The following sections describe parameters used in the evaluation of radwaste treatmentsystens. The parameters have been derived from reactor crerating experience where data werea va i l a t;l e . Where operating data were incenclusive or not available, infornation was drawnf rom laboratory and field tests and from engineering judgment. The bases for the source termparameters explain the reasons for choosing the nurerical values listed. A list of referencesused in developing the paraceters is also included.

The parameters in the BWR-GALE Code are updated as additional cperating data becomeavailable. The source term parameters used are believed to provide a realistic assessment ofreactor and radmaste system operation.

2.2 _P_RINCIPAL PARAMETERS AND THEIR BASES

2.2.1 THERMAL POWER LEVEL

2.2.1.1 Pa rame ter

The maximum thennal power level (Mut) evaluated for safety considerations in the SafetyAnalysis Report.

2.2.1.2 Bases

The power level used in the source term BWR-GALE Code is the maximum power level evaluatedfor safety considerations in the Safety Analysis Report. Using this value, the evaluation ofthe radwaste management systems need not be repeated when the applicant applies for a stretchpower license at a later date. Past experience indicates that nost utilities request approvalto operate at maximum power soon after reaching connercial operation.

2.2.2 PLANT CAPACITY FACTOR

2.2.2.1 Pa race ter

Plant capacity factor of 80%, i.e., 292 effective full power days.

2.2.2.2 Bases

The source term calculations are based on a plant capacity factor of 80% averaged overthe 30-year operating life of the plant, i.e., the plant operates at 100% power 80% of thetime. The plant capacity factors experienced at BWRs are listed in Table 2-1 for the period1961 through 1974

The average plant capacity factors listed indicate that the 80% factor assumed is higherthar, the average factors experienced. However, it is expected that the maintenance andrefueling problems that have contributed to the low capacity factors will be overcome.

2.2.3 RADIONUCLIDE CONCENTRATIONS IN THE REACTOR COOLANT

2.2.3.1 Pa rameter

Table 2-2 lists the expected radionuclide concentrations in the reactor coolant and steamfor BWRs with design parameters within the ranges listed in Table 2-3. Should any designparameter be outside the ranges in Table 2 ~ adjust the concentrations in Table 2-2, usingTables 2-4 and 2-5. Figure 2-1 shows the graphical relationship of the design parameters.

2 -1

TABLE 2-1PLANT CAPACITY FACTOP.S AT OPERATING EWRs*

(in 1)

INITIALFACILITY CRITICALITY 1968 1969 1970 1971 1972 1973 1974

Dresden 1 10/15/59 52 48 78 35 61 40 21

Big Rock Point 9/27/62 68 64 58 59 57 67 54

Humboldt Bay 2/16/63 82 68 76 61 59 70 61

Oyster Creek 5/3/69 74 78 77 64 66

Nine Mlle Point 1 9/5/69 63 62 68 63

Dresden 2 1/7/70 39 47 74 51

Millstone 1 10/26/70 63 55 34 63

Monticello 12/10/70 74 63 57mA, Dresden 3 1/31/71 67 54 47

Quad Cities 1 10/18/71 70 51

Vermont Yankee 3/24/72 44 59

Quad Cities 2 4/26/72 74 63Pilgrim 1 6/16/72 72 34

Average ~~67~ 60 Y Y Y T TT

'From "U.S. Nuclear Power Reactors," Atomic Energy Commission, WASH-1203-68 to 73, Table 1, " Selected Operatina Statistics."Plant capacity factors listed are for the calendar year (s) following a period of at least six months since initial criticality.Operating BWRs not ir.cluded in the table are Browns Fcrry 1 and Peach Botton 2, which achieved criticality during CV-1973.The Lacrosse Nuclear Power Station was not included since it is not considered to be representative of current power reactors.

O O

TABLE 2-2RADIONUCLIDE CONCENTRATIONS

IN BOILING WATER REACTOR COOLANT AND MAIN STEAM *(in sci /g)

REACTOR REACTORISOTCPE WATER STEAM

Noble Gases

Kr-83m 1.l(-3)**Kr-85m 1.9(-3)Kr-85 6.0( -6 )Kr-87 6.6(-3)Kr-88 6.6(-3)

Kr-89 4.l(-2)Kr-90 9.0(-2)Kr-91 1.l(-1)Kr-92 1.l (-1 )Kr-93 2.9(-2)

Kr-94 7.2(-3)Kr-95 6.6(-4)Kr-97 4.4(-6;Xe-131m 4.7(-6)Xe-133m 9.0(-5)

Xe-133 2.6(-3)Xe-l bm 8.4(-3)Xe-135 7.2(-3)Xe-137 4.7(-2)Xe-138 2.8(-2)

Xe-139 9.0(-2)Xe-140 9.6(-2)Xe -141 7.8(-2)Xe-142 2.3(-2)Xe-143 3.8(-3)Xe-144 1.8(-4)

Halogens

Br-83 3(-3) 6(-5)Br-84 5(-3) 1(-4)Br-85 3(-3) 6(-5)I-131 5(-3) 1(-4)

I-132 3(-2) 6(-4)1-133 2(-2) 4(-4)I-134 5- 1(-3)1-135 2- 4(-4)

Cesium and Rubidium

Rb-89 5(-3) 5(-6)Cs-134 3(-5) 3(-8)Cs-136 2(-5) 2(-8)Cs-137 7(-5) 7(-8)Cs-138 1(-2) 1(-5)

The reactor water concentration is specified at the nozzle where reactor water leavesthe reactor vessel. Similarly, the reactor steam concentration is specified attime 0.

l .l(-3) = 1.1 x 10-3**

2-3

. . . .. . .._ _....._._ _ ____. _ _ _ ____

TABLE 2-2 (Continued)

REACTOR REACTOR150T0fE WATER STEAM

Water Activation Froducts

N-13 5(-2) 7(-3)N-16 6(+1) 5(+1)N-17 9(-3) 2(-2)0-19 7(-1) 2(-1)f-18 4(-3) 4(.3)

Tritium,*

H-3 1(-2) 1(-2)

Other Nuclides

N5-24 9(-3) 9(-6)P-32 2(-4) 2(-7)Cr-51 5(-3) 5(-6)fin-54 6(-5) 6(-8)Mn-56 5(-2) 5(-5)

Fe-55 1(-3) 1(-6)Fe-59 3(-5) 3(-8)Co-58 2(-4) 2(-7)Co-60 4(.4) 4(-7)Ni-63 1(-6) 1(-9)

Ni-65 3(-4) 3(-7)Cu-64 3(-2) 3(-5)7n-65 2(-4) 2(-7)In-60 2(-3) 2(-6)Sr-89 1(-4) j(_7)

Sr-90 6(-6) 6(-9)Sr-91 4(-3) 4(-6)Sr-92 l(-2) 1(-5)Y-91 4(-5) 4(-8)Y-92 6(-3) 6(-6)Y-93 4(.3) 4(-6)7r-95 7(-6) 7(-9)Zr-97 5(-6) 5(-9)Nb-95 7(-6) 7(-9)Nb-98 4(-3) 4(-6)Mo-99 2(-3) 2(-6)Tc-99m 2(-2) 2(-5)Tc-101 9(-2) 9(-5)Tc-104 8(-2) 8(-5)Ru-103 2(-5) 2(-8)

Ru-105 2(-3) 2(-6)Ru-106 3(-6) 3(-9)Ag-110m 1(-6) 1(-9)Te-129m 4(-5) 4(-8)Te-131m 1(-4) 1(-7)

*

Measured values increased to account for liquid recycle.

O2-4

- - -

_ _ _ . _ _ _ _ . _ . _ _ . . . . .

. . . . - -

TACLE 2-2 (Continued)

REACTOR REACTORISOTOPES WATER _ STEAM

Te-132 1(-5) 1(-8)Ba-139 1(-2) 1(-5)Ba-140 4(-4) 4(-7)Ba-141 1(-2) 1(-5)Ba-142 6(-3) 6(-6)

L a -142 5(-3) 5(-6)Ce-141 3(-5) 3(-8)Ce-143 3(-5) 3(-8)Cc-144 3(-6) 3(-9)Pr-143 4(-5) 4(-8)

M-14 7 3(-6) 3(-9)W-187 3(-4) 3(-7)N -239 7(-3) 7(-6)P

TABLE 2-3

PARAMETERS USED TO DESCRIBE THE REFERENCE BOILING WATER REACTOR _

NOMINAL RANGEPARAMETER SYMBOL UNITS VALUE IUllMUM MINIf tUM

Therral power P MWt 3400 3800 3000*Weight of water in the WP lb 3.8(5) 4.2(5) 3.4(5)

reactor vessel

Cleanup demineralizer FA lb/hr 1.3(5) 1.5(5) 1.l(5)flow rate

Steam flow rate FS lb/hr 1.5(7) 1.7(7) 1.3(7)

Ratio of condensate denin- NC - 1.0 1.0 0.8eralizer flow rate tosteam flow rate

^53.8(5) = 3.8 x 10

2-5

---

. . . .

TABLE 2-4VALUES USED IN DETEPPINING ADJUSTMENT FACTORS FJR

BOILING WATER REACTORS

WATER

NOBLE ACTIVATION OTHERSYMBOL DESCRIPTION GASES HALOGENS Cs, Rb PRODUCTS TRITIUM NUCLIDES

*

NA rraction of material 0.0 0.9 0.5 0.0 0.0 0.9removed in the reactorwater cleanup system

*

N3 Fraction of material 0.0 0.9 0.5 0.0 0.0 0.9removed by the conden-sate demineralizers

1.0 0.001NS Ratio of concentration ** 0.02 0.001 ***

in reactor steam to theconcentration in reactorwater

1.0 0.19 *** tt 0.34R Renoval rate from the **

reactor water (hr-l)t

These represent effective removal terms and include other mechanisms such as plateout.*

Plateout would be applicable to nuclides such as Mo and corrosion products.

All noble gases released from the core are transported rapidly out of the reactor water to**

the reactor steam and are stripped from the system in the main condenser. Therefore theconcentration in the reactor water is riegligible and the steam concentration is approxi-mately equivalent to the ratio of the release rate and the steam flow rate.

Water activation products exhibit varying chemical and physical properties in reactor coolant***

which are not well defined. However, most are stripped off as gases. Thcy are not effec-tively removed by the demineralizers of the systems, but their concentrations are controlledby decay.

t These values of R apply to the reference BWR whose parameters are given in Table 2-3 andhave been used in developing Table 2-5. For BWRs not included in Table 2-3, the appropriatevalue for R may be detemined by the following equation:

R = FA.NA + K FS NS NB for halogens, Cs, Rb, and other nuclides

where the symbols are defined in this table and Table 2-3. The values for R for noble gasesand water activation products are not used in the adjustment factors of Table 2-5.

tt The tritium concentrations in the reactor water and the steam are expected to be equal. Theyare controlled by loss of water from the main coolant system by evaporation or leakage. Theconcentration is therefore given by the ratio of the appearance rate in the coolant, whichis about 100 Ci/yr, and the total loss from the system.

t

02-6

' M R M_____

TABLE 2-5ADJUSTMENT FACTORS FOR BOILING WATER REACTORS

NUCLIDES REACTOR WATER REACTOR STEAM

Noble gases * 1.0 1.0

@{110 pg)1.0 + 1 g 10 g )1.0 + AP lb P lbHalogens ** R+A j R+A

P lb 0.?9 + A@{l10 pg)0.19 + 2

P lbCs, Rb g4110 f1Wt R+a R+A

Water activationproducts 1.0 1.0

Tritium *** 1.0 1.0

- Pffit)0.34 + A J{l10 F W )0_.34 + A

b IDOther nuclides WTs{ll0 -R+A WP R+A

~lssumes that tFratio of power to steam flow is essentially the sare for all EWRs.*

is the isotope's decay constant (hr'I).**A

***fhe tritium concentrations in the reactor water and the steam are expected to be equal.They are controlled by loss of water from the main coolant system by evaporation orleakage. The concentration is therefore given by the ratio of the appearance rate inthe coolant, which is about 100 C1/yr, and the total loss from the system.

2-7

TURBINES M AIN r- AIR EJECTORFS* CONDENSER

_

REACTOR NS STEAM ~NVESSEL

FS(1-NC) N C. FSWP j u

FEEDWATER;

CONDENSATEFA DEMIN ER ALIZERS

mh it

REACTORWATER

CLEANUPSYSTEM

NA

* SYMBOLS ARE DEFINED IN TABLES 2-3 AND 2-4

FIGURE 2-1

REMOVAL PATHS FOR THE REFERENCEBOILING WATER REACTOR

O O

. . . .__ _

2.2.3.2 pases_

The radionuclide concentrations, adjustrent factors, and procedures for ef fecting adjust-ments are based on the values and rothods proposed by the ANS 18.1 Working Group draf t standardfor boiling water reactor source tems (Ref.1). The values in Table 2-2 provide a set of typicalradionuclide concentrations in the reactor coolant and stean for reactor designs wi*.hin the param-eters specified in Table 2-3. The values in Table 2-2 were those judged by the ANS Working Groupto he representative of radionuclide concentrations in a BWR over its lifetime based on the cur-rently available data and r>odels (Refs. 2 and 3). It is recognized that some systems will havedesign pararneters that are outside the ranges specified in Table 2-3. For that reason a means ofadjusting the concentrations to the actual design parameters has been provided in Tables 2-4 and2-5. The adjustrent factors in Tables 2-4 and 2-5 are based on the followir.g expression:

C=gypy-where

C is the specific activity, in tCi/g;

k is a conversion factor, 454 g/lb;

R is the removal rate of the isotope from the system due to demineralization,leakage, etc. , in hr-l;

is the rate of release to and/or production of the isotope in the system, ins

..C i / h r ;

is the fluid weight, in lb; andw

is the decay constant, in hr1

The following sample calculations illustrate the method by which the EWR-GALE Code willadjust the radionuclide concentrations in Table 2-2. As indicated in Table 2-5, adjustment fac-tors will be calculated only for halocens, Cs, Rb, and other nuclides.

As an example, the Barton Nuclear Station parameters compare with the range values inTable 2-3 as follows:

Pa rarre te r Barton Station Value RanSe Values

Thermal power level (MWt) 3758 3000-3000

5 5 5Water weight in vessel (lb) 4.9 x 10 3.4 x 10 - 4.2 x 105 5 5Cleanup demineralizer flow (lb/hr) 1.5 x 10 1.1 10 - 1.5 x 106 6 6Steam flow rate (lb/hr) 15.4 x 10 13.0 x 10 - 17.0 x 10

Condensate demineralizer flow 0.75 0.8 - 1.0f rac tion

Since in this example two of the parameters (water weight in vessel and condensate demineralizerflow fraction) are outside the range, adjusted values of the three types of radionuclide concen-trations are calculated using the actual value of each parameter, as follows:

1. Halogens (I-131 is used as an example) -- Using the equation for halogens in Table 2-5,the adjustir;ent factor A is calculated as follows:

A = h (110) [* (2-1)

where the terms in the equation are as defined in Tables 2-3 and 2-4

2-9

__ . _ . . . . . _

In calculating A, the variable R is calculated first, using the equation given inTable 2-4:

R = FA.NA + NC.FS.NS. fib (2-2)WP

where the terns in the equation are as defined in Tables 2-3 and 2-4..

Using the Barton Station parameters given above and the halogen paraneters given inTable 2-4 and substituting in Equation (2-1) gives

5 6R = 1.5 x 10 x 0.9 + 0.75 x 15.4 x 10 x 0.02 x 0.9 = 0.7

4.9 x 10'

Then, using this value of R in Equation (2-1):

[j)g)l.0 + 3.6 x 10 = 1.23758A=4.9 x 10 0.7 + 3.6 x 10-

The adjusted 1-131 concentration

= (adjustnent factor) x (standard I-131 concentration)-3 -3- 1.2 x 5 x 10 LCi/g = 6.0 x 10 vC1/g

2. Cs, Rb (Cs-137 is used as an exampid -- Using the equation for Cs and Rb in Table 2-5,the adjustment factor A is calculated as follows:

A=hl10)0_. (2-3)

where the terms in the equation are as defined in Tables 2-3 and 2-4.

In calculating A, the variable R is calculated first using Equation (2-2). The Cs andRb parameters given in Table 2-4 and the Barton Station parameters are used in the equation.

5 6R = 1. 5 x 10 x 0.5 + 0.75 x 15.4 x 10 x 0.001 x 0.5 = 0.17

54.9 x 10

Then, using this value of R in Equation (2-3) above:

5)(110)(0.19 + 2.6 x 100.17 + 2.6 x 10'0) = 0.9758

A=(4.9 x 10

The adjusted Cs-137 concentration

(adjustment factor) x (standard Cs-137 concentration)=

-5 -5= 0.97 x 7 x 10 Ci/g = 6.8 x 10 oCi/g

3. Other Nuclides (Na-24 is used as an example) -- Using the equation for other nuclidesin Table 2-5, the adjustment factor A is calculated as follows:

A=hl10)0. (2-4)

where the terms in the equation are as defined in Tables 2-3 and 2-4.

O2-10

. . . . . . . . . . . . . . . . . . . .

In calculating A, the vtriable R is calculated first, using Equation (2-2). The othernuclide parameters given in Table 2-4 and the Barton Station parancters are used in the equation:

6 6R = 1.5 x 10 x 0.9 + 0.75 x 15 4 x 10 x 0.001 x 0.9 = 0.3

4.9 x 10

Then, using this value of R in Equation (2-4):

3758A=( ) (110) (0.34 + 4.62 x 10 = 0.954.9 x 10 0.3 + 4.62 x 10'

The adjusted concentration of Na-24

(adjustment factor) x (standard Na-24 concentration)=

-3 -30.95 x 9 x 10 uti/g = 8.6 x 10 Ci/g=

The noble gas concentrations in Table 2-2 are based on an offgas release rate of 60,000vCi/sec measured at a 30-minute decay. A summary of noble gas release rates from a number ofoperating BWRs in 1971-72 is given in Table 2-6 and a similar sumary for 1973-74 is given inTable 2-7. The data in these tables are limited to measurements from EWRs larger than 1000 MWtwith more than one year of operating experience. The average of the noble gas release rates inTables 2-6 and 2-7, based on the ef fective full power days of operation and normalized to 3400MWt, is 60,000 oCi/sec.

A carryover factor of 0.02 is used to calculate the halogen concentrations in the main sterain Table 2-2. This carryover factor is derived from data taken at operating reactors (Refs. 2, 3,4, and 5) which are listed in Table 2-8. The average of the data in Table 2-8 is 0.018 for halo-gen (iodine) carryover.

The category "Other nuclides" includes Mo, Y, and Tc which are generally present in colloidalsuspensions or as " crud." Although the actual removal mechanism for Y, Mo, and Tc is expected tobe plateout or filtration, the quantitative effect of renewal is expected to be comnensurate withthe removal of ionic impurities by ion exchange (within the accuracy of the calculations) andconsequently plateout of these nuclides is included in the parameters for ion exchange.

2.2.4 GASEQUS RELEASES FROM BUILDING VENTILATION SYSTEMS

2.2.4.1 Pa ramete r

The noble gas, iodine, and radioactive particulate releases from ventilation systems forfacilities with the BWR/6, Mark III containment design, prior to treatment, are shown inTable 2-9.

2.2.4.2 Bases

The iodine-131 releases from building ventilation ef fluents are based on measurements 'nadeat operating reactors. The measurements were made during normal operation and during plant shut-downs. The data are given in Tables 2-10 through 2-15. These data show that the release ratesduring plant shutdown differ from the release rates during plant operation. The ratio of releasesduring shutdowns to releases during nomal operations, assuming a plant capacity factor of 80%,is used to calculate annual releases that consider both normal operation and shutdown releases.

Table 2-13 gives the iodine-131 release rates during normal eperation and during plant shut-downs for the Oyster Creek turbine building as 0.024 ;Ci/sec and 0.081 cCi/sec, respectively.Using an 80! plan capacity factor, the ratio of releases due to normal operation and shutdownsto the releases during nomal operation only can be expressed as

1024oCi/secl(0.8)+(0.081 pCi/sec)(0.2) = 1'8(0.024;.Ci/sec)(0.8)

Similarly, fram Table 2-13 the ratio of releases due to nomal operation and shutdowns to thereleases during nornal operation for Vemont Yankee is 1.7. Using the average of these ratios,the average annual turbine building releases during normal operation from Table 2-12 are nomal-ized to obtain a total annual release as indicated below:

U8 I 7) (0.11 Ci/yr) = 0.19 C1/yr total I-131 releasedL

2-11

__ _ _ _ . . . . .

TAELE 2-6SuffiARY OF NCBLE GAS RELEASE RATES FOR

OPERATING BWRs (1971-1972) _

1971 RELEASES 1972 RELEASES

NOMINAL HOLDUP NMA3E AVERTG F.. ..POWER TIME EFPD NOBLE GAS AVERAGE AT 3400 MWt EFPD NOBLE GAS AVERAGE AT 3400 MWt

.REACTOR (MWt) (min) (days) (Ci/yr) (LCi/sec) (tCi/sec) (days) (Ci/yr) (.Cifsec) ( ;C_if_se i. .

Oyster Creek 1930 90 260 516,000 23,000 69,000 280 866,000 36,000 120,000

Nine Mile Point 1850 60 210 253,000 14,000 36,000 230 517,000 27,000 73,000

Millstone 1 2011 50 230 276,000 14,000 30,000 200 721,000 42,000 88,000

***Dresden 2, 3 5052 60 --- --- --- 420 431,000 35,000 35,000

Monticello 1670 60 --- --- --- 270 565,000 25,000 76,000

Yearly Average 45,000 71,000

*Reactors smaller than 1000 MWt (Big Rock Point, Dresden 1, Humboldt Bay, Lacrosse) are not included. Quad Cities 1 and 2, VermontYankee, and Pilgrim I were undergoing startup when this table was compiled and are not included.

*.Ef fective full power days of operation.

sseDresden 2 and 3 are considered as two reactors.

O O O

TABLE 2-7SUMitARY OF NOBLE GAS RELEASE RATES FOR

OPERATING BWRs (1973-1974)

1973 RELEA5ES 1374 RELEASE 3NOMINAL HOLDUP AVERAGE ATTERATf -.. ..POWER TIME EFPD NOBLE GAS AVERAGE AT 3400 MWt EFPD NCBLE GAS AVERAGE AT 3400 MWt,

REACTOR (MWt) (min) (days) (Ci/yr) (uci/sec) (cci/sec) (days) (Ci/yr) ( t.C i / s ec ) (LCi/sec)Oyster Creek 1930 90 230 812,000 35,000 120,000 240 280,000 14,000 47,000

Nine Mile Point 1 1850 60 250 872,000 40,000 110,000 240 617,000 30,000 75,000

Millstone 1 2011 50 120 69,500 7,000 21,000 230 912,000 46,000 99,000

Oresden 2, 3 " 5054 60 440 875,000 46,000 43,000 340 628,000 21,000 20,000*

Monticello 1670 60 250 732,000 34,000 95,000 220 1,490,000 78,000 220,000

7 0"ad Cities 1, 2 " * 5022 60 510 903,000 41,000 42,000 430 1,049,000 23,000 26,000C

Vermont Yankee 1593 60 160 187,000 20,000 63,000 +

Pilgrim 1 1998 60 270 230,000 10,000 25,000 130 546 0_00 49,000 126200_2

Yearly Average 61,000 73,000

Reactors smaller than 1000 MWt (Big Rock Point, Dresden 1 Humboldt Bay, Lacrosse) are not included.Reactors undergoing startup (Brcwns Ferry 1, Cooper 1, Duane Arnold, Peach Bottom 2) are not included.

**Effective full power days of operation.

sesOresden 2, 3 and Quad Cities 1, 2 are both considered as two reactors.

* Vermont Yankee Nuclear Power Station was not included for CY-1974 because of insufficient data regardingeffect of augmented offgas treatment system.

TABLE 2-8 ,

REACTOR VESSEL HALOGEN CARRYOVER FACTORSOBSERVED AT OPERATING BWRs

POWER LEVEL ** PARTITION

REA_CTOR (MWQ PETHOD*** FACTOR REFERENCE

Oyster Creek (1930) Condensate 0. 018 3

(1930) No cleanup 0.018 3

1830 Condensate 0.019 2

1830 Condensate 0.021 2

1830 No cleanup 0.023 2

1820 Condensate 0.027 4

(1930) Condensate 0.023 4

(1930) Condensate 0.025 4

(1930) No cleanup 0.025 4

(1930) No cleanup 0.025 4

Oresden 2 1830 Condensate 0.022 5

2210 Condensate 0.016 5

2210 Ccndensate 0.017 5

2400 Condensate 0.019 2

2400 No cleanup 0.010 2

Dresden 3 2l00 Condensate 0.022 2

2100 No cleanup 0.020 2

Millstone (2011) Condensate 0.017 3

2000 Condensate 0.005 2

fionticello 1670 Condensate 0.003 2

1670 No cleanup 0.005 2

Nine Mile Point (1850) Condensate 0.02 3

(1850) No cleanup 0.02 3

Quad Cities 1 2511 Condensate 0.012 2

2511 No cleanup 0.013 2

Average 0.018

*

Based on todine-131.**

When test power level is not known, licensed power level is given in parentheses.*** Condensate method - The calculated partition factors are based on the ratio of

the iodine-13Tconcentration in the condensate to that in the reactor water.

No-cleanup riethod - The calculated partition factors are based on the change inthe concentrations of iodine-131 in the reactor water with the cleanup systenisolated compared to the concentration with the cleanup system in service.

O2-14

.. . . . . . _ _ _ _ _ _ _ __

TABLE 2-9GASEOUS RELEASES FROM VENTILATION SYSTEMS

(in Ci/yr per reactor)

CONTAINMENT AUXILIARY TURBINE * RADWASTENUCLIDE BUILDING BUILDING BUILDING BUILDING

Kr-83m ** ** ** **

K r-8 'en 3 3 68 **

Kr-85 ** ** ** **

Kr-87 3 3 190 **

Kr-88 3 3 230 **

Kr-89 ** ** ** **

Xe-131m ** ** ** **

X e -133m ** ** ** **

Xe-133 66 66 280 10Xe-135m 46 46 650 **

Xe-135 34 34 630 45Xe-137 ** ** ** **

Xe-138 7 7 1440 **

I-131 0.17 0.17 0.19 0.046I-133 0.68 0.68 0.76 0.18

Co-60 0.01 0.01 0.002 0.09Co-58 0.0006 0.0006 0.0006 0.0045Cr-51 0.0003 0.0003 0.013 0.009Mn-54 0.003 0.003 0.0006 0.036Fe-59 0.0004 0.0004 0.0005 0.015

Zn-65 0.002 0.002 0.0002 0.001Zr-95 0.0004 0.0004 0.0001 0.00005Sr-89 0.00009 0.00009 0.006 0.0005Sr-90 0.000G05 0.000005 0.00002 0.0003Sb-124 0.0002 0.0002 0.0003 0.00005

Cs-134 0.004 0.004 0.0003 0.0045Cs-136 0.0003 0.0003 0.00005 0.00045Cs-137 0.005 0.005 0.0006 0.009Ba -140 0.0004 0.0004 0.011 0.0001Ce -141 0.0001 0.0001 0.0006 0.0026

Less than 1 C1/yr per reactor.

**For special design features to control leakage from valves in lines 2-1/2 inchesand larger, reduce the turbine building leakage rates by a factor of 5.

2-15

- - . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . . . . .

TABLE 2-10ANNUAL 10 DINE-131 RELEASES FROM REACTOR EUILDING

VENT _I_LATION SYSTEMS NORMAL OPERATION2

FACILITY _ RELEASElC i/yr)* REFERENCE

Vernont Yankee 0.17 6

Oyster Creek o.072 2

Oyster Creek 0.04 7

Monticello 0.17 2

Dresden 2 0.096 2

Dresden 3 0.3 2

Millstone 1 0.03 8

Quad Cities 1 0.096 9

Nine Mile Point 1 0.096 10

Average 0.11

2Annual release calculated from release rate (vCi/sec) based on 80~ plant capacityfactor.

OTABLE 2-11

COMPARISON BETWEEN 10 DINE-131 RELEASES FROM REACTORBUILDING DURING NORMAL OPERATION AND RELEASES DURING PLANT OUTAGES

NORMAL OPERATION OUTAGES RATIO TOTAL RELEASES *

F ACI L I_T_Y (;Ci/sec) juci/secj, TO NORMAL RELEASES REFERENCE

Oyster Creek 0.0029 0.014** 2.6 2

Vermont Yankee 0.0038 0.041 3.7 6

*

Ratio is based on nonnal releases occurring 80% of the year and releases duringoutages occurring 20% of the year.

**0yster Creek releases include measurements nade during drywell purge which wasassumed to occur 48 hr/yr.

O2-16

.

TABLE 2-12ANNUAL 10 DINE-131 RELEASES FROM TURDINE BUILDING VENTILATION

SYST_E,MS DURING NORMAL OPERATION

FAC_!LR RELEASE (Ci/yr)*_ REFERENCE

Vernont Yankee 0. 041 6

Oyster Creek 0.61 2

Oyster Creek 0.073 7

Oyster Creek 0.023 7

Millstore 1 0.012 8

Monticello 0.13 2

Dresden 2 0.007 2

Dresden 3 0.015 2

Quad Cities 1 0.012 9

Nine Mile Point 1 0.14 10

Average 0.11

' Annual release calculated fron release rate (LCi/sec) based on 80% plant capacityfac tor.

TACLE 2-13COMPARISON BETWEEN 10 DINE-131 RELEASES FROM TURBINE BUILDING

DURING NORMAL OPERATION AND RELEASES DURING PLANT OUTAGES

NORMAL OPERATION OUTAGES RATIO TOTAL RELEASES *

F A_CIL I]][ ('..Ci / sec) 1pCi/sec) TO NORMAL RELEASES REFERENCE

Oyster Creek 0.024 0.081** 1.8 2

Vermont Yankee 0.0013 0.0035 1.7 6

*Ratio is based on normal releases occurring B0% of the year and releases duringoutages occurring 20% of the year.

**0yster Creek releases include measurements made during drywell purge which wasassumed to occur 48 hr/yr.

2-17

TAELE 2-14ANNUAL 10 DINE-131 RELEASES FROM RADWASTE BUILDING VENTILATION

SYSTEMS, NORMAL OPERATION

FACILITY RELEASE _(CyyrJ * REFERENCE

Vermont Yankee 0.057 6

Oyster Creek 0.024 2

Oyster Creek 0.008 7

Nine Mile Point 1 0.003 10

Average 0.024

*

Annual release calculated from release rate (. Ci/sec) based on 80% plant capacity.

factor.

TABLE 2-15COMPARISON BETWEEN 10 DINE-131 RELEASES FROM RADWASTE BUILDING

DURING NORMAL OPERATION AND RELEASES DURING PLANT CUTAGES

NORMAL OPERATION OUTAGES RATIO TOTAL RELEASES *FACILITY ('..Ci / sec ) (uC1/sec) TO NORMAL RELEASES REFERENCE

Oyster Creek 0.00086 0.0031** 1.9 2

Vermont Yankee 0.0018 0.0066 1.9 6

' Ratio is based on normal releases occurring 80% of the year and releases duringoutages occurring 20% of the year.

**0yster Creek releases include measurements made during drywell purge which wasassumed to occur 48 hr/yr.

O2-18

. . . . . _ . _ _ _ _ _ . __

The same procedure was used for the radwaste and reactor huildings to Otcin total annualiodire-131 releases of 0.046 Ci/yr av 0.34 Ci/yr, respectively. The ru ctcr milding releasesare based on reactors with a CWR Mark I containnent design. Equiprent such as tre reactorcoolant cleanup prps, residual beat renoval systan, and erercency core cooling sys' ens have beenplaced in an auxiliary building in the CAR /6, Mark III containment design concept. Because ofthe potential for these systens to release radioactive raterials fron leakage during operation ortesting, the Mark I reactor building releases have been assuned to be equally divided between thecontairrent ard auxiliary buildings for BWR/6, Mark III design- The nost significant leakagepathway in the turbine building is considered to be through valve sten packings. For this reason,the leakage rate is reduced b/ a f actor of 5 if special design featJres are applied to reduce ofcollect leakage fron valves in lines 2-1/2 inches in diameter and larger.

The noble ass release tates for building ventilation systems are the average of measurementsnade at Oyster Creek (Ref. 7) and Millstone Unit I (Ref. 8). These data are given in Tables 2-16through 2-16. The noble gas release rates 'or the reactor building are equally divided betweenthe containment and auxiliary buildings to reflect the EWR/6, Mark III design.

The radioactive particulate release rates for building ventilation systens are the averageof reasurements made at Vemont Yankee, Oyster Creek, Dresden 2 & 3, and Nine Mile Point (Refs.11, 2, and 10). These d3ta are given in Tables 2-21 through 2-27. The calculated annual releaserates given above are based nn an 801 plant capacity factor, i.e., 80% nomal operation at 100fpower and 20' plant downtine. To account for differences between release rates during shutdownsof long duration (greater than one week) and those for shorter shutdowns, the 20: downtime of 73days was assumed to consist of 60 days of long-tern shutdowns and 13 days of short-term shutdowns.The releases for nomal operation were weighted to account for the operating and shutdown modesin a nanner similar to that described previously for iodine releases. The particulate releaserates in Tables 2-25 through 2-27 for the radwaste building were measured downstream of HEPAfilters and were therefore nomalized to upstream concentrations tc obtain the radwaste buildingparameter above. A DF of 15, consistent with HEPA filter DF measurements at Nine Mile Point 1,was used in the nomalization (Ref.10). As described previously for noble gases and iodine, theparticulate releases for the reactor building are equally divided between the containment andauxiliary buildings to reflect the EWR/6, Mark III contain ent design.

2.2.5 IODINE INPUT TO THE MAIN CONDENSER OFFGAS TREATMENT SYSTEM

2.2.5.1 Parameter

The iodine-131 input to the main condenser offgas treatment system, downstream of theair ejectors, is 5 Ci/yr.

2.2.5.2 Bases

Table 2-28 lists the measured icdine-131 releases and integrated thermal power outputs forBWRs with themal ratings exceeding 1000 MWt, with nore than one year of plant operation andwithout main condenser offgas treatment. The average ratio of the iodine-131 release in Ci/yrto the integrated therral power in mwd for the years 1972, 1973, and 1974 is approximately5 x 10-6 Ci/%d per year. Cased on a power rating of 3400 MWt and an 80 plant capacity factor,the iodine-131 release from the main condenser air ejector is approximately 5 Ci/yr.

2.2.6 TURBINE GLAND SEALING SYSTEM EXHAUST

2.2.6.1 Parameter

Use 0.1% of the main steam flow and assume 99 iodine removal due to radiciodine absorptionby condensing steam in the turbine gland seal condenser. If clean sglandseal,theradioiodinesourcetermisnegligible(lessthan10geamissuppliedtotheCi/yr). If sealing steamis supplied from a low-activity source, i.e., steam produced from demineralized condensate, con-sider the flow to be zero.

2.2.6.2 Cases

A design value of 0.1% of the main steam flow is used for the turbine gland seal steam flow(Ref. 12). A large fraction of the iodine is expected to be absorbed by the liquid phase duringcondensation of the gland seal steam. In the absence of radiciodine reasurements, it is assunedthat the gland seal condenser will remove approximately 99% of the iodine from the noncondensablestream due to iodine adsorption by the condensing water. It is further assumed that the iodine

2-19

-.

.._....

O.

TABLE 2-16RELEASES OF f0BLE GASES FROM THE

-REACTOR BUILDING VENTIL % TION SYSTEMECl/sec)

MILLSTONE OYSTER CREEKfjUCLIDE DT[2TT72~ O'7724'772 T)T/18772-- AVERAGE

Kr-85m 0.44 0.07 NR 0.25fr-87 0.29 0.19 NR 0.24Kr-88 0.56 0.20 0.02 0.25Xe-133 0.67 0.36 15 5.3Xe-135m 3.0 4.1 NR 3.6Xe-135 3.1 2.9 2.1 2.7Xe-133 0.87 NR 0.3 0.6

NR - Not reported.

TABLE 2-17RELEASES OF NOBLE GASES FROM THE

-TURBINE BUILDING VENTILATION SYSTEf1- 'Tt.C i / sect --

MILLSTONE OYSTER CREEK

]R L 7]_ (Ref. 6 L AVERAGEyCLIDEf f

Kr-85m 2.7 NR 2,7Kr-87 5.3 NR 5.3Kr-83 8.2 10 9.1Xe-133 7.4 12 10Xe-135m 29 23 26Xe-135 25 25 25Xe-138 63 52 58

NR - Not reported.

TABLE 2-18RELEASES OF NOBLE GASES FR0f1 THE

RANASTE BUILDING VENTILATION SYSTEM(tC17 sic)

MILLSTONE OYSTER CREEKNUCLIDE Qef.7) (Ref. 6) AVERAGE

Xe-133 0.25 0.56 0.4

Xe-135 2.0 1.5 1.8

92-20

.. .-- -._ _ _ _ _ _

TABLE 2-19PARTICULATE RELEASE PATES FRCM REACTOR BUILDING

VENTILATION SYSTEM, NORMAL OPERATION (Refs. 40, 2)

(10 pCi/sec)

@CLIDE VERMCNT YANKEE OYSTER CREEK AVERAGE'

Co-60 30 930 48000-58 4.6 56 30Cr-51 5 5.4 5.2Mn-54 21 370 196Fe-59 5 47 26

Zn-65 35 11 23Zr-95 2 NR 2

Sr-89 NA 6.8 6.8Sr-90 NA 0. 3 0.3Sb-124 NR ll 11

Cs-134 18 18 18Cs-136 13 NR 13Cs-137 44 25 35Ba-140 25 1.8 13Ce-141 NR 4.3 4.3

fiA - Not analyzed.NR - Nc t reported.

TABLE 2-20PARTICULATE RELEASE RATES FROM REACTOR BUILDING

VENTILATIONSYSTEM,SHORT-TERMSHUTDCWN(2 DAYS / EVENT)(REFS.11,21

(10 * LC1/sec)

NUCLIDE VERMONT YANKEE * OYSTER CREEK AVERAGE

Co-60 104 8100 4100Co-58 71 37 54Cr-51 31 37 34Ma-54 131 23 77Fe-59 31 37 34

Zn-65 57 19 38Zr-95 31 NR 31

5r-89 NA NA NA

Sr-90 NA NA NA

Sb-124 NR 37 37

Cs-134 51 12000 6030Cs-136 33 NR 33Cs-137 97 16000 8050ee-i40 i2 780 396Ce-141 NR 37 37

NA - Not analyzed.NR - Not reported.

*

Initial drywell purge via SGTS not sampled.

2-21

- - - - - -

_ _ . _ . . _

. .._ _..._._ ___ _ _. _

TABLE 2-21PARTICULATE RELEASE RATES FROM REACTOR BUILDING

VENTILATIONSYSTEM,REFUELINGSHUTDOWN(REFS.11,y

(10'b LC1/sec)

NUCLIDE VERMONT YANKEE OYSTER CREE _K, AVERAGE

Co-60 480 590 534Co-58 77 34 56Cr-51 120 43 81Mn-54 55 240 150Fe-59 21 6 14

In-65 1500 2.7 770Zr-95 150 NR 152Sr-89 NA 2 2Sr-90 NA 0.36 0.36Sb-124 NR 14 14

Cs-134 160 20 90Cs-136 39 NR 39Cs-137 380 34 210Ba-140 27 2 14Ce-141 NR 11 11

t.A - Not analyzed.NR - Not reported.

TABLE 2-22PARTICULATE RELEASE RATES FROM TURBINE BUILDING

VENTILATION SYSTEM, NORML OPERATION (REFS.11, 2)

(10-6 t.C1/sec )

VERMONT OYSTER DRESDEN DRESDENNUCLIDE YANKEE CREEK 2 3 AVERAGE

Co-60 3.6 72 4.5 6.0 22Co-58 2.7 6.7 NR 48 20Cr-51 NR 840 NR 160 500Mn-54 1.7 8.4 NR 5 5Fe-59 NR 6.7 NR NR 6.7

In-65 NR 3.3 NR NR 3.3Zr-95 NR NR NR 4.0 4.0Sr-89 NA 610 48 36 230Sr-90 NA 1.3 0.3 0.25 0.6Sb-124 NR 6.7 NR NR 6.7

Cs-134 2.9 15 NR 3.0 7Cs-136 NR NR NR NR *

Cs-137 1.9 42 1.8 10 14Ba -140 133 1400 115 65 430Ce-141 NR 42 5.5 5 18

Td - Not analyzed.NR - Not reported.*

Estimated to be less than 1 x 10-6 Ci/sec. A value of 1 x 10-6 t.C1/sec wasused to calculate annual release.

O2-22

TABLE 2-23PARTICULATE RELEASE RATES FR0fl TURBINE BUILDING

VENTIL ATION SYSTEM, SHORT-TERM SHUTDOWN (REFS.11, 2)-6

(10 LCi/sec)

NUCLICE VERMONT YANKEE OYSTER CREEK AVERAGE

Co-60 5.5 46 26

Co-58 1.5 46 24

Cr 51 NR 46 46

Mri-54 3.5 15 9.2 *

Fe-59 NR 46 46

Zri-65 NR 23 23*

Zr-95 NR NR

Sr-89 NA NA NA

Sr-90 NA NA NA

Sb-124 NR 46 46

Cs-134 1.8 170 86*

Cs-136 NR firCs-137 4.5 240 120

Ba-140 25 110 68

Ce-141 NR 46 46

7Cliot analyzed.NR - Not reported.

Estimated to be less than 10-6 LCi/sec. A value of 1 x 10-6 t.Ci/sec was*

used to calculate annual release.

TABLE 2-24PARTICULATE RELEASE RATES FROM TURBINE BUILDING

VENTILATION SYSTEM, REFUELING SHUTDOW4 (REFS.11, 2)

(10-6 Ci/sec)

_NU..CL I D E VERMONT YANKEE OYSTER CREEK AVERAGE

Co-60 3.5 490 250Co-58 1 29 15

Cr-51 NR 72 72

Mn-54 1 180 90Fe-59 NR 49 49

Zn-65 NR 11 11*

Zr OS NR NR

Sr-89 NA 2.5 2.5Sr-90 NA 0.25 0.25Sb-124 NR 9.5 9.5

Cs-134 2.5 26 14

Cs-136 NR NR *

Cs-137 5 57 31

Ba-140 3.6 3.4 3.5Ce-141 NR 20 20

f.A - Not analyzed.NR - Not reported.

Estimated to be less than 10-6 t.Ci / sec . A value of 1 x 10-6 uCi/sec*

was used to calculate annual release.

O2-23

. .. . . . _ _ . . . _ _ _ _ _ _ _ ___

TABLE 2-25PARTICULATE RELEASE RATE * FR0f1 RA0 WASTE CUILDING

VENTILATIONSYSTE?1,NORMALOPERATION(REFS.11,2,81-6

(10 Ci/sec)

V E PJiONT OYSTER T41NE filleNUCLIDE YANKEE CREEK P0!iiT AVERAGE

Co-60 0.7 55 83 .. 46Co-58 0.64 1.5 2.0 1.4Cr-51 NR 5.3 NR .. 5.3fin -53 0.43 14 8.7 7.7Fe-59 NR 0.72 NR 0.72

Zn-65 1 0.63 NR 0.82Zr-95 NR NR NR ***

Sr-89 NA 0.72 NR 0.72Sr-90 NA 0.72 NR 0.72Sb-124 NR NR NR * ***

Cs-134 0.8 3 33 12Cs-136 1 NR NR 1

Cs-137 1.9 6.8 57 22Ca-140 3.7 T4R NR 3.7Ce-141 NR 0.72 NR 0.72

~I T -~Isot reported.NA - Not analyzed.

*

Downstream of HEPA filters.**

Calculated based on known filter inlet activity concentration using DF of 15.*** -6 -6Estimated to be less than 1 x 10 aCi/sec. A value of 1 x 10 was used

to calculate annual release.

TABLE 2-26PARTICULATE RELEASE RATE * FROM RADWASTE BUILDING

VENTILATIONSYSTEM,SHORT-TERMSHUTDOWN(REFS.11,21

(10-6 aci/sec)

NUCLIDE VEPMONT YA'4KEE OYSTER CREEK AVERAGE

Co-60 1.1 68 35Co-58 0.95 7.2 4.1Cr-51 NR 7.2 7.2lin-54 0.64 19 9.8Fe-59 NR 7.2 7.2

Zn-65 1 4.3 2.7Zr-95 NR NR **

Sr-89 NA NA NASr-90 NA NA NASb-124 MR NR **

Cs-134 1.3 7.2 4.3Cs-136 1.1 NR 1.1Cs-137 8.6 7.2 8.0Ba-140 0.92 NR 0.92Ce-141 NR 7.2 7.2

NA - Not analyzed.NR - Not reported.*

Downstream of HEPA filters.** Estimated to be 1 css than 10-6 :.C1/sec. A value of 1 x 10'0 pCi/sec

was used to calculate annual release.

2-24

. . . . . .

TABLE 2-27PARTICULATE RELEASE RATE * FROM RADWASTE CUILDING

VENTILATIONSYSTEM,REFUELINGSHUTD0Vi(REFS.11,21-6

(10 .Ci/sec).

NUCLIDE VERMONT YANKEE OYSTER CREEK AVERAGE

Co-60 0.8 1850 920Co-58 0.6 114 57Cr-51 NR 92 92Mn-54 0.6 860 430fe-59 NR 250 250

In-65 1 29 15Zr-95 NR NR **

Sr-89 NA 1.8 1.8Sr-90 NA 0.08 0.08Sb-124 NR NR **

Cs-134 1 15 8Cs-136 1 NR 1Cs-137 3.9 34 19Ba-140 1.1 NR 1.1Ce-141 hR 29 29

NR - Not reported,hA - Not analyzed.*

Downstream of HEPA filters**

Estinated to be less than 10-6 :.C 1/ s ec . A value of 1 x 10-6 t.C1/sec wasused to calculate annual release.

s

2-25

--

. _ .

_ _ _ . . . .

TABLE 2-28IODINE-131 RELEASES FROM THE MAIN CONDENSER A!R EJECTOR 5*

1972 1973 1974

R6I~NE IKTIMATTD EliTNE INTEGXTED TO' DINE INTlMXilDCi/ r RELEASE THERMAL POWER C i /yr_RELEASE THERP.AL POWER Ci/yr RELEASE THERMAL POWER1[y$d 6 T6 6 5 F (Ci/d (10 g.3 ) 10 mwdFACILITY {Ci/yr). (10 MW d]__. 10 mwd (C1/yr) (10 t'Wd)

Oyster Creek 6.3 0.542 12.0 6.7 0.453 14.0 3.3 0.46 7.2

Nine Mile Point 1 0.89 0.417 2.0 1.9 0.457 4.4 0.7 0.43 1.7

Millstone 1 1.2 0.404 3.0 0.15 0.248 0.6 0.29 0.47 0.6

Dresden 2, 3** 5.1 1.05 4.6 9.8 1.18 8.3 4.0 0.91 4.4

Monticello 0.58 0.454 1.3 1.2 0.413 2.9 5.7 0.34 17.0m

h Pilgrim 1 *** 0.46 0.523 0.9 1.4 0.25 5.8

*** 5.5 1.32 4.2 S.2 1.09 7.5Quad Cities 1, 2**

Average 4.5 5.4 6.2

Cor:bined average for 1972, 1973, 1974 -- 5.4 x 10-6 ,

.Data from semiannual operating for 1972, 1973, 1974 for facilities listed.

**Two-unit plants with a single stack.

***Not included in 1972 average because plants had not achieved a full year of operation.

O__ _ . O O

. . . . . _ _ . ._ . __ .. . . .. .. _. . . . . . . . . . . . . .

source terr is regligible when clean stean (conradicattive stean from an auxiliary stean supplysystr' ') is usej for the gland seal . Because of noble g3s renoval in the rain condenser, iodicereinval by thc cor.densate denineralizers, and partitioning in the boiler, steam prc1Jced f romdemineral1 zed ccndonsate is considered to t:e cic.n steam. Data in Tables 2-29 and 2-31 showthe release of radicactive particulates fron the turbine gland seal te be negligible.

