An Approach to Medical Device Design Considering a Second Life

172
An Approach to Medical Device Design Considering a Second Life by Albert Calvin Morton A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Industrial Design Auburn, Alabama August 6, 2011 Keywords: Medical Device, User Interface, Design Methodology, Design Copyright 2011 by Albert Calvin Morton Approved by Shea Tillman, Chair, Associate Professor of Industrial Design Clark Lundell, Professor of Industrial Design Jerrod Windham , Assistant Professor of Industrial Design

Transcript of An Approach to Medical Device Design Considering a Second Life

 

           

An  Approach  to  Medical  Device  Design  Considering  a  Second  Life      by    

Albert  Calvin  Morton          

A  thesis  submitted  to  the  Graduate  Faculty  of  Auburn  University  

in  partial  fulfillment  of  the  requirements  for  the  Degree  of  Master  of  Industrial  Design  

 Auburn,  Alabama  August  6,  2011  

       

Keywords:  Medical  Device,  User  Interface,  Design  Methodology,  Design    

Copyright  2011  by  Albert  Calvin  Morton      

Approved  by    

Shea  Tillman,  Chair,  Associate  Professor  of  Industrial  Design  Clark  Lundell,  Professor  of  Industrial  Design  

Jerrod  Windham,  Assistant  Professor  of  Industrial  Design                  

 

     ii  

         

 Abstract  

 

During  the  span  of  one  year,  a  study  will  be  conducted  to  see  if  an  approach  

to  medical  device  design  could  be  altered  to  better  consider  the  second  life.  This  

study  will  be  performed  with  the  thought  that  considering  the  second  life  of  a  

product  would  improve  the  overall  performance  of  the  device  in  its  first  existence.    

Technology  in  the  health  care  market  has  advanced  at  a  rapid  pace  in  the  developed  

world,  leaving  some  countries  behind.  This  study  will  take  a  close  look  into  the  

ability  to  have  outdated  devices  from  the  developed  world  sent  to  developing  

countries.  It  will  also  look  to  see  if  the  approach  to  medical  device  design  

considering  the  second  life  will  make  the  device  transition  easier  from  the  

developed  world  to  developing  counties.    

   

                           

 

     iii  

           

Acknowledgements      

Foremost,  I  owe  my  loving  thanks  to  my  wife  Susanne  for  being  so  

supportive,  understanding,  and  caring  throughout  this  study.  To  my  mother  and  

father,  thank  you  both  for  your  guidance  and  love.    To  my  mother  and  father  in-­‐law,  

the  most  sincere  thanks  are  due  for  your  encouragement  and  support.  To  the  

Antrican,  King,  Halfaker,  Fife,  and  Sanders  families  and  close  friends  Casey  and  

Chris,  for  which  I  am  deeply  grateful  for,  thank  you  all  for  your  support  and  helping  

define  whom  I  am  today.    I  also  wish  to  express  my  gratitude  to  my  committee  chair  

Professor  Shea  Tillman  for  guiding  me  throughout  this  study.  My  thanks  are  also  

due  to  Professor  Jerrod  Windham  and  Department  Head  Clark  Lundell  for  their  

advice,  important  support,  and  direction.  A  special  thanks  to  Project  C.U.R.E.,  

Healing  Hands  International,  and  David  B.  Turner,  a  pulmonary  biomedical  

specialist  at  Saint  Thomas  Hospital,  for  all  the  assistance  in  my  research.  Lastly,  and  

most  importantly,  I  wish  to  thank  both  of  my  grandmothers,  Ann  Morton  and  Lois  

Jones.      

           

   

 

     iv  

         

 Table  of  Contents  

   

Abstract.......................................................................................................................................................... ii  

Acknowledgments   ................................................................................................................................... iii  

List  of  Tables..............................................................................................................................................vii  

List  of  Figures .......................................................................................................................................... viii  

List  of  Abbreviations ..............................................................................................................................xii  

Chapter  1.  Introduction    ......................................................................................................................... 1  

  1.1.  Problem  Statement   ........................................................................................................... 1  

  1.2.  Need  for  Study     ................................................................................................................... 2  

  1.3.  Objective  of  Study  .............................................................................................................. 4  

  1.4.  Definition  of  Terms    .......................................................................................................... 5  

  1.5.  Literature  Review  ............................................................................................................11  

  1.6.  Assumptions     .....................................................................................................................26  

  1.7.  Scopes  and  Limits .............................................................................................................27  

  1.8.  Procedures  and  Methods     ............................................................................................28  

  1.9.  Anticipated  Outcome   .....................................................................................................29  

Chapter  2.  Research    ..............................................................................................................................31  

  2.1.  Introduction     ......................................................................................................................31  

  2.2  Donated  Medical  Devices   ..............................................................................................31  

 

     v  

    2.2.1.  Project  C.U.R.E.   ...............................................................................................31  

    2.2.2.  Healing  Hands  International   ....................................................................42  

    2.2.3.  Medical  Device  Life  Cycle  ...........................................................................44  

  2.3.  Environmental  Conditions    ..........................................................................................46  

  2.4.  Medical  Device  Methods   ...............................................................................................46  

  2.5.  Industrial  Design  Methods     .........................................................................................48  

  2.6.  Medical  Regulations   .......................................................................................................50  

  2.7.  Market  Landscape   ...........................................................................................................52  

  2.8.  Materials  ..............................................................................................................................54  

  2.9.  User  Interface    ...................................................................................................................55  

    2.9.1.  Principles  and  Considerations  .................................................................55  

    2.9.2.  User  Profile   ......................................................................................................58  

    2.9.3.  User  Interface  Principles  Charting  .........................................................60  

Chapter  3.  Development  of  a  C-­‐Arm  Imaging  Machine  Considering  a  Second  Life    ...63  

  3.1.  Introduction     ......................................................................................................................63  

  3.2.  Second  Life  Approach   ....................................................................................................64  

  3.3.  User  Interface  Prototype   ..............................................................................................70  

  3.4.  Icons  and  Ethnography   .................................................................................................82  

  3.5.  Systems  Architecture  Scenarios.................................................................................85  

  3.6.  Sketching  and  Development     ......................................................................................88  

  3.7.  Test  Computer  Model   ....................................................................................................89  

  3.8.  Sketch  Model     ....................................................................................................................93  

  3.9.  Development  of  a  User  Interface   ..............................................................................98  

 

     vi  

  3.10.  Systems  Design  –  The  Network   ...........................................................................111  

  3.11.  Final  Computer  Prototype   .....................................................................................113  

  3.12.  Final  Analysis  ...............................................................................................................121  

  3.13.  Limitations  of  the  Study  ..........................................................................................121  

Chapter  4.  Findings     ............................................................................................................................123  

  4.1.  Findings     ...........................................................................................................................123  

Chapter  5.  Discussion    ........................................................................................................................124  

  5.1.  Second  Life  Approach     ................................................................................................124  

