Beavers ( Castor fiber ) in the Past: Holocene Archaeological Evidence for Beavers in Romania

17
Beavers (Castor ber) in the Past: Holocene Archaeological Evidence for Beavers in Romania L. BEJENARU, a * S. STANC, a M. POPOVICI a AND A. BALASESCU b a Alexandru Ioan CuzaUniversity, Carol I Bd., 11, Iasi 700506, Romania b National Museum of Romanian History, Calea Victoriei, 12, 030026, Bucuresti Romania ABSTRACT Archaeological beaver (Castor ber) remains from Romanian sites dating from the Mesolithic to the Middle Ages are described in terms of their frequencies (based on the number of identied specimens), morphology and size. A summary of previous archaeozoological studies in the geographical and historical regionalization of the Romanian territory (i.e. Banat, Dobrudja, Moldavia, Muntenia, Oltenia and Transylvania) shows that temporal and regional variation characterizes the assemblages. The data also reveal that beaver hunting contributed little to local economies, although some spatial and temporal variations are apparent and are here compared with the evidence from the historical record. In addition, univariate, bivariate and geometric morphometric analyses are employed to examine different anatomical elements. Studies of the lower third molar (M 3 ) reveal that there is a statistically signicant intraspecic variability between the Neolithic and Iron Age populations, situated also in different regions, Muntenia and Moldavia, respectively. Copyright © 2013 John Wiley & Sons, Ltd. Key words: archaeozoology; beaver (Castor ber); Holocene; Romania Supporting information may be found in the online version of this article. Introduction The European beaver (Castor ber Linnaeus, 1758), a mammal adapted to the aquatic environment, is the biggest and strongest rodent in Europe. In terms of paleoecology, the beaver is a very important indicator species because of its preference for living on the banks of rivers, rich in forests of oaks, ashes, elms, poplars and willows (Filipascu, 1969). Within these environments, beavers will cut tree to build their dams, heavily trans- forming the landscape they populate by reducing wood- land on vast areas around freshwaters (Coles, 2006). Until recently, the beaver was locally extinct in Romania, but increased protection measures based on complex scientic research have supported an import- ant demographic recovery (Ducroz et al., 2005). This has been facilitated by an active campaign of repopula- tion, which begun in 1998 along the important rivers in Romania: Olt, Mures and Ialomita (http://www.beaver. icaswildlife.ro/). Whilst much attention has been given to modern beaver populations, little is known about their ancient history. This paper brings together, for the rst time, archaeozoological and historical data to examine the population dynamics of the Romanian beaver from the Mesolithic to the 19 th century. Material and methods Data have been collated from a large number (n = 119) of faunal assemblages corresponding to the main pre- and historical ages recognized for Romania (Vulpe, 1997; Ursulescu, 2002; Berindei & Candea, 2001): Mesolithic (85006500 B.C.), Neolithic-including Chalcolithic (66003000/2500 B.C.), Bronze Age (3000/2500 B.C.1200/1150 B.C.), Iron Age (1200/1150 B.C.106 A.D.), Antiquity (1 st 5 th centuries) and Middle Ages (6 th 16 th centuries). The assemblages were grouped according to geographical criteria into the ve zones recognized for Romania, namely, Moldavia (eastern Romania), Dobrudja (south-eastern Romania), Wallachia including Muntenia and Oltenia (southern Romania), Banat (south-western Romania) and Transylvania (central and western Romania) (Figure S1). * Correspondence to: Luminita Bejenaru, Alexandru Ioan CuzaUniversity, Carol I Bd., 11, Iasi 700506, Romania. e-mail: [email protected] Copyright © 2013 John Wiley & Sons, Ltd. Received 26 February 2012 Revised 19 December 2012 Accepted 10 January 2013 International Journal of Osteoarchaeology Int. J. Osteoarchaeol. (2013) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/oa.2306

Transcript of Beavers ( Castor fiber ) in the Past: Holocene Archaeological Evidence for Beavers in Romania

Beavers (Castor fiber) in the Past:Holocene Archaeological Evidence forBeavers in RomaniaL. BEJENARU,a* S. STANC,a M. POPOVICIa AND A. BALASESCUb

a ‘Alexandru Ioan Cuza’ University, Carol I Bd., 11, Iasi 700506, Romaniab National Museum of Romanian History, Calea Victoriei, 12, 030026, Bucuresti Romania

ABSTRACT Archaeological beaver (Castor fiber) remains from Romanian sites dating from the Mesolithic to the MiddleAges are described in terms of their frequencies (based on the number of identified specimens), morphologyand size. A summary of previous archaeozoological studies in the geographical and historical regionalizationof the Romanian territory (i.e. Banat, Dobrudja, Moldavia, Muntenia, Oltenia and Transylvania) shows thattemporal and regional variation characterizes the assemblages. The data also reveal that beaver huntingcontributed little to local economies, although some spatial and temporal variations are apparent and are herecompared with the evidence from the historical record. In addition, univariate, bivariate and geometricmorphometric analyses are employed to examine different anatomical elements. Studies of the lower thirdmolar (M3) reveal that there is a statistically significant intraspecific variability between the Neolithic and IronAge populations, situated also in different regions, Muntenia and Moldavia, respectively. Copyright © 2013John Wiley & Sons, Ltd.

Key words: archaeozoology; beaver (Castor fiber); Holocene; Romania

Supporting information may be found in the online version of this article.

Introduction

The European beaver (Castor fiber Linnaeus, 1758), amammal adapted to the aquatic environment, is thebiggest and strongest rodent in Europe. In terms ofpaleoecology, the beaver is a very important indicatorspecies because of its preference for living on the banksof rivers, rich in forests of oaks, ashes, elms, poplars andwillows (Filipascu, 1969). Within these environments,beavers will cut tree to build their dams, heavily trans-forming the landscape they populate by reducing wood-land on vast areas around freshwaters (Coles, 2006).Until recently, the beaver was locally extinct in

Romania, but increased protection measures based oncomplex scientific research have supported an import-ant demographic recovery (Ducroz et al., 2005). Thishas been facilitated by an active campaign of repopula-tion, which begun in 1998 along the important rivers inRomania: Olt, Mures and Ialomita (http://www.beaver.icaswildlife.ro/). Whilst much attention has been given

to modern beaver populations, little is known abouttheir ancient history. This paper brings together, forthe first time, archaeozoological and historical data toexamine the population dynamics of the Romanianbeaver from the Mesolithic to the 19th century.

Material and methods

Data have been collated from a large number (n=119) offaunal assemblages corresponding to the main pre- andhistorical ages recognized for Romania (Vulpe, 1997;Ursulescu, 2002; Berindei & Candea, 2001): Mesolithic(8500–6500 B.C.), Neolithic-including Chalcolithic(6600–3000/2500 B.C.), Bronze Age (3000/2500B.C.–1200/1150B.C.), Iron Age (1200/1150B.C.–106A.D.), Antiquity (1st – 5th centuries) andMiddle Ages(6th – 16th centuries). The assemblages were groupedaccording to geographical criteria into the five zonesrecognized for Romania, namely, Moldavia (easternRomania), Dobrudja (south-eastern Romania), Wallachia –including Muntenia and Oltenia (southern Romania),Banat (south-western Romania) and Transylvania (centraland western Romania) (Figure S1).

* Correspondence to: Luminita Bejenaru, ‘Alexandru Ioan Cuza’ University,Carol I Bd., 11, Iasi 700506, Romania.e-mail: [email protected]

Copyright © 2013 John Wiley & Sons, Ltd. Received 26 February 2012Revised 19 December 2012Accepted 10 January 2013

International Journal of OsteoarchaeologyInt. J. Osteoarchaeol. (2013)Published online in Wiley Online Library(wileyonlinelibrary.com) DOI: 10.1002/oa.2306

Archaeological representation

The relative frequencies of beaver remains were calcu-lated based on the number of identified specimens(NISP) and expressed as a percentage of the total numberof identified mammal remains of the site. Frequenciesbased on the minimum number of individuals were notused because this information was not available for themajority of the sites.There are some possible biases in this study that

concern variable sample size and differential collectionof animal remains. Only five assemblages out of 119 haveless than 100 NISP, and almost half of them (57 assem-blages) are large samples with more than 1000 NISP.The majority of the assemblages were collected by hand,and this caused an underrepresentation of medium andsmaller species, including the beaver. Sieving was carriedout only at some Chalcolithic sites from Dobrudja(Isaccea, Harsova, Luncavita and Navodari) and fromMuntenia (Bordusani, Sultana and Bucsani).

Multivariate analysis

Multivariate analyses, such as correspondence analysis(CA), have gained prominence in archaeology over thepast few decades, being applied to a variety of archaeolo-gical datasets, including subsistence data. This analyticaltechnique is especially useful in that it allows multiplecases (e.g. contexts, sites, periods) to be considered sim-ultaneously with multiple variables, producing solutionsthat can ‘map’ associations (VanDerwarker, 2010). It isa descriptive technique designed to analyze simpletwo-way and multi-way tables containing some measureof correspondence between the rows and columns. CApartly solves the problem of differences in sample sizeallowing the introduction of small assemblages in theanalysis.

Osteometrics

All available metric data from archaeozoological publica-tions have been collated, to which we have added newmeasurements taken on beaver skeleton samples fromthe National Museum of Romanian History in Bucharestand Faculty of Biology in Iasi. The measurements weretaken according to von den Driesch, 1976 (Table S1).A caliper rule was used in measurements.