TABLE 2-29PARTICULATE RELEASE RATE FROM VERMONT YA'.KEE MECHANICAL

VACUUM PUMP AND CLAND EXHAUST CONDEN5ER VENT,SHOPT-TERM SHUTD0Zi

-6(10 ;Ci/sec)

RELEASENUCLIDE PATE

Cs-134 1.2Cs-136 1.1Cs-137 4.9Ca-140 2.9

TACLE 2-30PARTICULATE RELEASE RATE FROM VERMONT YANLEE VACUUM PUMP AND

GLAND EXHAUST CONDENSER VENT, REFUELING 5HUTDO W-6

(10 ..C i / sec )

RELEASE

NUCLIDE RATE

Cs-134 0.45Cs-136 0.13Cs-137 1.0Ba-140 1.6

2.2.7 MAIN CONDENSER MECHANICAL VACUUM PUMP

2.2.7.1 Parameter

Xe-133 23D0 Ci/yr per reactor

Xe-i35 350 Ci/yr per resctor

1-131 0.03 Ci/yr per reactor

2.2.7.2 Bases

The release values for Xe-133 and Xe-135 were derived from Dresden 1 operating data(Ref. 13). These data indicate th3t approximately 520 Ci of Xe-133 and 85 Ci of Xe-135 werereleased with the Dresden 1 mechanical vacuum pump ef fluent when establishing main condenservacuum following a plant shutdown. "t the point in the fuel cycle where the data were taken,the reactor was operating at an of fgas rate of approximately 60,000 aci/sec.

The release value for iodine-131 was derived from operating data taken at Vermont Yankee(Ref. 6). These data indicate that the release rate for iodine-131 due to rechanical vacuumpump operation during plant startup was approximately 0.09 LCi/sec. Information from reactoroperators indicates that the rechanical vacuum pumps are operated periodically during plant shut-downs to maintain a slight condenser vacuum and prevent leakage from the condenser to theturbine building. A total of 24 hours of vacuum pump operation per shutdown was assumed forpurposes of calculating iodine releases. The annual release estimates for noble cases andiodine-131 are based on four shutdowns per year. Data in Tables 2-29 and 2-30 show thz releaseof radioactive particulates from the rechanical vacuum pump to be negligible.

2-27

2.2.8 AIR INLEAKM E TO THE MAIN CONDENSER

2.2.8.1 Pa rame ter

310 f t / min air inleakage for each condenser shell of the main condenser.

2.2.8.2 Bases

Air inleakage to the main condenser is a function of the number of condenser shells and ofthe station housekeeping performed to reduce inleakage and maintain low inleakage levels. Oper-ating data for inleakage vary widely. For example, Oyster Creek and Dresden 2 air inleakage

3measurements during early operation bdicated that leakage rates were 4 to 250 ft / min. Ygt.Dresden 1 inleakage during full-power operation has been measured to be approximately 3 f tJ/ min.

A large amou. of air inleakage data has been evaluated for TVA power plants, where inleak-age measurements havi. been recorded for several years. Air inleakage measurements for six TVAplants, representing more than 40 years of cumulative experience, indicate leakage rates ranging

3from 4 to 12 f t / min per condenser shell.

3An air leakage rate of 10 f t / min per condenser shell is assumed for nuclear power plantsunder normal operating conditions, including anticipated operational occurrences, averaged overthe life of the plant.

2.2.9 HOLDUP TIMES FOR CHARC0AL DELAY SYSTEMS

2.2.9.1 Pa rame ter

T = 0.26 f1E/10 N

where

K is the dynamic adsorption coefficient, in cm /g (see chart below);

M is the mass of charcoal adsorber, in thousands of pounds;

T is the holdup time, in hours; and

10 N is the number of sholls in main condenser tines 10 f t / min inleakage per shell .3Dynamic adsorption coefficients (in cm /g) are as follows:

OPERATING 77'F CPERATING 77 F OPERATING 0'FDEW POINT 45*F DEW POINT O'F DEW POINT -20 F

Kr 18.5 25 105

Xe 330 440 2410

2.2.9.2 Eases

Charcoal delay systems are evaluated using the above equation and dynamic adsorptioncoefficients. T = MK/10 N is a standard equation for the calculation of delay times in charcoaladsorption systems (Ref. 14). The dynamic adsorption coefficients (K values) for Xe and Kr aredependent en operating temperature and moisture content (Refs. 15 and 16) in the charcoal, asindicated by the values in the above parameter. The K values represent a composite of data fromoperating reactor charcoal delay systems (Ref s.17 and 18) and reports concerning charcoaladsorption systems (Refs. 14, 15,16,18,19, 20, and 21 ) .

The factors influencing the selection e' /al gs are

*

1. Operational data from kRB (" J, L = 260-430) (Ref. 17) and fromTessKWL (K = 30, F:Xe *

Kr

-eKernkraftwerk RWE - Bayernwerk GmbH.

**Kernkraftwerk Lingen GmbH.

2-28

2. The effect of temperature on the dynamic adsorption coefficients, indicatedin Figure 2-2 (Ref.15).

3. The effect of moisture on the dynamic adsorption coef ficients, shown in Figure 2-3.The affinity of charcoal for moisture, shown in Figure 2-4

4. The variation in K values between researchers and between the types cf charcoal used inthese systems (Refs. 15, 22, and 23). Because of the variation in K values based ondif ferent types of charcoal and the data reported, average values taken from KRB andKWL data shown in Figure 2-2 are used.

The 'nef ficient 0.26 adjusts the units and was calculated as follows:

T(hr) = M(10 lb) K(cm /q)(454 9/lb)(3.53 x 10 ft /cm3)3 3 3

3(10 f t / min-shell)(N shells)(60 min /hr)

T = 0.26 h-

2.2.10 DECONTAMINATION FACTCRS FOR CRYOGENIC DISTILLATION

2.2.10.1 Parameter

NUCLIDES_ DECONTAMINATION FACTOR

4I, Xe 1 x 10

3Kr 4 x 10

The holdup times are calculated on the basis of gas residence time in the system prior torelease.

2.2.10.2 Bases

A DF of 10 for iodine and xenon and a DF of 4 x 10 for krypton are used for a crycgenicdistillation system. The values are based on data submitted in Amendment 11 to the PSAR for theHope Creek Nuclear Generating Station, Units I and 2 (Ref. 24), which were derived from a pro-prietary report (Ref. 25) of Air Produ::ts and Chemical, Inc. The PSAR states that a maximum of0.025; Kr (DF = 4 x 10 ) and 0.01 Xe (Dr = 10 ) will escape from the system. These decon-tamination factors are considered reasonable.

2.2.11 DECONTAMINATION FACTOR FOR THE CHARC0AL ADSORSERS AND HEPA FILTERS

2.2.11.1 Parameter

Use a nominal DF of 10 for iodine removal by charcoal adsorbers subject to applicant'scommitment to provide data to support charcoal bed deoth for renoval efficiency used. Use a DFof 100 for particulate removal by HEPA filtration.

2.2.11.2 Bases

Only very limited data are available concerning the removal of iodine at trate ccncentrations

(10'I2 rCi/cm ). The majority of the available data concerning iodine adsorption on activated3

carbon is addressed toward iodine concentrations that are orders of nagnitude higher than thelevels of concern in source term evaluations for normal operations.

The iodine removal efficiency of activated carbon varies greatly, even between carbon in thesame lot (Ref. 23). This lack of consistency makes the comparison of reported data _tfficult.The difficulty is compounded by sampling and measurement problems encountered when working withthe low iodine concentrations involved. Accordingly, useful infomation concerning the adsorptionof trace quantities of iodine is limited (Ref. 26). In addition, when iodine is present in lowconcentrations, ;mpurities in the carrier gas may be adsorbed by the charcoal causing competitionbetween the iodine and impurities. Over long periods of time (i .e. , several months), tuch impa-

G adsorption coefficient (Ref. 26) and shortening the time before iodine breaktnrough.rities may saturate (poison) the adsorber (Ref. 27), thereby decreasing the apparent iodine

Channelingthrough the charcoal Ded via passages caused by poor initial bed packing or by settling duringuse will also decrease adsorber efficiency.

2-29

10' _ -

=Z_

_

_

10' _g

: a fu -

OAm - 4s # 0I 108 -

8 =u :z -

9 -

H O$ -

8 Wo 108 -

< : O

k -

O -

8 -

$ VDATA FROM UNDERHILL-

U

10' - O DATA FROM BROWNING

E | || |- +100 42 0 -40~

l || 1_

*F

! ! I I10'

O 0.001 0.002 0.003 0.004 0.005 0.006 0.007

RECIPROCAL TEMPERATURE (1/'K)

FIGURE 2-2

KRYPTON AND XENON K VALUES AS A FUNCTIONOF RECIPROCAL TEMPERATURE

O2-30

_..._...._ __ _ _ _ __ ____ _._______._ _ _ . _ _

60

50

' NsD 30 *

'

g M '>-

20

OMBIA-G CH ARCOAL. 8-14 MESH10

KRYPTON-85 WITH OXYGEN SWEEP GAS (25'C)

0 1 2 3 4 5 6

MOISTURE CONTENT OF CHARCOAL (wt%)

FIGURE 2-3

EFFECT OF MOISTURE CONTENT ON THEDYNAMIC ADSORPTION COEFFICIENT

45

40 - p**~h 35 - / ADSORPTION-

/30 -

WATER ADSORPTION@ DESORPTION AND DESORPTION

25 - / ISOTHERMS ONmC | MACAR G210 AFTER@ 20 -

| REPEATED ADSORP-o TION AND DE-< 15 - f SORPTIONe (EQUILIBRIUM)

I DYNAMIC$ 10 -

[< DETERMINATION3 5 - e 15-40' C RANGE

O~~ P ' ' ' ' ' '

O 10 20 30 40 50 60 70 80 90 100 110 120

AIR RELATIVE HUMIDITY

FIGURE 2-4

CHARCOAL MOISTURE AS A FUNCTIONOF RELATIVE HUMIDITY

2-31

. . . . _ _ _ _ _.

Data being developed for iodine renoval at trace levels may be used by applicants to substan-tiate the iodine removal efficiencies. The DF of 100 for HEPA filters is consistent with expectedparticulate renoval efficiencies under normal operating conditions

The DF assigned the charcoal adsorbers and HEPA filters considers in-place leak testingto be conducted before use and routinely thereat ter, as recorrended in ANSI Standard N510" Testing of Nuclear Air Cleaning Systens" (Ref. 28).

2.2.12 LIQUID WASTE INPUTS

2.2.12.1 Para p ter

The flow rates listed in Table 2-31 are used as inputs to the liquid radwaste treatmentsystem. Flows that car".ot be standardized are added to those listed in Table 2-31 to fit aniniividual applite .un. Disposition of liquid streams to the appropriate collection tanks isbased on the applicant's intended method of processing.

?.2.12.2 Bases

The liquid waste inputs are based on the values proposed by the ANS 52.3 Working Group draftstandard for boiling water reactor liquid radwaste system (Ref. 29). Activity inputs are basedcn the reactor coolant concentrations proposed by ANS 18.1 Working Group draf t standard (Ref.1)boiling water reactor source terms given in Parameter 2.2.3. The values given are those thatwere judged to be representative for a typical BWR design.

2.2.13 CHEMICAL WASTES FROM REGENERATION OF CONDENSATE DEMINERALIZERS

2.2.13.1 Parameter

1. Liquid flows to demineralizer at main steam activity.

2- All nuclides removed from the reactor coolant by the demineralizers are removed fromthe resins during regeneration.

3. Use a regeneration cycle of 3.5 days times the number of demineralizers. (For systemsusing ultrasonic resin cleaning, use 7 days times the number of demineralizers.)

2.2.13.2 Ca_s e,s

Operating data f rom Dresden 2 and 3 indicate that one condensate denineralizer regenerationoccurs every 3.5 days (Ref. 30).

All material exchanged or filtered out by the resins between regenerations is contained inthe reqenerant waste streams; therefore, each regeneration will have approximately the sameef fectiveness (i.e. , each regeneration removes all material collected since the pre 'ious regen-eration, leaving a constant quantity of material on the resins after regeneration). Regenerationcycles are normally controlled by particulate buildup on resin beds, resulting in h gh pressuredrops across the bed. If ultrasonic resin cleaning is used to renove insolubles between regen-erations, the ef fective bed life between regenerations will be approximately doubled based onpreliminary operatins; data from Dresden and Pilgrim 1 (Refs. 31 and 32).

2.2.14 DETERGENT WASTE

2.2.14.1 Parameter

for plants with an onsite laundry, use 450 gal / day per reactor of detergent waste and theradionuclide distribution given in Table 2-32 for untreated detergent wastes. The quantitiesshown in Table 2-32 are added to the adjusted liquid source term. They are reduced for anytreatraent provided using the appropria*? decontamination factors.

2.2.14.2 Ba ses

in the evaluation of liquid radwaste treatment systems, it is assumed that detergent wastes(laundry drains, personnel and equipment decontamination drains, and cask cleaning drains) willtotal approximately 450 gal / day per reactor. The radionuclide distribution given in Table 2-32is based on data f rom Ginna given in Tab!e 2-33.

O2-32

- - _ _ _ _ . _ _ _ _ _ _ _ . . _ _ _ . . . . . .

TABLE 2-31BWR LIQUID WASTES

FLOW RATE(gal / day)

FRACTION OF

PLANT WITH PLANT WITHOUT PRIMARY COOLANT

ULTRASONIC RESIN ULTRASONIC RESIN ACTIVITY

SOURCE CLEANER CLEANER (PCA)

Equirment Drains

Drywell 3,400 3,400 1

Containment, auxiliary 3,720 3.720 0.01

building, and fuel poolRadwaste building 1,060 1,060 0.01

Turbine building 2,960 2,969 0.01.

Ultrasonic resin cleaner 15,000 - 0.05

Resin rinse 2,500 5,000 0.002

Subtotal 28,640 16,140 -

Floor Drains

Drywell 700 700 1

Containment, auxiliary 2, 000 2,000 0.01

building, and fuel poolRadwaste building 1,000 1,000 0.01

Turbine building 2,000 2,000 0.01

Subtotal 5,700 5,700 -

Other

Cleanup phase separator decant 640 640 0.002

**Laundry drains 450 450

Lab drains 500 500 0.02

* ***Regenerants 1,700 3,400

2 x 10-6Condensate backwash * - 8,100

Chemical lab waste 100 100 0.02

Total 37,730 26,930

* - Deep-bed condensate demineralizers.** - Listed in BWR-GALE Code, see Table 2-32.

*** - Calculated by BWR-GALE Code.+ - Filter /demineralizer (Powdex) condensate demineralizer.

2-33

TABLE 2-32CALCULATED ANNUAL RELEASE OF RADI0 ACTIVE MATERIALS IN

UNTREATED DETERGENT WASTE FROM A BWR AND PWR

NUCLIDE Ci/yr

Mn-54 0.001

Co-58 0.004

Co-60 0.009

Zr-95 0.0014

Nb-95 0.002

Ru-103 0.00014

Ru-106 0.0024

Ag-110n 0.00044

I-131 0.0006

Cs-134 0.013

Cs-137 0.024

Cs-144 0.005

Total 10.06

92-34

TABLE 2-33GIM4A NUCLEAR POWER STATION

RADIONUCLICE DISTRIBUTION OF DETERGENT WASTEFOR PERIOD CCTOBER 1972 _ JULY 1973 (Ref. 33)

10/26/72 11/26/72 1/01/73 2/01/73 3/01/73 4/01/73 5/01/73 6/01/73 7/01/73

to to to to to to to to to MONTHLY

NUCLIDE 11/25/72 12/31/72 1/31/73 2/28/73 3/ 31/73 4/30/73 5/31/73 6/30/73_ 7/31/73 AVG. MAX._ MIN.

Cs-137 2.93 0.87 0.31 1.02 1.59 12.8 0.55 0.48 1.58 2.46 12.8 0.31

Cs-134 2.04 0.48 0.19 0.53 0.82 7.0 0.26 0.21 0.60 1.35 7.0 0.19

Co-60 1.04 1.04 0.24 0.92 0.86 2.1 0.23 0.16 1.54 0.90 2.1 0.16

Co-58 0.82 0.74 0.10 0.17 1.32 0.43 0.08 0.02 0.03 0.4' l.3 0.02

Mn-54 - 0.21 0.05 0.12 0.11 0.25 0.06 - 0.15 0 0.25 0.05.

Zr-95 0.59 0.25 0.07 0.09 0.10 0.17 - - - 0.14 0.59 0.07

Nb-95 0.49 0.39 0.09 0.16 0.17 0.35 0.06 - 0.11 0.20 0.49 0.06

I-131 - - - - - - - - 0.06 0.06 0.06 -

'? Ce-144 1.05 0.76 0.17 0.55 0.43 1.50 0.26 0.08 0.41 0.53 1.50 0.08

M Ce-141 - - 0.01 - - - - - - 0.001 0.01 -

Ru-106 1.91 - 0.30 - - - - - - 0.25 1.9 0.30

Ru-103 - - 0.02 0.019 0.09 - - - - 0.014 0.09 0.23

Ag-ll0m - - 0.08 0.02 0.07 0.23 - - - 0.05 0.23 0.02

Cr-51 - - - - - - - - - - - -

Mo-99 - - - 0.005 - - - - - 0.005 0.005 -

Total 10.9 4.7 1.6 3.4 5.6 24.8 1.5 0.9 4.5 6.4 24.8 0.94

MonthlyFlow (gal) 24.380 6,770 1,800 10,680 10,290 8,620 5,220 3,400 5,200 8,4' 0 24,380 1,800c

Oaily- - - - - - - 280 810 60

Flow (gal) - -

2.2.15 1RITInM RELEASES

2.2.15.1 Parameter

The total tritium release through liquid and vapor pathways is 0.025 Ci/yr per MWt. Thequantity of tritium released through the liquid pathway is based on the calculated volume ofliquid released with a tritium concentration of 0.01 uCi/cm3 up to a maximum of 50% of the totalquantity of tritium calculated to be available for release. The remainder of the tritium pro-duced is assumed to be released as a vapor from the plant vent.

2.2.15.2 Bases

Table 2-34 lists the measured liquid and gaseous tritium releases from CWRs for 1972, 1973,and 1974. Based on the total tritium release for each facility, the integrated thermal powerproduced during the year, and a plant capacity factor of 80%, the total annual release is approxi-nately 0.025 Ci/MWt through the combined liquid and vapor pathways.

The tritium can be released either in liquid wastes or as a vapor with ventilation efflu-ents, the relative amounts being dependent on liquid recycle practices. The tritium concen-tration assumed for the liquid releases is based on the tritium concentration given in Table 2-2and is the value recorFended by the ANS 18.1 Working Group for BWR source term calculations. Thisvalue is based on a review of tritium concentrations in BWR liquid streams (Ref.1). Thisevaluation assumes steady-state conditions; i.e., the tritium inventory in the plant remainsconstant and the tritium entering the reactor water is released through the liquid and vaporpathways.

2.? 16 DECONTAMINATION FACTORS FOR DEMINERALIZERS

2.16.1 Parameter

The following are the expected decontamination factors (DFs) for demineralizers used onprocess or radwaste streams.

DECONTAMINATION FACTORS *OTHER

DEMINERALIZER TYPE ANION Cs, Rb NUCLIDES

MixedBed(H+OH}

Reactor coolant 10 2 10

Condensate 10 2 10

2 2Clean waste 10 (10) 10(10) 10 (10)2Dirty waste (floor drains) 10 (10) 2(10) 10 (10)

Cation Bed (H*)

2Dirty waste 1(1) 10(10) 10 (10)Powdex (any systen) 10(10) 2(10) 10(10)

*

For an evaporator poli .iing demineralizer or for the second demineralizer in series,the DF is given in the :irentheses.

2.2.16.2 Bases

The DFs for demineralizers used in the evaluation of liquid waste treatment systems arederived from the findings of a generic review in the nuclear industry by ORNL (Ref. 34). Thisreference contains operating and theoretical data that provide a basis for the numerical valuesassigned. The infomation contained in this report was projected to obtain a performance valueexpected over an extended period of operation. It was also considered that attempts to extendthe service life of the resin will reduce the DFs below those expected under controlled operatingconditions.

O2-36

. _ . _ . . . . . . . . . . _ _ _ _ . . . . . _ _ _ _ _ . .

TABLE 2-34TRITIUM RELEASE DATA FROM OPERATING SWRs*

NUCLEAR RATIO 0F TOTAL TRITlUMTHERMAL OUTPUT TRITIUM RELEASED (Cilyr) RELEASED (C1/yr-MWt at

(106 MWdt) 807 capacity)POWER STARTUP GASEOUS LIQUID

REACTOR NAME (MWt) DATE 1972 1973 1974 1972 T97T h7T 1972 1973 197T 1972 1973 1974

Oresden 1 700 1959 0.16 0.10 0.05 ** ** ** 43 18.5 13.8 0.078 0.054 0.11

Oyster Creek 1930 1969 0.54 0.45 0.46 0.8 0.4 0.4 62 36.6 14.1 0.034 0.024 0.009

** 28 46.5 18.7 0.032 0.047 0.012Nine Mile Point 1850 1969 0.42 0.46 0.44 18 26.8

Dresden 2, 3 2577 1970/71 1.04 1.18 0.91 31 10 11 26 26 22.6 0.016 0.009 0.011

Millstone 1 2011 1970 0.40 0.25 0.47 4.2 1.7 2.8 21 3.7 24.1 0.018 0. 006 0.017

7 Mor,ticello 1670 1970 0.46 0.41 0.37 12 ** ** *** *** *** 0.003 - -

MVermont Yankee 1593 1972 0.06 0.18 0.34 + 1.0 0.9 t 0.2 ** - 0.002 0.001

Quad Cities 1, 2 2511 1971/72 0.52 1.32 1.09 4.7 34 " 29 4.7 24.5 34 0.005 10.013 0.017

Pilgrim 1 1998 1972 0.11 0.53 0.25 ** 14 8 4.2 0.4 10.5 0.011 0.008 0.022

Average 0.025 t0.020 0.025

*0ata from semiannual reports of reactors listed.

**No reported data.

***No measurement made.

iPrior to first rore refueling.

" Measured only during the July-December 1973 period.

_. . . . _ _ . _ _ _ . . _ . . _ _ . . . _ . . _ . . . . . . _ _ _ . . . . . _ . . . _ . . . . . . . . . . .

The following operating conditions were factored into the evaluation of demineralizerperformance:

1. In general, the CF for waste treatment systems will vary with the quality of the wa -to be treated, increasing with increasing activity. Normally, when two demineralizers are usedin series, the first demineralizer will have a higher CF than the second. However, the data inReference 34 indicate that Cs and Rb will be more strongly exchanged in the second demineralizerin series than in the first, since the concentration of preferentially exchanged competingnuclides is reduced.

2. As indicated in Reference 34, compounds of Y, Mo, and Tc fom colloida? particles thattend to plate out cn solid surfaces. Mechanisms such as plateout on the relativel; large surfacearea provided by demineralizer resin lead to removal of these nuclides to the degree datedabove. An analysis of effluent release data indicates that these nuclides, although present inthe primary coolant, are normally undetectable in the effluent streams.

2.2.17 DECONTAMINATION FACTORS FOR EVAPORATORS

2.2.17.1 Pa rameter

ALL NUCLICESEXCEPT IODINE IODINE

3Misceib ne% s radwaste evaporator 10 10

2 2Separate evaporator for detergent 10 10wastes

2.2.17.2 Bases

The decontamination factors for evaporators are derived from the findings of a genericreview by ORNL of evaporators used in the nuclear industry (Ref. 35). The principal conclusionsreached in the report are

41. Decontamination factors of 10 can be expected for nonvolatile radioactive nuclidesin a single-stage evaporator.

2. Decontamination factors for iodine are a factor of 10 less than the DFs for non-volatile nuclides.

3. Decontamination factors for wastes containing detergents that tend to foam are a factorof 10 to 100 lower than DFs expected for nonfoaming wastes.

These conclusions have been extended to take into account the following factors:41. For nonvolatile nuclides in a nonfoaming solution, a DF of 10 is used.

2. If an evaporator is used for detergent wastes, the DF for the evaporator is reducedto 100 to reflect carryover due to foaming, which will reduce the DF.

2.2.18 DECONTAMINATION FACTORS FOR REVERSE OSMOSIS

2.2.18.1 Parameter

Overall DF of 30 for laundry wastes and DF of 10 for other liquid radwastes.

2.2.18.2 Bases

Reverse osmosis processes are generally run as senibatch processes. The concenLotedstream rejected by the rrembrane is recycled until a desired fraction of the batch is processedthrough the rnembrane. The ratio of the volume processed through the membrane to the inlet batchvolume is the percent recovery. The DF normally specified for the process is the ratio of nuclideconcentrations in the concentrated liquor stream to the concentrations in the effluent stream.

This ratio is termed as the membrane DF. For source tem calculations, the system DF should beused. The systen DF is the ratio of the nuclide concentrations in the feed stream to thcie inthe effluent stream. The relationship between the system DF and the membrane DF is nonlinear andis a function of the percent recovery. This relationship can be expressed as follows:

O2-38

_

DF =5 1 - [1 - F] m

where

DF is the mertrane DF;m

DF is the system DF; and

F is the ratio of ef fluent volume to inlet volume (percent recovery).

Tables 2-35 through 2-37 give membrane DFs derived from operating data at Point Beach andGinna (Refs. 36, 37, 38, and 39) and laboratory data on simulated radwaste liquids (Refs. 40 and41). These data indicate that the overall membrane DF is approximately 100. The percent recoveryfor liquid radwaste processes using reverse osmosis is expected to be approximately 95%, i.e., 5concentrated liquor. Using these values in the above equation, the system DF is approximately 30.

0.95DF - = 30=

05 1 . (1 .95)

The data used were derived mainly from tests on laundry wastes. The DF for other plantwastes, e.g., floor drain wastes, is expected to be lower because of the higher concentrations ofiodine and cesium isotopes. As indicated by the data in Tables 2-35 and 2-37, the membrane DFfor these isotopes is lower than the average membranc DF used in the evaluation for laundry waste.

2.2.19 GUIDELINES FOR CALCULATING LIQUID WASTE HOLDUP TIMES

The radioactive-decay holdup times applied to the input waste streams are calculated usingthe following parameters:

1. The collection time for an 801 volume change in the tank, based on the liquid wasteflow rates from the source (above values).

2. The total time liquid remains in the system for processing, based on the flow ratethrough the limiting process step.

3. One-half the time required to empty the final liquid waste sample (test) tank to theenvironment. This value is based on the maximum rate of the discharge pumps and the nominal tankvol um .

The calculated values in 1. and the total af 2. and 3. are used as inputs to the computer

code.

2.2.20 ADJUSTMENT TO LIQUID RADWASTE SOURCE TERMS FOR ANTICIPATED GPERATIONAL OCCURRENCES

2.2.20.1 Pa rame ter

1. Increase the calculated source term by 0.15 Ci/yr per reactor using the same isotopicdistribution as for the calculated source term to account for anticipated opera Monal occurrencessuch as operator errors that result in unplanned releases.

2. Assume .vaporators to be unavailable for two consecutive days per week for maintenance.If a 2-day holdup capacity or an alternative evaporator is available, no adjustment is needed.If less than a 2-day capacity is available, assume the waste excess is handled as follows:

High-purity or low-purity waste - Processed through an alternative system (ifa.available) using a discharge fraction consistent with the lower purity system.

b. Chemical Waste _ - Discharged to t he environment to the extent holdup capacity or analternative evaporator is unavailable.

2.2.20.2 Bases

Reactor operating data over a 2-1/2-year oeriot January 1973 through June 1975, repre-senting 102 reactor years of operation were e ilD e, to determine the frequency and extent of

2-39

4

TABLE 2-35REVERSE OSMOSIS DECONTAMINATION FACTORS, GINNA STATION (REF 36)

CONCENTRATE ACTIVITY PRODUCT ACTIVITYNUCLIDE (.Ci/cm3) (,.Ci/cm3) MEMBRANE DF

Ce-144 2.88 x 10-4 <2.2 x 10-7 1200

Co-58 8.55 x 10-5 <3.4 x 10-8 1600

-5 -0Ru-103 5.83 x 10 <5.5 x 10 1100

-4 -6Cs-137 4.09 x 10 6.6 x 10 60

Cs-134 2.02 x 10'4 3.2 x 10-6 60

-0 ~8Nb-95 5.35 x 10 <5.3 x 10 1000

-5 -8Zr-95 2.36 x 10 <3.7 x 10 640

-5 -8Mn-54 8.82 x 10 <3.4 x 10 2600

~# ~0Co-60 9.62 x 10 <8.1 x 10 12,000

Total isotopic 2.15 x 10-3 9.8 x 10 220-6

-3 -5Gross a 1.63 x 10 1.86 x 10 88

-3 -6Total isotopic - 1.93 x 10 9.8 x 10 mWeak

Average * 200

_*The average DF is calculated from the average of the reciprocals of the isotopic DFs.

O2-40

TABLE 2-36REVERSE OSMOSIS DECONTAMI'lATION FACTORS, POINT BEACH (REF. 39)

FEED ACTIVITY PRODUCT ACTIVITY MEMBRANEDATE T_IME (LCi/ml) (LCi/ml) DF

-56/14/71 0840 1.1 x 10 6.8 x 10'7 16

-51225 6.3 x 10 4.2 x 10~ 150

-5 ~71530 8.8 x 10 3.2 x 10 280

-4 -66/15/71 1030 2. 7 x 10 3.1 x 10 87

-61315 1.0 x 10- 1.7 x 10 59

-41440 1.3 x 10 1.1 x 10' 1200

-41510 1.6 x 10 1.1 x 10- 1500

-4 ~71530 1.8 x 10 5.7 x 10 320

Average 160

TABLL 2-37EXPECTED REVERSE OSMOSIS DECui;T.^FINaTION FACTORS

FOR SPECIFIC NUCLIDES (REF. 41)

CONCENTRATE ACTIVITY PRODUCT ACTIVITY MEMBRANENUCLIOE (aci/ml) (pCi/ml) DF

Co-60 2.5 x 10~4 5 x 10-7 500

Mo-99 3.8 x 10-2 1 x 10 40-3

-I -3I-131, 132, 1.2 x 10 4 x 10 30133, 134,135

-2 -4Cs.134,137 4.3 x 10 2 x 10 200

2-41

unplanned liquid release During the period evaluated, 27 unplanned liquid releases occurred,12 due to personnel error', 7 due to conponent failures, and the remainder due to miscellaneouscauses such as procedural 'rrors and design errors. Table 2-38 summarizes the findings of taiseva l ua ti on . These findin s indicate that approximately 0.15 Ci/yr per reactor is espected tooccur as unplanned releases The tanks most likely to be released are the low-level sample(test) tanks, and theref ore the calculated liquid source tern radionuclide distribution is appliedto the releases.

TABLE 2-38FREQUENCY AND EXTENT OF UNPLANNED LIQUID RADWASTE

RFLEASES FROM OPERATING PLANTS

M Lfn ED__ LIQUID RELEASES FRE_QUENCY/ VOLUME

Total nunber 27

Approximate activity (Ci) 14.0

5Approximate volume (gal) 2.0 x 10

Fraction of cumulative occurrence per 0.3reactor year (releases / reactor year)

Activity per release (Ci/ release) 0.5

Activity release per reactor year (Ci/ reactor year) 0.14

Volum of release per reactor year (gal / reactor year) 2.0 x 10

Operating experience has shown the availability for evaporators in waste treatment systemsto be in the range of 60 to 803 Unavailability is attributed to scaling, fouling of surfaces,instrunentation failures, corrosion, and occasional upsets resulting in high carryovers rcquiringsysten cleaning. A value of two consecutive days unavailability per week was chosen as beingrepresentative of operating experience, for systens having suf ficient tank capacity to collectand hold wastes during tha assumed 2-day / week outage, no adjustments are required for the sourcetem. If less capacity is available, the difference between the waste expected during two daysof nonnal operation and the available holdup capacity is assumed to follow an alternative rcutefor processing. Since processing through an alternative route implies mixing of wastes havingdif ferent purities and dif ferent dispositions af ter treatment, it is assumed that the fraction ofwaste discharged following processing will be that nomally assumed for the less pure of the twowaste streams combined.

Since chenical and regenerant wastes are not amenable to processes other than evaporation,it is assumed that unless an alternative evaporation route is available, chemical and regenerantwastes in excess of the storage capacity are discharged without treatrent.

2.2.21 GUIDELINES FOR ROUNDING OFF NUMERICAL VALUES

In calculating the estimated annual release of radioactive naterials in liquid and gaseouswastes, round off all numerical values to two significant figures.

2.2.22 C ARCON-14 RELEASES

2.2.22.1 Parameter

The annual quantity of carbon-14 released f rom a boiling water reactor is 9.5 Ci/yr. It isassumed that the carbon-14 reacts with oxygen in the reactor water and behaves like a noble gasfission product; thus all carbon-14 produced will be released through the main condenser offgassysten.

O2-42

2.2.22.2 Bases

The principal source of carbon-14 is the thermal neutron reaction with oxygen-17 in thereactor coolant. The production rate of carbon-14 from oxygen-17 is given by the equation:

Q = tb%;mtps (Ci/yr)

where

n is the 3.9 x 10 kg, mass of water in reactor core;

22% is the 1.3 x 10 atoms 0-17/kg natural water;

p is the 0.08, plant capacity factor;

-22s is the 1.03 x 10 Ci/ atom, specific activity for C-14;

t is the 3.15 x 10 sec/yr, maximum irradiation time per year;

-25 2il the 2.4 x 10 cm , thermal neutron cross section for 0-17; and,

2is the 3 x IM neutrons /cm -sec, average thermal neutron flux.;

Based on the above parameters, 0 = 9.5 Ci/yr.

Carbon-14 can also be produced by neutron activation of r.itrogen-14 dissolved in the reactorcoolant and present in air in the drywell. These sources contribute a small fraction of a curieper year to the annual production of carbon-14 due to the low concentration of nitrogen-14 inthe reactor coolant (less thaq l ppm by weight), and the low neutron flux in the drywell (approx-

Pimately 4 x 10' neutrons /cm -sec).

The annual release of 9.5 Ci of carbon-14 is in good agreement with measurements at NineMile Point I reported by runz et al. (Ref. 42), who found that 8 curies per year of carbon-14were released, principally in the form uf CO '

2

2.2.23 ARGON-41 RELEASES

2.2.23.1 Pa rame ter

The anrual quantity of argon-41 released from a boiling water reactor is 25 C1/yr. Theargon-41 is released to the environmer via the containment vent when the drywell is vented orpurged.

2.2.23.2 Bases

Argon-41 is formed by neutron activation of stable naturally occurring argon-40 in thedrywell air surrounding the reactor vessel. The argon-41 is released to the environment whenthe drywell is vented or purged. EWRs that have a comnon stack for tne release from the maincondenser of fgas system and the containment purge do not report argon-41 releases t,ecause theargon-41 is a small fraction of tha total release from the stack. fionticello reported that 50curies of argon-41 were released in 1973 and that the isotope was not detected in effluents in1974. Browns Ferry 1 reported 19.2 curies of argon-41 released in 1974. Based on these data,the argon-41 release is estimated to be 25 curies per year.

2-43

CHAPTER 3. INPUT FORMAT, SAMPLE PROBLEri, AND-~TT;RTRAN LISTING 0F THE BWR-GALE CODE

3.1 INTRODUCTION

This chapter contains additional information for using the BWR-GALE Code. Chapter 1 ofthis report described the entries required to be entered on input data cards, and Section 3.2of this chapter contains sample input data sheets to orient the user in making the entriesdescribed in Chapter 1.

Section 3.3 of this chapter- contains a listing of the input data cards for a sample problemand the resultant output for that sample problem. Section 3.4 contains a discussion of thenuclear data library used and a FORTRAN listing of the BWR-GALE Code.

3.2 INPUT DATA SHEETS

The following pages show (1) the form in which data should be entered on input data sheetsand (2) a sdmple Completed sheet.

3 -1

Gus n274 U M cr.IBM - usromm ca rn_" Inp_ut Data BWR-CALE Code [ } j [] T |- I 2

~

[. I' i i: s: 6

Julv 1975 1 }i

_

f!I 'f s ona m st AM W.T

, .t-

CARD t

_ _ _ ___,] TY_P_Eh_,{, __ .f. ___ ___ _ BWARD i 21 A M I._ NA E OF 1EACTU R

_

_ _ 3 . ._ _. _ _ 9 C . T .O. . . . T _ 0._ A L .S_T E A.M _F L_0 W_ ( I_LLIpN_LB$/HR),__ _ _ . f _ , __ _ _ f , _ ,__.___._,___f_________.__'2-- 2 0 W I L_ _T H Q RM A_ L_ P.Q X ER _ L.y_ y.g L _(M.E G A_W A_T T_S) _ _ _____, ,

, . _ _ ___ !__ _

_ __4 WLIQ M A SjS OF _WATE_RfIN R P A C T O h V E S $ E L ( M I L L I O N L B S) { _

,1___ jq

If(~M I L L|I O N L!B S/H R)

I I ]!^_ _ _ f S.

C ARD_ GDE I C L F. A N - U DEMI |NERA1 IZER FL0W

-_6 g_g_G_E.g_.I_C 0 N D E N S A T E DI MINERALIZ ER R E G E N E R_A T _I 0 N TIM 8 ( D A_Y, S) _ _ [ ]l.f i'

.I 'I I!

_

_O _ _D E S_A__T E DEMIN i[_ ]!2 E E C_D _.F_R_A C T I_O _F_ E E y W A__T E_ R T_H R 1UCH. N

__

['^

_ 8_-- D LL .U. . _ _ R _A _W A S_T_& D I L 1) T I O N F L 0 W |( T H 0 U SAND C P M_)._C ARD g___.__

. _ _ . _ . H I ] H P_U R I T_Y _W A S T E I _ [.. _

_ ] ; P D_ A __ [ ]PCANPUT

b If _.__ _ _ . . _ _ . _ _ __ D_ F, _ _ t,'_ [ __ _ f_]DFCS=[ .. . ]DF0 =[ ] {, . | _

EISCH [ ]_

_ _

fARDl 1 __ _

C0I L E C T I O N_[ , ]D,A S PR0 CESS [ _,]DNYS FRACT- 1 ? L0k PURI TY WA STE INPU r[ ] bPD AT [ }PCA

. . _ _ _ _ _ _ .

C ARD- -

7j_.______ _ . . _ _ _ _ _ _ _ _ _ _ _

C ARD D F I= [ ]DF CS=[ ]D F 0 =[ ] j1 3

[ C0L LECT ION [ ] D AYS P ROCES S [ ] DAYS FR ACT D 1SCH [ ]C ARD

1 5 _ ,___ A[[ ] PCAC ARD CHF MICA LWAST E INP UT [ ] GPD

C ARD I _ _ _,. ]DF CS=[_ _ __] D_F0 =[

_

] .

1 6 __.. . _ _ _ _ . . _ ..D_F I,=[_

,

_ 1 L_.__ . . _ _ _ _ _ -. C 0. ''j L E _ C T I O _N [ _ _ ]D A N S PR0 CESS [ ] D A!Y S FR ACT____ _!I S C H [ ]D_ _

_ _ _ _ _ . _ _ _

1 1-C ARD D F 1;= [ ]DF CS={ ]DF0 =[ ]i cL.

C O IIL E C T I O N[ ]D A i S PRO CESS [ ] DAYS FR ACT D ISCH [ ]C ARD , gC ARD GLA ND SE AL ST EAM F L0W ( rHOUS AND L ,B S/H R ) ( )1

[ ]C ARD MA5 S OF S TEAM INRE4CT0R VESS hL (MILLIO S LBS i

, , _W pT- g _

H0 LD UP T I M.E (H0U RS) [ ]b ^ L yAL,FFGAj 11 O L D UP TI ME (H 0 U R S )j [ ]

? .3 ._. _. . .- T I.- M -3 - -

C ARD AIE EJE T0R 09 4 T IM4>, . , . . . , , ,, e

s a ns .. _n... ,+ , . . . a.

* * Phaeher # Pumg pesg.ed % we, o ghy

O O

vnu G X 2S 732M U M 050' 'IDJTL FORTR AN Ced:.a; fem Ponted in U S A

Input Data BWR-CALE Code I| | l' 2 2

* "~

~'- July _1975 !*

!|I ficam stattvist,

C ARD D 5 CONyAINMhNT B1 DG CHfARC0hL?J[ ] HEPA ? [ }

ARC 0kL? [ ] HEPA7[ ]S PEC FEATURES [ ]IC ARD 16 TURBINEBlDG C

_g u p __ 2 7 F IL3 G L A N,D SEA L VEN T, IODINE P F I ,l_ _ _ _ _ _ , _ __

__.f!___

, AIRE { JECT 0R 0 F 9,G A S _I O D I N 1 _ P_ F f _ __I ! lCARD _ 2 8 F IL4

_

C ARD ,29

C ARD pD-

AUXI|LIARJBLDG{ C H,A R C 0 a L? [ ] H E P A|? [ ] j j_ _ -- _

_ ._ _,1- ,. . , , . -, _ ,.

R A D W' A S T E | B L D C | C H,A R C 0 A L? [ ] H E P A!? [ ] !1, D T3 1

.,7.._..__ - . _ _ , - __ . - _ . - . _ _

K C H_A_R_ _C H A R C 0,A L D E L,A S ,Y S, T E M 0 = $ 0, , 1 =, ( E S, 2_ C R Y O GENIC DIST ILL IlC A_ _ __ _ _

C ARD |3'2 K KR KRYP T0N D YNAMIC ADS ORPT ON C0EFFI CILNT ( C M 3/G M ) C 1

_NT_(CfM3/G_M)_ , , , __ [_ lC ARL 3 3 K XE XENO N DYN AMIC ADS 0R PTIO$ C0E FICI :, _

Y C ARD f3 4 K NO NUMBER 0F MAIN C 0_S D E N S E E' SHELLS. _ _ , _ . _ _ , __ ,

[ ]_ , _

C A,R D 35 _ _ _K {t A, S S MASS OF C 11 A R C 0 \L _T IOUSA ND L _B 'S ,)._ [ }(C ARD 3 6 P F L A U .1 D E T E;R G E N '( W A ST 'E DEC _ _ __F _A C_T. _0 .R. _ .0N [ ]- . . _ . _ - _ _ _ . _ _ - , - - _ _ __

. __.. _ _ _ . . _ . _ . _ _ _ _ . _ - - _ _ . _ _ . _ _ . - _ . -___ _ ._. - _

_. _ _ . _ _ _ _ __ _ _ . _ . _ _ _ _ . _ _ - _ - _ _ _ . _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ - . _ . _ _ _ _ _ _ _

_._ _ ____ . _ _ _ . _ _ . _ _ _ . _ _ _ . . . _ _ _ _ . . _ _ . . _ _ _ _ . _ _ _ _ _ _ _ . . _ _ - . _ . _ _ _ _ _ _ . . . . _ _ _ _ . _ _ _ _ . _ _ , _ . _ - _ _ _ _ _ _ _ . _ _ _ _ _ -

|

|.

__ _ __ _ _ _ _ _ _ . _ . . _ _ _ _ _ . . . . _ _ _. 3 _ _ . . ..._ _ _. _ . _ _ _ _ _ __ - . _ . _

- _ _ _ . . . _ _ _ _ _ . _ _ . . _ - _ _ _ - ---.-.- _ - . ._ _ - . _ _ - _ . _ _ . . _ . _ _ . _ _ _ . _ _ _ _ _ . _ _ . . - . . . _ _ . . _ - . _ .

_ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ . _ _ __. _ _ _ . _ . _ _ _ _ _ . _ ______.__.4 - _ . _ _ _ _ _ _ _ _ _ . . _ . . . . _ . . _ . _ _ _ _ . . . . _ _ ....____ _ _ . _ . . _ _ . . _ . . . _ _ _ _ . _ _ _ _ _ _ _ _ . _

_ _ _ _ _ _ _ _ _

_7 __ ._ . . . _ _ _ . _ _ _ . . _ . . _ _ . _ . . . _ _ . _ _ _ _ _ _ _ . _ . _ . . . _ - _ . _ . . _ _ _ _ _ . _ . _ . . _ . _ _ _ _ _

. . _ _ . _ . . _ _ . . _ _ __ _ _ _ _. _ _ _ _ . _ . _ __ _ _____

. . ,

vr.. mm - oo ~, n .v,.,

3.3 SAtiPLE PROBLEM - INFUT AND OUTPUT

The ollowing pages show printouts of the input and output for a sample problem t sing theBWR-GALE Code.