Chapter  6.  Conclusions     .....................................................................................................................127  

  6.1.  Future  of  Medical  Devices    ........................................................................................127  

  6.2.  Impacting  Developing  Regions   ...............................................................................128  

  6.3.  Benefits  for  the  Manufacture    ..................................................................................129  

                           6.4.  Final  Conclusion  ............................................................................................................129  

References     .............................................................................................................................................131  

Appendix  Siemens  User  Manual.....................................................................................................135  

     

                       

 

     vii  

         

 List  of  Tables  

   

Table  1  Emerging  Markets  Aykin  (2007)  .....................................................................................20  

Table  2  Lifecycle  of  a  Medical  Device  .............................................................................................45  

Table  3  Medical  Device  Innovation  Initiative  White  Paper  (2011) ...................................47  

Table  4  Industrial  Design  Process   ...................................................................................................49  

Table  5  Medical  Device  Science  Cycle   ............................................................................................51  

Table  6  Medical  Device  Regulatory  Cycle  .....................................................................................52  

Table  7  Information  Chart  Created  from  Medical  Product  Outsourcing  (2006)     .......54  

Table  8  Device  Classifications.  FDA  (2002)..................................................................................63  

Table  9  Donation  Process.....................................................................................................................68  

Table  10  End  User  Process ..................................................................................................................69  

Table  11  Universal  Icons   .....................................................................................................................84  

Table  12  Development  Scenarios   ....................................................................................................86  

Table  13  Design  Improvements   .......................................................................................................89  

Table  14  User  Interface  Flow  Chart  .............................................................................................110  

Table  15  Systems  Network  ..............................................................................................................112  

Table  16  Further  Improvement  .....................................................................................................113  

Table  17  Medical  Device  Revised  Approach .............................................................................125  

 

 

 

     viii  

   

       

List  of  Figures      

Figure  1  Project  C.U.R.E.  Nashville,  TN  ..........................................................................................32  

Figure  2  Ventilator  Comparison  .......................................................................................................33  

Figure  3  C-­‐Arm..........................................................................................................................................35  

Figure  4  Siemens  C-­‐Arm  Sharpie ......................................................................................................36  

Figure  5  New  C-­‐Arm  Photos  courtesy  of  Shea  Tillman   ..........................................................37  

Figure  6  Information  Panel  on  C-­‐Arm  Imaging  Machine........................................................38  

Figure  7  Incubators.................................................................................................................................39  

Figure  8  Philips  C-­‐Arm ..........................................................................................................................40  

Figure  9  Philips  C-­‐Arm  Lever .............................................................................................................41  

Figure  10  Philips  C-­‐Arm  Interface  ...................................................................................................42  

Figure  11  Healing  Hands  International  Nashville,  TN   ............................................................42  

Figure  12  Anesthesia  Machine  and  Beds.......................................................................................44  

Figure  13  Category  Examples.............................................................................................................64  

Figure  14  Test  Loading  Screen...........................................................................................................70  

Figure  15  Test  Language  Screen   ......................................................................................................71  

Figure  16  Test  Selection   ......................................................................................................................72  

Figure  17  Test  Profile  1.........................................................................................................................73  

Figure  18  Test  Profile  2.........................................................................................................................74  

 

     ix  

Figure  19  Test  Home  Screen  ..............................................................................................................75  

Figure  20  Test  Add  Patient   .................................................................................................................76  

Figure  21  Test  Patient  Information   ................................................................................................77  

Figure  22  Test  Confirmation...............................................................................................................78  

Figure  23  Test  Take  Image ..................................................................................................................79  

Figure  24  Test  Save  ................................................................................................................................80  

Figure  25  Test  Home  Screen  with  Patient   ...................................................................................81  

Figure  26  Test  Home  Screen  ..............................................................................................................82  

Figure  27  Example  of  Sketches   .........................................................................................................88  

Figure  28  C-­‐Arm  Overall  View ...........................................................................................................90  

Figure  29  C-­‐Arm  Interface ...................................................................................................................90  

Figure  30  C-­‐Arm  Wireless  Antenna  and  Arm  Adjustment.....................................................91  

Figure  31  C-­‐Arm  Mechanical  Arm  Top  View ...............................................................................92  

Figure  32  C-­‐Arm  Side  View..................................................................................................................93  

Figure  33  Wood  Frame..........................................................................................................................94  

Figure  34  Foam  Core  Application .....................................................................................................95  

Figure  35  Final  Foam  Core  Sketch  Model......................................................................................96  

Figure  36  Final  Model  Front  Wheels ...............................................................................................97  

Figure  37  Load  Screen ...........................................................................................................................98  

Figure  38  Language  Screen .................................................................................................................99  

Figure  39  Login  Screen.......................................................................................................................100  

Figure  40  Home  Screen......................................................................................................................100  

Figure  41  Load  Patient  Information .............................................................................................101  

 

     x  

Figure  42  Conformation  of  Patient  Information .....................................................................102  

Figure  43  Current  Patient  Information .......................................................................................102  

Figure  44  Documents..........................................................................................................................103  

Figure  45  File  Selection  Screen.......................................................................................................104  

Figure  46  Template  Selection  Screen...........................................................................................104  

Figure  47  Save  to  a  Location............................................................................................................105  

Figure  48  Save  Conformation..........................................................................................................105  

Figure  49  Tablet  Screen .....................................................................................................................106  

Figure  50  Tablet  Viewing  Other  Monitor ...................................................................................107  

Figure  51  Tablet  as  a  Monitor .........................................................................................................107  

Figure  52  Tablet  Image  Saving........................................................................................................108  

Figure  53  Interface  Conformation  Screen..................................................................................108  

Figure  54  Spanish  Template ............................................................................................................109  

Figure  55  C-­‐Arm  and  Monitor  Cart   ..............................................................................................114  

Figure  56  Side  View  C-­‐Arm...............................................................................................................115  

Figure  57  Raised  Interface  Detail ..................................................................................................115  

Figure  58  Exploded  Interface  Detail.............................................................................................116  

Figure  59  Details  of  USB  and  Arm  Lock ......................................................................................117  

Figure  60  Detail  of  Foot  Lock...........................................................................................................117  

Figure  61  C-­‐Arm  Turned   ..................................................................................................................118  

Figure  62  Monitor  Cart  Hero ...........................................................................................................118  

Figure  63  Monitor  Cart  Back  View ................................................................................................119  

Figure  64  Monitor  Cart  Profile........................................................................................................120  

 

     xi  

Figure  65  CPU  Detail ...........................................................................................................................120  

Figure  66  Future  Devices  Ergonomidesign  (2010)   ..............................................................128  

         

                                                                       

 

     xii  

           

List  of  Abbreviations      

EMC   Electromagnetic  Compatibility  

FDA   Food  and  Drug  Administration        

PMA   Pre-­‐Market  Approval  

HHI                          Healing  Hands  International  

ID     Industrial  Design  

IDE   Investigational  Device  Exemption  

PMA   Pre-­‐Market  Approval  

UI   User  Interface  

       