Ageing

Beaver teeth were aged according to Ognev (1963). Theage of animals in the first and second year of life may bedetermined by the degree of closure of the pulp cavitiesand the state of tooth eruption (incisors at birth, allmolars by 5.5months and premolars at 10months).Hatting (1969), van Nostrand and Stephenson (1964)explain the structure of age in similar mode: the eruptionof teeth is in the following order: deciduous molar, firstmolar, second molar, third molar and premolar (inMayhew, 1978). The eruption of the deciduous molaroccurs at the age of about one month, and the threemolars are erupted by 6months. The premolar comesinto wear between 10months and 1 year. At eruption,the four cheek teeth of the permanent dentition consistof hypsodont crowns of enamel, dentine and cement withthe enamel folded in the characteristic 3 + 1 pattern ofcastorids. An overview of occlusal surface for basic pat-tern is presented in Figure 1a. Mayhew (1979) said thatthis method may be applied with excellent results tosubfossil material yielding age estimates reliable to withinplus or minus one year. On the basis of this method anddental wear stages, the age of examined beavers wasassessed to be as belonging adult individuals. The teethincrease in size nearly linearly up to the adult age andshow little size increase afterwards (Stefen, 2009).

a b

Figure 1. Description of the lower third molar: a. occlusal view; b. position of landmarks (1–11) on the occlusal surface.

L. Bejenaru et al.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

Geometric morphometrics

Geometric morphometrics were used to compare theshape configurations of the lower third molar (M3), avariable element that was selected because of its poten-tial to inform on inter-population variability. General-ized Procrustes Analysis (Mitteroecker & Gunz, 2009)was used, minimizing the sum of squared distancesbetween homologous landmarks by translating, rotatingand scaling them to best fit (Rohlf & Slice, 1990; Slice,2007; Seetah et al., 2012).A total of 35 lower third molars (M3) were used for the

geometric morphometric analysis analysed: 20 camefrom the Neolithic period (samples of Bucsani andVitanesti, from Muntenia), and 15 dated to the IronAge (sample of Brad, from Moldavia). Only Neolithicand Iron Age material was examined as no samples datingto other periods were found. In all the samples, the teethare contemporary with the specified cultural levelscoming from areas of household refuse and dwellings.Bucsani and Vitanesti are small tell sites of Gumelnitaculture (4600–3500 cal BC), which are still excavated(Brehard & Balasescu, 2012). Cutting traces have beenidentified on the beaver remains found at Vitanesti,proving the use of this species as food resource, and alsofor the fur. The site of Brad represents a developedfortified settlement (with the antic name Zargidava) inthe Antic Dacia, situated in the valley of the Siret River,dated for the La Tene period (IVth BC–IInd AD centuries)(Ursachi, 1995).Sexual dimorphism should be taken into account in

morphometric studies, but it is impossible to differentiatemales and females in fossil specimens except wheredimorphism is great. Information about sexual dimorph-ism of beaver is rare, but Nowak (1991) notes that‘sexes are approximately the same size’ and Lavrov(1979), Frahnert & Heidecke (1992) all pooled sexesfor craniometrical analyses across populations (inKitchener & Lynch, 2000). Kitchener & Lynch (2000)ignore the effects of sex in their study; therefore, we alsoassumed that the degree of sexual dimorphism wassimilar in all samples. We have also examined the datawithout differentiating between sides (right/left).Images of the lower third molar (M3) were acquired

using digital camera Canon PowerShot A800. Theocclusal surface was oriented parallel with the lens ofcamera and distance between the lens, and the occlusalsurface was kept the same for all images; all photoswere made with the same scale. The coordinates of 11landmarks were digitized using tpsDig2 (Rohlf, 2003).These landmarks are points of maximum curvature ofthe outline (Figure 1b, Table S2) and correspond as type2 landmark sensu Bookstein (1991). We have to remark

that the extremity of the mesoflexid curvature has notbeen marked because of this morphological variability.The overall molar size was evaluated using centroid

size (CS) values and visualized in box plot and testedwith one-way ANOVA. The CS is a geometric scalewhich is defined by the square root of the sum ofsquared distances between all landmarks and theircentroid (Zelditch et al., 2004). CS has been performedusing tpsRelw 1.45 (Rohlf, 2010). To meet the assump-tion of normality of the size distribution, we have usedLog-transformed CS values (Cucchi et al., 2011).The shape was evaluated with Cartesian landmark

coordinates. The PCA was used in order to define thegreatest axes of molar shape variation in the dataset.The visualization of the shapes differences was madewith Thin-plate spline deformation grids. Multivariateanalysis of variance (MANOVA) and discriminantfunction analysis (DFA) were used to evaluate the sig-nificance and the visualization of the main traits of dif-ference in molar shape between the two samples. Thereliability of the separation was assessed with a leaveone-out cross-validation with 1000 permutations.The form analysis performed with MANOVA and

discriminant linear analysis using log-CS and the mostimportant principal components.Statistical analyses were performed using tpsDig,

tpsRelw 1.45 (Rohlf, 2010),MorphoJ 1.02b (Klingenberg,2008), PAST version 2.08b (Hammer et al., 2001), SPSSversion 13.00 and Excel package program.

Results and discussions

Assemblage variabilityThe archaeological representation of beavers is detailedin Table 1. It demonstrates that, in general, beaverremains constitute a small proportion of archaeologicalanimal bone assemblages, although there is some inter-period and -regional variation. Overall, their NISPdecreases fromNeolithic (average of 0.85%) to the Mid-dle Ages (average of 0.11%). The highest frequency wasrevealed in Wallachia (average of 1.33%) and Dobrudja(average of 0.83%) in Neolithic; the smallest frequenciesof beaver remains were identified in archaeological sitesdating from Middle Ages in Dobrudja (average of0.1%) and Antiquity in Wallachia (average of 0.1%).In order to identify the relationships between

regions and periods, we used CA based on frequenciesof Castor fiber remains from archaeozoological samples(Greenacre, 2002). The results are projected on thefirst two principal axes which accounted for 86.43%of the overall variance (the first axis 59.75% and thesecond axis 26.68%). Eigenvalues and variances of the

Beavers (Castor fiber) in Romania’s Past

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

Table

1.Freq

uenc

iesof

bea

verrem

ains

(NISP)inarch

aeoz

oological

samples;

perce

ntag

esof

wild

mam

mal

andbea

verrem

ains

arereportedto

thetotalm

ammal

remains

Reg

ion

Period

Culture/Epoch

Sam

ple

Referen

ceTotal

mam

mals

Totalw

ildmam

mals

Bea

ver

(Cas

tor

fiber)

NISP

NISP

%NISP

%

Ban

atMes

olith

ic~80

00–65

00CALBC

Ostrovu

lBan

ului

Balas

escu

,unp

ublishe

d30

823

877

.27

134.22

Ostrovu

lCorbului

Haimov

ici,19

8716

8916

5197

.75

40.23

Neo

lithic(in

clud

ing

Cha

lcolith

ic)~

6600

–30

00CALBC

Star� cev

o-Cris

~66

00–

5500

CALBC

Moldov

aVec

heRat

ElS

usi,19

9642

418

643

.86

20.47

Dud

estii

Vec

hiElS

usi,20

0154

626

348

.16

20.36

Foen

i-Gaz

ElS

usi,20

0150

299

19.72

10.19

Pojejen

a-Nuc

etElS

usi,19

9621

010

248

.57

10.47

Vin� ca

~55

00–45

00CALBC

Gorne

aCau

nita

ElS

usi,19

8716

1248

229

.90

10.06

Foen

iElS

usi,19

9837

6595

925

.47

20.05

Foen

iCim

itirulO

rtod

oxElS

usi,20

0316

037

3920

24.44

100.06

Liub

cova

-Ornita

Nec

raso

vet

al.,19

7747

7413

3828

.02

60.12

Liub

cova

-Ornita

Luca

,199

816

6880

548

.26

20.11

Parta

IElS

usi,19

9542

9622

5752

.53

10.02

Parta

tellII

ElS

usi,19

9820

1260

430

.01

40.19

Salcu

ta~46

00–40

00CALBC

Cup

toare-Sfogea

ElS

usi,19

9388

739

744

.75

10.11

-Parta

Bolom

ey,1

988

2095

590

28.16

10.04

Bronz

eAge~

3000

–11

50CALBC

Cotofen

i~30

00–28

00CALBC

Moldov

aVec

he-O

strov

ElS

usi,19

93;E

lSus

i,19

95;

ElS

usi,19

9610

5836

234

.21

60.56

-Fo

eniC

imitirulO

rtod

oxElS

usi,20

0113

6536

326

.59

20.14

Middle

Ages

XIth–XIII

thce

nturies

Moldov

aVec

heRat

ElS

usi,19

9636

173

20.22

20.55

Dob

rudja

Neo

lithic(in

clud

ing

Cha

lcolith

ic)~

6600

–30

00CALBC

Ham

angia~52

00–48

00CALBC

Cerna

voda

Balas

escu

etal.,20

0535

422

563

.55

215.93

Boian

~53

00–46

00CALBC

Isac

cea

Balas

escu

etal.,20

0579

525

732

.32

151.88

Gum

elnita

~46

00–35

00CALBC

Carca

liuHaimov

ici,19

9648

127

557

.17

40.83

Harso

vaBalas

escu

etal.,20

0553

1012

7323

.97

320.60

Lunc

avita

Balas

escu

,200

3;Balas

escu

etal.,20

0592

448

852

.81

20.21

Nav

odari

Balas

escu

etal.,20

0542

596

22.58

10.23

Cerna

voda~42

00–37

00CALBC

Harso

vaBalas

escu

etal.,20

0535

814

339

.94

82.23

Cerna

voda

Haimov

ici&

Urech

e,19

6828

552

18.24

10.35

Antiquity

IVth–VIth

centuries

Garva

n-Dinog

etia

Haimov

ici,19

9110

610

9.43

10.94

IVth–VIIthce

nturies

Murighiol

ElS

usi,20

0828

4960

521

.23

50.17

Middle

Ages

Xth–XIth

centuries

Oltina

Stanc

&Bejen

aru,

2005

;Stanc

,200

694

060

6.38

20.21

Cap

idav

aHaimov

ici&

Urech

e,19

7910

2866

6.42

10.09

XIth–XIIthce

nturies

PiatraFrec

atei

Stanc

,200

939

2084

321

.50

50.12

XIth–XIII

thce

nturies

Isac

cea

Bejen

aru,

2003

;Bejen

aru,

2007

;Bos

nice

anu,

2008

;Cot,2

008

6890

481

6.98

20.02

Harso

vaBejen

aru,

1995

;Bejen

aru,

2003

698

578.16

10.14

Moldav

iaNeo

lithic(includ

ing

Cha

lcolith

ic)