O

O3-4

Ca47 1 Na>E Na-E 1r 4EarT32 9a*DL* **A C49E TYPE = $=2CAR 7 2 47*TN I*E4*al P?*ER ifVEL f * E 7. a * 4 T I S ) 340F.CaES 3 3T0 TJiat STEg= rt1- (*tLLI'4 La9/41) 15.Caan a at17 * ASS Sr aafga T= 4eacilG vrS95L ( * T LL i l'' LR9) 0.3Rcar 3 S Gnt CLFsN=sr OrwY'rpaLf7Em rL?. (*I;tI7s Las/*a) 1.13CARS $ EFGFsi CD*3r= SATE aF"T'r44;T7E3 GEGE*ElafTSN 7t*E (Sav3) $=.Ca , ? FFC7= F C r : T t v. rrrn -4 tea 7 4 a' Mw CCN?E sait SE*Ts 1

a

Ca40 R m!LUT ma$aa37F Nft"Tipv rL7 (T=:'94%) 32*) 3

car 3 9 ~ igd D .* I T Y =a9fr I v3 if 2a%4?. 33' 47 .tc pta

CARS 10 9Ff 1.1rct1Frs= 1 *ra>7t? = 1.0E*4CARS 11 C3' LFC TI Jo 1. 'av9 - 7"Cr 3 5 37 sevs rGaCT 173 4 a.nl

'

Ca43 12 L D e. D;41Tv .asTE T'DJT 5790 07* af.13Ca*3 13 787 1.0ESt7Fes: 1.'*Eas?r, = 1.0EeaCa43 to COLLrCTj3% 3,, ,a<5 va? CESS .* mavs rsaCT afs:- 1

Ca'7 15 CdE*TCat -asir T**JT sal. 333 at .es Pt*CaG9 16 7FIz 1.cEetercSe 1.1Enanr? = 1.SEcoCa47 17 CJLLrCT1y- 3., 7ays pa? ESS .6 7avS 544Pf 'IS a 1

Ca43 19 EEGEiFast!1 S,LTvs iss IT qa3 17^n.Ca43 19 nrfs 1. a. E 9 9 7 F e s s 1.6r*5-r1 1.SE05Ca40 2n C1 LFCT13N 9.4 'avS Pal:ESS .d'4 1sVS SWACT nt>Od 0.1CAR' 21 3 F,S GLANm SEA. sTra rt,. ( T 4,; q a .,7 Las/avy c.cw

Ca s 22 a9TE *aS9 nr STFa* Y" 3 F a! T TJ VESSEL ( * ! Li. f l w 679) ."21a

C&G3 23 Tt"3 G L a '< , sta, -167Lo Tf*r (47)a9)CARS 24 TTMa alw r JF C T 74 n r F F. a 3 416 ) . ' A T!*E (s?)49) .t67Ca43 25 C,7sfgIN*Esf nL73 :ana 7sL?vES HIPa?VF9CaoS 26 T u a 4 T ',F 9 , .9 *, Oda2C DL7 *IDa? OLEAN stear?fEbCaa) 27 FIL3 Glas' 3Ea; vFNT, 1711sE or 1.0Ca43 29 rfLa AIS rJECT14 orrGa3 7017'E orCa ? 29 A V Y { l. f a 4 V R[ 73 Cd&GC7aL? 4 epa?a

Y Ca43 30 Da7 4STE at,G tweQ:JaL? <!Da?ffS* CA40 31 <CMaA CMa4 Coat )Eiav 9v9tE* 3cN7,tavES,7=cev7;ESTC 11STILL 1

Cad 7 32 <<w <4f3T7u Svsawf; g 7 9 7a 3 T ! P' ClfrFTCTEST tcw3/gw) 105Ca43 33 <rt u t v>! Syy vic gn9,aaTras car =rT;;Est ( q.3 /q .) 2cin,CARS 34 <Nn NJ '3F4 Gr ' TIN 0 9 N 7 E '' S E R SHrLLS 3

Ca47 35 <*ANS " ASS 3r 04 gDC laL ( T f))ip v7 L34) 44CAR) 36 PFlaVN DETER;ENT assTF 9E C 14T a a t * a f f 0 4 FACIM 1.0

S3445R0000E

S*EEEERT0000OO0000TC 1111AF

24450000

N0 EEEE1S0000TC0000AN 1111

1 0 0 0 0

R0 000000 * 0 00000 0 0000 030000

a0 000000 A 3334 0 0000000 0000 060000B0 000000 T 0000 1 T000000 0000 560000

1 5T0000000.000083000 N 2 61100008500000 8,0 3 1 0 0,0 0001.00.10,2000.10.1O EEEE

.CI000000500613 E 0000 0000 0 1 .1O 1 0 1250360 1 5 3 0 401 e

04 1111 1423

0000 SY )T004 E )

AES0664 R =) Cw Y U GS E!A0000 T /)

Y DTD A 39A ( E MG

) D ) F C/

S)( N N 5 N N N N (3MR I O 6 O O . O O MLMEM I )0000 L I IS I I TC

/*E TES0000 T TE T T N(NS!D C* T0114 N C CD C C ETOBT E!A )O NA NA NA NA INIL E LTD1339 RI )ORORL OROR CEL NT) L ( 4 L SIFIFL IFI? II

LN3A1 3 / L RT T I T T FC )

1OISP C S1 0CECEC CECE FISS1ITNG B1 3ASASE A SAS EFLS

E )(LAE D L( MRARAP RARA OFLLS a LRD) NE 0000 (FEFES FEFE4 CEEA) wLIENN OG 1000 DL L L* - L LE OM DCS /E* N3A Il 0001 NE)EEEEE . EEEET) NCSN

T SS(ECS TA ass *SRSRT SRSRSs 3 A

RT OS G J CH 0110 SSa!A A C F' A A Y y)!NRS

* A LEmE43 A C )EJTEEEEA PEEEESaST3EUSa V0RGH RS 3V3 LTLTRF ,LTLT DYP! SO

4 N L JT FI 4 4S EAEAFPEEAEAY( ART NHEG 3RFRO( D TR(URLRL NRLRLA D3 PETLE 1O ER (3 D U UEE! U ULE(SR D(

Pu LTR2Hd NA 000 TELECFCSN0FCFCEu D1N" (RLCEfTD 0C 532 wCwONINIA!0NINIDIEASOA StAZL L 1P 110 oA f HITYTE01fTIT TM nCL

SLTuFIARF T LET DRDRL0 3RDRL ICA A

FC(RLRF CF 000 FR SOA0AE1S0AOA ApTY NOvA A ET N An P ATP1PR A1PTP3g uCIC

EF wNRNA D R 4NUGG .G CoPa!ARL oIEt wt F AIDFO TF # LJ14 W A

Yl N4 f E LFL NFG a3DY4 d

RTFRIEDu E)4323 TMOOB EOO G MMLDNFCEI EMDEL TY0000 SAH G W L O C O YOWCMTE E! A A E RT D RR L NHND F3AA ADEFo RDEEEE LTLON L LO R AO O ROPPEd T /600O A SATE S ATY TNTNE

E EC4 ECR E SPOPOBSA' PANE m L 8.T. 0.T.0A SFSEN E SEA T IYNTNMSLC~ USOTA = NIS LG2561 S O JI N JI S REREUANTL' . ETA S F( TD DEA I DEL A EKXKXNMRNAA DCe T E UNSN T S N ! u REATS t NAD U TE PASARN R ARx D E

HLOALORA P STE NLALIO U LIu A HTPTMCCFR N ASTS IGMGAC T GAA R T

I WASLWAQ E

E M Y WS TT A TY SS E IT T A

0A R RILN WW T URAA

S P UCR SD PIE UI 4 MN QU GWEE EQ !OHG SI yLCE AL R G

Ym

90 0 80 0 09 99 0 N N we se ** est N N N est we o e

0 0 o o O O o o O O O O O O 88 8

9 a I

0 4 0 Ana taJ Ina and anJ nnJ and and enJ nnJ W anJ 8

9 o- 0 O O e N ** O D o o N e O O e o ** 0

e f1 9 e e e e o e o e o e o e e e e e 5

0 >= 0 o we N art en O ce o arg N tre O esg @ ass g8

9 0 88 9 09 0 88 0 00 0 08 0 09 0 89 0

M N N $9 96 9 O O O 9

8 8e u 99 =E &. O ink anJ Ina 0

0 >z 3 O O O O O O O O set O in o o O O O

O 3 9 e e o e e o e o e e e o e o e G

S T EL 8 O O O o o o o o na o en O O est O O

9O u O 04 ans 0 00 1. 0 90 9 0 oo0 89 4 .s N o we N 9

8 20 8 O O O O O

O O0 K E

8 O e Is4 anJ anJ neJ taa 8 sk

0 m e- 0 O O e o o O M o e O O O o O O 9

0 ee u a e e e e e e e o e o e e o e e & T

0 as anJ 9 O e As o tn O we O @ O O O O O O 8 >9 %

9 *1 0 9 >e$ led 8 0 u0 0 O8 O 9 ==A 9 5 O0 0 4 O9 0 8 OS O _A 0

0 *O 74 00 45 tad 0 O O O O O O O O O O O O O O O O O

5 .a M 8 e e o e o e e e o e e o e e e G

9 inJ O O O O O O o o O O o O o O O O O O e9 M

S > 0 8 as9 4 8

9 0G E a 9 90 K 8 9 64J9 Ina 4 9G M anJ ina 9 == .* N .* 0 3

0 <a > p- 0 O O O O A e8 8 8 0

9 InJ M * O

0 .J % 40 0 1sJ ena Lab inJ B Z

8 anJ Ina RO 8 O O O O O o o o O O en O O O O O

e E a O _a 9 e e e e o e e e o e o e o e o 0 2

0 as CD e c O O O o O O O we o e O O trl we e O9 46

O M M tr 0 98 3 and I 0 E0 0 ** 8

0 >O Ink 5 0 3B M 3 > $ %,9 4 U E 9 O O O we se == O ce .e 4 e.

8 O ee 4 e 0 O O O O O O O O O e ut 8 9

8 Pe O 8 .

hJ Ini inJ enJ anJ enA taa W G O0 3O 9 ene

5 ** -.s S O O O O o o O O 4 e e o o > e 0 e

A w dri 0 e e o e e e e e e e e e e e e g ee

B ~3 8 O M O se sa o O O e e es* O N es e 00 7

0 4 00 <a

0 0 E O T8 8 > 0 t-S 9 % 89 40 nnJ B ** ** == N N N N .e g3 0

0 7 e S O O O O O O O O O ha S M9 9 p.e 8 M

E ** f 9 8S ED Q 0 las inJ InJ tai kna taa ha la.I InJ K t ena

9 K _a 9 O ct O e e O O O O na M o e e op 3 8 ,,.J

9 3e 8 e e e e e e e e e o e e o e e u 8

8 6- 8 O se O N # O O O tn ** ** O N em we O M$ re

$ $8

0 0 M 0 kJ4 0 e 9 MG k 0

0 asS 7 80 InJ B O O O .* == ** O HA N 9 WG W e 9 o o o O O O O O O 8 .J

G FG $ .. t t 8 ans

4 ** O 8 W enJ anJ tm) taa taa hJ nna hJ B E

O es _A B C O O O O O O O e e 6 O O > C 8

8 p- tD 9 e e o e e e e e e o e * * * * B W3

0 7 8 O ** O es- ea o O O e e ** O P- we d 0 We >

0 0 09 4

8 u 8 $ u6 8 0 0 **M 0 0 6 Oas 0 $ 0 7u e em 0

Ana I **0 uo O M S

K 9 7N 0

S 8 O 5') 4 M e6 e em 99 N e le M & M N N M N as 9 We $ u ena S O O O O O O O O O O O O O O O and 9 .J

8 ** 0 8 9 e G B 9 9 9 9 9 0 9 9 8 9 3 0 mend 0 >= E 9 kJ InJ hJ h.s saa tna inJ tas ink and h4 kJ hI ha and hJ I *E

_A 0 23 9 O o o O O O O O O o o o O WD o o E S D-

EL 0 as u 9 O o o O O O O O o O o O O taa o o 0

3 0 _J O O == e o e 4 == p= 0 4 W N N e W3 O O M S enJ

as 0 OK 0 e o e e o e e e e e e e e =E * e 3 0 I

e5 8 Ou 8 == 4 4 @ W @ @ N e P- W N O GA N O 8 >hJ S

0 u ** 9 W W3 0 20 1 9

a as e ee0 ee 4 m L.9 88 0 O O O0 #e e E Y F 2 F 0 2

#9 M nn in 9- eB 3 8 we88 ha 0 Y F ==

s *e M De 9 KM.e M*

9989% 585 98%89 M tp 16 9= e P M

O.S as #85 89 > t as

p 9 e e aD e e e se we we se se83 a I e e e e e e t 8 9 & D A 0 > .* e e.e e tiJ

G u 9 E E E E E E InA hJ ha hJ hs W ha O O 3 K $ &

O 3 9 w w w r x x M M M M M M M e- ee og e- e e.9 4

0 7 8 80 0 8 O8 0 * 9 e9 9 s s

J"I i OS 6

0 0 90 0 00 0 89 0 00 0 00 0 00 0 89 9 98 e 90 0 00 0 08 e 00 0 06 s 88 8 88 e 90 0 48 9 5e 3 00 8 89 8 80 0 99 0 e9 8 00 e 90 0 90 0 90 0 M M e e N M M en e 4 M @ M M e 89 e o o o o o o o o es o o o o o o 09 a 0 3 8 0 e t 8 e a e t 9 0 3 5 8 00 4 0 ha tea nas ins w h* ens tal anJ has taa anJ ena laJ tas se > t o a en > ee se =st tw N e we N e e @ 00 O e e e e e e o e > e e o e o e e 84 6- 0 M M e h we N we se O N 4 M en N N 40 8 08 9 90 0 80 0 90 0 98 e 0 00 W D 00 4 5 00 > 9 e e in M SS S o o o o 89 T* EL 9 9 9 9 3 0$ u1 8 laA and Ina Ina 00 taJ 3 e o o o o o o o o o o o o o em o S8 ya B e o e e o e e o e o e e e e e 00 0 o o o o o o o o o o M N ** ** O GS thJ 8 00 > 0 00 4 a anA 9 90 er a > 0 99 4 M S S9 ena taa 4 e 0 e e 4 te @ @ 4 4 h h in e to e le 99 m > E LS S o o o o o o o o o o o o o o o 00 4 On 3 e t 8 0 0 0 0 5 S 9 9 8 8 4 8 00 tad ||E 4J 9 bA inJ ka enJ enJ tsJ enJ anJ taa enJ inA Ina inJ taJ taJ 08 a enJ &m e o o le te o to to o o o m to o o 4 80 taa EL 8 e e o e e e o e e e e e e o e 08 EE 9 IP M *e O P se e M in W @ U @ ee N 00 M S 98 Ina taJ B 80 >- ee > 0 00 4 & M S S9 J 3 4 9 89 3 u w e O M W @ N M to e @ @ M e M W W OO u w J e 9 o o o o o o o o o o o o o o o 00 ee >e LS S S S S S O 9 0 0 S S S 8 9 9 9 00 8- MO t tea nna bJ an.# he ha saa saa las ha tsJ taa taJ hJ taa 00 W 3J 0 o o o o o o o o o o o o en O o GA as em 0 e e e o e e e e e e e e e o e 38 & 0 M M 4 e es N O tre 4 N O M te e ee S8 9 09 kJ B 00 7 0 80 N O 80 O O OO m inJ e e O O 4 e O M e to te LA la e M e GG or 7 o e o o o o o e o o o o o en o o o 94 w ooat t t 9 9 8 9 8 e e 4 4 8 8 9 9 e r4 4 mO 9 he ana InJ taJ anJ inJ taa In.; and taJ tas Gna teJ taJ Ina 00 m .J G e N O N O O N o o o o o N N #W Ge 3m 8 o e e e o e o e e o e e e o e 99 D- 0 N ee se se e e em @ N e e se es N ee IG 8 09 8 88 0 09 h 9 00 7 0 08 inJ $ e 46 e e @ to b e e e GA 4 to e 4 05 7 e 8 o o o o o o o o o o o o o o o 09 7O 9 8 8 8 8 8 8 9 0 8 9 9 5 0 8 4 50 e-o O 9 en) tnJ Ie4 anJ kJ tna and kJ Gna hJ nnJ hi In3 kJ ha 90 4a 8 o o o o o o e o o o o o r o O $0 km a e e e e o e o e e o e e o e e 30 2 0 M M e 4 we N @ W W f% W M r @ ** 80 O 9 88 U S 0

W D 0 8n D 8 84 0 e eu 8 0 0

0 E eK 8 8 8u e 5 ee a S 9

0 8 8tsJ & A 0J S S S& 0 8 03' e B 04 9 9 9M 0 0 8

9 9 0$ 9 00 8 00 0 08 4 00 _ 0 00 In3 9 W W e &# o ** 30 0 0 ee W & @ O in & o LD fw M M M @ N 04 M e tre en tre te e e e 4 e se se se se == ee 80 J $ 9 9 9 0 9 8 9 9 4 8 9 8 9 0 0 0e u e y E and O O X K M E M M M er) 4 kJ G9 3 0 u Z fo u u N E0 4r0 N M u u u e $J $8 7 8 90 0 00 0 00 3

3-8 88 e

OSOOOO 400 MOM @ eOOAO MANOS 40NmmNOONMmme@OOeT SOOONOOO^ mNemmhoMSOOMeeGom@ mmemO3m&OOceowoommm43OOOONOUCOM

J 2 MOewNMo@ @ O9COOMNom OOOOOOmoOOOm4cOOOODNOOOOmwCOM504 > OOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOO3OMOO> % OOOOOOOOOOOOOOOOOO DOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO M e o e e e o e o e o e e o e e o e e e e o e e e o e e e o e e o e e o e o e e o e e o e e e o e eh u 000000000000000000 0000000000000000000000000000000

w

& O CO OO 3 De e oXMM C ON @ O m 2 3 O OWWM w We mN O NO O Md>> O CO CO O OO O wEMN 000000000000000000 0000000000000000000000000000000W4M e e o e e e e e e o e o e e o e e o e e e e e e e e e e e e o e e e o e e e e e e o e e o e o e eF EU C00000000000000000 0000000000000000000000000000000W wO

onkowO e *Nkwe

e wemOMOE me MmmecewkwwNemMMweemmo4@ eeceNe&O- meOOmed wm wmemm4w&OOccoOOOmmmOOOOOMN&Gmew

WJW MG4DN DOOOOOO Om OOOOOOmoOOO*0nOOOOOOOOOOmmWOOeOh e> 00000. . 0000000 00 00000000000O000000000000eo90000men 00000A . 00000000000 000000000000000000000000000000070M e e e e e o e e o e o e e e e e e e o e e o e e o e o e e e e o e e e o e e e e e e e e e o e e eMeu D00000000000000000 0000000000000000000000000000000O w4

OM MMewoumSonemme Nm NNMewe@eOOOMADOOMMNOOmmmeAO4Newe va womOMNOOwCNOOO Oh OO*COOmmOOONmOOOOOOOOOOOMweOOmoOJM 0000000000*O00 CO Co0000000000000000000000wo00000$ W C0000000000000 CO CG0000000000000000000000mO00000

J8JM 00000000000000000o 00000000000000o00000000000000004 gen e o e e o e e e e o e e o e o e e e o e e o e e e e e e o e e o e e e e e e o e e o e e e e e e oI tk3 000000000000000000 00000000000000000000000000000004 GOu

M U5kwe B

2 W 8W H S .Am ochcoecmMomwOn Om OOOOOOOOOOOOOOOOOOOOOOOOMOcOOmo3 W 8 4M ComOOOOOOOOOOO DO OOOOOOOOOOOOOOOOOOOOh COceOOOOOOJ 4 9 uw OOOCOOOOOOOOO O DO OOOOOOOOOOOOOOOC OOOOOOOO4O*s OOCOk T 3>> O OcorOOO OOOOOO co D000000000000000 00000000c000000k uO f m 0O0000 000000000000 0O0c00000000c000000000000000000W M SW 3 e e e e e e e e e e e o e e e e e a e e o e e e e e e o e e e e e e e e e o e e e e e o e e e e e

M A T U C00000000000000000 000000000000000000000000000000OO O 9uwM S

7 OGO >e>M eun MNommOON403NMM me omMNmOwmOOON4cOOOOwOOOOOANGOOOOJ M SMO modOOMOOOOMOOO OM OOOOOOOOOOOmwcOOOOOOOOooNONOO4C

W SWW C000 0000000000 00 000000000000000000000000303 0000M S DM 000C 0000 000000 90 00000000000000000000000000000004 $hR 0 0 0 0 0 0 t* O 0 0 0 0 0 0 0 0 0 0 000000000000000000000000000000OW 3 3 e o e e e e e e e e e e e e o e o e e e e e o e o e e o e e e e e e e e e o e e o e e e o e e e eJS l u C00000000000000000 0000000000000000000000O00000000W 50wW 9 J

B

JBF4 Swn Omece40mNemmeh me NwOeodeOOOOOOOOONNwCOOOOere4Nke7 9NM MONONCOOOOOOOO OF ComOoGwwCOOm4 DOOOOooOOCUNwhCOMO7 SG W C0000000000000 OO C00000o00 00 0000000 0000000000000

W 2 B Ow O OOOOOOO OOOOOO CO C0 000C000 000000000000 000C000000m 4 4R & 000000000 000000000 OOccOOOOOOOOOOOOO OOOOOOOOOOOOOO4 9 3 0 9 9 9 99 9 9 9 9 9 9 9 e 9 9 9 9 e * # 9 9 e' 99 9 9 9 a' 9 9 9 e' 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 eu S T u C000000000000 00000 00000000000o0000000000000000000

90wMQ Se >a 8 Y We F v7

O JOW M> E OM4McNMPO OGNOM OM MGM ONMMeeMMNm Ne eem GMNNNmNmJ FM NNOOOOOOOOOOOOO CO 00 0 0000000000 Oc OOO C0000000& 4 4bM& 9 8 8 8 8 8 9 & 8 8 8 8 I e8 e B e 9 I B 8 0 9 9 4 4 9 8 9 9 e a S 9 8 8 8 5 3 33 m2 E u WWWWWWWWWWWWW WW WWW WWWWWWWWWW WW WWW WWWWWkkW4 WM4 70000000000000 00 000 00000000 00 00 000 00000000M ZEJOOOOOOOOOOOOOOOOOOOO C00000o00000000000000o000000000

WhDEM e e o e e e e e e o e e e e o e o e e o e o e o e o e e e o e e o e e e e e o e e e o e e e e e eu OubeNr4WwmN4MMNNOOOMb MmqOQweGNh@ NNNoeNoOMmeommMNkMNN72umeOM T Du wM

W WwmmNmNmm@mmNwNemmO wwwNmmmmmmNowwNNmGONNmNCONwNNewk U0 00000000000000000 Mo000000000000000000000000000000Mm4 5 6 8 9 8 8 B k 8 eS 9 9 0 S S E t t I B 1 5 9 8JM WWWWWWWWWWWWWWWWWW UWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW$ >OCMEMbOOMNbMr@ 4 C Der BoombEMhrocc@ ceerrmO& Mop #rEmbero

h4/NGhCOOOMOOMTNPOm&M OONovee 4N@Wmh@@ @NONmemOhNorkeUNMjog e e o e e e e e e e e o e e o e e e O o e e e o e o e e e e e o e e e e e e e e e e e e e e o e e e4w ewNNmOObam@N@N4N@N Ew@QM@mMO eMMNNNMem@wNNM@ me@ eNbNmY 7 &

9 OW M 7O M 1 O 1 7 1 1 1 7 1

M OSNwdecesorumepembe MMemmwNNMemee&MMemmmeoremwNMedme.A M NMmmmmmmeedede&@em MemppFF99@ @ @@ @ OOOOOOOMNNMMMMMMMMss w wN M mmmmenemwwwwwmmmmm3 04&&77WWOOM3z27reza Mmmm>>w>>memou3runrrnoWWWeeMMMMMM2 UE U1E khuuPUNNNNF 2 EeMM M NFZX>EMbEKawe>>b u u

3-3

OmechmemmN@oh OmoMmm@NoomonNo o

J X@ DoooOOOOOomo oe >Nonconnococco @h %O0o000000000o NO M e e e o e e e e o e e e e em uOooooooOOooOO O

w

w o o @# Mao N MWWE J m N(S> > N o eN M N o o si OOoooOOOOO OWgM e e r e e e o e o e e e e e> suO00000000000o OW wo

kmemhMemmNmob eO eMMmmONoomOOOO @WJMooooooooooooo ah4 >o000000000000 bMWNoocooOOOOOOOO m7DM e e 6 e e e e e o e e e o e%>ueOCOOOOOOOOOO O

m O wn 4W77 SM emNNkMmmmomOm mM S T moocooaccocoon @e r J M O O C- O o o o o O O O O O 4# 0 WoOC OooooooooO NO J SJHo o s90 D O O O O O O O O OO e See e e e o e e o e e o e e e aw F O>300:20000000000 O

4 SOUM USkw> B

2 W OW a s a J m O o o n m .a c C o c o o n o3 & 54MOoooooooooooo MJ e Guwoooooooooooon kk 7 gewoooooooococco ok U SFWoooooooooOOoo oW M OW3 e e e e e e e e e e e o e e

M S tunoOconococoon oO O tuwM 57 08p b f>M Shamwoo@Nooooooo eJ M 9MMooooooOOOOooo >

W 8NWoooooooooooon m &M S3MOooOOOOOooooo m 4W ER200o000000000o o WW9 3 e o e o e e e e e e o e e o >JS 3 u000o00000000O oW GCw E& SJ W

G &JB>w Okm@ 3NNNomomooce @ M7 0MMcConConococoo M W7 SMWooOOOOOnoOOoC m M

k 1 83M ococonococcoO O aM 4 SEROOOOOOOOOOOOO O 3m E Wf * f fff f f f f f fe *e uu 87Uo00000000000o O

Sdw& GMa OT NM 7 F @

O JW Mk I m NNO @Mmmem *

J >W %o ooo oooooo O& 4 4WM 9 9 8 e ae& S S 8 0N R E FuW WWW WWWWWW W4 M M4 o COO 0o0000 mM ERJDOOOOOOOoooone M

WEOS e e e o e e e e e e e e e eu OubommWOOMmMGMm W72WMOn Yu w

W SMNNeommNOmNw C00000000000 m WMe 3 0 5 4 9 T MJMWWWWWWWWWWWW 3 4$>CheembNOPOh@ M W

k enhNhNeeNMMMe b JJo e e e e e o e o e o e e M WgwamNewmmmemmNM M eT e M

W 3W T F 3O N > & MM hhepoommNMMOOJW WJ MMMM@ @ @ @ @ @ @@ . eu MM mmmmmmmmmmmmJWM E3 Menge44W4WKWJOW >Z UMUMMJJUJULu4WM

3-10

3.4 LISTING OF BWR-GALE CODE

3.4.1 fiUCLEAR DATA LIBRARY

Calculation of the releases of radioactive materials in liquid effluents using the GALECode requires a library of nuclear data available on magnetic tape from the Division of ADPSupport, USNRC (301)492-7713. For convenience, the tape consists of five files, written incard image fom. The contents of the five files are:

1. File 1: A FORTRAN listing of the liquid effluent code.

2. File 2: Nuclear data library for corrosion and activation products for use with theliquid effluent code.

3. File 3: Nuclear data library for fuel materials and their transmutation products foruse with the liquid effluent code.

4. File 4: Nuclear data library for fission products for use with the liquid effluentcode.

5. File 5: A FORTRAN listing of the gaseous effluent code.

The ta9e is written in the following format:

DCb = (RECFM = FB, LRECL = 80, BLKSIZE = 3200)

Use of the tape requires two data cards in addition to those described above containing theplant parameters. For a low enrichment uranium-235 oxide-fueled light water reactor, thesecards should always contain the following data:

CARD COLUMN INPUT DATA

1 1-72 Ti tle

1 75 The value 2

2 1-10 The value 0.632*

2 11-20 The value 0.333

2 21-30 The value 2.0

2 31-40 The value 1.0E-25

2 41-46 The date (month, day, year)

2 48 The value 1

2 50 The value 0

2 52 The value 0

A description of the information contained in the nuclear data library can be found in thereport ORNL-4628, "0RIGEN - The ORNL Isotope Generation and Depletion Code," dated May 1973.

3.4.2 FORTRAN PROGRAM LIST! fig

The remainder of this chapter provides the program listing for the CWR-GALE Code.

3-11

C Gatt CvCE FL+ Ca(Cyta f g. G gasti%3 te s ti t NT S PaLa L*=3. - 161FL 019 ' 0 s l .C JuLv 1975 Tit !*PLfafNT A 99 t .c l a i ti' is (s* PamT 50 = tact'* Jgoia"2C aaTEd CONCENTwaf UNS CALCttaT8L .dI'G -t f auc 3 t s c = a6 f ST*s,a='' ~0'( e5C ANS 237 ' w a eli'ac t i vt * a f t =;at s l' ==1,CI&At SLct; 5Tata=3 s oSae.+c

C LI4af asfE4 Ci >L L E a 'vCLfa= Do,t= *L*'T5' Less r jaft. -ay 2:, 147 c. et'%'-

WEAL =6 NvCLlottL)/ ' *==M3- ===e5' *==AS ***S7 **=e* a= secca ta6"1 Xt*131= If=133= st=133 at*135' At915$ ,t=137 at=j)S !=13] ^7'I 6

2 !=133 '/ sno ,+ omEALes opawf(15)/' Cw=51 .=50 6t=59 tt-Sm Cy=e. ;.=n5 i + n .i i 9

1 SW=e9 Sa=96 ZW=95 3*=1/a C3=13e Cb=13e C5=137 "a=1so (6aav 12E=let '/ JooplirmEALee PdahT(8)/' =%=5a Ft=5w Ct=5m C t .e s 5==e9 3*=wa 0 " "121CS=13e CS=137 '/ v wa 13-Co**04 "$IG,NSIG ace'$1a'DI=EN5!us acutf(24),C=C=(do),Cehv(dc),as=I=C(6 3,a5=I-3(do) vv'a91%U1=Essium a5"I*(20),Ci'CLtt.s),Ca>Cktde),C 4C3(dt),utL'Atdu) : s t %'e1

D!=Es51oN C E C'*( 2 0 ), t a 3 (d !),t a = (d ),tuCLto),Na-t(A) v a l v e 17 '.D!aENSluN E J 1 ( s' o ) , S i,L ( d u ) , T M L ( d u ) , C e t ( 2 e ) , w a vat (2n),ashttdv) 'ou n DimDi>ENSlus vww(t"),deur.(20),fui(dJ 1,a0(2e),at(de),a2(de),a3tto) "%i19e*

DI*t%51UN Crn(20),Arnn(20).T5=(de ),=aJnM(2L) toa; dot'

O!=ENSIUN zu(?(),n5(de),=Uav(16), a=0L51, L*>(6) '1"d10'

DI=f%SluN P C m = L 15 ) ,-a s b w ( 15 ) , S T = a ( 15 ) , W d. w M ( 15 ) , W . P = ( 15 ) , d f '' T 4 ( 151 a r a q v gp cCI"ENSION P C m L ( 15 ) , k T = L ( 15 ) , P a a n t ( 15 J . & * ~4 L ( 15 ) , P v F L ( 15 ) 0r0c023'UI*ENSlos FCeuta), dan =>(e),Pu.Ste),kt.tikta),PGauta),*C9Lvle), Im c a u d e -IPCbSP(M),PwCusf(e) n'030/5-DI=EN510% CT&=utte) i,on62e"

C xH CONTAIN5 Co LaNT C 4 0t f *a f t' a 3 Fud 4-='S. T"t SULLUal%U "'VfLt7e lota'"C ISUTu*ts (elf" TrEI4 (t".CtsT=afli,a 1 L C I / rea) a-E st i

w C Cn% S tat *t u SIG'IF ICa si Is t*etttaf C a L C t.L a t ! Lu e = = =9, . . r 9 : v: 0 "29i C nd=91,.11sak=92,.11r*==w3,.ad4 5*=9*,.007ttah=45,6.eE=*ta-=97, e"0"059"

C 4.et =6 : s t =13 9 0 9 t a f = 16 0, . "9 e r a t = 141, . e le t s f = 16 ', . w 2 3 : s t a t e 3, e Ga"11-6

C 003e at=144,1.et=s. '91ocidaDr* ens!UN ab(20) n. coos 3o

C 381 CONTalks P=1=ady Cin tL a a f C L^ C t % 1 = A r li- S Si4 -w,b. mwd conn 030-C CdNia!AS StCV vaWV CUnLast C LA C t 41 = a T 1 f * 5 80* Wa*,S " 00015'

DI*EN310% kp1(20),xed(13) co0903eouaTa ne/1.1t=3,1.gg=3,o.ct=8 e.et=3,s.et=3,s.1t=d,e.7t=e,w.at=$, oloar37,

1 2.eE=3,e.st=6,7.2E-3,6.7 tad,2.4 =/,5.cE=3,t.6P.=d,5=v./ i ' 0 * t ia "Data xP1/.021,,11,.15, oe..e,5t=3,. 1. 22,1E.. 913. 35,9t=5,.144, un '? c 44 ?1.27,.36,5*0./ 000co4o,

oaTa WP2/5.et=9,3.1t-e,4.dt-e,1.et=*,5.5t-e,1.st=9,3.It=*,e.2t=a, uo06uw!"15.0E=e 3.et=9,9.7E=e,2.5E=9,1.dE**/ GrocJu2aDATA JtCUN/1.035E=0eed.375t= 6,2.vu t t )9,1.5 2 c t = 0 s ,6.ae v t = a b , 01oGv4Ta.

1 3.632t=u3,h.crot=u?,3.56et=ce,1.5 dot =ce,7,357t o=, nat4a.2 2. 0 9 C t = 0 5,3. ( 2 = t = s 3, e . % o t = c e ,9. 9 7 r 5 s 7,9.17 t E = e , u e 01 N 5 -3 0 . 0 0 0 E = 3 6 , f , ^ 0 f E = e ( . 0. '.' e t t = i, c , c .10 a t = 3 3 , 4 . L 9 ' t = v ' / 0000VuheDATA CBW/0. 3.t,0.,3 v,3.,3eu..oe.,66. 36.,9.,7. 17..ee,5*1./ oo"n967<Defa AX80/0.e3.0,0.,3.0,3.,3*0.,ea.,*a.,34.,c.,7.. 17,.me,5ee./ oooroue"Data Td6/0.,bM.,v.,13v. 23v. 3eo..d5s.,e56. e30.,c. 1=us.. 19 JavoL49'1.76,S*0./ uno,"SoData waJbb/e=0.,10.,0.,=5. 3.ev...t$..le,5e9./ i a v a n 51 iData ,Pd/sen.,2300.,u.,35s. 2et...u3,eeJ./ Lacet%2DATA PCob/.3,3...=,.6,lo..<. .c4,.on5,.h. 2,=.. 3,5.5,.=,.1/ orono53nData Panee/.3,3...u. 6,10.,2.. 09. 005,.w..t.u.. 1,5.5,.a,.1/ Olbi(5u;

Cafa Pfee/13...ee.5,.6,t...d,6...vt,.1,.3. 3..e5, 6,11...e/ 0"vt0SHD a t a P w a d e / 4. ,3 0. ,15. , b . 5,9 0 . ,1. 5. . = 5. 3, . 0 5, . 0 5, s . $ , . k 5. 9. . 1,2. 6 0 0 0 n O S A '

1/ uus"v%%1DATA 8vPw/10en.. 003, cc2,.e1 011,0./ ont3c575DATA PCep/22.,7.5,75.,36.,1.7,.3,22.,3e./ cootv5moData pazep/le.,6.,60.,27.,1.3,.26,le.,3C./ creo054r

O O

Data 93 5/6.5,1.5,15.,7.. 33,.se,w.5,7.5/ s< r * c a'

Data vtS/8vess/ ' i. ' a l '<

;r calDATA NTwve '. i t d / v eo/,Pe=/' ka '/,e a/' a d'/ i

caq<sea ( #4W dIt,MN s ,4 * a 5 5 a $e

< 61 e t50 Foh=aTitcah).as51 Fud-aT(lea,'*La%T Capacite saCT.m',77 '9.ec') '

52 Fod*aT(321,9a ,125,aw) , 'aAi

5 3 F Ca * a T ( l e s ,13 4 , a 2,51' .5 ) u"c'sm7.56 Fe==aT(16s,'9tactst 6ott -11- LLatoIN6 it8tCTS' Tfu,5e.5) 0 ' '"aam

e '* vaw;35 F0*"aT(15 ,sau,a2.en,Fe.0,7s,55.3)au70056 F 0W * A T ( 2 0 s ,8 M . L ,2 ( 51. F e . C ) ) i 's

57 Fod-aT(27m,66.2,las,Fm.2,1es,Ee.2) ('o's71oSe Fadaaf (30m,'F=aCTIt. 6=atils L.LLtCTIL~ t:t C a v ' / % s , * 3 7.t a = canov72-

1 FLUa WATE i F pCa gi bCaa =Ge ' T1e t 11-t',5R,' Ot tus f a *0 ;$ 0 73t

21sa TIr s FACT %5'/20s '(sal /sav)',23s,'(vav5) tuav5)',7a, otr m763'!'een,'CS',ese'UT-t=S') " ' '' " 7 5 '

a2,1st9.2,ta,u(Fwpe.3,2r),3(1pte.2,1u)) cocet 7en59 Fnd=&T(2x,4asei 'i f u 17 -60 Sed-AT(79x,11)

61 Fod*AT(lea,'Tatat Is a C*voGts!C i.15 T it L a T 1I' . Li'L e k s ' // s a , ' t r I + t o . ', 3 u 7 as 'ta%D * E r.uk LECusfa*Isa'It= 6 ac T L ',7 7 t ,'it cc e. ' /2 s a , a n-v sit veC Tac. ';F9L

2 a * I s a T g gs F a C T t ' ,7 71, ' 4 3 c o . ' / 2 t m , ' a = v w i t . aca seNu, aattus f! t oc ,i

3(aav5)e,T73,'90.') eccreate2 FuM*aT(tea,'T-t-t 13 si- C~a=Cral LLLAv Svhit-') 0: 0 n o a2'63 FnwaaT(1es,' Tat-t 15 a C ra t.jat etLav Sv5ft*'/2is,'**YFtt~ aet t ' * dC39*5r

IT!=t (Dav31',772,59.5/2rs,'stsos -tLv;* T!*P (Lavs)',172,64.5/ "ccoser220X,'EdYPicN ov a-IC a t's c- p f 1. , Ctt>F2C! tot (Cr 3 / s* ) ' e i F2,' w.5 / e i ,0 0 a Si

.

320x,'ztNDv UV a*1C a056 -pile- Cit 5&ILItsf(t-3/G-)',171,61u 5/lar, o'oe3-ocd'su"9t4 GF *A!t CUNCtsbtw 5-fLLS',172,59.5/2en,'*a55 : * C-adC.)al 3o0)e=7L5(T"0LSAND LMS)',T72,F9.51 accic"*-

w 64 Fo**aT(36x,Fe.a,35u,11) *tocoeer

i 65 60k=af (1eu,'FaacT1vs I U,.' I s t pas 31'G Ce utaSaft ot*IstdaL14td', ^ w b91a

1T71,F10.5) , ? c a 0 911"

66 F0 4 * a T ( 16 a , ' n t t-. ve .. s watt tT ouSA'u L*S/~43',258,56.6) u"Deod2;

67 F0ddaT(16a,'FLun wait 1-wtvG~ sas STwiwer= (uka)'.2]s,Fn..) 0:1%.43168 F0=*aT(70s,Fla 5) v J1rv6,

n a .,9 5 ie9 F N = a T ( 2 x , ' a tilactu s ' , f o r ,1 Pt 9. 2,16 s , c 6 6 5. 3,i s . 2 ( 8 v' 3,l a ) , t

,00:4 %213(19L9.2.1x))

70 Pad *aT(23,'usT%EATLJ MLJesu-.',18te.2,11a,' 1.a00 v.v vuco970

10.0 1,00E ut 1.ont 0s 1 yct 00') o"o.."wae6 im 99 :71 Faw*aT(2n,88tGENtdaaT S Ls *,19t9.2,1 n,ve65.3,gs.rtss.3,2a),

orc 31 c.13(19t9.2.1x1)

72 6 M "aT(tea,'pdf-a*v cot *L e * T Ltaa lo ataIL!aw, ~LvG ( L-/ :a v ) ' , f 72, a w lot-18169.') nahitals

7 3 F 04* a T (1e x,8 F d t'.uk.NC Y or p=1na-v C#La T .. t t, a $ $ 10 (11"t3/v-)',77=a' e lo32

1,'2.8/ leu,'pw1wawv 70 st C,iNo a d v Lta= * a it (L3/Uav)',Y7t,'t n.') vdO)1?co74 F04"AT(16Me'T=t-t 13 a 51v st v 6Ititw'/ dea,'Costal**tsi af'U?d-Edt vbH1054

1CLta~up watt t r -ou s a w C 5 - l ' , r 71,61 r. 5 / 2 0 s , ' N,wt flat 6 t mfato u m 1 +2t%T (MOuw3)',T71,510,5) 4 " -) o t r 7 a

. alusty 6ILftw') ocsotaa)75 FaddaT(161,' Tat-t Is suf7e F0Waaf(164,'fatkt IS NUT a Ctavts$ait :t-1%twaLIZE*') oncolaQ,

77 FOR*aT(ted,'FdacTIoa I m i t <vpassisu Co atNdait ot"I'taaLIZL*', eco Itp

17r,772,F9.5) 3'aitti'900 Fow-aT(164,'I'w!NE SadTIT1u, Fatit= (sa3/t19LJ9) Is 3rta- ut -t w a t * m o 4112.~

00113"id ',64.2)

901 FUWMAT(1ms,'T* tat IS a Cwvustt1C 'tF4*5 Sv5ft='/dca,'1v114t a" ito'191tu"1NnN CLCu% fad! NATION FaCTLw',170,81eOu1.'/2)M,'4= WI'A G E C O N f a ' I . a f u M 6115 '21 t lN FaCTUW T71,'4000.8) o.9^11ara

902 FawmaT(16s,','T-twt t. T & Ch vi;Gt -IC .66G*$ $'STt ') o.)'117uIS r

903 604-AT(16n,1 eau) eoJ'11a.

los Phwaaf (/,' L1,wID aadit 1,9v15') voo' lie,

965 50M*aT (/,' Ga9touS -aSit l'&sT3') o% 1/ o

. >>-

a5=7 m4 e1l 24 6 5 * ? = wo1 / '3n a5 a7 = 9 - 1 /5 . % ,i 7 e9 raa 6 9 * 9 * * ea1 7 7 1 7 7 7 7 r 7 = =1 / 4 . % * 7 e u i 1 d4 4 5e7 a 4 1

/. * - a 4 . 4 5% 55s5% 555/ , g 2d / 22gg 5 i4 5 14 $ t 5 w -1 1 I 1 I 1 1 1 I I 1 t 1 1 1 1 1 I 1 i1 1 1 t 1 l 1 1 11 1 1 1 1 1 1 1 1 1 t l 1 1 1 1 1 1 l l 1 1 1 1 1 1 1 1 i 1 ! 1

. i i i o '' i ' ' t*

( ' . ' e i iL . '

a, r . '. . ri

* #

c e . ' ia 1i .i, i s

i

) 1 * f%,

i i (-

< L i ' i - r i 's , " ' eo ,

a a oi ' s i ' i 4 r

i

-- . t o -, - i

f )

a '' 1 L a6

_ ) C* 4 t

ir =

1 ,

t ' a. & L , . '

6,6 . 6 1 1 3 i 1 t

, - 3 ) - 0s t -) l = f *) 1 a v - -i a sL' ',5, 1 ) - / i L3 ) e a*

5 ' - L- ' 5, * t '

+I4i I

t,,

'.1 1 = 5

s 1 .t.- t a ,

-

t. L ,

* t 1 / . < * 1

f = . t3 , t ,T et L a

= 6, 6,/ 3 * rL 51 ; t. s / b 9A n / t P C5, t1 t. I o , s

) > s 1 a, %,=, 1 *, e, 5,a

- t i,* t ' 1 . 7 ' ' 6

F,1 t ) s 1 p '

.* 6 LLC

6, a C* a ~1= 1

L t 11 ) s , = ~ 1 l

a ',1 1 a s6 / wb 56 6

* L -L.

l e 5T!i 3

.. =7 , l6 ~ - i 1

6,. L 1

n

%6 *- ' * f * * '~, .- * L. ' . $ i_ - * ,

t e . -*

=-LdLt l < I n 1 e, 1

# iti

,t t -f * ia M s,

1

i t - s I ), t T

m l 1 l w h,I

s.* a * / a $ L ' - L1 a T3l 3 ) c, t. ) a,

) 6 ',, ~ . r L , s o .

3 * t - % t c3, S 4

i 4 * -6, 1 i tc 1 w t * a t a t -a t a, 6.,6 et - 65 6 C 5, ) a 3 I a n 1 1 % t

-

> a . .

a, P l .) 4 1 d5- t t e 4 S, e 1 3 546 /a] 5* -

t f 31 1 1 L - t -f t -

C,5. 3 (1 s ( 6 4

r " 3 / a 7 s . a .L e ) a , -

_ L*

A7 t t a s1 3t I L5 e* - ) a,',

6,5 t 1 i 4 L

i L , t 1 .,6 1 1 e a 6

C,-

* , ta, t

5, t% 1 s

f r a jL 1 s =s e , 6,4,> t 5, l -a, t

. e, 1 a, * e, ei i 1 I L, 0 L i.,Y * s -I ( 8,

e - - ;

, J5 e m= = n ( a Y f -L I ! s, /. (t - 1e391 t'L d f t al J. t. - * i.f o w5 . L wa, ) a} s

a }a I St w i : -' i ! Lf o L GEC5 L'

a, I '#, l

t a a. 1 t i e n . L L LCC * L, F . 5a 3 a s a > st

- v8 La6 ai

a %, F, ? ', d, s. a, ', a, o ' ,E I k , i %T

t t, G.t * 6

6 * . FI

F.t 1 l as t e f

P,- -

7,1'C. =- S

>

-C, t4 I Ii - t o = t t , G*

a, v '. 3 a. *, 'w, 71s. l -*

a1 . L a s t ln, 6, . . 6, L 9,',, h = ,6

'

,tf t ti , p a = a

m 1 * 1 I' 16 t - , t-,

r ,

, "a-

e L ,',!) * ' ,

,, ,',I' = - --

m s

- i 'e ~ i t, t )' . * 'a )

a i - a- ' " i W '

vLt =- < - ', - * t t . )-

ki 5, f - a w u . C aF Y - a -5 a

i wt i,t tds - k( 4 w . / n a . A a .t - I ,

a.a a a aa' . )o. ), ) '.

_ = .-

a. 6aa a w . - a9 5a C

, , . 6 = 1' ' a. ','t s m )' .

) )1 n a. 5 5 5, w a a.5F t a) ) - - ) a .f ) ) *

, u, 5, s, ** $, a, - 9, ),) ,' , ' , ' , ' , 4

) 313)3c) ) ) e9)a ,) 3 1)3)3)3 6

35,5 5, 53 5,9,5 5 5 5, 5, 5s a s s s s s e est 2, , , vo n r , ,

,>6, 2 w 5, t 5 5, e 5,55,5 5, 5 5g 5 3 5 e1 5,3i

5,1 5,11 ' s a 1 a a s a t woet a s

a1b 5,1 1 . ,1 ,1t l tb aeE s ee eeeet el ) l ,= vee 6 e 5 e e 6, ,1 ,1 T 1 ,1 1 , , , 11 ,

J, C1 l l (( E alls 1 l t l iildl(18 l t 1 l

( u 5 5 t )s 5o5v5 u51 5 s v505055c u4 5% v( (( ((t ( t t a tt( a ,(( t t t i at

T e T T f r r f t f f cf T S(( p 5( s( 5( d( 5( o 5( 5( 5( (sS5( ( 5T f f t f t 1 f t f Lff 'a a ! a a L 'S a A aA ( tL v( tat (t ( t( t ( L( t(Et( (( tt(L a a 6,aaaaa aa a a aa1 aa aEt - - * * * T T i : t w7 aT gf ) T p aT 1 f > T t oaGf t a:

-- * = - - ' ~ , - - d - - P t - < -

w 'ai l

% >< g = w=" a w 'w =. d = W 4 = waI1 t aik 1 a1 a! A1 a s! al A Il aaaII &

6' 1t 6 F * t$pr=7 ' Fawsewp1* iw != =. 'n :==i,8. r oi

=tdE4 l E wEwE% u >.k.t W d E4. t 4oe o U n - * = - 1 h *L

o :) t'w b ak k 6 = .W * m> w = - aW7 f 66 E & t F & 6 5 f h>F F T 6 f t1 b

1 1 i2 1 I 1

07Ae0 1p) a u5 e 7 e c1 t3 65 67 60c

00 3 e1 1 11 1 22d 4t 33 3333 31 34e9 9 9' S99999 999 99 9% 9999 99 99

CCC

w1*.

e ocla2.N E A 0 ( 5 0,5 6 )'.:t I t , FC5 ,c50-u'3 tai-waae(50,57)Tv,fdtr w e , .4 6 ua ;ata. ,malft[51,59),a-;,0.st ,,.a. .p..1,,1 3fswa,iF)',,.sC9s.,.6.

. a 01 - 4w 6 a u ( 5 0,55 3 -a . , L 6 = , L * a91am$

=Eno(50,59)JFTC', 805L*,s*L*0 )arla7,htau(5),57)TCa,73T,6-a L-6a

,

, o j.a,aw1Tt(51,5e)-a-t,Ld 5.,Cr.a,L 6 v ,1 ; , ; 31. a , s. , it.,,5c3t ,get.c i e ,1 * +

wt an (5 9, e e) 4 6 -un'twoE a )( 5 9,5e l v 61 * G,' F L S a ., u 6 -w

co.1vlo= t e d ( 5 0,5 7 ) T = s , T 9 T . = w , w (,8 vuo.1 w t -, . 6 1 - 6, 0 * ( 5 = b e .+ = S, d I f t ( 51, 71 ) = G 6 * , = w e . , T = i,,1 a f t v--

0. 153C

L wtaa oaTa tua eaw 685 C at t c o i c 14 a 'cof 1*%-

C. coalca-

.w f f t ( 51, H 5 )e r o r 19 7 iwtaL(50,53). % ,GS5c r o r.14 -.-!Th(51,531-i-;,GG5a"oe149'ktaa(50,53)*i=w, sita .: o e d o r '.w1TL(51,53)*i ,-31L6 acel 41ktA0(50,53)ai *Leila)n :: o r t - p c.elitt$1,53).....rg-3coc 2 3,wtaQ(50,51)-twe,TI-*"c..<u<

.o1tt(51 53)..=c Yl' ',3:32 5 s>Leatst.c

.aoct n .-FIList,0 cr o rt :7 )rFeatst.go 90: 4 ae& 11,,2 s t . cvan'/teatPa5st.0 a.o-2t'.