 

     1  

 

 

 

Chapter  1  Introduction  

1.1.  Problem  Statement  

  The  life  of  a  medical  device  often  extends  far  beyond  what  one  might  be  

aware.  A  typical  product’s  life  cycle  can  continue  long  after  its  initial  intended  use    

for  purchase  and  initial  use.  As  an  example,  in  a  United  States  hospital  a  $75K  

ultrasound  machine  may  be  replaced  with  a  newer  model  two  years  after  it  is  

purchased.  Repurposing  this  device  can  pose  a  challenge  for  a  hospital.  While  the  

device  may  still  retain  years  of  usefulness,  the  technical  knowledge  required  to  

operate  it  may  make  it  impractical  or  even  dangerous  to  repurpose.  Many  medical  

devices  are  donated  to  non-­‐profit  companies  that  become  go-­‐between  distributors  

so  that  the  device  can  be  sent  to  developing  regions  around  the  world.    

One  of  the  main  issues  with  the  study  of  medical  device  design,  considering  a  

second  life,  is  the  issue  with  language  barriers  in  using  a  device.  Specialized  medical  

equipment  often  integrates  specialized  controls  and  manuals  that  are  designed  for  

the  initial  customer  rather  than  for  a  product’s  second  life  cycle  outside  the  United  

States.  The  problem  with  trying  to  find  a  solution  to  this  issue  is  that  the  designer  

would  have  to  create  a  universal  system  for  the  device.  The  second  major  issue  deals  

with  the  device  manufacturers  and  the  limited  liability  they  carry  for  the  life  cycle  of  

the  products  they  produce.  The  typical  manufacturer  often  has  little  interest  in  

 

     2  

designing  universal  medical  products  used  for  a  second  life  cycle  due  to  the  liability  

involved  for  misuse.  

  The  problem  with  the  language  for  the  current  devices  arises  when  the  

product  is  outdated  in  the  major  developed  countries  and  is  sent  to  the  developing  

world  as  medical  aid.  Once  the  device  is  in  the  developing  countries,  the  device  has  

the  potential  to  be  misused.    The  language  in  the  user  interface  or  environmental  

issues  can  lead  directly  or  indirectly  to  this  misuse.    

  A  typical  medical  device  manufacturer  limits  the  time  they  will  assume  

liability  for  the  device.  If  a  manufacturer  were  to  consider  a  second  life  of  a  product,  

there  would  have  to  be  a  means  for  the  manufacturer  to  withdraw  itself  from  the  

liability  of  the  product  in  the  second  life.  The  manufacturer  could  have  a  release  

form  for  the  organization  that  the  device  is  sent  to.  This  might  allow  for  a  safer  

device  to  be  developed  and  the  manufacturer  would  not  be  held  liable  for  the  device.      

  In  closing,  the  thought  of  a  manufacturer  having  the  ability  to  release  devices  

to  organizations  has  the  ability  to  impact  many  people  that  are  in  need  of  medical  

aid.  Safer  and  better  designed  devices  that  fit  the  environment  they  are  used  in  

would  limit  the  device’s  malfunctions.  Also  considering  language  and  environment  

in  the  initial  design  might  allow  for  a  better  overall  product  for  the  first  life  in  the  

developed  world.      

 

1.2.  Need  for  Study  

The  study  of  medical  device  design,  considering  a  second  life,  will  focus  on  

identifying  some  of  the  major  problems  in  current  devices  relative  to  their  design  

 

     3  

for  repurposing  in  countries  with  different  languages  and  medical  environments.  

Many  people  are  caused  harm  or  fatality  due  to  inadequate  medical  devices.    This  

study  seeks  to  determine  some  recommendations  to  help  minimize  some  of  these  

major  problems.        

The  second  need  of  study  will  look  into  potential  methods  of  trying  to  break  

the  language  barrier  in  medical  device  design.  Translation  issues  can  potentially  

arise  with  buttons,  dials,  the  user  interface,  and  operator  manuals.  The  benefits  of  

this  study  might  better  allow  for  a  device  to  be  used  in  multiple  countries.  This  

might  allow  the  medical  professionals  in  other  countries  to  use  the  equipment  in  a  

safer  manner.        

The  third  need  of  study  would  investigate  the  terms  of  corporate  liability  of  

the  companies  who  develop  medical  devices.  If  these  companies  could  have  an  

agreement  with  organizations  that  use  second  life  devices,  this  agreement  could  

include  a  liability  release  agreement.    Also  companies  could  use  a  design  method  

which  included  a  consideration  for  the  second  life  and  universal  interface,  which  

might  lead  to  an  end  product  that  might  be  designed  to  help  more  people.    

The  fourth  need  of  study  is  a  method  for  considering  the  second  life,  

universal  design,  the  liability  issues,  materials,  and  multi-­‐language  user  interfaces.  

This  method  would  compile  the  information  from  the  previous  studies  and  come  up  

with  a  suitable  method  for  creating  an  approach  to  universal  medical  device  design.  

The  fifth  need  of  study  would  examine  the  need  to  create  a  new  systems  

design  for  medical  devices.  The  study  will  explore  the  thought  of  using  a  more  

integrated  network.    

 

     4  

The  final  need  of  study  would  be  to  develop  a  medical  device  using  this  

process  or  method  and  documenting  the  findings  and  outcome  of  the  process.  The  

need  for  this  step  is  to  see  the  final  outcome  of  the  solution  and  if  it  validates  or  

negates  the  method.  The  results  would  be  the  deciding  factor  in  the  success  of  this  

method.    

In  short,  there  seems  to  be  an  opportunity  for  advanced  medical  equipment  

to  better  benefit  more  people  by  extending  the  useful  life  cycle  beyond  the  dedicated  

“first  customer”  system.  This  opportunity  can  be  brought  more  within  reach  by  a  

careful  consideration  of  how  the  equipment  is  designed.  

 

1.3.  Objective  of  Study  

  The  first  objective  of  the  study  is  to  investigate  the  major  problems  in  

current  medical  devices  that  are  in  the  second  period  of  their  life  cycle.  After  finding  

a  major  problem  or  problems,  the  next  step  would  be  to  find  design  solutions  to  the  

problem.  

The  second  objective  would  be  to  find  a  way  to  break  the  language  barrier  

through  the  design  of  medical  devices.  For  this  objective,  the  language  barrier  in  the  

user  interface,  product  knobs,  and  dials  would  have  to  be  analyzed.  Achieving  this  

would  allow  for  the  products  to  function  more  effectively  when  sent  to  a  country  

where  the  users’  language  differs  from  the  original  interface  of  the  products.  