~66

00–30

00CALBC

Line

arPottery~55

00–

5000

CALBC

Traian

Dea

lulF

intin

ilor

Nec

raso

v&Bulai-Stirbu,

1965

553

207

37.43

20.36

Traian

Dea

lulV

iei

Nec

raso

v&Bulai-Stirbu,

1965

7650

1149

15.01

310.40

(Con

tinue

s)

L. Bejenaru et al.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

Table

1.(C

ontin

ued)

Reg

ion

Period

Culture/Epoch

Sam

ple

Referen

ceTotal

mam

mals

Totalw

ildmam

mals

Bea

ver

(Cas

tor

fiber)

NISP

NISP

%NISP

%

Precu

cuteni~52

00–

4600

CALBC

Isaiia

Coroliuc,

2009

1162

247

21.25

10.08

TarguFrum

osCoroliuc,

2009

1791

235

4119

.76

90.05

Tirpes

tiNec

raso

v&Stirbu,

1979

4320

231

5.34

50.11

Cuc

uten

i~46

00–37

00CALBC

Cuc

uten

iBaice

niHaimov

ici,19

6969

313

419

.33

10.14

Dragus

eni

Bolom

ey&ElS

usi,20

0024

7172

229

.21

30.12

Fulgeris

Haimov

ici&

Vornicu

,200

567

319

328

.67

30.44

Hoise

sti

Cav

aleriu

&Bejen

aru,

2009

1557

635

40.78

10.06

Mihov

eni

Haimov

ici,20

0415

727

17.19

10.63

Pod

uri

Cav

aleriu

&Bejen

aru,

2009

3260

443

13.58

100.30

Pod

uri

Oleniuc

,201

089

6792

910

.36

120.13

Preutes

ti-Halta

Haimov

ici,20

03;

Haimov

ici,20

0486

2427

.90

11.16

Tirpes

tiNec

raso

v&Stirbu,

1981

1505

151

10.03

20.13

Tirpes

tiNec

raso

v&Bulai-Stirbu,

1965

427

368.43

10.23

Traian

Dea

lulF

intin

ilor

Nec

raso

v&Bulai-Stirbu,

1965

2006

1033

51.49

401.99

Trus

esti

Haimov

ici,19

6039

421

554

.56

10.25

Horod

istea-

Folte

sti~

3700

–35

00CALBC

Folte

sti

Haimov

ici,19

7218

864

34.04

10.53

Horod

istea

Haimov

ici&

Pop

escu

,197

8;Haimov

ici,19

7947

314

029

.59

10.21

Bronz

eAge

~30

00–11

50CALBC

Mon

teoru~23

00–16

00CALBC

Bog

dan

esti

Haimov

ici,19

6667

149

7.30

20.29

Mindris

caHaimov

ici,19

8031

3525

98.26

100.31

Nou

a~16

00–11

50CALBC

Girb

ovat

Haimov

ici,19

9167

7317

42.56

10.01

PiatraNea

mt

Haimov

ici,19

6461

056

9.18

60.98

Iron

Age~11

50CALBC–10

0AD

Hallstatt~11

50–45

0CALBC

Sire

t-Dea

lulR

uina

Haimov

ici,20

0419

023

12.10

10.52

Stin

cesti

Haimov

ici,19

7496

7515

2515

.76

40.04

LaTe

ne~45

0CAL

BC–10

0AD

Brad

Marian,

2008

;Haimov

ici,

unpub

lishe

d83

7010

1812

.16

230.27

PiatraSoimului

Haimov

ici,19

9392

920

421

.95

20.21

Poian

a-Te

cuci

Marian,

2008

7029

394

5.60

10.01

Poian

aDulce

sti-V

arnita

Haimov

ici&

Teod

ores

cu,1

995;

Haimov

ici,20

0010

7922

2.03

20.18

Rac

atau

Marian,

2008

7327

243

3.31

20.02

Vladicen

iHaimov

ici&

Pan

ove,

1990

;Haimov

ici,20

0017

9924

1.33

10.05

Carnice

niTa

rcan

-Hris

cu,1

995

584

315.30

10.17

Middle

Ages

VIIth–VIII

thce

nturies

Lozn

aStraten

iHaimov

ici,19

8672

162

8.59

10.13

Middle

Ages

VIII

th–IX

thce

nturies

Poian

aStanc

&Bejen

aru,

2003

;Stanc

,200

686

769

7.95

10.11

Mod

ernperiod

XIX

thce

ntury

Neg

riles

tiBalas

escu

&Rad

u,un

pub

lishe

d69

11.44

11.44

Mun

tenia

Neo

lithic(includ

ing

Cha

lcolith

ic)

~66

00–30

00CALBC

Starcev

o-Cris

~66

00–

5500

CALBC

Mag

ura

Balas

escu

&Rad

u,un

pub

lishe

d43

9836

88.36

70.15

Sec

iuPop

aet

al.,20

1110

110

.00

110

.00

Boian

~52

00–46

00CALBC

Lace

niBalas

escu

etal.,20

0522

653

23.45

10.44

Silistea

Balas

escu

etal.,20

0514

145

31.91

21.41

(Con

tinue

s)

Beavers (Castor fiber) in Romania’s Past

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

Table

1.(C

ontin

ued)

Reg

ion

Period

Culture/Epoch

Sam

ple

Referen

ceTotal

mam

mals

Totalw

ildmam

mals

Bea

ver

(Cas

tor

fiber)

NISP

NISP

%NISP

%

Vladicea

sca

Balas

escu

&Udresc

u,20

0526

5535

213

.25

10.03

Izvo

arele

Nec

raso

v&Ghe

orghiu,

1970

1136

675.89

40.35

Rad

ovan

uStirbu,

1980

4239

378

8.91

70.16

Gum

elnita

~46

00–35

00CALBC

Sec

iuPop

aet

al.,20

1125

997

37.45

20.77

Bordus

ani

Balas

escu

etal.,20

0593

1720

5422

.04

971.04

Insu

ratei

Balas

escu

etal.,20

0558

128

148

.36

10.17

Buc

sani

Balas

escu

etal.,20

0580

828

935

.76

212.59

Cas

cioa

rele

Balas

escu

etal.,20

0528

2923

7884

.05

160.56

Gum

elnita

Nec

raso

v&Haimov

ici,19

6623

2529

112

.51

10.04

Vita

nesti

Balas

escu

etal.,20

0512

751

7970

62.50

478

3.74

Cuc

uten

i~46

00–37

00CALBC

SarataMon

teoru

Bejen

aruet

al.,20

1187

511

813

.48

10.11

Cerna

vodaI~

4200

–37

00CALBC

Rim

nice

luBalas

escu

etal.,20

0528

3887

430

.79

90.31

Sav

eni

Balas

escu

&Rad

u,un

pub

lishe

d64

113

020

.28

10.15

Bronz

eAge

~30

00–11

50CALBC

Glina~30

00–25

00CALBC

Glina

Haimov

ici,19

9714

1637

2.61

80.56

Moa

raVlasiei

Pop

a&Balas

escu

,un

pub

lishe

d31

218

158

.01

41.28

Mon

teoru~25

00–16

00CALBC

Mon

teoru

Haimov

ici,19

9444

155

12.47

10.22

Tei~

2500

–16

00CALBC

MilitariCam

pul

luiB

oja

Moise

,200

077

45.19

11.29

-Pop

esti

Haimov

ici,19

6318

414

7.60

10.54

Iron

Age~11

50CALBC–10

0AD

LaTe

ne~45

0BC–10

0AD

Cirlom

anes

tiUdresc

u,19

8528

2012

54.43

30.10

Rad

ovan

uUdresc

u,19

8539

1620

55.23

180.45

Piscu

lCrasa

niUdresc

u,19

8549

5523

84.80

30.06

Vladicea

sca

Udresc

u,19

9019

0526

113

.70

10.05

Pietroa

saMica-GruiulD

ariiStan&Balas

escu

,200

611

9538

3.17

10.08

Gradistea

Udresc

u,19

9257

312

421

.64

30.52

Olte

nia

Neo

lithic(in

clud

ing

Cha

lcolith

ic)~

6600

–30

00CALBC

Star� cev

o-Cris

~66

00–

5500

CALBC

Carce

a-La

Viaduc

tBalas

escu

etal.,20

0534

938

10.88

20.57

Gum

elnita

~46

00–35

00CALBC

Dragan

estiOlt

Balas

escu

etal.,20

0571

921

129

.34

20.27

Dragan

estiOlt

Balas

escu

etal.,20

0515

1562

341

.12

50.33

Salcu

ta~46

00–40

00CALBC

Dragan

estiOlt

Balas

escu

etal.,20

0599

448

748

.99

10.10

Antiquity

Rom

an~50

BC–40

0AD

Stolnicen

iUdresc

u,19

7993

274

7.93

10.10

Tran

sylvan

iaNeo

lithic(in

clud

ing

Cha

lcolith

ic)~

6600

–30

00CALBC

Star� cev

o-Cris

~66

00–

5500

CALBC

GuraBac

iului

Bindea

,200

841

435

8.45

10.24

LetulV

echi

Nec

raso

v&

Bulai-Stirbu,

1970

493

6.12

12.04

Cluj-C

heile-Turzii-L

umea

Nou

a-Iclod

(CCTL

NI)~55

00–50

00CALBC

Che

ileTu

rzii

Bindea

,200

821

832

14.67

10.45

Iclod

ElS

usi,19

9338

2817

8446

.60

30.07

Che

ileTu

rzii

Bindea

,200

834

052

15.29

10.29

(Con

tinue

s)