FIL5st.0 va t 0 211 -*Epaest.ow vaaeet/-1 FIL6st.0L.tc213* LSmps1.yi c o s t t u c.NEen(50e9d5)ae-L,CMCa,Leetra0'ti215iIF(CbCa.EW.vt5161 List.1fJf~idth018 (Ch"t W a .tG. v P 5 3-t P a t s t e t t" '' c i 21 7 +*W I T t ( 51,9 2e ) t ' n , F I L 1,-t 6 41tabolleowtap(50,947)=e=h,1MC",1aktva feCbc .* o r < 14IF(TeCa.tJ vtd)51L2su.1econ //ncIF(TeatFa.ta.v>5)afsatsc.0)un01221tIF ( f aCS.t s.vt S JC8=8 so.d

*WIit(51,9ta) e t * o ,61L t, at * a d , L i E crvot/ds9 0 0 522 3<-6EaO(50,53) uw' ,PIL3Quaed2seiww1TL(51.53).F.- ,FjL)

= t a 0 (5 0,5 5) =' wv,FYLk ooon/25cra72/es=WIft(51,53)a" e,6ILu

ktso (5u ,925 ).w-v ,4 a C , a s-t P a un >F22 7 <L0a122MaIF(AxCa.tW.vts)61L5s0.1

IF(axatPA.tG.vt5)*twa5su s1 oc oc229 )=4Itt(51,926).t-e,6It* _ tva5 n .' n i t i v.W E a 0 (5 0,9 2 5 ) ...a o , =.t a ,--=t v a vuont st :

9 F e n2 42,IF(w.CM.L9.vt9)>1Lesc.1nountl319(8aa t P a . L 's . v t b ) * t w a n n t . ( 1v?Jndidcm RI T t (51,92 6 ) < t = U,6 IL e e -t > A 9Jo ~755"WEaD(50,eu)=La**O c t. , d S n .'ht&D(50,53)-+wv,*==>on ?v l?'WFA0(50,533-t.dt. nst9eoitaanNtad(50,53) u u,w'u

W t a a (5 0,5 3) ai >= 6 ,n-ash orar23cn

IF(ntraw.tw,L) bu it- 4e es% ad a -

16(ECa& Wet 6.11 wu fi' 41 c o c a d.j s

aWITF(51,et) nocapeg,

C~T!!ae). 'd-l.C-TItass. ^ /.--G:- Tu 42 0 25

90 .=ITi(51,ed) 2.*L-? 1sc. 7.7Caf!deg, e...G1 7u 92 ,./ .w.

91 Falc,etso c ' ' t 3 '-C*f!1sI;.53** 653e==.)/(*et..et.) ) -.251C - f ! 2 s t s . 5 3 e * -' . 5 5 e = s t i e :6at..ec.) ./%7'

.aITE(51,a!)C-T*1,C"fle,=a .*u*. - ,a-455 -ds392 C.JNT! st t 'i5.

C. sc.cc /35P5sg.01 s%.wEm)(Sv,53) e.=U,96 Law. 437I F ( 8 6 L A . * . L t . ) . '. ) *=11tl51,4,7) it%au

C <%9C C < s v t = 5 I.: = i k I 3 ' .s

C 'er1GT.sGi. iste c . t ,t #%gG;ts; 4elvv'c v. ( : cal-GG5sGr.be1Jou. . /S..t ! . s . L I . s t r ., 3, s. m 2%5. Site-bfteli?K't. -

<%%417t(51,9ee) ( .r/*f.

.elttC51.vv3).a-t iveas

.dIft(51,ti.) r/=9'21. Fq=-at(tr.. 131 .................................................... /73

1..................................................................tr se r t ;Y 2.........=....) i - 27#$ a41Th(51,435) ett

235 F? -at(1 a,a3s,'GASt t s -twe a3r -sit'/1 .,e3a,'(c.%It3 *t- .ta*)'/ i /7s-11 -9, l e s , ' c t . .t a . Y t ;n t , ' ,3 , ' L , 7 1,- t ti,3n.'?u--!.t'....'a - MIL!a.s ,vr5-2v'.5a.'=a).asit' Ss,'GLas ',7s,'a; ',en,'-tt- .at'/3 ,=a,''.tt!rt' < r-r

3 e l a , ' ( * 1 C = '. 0 u - i t 3 / G ) ' , e s , ' t ; , . ' , 7 s , ' r L *. e . ' , 7 m , ' n t ; r. . ' , m s , ' - L - ..'.' "2776e s ,'st aL2.5s,'tJECT...',7s.skt- ',11s,'T au') - /7v==Ift(51,d16) 5 ''<7e-

C 7 717 C '' IS Taf o. f-171 L.ut.'t C.';t T-aftes 1- .CI/a- /a '

T a I f > v s . v e 5 e w 3 . f .- c 2-1TaITCts.01 d*2'TL=s t .3ed e t t 6 sec.*L-.ssF. *u6t=+C-6cett"+6=+1eav.))

' ' .; c ? " 3 '"

T a f f.L s f .1 T C e e t t = dd'a

IF(f=!?=L.GT. .5ef=1TF*)T*1?desv.3*1wif8= s .. i = 5^

74Ifwssfa!Ta--talf4L ac^ teeu!*st'.ee(INT (aLuGi-(Y=IT*.)).1) rda7>

191wav!, s-,ie2- .

I f = I T G s I * r ( T - I r = r,/ g l v n . 5 ) .1.j I . 0, c . /.g .

Iifat t?t ' d 4 -)tr(aas(>Jaf .3.;s)..T.6 c.1) 3. T 21t - 4'tSt-Ir(a%3( LI. 3,$ts),st.t.e vit5)GJ f. 21. - v ?. 1242Istao5(G t=1.3tS).Gt. . 2 t i t 5 ) i. ' f. 21s '^ i45-I F ( A e 5 ( Giu= 1.5 t ? ) . G T . " . d o it 716 - r i 21 ( ^'stv.~I r ( A m 3 ( 5 6 C c =. . 91. G t . . t v .11. ' 's div .. <eeSe'

GJ TU 211 e 1;. * 2 5 % .210 d= AL2s t J3teb.9 eF FCa' eGT' eu.a lal/ w! . c-;1/97.

I JTs2 ;u.ga.211 C NYIsut a:, 99-c

C.51st,15 s > .) ' 3 $

UECnm(!)s;tCL'.(1)elen , c4 e31t:3(I)sJtCL-(I)*T1 3 'roo3r/-IF(t:3(1).Gf.75.15 3(12s73 't ' l lo

O O

ts.(IJs;tCo-(!)ef!-k ua**3 4>

IF(Ea=(I).GT.75.)ts*(I)s75 ; *r315-18(1.GT.1315v T, daLO c' r3.Cat(Ile89(1) '3.7eO*L(1)*Csw(1) i3?=caset(I)sann*(!) t e . 5. 9.T4L(IJstme(I)e;s-6 y$1=aveL(IJswaves(!) e ~ 51 1 ',c

SCL(I)ssG5est(I)ets*(=ta3(132*3.677evW6-a .' '". 3 ) d ..enc (IjestCLat!)*C-Tiled . a: a31318 (I .G T .o ) t s C (I l s . E Ct -( 1 ) *;- T I g e t s . )t 3)eI F ( t s C ( ! ) . G T . 7 5.16 u C ( 1 ) s 7 5. 7.aa $15-DrC4sc.) c 31. -IF(dC"aw.tG.2) LFC=sm.r0;d5 09517"'

IF(*Cma=.tL.2.ev, I.GT.4) ,6 C = s L . s LO1 e+ -5ta;EJT(I)sWTueal(I)*Eap(.6a.(I))etG*L=+ tad (=tsC(!)))e).v7/eu-s.a Cro 3100G'] fu deu1 1 . 32,;

2000 Ca*TIsvg o1321,

I F (I U T .t w.1 ) G i fu 2L t '3,337,

sa(Isrs*(1)e(131.7ceP'.af=/-LI.)=(1.i11*CtCta(I)/a-AL2 + tCu-(I)) "v 323'20L2 at(1) man (I)et.'. .;3?.'

cal (!) scent!)e61L1 a'J'3#5i;

aust(I)saannt(Jes!L5 v.1,lene

T4L(I)sfoo(I)e61L2e03=* ;327*

<4LeL(I)s<av69(!) FILo ., 3?=.

S aL (I l e sw3 * s t (li ew 3 * 61 L 3 et a s ( =t a 3 (I ) ) * 3.9 7 7 e. 66=a 3t4'trC(I)st. , , 3g.-

18 ( A C"a d.t w.2 ) L a C (! ) se t Coa (I) e c a T I t ed6 ' 551-, " i _ 5 3 p :.

-s

IF (t aC (I) GT .75. )t aC (!)s 75. -

Y IF(q[Haq,(G,2) g6[-a ,vgv[y , 3 3 3 g<

C EJT(I)=5.JeEn-C.F =(1))e(L*C=+ts&(. esc (I)))**It. , ;,sgae

IF(1.tw.13) tat (151stJf(15)ene(151/m-(t.) c. 555..2001 TESTS 1. > '- tse

!#(I.G1.13) T t s is y . O r:e t 'i 547 -v

IF(3kL(1).Lt.TtST) 5GL(I):v.c 5 ta-'

IF(EJT(I).L5.Tt97) EJT(I)sg.6 ' o n 14 9...5 CimTZsut oco-3e

~31Gm1 l'er 3 1uN5!Gs15 i'3a2;o

CALL $1662(Tat) a rol43CALL s!&Gt(suL) v e3-uCALL 31w6d(tJT) e '5-5-U> 2093 Ist,15 '- 3ae-

it'f t !)sas ?L t I)+ T eL (!)+5' L ll)+t J T (I) +Cet t !)+= at et (1)+ s=(I)* v: c 3 7..2c03 CusTI 6L : v ' 3 . a t.

CALL SIGsi(TLTJ v. i - 5 9 -

Ga370tsv.0 i c 3v6) J Ja0= 1:1,13 o,- 551-

'. 3 5 2 r=aZTit$1,g3c)'utLla(I),ns(!).CeL(I).T$L(I),an=L(!),*aseL(I). ac1 SwL(I).tJ T f !1 * W"( !), f t f(I) o t r. * 3 5 3 '

G 4 5 71 f s.a s t o1 1. ft!) mi5356'2006 CONT!*wt 1554 ,

230 FGdaaT(la),us,ae,5a,1 19.5,os.1&t?.1,1s,eten,1Wt7.1,la),7ae t 6 c 7.11 - 35a-6

D!be19.ee(IstgaucG1-(:.AST.13)=1) cr'357tr

GaSYdfsalwi(GabTcf/uls*C.5)e-1 <.i'3%*'~41TL($1,d32) a a S T '; T "ri350;

2 32 F':k *a T (1* J ,S a , ' Tu T A L *c"Lt La5tS', 94a.1st7.1) c't'3n"DJ 2006 Is16,15 o Im),ae

=dITftt1,430)stCLlut!),so(I), col (I),1-L(I),as-L(I),* acel (1). var 3e/o1 54L(1),tJ1'I),vpw(!), fit (I) 0.ro3*3

2006 CUsTIvLt o ve 3ew

Sa5=dITt(51,215) !Td17. '.3%,,it

215 fi'=-AT(!"J,58,'f=IT!v= ia gtt v 3 -gLga3&',1gg,1.,' (.,,{g3f,,e) .

ad1Tt(51,d1=> o^3-7s

=d17t(51,d31) - 3 *. e .3-4'231 F t' = " A T ( t a ) , ' ' , s avsta-!*G !. T-t la Lt I';1 Lait 5 -tL t a $e i- Lt5s s ..

3pm1 (1/vw F.. l')11"AN 1.0 C!/f= EL* U-Lt .e5, ,,u s.,

e CasTIut ros ; 371-

=dITt (51,g.e) t.v'37/-.d!ft (51,9031sa.e in- ,373

=dift (51,2161 , t r37a'

e o 3 F5ad!TL (51,d65) i i

265 Fow*at (1*6,=vs,'a! + =st va=11Cstatt =iLe*St =ait'/1 v,*1a,'(L.=Iac 17 e ..'

1ES Pt* TL==)'/1 v,5/a,' tis'la!' t.'',3a,'t ==I't'sau,'avsicla%v',6mes o57Fd,'=av.43ft ts- .at,'/1 ,.8,' ,ucL!ct',tas,' ..',/.,' us,,',78,o n$74

3'wLLG ',ea,'mLiv,',ea,'E. =',1ta,'1 Tas') w v.37ei-

mw!Tt (51,21.) c- -5a6_Ua 250 1s1,15 it .,3*t.

6-/8CeL(!)svC*a(!)/tt3*-twal . . .

DieL(I) spir =(12/tt5*=tha2*LS 5 ' $a 3-

Svet(1)sevpw(f)/tti i't^5=9pandL(1)ssaan*(!)/sts.atwab .i ~ . 3 -5wa=4L(1)ssv.+4(11/te3erteam (. .43-3.

pTurn(IlswC-L(1}+st-L(1),vam-L(1).. 4L(I},s st(g3 o5 70

250 Cust!~Lt -s- 5-a'

es1 Gat c 5-9 -v

N$1Gm15 gni . nwe

SI'k2(di 'fe) ;-'3E1-'CALL w

DO d53 lat,15 - >i 3*/-

.411t ($1,429) .+ a w f ( ! ) , v t t ( 1 ) , * T - L ( ! ) , * a s 6 ( 1 ) , d * * t ' (1),* r6(1), o ^ 14 3 ''

Y 1pteTHC1) .5Sas . 5955 2 5 3 C ". f 1 *v t

3*v=dITE (51,21st i i

5347Ge t Tl NQ $6i

C c 3 r.

e ' " .0 S * 9 . 'C T*!S St C T !I. , 1-tats p = a t t t. - 5 t b-

C s ..,

10 ;13 * E s e ( 5 9,5 3 ) .t =; , s. * T o 'ce*~tedllt($1,53)..A ,pg=T" s ii C o w s 2 vLppdasu co ^'ac="3"e41ft(51,51) O' '' ket

are,5th E a C ( 5 0,5 5 ) -t s- ,9-! \ ';L i

a 't>6 a'.41Tt(51,53),'-L,valv'L60C PENso,1d a n o z,6.,7 -

.JITh(51,5.)pta vv. '6 *aS c *. s , w i=ta2(5o,53) twe.vt*1*L i

.41TL(51,53)a'' ",i t"16L ^0 cult'-Ea0(50,53).t*e,Curtw is t i,,

**1TE(51,53)e a',C=8L= o " v 9 817-61l'= t a l . ( 5 s ,5 3 ) .i e.,, Gt N .

.oITE(51,53)*rao,bt' ' r e 61 = -WEa0(Su,53).0-v,TS16L ,'e =15=WITE($1,53)e * t ,105fFL cu(ejma E a o ( S e ,5 5 ) -i .- .,, s f c s g 7,.

a a t t t ( $ 1,5 3 ) . . .=:-,-st . :.1% -

w t A 0 ( S o ,5 3 3 -o-i . ..t I co< ..:wedITt(51,53). t, L! o f ,w s t o

=LIsGtN**LI 3"oa*/1'N E a s ( 5 0,5 3 ) < t'* v ,1 * 3 L o 'ved/2n-RITL(51,53)a'** ,1=bt

e ,' o a * 2 3 --

i,ta0(5e,ew)Teo,aF wl e=2.,i

*JITL(51,6011== earnas5;

'*/m16(46s=1.LW 0) ,6 T- et 1 ' '

Fs=T4Cac.9 it ;t6/7

i * t=/a**176 (51,91c)29G7 f t; 092 o :

601 ag!Tt ($1,911) ct44"<

*11#sWT5Cu!.V I '

ea2 Co=tiott 64/WEa0(50,533 t-t ,-tyt41 -=$1"adITt(51,53)-.' o,*tbt'T t ra u14

i ' 6 55 'C

C klaD aata 60m r,% L t. ;1 % ct te i <.o.in"

C ocs o*57wE s :(5L ,5 3) uss,*FCvm e'oa.34 .

,6FCL' a t'-' 3441TEt$1,53).4 = -

wta0(So,51) t-v,LILof a. iusa -

.JITE(51,53}a =",r!Luf t i"**1-WEs](50,912)aa='.h*Lu- ' o-a=>.*

. .w a . 45C ast,cWEa1(59,%e) >TL ,;FLSC-,96L* s c=-6<'

wean (50,57)fC,fSYoWL,Cabi t c 6 4 5.-.e!TL(51,C a) ou. awa*.R!It(51,5e) ow.7is ! T t (51,39 ), a -i-,8 st L ,0 a . C 5 u ,10, T d t; .-L , r 61( , v5 C dL ,' * t - t*"- 446 .a

EEAD(50,5)} ahvet6FL6,t"a ou a=wo.H E a D ( 5 6,50 ),.h I t , t'F L $ t i ,0 6 61 .i"665o-

4fa0(50,57)TL,fbefa>0 u"=51"=4!ff(51,59) a@ ,tokt , , t n a , t t F v , i t , t 3, t.F 15 t , o * C a t i , > * t t- t"oo=5/'

v .' u " 6 5 3 -wtal.(5t,55),adu,0 6L*,t .

Wt a r. (5 0,5 e ) J & I ve ,.FL5r .v'ta <"^a %6-

Y kt a9 (5 9,5 7 ) T u, T S T' wt ,: +FG +9ve655C WEITL(51,39)*a=',',*L=,;.A,1 5t e i n ,13 f ; - ,06l',,c6Cs. ,"S ir ri6%*

ois 57"i .-

wE.>(Su,553-4,u,0. tz,s.akEa0(5c,5alusivt.1FLS:t.sevd i *u:c6%><

k E a r)(5 c ,5 7 ) T g , f 374/,,.*p o,.59.

a 417 t ( 51,5 w ) . A- t e v a * L / , " .t ," S t ,12,15 t .- g ,0 6 ] o t , u e C 3 L F , ' 6 t acaaeniv

wta](50,enjotT&* r: r .461Wear (50,5elo#!L",oFCSC ,trC* i,of662

efbiU*det 6 . e t. c r w e g

k E a 0 ( 5 9,5 7 ) f C ",6 =WEad(5v,es)hh i es*e-Wean (ge,geje>twu, efts 4,g6.w ena.egd t.D ( 5 0,5 7 ) 1 * G , T d t ba d , = t.6 9 .weh

17(TPD tw,0.u) f. f . Ti e t, ' - atec.7,

5"FWsTevel.vt3*noTF=/t .3.Tn . 6, e n e

a41TL(51,04)n~**,C*>u,1C ,151: *7,t>IC ,e&C5C'ev6L" Let ! w * w-

80 swat =Jelect3eans(1..aat*=)/t.3 7e i et 67N. d l1 L ( 51, T o ) nc6 = vcn-67).I F ( # F C p " . t i, , 0 . '. 3 6 u Tu a '1 eren67pt

e00 C ds T ! *s t etet473-IF(dtht.T tb d.0) ', ' i t' *? ! t o"it 4.7h'e

.WITt(51,71)=b#=,=JFo,T=G,T3Yv==, dei =G,L5C$=t.,b6-G oteos75vG1 TL evt i. s a c e f e ,

602 WG=Fhsc J i.ot6k779. 417 t ( 51, 71 ) * G . * w . a 'J < ' , f * w , T 51 L. w d e s6 } = ., , v 6 C b w k , o k W G eo.o.7=.

P01 C+hTI-(t m s ~ s 7 4 .'C v , p . u se r. .

C wta; aata to- od 4a6 C +vt o ,o o wan.C v onsapc

aalft(51,905) 'ensao i

wtan(50,ew)=Gt=,7 .oto ee?18(*GTh.T.tu u) G- it' emot L O .. r u r $ se

G T 4. a t t L a 16 L .S r L u k /l e 6 0. 3 /"t * 1 F L eManhaea

IFC*6?aaf.ta.2) 5 .' fu ees3 c .-7-vm41TE(51,904) *, waa-

G1 70 eeJ2 . .ae-,

88J3 GYa s? 25 67=. ..'-

4171 (51,96v) ' w!'G1 Tu Pead '.*2,

8801 GTwas?.; s '. .El*wITE (51,4.e3 - vr...-

6802 Sanssim.ast*1FL*(39LL**tt*L*)/2-='. c?u.mi5*a!TL ($1,e?)S=~ ..rewie-AE40(SL,$3).isu,tavl ..,7-

maITE(51,53)ar=0, Tact - ".--v .1

= E a t ( 5 0,5 3 ) .t,.s , T sud r:. .99s.e lit t $ 1,5 3 ) .. i-;, T a. 2 it 5 oaEa?(5s,53)*t-we7843 ng'1% u

= w ! T h ( 51,5 3 ) .. ..c , t av3 f52% i

A.xwdetou, acvr5'l-=417t(51,72) * .5'*.PCL88st.ge75 3 5-=diff (51,9311ECL8F / ; '5'nG.mtpast.v . 5 . 7 .'-s

F41 ass 1.C J Y n 5 :' h-as*Epast.g , r .. - 5 t o ,

FpFpal.g 51i2

C3-Esast.v . ,r511'

Fa*sssi.c ' "%12CsaEdast.; 29513-^

4Eangg,,932).,=0,G.-t , i 51.-a

IF('**T.EJ.vtS)3==E8asw.01 .vi515:.

Y' ad!?t(51,933)a.*u,3*= Eda Ste'

8 *Ea)(50,93=)*aat,asC .an-T *517i --

IF(asC*.tw.vtsjs laws 3.1 53.a.

18 ( s a-Y i..v t s) a n at s a s a. g 1 ocong;g-=eltt($1,935)*aws,FWIae,ar-t-a , 3 .. 5 2 .

5ausm8CLupeF=ta* oa' St!'dea;(Se,$3)-e-c,Ci.vDL na 522-u

.41Th(51,53). -1,C3*v.L 9ec 573,

E=s2.0 e iva54GEbbs10J. 3W75854

CL6aGeg.cl o, 35pe.

CLF!s).Javc1 ">*527*a4ITEtti,73) eca 5#a-EEa0(5a,531-.-a,CFa * .See-DJWTI-ste. v :r o ' 5 3IF(C5 .L'4.a.C).- 'i de3 ai' 531c%IUm1 une,552..417t(51,7=)C8*,duw?Id ' ' i r. 533:G3 Tu ee6 c m 75 5...

503 a! Leo sco 535;a4ITh(St 75) cao 53a:

80s CUSTI'-st uut 557I F ( F h C U" . 4 7. 0. 6 ) G:J fu POS )t -u 5 36=EITh(51 7e) e a a l.5 5 4 -Go Tu eJe 0 ' i :. 5 4 .. .

605 FloCDs1.g=FFC.'' O.Jr541.dITE(51,77)steC0 s v5620

806 C0sTI5LE t;ersuleIF(Ted.ie.o.9) GJ ff. e09 000 5 =aCcss0.a1 nac 5 5a.

a4ITL(S1,9003Cus t'Ca5JacG1 T L) ege L C C '2 5 7 s.

009 C0%st.0 C 0 0' 54 'neITE(S1,900)Cu% 60^5=9'

510 CONT!*ut 00i':55ackEau (50,936)=aav CSCa,CSa1.tsvu L0015$1t18(CSCM.ta.it338kFono.1 vou 552;IF(C5aT.tw.vts)CSaEpasc.01 '3^553"'

treu.v+tmPu vGo.b%s.* RITE (51,9 57 )L N 90015559=a!TE($1,935)=a*D,FwF6,C5atpa t sm SSCpopsppF# vror5579nga0 (5w,913)=aap.P-Hv1,CNCa Chat Lvurgsa,

I F ( C * C = .t 'J . 91515 P F P' s e .1 L00'554)IF(CNaT.tJ.YES)CNatsasu.01 010c560.IF (p%uv1.LT.1.C) Ga 70 e911 00C05610mRITE(51,916)as=g,Psuv1,.a=D,FPFPL,CNatpa voucte?JGU Tu ee12 " o i ' 5 e 3 .'

8811 .a!TE (51,93e) 03s>5eua8812 CONTINut ta c S * S .

FPFNsFPFPS 000"S"6'?T9Las1700, one 5 7a=41TE(St 930)frLa b a r 'S ea --wtaD(50,$3)a040,FvN e t 0 05e9,

pRITh(51,$3) dac FVN a ric ob r e ee

kEaD(Su,53)atevestJP o' ors 71"adITE($1,53)aJao,7tJP c",r.S72-

FEJsFtJe*0.15 000'573aMCdyLac.o unvaSr.9IF(<Cwvv.tG.O.0) G3 YU 811 000'5750mRITE($1,901) gouts 7eo

Y GO TU 612 oqenS77t2 811 aRITE(51 902) 09anS7ec

e12 CosTIvLL toon574uNEan(SO,53) a O * D . P F l a u '. D r. t 5a o'18(PFLauw.Lt.0.0) *HITE(51,907) v00:5*1o

C 690nS=/cC CONvt=3 ION UF u a. ! T S 00u(SalaC cuo*5eso

TUSTF La TOST 6 Let c ouuuy. '.oo.5rssaSTs-ST*10co. D'o"5em=LisaLle1000, 0 3 0 n S e 7i-C O N v 0L a c u.= v uL e i n o n o c o , onunSaa.CFMsCFM*1000 JconS*9uThumisD*1t3 010'54F'Pe!vuLaPWIvnte1E3 03095910UtalFLsDE*1FL* SLO.53 voorg42 -SuLOWs5HLDh*.3*76 000"$93,

t0FLWat0FLw*.3476 us6r54erDaFLWadaFLke.}u7e 0;rt59S6DaFL2suaFL2e.3e76 uJucS9eoCdFLWacefLweSoc.S) 00er$47cM3Papesp.wepu=Ta ocoSS9ao

C M3Copa Is Tat paa TalTIv daI=adv Coulast CusCt-TwaTIo- 1 tC1/G- o n t sS 49.a

H3Cnpast.o oso9n c^TRLapas59LbweCaseCafu*LCELNetVaeta6U+0 6LQeCass0aFu+D-FL2*V.2eva62aav9eoirm3wLeasTPLWpaea3CUPa*3.977 900o937"I F ( M 3 4LPa .C.7,0.$ e a }P k b a )aj a LW a s a .S eaj o k e. Jovoe03'*3dLGsH3pdPa="3=Lp- o Nee 640D!ve10.eetlottaLcG10(a}wLL))=1) On;te35?Io!vsDiv Lanc e.: m aIW etc.s!NT(a3aLG/o! sv.5)eIDIV c > 4 t h 17 CIr(Tau 3.Ed.0.) Tau 3a,01 oaar* inn

_ . . . . ..

Sensado*5.M.51 e- r e "v -

Ets365./faw) ts ' 61 ''

6 'o att71 s ).155 7 t 7 / t ,* ** n a't r e 6 2 -T ie s ,155 7t + n 7 / r t

1estaolenes; .e13+.

15staudeee.co, p1

Oiaw5 181,15 . t'els

e45 otC'a(1)s'>tt, ' t ! ) e s e 'i o . ~~1a

DO e50 181.15 .e t 7650 C')*Cp ( !)s a k t ( t ) te mim

15(anstpoafa=4*"s).'sf.= t.114 T L- "55 r $14

*d'.'If(ae%(p=lu L 5.5651.t.T. 5'. It5) ' I' P55

a/118 ( a n 5 ( u t 41 F L = ) . 7 P G ) . i i . . S o s i f * ) is f' "55 0

siedd.IF(an3(3eLLw=6/5.) bi 375.1) 8. - T e55 s

IF(ans(Ca*Lh=575v.).i.f.575 .1) ev 1- e55 t ta 9/4

IF(4GTw.T.4f.o) " , + T' 555 o- add.

G1 fu eel ''s e/5'e e d e .-e55 AFWitbst.u ss

Rwb2s(beLU=+vte l>te bT=-)/==ls L vno> n/7i

waaLda(Ot11 Flee,e+0.tes4L1 =3/>=1 L - edas4 'J'edQakW2Gs163.7eeP'*fa/Palwit

D'i 8es 1:1,15 c n ' e s..IF(1.G1.13) v' foi e5e <'eemil-

v 4 32-.wt+:tLia(I))/(=*b/* tcu=(1); iC 0%C p (I ) s C( * C p ( t ) .= = dt.o r . .

G<> 70 eno c o c i 3 t.

8 58 C . 'NC P ( ! ) s c u' C-(1 ) .= = 2G. C . s e ' % = + L L C + ( I ) ) / ( = r a t d * ct L1-(! ) )e .a ., e s u .

Peo C+mTI.ut " v. a nit

c.n 3 % t861 Cu fisct1F(180.tw.0.0)4' f ', e h t viv.cl7-

T' IF(6FCu*.Lt.v.v3)d<a 1, a7a ( ' oral **

v. o n e lvZ P . f y p t s t . .sl> 0 es5 latr1b viuva

e6S CW.C3(lJan&d(f) 0 " t. '- o 41 -

CH,C6(le)sa.eE== cce.d.eu.ea)Cu cs(15)sa.w*== .

n e r a ,. ;= 1 T a p. s . 3 e 17

'e*5-IF(aFpTth.tu.t..) 6' Tt. e49Ir l a tis ( * LI . 5t d ) .G t . 5 c o l t $ ) 43 f u ed; s ' t, ' e 4 a '

I F ( & N 3 ( I L S15 '. = 1.S t ? ) . 1. . d e s' l t ? ) +' T- 600 aat *e-7?

IF(an5(1*J=1.5ts) 4f.P.5v at a) So l'a *9'. cm ) r % = ..

I F ( a t 3 ( P F C C"=.h5 ) . w1. 1 % v 1 ) d-) it 899 i ? G 1e 49 '

(c) T L. M96 e .0 ^e$m

e70 v.tveted.v o o f a e' .D'.i 8 7 5 1st,13 r e.r .e 52..

675 Ch*C3(1)sahd(!) tam esic

Co C8(1 )st.te=a o r e s e5..

Cl*CS(15386.5E=5 t i e .' e 5 5 t.. .. e e 5 e .-NStaks.vi

I F ( a # W i t G . t '* .1. ' ) G' TL ow' m,e.e57c

IF ( a aS ( aL 1=6.5t S) .G T . 5'> 0 !t 5 ) uv fi 59e a.crmsa,

we T o9r cas ca%9IF(ah5(fuSTFL-1.St F) .4 T . .d u o lt 1)-o Ti- e9v o o e%ciIF (amS( f a9=9t 3) .GT .I .c a n t 3) w

IF(an3(*PC01=.ut5).%T..ae50s!) Gu 10 e90 n nr ee si tG9 fu M9e o < u s c ad ..

680 P=fvpts3.9 c .iiS6*3

e1 ees 1st,13 c c.e-6,

unishas.865 to*Cs(!)ssed(!)C eCS(14.Is1.5eer vw eae<

inan7CthL S(15 )s t .ef = 7 .

IF(AFPitG.t..t.934s fr- a49 o o r r. e a er

IF (8 6S( f ubiF L*l .5F 7) .47..de v1F /) 40 To e4J t.wnem90.

O O O--

'

. _ - .

.

IF(4eS(FFC(*=.65 .GT..I'vi) ., i tu e90 cisa*F0'< * c+ $ e 71 s(. 0 70 Bw6

'e72-6 9 0 'd a 4 L 3 s ( 1 D J a * .- = i S C + . w * C . * f o b i 6 L * 6 6LGa)/=LI 6 -

DO "95 181 15 t's e73

IF(1.GT.13)Gv I' -92 de72s"aiS"CU-CS(!; sci-ts(I)*1.5t7/1 at6Le(L 4W(!1/vv1(1)) i

s ne18 -G1 fu ew5 n,ejyo692 447-s3.7

. t. . m 7 . .,

IF(s.tivt.ti. 1.0)G t- -93eraC.)NC 5 ( 1 ) s CM L s t i ) * ('. . S t 5 / - L 1 ) * ( = S l a s *. t c . -( t ) ) / t ,r a L 3. .e u -( t ) ) * 4 <

;.--31(CMC 8(J)/av1(1)1 s

et o.e-G1 f u 65, ,' e * /69 3 C SC 5(13 s Ct * C)( ! ) * ( e. 7 7 t e / t % I + =-'* L 3 31 * ((, st w ( 1 ) / u w i ( 1 ) ) 6".

e-3-695 CO~fl%Lt8% P vUv adNJv1/C' v 'L e e -1 O N iew c

a M 9-5-C

cf ie-ent badtSC Tals pa*T (F u-i 4 = e I b F .= ss.to, a c' * 7 .'

Cwvrso.J'1 'e?*oDd7!st.15i ' 'ied* '#2(!)s(UtCL N (1)+F J / 360 0.J e f 1

IF ( s t ( 1 ) . i, f . 7 5. ) atti)sig. c o 'sw

a3(!) s o tc.is t 1) e i3 s 0 4c e 41 -t "*4/''

18 ( u 1(1 ) .G T . 7 5.1 s3(1) a 73.treni n 4 ).C

x (!) a usCo=(I) * 16 c'en4'

IF(r (1),wt.7s.1 a t1) a 75. 0 .1 s e 4 5 -i no: e n(

w .17i

x5(!) s Ott W(1) = f5ADnsh5(1) cau"*da '

Y IF(r5(1).GT.75.) istl) s 15 ieu a4u.o 3. 3 7 . c .

C} a C w v o s 0 t C lis ( ! ) * e a o ,' ri " 7 s -IF(stwfu.uf.75.1 aC=vos75 .

C 39i-F tco' ir 73iIF(1 GT.13)Go Ia 1030

C vaunt >un2F(1.GT.6) asas(1) :1 a u o 7 t So

IF(<Cwvo.ts. 1) Cav.st.dt.4 onao7cm

1 F ( 1. G T . e . a *. o . a C w v . s . t v . : } C-vust..t. oos?7172i W ' 7 ;m.C T *4 0 ( I J s ( C A C * ( 13 * p ! v 'L * C L * * i. 3 / ( A L o" ( 1 ) +"'$ u e ) * 1. -9 tt. -5

ACOT(1)stium LI)*(1.=tupt.nl(1))) voo7*o'A SaI * (1) s lC''' C * (1 ) * $ =1) / ce C' - t I ) * 4.5 =t = * * f 1.a t a p t = x S t ! ) ) ) en 716aEbL(1)sC# CP(1)*nJdL=*.la57*;'v6=a Oa00711'

(CfFaot!)*ft/$e v.+CTW*o(1)*(tast.ag(g)).1,3connyttrC6CP(13e U * W e* r v *1/ (CLCoa (1 )+ pN.h )) v o c e 71 %

on cia 71 ..C o Sp ( ! ) s t w e a t. . s T ( 1 )CHL(IlsCeCp(I3+Casd(I) ocur715

e 71 eea gal *C (1) sWt * a d"1 -(I ) * t t a-(=a'm 1+(a vt.* t s k L aC = v n) ) *' * * = a 1

A 9al" S ( !) s t "* C'i C P t ! ) * W = I s t L a s .5 e t = 9 * t h. u W ( = u va ) + C < v * L a * ( a n t a v D ) ) "''0717'

LJf(1)sCUNCS(1)*1eST>L*3.%77etv>=a s cottet719T h t ( 1 ) s t tis C s t I ) * f L a * 3. <v 17 * '> s = * o i

evv4(1)s0.0 o r .) a 7 b

TESTot.v ' : s .' 7t i cIFLCuL(1).LT.fth?3C"L(1)s'.e e w " 7 e' 2 "

I F ( A S'* 1"b (1 ) .L t .1 E S T J a da t e h ( l i s u . '. is e' 72 3IF ( A cla!*C ( } } ,L T , [t $ f ) a $r] ((1)eo,J g, ; e $ 7 / a . .

IF(tJf(1).LT.ftsTltJ1(Ilus.o o n"e 7 t5e18 ( T uL(1) .LT. f t % f ) TaL f 1 )-( . o c oo^ 7 tat18 ( A s 4L (1) .L I . f t S T ) n anL ( 1)s a.o aouo727-(.f i To tuli t r u o 7 / *= c

C cn0c7/9<

C Tals past i+ pa'.4-a, 15 5 o. L t .v i st 0 0 a 7 5.-

C's'731-103J C Tp aQ(!) s (C j C d( l i ed= I v..L e CL P ! ) / t ,t C U- t I) *6" a v } e t .e 9tt *M * 0"I42-acu Tf!)sCTp=at!)+(1,= taut. /(1)))

.733a s e L ( ! ) s C ';% C u ( I ) e s J s L = e .16 5 7 e t 65ase6a s v.7gwA3a!=C(I)se.0 v <t735-a5a!=$(I)si.a 3e 7 gmCnCp(I)s 29 e PC v e (CTw='(!)e11/3co;.,CTowe(!)ettavt.ad(1)).t.)o <i " 7 4 7 s

1/(OEco-(I)epw.v))e>d6a's t ,7Se:Ch3p(!)st.eaC.rT(!).ssa,o275o,

CdL(I)sCeCp(I)+LeSp(I)m37.c"Pvlso.e5

.aen7 1'E J f (I ) s cu sC-( !) .Ge st e 5 V I e s t J e .1 c 5 ? e ...p > w e20047w2'T1L(I)sCU*Ci(I)+CineT=L**3.077ew&*=a cm 7.tii

e v uG ( ! ) s C u",C 3 ( 1 ) e i m.' e * v w 3. 9 7 7 e i + > = 4.:| e7.utIF(u!9.tw.9) r. i. T. =ard 0.' :1 o 7 5 rGLeas((C6=e57./Ch waL)*atti+(I)) c',0TFae"Esats0LasopewTI-

7=7ct; 4

16 (f x ad.G T. 75. )E a ids 75( or76Mtappatapt.tss2)1 o O sw-EspCal..tapae ee75aELSSs*P>stm.Lu(I)ep=IsotetL61 1.e9dt.5/;LeastsGC t ,c 4 7 A t i

C*L(13sCeSp(IlefawFotLbsets LaCFl!)*(1.=powf!'/(eFbJ.eL F=a/ts11 r'75tL4002 TESten.uco! . .' o a 7 516

IF(CnL(I).LT.TLST)CsL(I)so.o-

'aiT5 7IFCEJT(!).LT.ftST1EJf(!)so.0 oi10 7550IF (M kUG t !) .L T. it s t )t v'4(!) s o.n o sen;%n.IF(THL(3).LT.ftST1TeL(I)sb.c su u7570r

l'(aXML(I).LT. TEST) asst (I)so.oC

l a p. 7 5 8 .

evw15u>Y 1031 CoNTINLE% C o: 027*"

7 CONTINLE o n.47-i.*SIsst 'i s o 7 7 a 21

N51Gs15 n ' 017 * l .9' O r 7*CCALL SIG5d(C6L)

CALL $19Fd(as-I*31 o010755'.090c 79MCALL SIGEd(AS*I-C) ol'r7a7eiCALL SILP2(hJf) naccremyCALL 51 7 d(dvi 6) 4a 07=94CALL SIWFd(in;)oro.77enCALL SIGPd(azmLJ a1ra77160.' tu)5 Is!,15nu n?7prTUT (I)sCeL(I)+tJT(!)+THL(!)+ansL(I)+e.w.(I)+as-lac (I),a3-I-3(j) aava773i1035 Co%TINuto. o q 7 7 ..CALL SIGFd(tut)

.41Th(51,906) vor.r775ecoat 77%.WITE(51,9031sartacur'7770. RITE (51,1051)a o rm 7 F e -

10 51 FL= *a T (1", J, e 7 s , ' G a st on s dt t t a st=att Ce=It s E E. aw'). i c e r. 7 7 9 ns

>41TE(51 105d)v o c e 7 4o..10 52 F04"a T ( t a v ,l i s , ' P d i a w v ' , u m , 'st C t. a a * v ' ,7 s , ' G a s s t w ! P vI .G ' ,1 n . ovoa741

I '9u!LDING bt N TIL a fli'N'/ t d a, 'Co L a * T ',5 a ,8 COL L a i, f e , 5 x , 2 t t ' . ' ) . .m c ,7 ap2e s ,3 a ( ' = ' ) , $ n , ' F L'iaut a aI* tJtC it = TutaLefgox,e(myc=tggfgm}g-art,ny43,a

31CRUC1/GN SwL1rts 4 L UN T 1wM wtatit w ausILla=v iuwwIstoce,7 %e vtNT UP* GAS Esaaubf')halTL(51eloS3) 90oa7aSo

Jou a 7 9 m'1 C 5 3 F o w A T ( 1 H u , ' . . - - - . . - - - - -- - - . - - - . . . . . . -- . . . - ---- ---- - - - - - . . - - . . . . v a r. 0 7 4 7 a

1 ..-========....===========- --..-=......-------... ---- ==.--....qcen7ah,

2...====.-=',) 0 30 a 7"4 ?1058 FrW=4T('O ' A8,2(2x,19t10.3),o(3s. lute.1,1m))s

occ07enaGASTutso.O0093791u

DJ 690 1s1 13 CiCa79??=917t(Sl: 'Ote)NL C L IL-( ! ) .CL ' C d (I ), C V C $ ( I ) , a 5* ! *5 (! ) . 4 5al"C ( ! ) , "Ocr7931C96(1),anoL(1),teL(!),s UGil),EJft!),fuft!) .79.;n i

Ga370fsWASTUTeT'1(1) u '195'490 CosTINLt '.c-7an.

D I v a l t . e e (I ~ T r a tt <G 1 ; [ s 4 3 T , f ) ) .1 ) r 797o

Ga5fc7satsT(wadfut/stver.5).v!v 0 '7 9-e

adITL(51,1ws5) Ga5fo? 's;74921055 50a-sT(1 v.s TOTAL *eeLE Lase 5',101a,1sta.1) s c a 's $ ):

C0 692 1ste,15 _,.a its

= 41 T L ( 51,10 5 * ) * e C L I L ( ! ) , C ' Cp(!),LinCS(I),a5"I*S(I),a$-I'L(I). .d'a'

".3 C 4 L ( ! ) , a a s L ( 1 ) , f m L ( ! ) , , t .. ( 1 ) , e J i t I ) , ret (I) .. 3-

892 Cn~ftsLt n, ,,3

a4Ift($1,215)la3=LG < >sa e MF*d!TE(51 1053) J- ie.%,.

=4!TE(51,d31) (^ .. e a 7 f=dITE (51,90e3 u;>oet a=dIft (51,9J3)oa-f o c t ie :9e.4ITE(51,10eJ) a$elott

=dITEt$1,10el) ."' u n e 11 r=d!TL(51,1053) "Sa-alt-

1000 FnW attlag,5 s.s alwetmst wa=t!CuLast dtLtast -aft.Coalts vt* vEaw'9- >rell1) ice clar

1001 F1m"aT(1"J,30s,'aaSTL gas',1ex,'e.ltv1-4 v E .1 1 L a T I U s ' / 2 x , ' i . 0 L I F t ' J ' J J e 15 P1,2 e r , ' S Y 3 f t " ' ,1 - r , ' h E a c t ua ALnILla=,e,1gs,sTOfat') oon egoGaseyeo.e3pr=a/t% s.a c ie 17 eUU tyTo Is!,8 Ua3? alaspwCo%7(1)spCoati)/(1L3*e7et.e **aa) es nalw.IF(pNov.GT.0.n) ha To fuer r's e t m

Y PCeCP(!)sa.0 04ttt1U PCMSW(!) st N ep=CDs f (ll e.~ e C b-t pa 3 0 0 r " # 21

41 Tu toes L a ad 3-10 6 7 P C o C W C I ) s ( L' e t t.= e p*C us 1 [I ) =e h C o'. f ( 1 ) /w .L v e ( 1. *L a d l ed t v e .") ) ) ; 'JG:atu

leCNaEda v o a . e / 5.".PCsSpll) sit'e(*=ce-T(I)/p'uve(1..a apt.v uve%a))))eC5-t>a av^ete"$

1068 pCnL(1)spCrCpfl)+8Ca3-LI) voo<e<7aPannL(1) warsp(I)/1t3=an-tka m.4 r e / APG=L (13 s96-5 (I) / t t 3 eG-at pa ;m*e/GrIF (mI0.t.,o) 4. ' To 107r. D J' ce lasPOLameCFweet.s/Cusvat u o c o m 316PtsximVJLaneva*1I" Juure52:IF(DExxd.GT.75.) ptsuts75, ccc,.' '

,

PExPFatapt.pErn2) 0000s5=aPExpCal..ptups v :; or e 15 aPELS$sP" CONF (I)/PULaa e*t a*C *L5at * a d r o tm la oPCBL(!)spCeSP(13e Es95+6EL55**'+vCaC7(13e(1.=s *f!"/(aTec.*ed***/t010'e17o

1%)) 3a v 6 54 -e

1070 CosTIwLt orersle's!Gs2 v10ce4a>

NSIGee act aeal;CALL 31wFdidC=L) %sr A42vDa 1075 1st.e voo.ea3a.