The  third  objective  is  to  research  the  corporate  liability  of  the  medical  device  

manufacturers.  The  companies  do  not  want  the  liability  of  these  products  in  their  

second  life.  Therefore,  these  companies  will  not  supply  parts  or  maintenance  to  the  

 

     5  

products  after  a  certain  period  of  time.  This  also  means  most  companies  will  not  

consider  a  second  life  of  a  product  in  the  design  considerations.  This  objective  

would  study  the  possibility  of  considering  a  second  life  cycle  in  the  design  process  

while  minimizing  the  liability  for  the  product  in  this  time  frame.    

The  fourth  objective  would  be  to  develop  an  approach  or  method  in  which  a  

company  or  design  team  would  develop  a  medical  product  better  considering  a  

second  life,  materials,  liability  terms,  language,  interface,  and  current  methodology  

of  the  medical  device  design  process.    

The  final  objective  would  be  to  develop  a  medical  device  using  this  process  or  

method,  and  documenting  the  findings  and  outcome  of  the  process.  The  process  

would  be  parallel  to  the  research  and  may  lead  to  other  findings  or  opportunities.    

 

1.4.  Definition  of  Terms  

 

AIDS-­‐  (acquired  immune  deficiency  syndrome)  The  final  and  most  serious  stage  of  

HIV  disease,  which  causes  severe  damage  to  the  immune  system.  

 

Articulation-­‐  The  visual  relationship  between  the  parts  and  the  whole.  

 

Biotechs-­  A  biomedical  technician  or  engineer.    Biotechs  are  skilled  

electromechanical  technicians  that  ensure  that  medical  equipment  is  safe,  functions  

and  is  set  up  properly.    

 

 

     6  

Convergence–  Prototyping  possible  scenarios  for  better  design  solutions        

that  incrementally  or  significantly  improve  the  originally  inherited  situation.  

 

Dialysis-­‐  (From  Greek  "dialusis",  meaning  dissolution,  "dia",  meaning  through,  and  

"lysis",  meaning  loosening)  primarily  used  to  provide  an  artificial  replacement  for  

lost  kidney  function  in  people  with  renal  failure.  Dialysis  may  be  used  for  those  with  

an  acute  disturbance  in  kidney  function  (acute  kidney  injury,  previously  acute  renal  

failure)  or  for  those  with  progressive  but  chronically  worsening  kidney  function–a  

state  known  as  chronic  kidney  disease  stage  5  (previously  chronic  renal  failure  or  

end-­‐stage  kidney  disease).  The  latter  form  may  develop  over  months  or  years,  but  in  

contrast  to  acute  kidney  injury  is  not  usually  reversible,  and  dialysis  is  regarded  as  a  

"holding  measure"  until  a  renal  transplant  can  be  performed,  or  sometimes  as  the  

only  supportive  measure  in  those  for  whom  a  transplant  would  be  inappropriate  

(Pendse,  Singh,  &  Zawada,  2008).  

 

Design  constraint-­‐  One  limitation  on  the  conditions  under  which  a  system  is  

developed,  or  on  the  requirements  of  the  system.  The  design  constraint  could  be  on  

the  system’s  form,  fit  or  function  or  could  be  in  the  technology  to  be  used,  materials  

to  be  incorporated,  time  taken  to  develop  the  system,  overall  budget,  and  so  on.  A  

design  constraint  is  normally  imposed  externally,  either  by  the  organization  or  by  

some  external  regulation.  

 

 

     7  

Design  controls-­‐  An  interrelated  set  of  practices  and  procedures  that  are  

incorporated  into  the  design  and  development  process,  i.e.,  a  system  of  checks  and  

balances.  Design  controls  make  systematic  assessment  of  the  design  an  integral  part  

of  development.  As  a  result,  deficiencies  in  design  input  requirements,  and  

discrepancies  between  the  proposed  designs  and  requirements,  are  made  evident  

and  corrected  earlier  in  the  development  process.  Design  controls  increase  the  

likelihood  that  the  design  transferred  to  production  will  translate  into  a  device  that  

is  appropriate  for  its  intended  use.  

 

Design  cycle-­‐  The  process  of  the  initial  design  of  a  concept  based  on  goals,  to  the  

execution  of  the  training,  to  the  measurement  of  results,  and  to  the  modification  of  

the  concept  to  meet  those  results.  

 

Design  methodology-­‐  A  broad  area  that  focuses  on  the  process  and  creation  of  a  

design.  

 

Divergence–  Exploration  of  possibilities  and  constraints  of  inherited  situations  by  

applying  critical  thinking  through  qualitative  and  quantitative  research  methods  to  

create  new  understanding  (problem  space)  toward  better  design  solutions.  

 

Electric  grid-­‐  Electricity  network,  which  may  support  all  or  some  of  the  following  

four  distinct  operations:  electricity  generation,  electricity  power  transmission,  

 

     8  

electricity  distribution,  and  electricity  control.  

 

Electrical  spike-­‐  A  temporary,  very  short  (less  than  a  second)  increase  in  the  

electrical  supply  voltage  (or  current  or  both).  Another  name  for  an  electrical  spike  is  

an  electrical  surge.    

 

Focus  group-­‐  A  form  of  qualitative  research  in  which  a  group  of  people  are  asked  

about  their  perceptions,  opinions,  beliefs  and  attitudes  towards  a  product,  service,  

concept,  advertisement,  idea,  or  packaging  (Henderson,  Naomi  R.  2009).  

 

Generator-­‐  Engine  that  converts  mechanical  energy  into  electrical  energy  by  

electromagnetic  induction.  

 

Infusion  pumps-­‐  Small,  preloaded  mechanical  devices  used  to  continuously  

administer  intravenous  chemotherapy  over  a  designated  time.  

 

Ka’oj-­‐  A  sickness  caused  by  eating  too  much,  or  ingesting  dirty  food.  

 

Malaria-­‐  A  parasitic  disease  that  involves  high  fevers,  shaking  chills,  flu-­‐like  

symptoms  and  anemia.  

 

 

     9  

Mayan-­‐  A  member  of  an  indigenous  people  of  Yucatan,  Belize  and  Guatemala  whose  

culture  reached  its  peak  between  AD  300  and  900.    

 

Mechanical  ventilators-­‐  Machines  to  mechanically  assist  or  replace  spontaneous  

breathing.  

 

Morbidity-­‐  An  illness  or  an  abnormal  condition  or  quality.  

 

Multiculturalism-­‐  Philosophy  that  recognizes  ethnic  diversity  within  a  society  and  

that  encourages  others  to  be  enlightened  by  worthwhile  contributions  to  society  by  

those  of  diverse  ethnic  backgrounds.  

 

Multinational  companies-­‐  Corporations  or  enterprises  that  manage  production  or  

deliver  services  in  more  than  one  country.  

 

Panacea-­‐  Hypothetical  remedy  for  all  ills  or  diseases;  once  sought  by  the  alchemists.  

 

Product  interfaces-­‐  Designs  of  a  product’s  controls.  

 

Salient-­‐  Movement  by  leaps  or  springs.  