L. Bejenaru et al.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

first two axes are presented in Table 2, where the con-tributions of variables are also presented. Figure 2 showshow the region points plot in relation to the periodpoints, the resulting patterns revealing the associationbetween the two. For instance, the Mesolithic pointplots near the Banat point because Banat is the onlyregion where Mesolithic beaver remains were found.However, the Banat region also produced considerablequantities of beaver remains dating to the Middle Ages.Thus, these three variables (Banat, Middle Ages andMesolithic) have a great contribution to Axis 1; all thesites of this group are situated on the banks of theDanube. Along to Axis 2 Dobrudja and Antiquity asclosely associated. The association between Wallachia,Moldavia and Transylvania is explained by the similarvalues of beaver frequencies obtained for Bronze Ageand Iron Age in these regions (Figure 2).Overall, the Mesolithic and Neolithic appear to

have been periods of relatively significant use of bea-vers by people. The beaver evidence from Mesolithiccomes from two sites situated in the Iron Gates gorgesection of the Danube Valley, on the left bank (FigureS1a), dated for 8100 to 7630 BP (Bonsall et al., 2002).The distribution of Neolithic evidences extends acrossalmost the entire territory of Romania, with finds ofbeaver remains corresponding to watercourses, in par-ticular the Danube River and its tributaries (FigureS1a). It seems probable that, in Neolithic, both beaversand human farming communities were important insti-gators of environmental changes. From the Neolithicto the Middle Ages, as humans intensified theirexploitation of domestic resources, beaver populationsprobably reduced because their habitat along

Table

1.(C

ontin

ued)

Reg

ion

Period

Culture/Epoch

Sam

ple

Referen

ceTotal

mam

mals

Totalw

ildmam

mals

Bea

ver

(Cas

tor

fiber)

NISP

NISP

%NISP

%

Petresti~

4800

–44

00CALBC

Cuc

uten

i~46

00–37

00CALBC

Bod

Bindea

,200

8+

+�

+�

Ariu

sdBindea

,200

8+

+�

+�

Tiszap

olgar

~44

00–37

00CALBC

San

tana

Bindea

,200

823

024

10.43

20.86

Che

ileTu

rzii

Bindea

,200

829

159

20.27

20.68

Herpaly~40

00–34

00CALBC

Pes

tisBindea

,200

8+

+�

+�

Bronz

eAge

~30

00–11

50CALBC

Otoman

i~25

00–16

00CALBC

Otoman

iHaimov

ici,19

8722

4427

512

.25

20.08

Salac

eaBindea

,200

854

0014

9927

.75

10.01

Med

iesu

Aurit-Potau

Bindea

,200

813

3032

824

.66

171.27

Nou

a~16

00�1

150

CALBC

Zoltan

Bindea

,200

8;ElS

usi,20

0254

6343

27.90

100.18

Iron

Age~11

50CALBC–10

0AD

Hallstatt~11

50�4

50CALBC

Berna

dea

ElS

usi,20

01;

Bindea

,200

828

039

13.92

10.35

LaTe

ne~45

0CALBC–10

0AD

Meres

tiBindea

,200

865

982

12.44

10.15

Sim

leuSilvan

iei

Bindea

,200

810

1041

841

.38

50.49

Antiquity

Rom

an~50

BC–40

0AD

Micia

Udresc

u,19

8517

8912

36.87

30.16

Table 2. Eigenvalues and scores for the two principle axes.Eigenvalues and variance percentages

F1 F2

Eigenvalue 0.666 0.297% variance 59.757 26.680Cumulative % 59.757 86.437

Contributions of the periods (%):F1 F2

Mesolithic 51.18 2.44Neolithic 12.86 0.01Bronze Age 0.35 20.30Iron Age 2.73 31.72Antiquity 12.66 44.03Middle Ages 20.21 1.51

Contributions of the regions (%):F1 F2

Banat 72.94 1.55Dobrudja 15.76 56.38Moldavia 0.00 7.74Walachia 7.15 14.86Transylvania 4.15 19.46

Beavers (Castor fiber) in Romania’s Past

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

watercourses was also the preferred area for farming com-munities to settle. Furthermore, Coles (2006) has sug-gested that beaver structures and accumulations of woodmay have been targeted by humans for their own use,which may also have impacted upon beaver populations.At the beginning of the second millennium A.D.,

the beaver was still living on the Danube banks,proven by the discoveries in Oltina (Stanc, 2009),Capidava (Haimovici & Ureche, 1979), Harsova(Bejenaru, 2003), Piatra Frecatei (Stanc, 2009) andMoldova Veche (El Susi, 1996). The first four sitesare in Dobrudja, the last is in Banat. The archaeozoo-logical evidence of beaver for these settlements fitswith the relative high frequencies of game at thesesites (Bejenaru et al., 2010), probably due to rich anddiversified biotopes found in the valley of the DanubeRiver. Still, one should mention that the all four set-tlements from Dobrudja are Byzantine military fortswhere hunting must have also been a regular practice.The historical sources also indicate the presence of

the beaver in other regions of Romania (Transylvania,Moldavia). The medieval documents of Transylvania,dating to A.D. 1211–1452, often mention the Hungarianterm ‘hodos’, which mean ‘places with a lot of beavers’,and also refer to specialist beaver hunters. In the 14th

century, according to the documents, the beavers werestill abundant in Transylvania. They were caught whenyoung and maintained in captivity for their delicious meatand for their fur. Place-names derived from ‘hodos’ or from‘breb’ (the old Romanian term for beaver) have stayed inuse, even after beaver numbers had declined. In presentday, at least six rural settlements from Transylvania havenames derived from ‘hodos’ (Hodos/Hodosa/Hodis), andabout 11 rural settlements from entire Romania havenames derived from ‘breb’ (Brebu/Breb/Brebi/Brebeni/Brebina)(http://enciclopediaromaniei.ro).

After the 18th century, all evidence for the presenceof the beaver becomes scarce. They are documentedfor the last time in 1823, when the pharmacist Schmitzwrote that beavers were living on the Danube shores(settlement of Moldova Veche) (Nania, 1991). A single,but important, archaeological specimen of beaver toothfrom a 19th century pit excavated at Negrilesti (GalatiCounty, Figure S1d) could be evidence that the beaversurvived in Romania until the Modern Period, living inremote, wild and inaccessible places.

Morphological and biometrical characteristicsMuch of the metrical data considered in this paper wererecorded by different specialists; therefore, the Grubs’stest was applied to correct for measurement errors.Univariate analysis was performed for all variables. Thelack of abundant samples from different historical peri-ods rendered it more difficult to study inter-populationvariability. The differences between means of variableswere tested with Difference Index: DI%= (greatervalue�small value/greater value) � 100 (Ocal et al.,2004). We described the variability using coefficient ofvariation (CV%=SD/M*100). Differences betweenvariables from different region and periods were testedwith one-way ANOVA. Relationships between lengthand width of molars were reported by means of correl-ation (Pearson’s coefficient) and regression analysis.

Univariate analysis of skeletal elements. The most representa-tive indices which characterized a population are givenin Tables 3. Comparisons were not performed for allvariables because the number of samples for each meas-urement differs.The sorting of variables of anatomical elements by

decreasing value of CV% highlights the largest variationsfor LG in scapula (CV: 17.92%) and length of the

(axes F1 and F2: 86.44 %)

Mesolithic

Neolithic

Bronze Age

Iron Age

Antiquity

Middle Ages

Banat

Dobrudja

MoldaviaWalachia

Transylvania

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2

-- axis F1 (59.76 %) -->

-- a

xis

F2

(26.

68 %

) --

>

Figure 2. Plot of the correspondence analysis (bi-dimensional representation).

L. Bejenaru et al.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

Table 3. Variation in size of anatomical elements: n - number of analyzed specimens; SD - standard deviation; Min - minimum; Max -maximum range; CL - confidence level; CV - coefficient of variation. Abbreviations of variables are described in Table S1 (according tovon den Driesch, 1976)

Period Variable n Mean SD Min Max CL (95%) CV%

MaxillaNeolithic 9 9 38.36 2.04 35 40.2 1.57 5.32

10 4 50.67 1.53 49.2 52 - -Mandible

Mesolithic 1 - - - - - - -2 1 37.3 - - - - -3 1 63.5 - - - - -4 - - - - - - -5 - - - - - -5a - - - - - - -LS - - - - - - -

Neolithic 1 5 103.1 13.73 81.5 116 17.05 13.322 56 37.94 2.12 32.5 41.7 0.57 5.583 22 65 4.64 55.5 73.6 2.06 7.144 23 26.8 3.08 23 33.8 1.33 11.55 18 53.83 4.19 45.5 59.6 2.08 7.785a 17 48.62 4.45 40.8 56 2.29 9.14LS 22 45.9 4.95 37 54.3 2.19 10.78

Bronze Age 1 2 98.5 3.54 96 101 - -2 5 35.2 3.27 31 40 4.06 9.293 - - - - - - -4 1 33 - - - - -5 1 57 - - - - -5a - - - - - - -LS 2 45.5 - 45 46 - -

Lower dentitionNeolithic LP4 39 9.53 1.41 6.91 12.42 0.46 14.84

BP4 39 7.64 0.81 5.7 10 0.26 10.64LM1 45 8.59 0.57 7.47 10 0.17 6.61BM1 45 8.21 0.71 6.86 9.74 0.21 8.64LM2 42 8.26 0.56 7.12 9.54 0.17 6.77BM2 41 8.06 0.86 6.51 9.89 0.27 10.62LM3 37 8.19 0.66 7.14 9.54 0.22 8.05BM3 37 6.9 0.86 3.74 9 0.29 12.53