PTOTv(!)spCnL(1)epaaeL(1) kGaL(!) 0->orade"1075 CusTIsut occae.59

CALL SIGF2(UT0fP) ventessoDJ 107o Is!,e ; oce47vadITE(51,10ed)kpa=f(l),p4 L(1),9CnL(1),pansL(!),*Tviv(1) ococe4ee

1076 Cast ! *t t ocoam.9;1002 FundaT(Ina,Ae,dex.1dte.1.1&n 19te.1,*n,19te.1 1ea,19to.1) acocesco

=dlTE(51,1053) 0000M513Gn TU 80 vedae520

L%0 o > o .' s 5 3 *

3*5='S'>eWLvTINt SIG*2(=L"t) - $

C.**dw * $ 1 G , s 51 ", ayr em

D ! = t % 31' .~ 6.L u i t - s i t ) .r0:SA-IF (=314,f*,41 Go T. 3 t. ' .' 0.' 8 5 7 5=

(M 20 1 s t e - b i t. vhte5*,

18 (>Lpft!),ts.a.o) #> To cc i.Au.e59"IF (1,41,33) s.t . fr. 10 d' e D c e s o

C Ta!S dadT f. 5 Sua= 'Jft-r 15 Su= <+>Le wast 5 urcreat.DIvald.ee(1~1(aLiGiv(*Lpf(l)))=1) J'Oraat'18 (wLef(I),Lt,10,1 DI,n),t- u 0.. % 5.-wLpf(!) mal %t(=Lptt!3/s16+i 5) outs o'oresuoGO 70 ds onnsee5s

C f*IS andt US 5 == tat 1 t 16 *v= I s. . 1st 7 ' u '. e e e o

10 Cos71'ot J .i c J e r 7 -13yant aaceeaan

y IF(dLp1(12 i,I.1,0)Ib&s1 L t a 1 e * 4.-

g O l v a 1 t. . e e ( ] n 1 ( a L t'',1 s. ( = L 81 ( 1 ) ) ) = I S ,. $ ) sut."m19'WLPT(1)salNT(=Lpf(!)/.1vev,5)..)v O udoe f t-

20 Cmf!wt c '' F a F # .30 Cr'~ f t w t C o r. .' e 7 3

C THIS pawt i .s s.a= yt! t IS FL- d a < t ! (. .. L a t t s une,e76-

g+ + 50 1st,4SIG o c teoefgeIt ( % p 1 ( 1 ) , t .. . .' , ) 6,i r 1.i 5v reucere.01 v s l o , e * ( I N T ( 6 t . .i,l u ( a LWT(1)))=2) J 3 0 ' s 7 7 .'=LPT(I)malot(=LpT(I)/,1vev,5)ec]. t sop re ,

50 CONT!wt u s' u n e 7 9 0

6e k II =N b 't ) C. f4 a O S

ENU G 3 0 0 e a 1 *J

O O

C GALE C.nt era CattetatIsG Lt,nio F661ts*TS s''a L**b, -' F I' f t r *00^0^1'

C J''L v 1975 Ya T-plt"t~T apse',Is ! T.. tc Cs& paE7 Sa, WF at T; W nonaeqpe

C a&Tf6 C O *. C f s t . a t t r N 5 raLC-,Laffa i31*G -ff=Ph3 r,6 rwa 6 7 9T,At seg esanrage

C as5 237 ' war!OaCYIvt -ate 4tatg la pd!-Cfpal 8LOI s t f a-$ i F ccarenarC LIGat .ated C P' l t ' m'{tFa- ko,t= PLANTS, r+a6Y natte -av 2<, 197=9enaa^5"

C =10!f!E0 to!T!"* t F h b i t.f * &=fGua- 71- C:^ FL f f (FELLS Nf 5 F=r* 4.s nenaer>0

C aso p s nan astt systs*? a3:nenyn

0"'*6"a*CLrGital O!st-3,po,ett econoconINitGEke? Lor,%9tn,=P cance t e,

u s. a L e s Lt tfi.s , N: Gf s eene011,

mrates LEfo.a n i n n c i p *,

REaL *aden k E , * h t' , * " 8 9 4 *4^^C13iacca0169INetGtsep Na*E(3)

/ fara nonact%aC"= * f 6 / r a t e t s / a ( 2 S a " ) , L "C ( t 5 " c t , ' ' ', o ( N e c ) , a " y u s ,,) ra t * t , - z t s,Ca**rs/FtEn/Ftraft>),*a', rce,3,rt , :, a s , a , s , noonngg,C"**0s/P=0CS$/ * pats.*Wattt>1,*'dk' 5(a),aZ*=t5(*,2(),P6 faco) Oc06017eCn= ris / E G / s it e"( A 0 01, a l- f e :e ) , s t e - p ( = c r. ) , a * p . ( i * , a n e ) , ocorrla:

1 ht*0a),mrace) aqeaeton

CU*"h*/F L u n s / t t p r i, n: .F a r i n ) , v. C a p r e o .. ) , s t S 5 ( t o c ) ,015 f e 3 # 1, IL i f f , o c a ra p e r-1 t a C T , t p p , y t f > t , a n * ,1, 9 7 Dancept'

Ciu m /ou r /, UCL f a a o), t ! T Lt (2 3 ), w f a r 9 ),F G r a f a i,C o f r F s ( 7 ), 0*cnc2Pa1 Doa auwmer,FLoub,=97ak,atp=a (100),$Pr*6(jon),ame%Q(%Cn), 70aned3*

n

? m a s t 9 ( t o ) ,7 C r 4.s t , t os t i nCara2arC U==Pw /C n%C / F C us C t a r' D 1,6.C ha C r e r:t 3, C.C r* C ( A n g } , C w C os C t e n e ), ennenpsa

1 SC us(P a e ),4 f's IM 'r ) re6 rep >]

CO*=ns/Cor t /=E 8076,6"-1,7vvf,9CVUL,LF 7 0 * ', k O f* a 9, S C V"L ,5 7 * v nt , -0GF N o 9 e S P ? ? *s Pi kr,F , N b L SpG, Sat vs.r.a5Cla STLaw,ht fas,tJCTe,,Lseat,06nec2an1 e

Y P G a 5 L = 6,0 0 0 L a ,I F - el+ , ' F C k'" , ' l =* f M . 'F C e n * , * t . P F , cocoe/or

Z 1 S Y"F E , F b t * ,-f F ,5 F C c , c8 -e C S ,C =F L e, nF I, uS C S, r F , 600e0366a E r Fl u, nF if ri, t F C 97 0, r f F n , b * F L u,r F 1 t' , n F C $U, ,08 0 ,l'!L e t oeco110% ,$Ma,Eca,0-a,C 5Lb,C~,su,C.a.C-a.n6C*,ctTC",n5CSra, 016^0570g OFCa r F i f' a , U F C S C 4, * W it o , ** f d r F , w -f L o . , = +L C , * m u t onenc335

e

7 ,MhtFP,06 fan,0FC5da,DFed,"aDLed,WEGt*T, Dr003300sh F r,,os wo, o r y , t e F n,r s .c t r , c F vi o,0 8 ' , nF =r n. , r F v n., noennggnC F * 0a n , fc F y r n , C a 8 0,0 6 "DC a , P F V C a . C * F 0,'r F =0C * , r k v C =

mSena65Are

a . T s e t t , t o, f M ,7 C , T C' ,7 9 7 t* r , T Sit 4 0, f S 7 0b b ,7 -5r .O * * L 2,0 * d , * * F P, Pono*5769 7 2, T S f 0 0 2, c r J r p ,05 C 9 t 4, r s -on g, r p v r p.nF 0 7.pF I aii' n o n e e g a r.

Co.v n% / a pC ri t / 6 G.F e, n F l af., r s t s a r,, a# = G. T =( ,7 5 f hd 4, wGF F nonen39,

CO**fn/90Tt3/wftWT enroosaeC 0"*IW /CUAa/=Cf3 C(80^) 0 0 6 #: 5 u 10Co="oN/Cf %p /P f f AC (c o r ),5C o T V (M u r ),5C t tp f a 0 01. 5 cot t e n o ) PeaccuPoDi=EP310% ."Wel3fu), . U M.15 ( o ) , = ''' J t * ( 5 3, , p h r' 2 3 f m ) .P W r 7 8 ( ? ) , conen430

1 *PSO 3)( 0), a nb 71 r f 3 ), *f bf*8(il, *f 806 0 f ! 0 ) PonorGG*

pt=EAS!Us wraCTdf7),N/*en*(ib),NZCMD*(26) 000nnas*Di=E NSI'W saCTfto).scP*P(26),!AoCL(20) cre96ahnData vtS/'vE8'/ reomcu7c

C BCest CONTat~s 96taan, Cnttati Cr* CE Nica f f or S * as 4*w 's. Tat eencessoC FrLLf1*I-F ISuto&F S t a!T* T*F!b Cna.C t A f s a t if'* 3 t*, LCr/G=) awt noinn=ce

C ALSo ehtSFAT IN t=F P=I*a=, tLaLa T Hut aSE Net CPN5ftE'fD o c c e r, s e e

C SIG=IFTCaNT IN FF8 Lt f ' T C A L C' L a TI. '% 5 :se t T. 0 5 A=16,on N=17,,000s ordeeste

C O*19,,7 F-19,, ore, onorms?eC P.Cr,.C CrATa!NS us!"aar CaetaAf CisCE~twattuss Fra paw'S, stotv, ceneas3a

C SCOTP, as0 stat CeNtafA $!Cf*nahv Ch0tast CL6Ct a. t e a f la N 3 FCh canee$onC PLa%1s .IY= u.tewF stra- G5 sf wa tD=s a t votaTILL S L C osf. a e v CaE== onocessnC 1178vi *04 plasTs eft- o=Te at set s- Ge st aatt as aso patsp=a f f proces60

C SFCDNhadv CHE*!stkfr ann 'td PLANTS *!?> 6Ntt-twunuGH STEa= narnos70C GEAEwatuus, nF$PECT!*ftv. ereer580

Data N?wv,0fEa/c e/, Paw /8 P k'/,hab/' h.c'/ nenec59n

C Onnnesor

6 0n 3< f sga t 2t h %a7e9ot 73 6 % e7* gnt pl a5eTeeni2i. cg6f#9 P t236%nTP9nt

a a a' n a r r 0 o i i a * n4 0 ne 1 eea , on1 nn ,n a nsn o3 c a 0 9F n066 oe o O 9 nn1 2ie5** $sn% % n snft TP 77 TT f 7 h a * p * a k a * a 99oge9eeeoa r r e on ra " 9 ! t 1 1 1 !t t ' 1 226 * e r ra n oa f a r e3 0O a r* nnonr r cnr.p eneo0 r n nrol it t t t t t!1 ! t1 11 !tt t 1 1 1

;

9 0 n* a ee np 0 m 6 nF eP a ea o inea e e n r nnercneeece oe0s t nece 00 e06 0 nra f 0 6 aa 6 nncn0 om 0 eet na 19 a 0 o o' o e 0 rnennonoeee ncnnd 06 eoO no000 a 6 06 o0 0n 0 ef0 n a * 6 r 0 ni e nc r0 e n0 c. P r nS r 0 oe p a enn caeeneonno0ncsnn0 6 n06 0 0 e9 000 cf6 0n^ 9 nneeOeO O 9 S a 06 f. na P c8 mD OnnoaOcnne nnoon 6 oeeO en0o0Ce0 n0 9 00 Oa

TsaLP

Ta Af fs at ta a- t

aa Tr! ET TI SS a* aa nw nT eT oC nb a tw nf u oS o c6 ) f

Gt. t 0n . aC a 5i l * a G 4f F F 1 uLo .h U LNtW

0 f ) u EP1 * 4QhV OT t F F GF*- c1 ) Pv , C' 7I vC Tk& HG '

v T, po 9, L C 9, E L,CC. n N' T"4 N = F. e N) o! o7, E P. 6 t. , S.t

a E * (r

t*

, 6 G4 6 6 ,6f h + 4 s e W T e5 a65 6% A 5eS6a t ) s o 5 TC$0 )P5D l $n5PSDSn L T !G . , ) ! 0 Cag0 p 0R loaJ4nk i *% U( NFE N . e 0 00 T A A Fa0 a4e0 ak h4 Durew t T o + S$ A n e0 a 0 EQ , n, a B. 70 u a, F, n a, C .i* '

a, D.s) L( O n ! = Wa a I, n ! a a s, o. a 0. n. o n e * w * n, 1E r s( e0. 0 t s)0 0) s a o. 4 6 ,e ,t 7 4 ,2 3 ,2 ,2 .

L a 2N(F. F.

01G 6 ) C N2olt t 2 F. T 2 0 1a22222121 t 12C a asO 0O M 0 . oe)JssJJot S 00g0t00 0 0. t n L 7 0 0 0101 0 t 02u v !) W ss o 0.9 0 0 o 2 ss 0 n,n.J J (E ))( ( so E f909o909Ea6 9 .9090 9e9nN s ! sGT s0n0 s .a cT CJJC.C) N O s 9 g( PD9 0 4 9 g 96T0 t) *f I sssko oT Sos . . .R2es0CA (t AT T T0 t 2n!C40(P a NF se! % st0rnLLs24 *O4 v C' u (J I T T8T T T T

i T b EAc*cNaNTD0' LAn*C* nN oa t % (S a5* XW .ET % N s04 Sses7 F 2F DCo-d CCwN a * ta! aI eI( A aI!I af A! a! nE a 1 n3I nT st f

O u vEC0* ES23 n = a7C acI a=ZO E !9EeERF RFEERaRE4EREoE-

R C 0smDpsI eP 9SQaNTFT TT7TODO0PDSRCC*C R 0PRPDPPPIRRPFPRPRPR0 04 0

0 00 61 23

CC C CCC C

'i$

Pe!*1 4 *; 2 2, = U 2 B 5 e , S T * F E e666122aEfar 9022,..6m5A, 57 eeert230Pe!st 9 '; 2 2. -l 8054,=57 ccant2c'ktar 9 0 22,-t G.;5 h, = L I creet25tpe!%T 9a22,=8an%e,.L! e6aat?>7Stu te%3GEs==L! Snea1275As!nT 9029,3Cvot 00*et2*eEEan 9011,acec5e,7*SC acen129e88!AT 9031,*CWO56,T,St enDoj3ac#fah 9955.4L= nam sFNet scentljs881'T 9051,at*CaN coo:332nGFAufmaF%af cCc*til"IF(6FA*T.GT.t.0) EFaGTe!.0 enentlooPR!"7 9eet const15aGEaC 9012,.ee75e,GEGfst 000c13ecpelst 9ajg, caC56,4fGFNT S a o e. t l 7 S!F(kl.h.N.f.,c,e) GN 70 st necet3nnFDEFai,0nt * * c 013 9 e."EFe9.01 99eete**#8!*T 9030,FptF,*fF SecetutaGO 70 ee 0*oStw?o

at Fettat.0 neartu3a>[Fst.D P0651640p4!=T 9030,FPft,=fr o a r. r t 6 5 3

44 CONT!'UE 006c1860eran 9920,,ne054,FFCr- rece147aP a ! .* T 902u,an6056,FFCr* 0300144)IF(FFCO*.LT.0,oct)GO T0 ma46 eman1690DFC4s10,0 o*009988

Y DFC"fSs2,0 0-001510O! GO 70 e465 90erts2c

Sees DFCast.0 60031536DFCSCSat,0 Oemntga,

sea $ Cn=T!wot ense155aREa0 9013,aUWh56,0!LUT neoSI5hePGI'T 9 0 ! ! ,5 C.a n 5 e , n g t o f enentg70efa0 9 6 5 4, .r;WD t M , $M L O- 00661%*0C-ast,0 Ocen159cstan 901s,cFIC=,0FCSC.,nFC, iecoleoc4Ea0 9615,TC,TSf6FC,C.Fh 60001410pa!%7 9045 0 0 0 e t h ? r.Pu!AT cote 000r!639POINT 9017,m00Dt8,$PLDE,C.a.C.FD,TC,TST'kt,0 FICA DFCSCa,CFC. 390034c0QFaC 9613, *Dhe t P,E OP L d, e 64 e , f r a SOSctA%"Resp 9014,CFTE9,0FCSEo,0 Fin 960 elan 0#Ean 9015,TE.TS,f0F0 606at47ape!NT 9317. Du0ta,ErFLe Eua,FSFL.TE,TS,CFTfe,JFCSE0,LFEt c.cantemostam 9013,.riante,G,FLw,.odos,n.a $90 ele 90Ofaa 9ets,uFfne,t'FC8ee,h70 Oecc1700RFAO 9 015, T I.', T $ in w 0, D e F P 00093719Pa!*T 9017,=DdDie DaFLe,9,a,P.FD,TO,73frwn.cF10.,0FCS0=,0FC. 00001729Rfa3 4013,mUWD14,0=FL2.aCEOPera2 00001740RESP 9016,PFr02,rFC6C2,DFo2 000017eb8E40 9015,72.757h82,0,62 nnsat?%cPRINT 9317 .uspgg,3,FL2,s.2,D.F2,T2,7970k2,0FIO2,0FCS02,0FDP 060017A3dea 0 9037,4DTFh 90sa1776agan 901a,nFTC",DFC5C=,hPC* neSctvarEEa0 9015,7C" TSirwn,C>F0 ence17enp f a :) 9r37,0GnF9 00961AnekEa3 9016,0F I D G,0F C M *G,0 F W G 000$1d10RE so 9015,7 4G, T s f r ew,sGr o ene61*2*

I F ( d t * "; * * , f ', , f , " ) G' TT .$ c ? q a t > 3,i

a~susng.",sett3 ear 1Fdit,3ais ^^** LAG'Pa!* t 9934,HPFh,C"F TCw, 7 $ 7 '+ * , r 5 [ C * , * F f t C = , E s ( * *?FatAsrv,

hisws-L. set,etlesasti...;isE!/',3 7e Oo#91"a?pu!st 4335,Er54 S**f! ?"

morat"arIs(sFC?a,ss,0,t} r. L t', tesg Cr<ttstg neaet.e

!s t e s G'sf.E ;. * . F 1 G' to L7 nr$rigra

pe!=t 9 0 3 9, W G ,6 a , . g s c , t o r,, ? 3 f ( w w . r a g e s , s C S * G , t * = G **s*titi.

.

Jo Tc so c aae t GP -67 sr.pasF,a n e s r t e 3 c-

P 4 } *. ? 9?)*,=5 6m, BOSS,7=G,tSYTk ,.${E,,36(3=G,fskG O'**tes.e6 C"st!'u8 r??rtS%?

** .- ,=,,13,0) G- ?- se.e aseets -tsk?S'at,0 1. /fc8C=e.sr.61 i n n e 19 7,

#sEf31st.o.t.affrFIC= erst-) arre19eaFset* Cst,0*!,a/fC8CSC'* FChC51 **re149Fr,1 18' 4 47 00ma?Sar

usea FsuTSLat ; E c C F 2 510

8sk?51st.0 **S*2,prFsst%rst,? cr e ar * 3a

dau? C"''t't of**Pler'**r??'C3 n a c g r . "rC wtan anta s,a p.e ;a3 C. ,r p

C ti*r2'1?Eals? 9*L6 Preapsa-

sFan 9 s ? 1, . r. f s . t rena2-4-It f.Gtd T.6',,C) pelaT 90%3 ^^**?taa]F (ah?g.1,tt,11 sb J- 1 g :- $ p annapjj-

Y IF tar.Y==T F,,7) FLI*1 Ca75 c e> 0 r 217 e8 w t a :. 9012.-Fw.$*,tast 'nreita n

peI* t 9:12,.:wr5e, taut arealtoe.

ses7 9017,.ae ta,Tay; i r e r / p r -,pa! .T G4t p , v g* , f a , p *cerptt-Esa" 9 9 t h. .. = a 5 6, t a' 3 roer2/pcP 41' T 93!2 , 'c':Se.Ta .3 c , r e p p ts

G .=8 p a s t , s co9et/s-F&!akst, 90 9 e p/g $as-epast, enac7/mr#e68:1.? 000c227^C 9-6 Pia t , Oreal/moFese.st,e *n**2?ns

O s -f, e a s t . (rearp3a-

EEa eae s , - i .. a t s , G.- t o n a r ? ll eIs U, -T,fs.'F51Ga*Epasa,ct re act tp .

po!' T q u e s , . < s 9 t s . r. . = 6 b e macap3g,GEat 4(e?,*1d4th aXfm,aEa? 9 n r r ) 4 G ,1e

!F(arc *,E7,vF31F6fa-s+,1 enealgs,I F ( e x - T ,5 s.,vrstas-* Fame,et naacpge,DE!*T 9ha..I 4'-19,5m}ak,as*&ka ( O r. a 2 } 7 iefan Ga.22,.ahns*,!" v-| 1rard gaePe!'? 0)?/,- %:5*,C.',tt 9 air 239;G[a'' 40/2,.'baSA,CE* pf06269fputti 9;22,=fd So,C5- a' -*a7=t?pfso or71, ove t e , C S C = , C S - 1,6 = F L- a n e r 2 7.*I F t C S C = . f G , v f s j s P s o s ^ ,1 caertu3eIFfCS-7.fa.vtS)r5'8&ast.r! ofor?.69E%su r,gsal a$ app.gro

patsT e s 7 2,7 * craa?.ee94 !' T Q u e s * fJ d t 16,Fk5b,C$=8Pa 1*00287*dea" 40e4,*(J*18,P*ahut.C=C&,Ca mf aroa/.Aa

IF(CsC ,tL,vtS1spFatso,1 crcepuosI F ( C *- a T . F 2, * 8 5 ) C * - F. p a s r , 0 3 nearpgayIF ( p ''J v t . L t .1, ^ ) C3 T' s.6* nocr2At*

1 % , P *." ,1, . ' ' M t e , F p F 9 , C * -6 D a brPe25pmpet' t 9 9 7 0. .f'E | =

Gi ti' avu9 oca32g3-

sean satst 9v73 S a 3 - 2 5 6 ''esso Cosf f u f rpartss-

fates 17??, irar?%86pal ~t 0;se,t*Lu r09r747*6 E 4.1 er20 * V SA.Fvs ena-dsanpa!'T 917 -1 .h w ; .g n , F v a crer/5o,

WFan 902r.,.d C:te EtJ aannpeorp e ! '- f G J 2 0, n = ' 5 6, F t J Smaad%t<.

"Cevoso,e reard%paIFt<Cava t%,0,^) Ga t r, s a acaciegnpalst e539 eertle6oG9 Th 49 0 Foe 7655

4R PR! T 9;&O Co*a2Ae3se CosTIN.E S 0 n a 2 * 7 :,

Rfan e S a n, * ? +er $ e,F Ft a o * encademn15 ( 8 5 L a !N , t s. , t . a ) k=Ist woea irna2=go

poist 932e aasr27aaC **^a271oC C os v! R$!!w r,F n+!T3 senap?p,C '609274'

EnFLWsE08Leeum,A acen? Furn.stsen.sgo.sa,e operp?sn

Da8L2sn.8LPose,a anne 27man i in 240 006r277a

Y C n o n t ? !P ',$ C 4 Ear na?a s m e . r. Licolo Cece neaeproC **n'2*na

50 E E a r- 9 0 2 2, ,ia' S e. s t * F w ener?*tePGIv7 9022,*i:4 35 6. 9 7 -# = orla? dinREA7 9 n2 2, m f 4 45 n , p C vnt, On0edm%"#4!NT 9022,.naDSA,pCv.L nDor2d69Fatsso.cnt esoc2 esc>FFuo,029 Ocaa?**'P G l e. t 9916,5pt5,k&F 0:1**247stao 9022,..w'56,tFtr.as ric acie n sper+t g n ? 2, .r.s r s e , L s 7, . ae SnPao ,

GFa4 9 0 2 7, * a w ?5 6,4 E kh '- T cie02966'4 tut 9 522, ' G r 56,8 E Gt * T 'aSc29tnGEsa co22,ro wnsh, F FC iW Onnp/Qpnparst onp2, .f e c5%, F 6 Ci * ocea?941sean 9022, rw"So,Cftof naon29uapelaT g o 2 2,-''S r 5* , D ! L U T c60a294*perst eaug nnaapeesaE s o g o t 3, e m ale ,C.s Lw ,-r 6 c A ,C.a neceto7nagan 903e,rFIC=,nFC5C,eb8C* Daca29"aaEac ects.fC fstr6C,C.Po enen29espelst 9ute occaineapalst g o t 7, . rim 1 A , C-F L ", C a . C -6 0, Y C , T S t r w C , r 6 ] C . , tiF C SC , 96C. constatoHEa0 9031,w.',sote ,n.FLw ,.' *;e ,n ,e nnon3,,paNE a u 4 016,0F t o ,0s C SD e ' 6 ; a 0n6n333'sta9 QSts,fo,T5ftwo,n-Fn sana 3 nanPGist 9 017, .n 4 0 t m , f3.p g 0, r . 4, r. to tSt'kO,7biba,aFCSc.,cFr. n00n3o%a"-

s t a '; 9613,.s.wnte,Cs,5w, f+rm,C*a acco3-ineWEa, gate,ortC ,05CSC",~4C" eraoTa70efan 9015,7C=,Y5fiWN,C'8C 000637saPW!st 0 017. .n w n g g , C e s 4, C u a , C * F n, t t e , f S if 8H , D F IC #,05 C SC ', fJ C" 0.9 0 6 3 n 91

a**a31**aga3 913t,kG.F=agaS # cts,et!EG,0*C?-T. 15e4 **r*lt!"eram 9 015, t a % ,7 5 'r e e , e",8 P 'PP^312'pa!*T 9038,2G.86,=GshetaG TStead ;F!=G CFC'*Gerss; a;aa313;

' 2 a * 11 s -CC #Ea7 Cata FUM t-- Gas C{ et **ar31%>

4?C931**(poist 93as sa-*1t?'sta) 9 c 2 2, .t W '5 A ,0.G ? 7*.6*3 tacpal *t 9322,-o *50.GG5 '*o'119's t a n 9 n22, .:;a.:5 6..S TE or**)#3*Datst 9aP2,.DaOSm..Stg c eq32,*

etaa 9011,=idSS$.t!*3 '*?^32/1Palst 9 0 t t ,.r a756, t!- 5 **:0323-egad 9ett,.rwaSo,tt-6 a+SP3/a9patst 9 311, = n J ''S e , t ! ~ 6 640*3#5'

****12s4as p a t e t .0F!Ltot.v 1**9427-

'1' ' 3 2 * J'apa2st.0m

ena-lao-81 List.cSear 35'wrpasst.0^^^*3It"#1L5st,J1**ol37^espagal.6

$!Lest.3 a ca353'Sa*a3143Csdrat.3

.sai 93ee,.ta.it$, Cwt =.C=-tpa ',6^e35%9

IFfCat=,gg,vas)sittt1.1 Sto*>3343S'9" lit *IF(Ceatpa.tu.vfs)*Epater.ct

pal %t 9 0 41, .' e t 15, F IL 1,-t a a t *S*ritar.

Y' EEa* 90e2 .tw315,74C ,tnwika, tac 5 aietilen

ki t r ( t aC =.s r. . v t 91 s it P se.1 o',elaar

Is(tu-opa.r..vFtt-EpaPs,.91 m a e .- 3 c t 3oranis2,IF (id C S.f 4.vt s )C $6 Fa e .2

pWi%t 9063,*T=r15, fit 2,-Epsi,C98F 07"^3=l'E(43 e r 22, < G a Se,t !L 3 Sa7 ales *petst 9;id,tdrSa,FIL3 c oriat*EEa? 9022 ..e=F%b,81L= f*''3d*?pa!= t 93PP, nwase,r!Lo assa14todean 9060,.odats,a C=,an-tpa co9c36a'

IF(avCa.EL.vem)5!L5eo.1 ^*n3349,

IF(an=FP: .EO.tt$1*E8a%st.cl S*PS3%f*e41st 96,1..r6h15,FILSeatpag Sincl$t'sral 906a,.rH 15,E.C=,w,= Epa Ocea3523IF(d.C=.73 vf938 Lese.1 care 3%)*IF(4.=fda.tv.vES1=E84.so.'t 00093se a

pD!%f 9 0 61, *"4.515, F I L 6. =t w a b Se993%5nstaa 9021,ut-a* *aea35st;

efa7 9712.acdn56,ad8 ens $34tc

stan 9ett *oEP50,ast e86r3 Spa

staa gol2.atEP5%,<No a,1a159-

sta) 9022,*h8'Se,8= ASS c o * a. 3 smo

tr(dtdad.EG.01 GO TG 56 **ea3ntsIF(sC=&S.E3,1) GO TO $5 03*nlePapelst 9023 Scan 3stoGD TO 56 00063%so

50 pa!%7 9026 anSels50Gq in 56 noom3 n;

55 Fetc.e<so saaaletsC=T!!s(a,51**<4e**A531/f**24.*2.) 00Salaec

C=T!Ps(0.51emaE***a5S1/(F*24.*2.3 nS0*1**pe!%f 9325,mau,*tt,=%n,== ass,C f!1, Cat!2 eosastea

56 Co4TINLE cacm3717eEan ge25..owb56,pFLat+ Osen372eIF (pFL a a*.L t . J.n ) pa!*t 904* 'caa373c84I=T 9026 incc37s?

57 Da 58 fat.IfDT sene1753efftsc.C Ocon37A0

58 CGNiisuE ennai77*C onn*37s3

0FIEnst, nee,17ea

OFCSEDel. eser.3900

Orfest. 9eaa3 1:

D*!D2st. onensadiCFCSD2st, cecelata

CFDist. Ononsaga

24C CONff%UE nome) 59

C noncimaiC CALCutafE kw!-ady CcL4a T CokCrstwat! x3 Fna p.63 ocen3m7cC neanlapa

IF (T vpE .F Q.ea a )Gr TO 251 nonr3see

aFPffsso.o 000n390007 2e2 1st,!Tn? aeontet?

242 PC04C(!)sp CosC(1) c7aa192aPqaaspo.1 e q nc30 3cPCynaspCvia etEl cr.eS3esaLEfe asttfr*".50e.53 Sennggsn

54Lrassetca 3afe 3eonggen

C6FLasteFLae5no.53 c3cn397cC C=EC" TP SEE !F pa!*atv plant pasa*ETFa5 apt .!Ta!A SpECI5 !t a nona3eanC RahGES con 33een

i' IF(apS(po.a.3anc) GT.cen.1)GD Yn 243 610n0000

$ IF(ass ('Cv0A=5.5E5).GT.O.500tF5)G4 TO 263 000nea10

IF(aMS(LET"=4 3.7E4).r.T.o.5nn1Eu)Go 70 2a3 09noue2r

IF(a>S(59tra.425.3 GT.375.1)GD 70 243 onocec3c

IF(4HS(CP8La=3750.1.GT.3750.8)GD TG 243 en0*40erGn 70 2a7 mninc053

C CALCULATE p.6 P*!-auv Conta%T aCJuST"ENT FaCTCNS noon 40eo

243 aFPTFSs1.0 000n6470ewaL2s(LtTD.4en.9+0.1.SRLCA)/pCwDa Poinen*0oC $ ud 2 s (L E T 0. n e n .5,0.5 ( S* u'a +C e5 L 4 + 0.9 ) ) /pC vo s ninence,

RCFP2s(LEfrea.c,g c.tetsRtos*ChFLa*o.911/oCvoa aqenaten

E42 stet.76.pn afoCvea einnett*00 2ss Jet.ffni nan 64321IF(PCONC(J).Eu.v.c) Gn in 246 66nou15nNFe*.uCL(J)/lecon neoratc0DLsDIS(J)e3 eon. 00666156I F ( NZ.E J.53.nw.'I.Ew. 35) Gi' T U 206 Ormouth?

IF(NZ.E:J.37.0w.NZ.Eo.55)G6 in 205 Onenst?oPCO*C(J)=PCONCfJ)*Ra2*(0.6612+9L)/(EC8Pi+ht) cenestseGO TO 2s6 conceton

248 P C ON C ( J ) s'C O'C ( J ) * R a 2 * ( 7. (' 6 0 6 + nL ) / ! w a a L 2 + c L ) onia62eoG4 70 2e6 000nedte

2e5 PC'3NC (J)sPC0%C (J ) R= 2 * ( 4.0171 +0L ) /( WC S'92+0L1 n09es22e2ee CONT! Nut nones 23e247 SaLnesSotDeent.m 69 tere 2cc

PCv0LsPCv>t*1000.*0.7/62.6 nicac256C CALCULaff Pad GE t r,% 9 a w y (Oo(a%7 (Ostgutga7ggs3 pnongpg3

SC v na s SC v0L e ! E 3 onore27aPL*cwas1L.D.Netts 600ee2PcStrFas5T"FR+1F6 onne420aFPCDasFFC0= nennelnc

C C= Eta 70 SEE !F SfCOAhaEV PLA=T PaEa*ETERS akE m!THI* SWECIFifD esen=3tc

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOft 4 9m e @ O we N M @ in d b e @ O ** N 986 4 in 4 b e @ O we e & O ** N 88% W en a P= e & O ** N

e art en In en art en art en en en 4 e e e e e e a e e p* p N est O eft e r= Om pm eB e e e e et en e e em e @ eN 886 @ en d f* WD @ O ee N 981 @> ps em p= sm Pe86 s86 y81 s8e a89 m est o8t @ @ @ @ @ @ @@ q

444@ 4 af @ @ @ @ @ @ @ @ @ @ 44@ @ @82 4 4 4 4 @ @ 4@4W@ @ @ @ @ @ @@ @ @@@ @ @@ @4@#444W@ @ 44@@OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

haW >

e *C04 I ase- a. n am asas Wp M s=n og

J O e4 M sd

O I ** w S.3

> & #3 kJ ED ZW Z Z O

O O O O O tbZ Z 9- u AJ E4 as 4 E E &

E & & %ePD St he et % % smG B Z W at =0m 0m De

O O ha O O4 De M %e

9- D- ES D-4>O w w u@ d 69 0 EJ D AJ 4.3 ZW & F ag > 59 4 3 Z 'Z OtmJ hl 4 h t.S % WS O O uZ Z Gha W3 89 % 4.3 4.3 GL

ene . 4 tas D- 0- % as es E & se

59 444 89 4 eS WD e Z M O as w me ee e nd 44 4 4 W4uO e e O

Y ftf N 4 7 ns #48 eS e T 548 4 7 O GL u 89 n .A4 O4 af e ftf 49 e D- RJ Sk k 2 A Ohs O O D- N ans O O np .3 O fts e to a k O r3 +>* D->= D- >=S- O O D- ".3 tk 4e + 4 estWD OO WS O p- E O +9 4 GL *E s89 s8n m3

_ O O E9 D- - O O D- r O e- Oerth > e sk _a aW #9 49 s= ene et 89 O D- e9 er to D- N 4 at h as g3 ,o

e d'% d's @ O El as as D 49 9 eO Y e D- N Af43 Y as em"") W9 b tea (9 3 Ift 9% (9 m taf 6 (9 D- D- S e M M E ftp

D- Gef he we em en D= Gmf Saf e% ee e SJ Gnf 89 Z 59 GL S OOw ** w

S we we o se P. O we me est O p% Z ee we ag 3 en) EL M ** % % % O3 OOOON 3 4 O O ena O Af G OO Ah&W M #9 em D

M we eB O O WI O As as O O ee We ett eoO O W to a e OOJ J J M

.O X e Gk 4 O e 49 O O O O b OedI d en ne eO Z ms Wt N O O Z e As O4J W W e b b N + + + d 43fW F e N == O D- '# e o te O t= mf' e **

fte ses D.e o D- se OOO e *b De O e dP e&N N e% e nf Mf as ne OOe D.eO E > e e ee O E O eO > eO e O We an O o O O WeOOE O e

>=9- D- D- >= ES- eO D- SC aaO e- D-' e aO+OO O D- M tri e o e D- s80

,D- 89 (9 e D- (9 9- O (9 49 3.- D- (3 3 49 D- as + EJ + D- > e e %e we gs

.e

OOZ O e s e te em Z 49 e e 49 et as Z O e 19 O e4 m O O OOe e e O O49 et as > et am n 4 ee as > ss as e ee as 39 m e Z WB 0- 55 O O 89 Gmt ha 8 D 58e s89 Et Eng8

JK In b Inf n F JE en 9= em a% EP A Pm 8'e O D- E e- E.9 (S n= = =w w w s'= eem M E >= M he tai en en e & D- s% he he M Ift 9 & n W W% U N Z N ** as O NNN E E O NO ee GF3 am O tft en eee WD n O We art ene Q e O RFt 4 haZ h Z O O eO ZZe e e eO Ze o at ee 9- *# 8 e e9* e e at e.e >= e.# ea e EP O' e se $- as' # # e et et S St. * d' s D O O' W v me* m .n D- O O- ee

O O N O h8 we @ we S OO Z O me we W we S eO O ** e4 ee O e af a ** O N O e O O & & e4 e4 De O eO OWe o e5 he 9- > *O O at S e St hs D. R *5 8 *E 9 e EPD Ew *9 S E *E E 4 *> *0-GOOOO** %* *e p- G O O O

G e e.* I et D- O ad as E at > og Z Mp O as q E as p- og >e D- O as 4 E E O E O t) O M M we e e eZ Z Z me ha =* 4 eW ens u = 3 ans O ak O O J u * 3 W D GL OOA * O tas AL O a. O E O ha en h# = * % M s80 P= O O O * e % se s86e _A O O we E3 =>K z EJ e O O.*u e>EEu o O O es u e E EJ BJE e% e se es a e art M u u u ee n a e est

Z e e> e m 53 53 u t J GL tJ e e> e a 53 53 tJ D J k (J e e e e et ab 9- E es ha A e J Inf eft enf 5 >e H am e *W3 9 WD em WD e m De >e as e

W tal99 m e E W e ana W3 53 59 to WB pm ** we M 3 thf 59 GL h D- e ** e GL Gna Ik De ed be M G G B eD W adt A h3 Om W De ** ** >e GX F N W AS Mes D- %e w ** ** 9.3 Sm 984 W 989 MMs 5 as e em t= me ma se e.* D- fig a 3 -em 9= ma ** N at w 5 w > en > Z J ** W he ** N n ste am 3 AS 3 Z J se taaO O E as E

e X AJ ha O taa O e4 AL WB W3 53 E3 K taf O W N e4 IL W3 m 59 Ws K ana hi 4 M EL 59 e5 J e 89 A 0- e D- e O tJ 53 * * * * ** ** Z Z s81O u e e

Ina J Glk & E E e ** h e e e e 2' o & 2 m. as e.a th e E3 de e Z O EL EL 4 ** h 53 m O 3 M e M E @ E e u 3 og N N ** O ** O ma >e O M. N se Z O ZO Pm SJ 3 M NE9 m hL > O > N 2 as as as an as mL > O > N Z as as as as as It e- > > N Z as as as D- ts J e a. & s a N We Z O Z 2 2 e- 2 e- Z e- e- D2 mr se >= U >= 0**w%******* b 43 9- O*********** p- D- O 9e ** w .# as e an. * srt ** ** e a w me O . O OZ Z ** e m =aad h h E he E O A3 h h h k b h O E W E O (J h. h h h h k O E E O () h. h h O W T t) s.3 h w k O h N J k k 43 O EJ O 4.3 O O O O h N AhE De ** R e5 EL O WB ** ** De o.e e4 e.e 19 E W & O st M re o.e e.e o.e e.e i9 A. & O WD e.e De >e SS EJ M N N re K H O e4 Z O e4 M WB E9 WD (9 59 EJ 19 43 O M Z O e.e

O se #43 39 @ d Pm eB D GeS a3 =0 a8 aS a3 =O eD m3 9*N N N ftp N N N Me N N

th 4J tJ t3 43 &J

3G

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO889 J En d M et D D eeHf589 @ Oft 4 h M @ O e4 N 989 4 Un a b e3 9 O =* N 389 @ aft 4 h e D O se N 38% @ Ift a 96e D o we N 989 @ Ift 4 >= E3 D D ** N 089#@ m e e e e O O O O O O O O O O e4 es we we ee se se se we ee N N ftp Hf H$ als fte HB HA N 989 38% est #W6 589 est est est e8t est @ @ @ @ @ @ @ @ @ @ tit eft tH tp4@ 44@ @ @ bft RH In tft GH Ut tft 1st tn Oft eft IH til Ift Wt Wt tH tft RH Ifl In OH Un hft Rft On Wl IM WD tH GH til Wt RH W1 Wl WD Oft 4H ift Gft GH Rft 80 4H GM In Oft tfl Wt til WI 4D GHOOuOOOOuOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO O O O O O O O O O ED O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

e e Oe% O et eet em e @ G

em M em e e atas %r >e eft Pm @re 43 w n @ e ee* Z t.2 em W e _J PmO O Z ** E P= O eZ LJ G ** n e > JO E SJ U .A 4.J OEJ 6. E Z Z O e) >E % M O De > me RJ

& as % R3 4.3 % W)% De em n E g #3 as be

am v eo n am as ek ha me Y %De as w em en e.e % N % O nga8 Z ete se me se as to .es 4.3 Y

s ets O 7 w ** . tJ 4 ** !J Y * th OZ SJ G th U Z O %* 4 G L UO & EJ Z Z O > LB E U R h.43 w n O O es as Z enn m tk twe a w a9 89 W el O Z h ha R** e% e E E 4. % RJ M e & he J ft M & N e% & E Ek k Wrs n J % % em 4 w W ans e YJ + n re n he n e n & E 4n 880 e M De 48 tJ f4 - SL h E* .A est ** ** es et _A tas e B e6est 4 ab SJ L3 Z to n D- E k X& F M Z Z O e EP 4 48 GL 53 >= fil

et K 40 O O L3 4 h 989 9 83 1 e e e e e89La h8 GS && ta Ek k N en 989 7 >= GH e EJ >e eDE E _ E R 48 I ftf M ee #9 thA ES e D E E Mf

N ma % ** Oft a w ** e D- e3 Ene 980 M e O e MNOP= % n % hhe e a8t et O G3 M ee Z O + O e4 >* efte em J et fis N 989 r86 EEn E t- M en ena O e E 4 SJ 43 O

J M .J & _S N k %* ftf 586 RJ O O Y W GeOn 4 n ooh 4 e W D % eee 4 e 42 e.* ** at- e >= e- 6- 6- 42 Y ta E D E9 em em o its K T t.J M M o.e O

H# ** WD 4 S E R h h eft J Mf ** 4 OO U Sk k * * * * >Od e P= N OO% % % e its as P= O e o kO ek O O MMU69 en p8t P= fts 49 E9 RH Wt tf* Oft sed Oft P= 4 h we 3 84 O % % S&een we e ** am em >= b P= e IH we La 88% D= e4 e >= % b 9- es em eoft e O e O tH P= * * * O O e e en -Art ** n ZO 9- N K tan aft aGH O ** O b- est est P= D= en + t- ha am eO O el e4 at 3= N Z Z wt est be

ew e ** e eO e @ SJ Z 43 w O e L9 M se >= Z k an. e e meGe 58% e O OGe e a se O e e3 e o fts n o en et O & a N GOMens est w e89 59 he the est est 089 D- 49 N W 589 Art 4 OwM Z 49 Ear e e ens tus &

eW E w n o ew w w R em Z w %% e% O O e Z Z e ee eNw & O NNm m W Z O e es a est e o O es so tJ a, 2 X g nNn OZe e e eo 22e e e Gn. D- eO n 'Oe tal O O ee4 % O E n n O 'FZM Oe re .em .n >- O O' e e' s eg .es em e as O O O Z e has we O O t- O 988 n J e O Z J 0- O a e 4

E We De 64 O e O O W W De me >e *E O >= eO4O Neo e o O O h3 SJ De 4O N .A _A OO &M eO ** ea w 4 9- G O O O O ** ** m.* E > re G O eO e ** Z ee He >~ *Z** > e _A EE3 e >- O OO eneZ Z Z O ** Gna es e e oZ Z Z n 4) = the we P= d OF r e e e-e em O Z O ena el e e M =* * * e

>= 0 O O > m o N tre est eft O O O X es ee e % s86 s8t taa O OJK = ** EJ O E (9 e e We D = N EJ P- 886 *3 e589 La ta t.J tJ ee em as e aft Mt U tJ 43 J % a es en ee eU X O en wemeIL L3 ha e =E D e e es em M est 54 ** TO

e es e84 m) est en eg3 es a be e-o sg e e el P= en >= 57 en ek ett e-e >e e4 In8 ** One e3 _.J > K W U S e5 E S= t= a O O 5 he M e e Z *3 N 5D E >= 3 h S nn8 >= % re ma ma be G G E P= 5 Pm a tal b me W me me Z *e gL 5 hl en G 9 >= De Z re S taf 2 hk O O %* %d be ** >e O O O T W a.=ene n its as He r* 3 Hf in Z J ** tas Gna em fit r= fti em 3 Mf a en D Z .J e ** N h.n 3 e e el O ** ** 3 tha ha h est ma e B J 4.3 W W RJ N S Me e4 M me Z ans P O U eg o eM M og Z 389 e P. O LJ N W3 O P- ** 2 Z W W t> (J ** De Z P- 4.9 ha 3 e e Irl U B e e s) M M **

N ** O ** G ** ** O we b EJ 3 Pe N N *8O me O ** ** O e @ fie 42 3 2 Pe a X me De X _J K b & u ** M 3 has O ta ta n >e O 3e= N N 3 3 De OZ Z >= Z 9- Z >- 9- W ril 53 2 O Z Z Z >= Z >= Z P- >= K e f46 53 Z ** M S & 2 >= n O em its me Z Z 9- E a _J P- m a er estZ M Z Z*3as**E** O O OZ s 86 ** a e ** %8O O OZ et afi . me e s>t>**O Z 2 > E OOZ K ** _.J M mom e ** sf %8 I e4 2 Oneek ta O 43 O ta O O W D eL N 3h Ok 43 O 49 O SJ O O RJ W O Gn. N t tJ O . a as t- O 86 RJ SJ O O an. 4 O e-o t-e e me et O N E en h N * * N Npe et (9 83 (3 et e e 39 m n >e Z n og e o et 49 af3 (9 53 tJ 4.9 g E O Pe Z e.h A W3 36

e n E e.ewpEJet53 el O We k as 43 EJ e o SJ (9 at n 43 43 e G Z av M we M S3 M Mwe we se

ee te Pt @ WD e Pm en er ab & DPm tm Pm 9% b 9%Dm P= Sm >= >= ON N fts N HG NN N N fte ftf 58%

N 040m3 U

3-35

315 CONT!'+E 11**55a?C CattutaTE e6Cli>Is97: pf !* vF sf ow!f t fa p6 COM t s s a T E df 5!'*5 Oaan555%

T ( 1 ) a G F, G ENT Scie %%>aCALL 5SL*E o'o'557'Di 335 to!.!Tv' **0a5se'

130 of%vfflesTEdaff) Onor%SenCALL EsFTak a'na%%a,

Go To 3e esaassicC e***5e?'C canasagn

251 CONT!* t E a n a a s s a .-C Cat C; LATE 9 4 e61=aav CrrtasT CosCE Tsa?Tos<3 c,3cs g,

na 22gt Is t . ! Tt t n3,*5%,3

2251 pensC(flesC<sC(I) eteaS*7%pc. amen.1 naeaseaapCvosspCv Lett6 anne 5eosLET7sastiin-s.tte 3rsagran

ST-sassf*F6 1Fe atan54 i

FFCvas58CD* aanas7pc

C CaEC5 Ta sEE Is etas? Faoa-ETE65 465 !T*f6 ''tCIFIEC BANGER rh16573a!s t aw s t en.a.3a c r ) .G T .e e r .114r- To 752 coamS7s3fataus(pCvra.3.*P5).GT.e.=601F5)G* TD psi n a a r. s 7 g -

f F ( s h i f L E T I . a . t .17 5 } . r.T . o . 7 n s t t g i r. i T'i pap na9757psI r f a n S C S T = 5 a . t . S t 71. ( ? . t..? ir s t ?)G:) To p5p nara5tfrft(awstrFtra.a.9).GT.p,jrat)Gr. Tie 752 nocasyas

Go Tm 256 nsic$forC CaLCutaTE was abJesfarsi *acinL5 PoSaganq

252 EdaL2s(LEfr.aen 9+5FCDaeST Fa+0.ete)/kCwOs cec;5mto"C5dM2stLETn.aeq.s++*CDs.57-Fa+%5.6)/DC ur's ^^*^542a

Y kCFals(LEin.a.o.o+FFCaa*5T*58***==)/pC=Ca resa54338 b d 2 s t 11. 7 6 e p'..a f et g r a mone5s.3

00 255 Jet.! Tot ecceSasa18 ( p t r *.C ( J ) . F u . D . 0 ) r. . i To P5s neenga ,

Nie AUCL(J)/10N c 00695976OLea!5(J).3nen encsgaar

IF (AZ.EG.53.ok.*Z.to.3%)Ga To 253 coreSa9eIF ( A Z.EG. 3 7.uh .* t.s Q.55 )Go in 25a ansagearPC4''C (J ) a pC U AC ( J ) .w a p. t r. 3 4 5 a + t t ) / ( dC F P2 + 0 L ) encasattGo TO 255 reat% epa

253 PCOAC(J)o*CG*C(J)edaPe(o.390s 6L)/(4Cso%;+CL) neen5944Go to 35g conc 5ega

754 pCOst(J)spCU%C(J).d=2.(0.tc0P+nt)/(WCsway.CL) ennagess

255 CnsTise! ceqasona256 p C v t'L a pC v ut + 10 0 0 o 3 0. / 6 2. 6 cena% ors

LE To.ss LE Y r' A.P r' c a . ence59acMTaswsST= Foe 2851 o c e s s w o ?.