 

Second  life  cycle-­‐  The  use  of  a  product,  after  the  product  had  already  been  used.  

 

 

     10  

Sustainability  –  Managing  the  process  of  exploring,  redefining  and            

prototyping  of  design  solutions  continually  over  time.  

 

Telemetric  transmitters-­‐  Wireless  transmission  and  reception  of  measured  

quantities  for  the  purpose  of  remotely  monitoring  environmental  conditions  or  

equipment  parameters.    

 

Transformation–  Redefining  of  specifications  of  design  solutions  which  can                      

       lead  to  better  guidelines  for  traditional  and  contemporary  design  activities      

(architecture,  graphic,  industrial,  information,  interaction,  et  al.)  and/or  

multidisciplinary  response.  

     

Tuberculosis-­‐  Infection  transmitted  by  inhalation  or  ingestion  of  tubercle  bacilli  

and  manifested  in  fever  and  small  lesions  (usually  in  the  lungs  but  in  various  other  

parts  of  the  body  in  acute  stages)  

 

User  interaction-­‐  Device  with  which  a  human  being  may  interact  -­‐-­‐  including  

display  screen,  keyboard,  mouse,  light  pen,  the  appearance  of  a  desktop,  illuminated  

characters,  help  messages,  and  how  an  application  program  or  a  Web  site  invites  

interaction  and  responds  to  it.  

 

Yab’ilal-­‐  Naturally  occurring  illnesses.  

 

 

     11  

1.5.  Literature  Review  

  Many  countries  and  cultures  outside  the  United  States  face  medical  

challenges  every  day.  While  medical  advancement  and  equipment  are  often  

accessible  to  healthcare  providers  in  the  United  States.  An  overwhelming  

percentage  of  developing  countries  receive  some  level  of  foreign  medical  aid  in  

order  to  provide  healthcare  for  their  citizens.  Tarnoff  and  Nowels  (2004)  recount  of  

President  G.W.  Bush’s  announcement  at  his  2003  State  of  the  Union  message  of  a  

five-­‐year,  $15  billion  effort  to  combat  AIDS,  malaria,  and  tuberculosis  has  added  

greater  emphasis  to  this  primary  foreign  assistance  objective.  The  United  States  of  

America  and  United  Kingdom  are  among  the  top  countries  giving  aid  to  developing  

countries.  This  aid  provides  medicine,  salaries  for  doctors,  and  funding  for  

education  of  new  doctors,  in  addition  to  newer  medical  technologies  and  equipment.  

When  approaching  medical  device  design,  one  must  understand  the  needs  of  the  

people  who  are  using  the  device.  In  addition,  one  must  understand  who  is  receiving  

care  from  the  device.  Each  patient  is  different,  and  each  one  may  have  a  different  

background  and  obstacles.  Medical  equipment  designed  and  manufactured  in  the  

United  States  and  Europe  is  not  always  optimal  for  the  regions  they  are  being  sent  to  

as  aid.  

 Rollins,  K.  (2006)  editor  of  The  Index  of  Global  Philanthropy  states  “that  in  

2004,  American  private  giving  through  foundations,  corporations,  voluntary  

organizations,  universities,  colleges,  religious  organizations,  and  immigrants  

sending  money  to  families  and  villages  back  home  totaled  at  least  $71  billion  -­‐  over  

three  and  a  half  times  U.S.  government  development  aid.”  The  private  giving  is  

 

     12  

making  a  faster  impact  in  the  regions  in  which  the  aid  is  being  received.  The  only  

problem  is  many  of  the  medical  devices  that  are  being  sent  are  donated  from  U.S.  

hospitals.  The  problem  lies  in  the  differences  in  the  environments  and  cultural  gaps.  

“The  American  electric  grid  is  an  engineering  marvel,  arguably  the  single  largest  and  

most  complex  machine  in  the  world  (Roberts,2009).”  The  medical  devices  that  were  

designed  for  the  U.S.  were  not  designed  considering  major  electrical  spikes,  or  even  

the  lack  of  electricity  in  some  foreign  regions,  in  which  the  devices  are  sent.  

An  example  from  Inspiring  Stories  of  Volunteer  Medical  Missions  describes  the  

unpredictability  of  voltage  that  can  drop  from  125  to  70,  necessitating  a  generator  

for  anything  better  (Alexis,  2008).  These  spikes  can  make  for  crucial  errors  in  the  

hospitals  in  these  regions  if  they  are  not  equipped  with  backup  electrical  supplies.  

  In  addition,  these  areas  that  are  receiving  aid  face  major  illnesses,  diseases,  

and  natural  obstacles.  Authors  Drain,  Huffman,  Dirtle  and  Chan  (2008)  of  Guide  to  

Global  Health  Opportunitie:  Caring  for  the  World  write  about  a  missionary  family,  Liz  

and  Don.  

In  this  book,  Liz  and  Don  soon  realized  that  many  of  the  children  were  being  

brought  in  by  sick  mothers  who  themselves  were  not  receiving  adequate  medical  

care.  They  knew  the  children  wouldn’t  get  better  without  also  taking  care  of  their  

mothers.  From  their  observations,  they  decided  their  focus  should  not  be  solely  on  

the  children  (Drain,  et  al.,  2008).    Lisa  and  Don’s  observation  could  lead  one  to  find  

many  opportunities  in  taking  advantage  of  having  the  family  come  in  for  a  health  

screening  at  the  same  time  they  are  bringing  in  a  sick  child  to  the  clinic.  Screening  

 

     13  

and  treating  the  whole  family  could  prevent  the  children  from  developing  illnesses  

in  the  future.  

  Some  of  the  natural  illnesses  in  these  regions  could  be  solved  by  education.  

In  the  Mayan  culture,  the  natural  causes  of  disease  often  symbolically  echo  the  

illnesses  they  produce.  Heat  and  the  sun’s  rays  may  cause  fever;  exposure  to  wind  

(aire)  could  result  in  a  cough,  the  expulsion  of  air.  All  people  of  the  community  are  

subject  to  these  naturally  occurring  illnesses,  classified  as  yab’ilal  (Adams  &  

Hawkins,  2007).  These  are  typical  in  specific  regions,  and  the  majority  of  these  

yab’ilal’s  could  be  cured  simply.  For  example,  washing  food  or  not  eating  as  much  

food  can  cure  ka’oj  or  vomiting.  

  Other  illness  may  not  offer  such  easy  solutions,  Morbidities,  especially  

diarrhea  and  respiratory  infections,  are  both  causes  and  results  of  malnutrition.  

Stunting  rates  are  much  higher  among  children  with  frequent  and  early-­‐age  

exposure  to  diarrhea  or  respiratory  infections.  In  turn,  malnourished  children  are  

more  likely  to  be  susceptible  to  such  diseases.  Disease  prevention  and  treatment,  

together  with  improving  the  availability  and  quality  of  water  and  sanitation,  are  

critical  for  fighting  chronic  malnutrition  (The  World  Bank,2004).  If  the  government  

is  not  going  to  provide  the  people  with  clean  water,  this  is  an  opportunity  for  people  

to  educate  one  another  on  how  to  build  water  treatment  boxes  for  their  homes.  