LM1–M3 36 26.26 1.32 23.78 28.73 0.45 5.05Iron Age LP4 19 9.57 1 7.31 11.6 0.48 10.48

BP4 18 8.78 0.69 7.31 9.88 0.34 7.88LM1 20 8.71 0.6 7.46 9.94 0.28 6.94BM1 19 8.91 0.74 7.46 10.3 0.36 8.31LM2 19 8.61 1.01 7.27 11.46 0.49 11.71BM2 18 8.5 0.81 7.27 9.94 0.4 9.52LM3 15 7.94 0.93 6.31 9.29 0.52 11.73BM3 14 7.14 0.56 6.31 8.33 0.33 7.89

LM1–M3 10 27.05 1.97 24 30.4 1.41 7.29Scapula

Chalcolithic (Gumelnita Culture:assemblage of Bordusani)

SLC 2 15.9 - 15.3 16.5 - -GLP 1 24.5 - - - - -BG 2 13.35 - 13.2 13.5 - -

Chalcolithic (Gumelnita Culture:assemblage of Harsova)

HS 1 94 - - - - -SLC 3 13.23 0.4 13 13.7 - -GLP 2 22.65 - 22.5 22.8 - -LG 3 19.83 0.76 19 20.5 - -BG 4 12.5 0.24 12.2 12.8 - -

Chalcolithic (Gumelnita Culture:assemblage of Vitanesti)

HS 1 86 - - - - -SLC 13 14.05 0.97 12 15.5 0.59 6.89GLP 11 22.36 0.83 21 24 0.56 3.7LG 12 18.33 3.29 12.4 21.5 2.09 17.92BG 15 13.61 0.63 13 14.8 0.35 4.6

(Continues)

Beavers (Castor fiber) in Romania’s Past

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

premolar P4 (CV: 14.84%); the lowest variation (CV:2.91%) was showed in Dd of humerus.Comparative analysis of the dentition of Neolithic and

Iron Age beavers revealed some significant differences forthe lower premolar (P4) and the lower first molar (M1).Premolar in Iron Age are wider (DI=12.98%), and CV% are larger than in Neolithic period (one-way ANOVA:

F=18.3; p=0.000). In case of M1 it is also obviousthat Iron Age beaver teeth were wider (DI=7.85%)(One-way ANOVA: F=7.75; p=0.008). There were nosignificant inter-period differences in molar length(Table 3). No size significant difference was observed inthe lower thirdmolar (M3), but a greater variability in formwas observed, which was reviewed by geometric

Table 3. (Continued)

Period Variable n Mean SD Min Max CL (95%) CV%

HumerusChalcolithic GL 6 92.28 3.7 89 98.8 3.89 4.01

GLC 4 92.43 4.45 89 98.5 - -Bp 8 27.96 1.84 25 31 1.54 6.57Dp 6 21.15 1.03 19.6 22 1.08 4.87SD 18 11.19 1.07 9 13.3 0.53 9.54Bd 31 33.49 1.38 31 37 0.51 4.12Dd 18 11.77 0.34 11.2 12.5 0.17 2.91

Bronze Age Bd 4 31.13 1.03 30 32 - -Iron Age Bd 2 27 - 23 31 - -

UlnaChalcolithic (Gumelnita Culture:assemblage of Bucsani)

LO 2 26.5 - 25.5 27.5 - -DPA 19 16.67 1.02 15 18.8 0.49 6.13SDO 17 13.38 1.04 12 15 0.54 7.8BPC 24 13.29 1.02 11 14.8 0.43 7.64

PelvisChalcolithic (Gumelnita Culture:assemblage of Bordusani)

LA 3 24.73 0.46 24.2 25 - -LAR 3 21.43 0.49 21.1 22 - -SH 3 15.23 1.78 13.2 16.5 - -SB 4 16 1.98 13.2 17.7 - -LFo 1 63.2 - - - - -

Chalcolithic (Gumelnita Culture:assemblage of Harsova)

LA 4 23.48 2.46 20.2 26 - -LAR 3 21.83 1.26 20.5 23 - -SH 6 14.12 0.69 13.5 15 0.73 4.92SB 5 13.24 1.93 10 14.8 2.4 14.58LFo 1 54.2 - - - - -

Chalcolithic (Gumelnita Culture:assemblage of Vităneşti)

LA 13 24.22 1.77 21 26.8 1.07 7.3LAR 10 21.77 0.74 20.8 22.8 0.53 3.39SH 18 14.38 1.54 12.2 16.6 0.76 10.69SB 18 14.52 1.47 11.5 16.7 0.73 10.13LFo 1 52 - - - - -

FemurEarly Neolithic Bd 1 39 - - - - -

Dd 1 28.5 - - - - -Middle Neolithic Bp 2 45 - 42 48 - -

SD 2 23.5 - 22 25 - -Chalcolithic GL 2 122.5 - 122 123 - -

GLC 2 116.25 - 115 117.5 - -Bp 8 45.35 1.8 42 48 1.5 3.97BTr 23 43.21 3.54 35.5 50 1.53 8.2Dp 1 28.6 - - - - -DC 9 17.68 0.58 17.2 19 0.44 3.27SD 19 24.05 1.46 21.8 28 0.7 6.05Bd 12 39.75 1.66 36.5 41.3 1.05 4.16Dd 6 28.4 2.69 24 31.8 2.83 9.48

TibiaChalcolithic (Gumelnita andCucuteni Cultures)

GL 3 144.5 4.44 139.5 148 - -Bp 7 36.8 1.33 35.2 39 1.23 3.62Dp 9 32.41 2.98 29 37 2.29 9.21SD 34 11.68 0.84 9.5 13.2 0.29 7.19Bd 17 22.64 1.1 20 24.8 0.56 4.85Dd 8 18.86 0.97 17.5 20.2 0.81 5.13

L. Bejenaru et al.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

morphometric approach.We can classify the analyzedM3specimens as belonging to three main forms (Figure 3):

a) basic pattern: (3 + 1 folds): paraflexid, mesoflexid,paraflexid and hypoflexid;

b) islet between paraflexid and mesoflexid;c) paraflexid isolated and ramified.

Most of the analyzed material (almost 60%) belongsto the first type (‘a’) and 30% belong to the second type(‘b’). The rest of material showed the intermediate formsbetween these two types and the third type (‘c’). In bothperiods, Neolithic and Iron Age, the proportion of thethree types of form is similar. The presence of an isletresulting from the fusion of paraflexid and mesoflexidwas also recorded by Mayhew (1979) in a subfossil An-glian sample, with the mention that the analyzed M3cover the first 10 years of life, and so such an islet isnot related in a clear way to age.

Bivariate analysis of dentition. The specimens for which bi-variate analysis was undertaken date from the Neolithicperiod (samples of Bucsani and Vitanesti, fromMuntenia)and the Iron Age (sample of Brad, from Moldavia). Theresults of the dentition correlation analysis are given inTable S3. A positive and significant correlation was foundbetween the length and breadth of the molars, exceptingthe lower second molar (M2) for which the relationshipbetween these two variables was insignificant(p=0.076). The strongest correlation was revealed forNeolithic teeth (P4 and M2) (r> 0.8, p=0.000), whilethe relationship between length and breadth of the lowerfirst and third molar (M1 and M3) are almost the same forthese two historical periods (r=0.6, p< 0.05).The regression equations for the data, which can be

useful in archaeozoological studies where whole bonesare seldom available, are presented in Figures S2–S5.The coefficient of determination R2 is also related in

scatterplots. It is the proportion of variability in the dataset that is accounted for by the statistical model, andthe major function of this is the prediction of futureoutcomes on the basis of other related information.In the correlation analysis, a stronger association be-

tween the length and breadth of the premolars andmolars investigated is more obvious for the Neolithiccontexts than those dating to the Iron Age. The resultof the linear regression shows the same thing; thecoefficient of determination R2 marks a stronger rela-tionship between variables of molar in Neolithic con-text (the R2 values for all Neolithic molars are morethan 0.5). The same degree of association was observedfor the variables in the lower third molar (M3). Thesame degree of correlation could be explained throughthe molar’s lack of freedom to grow in length, becauseof the limited size of the jaw and its caudal position(Stefen, 2009).

Geometric morphometric (size and shape) analysis of the lowerthird molar (M3). One-way ANOVA tests show insig-nificant differences between M3 size in the Neolithicand Iron Age samples (F= 0.26; p= 0.6): the distribu-tion of the log-transformed CS shows that the rangeof M3 sizes of Neolithic beavers overlaps with thosefrom the Iron Age (Figure S6).The phenetic relationships between the Neolithic and

Iron Age samples are displayed on the first threeprincipal components which summarize 84.16% of totalvariance (Figure 4, Table 4). Along PC1 (57.19%), thetrend in shape is towards the narrow and the paraflexidtends to anterior position; along PC2 (15.65%), theshape tends to be wider and shorter; the paraflexid andhypoflexid tend to be deeper (Figure 5). The trendsalong the PC3 are as paraflexid becomes deeper, meta-flexid and hipoflexid become shorter, and the distal partof molar is reduced.

Figure 3. The lower third molar (M3) of Castor fiber: variation in wear surface enamel pattern in studied material (a: basic pattern; b: islet between par-aflexid and mesoflexid; c: paraflexid isolated and ramified; scale: 5mm).