P7 72%$ Js).ITOT one*%$^o18 (PCPNC(J).GT.O.0)ptf4C (,') s p r est ( J ) / ( 015 ( J ) * t .62 9 3513 ) ee90 mote

2255 Cost!sut osisneteIF(AtGFvf.GT.o.0) GP Th 257 000r9130C a l. L EFFfan o c a c e .a o eGq To 30 nonnentn

C Coo **okeC Co-puTE ete vat Crmsta T Fou Costt*satt revisEwattzte Is e-w connba7c

257 CC43-oo.9*57**Wo8DEF/(&Cvrte7.aBea* )*57Ca* caoreien

C 59""s o .5 * 8 7-F * e 8 SF 8 / (PC v' L * 7.* M * 6 ). ) *8 6 C C" co0c6090On 25A !st.IYnt onensterSFsNUCL(f)/100cc 000i*11*pd(!)eCC90- cenantpa

IF ( s Z.8 5 3.08. ' Z .E O .351 p = ( !) s C C h:1**aEr/8pfF oceentgo

I F ( **l .t 3. 3 7.f'd . ' 7. E ' 5 5 ) o d t ! ) s C S a c

9eneactsc

9e

rZwjspCn'C(f)**-(!)**Cv'Re1.12a32 P i c e. * t i a8(lingZaJ ete-athsnZw(!)ssZ-Jeeeecn. o*0a*171

258 COA T!* of cic3at*'v 7E 47(!)s 0 reccete,

C CaLCeLaft INVEsfro!ES C' e4 C r'-C E s s a T F 6FsfNS e00962aa290 ffile=EGENT cce*6210

CALL 3rtvt Occempp*rn P95 !st,TT07 co"**23S

295 RfNvt!)srTE*Pf!) caech?onCALL E'FTAM caare291Go 70 30 enneepne

C c'na*276C Fos-aTS 50kvaf$ FrkwaTS oneen2a6C n"03s?9'9000 Fn#*aT(20as) ecomelac9*01 Fns=aT(10EP.21 n00Salti9002 rne-affeEtn.3) cenanspa9003 FD984T($(leef9.2),IS) aconn33rgone FremaT(16!5) 00ncelea9005 Fne=&T('n.wu nk -ndT ENCEtnA Di*E tSID* 9 81 09echl%'9006 Fi1E d a T ( e 9.(n,7 g ni ,y(p eof g ggg g g p.g gy ungg y gg gnef) r3agg3p)9007 FUddaT(P(EP.2,IP)) n00n>3799008 Fle*aT(201e) c00ne3An9009 FCD*aT(10aa,FT.a,al,Fle,5) ano065019010 Fus*AT(32x,7&c.16 ,ae) oneccen,9011 Fod-aTf!ss,13as,a3,p4,e) cannsat99012 FnW-AT(14x,tu.......; ennenepa9013 Fne-aT(tSt. sad,82,9r,58.0,ts.ae,ap,s$.y sceroe3,

Y 901s sna*aT(20s.F8.0,7(53,5e.0)) connesec0 9015 Foa-aT(27s.Fe.2,ter Fe.2.tas.Fe,71 reoneemo

9016 FnW"aff'n',30s,'F-aCTit 5waCTION COLLECT!"N OECav'/pr,8376fa= eonesungt FLOa mate l'r pCa 9150=adGF9 TI*t T!*E'ettr,'cfCONTao^0cea7^2=tNaffew # A C To4 S ' / 2 0 s , ' (G a t /t.a v ) ' p l s , ' ( J a v S) (Days,8,ys, n e n g a ra n n

181'ea u ,8 C S',e v,':tTwE 4 5' ) os Jnee009037 PnedaT(2g,cae,a?,t*E9.2,1v,'4fcpfe.3,Ps),3(toe 9.2,ts)) neene5a*9020 Frs=aT(ths teau,5p.u) neca65to9021 F 0 W = 4 T ( 7 9 s', t t i PCPe657^9027 FnsaaT(tbu, teas,ss.e) 100P653o902 3 F oe=at( t hs,'TMP WF 15 a CWvoGtNIC n!STILLaT!PN C"Lv"*'/2ev,'!DDfN' Soco6500

tawq YEkoa t?FCONTaa!*aTIn* FaCTPW', 771,'10000.'/20X,'#RTPTUN OFCONven0*6S%'pa=fhaffug paCTHW8,772,'4060.8/?f:s,'*kWPTh' a%0 NENON wCLucP T!*f (Onone%An30av43',77=,'90.') P0904%70

9024 Fou-AT(tea,'T>EwF !$ $o Caa-crat cEtav systt=') nnoe65ma9025 Fow aT(les,'T-Est IS A C*akC9al rELav S v 5 f E * - / 2 0 s , ' * W v P T h e- OTNa=fConce699^

1 aDSOGPffUN CDFFFICIENT (C*3/G=) ,7 72,F 9.e /2 n m ,' ut%0 s avaa=gC a7sne006%gei( C * 3 / r,- 1 ' , 7 7 2,' 8 9. 4 / P n v , ' o u - h E gpeo'!ON CoEFFICIE*T rF ~4!% CON 0fs?F0'mam6te

3w m = F L L 5 8 , T T P , F 9. *a / 7 c s , ' ~ a S S C5 C=awCoat (3=047 70%s)',772,89.8/ conm*eina20M,'MWTDTDN *DL7op Tf>! (Javs)',777,F9,6/20s,'ufsas =ULDos f}=F (eenamn39$Davi)',772,F0,e) n 0 0 0 6 6 411

9026 rna aT(1-1) necese$c9027 Foam &Tftes,'ptaNT CapsfffV F A C f D4 8,7 75,8 n, Ar,8 ) openggar902A FuWaaT(ter.'PE= CENT F#tl ,tta CLatfl%G "f5tCT5',775,'e.e3 eenabh7'4029 FoudaT(ins,8 mass rF * a T E. k I' STF a 4 GfsFwaTOe5 f f ae"S * * L L651',773.ceonenas-

1Fm.u) een'cogr9030 fo9asTring,tFIssiqw per f vC T Cauwv.nvE= FusCT!n*',TTS.Fe,d/t*I. 430**7m"

t'waLDGEN Caawv=evFw FaaCT!v%',T75,5s.e) oponA7tn90 32 F D A"a f ( 2 v ,7 a s.* 7. 0. 3a s , a t ,6 5. 3,3 a. , a 3, t p.pa s ) Croce7pn903e 6DGdaT(2N,'H(MaFO~N'.104,tDE4.2etekedDF5,3,25,2(FAtfe/K), nnach7La

13(tPEw.2.tr)) ense=Teo9035 Foa-aT(2v,'UNTkf a TED dL Ga r ''=' 8.1 pf e.2,3 I n , ' 1.n00 n.e netoefso

10,n 1,gSg at 1, cat er 1,0.s er') aa*6m7*r903h 5ow-afftma,'T-twt IS NOT a Cm rtssaTE Jt*!*thaLil5W') $^**a7799037 F04-aT(7/r,sa,7) 656t>7mq

903p poa-affda,'wf.Gt*.F a T si L 3 * ,196 9,2,1 = v , n u S 5,3, p s ,2 ( F * ,5,! s ) , ne ae70~a

13(1889.2,3m)1 ecae**^a9039 Fhw-aTries,'T-fat Is a tanGt'!C .'6 * G a s s v 3 f E -' t c43r**i;

9060 5PadaT(ths,'Te666 !S *i- t-e-Gtslt ' 5 6 Ga s s 5 f t-') cnesaps9001 Fna-aT(tes,'P I*adv 7i $tCINnakv Ltad caTF (Le%fDav)',773,'Inu,') mantaa g:9065 Fo *ai (/,'a LI wf r nasT* tsvuT**1 en9an*uuer46 *no-at (/,'n r; a i s i 13 .a s it l' wets') necaensi9044 F0waaT('n',1%s,'T-[*f f$ *of aA P . 3 3 ' ,. t,yna.v') pene=W% *

9051 F0daaT(tha,' ALP.-m ,A emit (T-rtsa.n lagf-.)',2% ,Fi, ) enon%=73t,.') renches*9052 FnW"af(tmu,'T-twf ! = C r/ T I ' t i U S S T E I6 6 !" G ''8 F'LL L'T"U * 8 t

90$3 Fnd-at (t%u,'T-TEE }$ 'T C ia T ! ?- 3 S T E i s o g . r, r5 s ut L t T r .= sto,'S qrma93

t) enno69sa9054 Foe *AT(ths,'8LF. satt T = w , M. = Gas $7ElpwPw (Gb*)',27s,54,41 P'ea69?^9055 P ns-a ? ( 3g s ,F a ,. 3% n , T t ) con 6697-905% p rw - a t ( t g s , a a u , a g , as,68,r) encam9%oGCho Fne-a? ( 16 s , o a w ,1.. r . a l,6 3, a 3 ) passe 9se

9e.1 p t.w- A T (ie.,os.,* tov! f =e t t asF 4aCirns',i+ ..in,s,32..' a TTC.La0,0n %,

1TE wriFasE *usCTfon',1mm.>tu,5) 097cn9ac9 0 6 2 F n a- a ? ( t e r , u s e , t e s , a 3 * m a 5,13 ,4 5 ) n0*cb9FS9 061 F nW *a T ( t a s , u a w, ' Ir n! AF =t tt a5e * * a C T ! '' ' , t e n ,8 t o .5 /17 s , ' P a 6 T I C o t a T a a n t %9 a )

It WEtt a st s w a r f tie- ',1cm.sla,5/4?s,'=tttast F=aCT,.SetClat rs s , Fs aoent na9r'2 Tub 6S',ts 4to.5) o f n a ? ^ 6 t.

90ee Fowo4T(18a,'9754= (fa= fr Tobd!At *LDG (aMS/dh)',19s Ftr 5) eace7at*90 A5 s ow a T ( t A s,uau,o n , a 5) e n n r 7 > p a.

9064 'od-aT(tes,asu,4r,' paw 1!ColaTF .htta5E 5 u s C T i t a ' ,61,5 IP,5) Cor?7ni^9067 Fnw+4T(tes.54w.trv,43,es,a5) eenn?4ao

Y 90e9 FndwaT(tas,%au,8fantsf 66 L.asE F w s C T I PN ', t t v ,F l fa ,$/ le a , ' p a k T !C oL A T nn v y a%oF

M tE wrtt ass seact!<m'enz, Fir,%) Onnn70mn9069 Fnw aT(16r,$au,9r,FM.?,9s,a5,en,43) 066*7a709070 F oe-a T ( te s ,sa a,8 p ait (C6 4)',tf a,& M,t/I m r,% A h,'lh0 f st kt Lt a5f 5waC7troo??nA*

T C s ' ,' I t h , F t r , % / 3 s t , ' p a 4 T J t o t a T E ktLFa5t * k a C T ' 'M ' , * * , 5 t n . 5 ) ennn769n9071 Fqa"aT(164,5aketer,a),An,al,193,6a,*) DaOn7to*9072 Pos-ai (ter,'8d6GvE'Cv & C '. T = 1 dLob -IG- vot pueGL (71*f5/v41', 03nr711c

1774,Fh,0) 9606712"9073 Fo6-aT (tar,'T* Fat IS''T a C..Tr s t u. i. o . v ot pewGF') onon7tga

w 'l unhGE i 6 v0L, C ^Ta~L T4'innn*713%9075 Fna aT(tes,'Tht.=f 13 C % 71 vPuS L -

END cecc7 tonS sw4o' T int EF8 Tad 000n71%11sttGsont Na->(3) conm71**D1*f NSI J* Nied"-(Pb), aft %ca(PA),w6_ACTw(7) nen0717'O T - t A 81 HS- TeWal*f400),0.Co*2(4no),frCU~Cf*0c) n00a7tmaDT*EN5fdN L s eN0* v (12 ) , .( a. n(12) eenc7399C0"*D'/ta/sZfdo(airi, slateco),ritastacn),asf,(tc mqc), none7 pan

1 n(eon),e(ani) aman 7/1oCed'hN/FLuna/T(/a),Pn 6wito),TtCasteoa),rtss(ten),ntsteoc),ft]TE, enna72pa

1 !aCT,fFp,finT sD=,!Npt ornn?2inC o-w= /uu f / o 'C L ( * 0 01, T I T L s ( g r y ,i,( e a q ) , F r,( S c o ) , C v f pF F ( 7 ) , 0ine 72e

1 p n * , M t * * u p , F L u z d ,4 9 Y . u , a t w a s.. ( 14 3 ) , S rnN E ( t e n ) , a tm NG ( 5 6 0 ) , O n r. 6 7 2 % oP gasf5(10),7Cos%T. TON)T reca7thaC Pa*DN/C'wl /k F aC T W ,Fa * ,7 'PF , DC * ot e tt in s , a ' Gas,9Cvnt,ST .0t,'v.eascan7/7s

1 . N ki .d GE . N s C t &G , $ 9 t tu , u a Sc L a , S T L a 4,5 L e n = N , t JC T w . .L a k a t , o r.n e 7 /a ca G 4 SL, = ,Co st Lk.op -kr , :5Cuy ,A2*rD*,NICea*,A6 P6, eona7/9$1 57*6h,F856,atF **CC ,nF*HCA.CHSL4,n*1,06C5,05, Onon71^0a E 'S L6,0F IE P ,oF C M hs t 8 i ", D, F L d.PF T r ,t f C an.,08 0 *,0!L ot f r e e 7113

9 .Maa,Faa n a,C-6L6,L .aW.C.a,C*a,I#C=,c6!C=srFCSC", nnee73)*e h F C ,3 6 ! C ,0 F C s t , * = .L o , * -t L 0 t , = > ot o a , * m ,( C = , * ant r c noc^7 ty7 ,8115w,qrine,r6(3hr rsnu,=entr*,WEGt*T, nnen7tp

Snpe,np=o...Fw,teFr nt*rFq c6 vin,0.En,0F*in. 4, ,noen7%gn eg e

e ., s .r% n , n s v a a , t . r t n a v r C a ,0 5 ' C a . C = 5 " , n * % C * , C S ' C = n t e a F 3 e e-a , t s it , T a , T h . T C . T C ,7 5 f o-C . f 31.w';, f S T"w6, T -SC ,5-' t 2,"a i," = 6 2, c * c r 7 5 7 '-9 12, f s tCd 2,8. t f c 7,08 C s r a , n * -t m 7, as e n 2,-5 t ?, PF L a v tae"7ts-

C r* =0*'/ a PC C r L / d6 6 d,0* ! U., a5 C 5 b G, J' E G,9 = G , T S tr -d ,8 GF P C*e*7500CU"=C7/99ffsta8swf 00061a*^C9"*DN/8Lis/8Lontti) --','"of,Ia.rEn.r.n ,ans, ewe,*0aL=a,-ftaa ar'c7s'

C0==DN/Cm c/DC",diNWfanc)sttmen),0-c. r(nor,1,C= crc (ecci,C-C &Ctanc), cron7.A'

SCUN(8*0) Feea?*S'tCO* ')N/**C/*8Cfsp a-PCf99c),.-pCrane) e9ea7asaE1vivaLE*Cf (alfan(t),fo-*>d(13),(rlaft),0=C0A2(l)) asea 745*Data P 4/8 p.w'p,dem/t mm='/ qane7&n;Data Lauscov/2%sguo 27esAn,27e$on,anegge,utnogn,sein3c,sagrAn, Orsate7c

1 e7ttri,%3131u,5513 0,55137r.581ssa/ Omnr7.srcata .L a o yr./ o . n o t ,0,0 3 6, e . q c m 7, n . c o t s , n , c r 2,0. 0 a S t d ," . 0 ^ 2 a UF*o749*e

1 6. r.' C C c 4, e . 0 0 0 r n d ,6. r t 3, 9. c 2 u , 3,0 9 5 2 / cner75nsOq to fat,7707 cccc75te

10 D(!)s=015(1) 00ee7529IF ( f v p5.E 9.M ae ) c.4 To 15 cc$n7535>$phpasu.sep"=1 ceeo7gge

C M3 Coo. 19 T=F pd Twff!'- -wi=adv CrotsNT Co* C'sYsa fit * !s OSaa75SaC UCI/G" ecoe?Sn*

H3rne.s!,0 00097A7eCtes*LCaeCra eonefsnaC2s*cFLweC.s e ne r75e 'Cl2Cl/(Cl*C2) bear 7%aaC2st,=C1 oce97 etaG1 to 2u encefn?'

C TWITCO IS Tat pak T u f fli - po!=a4v CDCla,t C as C E N T w a T ! t" !N ance7einC LC1/G". cace7eco

Y 15 Ta! Tows e25epn-t nce7msoa

d Te!TCes.01 acco7aen20 00 30 Jst,1 TDT r9eefe79

C= CONC (J)se.0 nace7amnincnNC(J)se,e ocne7ee,D.COAC(J)sm.0 onne77en0* CON 2(J)se.o crae77toC* CONC (J)so.e opnn??p;N2sNect (J)/I ne ne ea96773cIF(NZ.Ew.36.08.~Z.EG.54) G4 TO 10 ceneF7enC=C9kC(J)sPto*CfJ)*C-a nion7ts3f0C9aC(J)sPCo CfJ)eE0a ce0n?7aoD.CtmtfJ) spch *C(J)en.a coon 7773DmCOh2(J)spCf"C(J)*ca2 ocea77AoIF(TVDt.tJ. Mad) C-CfNC(J)sPC0=c(J)*C a cenr77enIF(fvpF.tG.Mak) G1 77 30 000c7aanC*CDNC(J)s5CnNfJ) n o m.17 a t eDFCvristo. eco17m2c18 ( NZ. E 9.1 )Ds c h t s e t . 0 oc007n3a18t*Z.EW.37.0d.*7.t).55) C8twC5s2 oonm7aacC=CO'C(J)sC-CO'*C(J)/uFtvCS ocee7aso

lo Costisut enna7anaC ocon787eC CALCULaft =aDfusCT!vity 48TFw COLLfCTfus at a C9%Sta%f waft eco07aneC cene7aea

CALL COLLECT (fteenudo..C. Cost,fLiff,ITPT) onen70moCALL COLLECT (Tees *enn.,FOCm C,ILift,!TPf) 03aite19CALL CPLLECT(TDeme406. 0aCnNC,lL!ft,Ifof) 600e792oCALL COLLECT (72*a6ano. n.CUN2,!Lfiteifni) caos795cCALL C OL L E C T ( T C = e a m s o n . , C = C Ds t . I t. I T E , I T D T ) in9e79er

so IF(WFGFNf.LE.9.0) Gn to go onen7ggacall stoeaG(reGesnecc. disv,ILITE,Itof) canergen

50 07 toa Is1.!?nt Sta974t'

NZev CL(!)/tasor cana74a-Tuascat!)siggi,es, 3C st!) n,m.yoq,

caace;es18(42.EG.11 31 T f! 10* -

IF(%7.E3.55.ra. r.g:.s3- so in en nen,a s,I'(*Z.EG.37.pa.*Z.ED.551 Ga t'i 70 a a e n a ip

soaemos-C

C Cat =1 Cat f et a t=f * T pas . f-E- C a t ! ,N s n.,ea e-C a'c"A55"

C Co%C(!)st Ca*C(!)/38C. anec9 a'-

E DC osC (! ) s t rt.'s C ( ! ) / C r t S nana*-faD.C %C(!)sS Cn~C(t)/;to. ancanaa^

D CON 2(1)s0 *C es2(!)/95 02 a'er*19s

C = C c N C ( ! ) s t a C r * C ( ! ) ( 1. a .v> t s e e ( 1. ? * C " * *. / "' F C = ) ) ca'-ateaC 70 ? star p.a it-m!%t 8t !L ;I* G F Lt r. c.a!.s e-ar s orut. .astt **aa*ttiC systf*, ettttt C sna C G--E s t r% Ca=L5 att ., e stit stut tssaar acca*t?^

a!%v (!)se!%s ( T ) / .7 5 W G canenti'Tueded(!)s1991.es.e5Cnst!)*8PtF 0(c6614^

C TeoRDe t !)s t 491.e5. 5Ct * (!) *8 8f S /'.5 va 0 9.* e. A t s o

GO TO 20e 139ea9.,

C *anaatf9C Cat"! Cat refa?"f%t row a~ t ws c,naata,

C a r r. a ' t 9 "40 C=C0%C(!)st.cnAC(!)/cstC. oSar=2?'

EOCU*C(!)sFOC3*C(!)/"81Et a a3Pdtn-

D.C"'C(!)sD-CosC(!)/rFIC. oncep22a

D . C'!% 2 ( ! ) s o . C r,% 2 ( ! ) / F F ! n p enemnagsC = C I A C ( ! ) s C * C"'C ( ! ) + ( 1. "*- 7 T' 8 C t . 0 = C w F a / 3 61 C 6 } ) e10rwpge

o!%v (!) set %v (!)/Ds!6G rnneaps,

Y Tocanutgysgeqg, g,estost!) .tF r,,,.ggsE C Tua*06(!)s t e91 5. 5Ce% f t ) -5 5/r 81 a. eaaae/73

Go to 100 3nnnag.3

C onr.a*29:C Caf-! Cat twtat-t%7 Sco .4 a o ts annraseeC Scanm33,

70 C.Co*C(!)sCaCANC(!)/0FCSC* Score 323t 3CorC (!)s t rC os t t !) /r:s f it i aancagg,

DaChaC(!)s9. CONC (!)/08 tera can,a3 3

D=Cn%2(!)s9-C9%2(!)/DFCSC2 699aaS5aC= CONC (!)sC=C4%C(!)ett.? a T6a=(1.o-C-Fr/'8C5t=1) JCCa*1%c8!%w (!)sd!*v (!)/DFCSDG St**e57'TV8HJd(!)sieet.eg.este%(!)e8ptF casanga,

C T s5F a d ( ! ) s1991. e s. e s t n% ( ! ) e s at F / a s C SD . ec c.a go :ICO C9%t!%ct infakua"

C **na*=1?C Cu=pLit aanf tf aC T!s E DFC a v % wltG pat-CE ss!s G a *. n saapt!%G 93eema7

o n e. $ g u g .'CCALL stosaG(TstowCemeeec..C.Cq.C !t!*t ! vat) n.. c m ., c ,

CALL sideaG(tS ma6=Sc..thcost.! LITE.!?''t) oseae 5,

CALL Stuq&Gttetpareps6oc..o.CnNC.!LITt,! Tat) n a s a e g .,CALL STOEaGtTstuk2eresec..t.C0%2,ILITs,!vety opnr ,,3

CALL STCeaG(tsfr,s enger.5..C"CPNC ! LITE.!?nt) nsca=4mp

CALL stoaaG(tgttawees.ac..*!*w.!Llit.! Tnt) nea.a.goCALL st08aG(21eno..tu2PPN,!L!tt,!Taf) accessesDO 130 Isle! TOT cara*510AZ8%LCL(!)/tCSCC iSnfp522

a9LOeno.3 nacneg3,

IF(REGENT.LT.O. rett GD ?L 110 eieemse)anLJess!%vC!)e3ss,$eeGtc/etGE%f ec,oregge

119 IF(Tvpf.EG.m.s) Go in 120 cosass65uto-sagLC.eRL.3.se1991..Cate%C(!)er1.0.ar%et) sceapsta

Go TO 13n ornB*S6)120 ARLowmasto.+C" FWet.342*C=CnkC(!) saca*s9n130 CwCONC(!)maetna ncnc8%30

IF(TvpF.fJ.8md) Go TO 133 non.a6:C ssaggtgeeC F0en.02432 c607862'ESFLWmEOFLe*ECFD*0.02A32 OnntPel'D.FNeo.FLweDaFbec.02m12 an00 PeasD.FW2sD.FL2ec.82ee.02832 00C9Pe$sTsLRoasC. Feet.a+EaFLReE0a+0*FGeP=a+DeF42e0m? 00nnP%A?>3wtpasfotep.ew3Crp. n9enpefeIF(a3kLP..GT.c.$e-3pwpe) a3WLp mc.Sem3 pep = n100m8mcRw3dlpam34LPw/10, OeonA=90Isfe!>saw3sta 01onefoela3RLPe!NTe!we10 900e6710GO 70 136 orSPA720

133 C=PesC=FLRet.382eC*FD nnoce71nDeFeue. Flee 0=Fpet,342 600ePfanTLRs(CaF4+DaFW)+1.3P2e(C= Foot FW+WGFreaG Fe) aconh7%"fe!TRLaf4!TCDeTLw canneT8rIF(TRITdL.GT.O.SeTWITpe)TDITWLec.S*TRITPk ac0ePTTORTRITksTk!T4L+0.5 ninePT9eITRITRERTRITR 000cm790

136 Tnfalso.0 000n9800D1 140 !st ! TOT o$nnanteNZusoCL(!)/1000n noonPaloIF(NZ.EG.34.De.N2.EG.5e) Go to too e n o r, a n 3 0

DI5!se!5(!)*1.n2P3E13 Ono6PeceC=CaNC(!)aniste(C-CONr(!)etwFW+tDCONC(!)e8D*LW) 03008650D= CONC (!)s(D>CasC(!)*D*8R+0*Cnh2(!)eD.8u?)e0IS! 0FnePehr

Y C * CU' C ( ! ) s t'' C ON C ( ! ) e D I S I 00006ATcf TURdCR(!) STOW 9Dw(!)eDT3! 00nomeAc

I F ( **oC L ( ! ) . E D . l e n 3 0 ) G L. Tu 140 Ononm89eTOTAL sTOTAL +CaCONC(!)+D= CONC (!)+C=CDNC(T)+1UksDE(!) 00066900

140 CONTINLL 000?m91nAD!so.)$ 0000892040Rs(ADIOTOTal)/ TOTAL 00008930

150 SCN9E*so.O 00e68940SapWI*s0.0 onenp9mn

f*FCso.0 annea9en* :.a STs 0.0 eanaP97053aaifs0.0 60n089AaSaHLOas0.0 00966993STks0.0 00069000STPfaL so.0 no009nteSCaNALs0.0 00cn902oSPEas0.0 On3c913npapelvs0.0 000694cePSECse.0 noen905nPCaaSTs0.0 000n4coePO=&5fs0.0 cann9rTOpaRLnes0.0 e n n e g r a r,

PTHec.0 econoagePTUTal s0.0 r.onn9 tiePCa.ats0.0 anne 9ttePPEase.0 none9 tinPND9*so.O onn09 tinTLauNDoo.O onoc914,CT0falso.O 00009150pe!NT 9001. WEaCTa 00009 naIF(Tv9E.f G. pad) p e ! *. T ouc2 00609173IF (T ypt.E G.9aR) Aw!NT 9006 Dona 9ta]

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO se ng p83 et en a h e & O ee ng p86 e en e p. gp @ O ee N M q eft e p. e & O we N 086 G nn e P= e & O e4 die M @ In 4 f* e @ O e4 m 98a e Ift e b e. p@.@ee MD Mf ne ne ne its na no N N886 080 e86 e86 s8% s89 est s8t p8t 885 @ o e 4 sy et @ af e e en en In en En en en en to en e alt e a e a e a e a b b b 9= b >= >= h P

@ @ @ @ @ @@ @ @@ @ @@ @@ @@@@@ @ EP @ @@@@@ @ @ @ @ @ @ @ @ @ @ 4P @ @ @ @ @ @ @ @ @ @ @ (P @ @ @ @ @ @ @ @ @ GPOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO O O O O () O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOthe

>-89eE 4

O he* D-

taa 53>= atW) E

QX'6 eLJ W* 9=

SJ G 59ans .J dSS es X*E D-* SJ 89*O m .JE >- E as** ***t-WDEOa F & >-

* as 3 as aDW DOk 8 In EJM a3af = at WX X X .J>= .J D- M* as a m

hf >= Gaf Z#mO EOE3e Mt E) A

** M En 3 at O as >- eg as

e we 09 V Fw 7 e f >-H'> O we _A OO **

Da O O 7 8 et D- 4 >=

.S >= 3 4 mO E OO 9- e

O en El 4 en M4 2 e >- O 3

19 he D- O _J ee 19-n .J ee eF e as

w + 49 h .A e at OO N4 086 epb

7 E a O as" o 9 OF e p- 49 OO OeOOM O O 4 t- >=O O ee O OO O t- O p.

we W (J A a 7 as ee O + e- M O O em @ tr a @ =@ =ewe 6.9 O h 3 E

ee On O 984 en e e 3 _A O E>=> 'n#O . .

ZOO he > 7 7 4 ms 7 _A F aA . e K 0- 6- X *e 8- O t- O

O e es =* W as _J q w E9 ewM86 O**+ &J + ** 3 O 3oO ^ s8t n e tif W

_J3 J7 . Jam 2 SJ64he 2 e3Deasmemeh5 Gaf ee est haf > en 7 M WB ** % O G H ee F X >= p-

>* eO 986 Sb EI) > N EL 3 en e.e L9 43 #89 >= %8 De O #5 WB *E 4 at 3 4 Un e4MN e De N ag E at

# M >= ED re *S 59 O e og 9 ce O .A O 3 SJ O K _A 4 as e- 2 P- as D- e s"n ha a a es O sL ate O Z NO n am as & 7 as .8 h8 e _A 4 O . A EL b GL eEE O 4 2 O .J O Gna O E Po %

we t- E O' eO e e am se te em EO 3JB e* es af D- se >* T *E 4UO 9- U ha D- M F e In a em W e e -am we

+ O& O W 49 ee elf ga %8 he O as as me 4 e e he O e O E O + 42 + + + + + 63 4 + + ee a w&Jp& y +

** >= OO we De E 13 t) %e +- En Z .A O Z 4- D- 4= D- O % % (1 E tad E D- >= A .J E E O .3 eK E E EJ h3 E E g

&J re se e S e.m sk Z F GA a% he .J e.o _J e E _3 .J (9 2 me anf J J e-o eG O st W3 =W 4 ena M F *E 8- 9- E al 3 wt EL e t-

as ees % e n n U e n O E H >- as w as ha 3 as e soet- * as as *=n E as _A as as 9- 2 & O 3 D .3 2 = e * Z ed e e 7

o 989 ** be X G RJ 4.J O m8 59 >= .A O >= 2 as D- D (9 ** 2 M b- 2 ** GL + 53E E susO 4 + 2 4 O e 3 O O O ** ens G G 33 he

se ** 8"e5 e-o > a ewO he E E S A M as O (J eO e _A O .J A e ** De O 48 eas134 LD D >->- U M U.At-(9 O OtaahaE Dtot ena O-e e e e as e e e gat ha ** 9= RJ G EO b5 WD EI) EFA + W3 WD ena e2 e- t) .J w O

3E S3 ** he M e 68 G G El 12 O e U O E O E F 3 O p- De E >= ha as *

ea3J W en# m 53 m a e en S 3 EL E W W at *dEP ttJ h3 O e tai tat a& G >= G J the Red me a e tag a 311 m) U g X 3 3 ,, # 3 3 3 >-

M pe O he (J e e O E O EL taA bA B E E 2 S O LJ 4.J O O zONOOOzUez e X es X e- o- e J a at E O .J o- O tL a. z e & sL a>->*J ED e3NNSE 5 > >- >- K 3 J .J to 7 5 3 2 _A =* pe D- a D- ee _A te 3 .J Rn6 N be 3 O EO Et e *8 4 5 E 7 *E O O D* > > _ E > > >=XFM *e P4 2 2 7 e-o te RJ D- 59 WD O 6- at *E 3 ~J *E F 3 as + #= e# st e* 9 *E >- 7 *8 SJ F W LB J *E at 5>=7E O~3>=D-E 7>=>= S 3D- 9- F

W- 4 *E J B D- D-- 11 4 9- %8 q 9 .J 2 3. > D- 7 w 2 E ed GL tal e E E e O 4 hs 2 *E O t %8 ee of % dei *E 9# %# 3

I E sD e O O 3 J O tm. A O m o Em sa h ** O O h 4 he to 4 en e a n O > > RJ a ts J o- a' m a m k as E h.be 3 3 ee ** A w ** 55 N tu Em OK O =* 3 O h N h at be a er) Gb WE w be .J O >4 7 De ee O as 4 De 43 O as t- >= >= 2 M D- ** M >= 8 U ** re De O >= &D re 18 & M WD 89 WD 89 85 #3 WD 83 WD 85 >= RJ P* *e & e-e og U D* ** * **we we

Yt OGn IA Q O

** ** e &=ee we

3-42

IF b l.fG.1) f' 17 lea S**^9a*

papw;*sespd!"+ar-fm acro 1

P$tCapstt+astt connu.2<pC*a5TspC=ast.L,atts s e n t e m 5 c,

$ 7 a a 3 7 s p9.a %7 e sa a $ YF D e r '. 9 h 27

P a S Lf f * s W a t i ''a e a n( ( . Sem.4s5-t

STbsDTs,TM neongan,

PTOTalsDT17a(,7.?)( OpenWA79

pCas alspCaNat +CaN AL roarQda'

potkaast W+pf GC t - n'069d9'

psr.owsp www,Tufatn ons69Jor

ten CONTT*tt rana 99t-papw!=s5audt . pass!6 ens oepsP 5f C = 5 3 E C.0 6t r, e n n ,go o

PC = 4 5 7 s St. a 5 7.pC * A S T nor a49c -P7 45fasr.a5T.m .asi v.nno9s-p a M L P . s $ a 9 L h. .s a al, i t. a e n e,9 9 % r

Dies 37a.pf> nne64976P T0T a t s S t af at.p f f'T at Sneo40**

8Caust estaNat .pc a at n3enegg-

PDFEsSpt=.ppek 3 3 c 1 1 n $ r.

P vCE * s s C slw .* 6 k * nc01^nt'13 vats 2 ?"^1e'd;

IF (C Y o f a L . G T .1. ) f 9 + C s 1 "6Flen3"onetosunDi v e t 0. e a (I N T ( alf f.11 ( C T if a t 1 ) .! S u-C )

CTotalsa!NT(CTuYal/ets+0.51 01, O r o t o cis"3F (P'C==.tT.It.51 Go T.i te. necteeseOlba10.eettsitator,gygpst. 33.gj anngnnyn

PNbWwYsalsT(pH'h-/SIv+0.9)en!v o cit o ,a q

Y GO fil ich O n n i f 14 oO 1M4 p wn W a t s p Nr.ip u Ocojrtet

166 CONTimot n6010111IF(Tvpf.tG.8=41 r. < . ' n too enn1012rPR!st Ques, Fap*!*, 03tC,PC-4ST,pDa457,paaLC,,pTd.PTOTAL, Pas 9", n*01^137

1 &*tC*T 00AjC1&o

PRl*T 97f5, $4 pd !* ,5SF C , $la a $ T etdaa % T , S & ML o= , $19, $ TU t al, $f e aidw . Anotrgg61 Tl a l %I .CTsTat SPototecPGI' T GDt2, !*3*LF 0 8 3 t e t t 'sGEtukv COStelma

190 P4fsf 9004, pa p-!", PC , a S T ,p j e a S T . P a HL * , , p f o f a t ,0 s DG' , pot w * T ^r710146Pa!NT 900w, S a E w ! *, SC A s f , $e- A 3 7,3 a ht r. ,3 f lf a t ,5C A r w ,1 t s e s n, n 0 010d n i

t CTrTat Sno102tn195 pelst 4012. ITw!Tk anntn220

EE 786 90it02}?9000 FOR"AT(1=1,20s,7as,' ( ! fm l o t F F L',E * T S (CostfNoE7)') 336toduo90nt F ilw-a T ( t a l . 2's ,7 4 4, ' L I':u li E Fa t UE *T5') 30n102939 0 0 2 F ok = 4 T ( t a g ,5% , ' a 's i. a t WELlaqts To oIStaasGt canal 8 /2cs,'L&'Last C0cntClac

lostthTWat!Ds5',$7('.'),' m oJosT( o ofTtsttkT 10Tal '/' NuCL!nS*01c2732E MaLF.LIFF kW1'a4v SE C hND a w v uD-UN k$ *fSC. aaSTES SECn 600t02p03DaWV TUad * LUG Tilf al L*$ 1 Dial *aSTEb '/10y, 0$010200n'(Dav$1 '2('(*ttua Cf/rL)'),ts,=('(CowfE5) '),'(Ctw!ES) ', 00t1050658 (CI/ww) (Ct/Tw1 (Cl/vw)') 9901051)

9003 F99=aT(tr ad,13 al,2r,19t4.2,2f2t,t9.2.2u),5(1y.opF9.5,tr),2(tu,npian1632se

1 59.5 1W),0EF10.%) 000164109 0 6 u F pe = a T ( t z , ' 4 L L h T aE * S ' ,4 8,1 pF 9.2, u x ,E 9. 2, p u , % ( t r eepF9.5,1m), n0010500

1 tr,rkFq.5,cs,'n.q',5x,ppsto.5) ncetr3sc9005 FUanaT(' fp?at'/,' (tuttp? Twlftu-) ',trt9.2,wn,E9.2,2s, onoin3An

1 5(t*,0pF9.5,1s),2fla,rpF9.5,13),npF10,5) enntn37necco FnW-at(tao,17s,'Costf>TsaT!r.- a s a. o a t ofLFasFS To n!3C-amGF Ca=ocatesaa

so, P E T E k(.5 s ? fnfat cartc30itat'/ tat,' IN p=f-awv ',uS('.'),'s t r,' U S T f D2 8/8 wuCLIPE waLF.LIFF pi917v Lo. D''RITv C"E"TCano01ouerCh.Lasti =

3L Total La3 total aaSTES '/10u,'(navS) (*ICQ" C00010sta6f/*L)',3(' (CUE!FS) '), * (Ct W!ES) (01/v31 (C1/vW) (C f /VSen t o42 i%Gt') 6001045a

9007 Fnewafftv,A2,!3,ai,2a,10F9.2, 27,E9.2,2V e4(tE,a#E9.5,tV),2(tz,0D0nStadGP1F1.5,lm),tr,epF9.51 0 * 0 t ^ 45 '

9008 FnR affts,'4L oT>EWS' 9u,1pt9.2,2v,4(tu,0pF9,5,1v1.1v.apF9,5,4v, naito6ho1 '0,0',6m erPF4.5) nSotD47'

9009 F 14. a T ( ' fnTAL'/,' (t sCt et TWITIu=) ',trE9.2,2n,4(1v.aPF9.5,tu),6031?4e*1 2(1x,0pF9.5.tmiets,"6F9.51 0601049'

Co snStom a .r ac Tis s T U owc 0LCTS'1 centn5ne901n Fnw* aft' a

9011 Fou-aftscFitstos penouCT5') e?stoste9012 Fqu*af (tmo,ta,'Ta!TIu" RFLFasF',12x,13,' C"9ffS Pld viaW') 9n61652'

END noot n% VRLUCa Data G a o 10 % '4 a

Cnd.um / Casa /nCosC(400) ocnio5s,CnM*0s/Cnse/P.Costreer),5CoTwtece),5 Corp (80c),3 COY (900) onotts%nData MCONC/3*en,9f=3,13 0,2t.a,53ea,5E.3,uel,et=5,n.0,5t.2 5e', cantos 7411F.3.3*0,3t.5,0.6,2F=h,2eo,uf a,7*0,it=6,n.",3F.e,2*0,36 2,4en, ocntager22e -a . 3 e ? ,2E = 3,9 e e n ,3f =6,6 a e c ,7 E .3,6 3 0,3f .3, e s o ,%E .3,2 e a . 3F .3, eentoS9'319 e 0,5 E .3, t E .u . 3 * , n F =h ,5 e e , e t 3,0. e ,49 5,3 e c , t E.2,6t = 3,4 * e , u t . 3, cc016an*

siten,7f 6,0.0,75=c,pec,st.e,5 n,uf=3,2 0.2E.3.2F.2.Per,9F.2,7ea, aoitrolo52E.%,3eo,6F=2.6ed.2!=3,se0,lF.6,2te0,19.A,10eer.af.S.1len,1F.4, 60ntre2;40.9,5E.3,5+0.tt=S,3t.2,4eu,2F.2.S.S,7f.2,2+6.1E.5.2eo,2t.2, hen, nnotr%317 2 E.5,3 * 0. 7f =5. s e 0,1 F =2,4 e e t E =2,3 e" , a t .u , u en,1f.2,q.0,3t=5,sen, nectana-46E=1,5f=3,7*0,3E=5,6f=5,2en,3t.netcen,3F.*,nteo/ nooteesData peCOsC/to.co,t.9f=3, sea.3.1E.6,5en,1.hE.3,3ecetE=3,0.0,.oth, OSoteaA012eo 22 3,185eo,1.2E=3.63 0,6.eF-3.4 0.2.ht 3.2e',3F a,6en a.5F.5, n301667c28eo,.2 oeo.3.5E.e,3 0,tE=5,0.n,1.2f 6,3en,6.52=4,3.65-4,6.uE=5,9ea00&tt6843,3.GF.5.1 ton,6t=5,0.,55=5,15e1,.oP4..aaa,16en,4.9F=5,4.5E.5.14en, 00010*99

? a t f.5,0. 0. t E =5, t n 3 e e ,2.9 E -9, a + 0.2. m t =4, A .5E =u 10 e o ,1. 6 E . 6, t . A E = 3, ano107a6O SPeo,2.tE=3.3eo.2.5E=3.1.tL=3. 27,5er,.927. 1.4 0,.36.5en..ne7,2 0,6001671

6.025.2e0, 19,8e0. 013,3en,.Ute,.ote,12*0,2.2t=u,1.SF=c.5eo,7f=%, non1m720712*0,4E=5,5f=5,2en 1.3t=5,3,3F.5,91 6/ ocatn7tnData SCufv/losen,9E=e,ueo.2t.a,5 0,ME=8,3ee.hf a.o.n,AF.7,2*0, no107u9

19 E .P .18 5 e J ,6 E =a ,6 3 e n , e . 9 F = M , u e o ,1. 5 t = 9, P e n ,2 E t e ,6 * 0,4. u t .9,8, onotn7se.,

27.uE.7,6ea,2t=4,3 0,eF.to,0.0,af=11,3 n,Pr.*,tF.a,3E.9,9e0,1E.9, oe010780311 e o u t =9,0. 6, a r.9, t $ e ,6 t .9, 3t.6,1 b o o,2F =9,2t.9, t e e n , u F = t o ,0. 0, 0061n770s e E = t o ,10 3 e c .1 L .0 9, e e 0, t E 4,3 F = a 10 e e ,6 E = a ,6 E .8, A e n ,4. a f .a ,3. o . 1aetr7an5tE.7.2E.9,s.eF=h,5*0,1E.e,1.9F.e,4eo,A.98 6,5 0,3,4f.7,dec,t.3F.n,ointo7936 2 * 0,3. 8 E = 6,8 e o ,6. 7 F = 7,3 e n . w . h t = 7,9 E .7,12 * 0, t E = P , 7 t *9. 5 * n 6 F -9, 60ntonen712eo,1E.09,2F=9,2eo.2F.9,2E-9,9 tee / anntnataDATA SCuTP/tcueo 8E.7,4eo 2t=7,5el,7t=7,3eo,5t.7,0.6,7E=h,2eo, 9001082n

19E=7,195eo.3E.7,63ene t .5t .7, s e 0,2t =a ,2 + 0. 2E =10,n e o . ut =P ,8 e o , at .7, 109tonge2 4 e o ,2 f .7,3 * 0,5E .9,0. 0. 2 E =9, 3 e n ,6f o . 3 F .9, 3e .P ,9 e e , e E.9.11 e n , 3 t . A , onotomeo30.0,3E=B 15e9,3.0f=5.3.nE.5,16*n,2E.8,2F m tuen,5F.9,n.0,$t.9, onotnese4103eo 9E.9,9eo,9F=8,2E.7, toe 0,6E.7,6E=7,aeo,2.5E.7,3ee,5F.7,St.7, Ocot046s51.tr.4,5eo.8F.6 1.lt.5,eea,e.5E=5,5eo,9.7F-7.2eo,1.2t=5,2 0, 00ntoa76hl.6E.5,e*0,5F.6,3 0,6F.6,PF.6,12eo,9E-8,et.P,5eo,3t.e,12*o,9E.9 00010am372E.8,2*0,2F=8,2E.*,9te6/ 60ntha9eDATA SCUT /toue0,9E.to,sen,2E.10,5.n,AE=to,3en,9E-to,o,0,*E.9.2en, 600169e619E=10,165ea,6F.to,63er.2.3t=9.cou,1.2t.4,2e0,1.ut.10,een,TF.11,peoncogn91n2.2.E=7,4*0,29 10,3ec,5F.12,0.a,6F.13,3en,3E=1n,2E.10,3E.11.9eo, 0661092032E=ttett*0,3E=tten.n,2t t1,15en,eF.7,2t=7,1A*o,26.lt,2F.11,1cen, nootn93aa5E.12,0.0,5E=12,1cleo 1F.tt,aea,tt=10.4E-tm,10en,7F.10.af=19.heo, 0691090051E=0,3*v,5F.to.St=10,t.3F=7,5ec,tt.6,u.7F-8,Geo.l.8f=7,5 0,2.2F.m,nnologse62a0,2.0L=6,2*0,0.sE.6,ee0,1.ot.6,3*n.t.5E.A,*E.9,12eo,1E.tn,7t.11,^00109A175 0,3F.it,12*0,29 11,2f.tt,2eo.2E.11,2r.11,9 ten / nno19976

END 000101A0SURROUTINE SPLvE 000 0996COM.ON/LQ/xzFpu(400), xZ*(eco),xfE*P(Rool,xNf*(10,830), annitano

1 9(Pool,D(m00) 0091161c

0 0a n ss a n n cn 1 a oe a a 7 1 1 0 , n 1 0 0 ;6 na or0n n 0 a0 aa3 0 i 0 q 0 0 9 i n c ua 1 ) 0n6 ^n' t 2 3' oq %7 = 0a1 225 s$ gya01 t ft 1 t gt l g 1222g222222S i%5 55 35 55 ouc4 a 4 e2 u455S55s555sg8 6a i a5 sghta96 123a% 678 9a t 230 % e7A 0ct25 u5s74 06 ^ i eoo1 1 t tt t t 1t s i 1 i t t i t 11 1 1 tt 1t 11 1 tl t 1 t 1t 1 ttt t1 : s 1t 11 1t1 t1 ti11 t 1 i1 11 1 t t tt t 1 t tt1 t t t t t 1 1 11 t t 1 i1 1 1 t t t 1 t1 t 1 t t t t 1 1 t 1t 5 1 1 tt t 1 tg11 t1 t1 1

0 a e G00 n0onn0 eq oioe^ 6 9 n00 c9 01 oar 0n0 n0 neoa60 c0e00 noco0 rnn0n0n0 0n 0 o0 00 n 0n 0r0 0 corn 0 nc6 a 06 c 00 0cno3 nJi 0 a nne0 0n 0 n0 c03 nn 0 ono0 n0nn0onc00 0O0 o0On0onOa 0o00 c0 0 o06 0ooo0o0 n0 ca aS 00 O 6 n0300O o0 nOa 0 O0o00

), n Se 1 Ft E 4 p! M ( o

) L 4 t0 cf " O o ~, od 0 , C T D g sE e) , a s E g ) !

Zt S ) a E aI

!N b 7 0

- d ^ ,a o d 5 3. p P )c T n F !