However,  this  is  not  an  easy  process  considering  funding,  resources,  and  the  vast  

number  of  people  requiring  help  in  this  area.  

  There  is  a  large  need  to  provide  aid  to  adolescents  in  many  regions  of  the  

world.  Governments  and  private  companies  are  trying  to  address  this  issue.  Arnett  

 

     14  

states,  “One  of  the  largest  tasks  the  governments  and  private  sectors  are  

undertaking  is  the  prevention  and  treatment  of  adolescent  health  problems.  Specific  

to  the  South  American  culture,  the  main  sources  of  adolescents’  health-­‐related  

problems  are  violence,  poor  sanitation,  sexual  health  risk,  and  lack  of  medical  

attention  during  pregnancy  and  childbirth  (Arnett,  2007).”  The  two  main  categories  

that  have  the  greatest  opportunities  in  this  statement  are  poor  sanitation  and  lack  of  

medical  attention  during  pregnancy.  Taking  these  problems  and  breaking  them  

down  to  find  areas  for  improvement  could  be  a  chance  to  have  a  large  impact  in  the  

community  in  treating  mothers  and  children.  

  In  most  of  these  cases  the  people  are  willing  to  help  and  make  changes.  Perez  

writes  about  the  care  of  the  Cuban  people  in  The  Practice  of  Community  Based  Cuban  

Medicine,  which  details  care  from  birth  to  death.  He  states,  “When  food  disappeared,  

the  neighbors  helped.  My  neighbors  and  friends  have  shown  up  at  my  house  with  

eggs,  potato’s,  and  other  items  in  times  of  shortage.  This  is  how  people  survive  here;  

as  one  of  my  neighbors  told  me.  “Tu  vecino  es  tu  familia,”  your  neighbor  is  your  

family”  (Perez,  2008).  This  brings  to  mind  the  possibility  of  supplying  locals  with  

emergency  medical  equipment.  Locals  could  also  be  given  vitamin  and  antibiotic  

packs  to  distribute  to  the  community  in  time  of  need.  

  Natural  illness  and  diseases  are  not  the  only  issues  that  face  the  health  of  

people  in  developing  countries.  “Medical  devices  often  end  up  being  used  in  

environments  that  were  not  envisioned  by  their  initial  designers.  For  example,  

sophisticated  devices  like  medication  infusion  pumps,  mechanical  ventilators,  and  

dialysis  machines  that  were  originally  designed  for  use  by  experienced  nurses  and  

 

     15  

physicians  in  intensive  care  settings  are  now  being  used  in  patients’  homes”  

(Wiklund  &  Wilcox,  2005).    If  a  designer  were  to  take  into  consideration  the  second  

life  of  a  medical  product  in  the  design  process,  it  might  limit  the  problems  that  arise  

when  a  product  is  introduced  to  a  new  environment.  

  Another  problem  in  the  medical  device  industry  deals  with  symbols.  Wiklund  

(1995)  describes  this  problem  in  his  book  about  usability  engineering  and  

ergonomics.  He  states:    

A  design  vision  shared  by  many  marketers  is  an  entirely  symbolic  

approach  to  hardware  labeling,  complemented  by  language-­‐specific  software  

displays  that  are  relatively  easy  to  modify.  Symbols  are  not  a  panacea,  

however.  The  biggest  problem  with  symbols  is  that  they  can  be  interpreted  

in  a  variety  of  ways.  At  the  very  least,  this  can  create  confusion,  and  if  a  

symbol  identifying  a  critical  medical  device  function  is  misinterpreted,  a  

patient  injury  or  death  could  result.  Nevertheless,  the  potential  for  symbols  

to  convey  information  quickly  to  a  multilingual  user  population  is  

compelling.  Accordingly,  the  device  industry  is  likely  to  move  gradually  from  

textual  to  symbolic  user  interfaces  as  more  products  are  developed  for  

international  use.    

A  device  with  specific  languages  and  symbols  and  text  help  minimize  user  

error.  For  example  a  device  could  have  a  startup  screen  with  standard  symbols  and  

the  option  to  change  the  language  interface.    

    Poor  medical  device  designs  tend  to  go  uncorrected  because  the  user  

is  often  ashamed  to  admit  that  he  or  she  cannot  properly  operate  the  

 

     16  

mechanism.  This  is  not  true  anymore  in  consumer  products  [1].  

Compounding  the  complexity  problem  is  that  while  various  medical  devices  

are  often  similar  to  one  another  in  design  and  basically  have  the  same  

functions,  the  user  guidance  and  user  inputs  are  not  always  clear,  nor  do  they  

always  work  in  a  consistent  manner  from  one  manufacturer  to  another  and  

don’t  necessarily  follow  stereotypes  [2].  The  resulting  delays  and  errors  are  

unacceptable  as  seconds  can  mean  the  difference  between  life  and  death  

(Westwood,  Westwood,,  &  Haluck,2009).    

This  issue  with  device  design  seems  a  key  issue  in  the  medical  field.  If  the  

designer  would  consider  simple  controls  to  help  the  end  user  in  the  design  process,  

some  of  these  issues  might  be  eliminated.  Also,  there  may  be  a  need  to  make  

universal  or  regional  icons  in  the  medical  device  industry,  just  to  make  product  

interfaces  more  standardized.  

  “Professionals  from  disciplines  ranging  from  anthropology,  visual  design,  

usability,  product  design  and  others  are  now  increasingly  raising  their  voices  in  

favor  of  a  rational  strategy  that  would  allow  products  and  interfaces  to  be  designed  

for  the  cultures  where  they  are  going  to  be  used”  (Aykin,2007).  If  a  medical  device  

included  adaptable  software  that  would  allow  the  user  to  change  the  language  and  

interface  for  their  given  culture,  this  could  solve  the  problem.  This  could  also  keep  a  

company  from  manufacturing  the  same  device  with  different  with  different  

interfaces.    

Design  input  is  arguably  the  most  important  part  of  the  design  control  

process.  It  is  the  foundation  for  the  entire  design  and  development  activity.  If  the  

 

     17  

foundation  has  basic  problems,  then  the  entire  structure  will  be  suspect  until  those  

problems  are  identified  and  corrected.  “The  inputs  are  the  physical  and  

performance  characteristics  and  requirements  of  a  device.  They  are  basic  for  the  

design.  By  spending  the  time  and  the  resources  to  get  these  inputs  accurately,  a  

company  can  save  an  enormous  amount  of  time  and  money  in  the  long  term  

(Teixeira  &  Bradley,  2003).  “Design  controls  should  have  priority  over  other  parts  of  

the  design  process.  This  may  require  the  device  to  be  larger  if  a  mechanical  engineer  

has  to  move  a  motor  to  make  the  inputs  right,  change  a  lever,  or  turn  a  knob  on  the  

device,  for  example.    