Beavers (Castor fiber) in Romania’s Past

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

DFA on a priori groups yielded a high level of separationamong shape of M3 among groups (Mahalanobis distance:49.48; P-value <0.0001). P-values for permutation tests(1000 permutation runs) confirm the significant differences(Procrustes distance:<.0001. T-square:<.0001) (Figure S7).TheM3 shape changes between Neolithic and Iron Age

beavers. This is evidenced by the direction of the vectorson landmarks (excepting landmarks 4, 5 and 6) showingthat in Iron Age period, the M3 of beavers were widerthan M3 in Neolithic beavers; the M3 of Iron Age spe-cimens exhibit a posterior displacement of paraflexidand anterior displacement of hypoflexid (Figure 6).MANOVA and DFAs provide a highly significant

discrimination of pattern of M3 form in Neolithic andIron Age samples with 100% of correct classification byleave-one-out cross-validation (Hotelling’s t2 = 516.88;F=50.95; p< 0.05). Logarithm CS and the firstseven principal components were used as variables in thisanalysis.

Figure 4. Distribution of M3 specimens in PCA; projection on the three principal components (grey - Neolithic; black - Iron Age).

Table 4. PCA for the lower third molar (M3): eigenvalues andvariance

PC Eigenvalues % Variance % Cumulative

1 0.00559988 57.194 57.1942 0.00153282 15.655 72.8503 0.00110771 11.314 84.1634 0.00050008 5.108 89.2715 0.00036020 3.679 92.9496 0.00029748 3.038 95.9887 0.00021915 2.238 98.2268 0.00013631 1.392 99.6189 0.00002007 0.205 99.82310 0.00000739 0.075 99.89911 0.00000398 0.041 99.93912 0.00000286 0.029 99.96813 0.00000144 0.015 99.98314 0.00000074 0.008 99.99115 0.00000048 0.005 99.99616 0.00000027 0.003 99.99817 0.00000011 0.001 100.00018 0.00000005 0.000 100.000

L. Bejenaru et al.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

The intraspecific morphological variability of thelower third molar (M3) derives most probably from en-vironmental variation and geographically separation of

the analyzed populations. Phenotypic variation withincastor populations might indicate different geneticand non-genetic factors. Considering that all of the evi-dence examined comes from human exploitation of bea-ver, we cannot exclude a possible correlation betweenthe shape of the lower third molar (M3) and anothermorphological character, which could have been a cri-terion for human in selection. If differences in shape arenot associated with a reduction of genetic fluxes, thesedifferences could depend on vegetation (dietary prefer-ence), physical geography or other environmental fac-tors, which may have favoured local adaptations ofspecies. The high plasticity of teeth to respond to chan-ging ecological niches even at a microscopic level (i.e.variation in tooth shape) would convey a strong evolu-tionary advantage (Seetah et al., 2012).

Conclusions

Based on the archaeozoological evidence, the beaver(Castor fiber) and the people from the territory of Romaniahave interacted for many millennia. This mammal

Figure 5. Trend in M3 shape along the principal components (PC1, PC2 and PC3).

Figure 6. Vectors in M3 shape change from the mean shape of Neo-lithic beavers to the mean shape of Iron Age specimens.

Beavers (Castor fiber) in Romania’s Past

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

species has provided nutritional, economical and cul-tural/spiritual sustenance to human communities fromthe Romanian past.The frequency of beavers in the archaeozoological

record varies from one period to another, as well as fromregion to region, mainly due to local environmental andcultural factors. The beaver is generally present only inlow frequencies, which decline progressively from theNeolithic to Middle Ages, mainly as result of an excessof hunting, combined with forest clearance and other en-vironmental pressure. However, archaeological anddocumentary evidence indicate that the extinction ofthe Romanian beaver occurred relative recently, in the19th century. A rising human population must be largelyresponsible for the beaver’s population decline andprobably also resulted in the extinction of other species,such as the aurochs, and the bison. As a paleoecologicalindicator for aquatic and forested places, the beaver isbetter represented in the samples found along the Dan-ube Valley, from Banat as far as Dobrudja.The beaver assemblages are generally small and

fragmented, making morphometrical analysis difficult.Despite these problems, our statistical study has revealeda variability of certain dimensions, in time and space. Forinstance, the analysis of beaver teeth, in particular themorphology of the lower third molar (M3), has revealedthat there is a statistically significant intraspecific vari-ability between the Neolithic and Iron Age populations,situated also in different regions, Muntenia and Mol-davia, respectively. This intraspecific variability probablyresults from environmental variation and geographicallyseparation of the analyzed populations, but also prob-ably as a result of human selection of other characterscorrelated with the shape of this tooth.This paper provides the foundation on which other

projects can now be built. For instance, our morphomet-ric data offers a baseline for future work on archaeologicaland biological specimens, which could potentially be-come an important means of distinguishing betweengenetic groups within a species. The dataset presentedhere also offer a deep-time perspective concerninghuman–beaver relationships which will allow changingpatterns of beaver exploitation (e.g. increase in fur tradeor increased human consumption of beaver meat in spe-cific historical periods) to be examined in more detail.

Acknowledgements

We are grateful to Naomi Sykes for his help in translatingthe paper into English.This study was supported by the Romanian research

programs CNCSIS-PN II Idei_2116/2008 (L. Bejenaru,S. Stanc); POSDRU/89/1.5/S/49944 (M. Popovici);

and CNCS-UEFISCDI, PN-II-ID-PCE-2011-3-1015(A. Balasescu). M. Popovici thanks Dr. Thomas Cucchiand Dr. Chris Klingenberg for introducing in geometricmorphometric analysis.

References

Balasescu A. 2003. L`étude de la faune des mammiferesdecouverts a Luncavita. Peuce I(XIV): 453–468.

Balasescu A, Udrescu M 2005. Materiaux osteologiquesdu site eneolithique (niveau Boian, phase Vidra) deVladiceasca-Valea Argovei, dep. Calarasi. Studii de preistorie2: 115–133.

Balasescu A, Radu V, Moise D. 2005.Omul si mediul animal intremileniile VII-IV i.e.n. la Dunarea de Jos. Editura Cetatea deScaun: Targoviste.

Bejenaru L. 1995. Analiza unui material arheozoologicapartinand Evului Mediu timpuriu din cetatea Harsova.Arheologia Moldovei 18: 321–328.

Bejenaru L. 2003. Arheozoologia spatiului romanesc medieval.Editura Universitatii „Alexandru Ioan Cuza” Iasi.

Bejenaru L. 2007. Date arheozoologice privind cetatea siasezarea extramuros de la Isaccea-Noviodunum (campa-niile 2001, 2003-2004). Peuce III-IV: 399–410.

Bejenaru L, Stanc S, Zamfirescu SR. 2010.Wildmammals fromthe Middle Ages in Romania. Archaeofauna 19: 121–131.

Bejenaru L, Stanc S, Cavaleriu R. 2011. Preliminary analysis ofan archaeozoological assemblage discovered in theCucuteni B settlement from Sarata Monteoru (BuzauCounty). Analele Stiintifice ale Universitatii „Alexandru Ioan Cuza”Iasi, s. Biologie animal LVII: 141–146.

Berindei D, Candea V (eds.). 2001. Istoria romanilor. EdituraEnciclopedica: Bucuresti.

Bindea D. 2008. Arheozoologia Transilvaniei in pre- si protoistorie.Editura Teognost: Cluj Napoca.

Bolomey A. 1988. Preliminarii despre resturile de animaledin statiunea neo-eneolitica de la Parta. Studii si Cercetaride Istorie Veche si Arheologie 39(3): 207–221.

Bolomey A, El Susi G. 2000. The Animals. Draguseni ACucutenian Comunity, Marinescu-Bilcu S, Bolomey A (eds.).Editura Enciclopedica-Wasmuth Verlag: Bucuresti-Tübingen,159–177.

Bonsall C, Macklin MG, Payton RW, Boroneant A. 2002.Climate, floods and river gods: environmental changeand the Meso–Neolithic transition in southeast Europe.Before Farming 2002/3_4 (2).

Bookstein FL. 1991.Morphometric Tools for Landmark Data. Geometryand Biology. Cambridge University Press: Cambridge.

Bosniceanu C. 2008. Date arheozoologice privind resurseleanimale si strategia de exploatare a lor de catre locuitoriiasezarii de la Isaccea. Lucrare de licenta. Universitatea“Alexandru Ioan Cuza” Iasi, Facultatea de Biologie.

Brehard S, Balasescu A. 2012. What’s behind the tellphenomenon? An archaeozoological approach of Eneo-lithic sites in Romania. Journal of Archaeological Science 39:3167–3183.

L. Bejenaru et al.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

Cavaleriu R, Bejenaru L. 2009. Cercetari arheozoologice privindCultura Cucuteni faza A. Editura Universitatii „AlexandruIoan Cuza: Iasi.

Coles BJ. 2006. Beavers in Britain’s Past. WARP OccasionalPaper 19, Oxbow Books and WARP: Oxford.

Coroliuc A. 2009. Studiul anatomo-comparat al materialuluiarheozoologic provenit din statiunea precucuteniana de laTargu Frumos in corelatie cu materialele din alte statiunineo-eneolitice de pe teritoriul Moldovei Centrale. Teza dedoctorat. Universitatea „Alexandru Ioan Cuza” Iasi, Faculta-tea de Biologie.

Cot I. 2008. Cercetari arheozoologice privind situl medievalde la Isaccea. Lucrare de licenta. Universitatea “AlexandruIoan Cuza” Iasi, Facultatea de Biologie.

Cucchi T, Hulme-Beaman A, Yuan J, Dobney K. 2011. EarlyNeolithic pig domestication at Jiahu, Henan Province,China: clues from molar shape analyses using geometricmorphometric approaches. Journal of Archaeological Science38: 11–22.

von den Driesch A. 1976. A guide to the measurement of animalbones from archaeological sites. Peabody Museum of Archae-ology and Ethnology: Harvard University.