L., ( t

7 .( T g C f T T 3 , F vs)S ( ( 6 a G %) e !

t3 I 8 0 b D = t N t0 EL.F A E F t O g 0 ua 2, C,c C * o s w L r: e o G

s8) T& o)n N, c, N, a)e(0 Ua f J, a E N E o r

wS0 w n H W t n ) tC, ), fn J1 ur* T t T W( a 0

G( ) 0 a s) -E. P tL. (. F, E t 5 w

S 0 0 E S e)e n ( 0s Z. S 0 1 SET E tLn *. s v 5u,s * I a( ~ m C(r ) x s

u,a, ),F, n a, ).(s F vT ! Ee ) xGa * S ? W " u o 0 !

r T nA If mA 0 0 ) e* >i 6, p i L N 4 Ca ) ( u0 48 t c5')

f

3, s c ) $, G G, (F D * t 0 6 ( a )ne C nwE f y ) a c s 0 ( w t

x at F ) r- /H L. - (

Dxp 4 E taE - 9 t a oE p s A c T ft 1 L, 0 fD . a ( ( Ff )JN 0 f o <N,F aG G. Jtn ! * ) wT

s. C 4, (tA v ! sc ) = = N * ( p ! ' ! r. ! a, G,I,

)T, C,) T u

) . 7 F!I ! i aT * o . 0 ! u1 a 0 Lr N * = (I ! cT) 0 ) s sf a

uf ) 2m ) 7 E a! ! I S ( Uo 5 0 sC )0" tn (p t d Uc 2 0 aea a CF N1,* t i f t u M pf f Oa ) '> a ',ta ( 1 a 0 )

, a( Ls T E Cp m m * W 0 a p C ( t 1 oN ed T e t T a a o ' LT >( s* a P p 2 g 0

C' C * E. k9 .* z~ p i!W1 ) , ! f r nL, lE 3

~, s, e.p T a! 7 E t r 6 R O t ( - ) d, r, n, T' wF r 2

os ,t % 0T ouR e EE D E * I ef,) C

f tO r CwC) tp I)S " 7 ! n, o ) u C,) L o)) 0 ) D , Ooa , , 0 wf

1, f M,t nT T EOo G S moo)0 0 D n g Tt p ) s 0 , , ) ) = aC)C T o Onc* C, ) ( t n05 0 F G r,( - e o4 RT 7 ,T 1 f s uFJF )a* F N%0 , n)pt a0 2 1 G n: 2s( m S T t1C , ( rCk ( vJd '. * C2P i * )C cs ut 8( p( )c

e, Gi ( eLt W Sf ,? 1 " T (ES GT 05% ho( a au TT)f E "J E N (p (p - a02(/LdL/T fCL - T sn7 .T( " A E G / /o COL a ) Ld 0, v G /!

tO h eLS / o o F,f Da F F a=SM oEsa N CC N .B4( aSF E n, )uT(P N,Lctf 1f E T sTTCY SG) T nnO0J ,(p uE/Z)! GD W!/ S * f t ?) ,G0, T U

t O(!s n C J L(LN Wf* aQI xw0R u= T/p ,!!v C x f, 7 N L N.N) t

ELu e) e( o*v( L a E SSFS Sf S f * RE/0T Me St uLw( LsLeLp 0s0tS s) a=!t m N 3IIrI INI t2222a! N NELQeaEE N

a L. (u =,4 E ut8 pF p 0u1 sI )tCd us) I 9 O = S ee ee*dCUO3FEt d PT dL N Ns L, t!(EEQ!! T G))T)T)I) E LsE wR !I#//u/// C T NT)/ / /. t /e(! Df =ssa , N S TCTE tN 4 JJNJ J C J,! 0 O n G,(L "U aEEEEdaSSN s s N N N e = 0d, I osp s 6 pE muunTO CGGGGe eN N OOo Dh0e((E( D( T 2 N, h U* Lu0 1* = aCd = St) = ? LLL3- U 4 * * O * NEN I L IEEEE tLEE- M * * - = eoS2 s=d N % JN2+= = - a= 0a !E LLLL ET D9 R U"E aD" ( C GT TTTaA " * e

N N E E ! ! n O" 4"* a = Lew ( * ( aI e N s *

0) a!00 Mn( tea aa o?EN 9 ES! Ll 0I p U O%NCC"C C OOXDCCCDwRE8 TCCEC4C aN L!III bRODCCC CCCONFD!N I C I N N N n')OooJN!0* dFlFS aL sN

1 1 2 1

01

03

CCCCCCCCCCCC C

YO

a ' r < e r'h T m o c' 1 2- n 3 * e ,4 a 9 r r e :. n r r. eenane .?0 ce 0' n ' s ? ' i^ ' 0 r a o * r ac - a a - 9'8 1 /3a% * 7 k e*1 2l csn7 A a 1 2g 4% a7 a g a' l 7 i a s, a% f'% 7 * 0' 4 cct 230 %* ' '

: a n a0 n 1t 1 11 t t 1 1 t?2223 0 5A 6 6% 6 * 6 7 7 7 7 7 7 777 7 * 8 d d maemM 8 e0 9999 99 oe9 a2d2t22227222222/i22i?/721 1 1 1 1 t 1 1t 1 1t 1 1 11 11 1 1 1 1 11 t 1 1t 1 1 1 1 1 t 1 t t

1i 1 1 1 1 11 1 11 1 1 1 t1 1 t 1 t i1 1 i1 t t 1 l tt 1 1 1 1 1 t 1 1 1 1 1 t t1 1 t t t 1 t

t 1 11 1 i1 1 t 1 6o3 0 0 nn * en n n6 n o0 09 5 ncn cncennoeecnn n0 c00 0 0 6 na e0een 0e5 9 n n 1 0 o a n 0n0 a r eo0n4 0a coer' n e e C' n n aoa e0 n5* 0 n6 oeef orn 0 nn S * F 9 a ^ 0 0

0"n n 3 c' o^ 00 " 0oO n' 0 P ne1D 0 ca nn 6 O a 6 conCe i ecnocep ccn0o1n0si 0 m n nonco6 ee * 9 r 1 n * *

'

sF &T TL AD N )p I 5,a =

w 2s t 1

s it E,

! I , $f 8 l

u tip

' )

u,f

'c N 0s 1 - n

s l w 3

S't I6

t * I 1 >i1

C 0 NT, 1 0 I tp * -1

= - o m, S t i

s T r *t a .s a

a t) i r .

w C FE a J s,m

f- p' t s

t

a a t i

!s tsF t e T

i D u D as o t

J'. n!

a vt I LFs ^ n 0 C na F

i ' ) m e 2 4n

n ) 1 t 1 N a, fs o Y) a e a

t. r' h tt' ti t

Nr g J r T T i t G

'

J, l*

J t Er

( e n nvatr Ts l

w* . )=,E T a a5 J, aa t o 3 i o c 6!

S wsi C E. t

'u i

T J) ) r' T'r

s G G G S. L. E

G s, t,G Fr

T "Tt E n T L - * i

e.s ) 01,

) - + o t ts r' ) 1 /1i ) Y )

w o e, m p G) J1 F o G '* i Ls J L 3t ' et ( P (

' N a * ( ) G) d io

T r. U 3 i, 9, ( ( f,J1 n, o)p l, F1, 0 'U

Ps ) m ,r*. ) * J " ) & ) t Q )a A (

n( 0 cT 2 )

1, N, )0, t L N c.s e f' pa u sJ a u J ! J= )s 0o1 00 s to v

u ) ) t ( P) 1, t tL. =, 1,o( s0 Cf / t ( a' I)( o

,= L,J 0 90, D,s p ud at wrLu

s. Y t Ja) 0 a W ) s 0 t uag( 1 ! P s) S s a

t,)

J I Ts

L. 6, t N, "s OT 0, 9aat N t T osN2 BM 6

* e. )L s s M n, o G, e tT a1 0( u1 1% 1,) s f 3( L, f1 s) (o 1t(r

( ( D uNt & Om.1 DD s v1 e1 i )! 9pt

o G, I r m + o 0. j J u p G N, tL S at( )) sW smaLJs= sJso oi l a u f. st J j1( 9 * + I nI s=T * ! 1 nsE !

n. s, +s. LS A (C

L s a ( s(C I i. at ma(( u(r( s( s a ess( s( n( = ( ( is(P s(t( at4 T s atT sw! 8 TO

sJ T r s p 7' Ioq Si at q1 or uF u F maatJPFpF aF E F 1so0 uaF sFF * a97 a * PLPal

JO f AaLG Gt NGDCk N st%IN*.uOmJDEIuI aTTIA! m0DwTiIICPF Gn!P D W GIr

00

0 0 0 o 0 0

1 2 3 n 9 5CC C

CCC CCCC

Y$;

01 tem aust,Il ..-ntpp;yDJae vk(a s)

a * * 3 pps ,18(spt+spJ.LT.t-k1 L's T , tu 635typ.-

a

r e s ", n t . m ) asegpg,,P ane s (':L /C a.t . i ) ernipgn*

.

0< 6 ss=< o ergppq-IF( AMS(pkfa1.67.1.t.a) G. fr. >J a*rtpgn-

C vsF T*t s 6 twa 5w T a. i ega-tv 6.. oat pat r.t t vt 3 'o*!/5ttp a'"s t . o a u pJ e t t . a .a . 5 e t * L . 'J ) . T ) aca9757'G1 f.) 7J affidlla60 p4Do s t upJ.v DL ) / ph'in

o n e t t le oPantaspj/Sme Oc^121st70 ofst.1 "*0tilmiSts2./(anet) {*oid%7^Di to Jast,11 cort 2im?15 (Ja .f a.o ) Gri t,6 oc cent / tenSat.e.a4/>n(Ja1 6,01240aIrf 4=SCS).f.f t.F=a) GD T4 ac caot249eIr(a%5(osa),GT.i. f.a) w4m,svert enftPu?"Asst naa1243,

90 Pfso!*3 00017wuc!F(4*5 Cat).rY.t.f25) be t i. 10e Ora!#a5'90 C G A f ! M 't "*6t?-m'aafEseaTf*pdon,*p! 00012073100 Ca:* T Ia L E acet?am?C 18 su= = a7Ir A IS mEGstivF, sfT t avat to 2F90 an ps!%f * E S S a c s. 9 art /s9afr(mate.LT.O."0) p Ist 4201, L,1=,paTE, data n?et?5069001 Sn&*at('ina76 IS NFGattvF Tk TEbr. iatst aof aret T=as t-D s~ ret.linct25ta

!!vEC M CL10FS IN & Caa}% -IT* Ata4Lv tciat claLD'al f L E * E :. T S ' / e'et25pnY 28 L.f".* ATE,da7" s '.715.192612.5) 4e91753:C I F ( e a T E .L T . O. r.o ) esfEen.00 eact/Sucpar-s%Ata+ MATE nontdS5e110 coa?! Nut

Oc" tis *'Daas4=DJr.enJefthm. RAT =)/te= oreld%7^Gq t r. gga

cont 2Nai123 OdesarDJa amav1(pes,c,oj.;J ocetisoa130 fr(AS.GT,s*1 r.o To 150 onSt26Frca tea LJer.5,Nsneot?*1'18(LOCP(LJ).Nt.J1) G3 Ti' tuo "<nt26Ptas(LJ)aap(LJ)+'wa noette3?G1 fn 1600'at?^4a140 Cnk?!sLE OF017A%r150 NNs*N+1 n0612+61ap(NN)maaaoeot/*7cLOCP(NS)sJt ventie**G7 TO 160 00Fl?s90160 Irta=0Ja,Lt,1,ct.ro) G3 T0 180 00^1279aIF(NSavE,GE,go) Go f ri t a ncontp7tc

170 NSavEs'Save+1 aca12729AGUfdE(%Savt)sJ1 0061273aGUE UE ( N S a v 5. j s a a eJwsen127ecNGu(NSavF)sJ 0001775cGJ9(%34VE)snE4 1./(OJef) 60ft27ha180 CnNT! sue anctP77c190 I F ( *' S a v E . t s . 0 ) Go to 200 cert 27acJa%20 ele (sMavF)ecot/7eiG1Es 0ut uf (NSa.5 )necida9^NGtJ)s43u(NSavf)acotin3004HsCch(NSavE) 00et2=po

C I * 4 ( L ) s C I".1( L I * t.t E e H t J ) a w s u t ( C = ",0. c ) 0061?*3^N9avtsASast 1 ototpeac

0 6 e*nen 0 ' ^ 9 n0 r, 0^ 3 0 07 n ann ensnoare o6 6 3 3 ai * n *,1 i 6 a 0 n? a n 6 c0 9 2 3 a 5 a 7 e 9 e' 123a5n7P961 23a5Af 99otr3c5s '* T n o"

r

6 1 23smAt a 3 oskim9 019 n 12, 12222222222333333%il 3 suasa49 e 0 ccc na a r1 1 1 1 t 1t 1 tn * * *a199 9 9 e0 9 9 51 3iii3334 3333$333333355533333333333li33l3t332222222222d2222ltt t t t t t 1 tt 1 tt 1 1 t1 3 00 06 0e0o00 n0 0 0 000n00roo0 nenot 1 t t 1 1 1 t t t i1 1 1 1

1 1 11 1 1t1 t11 t1111 11g t 1 t tt 1 t t t 1

q nnnn 00 a n nra eS 9 oannonc0nsn oc0 1 e0a ee e' a 0 c 0 a3 on n 6 oce9 cae 0 on4 r9 ^ r a1 0 0 ' 0 000 o0 0 00 00nn0 oc0 oee0 n0er-

0N0 N6 0 0 0 n0 n00 00 oo0 co0 ann 6an6 ccF r nn0 0' 9 n 0ceO 0 caca Oa O 0 oa0 ne ^ ec9- i

7 J u <6S r

q

9 u Ew aS1 *

u * f ty i. s. ,! tL t

f 2 e.p t I'

aa C a 3" m 1Ls! 2 1f =

* a o T sn! L* S ( s'* ! E

s r T GatSa 0 awaF w N catf S A SLtwSE /* ,aCF = h E wSCY t G T

tr s n =re0 ! a u ,

p u t ss, NQ s a, 6s

a r. a a.e 1 . 1

EN - g

)k i 7a! onuS E Ial voE 6 GtF t

a w s o nh t a, 0a a St * d S t!

tG - s , t a

=. ,t0sw / st A !

at F m o !

N 9= ut JT 2 2 c. T

e0 N - st *! 5 l )

tsl 0 n F.tuT f a 0 n C !

T. 9 mST c ) ) f

F L= 5 !J a aD 2 0 a a s* tf G

t

3 ! 9 J) *wO *f 6 sa > eN r ( 9 (! ) U

n H2 O( 3 SN T - r. 2 J u. ! e t

a*T T r= S0 mwn i * " 0 4 I C0 ue a- uS w n l 0 ! = R N

r *; 7 SS . S q i n C7 tI F.uCF I )5 a F m E G s eC

fi G' aA E, 1 e T C R

l o )r + t ) )f G !nT" + de3w ea )) R ) * G* N )

L.a - ) Gm o' ! T E.C* ) = ul rTl! af) T ) * U (!! )a? o T ) o ) 1 np ( N) !

N, J. F. ! e O(( eLr! O! l )N,SE o =* ! * D! )

usf I M = E LL + +T N Nu1 TTa0" IIts SE4 tT Pp p T( T( Cw

F P N !G ot uU 1 a. F h, I NT ! T( * +s G c t. I, G ! L.+) u f!C* = o) e

'o )! N. Na a ,Et et ,>0ebS) DU! e6 )* e) SS)t

4 N *I!S! t)= ERt Ti t etl t

1. Ta. a. ! L.7 S.a a T(LN < tof ! .N Ns)* * NCtCt s!

s L. P 0.G G k N ! ! o ((r L( cGE sN v 0Y sC

s E d" o. 0, s L. )e G. a, (t a(6 sset!tP h.N p ! T T P. J "u m s x t ( s s E 0. k3Np oN!

'

! SET !SE !0E0 , (CtfS)) Ne dTNoE.L0paE )) t ) LAa D. G.G.* "u S E F

N2 UN} UUuwoo t !DO s sss9!!nN 0u+ E sT LGe!! Nm00! a- / 0n L, 3 J ! ! J M' S A G G s pN uLN N uT se 0n( 0 a(t NI2S-.N!TU8t!!!Nt a N 6((Is17(!T t 0 *

J t 5 N. D !n IN (I L sN N N2nN N NDN a sT3Cw a2 = DsN 2anaa ea RW 1E= T2= NTi32OT ea3i TspT D 6 =Eaa4( e X u=N d " NNL ( * > (( L* = a( * ulN (

N LN N NON uuL ( as=( ea(( l( SLLRF0'ESSIO40P!nOUDF UlFF0sItlFISUn0F1OUnOI NI ssUnr!JaFoJ!FF aFGCN oCF AF aaNDtOA NInaaII NI uN WEI5 NDCCCE0DCCT NCINCI!0JCCcICCNC0

t

2

06 0 00 0 6 0 0 00 00

01 2 3a 5 0 6 7 89 01

22 2 22 2 9 2 2 22 33

CCC C C

wA"

3 9 o0 0 e;e a0 1 9 aaca ) co n0o a 1 cnr0 coorr s 6 3 e 6 c ca n 0 3 n9 q 0i ' ' - 6 0 a 9 1 ?0 08 9'

-

nt23ugnT4g6 1p1 e5m7A 9ot 2sase7sga ii3 c567a9n1 25 4; 6n?* 90123 o567a e u u5%55s55555ane*nnh * nn77T7777 7 7 7 ana aeme*8 e9ow9499Q 99 i 1 9 n9 q 03 llll15 3i33533l i1 1i3333333g 3353533lil33i333l5l 31 534 S33ea4 e4 e41 1 9 t t1 1 t t 11 1 1 t 1 t 1 1 t t 1 t 1t g tt 1 t t t t t tt 1 tt tt t 1 t t 1 t tt t 1 1 11 t t1 t t 1 t3 1 a o0 $ 6 S n00 0 no6 a0 0 nn0i nonoc0ecsoeno0o nnnnnno3 e, o ^ n0 006 a o0 no 0 n0c 0 r n0f 6 cea 7 0 0 o0o6 oeo0 n eoooe 0eeocnno0ooeena0 e6 nc0 e0 5 9 0 o00 nn0 n0n 0O aco0 a rD0 00 f 6 c0^ nn 0 nnncnc0 S ncOoon6nccnen6 n6 oe0 c0 0 c0 c0" On0 a0

)

06M

G (

T.* 1! 0 N,s 4 ) )

e E ) J JZ 0 t D

% p -S ",x.N ( L

D! n , Ea N) t

) ('

M Ln E N /C Mo U ( )

G s, a.Q )

N, o N,3 LF

r 0 ) (

4 t 0) J pG d ( a 0 t u

E, E ( 5 sp ==N0( tm )I

vt J4. 'u

N A =; !f (N ) s n

) Lr pT S a, ), N," = + uG cE sN 0 r) s * t

n ( a0 e0 tE e

G G,te ( 5 ) aT ) )

N 0( L wx N Jfa Oxp N ! ( s ( (

E* U t , a t* . rL, E EN. t) t u af e aS

t s uT ) sE ) 7 ta * c J u 0

0,F o! s )t E ( L 20 t . . 0

T. N p N 1, T Pt) 0)'t n ( e0 5c m v) ) -( s 406 2o ) L5sE 1 o u- )! 4 * 6 ( t ! ) W = = 1 ) + d f

u T p ,( Ct ( D af E x O 10 i)

N = " o 3G W 3 t e d 13 :-

s= c. 0. Ms rD

x 1N F 5 N E - 1 O GZ L, 0t TE fZ J ' n Tn Z1 1 t.Es T v u)) * u,

1 , 0L * eD . T * ( f i 3

0 E. 40 ,) ,!

'0 01 ) 0) 7 .0 u aET . 0T l 3 )1 7, L 4,P 5 e 0 s O N G' 6= 0 ) 0o G7 l

T L. G. a,

Ur 0 O 0- * T S 2t t005r o)E.E. O 0p1)r NG 7 T E =N ,(of 802t GN( ( e, s

' op s r( u( ( r = .m 7 s r ) iFe 0 0. t ".. f s -

a u0(a0 . .f e+ O F u n ) o G0# xTN, b a.E a4 U) G p G eE 1 U e } o 1 t. N,/ / L a 0,r/ 7 T N,* Cs!G r

G* - N n * J1b. L 0eGSP E /O S .t Tn E t N C. UL RJJ uF ) ( o0L) I,CSac ' GGE/l)!0T L

U ) G ) /E) Eaa f 4dE/0t * e6, F N. N UDD J )N) A L )

N. N) T vtF LN o! nu0W * ! 5A

N. )0. ) L.= )T t L= )F / / D J4 ) )t

T s)J! NtEt a?2EtLG8 aEl e . f .T D! a ( *T a J LL / J ". 1 at

GpE1(GG. * (4 tL 0. )L % T L. N ))( 3OG

)( E ! a ede * GSF E( rT sss ef O(p 0 .

E. (s N.J a JGN JG!(( N0L0N T Tp uG t T T N t dE ////N//I )) O. )!L. (s w s ( sOO! e Cv* c*GG0nP0 00o(( o(T aF)1 hs0 M G.=u u C 0 O 7" s s s n G, tG. r 0 C *e0( o( ( N 5s (- s N J a a5f t N N N N N 4 !!

M s ai)EN u2Du 1gp 9Qd

LT v W aE! LE5 = = * = * * t aG snDa s! st = = s* *tn = L A a sLJV s* sJs1 LLjJ* < = Ja

CT T = = = = * * a N ! a(( !t L E s*( ( t a(t(( E( (ar(# (( e( s( s( a0(( NT94 OEaTaTEN N00n9 07) pOoTFFpp OnT LUFF 7 aJF 5F r ; 3 n3 uF GF F 1' tF eFoFJ*Fi

F nE NI CeESOBLeIICCCC C C n w L w O II wI NOXL NIIDJCI LII 0NN N NI NIIDJI gI nIDaI

i 1

o0 t

2 0 0

3 2 3CC C

YU

O

.

.

.

-

' ' ? F 1 1 r a gq 0 e0

7 3' i 7 - ,nre00 a c0 r 0 a eP ce a cf n r,nca i. 3 c0oS J ? ) 0 n87Pe- e%tT 8 9 S 1'74 agn7 a0 n1 eg 47A eet h5e7 a9nlPl aihfeg gg agn7 a4 et ?34567i *- 1 1 1 1 t t t t t 1 g2#2dg2222t i13t 4 l 5l 4 aed aa ah uuo5sgSs% 5555nn%69666

1 1 1 1 1 1 1 t t t t t 1 t 1 t6eusauau4a 6 4 4aua6 eeaos6 eu6 a4 4 4 4 64 &u 6 6 4 4 6 4 seoa6 6 o4 e6 eo4 sceah a8

* D n C c 1 6 a n nnn0 cnn91 t t 1 itt it t 1 1t1 t!t t jt t t 1 jft i 1 t ti t t 1 1t 1 t 1 11 ^00 n1 1 ' t

nc0 nen nnn9 rn9 rceonnnnnn ecn3 n e c o n. 3 en0 n0 03

S n O 0 * o 0 m ccS m 0 n cnt n oa0r non a nm o9 eeonn ooa a oe 0e o0oi eor o9 0 9 oS 1 0 e00 oC * P 0 * t 0 a a ee o6 ooS cn0oocen o"n6 ncS i a S ceccS 0nnnnennom 09 0 cA 0 0 000n

cl

Oan

a,)n)

J 5,(p2

- tFt

1 T &m ap5 ,1

. ,* t% )

s t 1 LY. u, 7, (t

ot s* ! Fe v6

t.T e

f a a l

r = l. i .r (. a !J p

- , t as L a t

a, It: ) at *I et ) *T ne a6

.

e 1 *a ) rp 0 J f ) t

a oJ ^ s 1 . f f L T<o.

* vO:

1* a ( xn TJ

o. t r t. - - Tt e -

u6 $ e s l

* r - p aLe

Gf T ap o1 ,or / I.a, -

n t p a J2 ^ - ,a-

J, a i ) e i* r. T , er1 4 t ~g G 7 - eF a 1 f (4t

6 t ) i O , e o4 I tT s u u *a G d 1 . ) =i a ef ; m t6 J $, t, 0t

9 3i

4 T t g p s w) Y ) N$a p , t o L Wn -

t, k. L, 2 )

1. c. - , 1 t JG J n (r' T 1 r k E T

/: 1

f, 9 ?i )t t n G ) ) a )Tn

* [ o - ) T t P-

1, F 1,4, c. G, I. 1 G' )d. / ' ao p ) > a )Et a )

:,

T 0l G 5 l

', p, n, t 5,1 ) m- - n sa 1 Eb k p L

T owI, t. G,i G ! Y )J t J1 - v aa1 u1 (t, a M 9o op pt h )I 1 ( G, -r

a ) + TLT) G, 0,1S, i -

-h +G, e, L.

+ t) J) s )p , r6 rsF s tS* .t 1 ) hs t ) a t s s a f . = np u ) o

w a v) ( v 1 LPr; Cl esJ c = e oD ot+ G.a s a F L,(N (4, 0 )t,

t,0t L* Lits <5vFttFa(

0 C ) , R <p) / > = J / = s /S a ! f tda Lta L,( p)L7 4 ( ad g0( ] ) p J 0sJ m( sG p tf E - v J. S0tt JJ vu p Q 3 D,0l

1 ( s p + ae03e7 vp ( SI( oa ( ET vs( * a uvt EN s2 t GMtJ t. a. a 3. (q uta .(

E0(s =f,

-

= S - w tT T a at( ssaf J sa sN - nT v1 pn8 u t(t aMt f X 0, /, 9' s)t t 1 !Qp t L, 7,a0 ! a

a.zv0cp9 sp asnsso. a T s S. r o F. s!SN?)h !m! s! a a& P n ! n w $,a

( t s(p s(!( !e f slw 1 au9 r a oin ttt9J st p a Tf Y A - d - vr.(n (' t uJviT? L sj i T f - s +1 v 7 f

tC -J( soWt n nt ss 6 (t( t( sa( Ni s( F t aif r- N. (F

i

n (F 0 FsE( a

2 sanupF sF 0 i Oa tp 1 pF < e4se1 = a! 1 : F aFiF slF ' a T r3o .- o- 8 si1$) oF% ! m iDuI!I9F Gh I wD0yIrp0ipGp PP3 DIS! uI3pICNCI5 I I I A NGNC1J G N *- GCINI

O0 1

0 0 0 0 04 0 0e 0 0 0 0 0 0 0 0 1 23 4 5s 4 5 6 7 8 9 1 9 1 1 1 1 1

C C

Y$

-

160 C o* f f " t O'F1G%"'n. i 17 ) Is t ,I' if oocidg4:

Ir(LO.6(1)) sT*-7(!1stfr-p(!) nps.(1) ca3ttina

f r ( .n .'T . LUNG (I ) ) sit *Jt!)so 0 66eju71a

170 C':' T f sht 00ftw7/?1ont673cWEtuwserr 1 spurFsn

3:. H et 'u f ! N t 5:u111( ,1717) '"01*7%o

C " Sat 476C th!L 8 JT S S = N f o r. ! w t >' o s i. Ge t t w 5 !s t . : !t 18. t p 17 pa=tsTs contaric

C E9 I!L oits aa.+S.SS.!rtL Iftwatin TO 0,t=6 eat 6 Sitamy starr o p e t u T4..

C CD'Ct*TaafIi%$ 69etu79i

C ornthanF

LOGICaLet L m.d cc09satsIN1FGfae? tGC,ti .o.d.) centua?.C o * ** /t' 1/ v 7 E C t ( d a q ) , s la ( c 11, a T t - P t M a n ) , nat.(11.90n), o a ;' 1 & = b

1 H(819),0(de") Oc01seurC n""i c./-a f d f a / a f 2E O S ), a t C ( 25 a t' 1, a oc(*30),anthn1) 0001695aCu"'tlN/6Ltx/FLi*st1^*, - .mi;T,1~isn,cr . anne t ia = , A O H L N h e " Z E W . ' 00f1nahrC'4"*DN/ $t d!E $ / I P ( M d n j 3 P 4 W ( 4.i d ) ,( t)* h ( k A P j QO,$jggya

D1 10 f a t ,17 if nf91sa*1

NDaW(!)s9 6 Se014443I F ( . o :7. L ON f; f ! ) ) G'l T.1 le 9001490futF-P(!)saff*p(!)erP(!) S0014999XPab(!)sa*41(R"Fa(',1).Wff-d(T),o 0) 00014920

to C1*T!st E 80c1694'Iftwat 06016946

20 Ns0 06614951etGan q 036te46c

Y D1 mr ! s t . t T.if 0a61497C$ Nu=sNu%u(!) N De014977

Die.n(f) ero1690a

I F ( L(W G ( I ) ) (. h Tii 50 D n i 15 e f> o.

rN s*(!) 00015010IF(*.GT. wen.nw.=.fg.=ltw") *o-s=U(f)=% 00^t5'?f.

IF(NS>.tG 0) Go fa 11 Ot'D1503SDo l o u s t , N o ** nC0156euAsN+1 Scot 50$rJ sL f;C ( s ) onet5cnnn1s.3(J) 00019679XJewpaa(J) 90015^m9IF(LusGtJ)) wJauJ+xTE P:Ji/(1,0 0J/01) 10915693y..mx*..+a(N).uJ non15tna

30 CDNTY"UC 'a01%11731 x1 sgs./71 00019170

IF(vN .LT t.0*'=50) G' ' to no 01035 30awGsa8S((xN..spaW(!))/x..) e c o t ',14 c

IF(a4G.GT.a!G) HIGaawG onctStSc40 read (!) sus, 0901515050 NaNf:N0(!) 0001%t7060 CONF!Not 000151Ae

I F ( 91 G . L T . G s *- ) 60711 7" n0015100!?tualitd+1 n0015PnnIFCITF4.tT tni) Gn in 20 00613/10Pa!NT 9ano n0015220STOP 00015250

70 en en I s t ,1 f f ,7 contS240fr(.Naf.LONG(!)) kNt=(",11sasfa(",1)+wpap(!) 00015?50

80 C ON T ! N L4 0301%2eaREToR9 00ntS270

9000 F0d*af(' GaOSS SE10tL ITEdaf!ON CID N3T C(nvERGE IN EQu!L8) 00015?do

. _ . . . . .

Ea 6a31524S3 scuof!NE *vcatar%ttet) o1915334.

C %-QaTa v g a s t o-a To man 9LF ?" FF TvDFS OF .C(tar 1sta L!4Eadtf1 6c 015 310*

C "a5 p'!* fed, NLIP8, e t * ~ * - f r. w 33S15529C a 2Fr* *13~T .afth GEaCTC. 01015539.

C e 3 F' w L-F44 MaqtS340C e 6 F'- -Sad nont%5%a

INTEOF4*2 LOC,ND'3.aD 360153>3!sitGE4*2 F6F(99),SYa(21 O s a 15 510INtfGfee2 map (mtc),*may(Ar.9) ^09153a0INTEGEE*2 Na*E(3) 19015390Ot=EN3!CN Cf'tFF(7,8co),~pd6N(7,80r),Capf(n), nostSum0

t NuCaL(6),4Sbs9(5), v!tL'(5,56n),fvLC(91 ce91541O!"ENSION vtM) o n 015 a ?.'D!" ENS!ds 94!*(26) 03nt$s30PT=EASION =9wSf26) OSot5ssaCD**0'/Laeft/ ELF.Sfa '0615650CO*-"N/FLEu/FLos(10),a=N.-'of,Isutv,4x',4:$,1GR AnHLsD,=Ztun noot%ehrCa**n%/EQ/s7EWite10), Z-t a n o ), n 1 E-p f P 0 0 ),4 * E -(16,8 0 0 ), nc915u7n

1 m(*16),oteco) o n e 1 % c, a a

Co*-Dw/-oC/-pCTae,a'pCre00)..-pCrean) neotis9^Cn=*C'/FLens/f(2ct Fh Ewfic),76Caviaan),s;sstic0),ogS(n,c),gL!ig, coots 5mo

1 !aCT,!FD,ITOT, O'.,(spf OSoj551rCna-f n /uu t /s* Ct t a c e ),717te(Ja),wtaao),8Graon),cufnFF(7), 0$S153?a! RUa,ML4Ncp,8tusM,=Sfaw,atvwsN(tc0),$WJst(100),agos)(500), n301SS302 haST S(!P).TCr s%f,TuNIT n*6t%54rCn**U=./=afdts/af2930), loc (25ev),o cre00),moten01 080155%0EU'IvaLE*CF (utivo(t), sap (t)),rvlEdi'(*nt), -antt)), 600155ea

1 ( x Za f t ),(,$F F 5 ( 1,1 ) ) , f f a E . ( 1,4 01 ) , A p 417 ( 1,1 ) s ne*1557aY EQU!vaLL%CE fat,0La=1 Pr015Sa'E D*Ta NLC A L / =2 3 0 3 F ,-10 e r 0, t t; ,11, = 1 c , =9 / Ocot%59a

bata 43ws/92233c,922350,93732n,9223ao 96739u,97233n,972356,9424tn non159an1 0223Me,9u2390,9u2410,422350,902600,922380,942390,922336,ato!5*tn2 9??353,0023??,922386,962390/ A0615070

C a1c15 eleC parcosa 70 Cuadoff a -areta (TwaNS!T!ns =afa!v) FRO = *VCLEsa usta osot$saaC 0^015657

4 Fab 9011, ( T I T L F ( T ) , I s t e l a ) , *.L I R E Pant %%60C IF(*t!HE,LT,0) p a r.Gd a k alLL afar Tape !s casrau F a ida a T no015%79

IG Cso oont$ nanIF(sLiet,Gt,0) Gr. To in 00615600IG=Cht con 15736NL ! di s = <.L ! a E noot%7tcPElst 9000 10n15720

9000 Fra-afftwo,'.!LL sea 0 faPr Gt At a f t o ev Casnaw's 00n157361C Nisu=%L!*E 00nt%7aa20 REan 9001, 7-F a =, p F S , F e b r , F ua , a *i,soav,sva,*PCf=4,INuf,!w 06015759

P9f' T 9005, **0,*osV,'YW 09015743P8!*T 90*6 Pa015770PA!%T 9997 00ntS7mqP4 FAT GCCS n001579cPRINT 9009 00&15aa0P4!*? 9010 00015916P a f'# 7 9013 Onn15P70PRIA? 0014 n0015a3^

C 60615*41C TwEe* a Astin f 5 ?>tW-at FLes to infal Flor n0615950C RFS e dafio nF wFsrsaNCE 5Los Tu fofal SLor contgesaC Fasi a watin i F Fast FLox in TCfat *Luz 00P1587cC ERR a fausCaTrus F 9 er:e L! wit ion 15keeC Ocot5a90

0 0 0._.

C aEan nata Fce LIG T Elf-t*T5 "n6150^0C 2r1%0''

wage (NLlbEst) NC*tSG2301 30 *1st,5 *^e1593?m2s< <1 esotS9a v

30 NS'wStr1)s=9ag(=2) "0015950pals 1 9(18 t a s , c t s , F a S T , ( * 5"u S ( < 1, a s t ,5 ) ,'L f * E nun 1% warIso no015470k ;TapEsc mec1%9am

e0 1s!+1 000159005e h E s o ( A ,9 9 34, E '< s 2 6 0 ) N.1L f ! ) , U t a ", I u , F - 1,5 p , F p t , F T , r a , F SF , 00Fle'na

1G(1),FGt!),aMoNh(!),a-DC(1),a*eC(t) sn61661eIF(IG C.GT.0) *D T'i 7n OnateS2a.

DO ec NatesLI4F een16ege60 R! acte,9035) s f ".T a , F N r.1, F a , s * 9, = I T = , E I s a , F I S p , 51 G" t h , F * 2 N 1,8 p s a . Coolanda

t F F :.v , I T n'ntenseGo Tu 96 30016'60

70 Da 89 Nat,NLI*E Orn1617r60 efaD(A,9046) S I w f a , F a r. I , F a a , p s p , = I T = , F f s a , F I N P ,31 G * E v ,5 s 2 t t , F F N A , c6036aen

1 FFAO,[T 0.a n t h e g g

40 IF(N1.Fw.01 Go To 116 Societec00 109 Nat,'1 0 61 t 61 t r,

100 st&9te,903h) 3rfp contet2c110 IF(IT.E4.0) Go To 59 3a01st30120 veo ea01614e

CALL aaLF(at,IU) 00n16t%cN_CLishuCL(!) 69 eta 16aIF(sirt1.E'. 0) Gi ter 26u enqth!TaCALL'u'aw(suCLI,naME) anotata-

Y !F(-P0(I.1,59) .Fa. 0) palst 9^12. (Tf7LE (N),Nat,14) olothtoaC IF(* psf!=t,50) 60 0) GWINT 0318 na9tm2nn

SIGTesTHEdwei!GTw 6001621au!TasGE ssa!Tw ele 162pr

StG=Fvs6a3TestG-Fv 6003625nSIGsasSIGT**Fva+41T**8Isa,3IG*FveFF%a S(01624S3 !Gs ps31GiaeF A 8+ A ! T aeF is pes Ir.6 E v er f sp enr1625nF s Gs t . 0 F N A.F *W Decim26oIF(FsG.LT.t.cFou)>NGs0 O c e t e 2 7 t'FIAGst.<>.FT*a.FIAp e6016280IF(Fl*G.LT.1.at.4)FINCas, ninte24cF N 2 ',a 1. o . F F - a .* F s p nnnt e gnnIF(F*2%.LT.I.r8 4)FA2 san, or01631*SIGsGes!GT=e8 NGeo! TmerisG no016120STG'2*sSIG-Fve5'2s coot 635t

130 pa!=T gu33, 'a*E, OL a * , F M t ,5 P , F W 1. F T , p a , $ ! G n.G , S n o16 5a e.

1 FtGt,SIG*2',F'2"1,3!G*a,9fG'p,Q(f),5G(!),adush(11 n o n t e 35 f-C TEAT paofnacTtvITv 00016346C nant657?ten IF(a1.LE.EWh) GD T" 1H0 nnntm346

shffast.n nonangonC 6 0 016 '4 6 rC TEST 0 0 317 6'1N E"ISSIn- onnt6utoC 0 0 n t h '12 a

IF(FU .LT, Fed) r.o TP 150 tiethalousa +1 0061644rCnEFF(w,t)sFpeat 039te15oAp400(*,1)stoCLI.tniC0 conth46raHETamantfa.Fo Gaoth47a

C osat6ueoC TEST 90SffkUs E *! 9S te. To E CITEn STATE OF PEDO.4C T NLCLInt noothu9FC 110th%90

IF(Fat .L1, Ew=) GN fo 1%^ Ocolh$1n*sp+1 Seote57-C / F F 5 f a ,1 ) s 5 p 1 * C' F F F f *1,1 ) 3*nt*53c%pw.:'t , f )s pe 'r .1,t)+1 n i f t e % u .1C u t * 5 ( = 1, 7 ) s C ' 5 6 5 ( ~ = 1,1 ) = C i t * 5 ( = , f ) C"et>S%^

C 00Fle5*"C 7537 I3a*talt Y a a' S T T !t m * 0 0 t h 5 7 c-C 9 * 0 t e 5 a '.159 IF (8 7 .LY,5941 Pi fr 1A' neoleSon

=sa+1 *19teerC,WF5(*,1)s5Yeat SSotenteA p * .." f ", T ) m " . 0 L t 10016s20aufTassetta.&Y aritente

C Cont **ccC TEST s i, p a a &~15%?>S n00tems"C nanteano

166 IF (S A ,LT, f=*1 Yn 17 c n90te67c.

*s-+1 030temerC iE 5 8 ( *,1 ) s 5 a e s t Fo31989nNpai>(*,11s +CLt./ncol on0167no*ma+1 60016719C r E F F ( * , T ) s CoF 5 F f * = 1,1 ) 0001477^NOGr*:(",13:2964^ 000?e739aatTasa8Fta Fa o n e 10 7e i

C 000167%0C TE97 ' E G a f 5 ' *- F *I S1! 1= Oscle7e>C 0n016170

170 IF(ARtTa,LT,t.F.41 Go To i mi enalA7e?Madet 069te79m

Y Cat s F (=,1)s ans Y a.a t aantedonT Ap6 n(*,1)swoCiT+tncon nnalA410

C '? " ' t h " 7 'C ff37 J Ga f 4 ' t-1951os 70 t s C f 7 t. 0 StaTF :'F pkno CT . C t f i'E nootm43'C 600th*43

18(8=1 ,LT. F 4 4 3 rv i tre tdc 0c0164%7s .1 nnntanec

C"85F(=,I:sF*1*Ci'EF5( -1,1) 000ta*76m u oi t - ( w ,1 ) s p w. i( .1,1),1 000tnamnC ''E F F ( '' * 1, 71 s r. F_ F 5 ( *.1,1 ) .L u t t 5 ( ' ,1 ) innleder

C Oa01696^C Co'unfE stof woa raptowt C + .SS St C TI * 3 I- f adt F wtGloss 00016411C ennt*971

1P0 mapft)s. 00016930C '1 to" nist,e 0801e940

190 CapT(41) so,0 0061>450CapfftisSIGda no0th9*rCapffplasgr..o montA970CapTfvis91GsG 6sGt cente9moCacT(3)sSIGsG. Capita) aqotegeaC a p t ( * ) s S I G' P a.* 5 r./ N 1 00017nsaC a p r i s ) s S t r.s 2 s.C a p i t e ) ornt?"tc

200 Ti?C a p (I ) sv.a 9o617125C 7'1T AL *tetWus C-053 stCtfos Fo a eCLICE(I) 0001703a

D1 2?1 datem 36017000CAPvtscapita) coat 79%^IF(Capat.LT,Fs%) Go it . ??n ot917eAe"s"+1 06917070Npoc(a,!Isu;CLI+'otatiN) Cent 7mmaC'fFsg ,t)sCap.y p)ct7 conticap(!)stotap(t)+ Cap =1 non1716015(a,'F.t) Ge ' Ti Pte P96t711F

O O O

asa+1 0061717-'C'tsF(=,I)st.)[5F( =t,1) crog713-

N8w la ("e f )3 20 3 4 0 n0617140210 IF(a.'E.21 0. ' - Ti 220 Ono171%P

*s**1 0F017164C 'f F F ( *, ! ) s t' t 8 6 (" = 1, ! ) 01n1717^Ap= m(*,13styn10 *S0t7tA*

220 C0%t! i t a6Pt719'23S IF(=n)(w CLY, 191.t2.0) Gb to 25' nnP172FC

ro 2a1 <st,- 00017/tc240 NpA:':(n,1)s.Gwt.ata,f)=1 0009722-250 >=ast!) sw 60'.1724.

IF(~.GT.7) E6 INT ec19, * Coe17da^hts (tysat 00617250Go 7, se cre17/Ac

260 ILITF e f=1 on"17270! acts * 0?017286

C *re17206C sta3 nafa r, aCT!*Ints nnot?%c0C 00017110

270 REa'(s,903e,F.ns 656 ) ..c L( 7 ),ot a * , It ,Fri,Fe,Fot,FT,Fa,Fs6, 00017320.

1 G (i),6 G r i ),0 0-* * , * "pC f ! ), a pC ( I ) Occ373)nn' 2an set.aLfat 000175snW8&P(a,98571 SIG'Gew !" G F ' t.1, S I G6 ,0 ! & , S I G5 5 ,9 f GN 2' , F N2 N 1 S I GN 3% ,110 0 017 3 % o

2Po C1'Tru t non173a3I F ( '- 1. t . 0 ) Go Tf- 300 00017370B.' 2 9 ' * 81, ' 1 00017laa-

290 GEa0(a,9^5e) 6519 6001750^300 IFCIT .tc. 6) G. To 27c on017 era

Y 310 we0 Oce17 ate$ NiCL!s*uCLf!) 00nt722r

IF (* .lCL I .t c. 0 ) Go TD 450 00017a33t' a 32n not,5 onot?gge

I F ( ' " C L I . E '. . " 9 ' + S ( % ) ) * 5''d S f a 1 s ! OC017G50320 C''YtNet 000174h'

CALL naLF(at,I') on017d70CALL vea=(seCLI,eAmt) 00017aa7StGsGsTwEd>+SIG*GewtsekinG 0n01740S!GP staf*'*P1GF +8FS*d!6 * FAST *Sf6FF 0161759^S I f,9 2 ' s 31 G s 2 * e s a m i 00017%10SIG+3* e s!G* U.es a si on01752^!F(-04(lact,$n1.FQ.a1 Daf'T ett?, (TITLt ('), Net 1P1 00017%%n

330 !*("UP(IaCT,50).EQ.o) PWist oc2e 000175enP J f a. ? On23, a. a - t , D L a w , * H t , F P , F p t , F T ,6 a , F $5 , q l G* G ,0 0 617 55 0

1 8 NG 1, S I GF ,3 I G'.2 % , S ! G' 1 % , G ( f ) ,6 G ( 1 ) 000175A03a0 !actataCT+3 ncot7ste

C 000175e0C TFST ca0fdACTiv!TV 06017501C oce17mne

IF(a1.Li,tua) Go Th leo L0017610A8ttast.0 Ceeg7s29

C TEST pf.SIThoN F *f SSIf * 60017alaIF(FP .LT. Fww) G's 70 550 iSn17eo7aat f asant T A=8 p 00017A$nesm+1 000176mnCoFFF(>,1)sFreal 00017e70Nedqntme !)sNoCL != t uonn Or017ea0

C posffWuN E * f SS!; N To F. u C f f t 0 Staff n o m 17 e o r:IF(Fpt .Lf. thW)Ga TO 356 000177n0esm+1 nnot?7teCntF8(",1)s6pleCf15F("*t,1) 00617720

s o.n s ( m , y } s 3 p or - ( 1, ! 3,1 e001773aCrF8F(*=te!)sC8E85:**t,1)=C EF8(*,1) Sent?7ar-

C 150*E' 1C Twass!T!os e a a t ? 7 o-=

3$0 !F(FT .L*,EdE)G7 79 3%* Daef77Aawe=+1 arrt??7aC"FFFl*,!)spr.at sent??9-A9dOD(>,1)sNefLI *961770t44Etasa5fts.FT onag7ams

C atuaa fa!SS!ON e*917att360 IF(FA .LT,F dw)G ' fn 370 00017"20

*s= t onat74l?CiE8F(*,!)sFaest ract7aasAp4DC(*,1)ssoCLI.20^wn 0,act7aqc

"a"+1 0001786*C"E F F f * ,1 ) s Cf F F F ( d = 1,11 nan 17e7'%pR.T(6,7)s20040 03&t7apa

&#ETamanETA.Fa ment 7 deaC NETA n?cav ocat?9ae376 ! F ( a w F T s .L T ,1.E .u ) Go fa 3a0 *00179tc

*s*+1 0001792*CaEFF(*,I}saartaest C091701"Nap.m(~,!):w ct t + t o on t eno17easIF(Fat .LT, f d-)G 1 Th 390 eait79%a"sa+1 oca170$cC'?tFF(*,1)sC'5FF( 1,!)eFA1 01617e7"CetFF(=.1,!)scrEFF(*=1,1)aC'EF8(",!) 06c1794<NodoDt ,1)s'po,"t*=1,1)+t cac1790s

C ces19aecC AEJTans CapTun CanSS SEtt!h-S contento

4 C r. e n t a n ? S& 350 map (!)s= 06334933

Cn 393 <st.6 rantelco390 CaoT(d 1s0,0 n001905c

CapT(Pin 31G'G.rsGt onotmsmeCapT(1)sm!GsG.tapT(r) Ocetm*7oCapT(sjss!Gsas s'2N1 00614180CapT(51s5!GN2s=Capf(4) Scotk34n

400 Fiq$(tact)sqfGF nnotAjeqT1Capt!)ma.3 000!M1tnDn 619 ast.4 C0016120C g p a' I s C a p f ( g ) ognjpg3qIF (C a>RI LT.E de) GO Th etc ecotalco"a"+1 onotetsaTPCap(!)sTPCap(!)+ Cap *! 0Fe18160CDEFF(",1)sCapa! eotS177a

NPGdPf",!)s'0CLI+'vCaL(**2) contple'-

410 Cnst!NLE icatatecTDCap(!)strCap(!).Fiss(!aCT3 00nt*200

C N . 3 '- C4053 SECTION 03n192taa17s5!GN3N coe1922^IF(at7,LT, fee) G1 TU u20 eceta230us"*1 000142aoCrFFF(* ,1)s at? 000182%'woa m(= ,!)s N.CLI.23 Crotm789TcC a p (1 ) s ti:C a p ( l ) + a t ? 0001*270

420 !F(*00(NUCL!,10),EQ.0) Go TO use nectm283c1 e30 ast,> nootm29n

e30 NaaoG(n,1)s=pacotw,1).1 000183004G0 **a#(!)s= cr$tegjn

IF(>,GT,7) pw!NT 9039, M C 0 01 A 52(-Spr*F(tact)sFSF*a1*%.^25E23 GertAlla

a 5h78 9 0 123a567m96 1 23c567a0nt21 a56?A 96 t 23o5 %7A 9a i23a%e74 9 0 12Unon ^ 0 0 0 9S 6 0 0 n0 n 0 0 00 00 6 3 0 0 1 1 0t on ^ n 0 0 aon 0 n1 7 nn 0 0 o7 rnn n n S r7 r ^ 0 0 a3 3t 335 4 4 4 44 ss4 uu5555555555* h 65n6 6h6 A77 7 7f 77 777Am8m8Ae4 9 A 999 9 4a aA 8 9AA pe8 8 A B8 88848 A8 A 868 8 * A # me86AAe8 MA mA 886e8Aaeeaam3 A99 MA 8 #t 1 1 1 1 1t it 11 1 11 11 1 1 t 11 1 11 1 t 1 t1t 1 1 t t t1 t 1 t1 11 1 t1 ttt t t 1t 1 t 1 1 t t1 te 9 0 9 0 6 0 cs6 9 0 3 5 6 00600 00 0n n 0o6 c0o00 non6 e0 000 06 n0 ennn0 0o0 nP 60 o0 0c n0 0 nc0 n i 9 0 00 00 06 06 0 00 n6 i 0c0 0no0 0 onr0 n9 0f>0 0 0 i 0i oa$ 0 0o3 1 0 1 0oo0o e0 " S00 en 0n1 0006 006 000 n6 OnO 0 10n1 0noO0n0 0 O0D9 n0 ncc0 6 0c0 0003nn0

.