  As  with  other  specialized  professionals,  medical  workers  require  a  high  

degree  of  usability  in  the  products  they  use  professionally.  For  example,  many  

nurses  declare  that  if  a  product  is  not  easy  to  use,  they  do  not  want  it  in  their  unit-­‐  

they  will  find  something  else  that  works.  “In  user  studies,  nurses  rate  usability  as  

one  of  their  top  design  requirements  (see  chapter  4).  This  should  send  a  strong  

message  to  all  medical  device  manufactures  to  invest  heavily  in  usability”  

(Wiklund,1995).  Knowing  this  problem,  it  should  prompt  companies  that  are  in  the  

design  process  to  do  a  focus  group  with  a  team  of  nurses  to  evaluate  if  the  device  is  a  

useable  design.  

  “Clearly  a  product  will  be  useless  to  the  user  if  it  does  not  contain  

appropriate  functionality.  A  product  cannot  be  usable  if  it  does  not  contain  the  

functions  necessary  to  perform  the  tasks  for  which  it  is  intended.  If  a  product  does  

not  have  the  right  functionality  it  will  dissatisfy  the  user.  In  order  to  be  able  to  fulfill  

user  needs  on  this  level,  the  human-­‐factors  specialist  must  have  an  understanding  of  

 

     18  

what  the  product  will  be  used  for  and  the  context  and  environment  in  which  it  will  

be  used”  (Baumann,  Thomas,  &Laurel,  2001).  This  is  true;  the  designers  of  the  

device  should  take  into  account  the  context  and  environment  in  which  the  device  

will  be  used.  Designers  should  do  their  due  diligence  in  researching  the  users’  needs.        

  In  order  to  make  changes  in  an  industry,  the  coordination  of  many  

stakeholders  is  required.  Changes  typically  mean  more  time  and  money.  However,  if  

changes  are  done  right,  it  might  improve  the  process  and  save  time  and  resources.  

Designers  and  users  are  the  agents  of  change:  designers  in  their  own  domain  as  they  

design  and  bring  to  life  artifacts  using  their  knowledge  and  expertise  and  users  in  

their  own  domain  of  expertise,  the  use  of  the  artifact.  Each  iteration  of  a  product  

interface  generates  changes  by  the  user  whose  own  goals  and  interactions  change.  

By  changing  goals  and  intentions,  the  action  and  its  outcome  both  change.  The  user  

is  an  agent  who  directs  the  complete  interaction  (Laurel,  1986).  Then  the  device  will  

become  easier  to  use.  However,  there  are  constraints  built  into  a  user’s  interaction  

and  they  are  usually  part  of  design  constraints  of  the  system.  They  keep  users’  

activities  within  boundaries,  but  at  the  same  time  challenge  users  to  enjoy  different  

levels  of  interaction.  

The  user’s  interaction  with  a  medical  device  shouldn’t  render  something  new  

in  the  interface  just  for  their  enjoyment.  Medical  devices  should  practice  a  standard  

method  of  use  to  reduce  user  problems.  The  user  might  bring  change  as  an  agent  if  

the  user  finds  something  wrong  with  a  device,  but  overall  the  design  guidelines  

should  prevent  this  user  agent  change  (Green,  Jordan,  1999).  This  is  a  key  difference  

between  the  medical  device  industry  and  the  consumer  electronics  industry.  The  

 

     19  

interface  on  a  medical  device  shouldn’t  render  something  new  on  the  interface  just  

for  the  user’s  enjoyment.  However,  if  there  is  flaw  in  the  design,  the  user  may  be  an  

agent  of  change,  by  notifying  the  manufacture  about  the  issue.      

  A  challenge  for  human  factors  is  to  investigate  whether  or  not  there  are  

systematic  links  between  a  country’s  position  on  cultural  dimension  and  aesthetic  

preference  within  that  country.  This  is  a  particularly  salient  issue  in  the  context  of  

multinational  companies  who  are  designing  products  for  distribution  in  different  

markets  (Baumann,  Thomas,  &  Laurel,  2001).  In  this  case  it  would  be  wise  to  take  

into  account  the  markets  the  multicultural  company  serves  markets  and  try  to  make  

the  best  product  to  serve  the  various  cultures,  rather  than  making  multiple  

products.  

  A  designer  of  a  product  must  have  a  form  of  design  consideration  and  

parameters  to  achieve  the  best  results.  When  designing  international  usable  

products,  it  is  important  to  assess  the  users’  culture,  education  and  behaviors.  As  in  

the  development  of  any  usable  product,  the  first  question  should  be  to  ask  what  

users  hope  to  achieve  through  the  use  of  the  product.  A  detailed  design  document  

should  be  maintained  that  ensures  all  design  goals  are  clearly  explained  in  terms  of  

user  requirements  (Aykin,  2007).  This  would  help  in  the  process  if  the  design  team  

could  have  a  document  that  has  all  the  requirements  for  international  use.    

 

     20  

 Table  1  Emerging  Markets  Aykin  (2007)  

  This  graph  from  Aykin  (2007)  shows  that  there  are  opportunities  in  

emerging  markets  and  developing  countries.  These  are  opportunities  for  medical  

companies  to  make  a  difference  and  not  run  a  risk  of  losing  revenue  in  a  new  

market.  

  Failing  to  include  design  considerations  might  cause  problems  with  the  end  

product.  The  following  are  a  couple  of  examples  that  are  known  problems  in  the  

medical  device  industry.  User  interface  is  a  large  problem  in  the  developing  world.  

However,  more  problems  exist  in  areas  other  than  user  interface.  For  example,  

underdeveloped  infants  often  need  to  receive  extra  oxygen  in  the  incubator.  But  

100%  oxygen  must  never  be  administered  since  it  is  toxic  for  the  infant  and  can  lead  

to  injuries,  including  blindness.  A  number  of  newborn  infants  were  inadvertently  

given  pure  oxygen,  in  spite  of  the  intention  being  to  administer  only  air,  that  is,  21%  

oxygen.  The  cause  was  a  poorly  designed  incubator,  which  was  equipped  with  a  

mixing  gauge  that  was  very  hard  to  read  when  the  dial  was  at  the  maximum  100%  

oxygen  level.  In  spite  of  this  poor  design,  the  clinicians  directly  involved  with  patient  

care  were  found  responsible  for  these  errors  (Jacobson  &  Murray,  2007).  This  

occurrence  should  not  happen;  this  product  had  a  known  design  flaw  and  nothing  

 

     21  

was  done  to  fix  this  problem.    Another  design  problem  involves  batteries  intended  

for  use  in  medical  devices.    