Ducroz J-F, Stubbe M, Saveljev AP, Heidecke D, Saamjaa R,Ulevicius A, Stubbe A, Durka W. 2005. Genetic variationand population structure of the Eurasian beaver (Castorfiber) in Eastern Europe and Asia. Journal of Mammalogy86(6): 1059–1067.

El Susi G. 1987. Economia animaliera a comunitatii vin-ciene timpurii de la Gornea-Caunita de Sus. BanaticaIX: 43–56.

El Susi G. 1993a. La faune de l’établissement énéolithiquede Cuptoare-Sfogea (département Caras Severin). Banatica12(1): 53–65.

El Susi G. 1993b. Studiul resturilor de fauna din asezareaculturii Cotofeni de la Moldova Veche Ostrov (Caras-Severin). Tibiscum 8: 35–40.

El Susi G. 1993c. Studiul faunei din asezarea neolitica de laIclod. Acta Mvsei Napocensis 26-30, I/1: 187–204.

El Susi G. 1995a. Economia animaliera a comunitatilor neo-eneolitice de la Parta (jud. Timis). Banatica 13(I): 23–51.

El Susi G. 1995b. The animal husbandry during the late Neo-lithic and Bronze Age settlements of Danube Valley(Southern Banat). Spatiul cultural al Dunarii Mijlocii siInferioare: traditii si perspective ale convietuirii, Resita, 65–72.

El Susi G. 1996. Vanatori, pescari si crescatori de animale in Banatulmileniilor VI i.Ch.-I d.Ch. Editura Mirton: Timisoara.

El Susi G. 1998a. Archaeozoological researches in theNeolithicalsites of Foeni (Timis County). The late Neolithic of the middleDanube region, International Symposium on the Problems of the Transitionfrom Middle to Late Neolithic in the Middle Danube Region, June 1997.Editura Eurobit: Timisoara; 139–163.

El Susi G. 1998b. Studiu preliminar al resturilor de fauna dinasezarea neolitica de la Parta-tell II (jud. Timis). AnaleleBanatului 6: 129–151.

El Susi G. 2001a. Cercetari arheozoologice preliminare insituri Starcevo Cris timpurii din Campia Banatului. Faunade la Foeni-Gaz si Dudestii Vechi (jud.Timis). AnaleleBanatului 9: 15–40.

El Susi G. 2001b. Archaezoological Researches. I. The Siteat Foeni-“Cimitirul Ortodox” (Timis County). Fauna ofthe Bronze Age Levels. II. The Analyses of the FaunalRemains from the Hallstattian Site at Bernadea (MuresCounty). Thraco-Dacica XXII(1-2): 223–246.

El Susi G. 2002. Cercetari arheozoologice in asezarea deEpoca Bronzului (cultura Noua) de la Zoltan (jud. Covasna).Angustia 7: 153–172.

El Susi G. 2003. Analogii si diferente intre economiile animal-iere ale comunitatilor Vin�ca C si grupul Foeni din Banat.Banatica 16/1: 135–151.

El Susi G. 2008. Data about hunting practices by Halmiris(Murighiol, Tulcea County) inhabitants in 4th-7th centur-ies A.D. Cultura si Civilizatie la Dunarea de Jos 24: 201–210.

Filipascu A. 1969. Salbaticiuni din vremea stramosilor nostri.Editura Stiintifica: Bucuresti.

Frahnert S, Heidecke D. 1992. Kraniometrische AnalyseEurasischer Biber, Castor fiber L. (Rodentia, Castoridae)-Erste Ergebnisse. In Materialen des 2. Internationalen Sympo-siums Semiaquatische Säugetiere, Schröpfer R, Stubbe M,Heidecke D (eds.), Martin-Luther Universität: Halle/Saale; 175–189.

Greenacre M. 2002. The Use of Correspondence Analysis in theExploration of Health Survey Data. Fundacion BBVA, 7–11.

Haimovici S. 1960. L’étude de la faune néolithique de Trusesti.Analele stiintifice ale Universitatii Iasi, Stiinte naturale VI(2):355–376.

Haimovici S. 1963. Studiul resturilor de fauna din asezareade la Popesti, apartinand epocii bronzului. Analele Stiintificeale Universitatii “Alexandru Ioan Cuza" Iasi 9 (1):147–156.

Haimovici S. 1964. Studiu asupra resturilor de fauna desco-perite in asezarile apartinand culturii Noua de la Barlad siPiatra Neamt. Arheologia Moldovei II-III: 217–236.

Haimovici S. 1966. Studiul materialului descoperit inasezarea din epoca bronzului (cultura Monteoru) de laBogdanesti. Arheologia Moldovei IV: 119–136.

Haimovici S. 1969. Studiu preliminar al resturilor de faunadescoperite in sapaturile din 1961 in statiunea neoliticade la Cucuteni-Baiceni. Arheologia Moldovei VI: 317–319.

Haimovici S. 1972. Studiul resturilor faunistice provenite dinasezarea apartinand perioadei de trecere de la neolitic laepoca bronzului de la Foltesti. Arheologia Moldovei 7: 97–102.

Haimovici S. 1974. Studiul resturilor faunistice descoperitein cetatile traco-getice de la Stincesti Botosani (sec. VI-III i.e.n.) si importanta lor pentru cunoasterea vietii locui-torilor din aceasta asezare. Din trecutul judetului Botosani,Muzeul judetean Botosani, 55–62.

Haimovici S. 1979. Caracteristicile paleofaunei din asezarileperioadei de tranzitie de la eneolitic la epoca bronzului dinMoldova. Studii si cercetari de istorie veche si arheologie 1/30: 11–20.

Haimovici S. 1980. Studiul materialului faunistic din asezareade la Mindrisca (Valea Seaca) apartinand culturii Monteoru.Carpica XII: 191–201.

Haimovici S. 1986. Studiul resturilor paleofaunistice dinasezarea de la Lozna-Strateni datand din secolele VII-VIIIe.n. Hierasus VI: 83–95.

Haimovici S. 1987a. L’étude de la faune découverte dansl’établissement mésolithique de Ostrovul Corbului (Culture

Beavers (Castor fiber) in Romania’s Past

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

Schela Cladovei). La genèse et l’évolution des cultures paléolithiquessur le territoire de la Roumanie. Bibliotheca Archaeologica Iassiensis2, Universitatea “Alexandru Ioan Cuza” Iasi, 123-138.

Haimovici S. 1987b. Studiul paleofaunei din asezarea eponima aculturii Otomani – epoca bronzului. Crisia XVII: 37–54.

Haimovici S. 1991a. Studiul arheozoologic al resturilor de laDinogetia (Garvan), apartinand epocii romane tarzii. PeuceX: 355–360.

Haimovici S. 1991b. Materialul faunistic de la Girbovat.Studiu arheozoologic. Arheologia Moldovei 14: 153–166.

Haimovici S. 1993. Materialul provenit din dava de la Piatra Soi-mului. Studiu arheozoologic. Thraco-Dacica 14(1–2): 169–177.

Haimovici S. 1994. Studiul unui lot de paleofauna provenitdin asezarea eponima a culturii Monteoru. ArheologiaMoldovei XVII: 309–319.

Haimovici S. 1996. Studiul arheozoologic al materialuluiprovenit din statiunea gumelniteana de la Carcaliu. Peuce12: 377–392.

Haimovici S. 1997. Studiul arheozoologic al unui lot de faunadescoperit in asezarea eponima de la Glina. Thraco-Dacica 18(1-2): 231–238.

Haimovici S. 2000. Studiul economiei animaliere a dacilorliberi din nordul si centrul Moldovei (secolele II-III). Studiisi cercetari de istorie veche si arheologie 51(3-4): 175–192.

Haimovici S. 2003. Analiza materialului arheozoologic. PreutestiHalta. O asezare cucuteniana pe Valea Somuzului Mare, UrsulescuN, Ignatescu S (eds.). Casa Editoriala Demiurg: Iasi; 95–105.

Haimovici S. 2004a. Studiul unor resturi animaliere prove-nite din situl cucutenian – faza B – de la Mihoveni. Carpica33: 317–325.

Haimovici S. 2004b. Studiul materialului arheozoologiccucutenian de la Preutesti-Halta (jud. Suceava). Suceava.Anuarul complexului muzeal Bucovina 29-30: 227–238.

Haimovici S. 2004c. Studiul arheozoologic al resturilorosoase provenite din asezarea hallstattiana de la Siret-Dealul Ruina (jud. Suceava). Anuarul complexului muzealBucovina 29-30(1): 317–329.

Haimovici S, Panove C. 1990. Studiu arheozoologic asupramaterialului provenit din statiunea din sec. II-III e.n. de laVladiceni (jud. Neamt). Thraco-dacica 11(1-2): 253–262.

Haimovici S, Popescu C. 1978. Studiul resturilor faunistice des-coperite in asezarea de la Horodistea, apartinand perioadeide trecere de la neolitic la epoca bronzului.Hierasus I: 113–120.

Haimovici S, Teodorescu M. 1995. Studiu arheozoologic almaterialului descoperit in doua situri (Varnita si Siliste) de laPoiana-Dulcesti (jud. Neamt) apartinand dacilor liberi (sec.II-III d.Hr.).Memoria antiquitatis XX: 195–208.

Haimovici S, Ureche R. 1968. Studiul resturilor de faunadescoperite in statiunea de la Cernavoda (dealul Sofia).Lucrarile Sesiunii Stiintifice a Statiunii de Cercetari matine „Prof.Ioan Borcea” Agigea. Editura Universitatii „Alexandru IoanCuza” Iasi, 291-308.

Haimovici S, Ureche R. 1979. Studiul preliminar al fauneidescoperite in asezarea feudala timpurie de la Capidava.Pontica XII: 157–170.

Haimovici S, Vornicu A. 2005. Studiul arheozoologic alresturilor faunistice din situl Fulgeris-Cucuteni A (comunaPancesti, jud. Bacau). Carpica 34: 355–370.