GlN

F,,

G G, 6 N

F 1 G GS # ! I

F, 3, S.t

e

A t T T

F, F, F,s

',T 1

F, ) pt P

8,* >t ( ,

p 9 P

F, 5, F.EL

p T 1 1

I R 9s, 9 F,T )t

6, !1 (

5 % 0w * t

9a A Ge. F, L F,L) 0 T' O

, N )e 1

7 2 ! Ie) " ) 1 1 w (

9,! & ! , 0 o9 0f 9 L( v, 2 ) 0w T r. pC t T ) 0 5 0. C

9 ( 6) ) " G Nn.e s !G

A, v,!t

h N w T 0 0 PE n (

3 w L )F, ) PI n. 3 0 7 0 T

0 E.* )

9' * 6 1 k r 7 6 5 52 P C! G 67 6 *$) ) 6 ,( o 5 5 n n

e, +( I' P o0 9 H GN *C n 4 ) S n ,I Y,( a h 0 o7 9 TE D 5,E Got

0t)e a ) v E, sf 7 - 0p T )E) T T 7 n 9 N )e 1 0 -

G t 9. r-n D a* 2 v5 9 - G sT A + =F. 0. A f t.l

S T o N O N yG N =e . o I .Go 4

a. s v E G' 0 N, G 'I t = n ) 4 G N ) GN v ! G n G G tt aIT tT f; E1 v ! A L eLI) A l !0

t. G E.a F C ~ H! $G o I

I) ( ! S 3 * C) lCSa * CTSr N= T Sn I, )) L) w1 n c3 e 0 C d I d W aN W * N A E F *w F.

S t.S3 ) T ) S ) 1 P yR P oN w TE, C ' 3. C ) G,

4uL Gt )s 9I05, 0 F 4 , ,A) ,n

1 I), A d * E A 9 ssR smA * T, v, 5, 2 s s E. l )T . ) )

* Q

L E. (w L Er. N 5, d E. I* (T

E. o E. E P )E. T E L.ag1 E T t 1 )C t . 5) l3 0. t 3 . (I1 T !I1, I T ,t210 L2 !e09 FA l 0 e0 A 0I e0 C, , 6N 4( N wGa L v! &! HE 0G5! 0 0 t . * T NF PT , L. , C L.9, G 9, E.I a 7 d s T" > I am4 b1h * 4 * =

-L. t L. s L. (f t ( ( d ( ( sue 1

A N Lo(T N( 9N$C 9 4( m 2 ) A , E. e A sW s3 ed sC- 1 sI1 F 3 91- 4N ) 3 < a 4 F, 9 (- ( +TS uU 3 3 ) 6 7 ~< g( T I b 0GLnT 00T 1 aTP3 aA 3P 1F nP 1FnET 1F Dat H HA I1 O 6( t(

+F i F + F 1T aA FN * N T" N T A T IF 4 t s& A +F nA* E 9 9"a0I tL5 LF

G' ( * E9EG( s((I (! S (ESs( F. t s( wee (P SI a L A A ! A ( A ( ot C( L(FF iEF na : F aF IFF W 1Fa E F o n3F4 p p F snoF enPSF s1 p HEF21

Q 0'1LI sol 9v E E(

EIDk I* CNIC1 SIIP GIP T IAPAIA AAI uCNI M CNII rCN ANI AA DIGI 0f R NI 1 1

0 0 0 o 000 0 0 0 0 0 0 0

5 6 7 h 901 2 3 4 5 6 7 8

6 4 4 w 455 5 5 5 5 5 5 5

CCC CCC C C C

Yd

F f 0 c 3 ca 6 a6 ? t t 0 a a 0 r e 1 9 9 ^ 0 ) C 0 n 3 9 - m 0 4 r - c3 0 0 ' c' 03 3 4 e1 ? 1 r8 m 02"

S o1g A7 p9 st 21 &5af n9 nt21 e5h7 A 90 1 23 u%67p9a 230567a06 1 24 a5e7 a9 o1 1 6 $9 999 4 3 9 6 * a f s e i a gt 1 1 1 1 t 1 t1 222222272235t 3151 5355 4 4 u 4 2 0 9 cuS555%%p P 6n p 9999499 999ee999999 999999999999999 999999999 9999949g999999j j 1 ,9i1 t 11 1 11 1 11 jt 11 1 1 t 1 1 1 11 1 1 t11 1 1111 1 1 1 1 1 1 11 11 1 1 1 1 1 t t g 11 11 1t* 0 9 na a so9 e00 0 oa sa 0e oa0 n r03 n0 rs9 e0rn0 0 on0 n00 P 0 0 e* 4n nrnoe 03 0 0ng 0 ^ 3 a a ol " 0a a 3 0op oi0no3 7 i or n *- aonnnn3 S 6 * ne3 i0 * 6 0 0 * * eoen0 0 5 0 0 *.o S 0 c 0 C" 1"o 0^ 0 nrce9 8 PS 6 0 nq or6 on0F nnn0 0ene0Sn9O0 0 0$S 00 ' a sec00 03 0P

FF

5 E,.f

t

O4 C=f Y

1G 4a T1 a$ *t 3

E fS T NT

C p66=e * F

oiC Eh L

aip 0 T

7 =+ G

s T! i L5 o G3 m F 81 e 8 h$

o . Sw T n

o'o aF 3 1

f !-

g G w TS o J C'

1 ) e e fv * a

I' 0 ) T-

a. i F Wr T 2 2 L d

e 0 C 6 +e',

u 1, A n=9 6 E 4 s r m 1$ S D ! ( t E.t , a F 7 2

a " 1 T * t ) -T a 0 S s 2

'G' C o Jr.)

* f 9 w 7r n1 5 S ) p a M O 3 S 0

a C ! I L 0 3 E 7 1

S D 8 oo ( . LE 9 E D 7f'G

1 G 1 d t tT + < J " T-

+ t + Ct Gp ) '. s. I r

. ( v V T T L G E r

tT ) sf a * a ) tt I )o' )

o. )+ b L C F T G

!') s L* e L E " 8 d ( < L oC.

C u f T Iu eC = tC w! e e p pC t d JJ J d u n r ) I Lo k oF st on G G, o 2 m t.

F'. G tcs =, s s n.G s t3. vt. ! i

-

aa . , & 0t y A N T L) ! ))lt a s a * f o

-

n, e. I !f. I o 3 s T ! . 1a h )s e t. ss p d . .(T ( ss L l) GQ) k C , T e( t)e a1 ) ) ) ap t utT L, t ) o uT 1 ) Cti t

v L E. E. f L. t LeJToef ant f * 0 o la0a m !;T 1! Cp snSssso s

f. ! 7. t nCJt L.T aT , ,

L., , A = * ess) aa! ) ,EN s . Je s eEE e s a 7 4 t n ssEI

.".p

= =E tt t

" > s s t )i I tm ! * a +f a1 ) )J= 6 lit s 4 T e e 1TL. ar

a A R 1F S91( (

w n*E t

-

) 0a2t( 6 ss t(f 5 0t +3 JJ(fI f f G. ! 1 0f D s oir L 5!2nW) L a t p > = I6 s0 na

a a n, fM t 1rf r D 2! a1p F nY1F t hf f oLLhfs aa +F ' a +8 ' f ! f 6f f i a64C + aFnT " 6 4vuL* ' tu" ( +7 s f

9 aF sCaF s" p EE a1aaaO 1 p( * ctus( - e eLt( C f a( 3t A L ieo sT J !7 L7 a <

1 s( = Ea( " fa uG p p pp C s A %(C 1 mF

a(aF s a :. p 9 F n o L o J v18 F f * F ! s '. F L T t a1: a!4,N0aIF I

-

aAI * CNI * CA s9 wCCCCTD'C! aTCA C!ENIt VT v1I V*IO!GI A I F P 0* t

O0 3 0 0 cS 0 D 0 0 02 3"9 0 1 aS 6 7 8 0 05 6 6 66 66 6 6 6 h 7

CCCC CCC CCC

ym

nasgege,ro 7tr est,=-as

IF ('"Ct I.'E =e6'0(",J)' L' Y> 7tr nen19%7)AONa(1)sunott)+1 acqt9$ss

N-Ws4"N+1 " Fat 959"tCL(!) onO!9mn1IFfso .GT.25no) ad!NT 90st, %" .

a(NON)stetfF(*,J) *CS19%ftJ T s .1 3101992'(nC( o )sJT atr19N3?

710 CON 71 Nut onnteaul

720 C' m T I-e t occ19 53

NS(tisC)N0(!) Sen19meiD '1 7s1 Jet,ILITF 0001987ruts<ap(J)+1 crot9am^dmass**Ay(J) onn19g9a

IF(4=Ar.Lt.*t) Gl 70 700 00a197?o

(' N 730 * s a.1. d * A s 0 0 019 71 $IF (aa 'C L I . s f . * p-t 1(*,J1) r, . in 733 arct97pa

N0%s(!)s*uA0(!)+1 0n6197gi

N.h s u% + 1 oco197aq

I F ( * ON .GT .25 ^ q ) d4fNT 99et, NPN,NaCLff) OD31975sa(*r(1stutrFf=,J) coo 197srJfsJ 0161977CLcC(N"A)sJY 090197A0

730 CnNTINI E ene1979069319mne700 C rN T i s t't

750 C KTIvut nco394tnC Ocot9a79C NoN ZEwn aaTkts FLE-ra.fs 5:4 T=E ACTIN 1hfi 6a019359C 00019"a*

Y 760 !FCIACT.LT.1) Go fii A21 One19950C 1 +1s !L ! T t + 1 Spo19d>0

iteit tit +t aC7 cec 14A7an1 9ta !=gn,tt noo1944q

NUCLts'urL(1) 60e1949ann 7An Jatr,tt cont 99anmarsaaP(J) na019416IF("aa.LT.1) G't T ') 780 00019970on 776 -st,*ar erm19930IF ('t>CL I . NE .N P= P0 (=, J ) ) G's T" 770 00019940N1AottiswGN9(11+1 oce199;c

NnNaNoN+t 00619966IF('ON.GT.2500) PRINT 9061, AMN,NLCL(I) 00019979A(Nat)sCPtFF(*,J) Ose199mcJTsJ 66019490LnC(MAluJT 00026060

770 CONTINut 0602031"7A0 Cn*Tisof 60920n20

un(I)sNONo(!) 65020e30Do a01 Ju!O,It caniooco

*utumaptJ),1 00020050was**ar(J) e r n po r,e 3

IF(*7.LT.*1) GG in man 0"024070D1 700 = sal,=2 00n?enA'IF(N1;Ct!.NF.N8EhP(=,1)) GO 7 t] 790 00020090N1*n(T)s+0No(11+1 Onopnton

NnNsNOA+1 6007^t10IF(NDN.GT.7560) PWINT 9041, Nn','iCL(1) oco?O1?&a (NGN)stitF F ( =, J) nocrat11JTsJ 000?9140lac (*DN)sJf 0002n1%^

790 C os T f '.U t or0Potho

6 - ^ ' 1 ' i , 9 n - ? 7 i J 1 o* a o rsn a ^ at9"

r

u %"a 0 n n i 6 ' 0 a4 a ) nn'3' 0 0 - 0 i 0 nr n6 ce o r,

7 a 0 1?t as6 7 39 a t 23c%6f ao3 t ?g h7 A9 n1?5 use7meot ? 45e7m9e1 23 ash 71 l 122??/p22p> il3lS 53l3l - a a4 l 4 u4 4 4 %555ns5SsgN gh N * 6 % 6m6 7 ?7777 77' n r 6 n e * r o nnerno9 no0 0o1 n n cne o0 00 o n9 0n t a6 0 op 6 o0 0 n 0 o6 6 0 snrn6 6 0o? / ? 2 2 p p p p ? p p P 2 p 7 / p 2 p d p a 2 ? ? p p 2 7 7 p 'd g 2 2 ? 2 y 2 2 p p 2 r 2 2 ? 2 p / 2 7 p ? 2 2 2 p 2 pa F n9 * q r. : e a na nnn0 0ona nea n oooo0 0n m no0ennnn6 1 oS n0n 0n o0q 0on6 0n onn

9 c ecn e n9 8 s n cCn nn nn n n aoa o0r r ci n n0 0 0o7 n 0 o0 n a enn no00a p 0 e? n n 9 n q n u39 n I 6 O o1 ace a en 1 9 eS o^ aooa nn eOoS c0 c0 OO oa04 0 S 1 annS oc9 o0 eS1 0S o0 n

O

) ) )! f !( ( (

L L LC C C: e o

N, N.)*

,

S % 4 *'5( 9

T U 0, h r EC

1

r ' S t f

U. 0 0 y u3 5 7 T P

a.e 8 8 , )

9"5,)P o n n e

t , i . i . f t

C* t 1 t ) r

g De v

- u o 4 n h F Lf' n G e 0 G 0' G c = v , NS d 9 e 4 0 e ( 0 1 )S c e n ) 8 ) 8 5 9 , ! iI cF e i

a ) T ) T 8 ) t S 0 8) ( kN 1 N e *- I 0 2 D a. J, J,T D I T f O h ! F 0D( La o

t ) ( P 1 ( DT = W * R T e * TD Y S

E. ) 0 l T Te T PF G 0 i

n+ rD 1 )

O.CL.

s1 ) G B t 1 L 7 Dv ( NO f ) 1 G +S G o 9 + K a) )J, a8 ) ) J, + ! Gt E

) ) . O MT ) ? 1 3 aef 3 w 3 ) a

P.f. ) wN. (0

! 0 * ) 0f < G) FA t 0 !) = 1 0( )! l g , '. o( 0( 1 L 0f ( 3 Lf )t 1 .T 1. d E

.If , 5F I . ) w 5F 15, f 5O O ) F" o( n?)a

2. E1. ! T ( 21 J .tF s2. F 2. *J

tc. E

. ) nEL

N. 0' 1T D s N a)

, ,i t Lo? ! JTtE

a N. of J 3! + (f E a T t 4 naTE N.2 0 3

7 0 kosCf! alL t + t. I L. *sm N 1T O

)EEx L. a i s mL. <s

* ( it ' ( mIi E !

L. T 1? NnF a I L)a( (JpE t E E

s + G. C )EEUJJa +G! o e G.)s 3 )LvEEL.E000w'C doU N s N L VN ( m s t) s NULT " LN W NI st U B9 99 t

N s 8 I + ' 0 sg N yt a3C!CN ) ; N NsMP N 0' ) : N i* aot! ; '

C 0 !.E n ' ! c C. = ) sN PI a!' I i F L* T' 8Iat g a" 3

T T o I f;I 8 L- aes 4 mNL ( N n T f !Pd g <A *> eaN IN * I!) a e*g ut.If a7 l N ot3a u a. !IF LT 0t =P, J t'n aN - J(T T! 2 ! v a a. nN ( vnT T I* N7 ~N N t ( se( Css s( ( N N ( % sCNNt oa( ( N N( N sCN NC s( N t N sCsN N N ((! ! Lnn a F = ct Oo237 aFnF1DF( t qO1 nOt aP7FOnF( i nnPF 0LF O s 1' < na( aO FF 4 a Lf

1

9CC = I!!IDN11DMIDI N AIaJLCCuDuK I0IN NI aJLCCI0!I N! N <LwaCCII8GP A

6 0 0 o0 00 00 00 1 2 l4 56 78 948 8 e6 88 88 ACCC CC

Y' $

C ogGgs Taasstf=T S' u 4Tir s Santefac

C 00??^T9rC 10020*0'C Tf**"saaftv =GITF Oct -afw!x FLFafsTS *o*7aateC e3F2**Pe900 IFCIu .EG. 03 GEish ar02c830

pelsT 9029 nantoaanas0 Sr$216%9C1 917 Ist,ITNT OC02e4hn%,"s.no)(1) Sen25970I r t r+ * . L E . r ! G1 70 9tc ano?capo

%te%*%v= noc7c'9?*sset 69c209anPotst 9028, I,0!S (I),TCCap(7),(afe), loc (*),as*,st) f^n2691r%s't 00320973

oo2*930a910 CONT!%LEssTues 90020986

920 STUp 0c520959C '00P"94aC FnsaaTS Fea-a?S 5nw-aTS Fla-aTS oc??ceTrC Sa*2a9an9001 Foe =aT(wr10.5,6121 Oce2'99"9002 704"aT(16,FS.3,11,583.3,F5.2,F3.3, 13x,E5.2,F3.3,7sS.JPO*? tors

i eFe.3,F3.3,Fe.a) a'c?tnte9 6 0 3 F 08 = a T ( 16, F 9. 3, II 3 r ,6 s' 3. 3. 2 F 5. 2, F 3. 3, % E s . 7, F 6. 3, F 3. 31 aco2toPa9004 FCE=4T(!6,F5.3, 1.5F3.3,7FS.2,s3.3,6ES.2,53.3,66.3.F3.3,7t5.21 Son 2103"9005 F04-aT(twt,43r,'%nCLfad T* ass =utatirs nafa etvi5E0 ',I2,'/',Y2 '00^21189

A Ti *!C sh + 10 *-495 'O + TSN-aca2165Ft/',f2,/,8?NLCL a '.uCLIDF e 1r90C *2E9fC state ( o r, tje,tra,*aLa. a <tta, CosStasT (1/SEC).',/,' Fa. c rdica"a

y 3rd, FA, FT a F.acT!DAst Cttav sv etta, p"S!TdhA (Fd ELECTWON C40700062107^*t',/,' F 1, enrirAr_. ..F), alp-a, 2,YEu aL TwasSrTros. ea i . FP Fa .-

5 Fot, F%G1, F*2st a raaCT!hs or etta, 9047700s. N.Ga -a, s ps TWa*00c2troc63!TIONS 70 EXCITER STATE CF PoldGCT NLCLIDE',/,' 5!GTa, SIGNG, Sts arptioca

TF, S!G'a, SIGNp e Tafk=al CO;35 SE CTIoss (eaess) F0a ad$lauftnt, 0ta? tite6.Ga==a, FIS$1rA, s.atras, A.vaoTns.') OSa211pa

9004 F04=aff' SIGNG a Sibia * (1 FAa =F*pl. SIGsa a SIGT- . Exa. Naadtt3'.

15!Gsp a SIGra e F~p. osa, Fp e swacTrow T-fs-aL s.ato-a, s.senfron9711ue74.',/,' u!T*. 41 G, atF, =1sa, also a WES.sa*CE l'TtGaat Fn4 a4SowneO211%o

N.Ga=*a, 'ISS!ns. - . ALP-a, s pEnn+,',/,' alsG s EtYa3pT!n%, F . (0*c21theF i t. a FitP). etta a cif- . Ftsa, sI.o WIT- e sIse, stsa, s3032ttTv41 . .

$IAp a FwaCTIDO Wt3 basCf N* alp =a, *.pkOffN ',/,8 SIG**V, S{GFF, Sfoon2]14'_

6G42%, SIG%aF S I C' pF a FAST CR"$$ SECTIrws (HawsS) Faa amSLwpTTos,nor2119ae

TF {S$1ca, s.2A, N.ALPaa, Nepv.f r ,,e,/,' $1GN2N s S!4*f V FF00r21/Die (1 .

Asa . FFss). gfGtar a S t G-s v . F5 .a. $1GspF : S!G"6v #FND. FFAS*07121'*

9A, FFsp a F Q a c t 10' *AST n.aL9-a, sep '1 nP92127"9007 Faw-aT(' v?3, vi5, vfl. v2k, v 49 a FISSfe. vitto fpE4C&st) *Wi* 73rna2123'

13. a , 235.), 232.T , 23>.0, 239 p'.',/,' L s " eat DE* otSIstEGaaT! ann?tdu12Ls. FG s FeaCTIn" er -tmT Is Gs a s i65 E.FaGv Garaftw Taas n.7 =6monst25a3V.',/,'O LFFftf195 CenS5 $$CTIC .S Fra a veto-F a b F d a r.E D T-Fk-al (LenSP1943at 0.976 Fv) FLun saf aS F'stn.S.',/,' s.Ga-wa $!GNG e T=Pdana?212To.

5 , dI*G e aES.',/,' s!Si!Os $ ! f,s . T=so . WIS * WES + StGsSa121280.

45 e Fast.8 tor,'T*E4= a t/v C. **f C T IP F'* TaE9"al SPECT4;* as3 TFeo$2129s7=pFdaThef.' /,' s 7A $1Gs2N FAST.',3or,'wt3 a gaffo 03e21361= .

at F atS0%asCE 6Lvu pE4 LET-awGv ( sli Ti T-Fc=at Flur.') na a 2151090*m FnweaT(' m. alp-a SIGAs e f a6 a= + ofsa e vtS + SIGAas * F a S f a .a c 713 P a.

1.8,Tu,'FaSv s !.sg RaTIn er saST (GT t,n atv1 Ta T=F4*at PLov '90n71130.

StGap . T-tw. . wisp . wfS , StGspF e Fast.'1 C#421547p/8 tapaqins .

9009 FladaT(1=G.59a,'eFFEdFACF%',/,' -ats L 7 9 6 S, atCav SC-E*FS, asn oscat55st T"E 4'al phtd'e/e' C L f "' d F * , J " "0LLasCfd, av" i pt=L*a~ ''Taaaa921363*

2(g i:F ISDTUps S StaTm F D I T I .. s ' ' Jnns .!LFv ato san 9, 1st (19971',0&$211To.

1/,' 9 3 OZ-ELEpew soo L = Statd ''ofCav SC-E*sS OF daaltractivt sectna?!5me

s t G, *t a - a , a'a Ja-tS d d '5 5F w 'f?021343ett!'' p t k s a " $1.n WNt95 (19%11',/,'

S'CaaRT e6 T-t ' ' C L I t' t 5 ' ' 'INTa 50171- GFAtWaL F' ECTd!C Cn (Jctv P0921407*194>1',/e' 5 0 a k' OL D ''pd 'Wda- SFFCfaa'' &&pFN0! a a> t%st.3576 nc971 14

7(apwIt 19ew)') 96a/ta?a9cla Fop =aff' CW SS 3t CT Y ns as ' 6t.r SetCT=a?./,' d E owlsCE ' 's t e.in F np t u 3'

191N d6 aC T Iia waTF9 7% T-F -Sws spFCTa'*'' n d' t . 119, 89 74.d5 f? t*3S214492v 19h7)',/,' k * pd!%rt ' 'st a T C. t ' t a t, v istCTea IN *SWt ase -suaeonaples438 SdNLew191, PP $3 5M ( of C 19871',/,' " * G9DMt*G tT at ''stuftn*0in214h's CW199 SECT!On5'' daL.375, 56CnND ta, qupW No 2 (-av 19eu a iG 19Sr021 7C.

9eb) aLSU EAWL16s Eggtters',/,' a i afdd, .apo%t !34 9 FEC Cn~p!Laff0*n?!.a*or% (FEk 1968)',/,' < 0=aat ''a Co*p tt a T !rn tF =Esosa*Ct 1.ftqwat*Sc7140F"

75'' NoCLEU'IC9, v e t. ?=, *o A, pp 1"e.111 (aoG 19An)',/,' ***L S?aseen?)SernF ''!NvtSTIGatg.. np .2s CdaS5 $5CifJas'' HN-C.9d, pp 66 4= (Jess n a a 21st r9 19e51') 0002152n

9011 Foo-affgaag,13) 090/15359012 ariwwaT(1=1,2au,1maa) era #1$609n13 FndraT(' at?Fw aAS C F afbtG ''pai' ' 'C 1 T ' S UF M AN7 Mf I* -FiaLS "0021$56a

tho4!NG 4 tat tf w Iwdanlafint' ' j 'wCL datt$, vot le, pp sh 73 (19A%)e10/15o078,/,' L L MEA ,f 17 ' ' w s. C "6 - t + P 6 o 6I537 wwpdyCT C-41sq fn* i,St is 0007157'3GE ac Ti G t w atest 70. ST( hit %'' odst.7".teSa ($tPT 199%)') 006215A'

901g F ne 'a t (' F r e s t .% puom r t vffLPS',/,' * t "tf= aNS i 5 w!cFd, ''00^2159r1$o**lWV f5 519$!0' pk00tC1 Y f FL JS PCd ".235, v.232, pi./34, 4%9 p'Oniith0'?.761 af TmfdoaL, F 13 S i n* 585Cfdo- aN0'/8 lu * F v NE Uld W 8 5sGinne7161C5tS'' apt? *.399-a(-Ev.),(aC1 19a*1'/' S *aTC?F5 '' F1SSin' pd'M"Ct03r?la29evitLDS F4Jw r E. T w> N !s m.Ct h 6 f SS1 m '' * O Ef-*ICS, wat t e. N t 11 aco?laug(sev 1960}'/' s o nua6v '' dFvIt= fF to..wa55 atov po ruC fir s IA 800021meeeagT utaCT N88' att,=7agu,tapw!L twna) ') Oc??ingo

9 01 % F aW " a f f l a ), d o s , ' t, I G"T P LF4 %Y9, raf6W!ats n> CON $tdvCffe , ad ACT nOf ?! hbt! ! v a T i na. Pao WCTS ',/,'o *iCt ata= F91 FF Fat 5T Fnor?1%7n

Y* Pa 3!Wim FNG1 Fa a 6p W1ta FIA4 51*P S t G*t w F*?*16ar21490$ 3 FF*a FF*p 9 6 r, ' ) cos/189e

90th F1d'at(1wa,2as,'LIGnf F ,. F * * * T S , "afEG!aLg rF (h*$1dvCY!nN, aN1 aCtaac7176^1!vafgas FUmyct3 ',/,'e tLL Ola" 561 FP 891 Ff 6 o t' P /171 ^'

2a SIGNG F V.1 STG'?- 6 s 2" l SIGsa SIGNP L F ', a410^n2177'3%aawCE') e007173^

9617 FnReat(1= .a2,13,al,1p*4.2,oogFe.3,1pr9.7,0P3Fh.3,1df9.2,apiss.3, noodtrea11pf9.2.Pp4Fe.),aP55.?) nam?!?%^

9016 F0w-aft 1*j,10r,'T*F=*a e s l e ,g,g s , ' at $ s 's16,5,gn,' FAST 8 '613.S. 700/17a^1//,1v,'sfuTdo. SK dCEs '5(110,5s),$n,''Linfs '!3) nio21777

9019 F:W*aT(two,3su,'FISS!'W P4000Cf3',/,'' *t CL DL a * FBI ** ofn217"O1 881 FT SIG' G ', ' *tG1 Y23 V2$ V12 V000/1799224 vog u 6G') a c q ? t e n c,

9e26 Fow-at(taa,3ma,'Ffi?las pu DeCTS',/,'t u CL rta= Fut *P onnp19101 Fpt FT S!G' G FtG1 V25 v?A V49 G FG') Off/1dp^

9021 F'd**T(ta ,si,13.al,18E9.2,)PcF6.3, 16f9.?,0FFA.3,1pS!9,2, Sco?!Al'100286.3) 40n/im41

9022 F0daaffla ,a?,13.al 1pt9.2,bue>6.1,1pf9.7,085h.3,19389.7,0p786.3) Oon?Inga9023 F ad-s t ( t wa,3? r. 'aCTIslets aNS f af f w navG-tFLS',// Sco?1mn?

1' soCL ri a * 641 68 581 8T SA P RF F+n $1GNG wen??Ia?"21NG 6NG1 StG6 415 SIG55 StG'?N S ! f. w 3 N 9 6G'10er?1**3

9C?u 5,N*at(1Ha,32s, ' a C f l' 10t S aa n Tat!G DaoG=Tt4S',// 00$/189^l' *eCL rLa* FM1 6p FP1 67 Fa 6 S6 t+e SIGNG 80Go?t951PNG#1 SIG6 $1Gs?N m i r.N 3 s G 6G') oan21911

9025 7ow*aT(16 ,4 2,13, a t 1 pt 9. 2, r p S F o . 5, o p 5 6.1.1 P 2 f 9. 2,0 p F o . 3.16 % E S . 7, one/192e1 epF6.3,FS.7) ena21Sla

9076 7'ddaT(ta ,a?,13,41,1&te.7,(858o,3,ePF9.1.1Ft9.7,epFn.3,193te.7, oceptquo1 OPF7.3,85.7) 06621451

9e27 F iN-a t ( ' c SU" US v1FLDb CF alt 6 f SStf A p wi rf L C i s s ' ,15 u ,10 3 t 9. 7 ) r,oo? tone902a Fnw*st(1%,7v.jerte.3,3y,F10.5,5(2s,tto.4,3 ,Is1/(33v,5(?netin.3, 66971978

1 3Xe!S))) 1^07198i9029 8 msaT('l.PN.ltWO MATW!s FLE"f=TS ALD twFIW LUCatto4S'/ Osa?te9e

O O

l' I n!Sf!) Cap (f) att,J) J ati,J) 0"ed/'on

?J a(!,J) J a(I.J) J a(1.J) J '1 One??'t^9036 s aa-a t t ee =9 s"= i e v!tt n$ ( 5 att 6!S$!as adON C T5 00*??ada

1 .185F9,71 ***7715'0031 pod =aT(511n) 6362253*g c 52 F na w a T (! s ,6 % . 3, I t ,56 3. 3, E s /,35 3,3, t 5.2,281. 3, t s . 2, lr 3. 5,* 4. 3,8 3. 3 'c c ? 7 3 % f

1,Fe.6) Oco221*r90 33 F od"a T( t = 42,!3,41,1969.7,i 9 56 6. 5 t Pt Q , d ,0 pf e ,3, j uf G ,2, O PF A ,3, 9062237"

t l e2E 9,2, o p2 F 4. 3, e 7,3 ) scepreso903a F ed-a t t ! T ,r e ,3,11,5s 5,3, l p 5 9,p,0 976 5,3,6 7,3,2 6 o , c ) on072aq1

9 0 35 F PS 'a T ( 7 m , s 9. 2,3F 5,3, s o ,7,25 5.1,5 0,2,3 5 5. 3, 5 ,r') os327tn39e36 FakaaT(2nau) O neilt t i

9037 FGd"aT(7y,?50,7,85,3,uS1,/,64,3,50,2,ft) 0f0?21219034 F14'aT(Tu,2F9,2,F5,3,569,2, du,II) SSO/?tl^0630 fog **T('S .44 WING, vit .T I:6 waa GE !* 'orsfa, s' 15) eq0/7tdat

9040 FPG"aT( 7 s F 9. 2. 3 F M , * , * w . 2,2 5 3.1. F 9. 2,3 5' 5,3, $ a ,11 ) 000??19"90d1 Fnwast('e No~ * a 5 E s c e s 16 7 2570, 5Yuat in '2fe) 00n721=a

Fwe n*077179S WdJu Y INE Ci t LE C T ( T = A,t a a s T E ,IL I T E , f 'o f i ooed7ta,

C 0""n* /f C / u lE d"( 4.' 4 ) , vla1ene).stE=* nov),rNt.(1B,er6), den 2219't staan),ntecq) 00^2227aotatNsfuN C.astF(,00) 00n22711IF(Tad.LT.11 atTU*N con??22PDo to Ist,!Tuf 6r07223'M(1)sCaaSTE(7) one/22ao

10 WTE*P(!)ss.n 09^p2p50CALL O E c a v ( t , T'* , I Ti'T ) 00072/4"CALL TE**(T2H ,1 ,0,17n7) 000/2/T0CALL ego!L(1,fT"T) 000?22a1

Y 00 20 !s t , f f''T 0*P/229"C 20 C.aSTE(!)stes,(1,f3/Two onopplen

NE7"4s 000?2310END 013??)2)51440dTINE SfawaG(T'd,C4aSTE,fLffE,! tnt) Onn22350Co*"UN/E Q/ ulf 90( P 0 0), yZHt600),nTF p(930),rNE.(tc,4ce), coe723dc

1 4(Aco),0thod) 00622354DI=FNSTON CsasTEffin** oco/256rIF(T*i.LT.1) eETueN 0092/37m05.LTafu6 on6725aoD'' t o Is t , f int conppigS

h(flai.0 00922ene10 NTE=W(IlsC asTE(!) One?paio

C aLL of C a v(1,06I T s i f 07 ) C a 0 7 2 4 7.1CALL Yt 4=(Ted,i . fi ITF ,! Tof ) onnp?u30CALL 5.C u ! L ( 1, ! T. 'T ) 0062244nOn 20 !st,Itof 000?Pu%a

20 CeaSTE(!)st'Ea(te!) 00022460DETueN Oin?2076E=0 00922an3

C PquGea- 8 toc 4 paTa 1632240n# LUC 4 CATa co02?iciI''T F GF E * 2 F L F ( QQ ), S t a (2 ) 00022%1^CO""GN/Lan5L/ ELE,sta 100??%7nData ELE /' M*,'>f','Li','ht',' e',' C',' N ' O ,' F ,'NE',iNa','monn??S3r

M ' , ' C a ' ,' ,' S C ' ,' ' T I ' ,' '1G','at 's!*,' pe,' S','CL','ak','7 ' , ' F E ' ,' ,' C a ' , ' N ! ' , ' C o ' , ' Z N ' , ' G a ' , ' G t ' , ' 4 5 ' , ' s f ' , ' 4 4 ' , ' * 9 8 , ' W 4 ' , ' s a ' o 0 6 / ? % 5 0

W','Cd','" A002/$dn

3,' vs,'ZR','Ne','=n',81C','aut,'das.*PO','aG','CD','!N','SN','9a'enen2?5h?c'TE',' I','sFg T u ' , ' n y ' , ' s o ' ,' ,' t e ' , ' t - e , ' y n ' , ' L U ' , ' M F ' , ' T a ' , ''C4','Ra','La','CE','Pd','an','9=','s*8,'Eu','t,0','OeoPisfaa','RF','OS','!W','P00e7758eeT','ao','mG','TL*,'PM','qge,appe,eaf',s.se,epqe,egae,egge,etne,epanonppgga7',' V','*m','po','a*','C"','en','CF','E5'/ 000P26co

0 06 e 6 0 e0 09 03 5 0 000 n 0c01 3 o6 c00 01 23e5678 901P3 4567P 0o1 25 G 5s7A06 6 nh 68 h6 %777 77 77777m9 * * A 8 A 8 652222?2?2222222222222222?2?2??22?2?7?722P2?7272227222?222??0 eoo3 06 0 0 0a 00 009 0000 a ^ 0 o006 0 00 rcn0 00 0 0 0o00 r0 D 03 00000 n0 00000 ooOC00000n06 0 0C 0e06 000O0000 0

L00awn, v

06 S) 0C = CE t !

S 5 w/ 6 t

"a1 9( 1

mp2TLN

A 6 aT 0S = 0N E T

O 6C 2 R

2 EIv 0Fa

c m f

t e/ T

n s7 NJ 1 E

o = = DT Et I

h SE 5e TF 29 I

I 91 GL I

= t2 nF e

t l4 xa o1 )!

= = * tsEE w

S 25 & S )

?A, ?T 56w t Ak 590

11 1! A T 0)E 1

S, 0. 0 L v T1 v

2. T S, E1 1

0O2 CN/ ,N 1

Lne ant OT t 59E)c

(C 1 o NC)) L + *= F 6 ts LF = = G a*( 9 0 i ) )

m/Z S, a t)6 E O a at(e aa055 G n0rt/ 1 eon N I

w( 1 6) * ~ A LLt t *( (*

NFF L /F F AC390.)91 EE MCIt L =Te Et

N N ??a UL/! = iO. 6/ N wN

a II e eLNCI sssA I! C n2T T T! / T C / TT w w/( - L)))

0 N) N s u o E F. N nuCt ?3 NS UtSCG. E.9 a ohGG0OsU( ( ( dwf4neN 0. u P oWG )F * - ' F E.a k d EA af .o( v

" u T 0- -

s. aT 9ke*T (( 9T CT of o4 WTT * s a A E*a NU u! A FF sE sF st' N Noi7

IIaE aS a k E'$3I!DESSDD 1 ^ Cl N wN N N E E

0o 0t 2

C C

CHAPTER 4. DATA NEEDED FOR RADI0 ACTIVE SOURCE TERMCALCULATT IS FOR BiTILINC WATER REACTORS BWRsf

~

This chapter lists the information needed to generate source terms for BWRs. The informationis provided by the applicant and should be consistent with the contents of the Safety AnalysisReport (SAR) and the Environmental Report (ER) of the proposed boiling water reactor. Thisinformation is the basic data required to calculate the releases " radioactive material inliquid and gaseous effluents (the source terms). All data is on a per-reactor basis.

4.1 GENERAL

1. The maximum core thermal power (MWt) evaluated for safety considerations in the SAR.(Note: All of the following responses should be adjusted to this power level.)

2. The quantity of tritium released in liquid and gaseous effluents (C1/yr per reactor).

4.2 NUCLEAR STEAM SUPPLY SYSTEM

l. Total steam flow rate (in lb/hr).

2. Mass of reactor coolant (in Ib) in the reactor vessel at full power.

4.3 REACTOR COOLANT CLEANUP SYSTEM

l. Average flow rate (in lb/hr).

2. Demineralizer type (deep bed or powdered resin) and size (in ft ).

3. Regeneration or replacement frequency.

4. Regenerant volume (in gal / event) and activity (if applicable).

4.4 U":"ENSATE DEMINERALIZERS

1. Average flow rate (in Ib/hr).

2. Demineralizer type (deep bed or powdered resin).

3. Number and size (in ft ) of demineralizers.

4. Regeneration or replacement frequency.

5. Indicate whether ultrasonic resin cleaning is used and waste liquid volumeassociated with its use.

6. Regenerant volume (in gal / event) and activity.

4.5 LIQUID WASTE PROCESSING SYSTEMS

1. For each liquid waste processing system, provide in tabular form the followinginforma tion :

a. Sources, flow rates (in gal / day), and expected activities (fraction of primarycoolant activity, i.e., PCA) for all inputs to each system.

b. Holdup times associated with collection, processing, and discharge of allliquid streams,

Capacities of all tanks (in gal) and processing equipment (in gal / day) consideredc.in calculating holdup times,

d. Decontamination factors for each processing step.

4-1

e. Fraction of each processing stream expected to be discharged over the lifeof the plant.

f. For waste demineralizer regeneration, the time between regenerations, regenerantvolumes and activities, treatment of regenerants, and fractions of regenerantdischarged. Include parameters used in making these detenninations.

g. Liquid source term by radionuclide (in Ci/yr) for normal operation, includinganticipated operational occurrences.

2. Provide piping and instrumentation diagrams and process flow diagrams for the liquidradwaste systems, along with all other systems influencing the source term calculations.

4.6 MAIN CONDENSER AND TURBINE GLAND SEAL AIR REMOVAL SYSTEMS

1. The holdup time (in hr) for offgases from the main condenser air ejector prior toprocessing by tFe offgas treatment system.

2. A description and the expected performance of the gaseous waste treatment systems forthe offgases from the condenser air ejector and mechanical vacuun pump. The expectedair inleakage per Condenser shell, the number of condenser shells, and the iodinesource term from the condenser.

3. The mass of charcoal (in tons) in the charcoal delay system used to treat the offgasesf rom the main condenser air ejector, the operating and dew point temperatures of thedelay system, and the dynamic adsorption coefficients for Xe and Kr.

4. A description of the cryogenic distillation system, the fraction of gases partitionedduring distillation, the holdup in the system, storage following distillation, and theexpected systen leakage rate.

5. The steam flow (in lb/hr) to the turbine gland seal and the source of the steam(primary or auxiliary).

6. The design holdup time (in hr) for gas vented from the gland seal condenser, theiodine partition factor for the condenser, and the fraction of radioiodine releasedthrough the system vent. A description of the treatment system used "c reduce radio-iodine and particulate releases from the gland seal system.

7. Piping and instrumentation diagrams and process flow diagrams for the gaseous wastetreatrent system, along with all other s, stems influencing the source term calculations.

4.7 VENTILATION AND EXHAUST SYSTEMS

For each plant building housing the main condenser evacuation system, the turbine glandseal system exhaust, or any system that contains radioactive materials, provide the following:

1. Provisions incorporated to reduce radioactivity releases through the ventilation orexhaust systems.

2. Decontamination factors assumed and the bases (include charcoal adsorbers, HEPAfilters, and mechanical devices).

3. Release rates for radioiodines, noble gases, and radioactive particulates (in C1/yr);radioactive particulate size distribution; and the bases.

4 Release point description including height above grade, height above and locationrelative to adjacent structures, expected average temperature difference betweengaseous effluents and ambient air, flow rate, exit velocity, and size and shape offlow orifice.

5. For the containment building, indicate the expected purge and venting frequenciesand duration and the continuous purge rate (if used).

O4-2

REFERENCES

1. ANS 18.1 Working Group, American National Standards Source Term Specification N237," Radioactive Materials in Principal Fluid Steams of Light-Water-Cooled Nuclear PowerPlants," Draft, July 7, 1975.

2. U.S. Atomic Energy Commission, Docket RM-50-2, " Effluents from Light-Water-Cooled NuclearPower Reactors; AEC Staff Exhibit No. 22; Results of Independent Measurements of Radio-activity in Process Systems and Ef fluents at Boiling Water Reactors," C. A. Pelletier,May 1973.

3. General Electric Co., Licensing Topical Report NED0-10871, " Technical Derivation of BWR1971 Design Bases Radioactive Material Souce Terms," J. M. Skarpelos and R. S. Gilbert,San Jose, Cali f. , Ma rch 1973.

4 General Electric Co., NEDM-12426 " Carryover Measurements at Oyster Creek Nuclear PowerStation, March 27-28, 1973," R. S. Gilbert and H. R. Helmholz, Table 1, p. 5, advancecopy pending final General Electric Co. and customer clearance, May 1973.

5. Commonwealth Edison Co., Report No. 21, " Measurements of Radioactivity in Process Systemsof the Dresden Nuclear Power Station and in the Environment, Jan. - Feb.1971," J. Goldenand R. Pavlick, Table 7, p. 34, April 1973.

6. Report from Nuclear Environmental Services to Yankee Atomic Electric Company concerning" Iodine-131 Releases from the Vermont Yankee Nuclear Power Station," Oct. 15, 1974.

7. General Electric Co., NEDE-11215. " Noble Gas and Iodine Activity in the Oyster Creek Venti-lation and Of fgas Systems During Power Operation," H. R. Helmholz, R. S. Gilbert, andM. E. Meek , March 1973.

8. General Electric Co., " Millstone Nuclear Power Station, Ventilation Sampling Program,July 13 - August 5, 1972," H. R. Heimholz, Draft, April 1973.

9. Letter from F. E. Kruesi. Director, Regulatory Operations, to B. B. Stephenson,Superintendent, Quad Cities Station, Comonwealth Edison Company, "Results of Measurementsat Quad Cities Station," May 22, 1973.

10. Letter from R. S. Gilbert, General Electric Co., to V. Benaraya and J. Collinsi USAEC,Pe: "Information Disclosure of Progress on Ventilation Studies (Nine Mile Point VentilationMeasurements)," May 23, 1974.

11. Nuclear Environmental Services for Electric Power Research Institute "RadionuclideReleases from Vent.ont Yankee Nuclear Power Station," Jan.1975.

12. Pilgrim Unit 1, " Augmented Systems for Reduction of Radioactive Material in Ef fluents."Amendment 31 to Final Safety Analysis Report (FSAR), November 1971.

13. Hope Creek Preliminary Safety Analysis Report (PSAR), Anendment 4, p. 9.4-3, March 1971.

14. Nuclear Containment Systems, Inc., NCS-1101, " Dynamic Adsorption Coefficient and ItsApplication for Krypton - Xenon Delay Bed Design," J. L. Kovach, Draf t, November 1971.

15. L. R. Michaels and N. R. Horton, " Improved BWR Offgas Systems," 12th Air CleaningConference, San Jose, Calif., August 1972.

16. Oak Ridge National Lab., ORNL Central Files Number 59-6-47, " Removal of Fission ProductGases from Reactor Offgas Streams by Adsorption," W. E. Browning, R. E. Adams, andR. D. Ackley, June 11, 1959,

17. H. J. Schroeder, H. Queiser, and W. Reim, "Offgas Facility at the Gundremigen NuclearPower Plant," J. Nucl . Eng. Sci . , No. 5, pp. 205-213, May 1971.

9 18. Letter from Kernkraf twerk Lengen GmbH to Peter Lang, North American Carbon, " Gas DelaySystem at KWL " Dec. 30, 1970.

R-1

19. General Electri; Co., NED0-10751, " Experimental and Operational Confirmation of Of fgasSystem Design Parameters," C. W. Miller, proprietary report, October 1972.

20. Letter from J. L. Kovach, Nuclear Containment Systems, Inc. , to V. Benaroya, USAEC, " GasDelay System " Dec.1,1971.

21. D. P. Siegwarth, C. K. Neulander, R. T. Pao, and M. Siegler, " Measurement of DynamicAdsorption Coef ficients for Noble Gases on Activated Carbon," 12th Air Cleaning Conference,August 1972.

22. Letter from R. W. Scherer, Georgia Power Company, to R. S. Boyd, USAEC, "Edwin HatchSourc Term Da ta." Feb. 24, 1972.

23. R. J. Rivers, M. Pasha, and W. H. Buckler, " Correlation of Radiciodine Efficiencies Resultingf rom Standardized Test Program for Activated Carbons," 12th AEC Air Cleaning Conference,CONF-720323, Vol .1, August 1972.

24. Hope Creek Preliminary Safety Analysis Report (PSAR), Amendment 11, p. 9.4-6a, November 1973.

25. Air Products and Chemicals, Inc., " Supplemental Information for the Offgas Treatment System,Newbold Island Nuclear Generating Station," proprietary report, Nov. 1971.

26. Battelle Columbus Laboratories, " Evaluation of Data Regarding the Ef ficiency of ActivatedCharcoal Adsorbers at Low Gas Phase Iodine Concentration," R. M. Ritzman aad G. M. Genco,pp. 25-26, May 1961.

27. J. G. Wilhelm, H. G. Dillman, and K. Gerlach, " Testing of Iodine filter Systems Under Normaland Post Accident Conditions," 12th AEC Air Cleaning Conference, CONF-720823, Vol.1,August 1972.

28. ANSI Standard NSIO, " Testing of Nuclear Air Cleaning Systems," 1975.

29. ANS $2.3 Working Group, American National Standards draf t standard, " Boiling Water ReactorLiquid Radioactive Waste Processing System," Aug. 30, 1974

30. Letter from J. S. Abel, Comonwealth Edison Company, to D. F. Ziemann, AEC, Re: " CondensateDemineralizer Regeneration Data," May 9,1974.

31. J. H. Hollway and P. J. Hollifield, " Ultrasonic Cleaning of Deep Bed Resins for CondensateDemineralizer Systems," Proceedings of the fcerican Power Conference, Vol . 33, 1971.

32. Letter f rom R. C. Haynes, Boston Edison Company, to Director, Directorate of Licensing.USAEC, Re: " Ultrasonic Resin Cleaner Performance Report," April 10, 1973.

33. Westinghouse Corp. , WCAP-8253, " Source Term Data for Westinghouse Pressurized Waterdeactors," May 1974.

34. Oak Ridge Na tional Lab. , ORNL-4792, " Application of Ion-Exchange Technology in NuclearIndustry," K. H. Lin, April 1972.

35. Oak Ridge National Lab., ORNL-4790, "Use of Evaporation for the Treatment of Liquids inthe Nuclear Industry," H. B. Godbee, September 1973.

36. Letter f rom R. Hurley, Rochester Gas & Electric, to W. Hewitt, USAEC, "Ginna StationReverse Osmosis Da ta " Feb. 7,1973.

37. Letter from Rochester Gas & Electric to J. Markland, Westinghouse Power Systems, " IsotopicAnalysis of Laundry Reverse Osmosis Water," June 18, 1973.

38. Westir.ghouse Trip Report to Ginna Station by P. Manard, Sept.1974.

39. Memo from L. Becker, Westinghouse, to S. Works, R. Trailer, and M. Gross, Wisconsin ElectricPower Co., Re: "Results of Reverse Osmosis Unit Tested at Point Beach, Wisconsin,"Aug. 2, 1971.

40. Westinghouse Research Laboratories, " Evaluation of a Westinghouse Reverse Osmosis Radio-active Laundry Water Concentrator," R. R. Stanna and J. W. Focnst, "w 1973.

OR-2

'41. W. R. Greenway, W. J. Klein, J. Marking, and R. R. Star.na, " Treatment of Radioactive

Steam Generator Blowdown," 33rd Annual Meeting of International Water Conference of theEngineers Society of Western Penn. , Oct. 24-26, 1972.

42. C. Kunz et al ., "C-14 Gaseous Ef fluents from Boiling Water Reactors," Transac tions ofthe fcerican flaclear Society,1975 Annual tieeting, June 8-13, 1975, Ne R Weans, La.,pF.' 9FO .

~

OR-3