Hammer �, Harper DAT, Ryan PD. 2001. PAST: Palae-ontological Statistics Software Package for Educationand Data Analysis. Palaeontologia Electronica 4(1): 1–9.

Hatting T. 1969. Age determination for subfossil beavers(Castor fiber L.) (Mammalia) on the basis of radiographsof the teeth. Videnskabelige Meddelelser fra Dansk NaturhistoriskForening 132: 115–128.

Kitchener AC, Lynch JM. 2000. A morphometric compari-son of the skulls of fossil British and extant Europeanbeavers, Castor fiber. Scottish Natural Heritage Review 127.

Klingenberg CP. 2008. MorphoJ. Faculty of Life Sciences,University of Manchester: UK. http://www.flywings.org.uk/MorphoJ_page.htm

Lavrov LS. 1979. Species of beavers (Castor) of the Palaearctics.Zoologicheskii Zhurnal 58: 88–96.

Luca SA. 1998. Liubcova-Ornita. Monografie arheologica. EdituraMacarie: Targoviste.

Marian E. 2008. Cercetari arheozoologice asupra davelordacice situate pe Valea Siretului (Hierasus). Teza de doc-torat. Universitatea “Alexandru Ioan Cuza” Iasi, Facultateade Biologie.

Mayhew DF. 1978. Age structure of a sample of subfossilbeavers (Castor fiber L.). Development, Function and Evolutionof Teeth, Butler PM, Joysey KA (eds.). Academic press:London; 495–505.

Mayhew DF. 1979. Evolution of a dental character in thebeaver Castor fiber L. (Mammalia: Rodentia). ZoologicalJournal of the Linnean Society 65: 177–184.

Mitteroecker P, Gunz P. 2009. Advances in GeometricMorphometrics. Evolutionary Biology 36: 235–247.

Moise D. 2000. Studiul resturilor faunistice de la Militari-Campul Boja. In “Militari-Campul Boja. Un sit arheologic peteritoriul Bucurestilor”, Negru M, Schuster CF and Moise D.Bucuresti, 153-190.

Nania I. 1991. Vanatul pe teritoriul Romaniei. Editura Sport-Turism: Bucuresti.

Necrasov O, Bulai-Stirbu M. 1965. Unele aspecte ale vietiitriburilor neolitice din zona Subcarpatilor Orientali. Studiisi Cercetari de Antropologie 2(1): 19–28.

Necrasov O, Bulai-Stirbu M. 1970. L’elevage, la chasse et lapeche durant le neolithique roumain. Actes du VIIemeCongres International des Sciences Anthropologiques et Ethnologiques,Moscova 1964, 544–556.

Necrasov O, Gheorghiu G. 1970. Studiul resturilor de faunadin asezarea neolitica de la Izvoarele. Materiale si CercetariArheologice IX: 91–96.

Necrasov O, Haimovici S. 1966. Studiul restuilor de faunaneolitica descoperite in statiunea Gumelnita. Studii sicercetari de istorie veche 17(1): 101–108.

Necrasov O, Stirbu M. 1979. Studiul materialului paleofau-nistic din asezarea precucuteniana de la Tirpesti incomparatie cu materiale din alte asezari neolitice. Studii sicercetari antropologice 16: 3–10.

Necrasov O, Stirbu M. 1981. The Chalcolithic Paleofaunafrom the settlements of Tirpesti (Precucuteni and Cucu-teni A1-A2 cultures). Tirpesti, From Prehistory to Historyin Eastern Romania, Marinescu-Bilcu S (ed.). BAR 107:Oxford; 174–187.

L. Bejenaru et al.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)

Necrasov O, Bulai-Stirbu M, Iacob M. 1977. Paleofaunaneolitica de la Liubcova (jud. Caras-Severin) si uneleaspecte ale ocupatiilor locuitorilor din complexul culturalVinca-Turdas. Studii si cercetari antropologice 14: 11–17.

Nowak RM. 1991.Walker’s Mammals of the World, Volume I. Johns’Hopkins University Press: Baltimore.

Ocal M, Sevil F, Parin U. 2004. A quantitative study on thedigital bones of cattle. Annals of Anatomy - AnatomischerAnzeiger 186(2): 165–168.

Ognev SI. 1963.Mammals of the USSR and Adjacent Countries. Is-rael Program for Scientific Translations: Jerusalem.

Oleniuc F. 2010. Cercetari arheozoologice privind CulturaCucuteni, faza B. Teza de doctorat. Universitatea “AlexandruIoan Cuza” Iasi, Facultatea de Biologie.

Popa E, Radu V, Balasescu A. 2011. Studiul materialuluifaunistic eneolitic. Seciu-judetul Prahova un sit din epoca neo-eneolitica in nordul Munteniei, Frinculeasa A (ed.). EdituraOscar Print: Bucuresti; 73–84.

Rohlf FJ. 2003. TPS dig version 1.39. Department of Ecology andEvolution, State University of New York: Stony Brook, NY.Available from http://life.bio.sunysb.edu/morph/

Rohlf FJ. 2010. TpsRelw 1.49 -Thin plate Spline RelativeWarp, 1.49 ed., Ecology & Evolution. State University atStony Brook: New York.

Rohlf FJ, Slice DE. 1990. Extensions of the procrustesmethod for the optimal surimpostion of landmarks. System-atic Zoology 39: 40–59.

Seetah K, Cardini A, Miracle P. 2012. Can morphospaceshed light on cave bear spatial-temporal variation?Population dynamics of Ursus spelaeus from Romualdovapecina and Vindija, (Croatia). Journal of Archaeological Sci-ence 39(2): 500–510.

Slice DE. 2007. Geometric Morphometrics. Annual Review ofAnthropology 36: 261–81.

Stan A, Balasescu A. 2006. Studiul arheozoologic al faunei dela Gruiul Darii (campanile arheologice 2003-2005). Incintaarcheologica dacica fortificata Pietroasa Mica-Gruiul Darii (II),Sarbu V, et al. (eds.). Biblioteca Mousaios, Monografiiarheologice 2: Buzau; 109–118.

Stanc S. 2006. Relatiile omului cu lumea animala. Arheozoo-logia secolelor IV-X pentru zonele extracarpatice de est side sud ale Romaniei. Editura Universitatii „Al.I.Cuza”: Iasi.

Stanc S. 2009. Arheozoologia primului mileniu d.Hr. pentruteritoriul cuprins intre Dunare si Marea Neagra. EdituraUniversitatii „Alexandru Ioan Cuza” Iasi.

Stanc S, Bejenaru L. 2003. Archaeozoological study of faunaremains at the Poiana settlement (the VIIIth-IXth centuries).Studia antiqua et archaeological 9: 419–428.

Stanc S, Bejenaru L. 2005. Exploatarea faunei de catre locui-torii asezarii de la Oltina (Constanta). Arheologia MoldoveiXXVIII: 321–333.

Stefen C. 2009. Intraspecific variability of beaver teeth(Castoridae: Rodentia). Zoological Journal of Linnean Society155: 926–936.

Stirbu M. 1980. Paleofauna neolitica de la Radovanu si uneleaspecte ale ocupatiilor locuitorilor din cultura Boian. AnaleleStiintifice ale Universitatii “Alexandru Ioan Cuza" Iasi 26: 107–108.

Tarcan-Hriscu C. 1995. Santierul arheologic Cirniceni (jude-tul Iasi). Analiza arheozoologica. Cercetari arheologice dinaria nord-traca, Institutul Roman de Tracologie. Bucuresti 1:79–80.

Udrescu MS. 1979. Asezarea civila romana de la Stolniceni;unele date despre influenta romana asupra cresterii animal-elor in Dacia. Studiu arheozoologic. Revista Muzeelor siMonumentelor 9-10: 104–108.

Udrescu MS. 1985a. Unele observatii privind crestereaanimalelor si vanatoarea in castrul roman de la Micia-Hunedoara. Data zooarheologice. Revista Muzeelor simonumentelor 8: 66–71.

Udrescu MS. 1985b. Quelques problèmes de zooarchéolo-gie concernant la période Géto-Dace dans la PlaineRoumaine. Dacia 29: 129–132.

Udrescu MS. 1990. Materialul osteologic din asezarea geto-daca de la Vladiceasca (Valea Argovei); date arheozoolo-gice. Cultura si Civilizatie la Dunarea de Jos 5–7: 83–88.

Udrescu MS. 1992. Asezarea geto-daca de la Gradistea(judetul Braila); date zooarheologice. Istros 6: 47–50.

Ursachi V. 1995. Cetatea dacică de la Brad – Zargidava. EdituraEnciclopedică: Bucureşti.

Ursulescu N. 2002. Inceputurile istoriei pe teritoriul Romaniei. Casaeditorial Demiurg: Iasi.

VanDerwarker AM. 2010. Correspondence Analysis andPrincipal Components Analysis as Methods for Integrat-ing Archaeological Plant and Animal Remains. IntegratingZooarchaeology and Paleoethnobotany, VanDerwarker AM,Peres TM (eds.). Springer: New York; 75–98.

Van Nostrand RC, Stephenson AB. 1964. Age determinationfor beavers by tooth development. The Journal of WildlifeManagement 28(3): 430–434.

Vulpe A. 1997. Consideratii privind inceputul si definirea peri-oadei timpurii a epocii bronzului in Romania. Timpul istoriei.Memorie si patrimoniu I, in honorem emeritae Ligiae Barzu, Nistor V,Zaharia D (eds.). Editura Universitatii Bucuresti: Bucuresti;37–49.

Zelditch ML, Swiderski DL, Sheets AD, Fink WL. 2004.Geometric Morphometrics for Biologists. A Primer. Elsevier: Berlin.

Beavers (Castor fiber) in Romania’s Past

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. (2013)