“Batteries  are  often  delivered  with  a  clear  shrink-­‐wrap  packaging  to  

prevent  them  from  accidentally  short-­‐circuiting.  On  several  occasions  nurses  

have  replaced  such  9-­‐volt  batteries  in  temporary  pacemakers  and  

ambulatory  telemetric  transmitters  without  removing  the  shrink-­‐wrap.  The  

situation  is  insidious  since  the  battery  compartment  in  some  of  these  devices  

differs  from  those  in  standard  consumer  devices,  where  a  battery  clips  into  

the  battery  leads.  In  some  medical  devices  the  battery  connections  are  

pressed  against  the  conductive  plates  in  the  battery  compartment  by  spring  

tension.  This  unfortunately  allows  a  wrapped  battery  to  be  inserted,  and  

hence  no  power  is  provided  to  the  device  (Jacobson  &Murray,  2007).”    

“It  is  crucial  to  consider  human  proficiency  in  perception,  cognition,  learning,  

memory,  and  judgment  when  designing  medical  devices  to  assure  that  operation  of  

the  system  is  as  intuitive,  effective,  and  safe  as  possible  “(Fries,  2001).  Taking  this  

statement  into  consideration  in  the  case  of  a  developing  country,  where  some  

doctors  and  surgeons  use  medical  equipment  that  is  not  in  their  first  language.  It  

bares  the  question  that  this  practice  of  using  devices  that  is  not  in  the  doctor  or  

surgeons’  first  language  may  not  be  the  safest  environment  for  the  patient.    

The  following  paragraphs  explain  some  the  current  methodology  and  design  

considerations  that  are  being  applied  in  the  medical  device  industry.  Design  is  a  

stepwise  iterative  process.  Design  starts  with  a  need  and  then  applies  technology  

until  the  need  is  solved  in  the  best  way  possible  given  the  time,  resources,  talents  

 

     22  

and  specifications  available.  This  is  the  way  medical  device  development  usually  

occurs  (Kucklick,  2006).  Bringing  in  people  with  specializations  in  the  health  care  

sector  could  improve  the  design  process.    

It  is  useful  to  build  a  small  core  team  with  the  experts  who  are  responsible  

for  design,  production  planning,  marketing  and  sales.  The  composition  of  the  team  

depends  on  the  particular  problem  and  type  of  product  (Paul,  Beitz,  Feldhusen,  &  

Grote,  2003).  

To  design  a  product  with  specific  needs  in  which  the  designer  is  not  an  

expert,  it  is  best  seek  out  opinions  from  professionals  in  that  field.  With  the  

information  the  designer  gets  from  that  expert,  he  or  she  still  needs  a  team  of  

experts  to  take  that  information  and  apply  it  to  marketing,  manufacturing  and  sales.  

To  complete  a  full  design  cycle  and  have  a  product  ready  for  the  market,  a  designer  

must  allow  for  other  professionals  to  have  inputs  and  directions  on  the  final  

product.  

  These  are  four  ways  drive  down  cost  in  the  medical  device  industry  (Pahl,  

Beitz,  Feldhusen,  &  Grote,  2003):  

-­‐Aim  for  low  complexity,  that  is,  a  low  number  of  parts  and  few  production  

processes.  

-­‐Aim  for  small  overall  dimensions  to  reduce  material  cost,  because  these  

costs  increase  disproportionately  with  size,  most  frequently  diameter.  

-­‐Aim  for  large  numbers  (large  batch  sizes)  to  spread  the  once-­‐only-­‐cost,  

because,  for  example,  set-­‐up  costs  can  be  spread,  high  performance  

production  processes  can  be  used,  and  benefits  of  repetition  can  be  exploited.  

 

     23  

-­‐Aim  for  minimizing  precision  requirements,  that  is,  specifies,  where  

possible,  large  tolerances  and  rough  surface  finishes.    

 

  These  four  rules  for  reducing  cost  can  be  carried  over  to  any  field  that  

manufactures  a  product  to  produce  more  profits  from  that  product.  

In  summary,  the  Conceptual  Design  Review  concludes  with  the  following  that  

would  make  design  reviews  easier  when  working  from  two  locations  and  testing  in  

a  foreign  country  (Fowler,  2008):  

 Phase  1:  The  concept  should  present  the  mission  goals,  objectives  and  

constraints.  It  should  demonstrate  the  requirements.  Example  items,  from  a  satellite  

subsystem,  to  be  addressed  in  the  CDR  are  

-­  Program  organizational  structure,  organizational  interfaces,  schedule,  

cost,  policy  

  -­‐  Review  mission  objectives  

  -­  Requirements  

    -­‐  Mission:  environment,  host  resources,  experiment  requirements  

    -­‐  Performance:  technical  characteristics  

    -­‐  Major  systems  function  and  interfaces  

  -­‐  Research-­‐  literature,  patent  searches  

  -­‐  Design  constraints  and  major  trade  studies  performed  

  -­Requirements  process  and  management  

   

 

     24  

   Design  changes  occur  throughout  the  design  process.  Often,  assessing  the  

impact  of  changes  of  all  aspects  of  the  project  can  be  very  difficult.  This  is  

particularly  true  with  large  projects  involving  multifunctional  design  teams.  “It  is  

important  to  have  the  design  under  revision  control,  so  that  the  history  of  changes  

may  be  tracked.  To  accomplish  this,  a  design  change  methodology  should  be  

employed.  Each  change  of  the  design  should  be  reviewed,  documented  and  

approved  before  it  is  implemented  (Fries,  2001).”  If  one  could  look  more  into  in  the  

methodology  of  these  changes  and  compare  them  to  industrial  design  methodology  

to  see  if  there  is  any  room  for  improvement,  the  design  might  be  improved.  

An  approach  can  also  be  developed  to  determine  program  correctness  with  

increasing  precision  over  time.  The  problem  is  general  and  abstract  enough  to  make  

it  amenable  to  analytical  intelligence.  The  second  case,  creating  a  support  system  for  

medical  staff,  requires  broad  knowledge  about  information  technology,  the  

professional  skills  and  practices  of  medical  staff,  the  characteristics  of  the  whole  

workplace,  and  other  specific  conditions  of  the  situation  at  hand.  This  is  a  typical  

design  situation  in  the  sense  that  the  available  information  will  always  be  

incomplete,  but  design  decisions  have  to  be  made  nonetheless.  Dealing  with  such  

complexity  in  creating  something  appropriate  for  the  situation  at  hand  is  a  task  that  

demands  design  intelligence-­‐  that  is,  a  constructive  intentional  intelligence  

(Lowgren&  Stolterman,  2005).  This  process  cannot  be  to  put  a  product  in  the  

market  that  has  known  problems  in  the  design.  If  a  problem  is  found,  the  release  

date  should  be  set  back  until  the  problem  is  fixed.  

 

     25  

The  design  specifications  should  address  the  following  areas  for  each  

subsystem  (Fries,  2006):  

  -­‐  The  reliability  budget     -­‐  Cost  budget  

  -­‐  Service  strategy       -­‐  Standards  requirements  

  -­‐  Manufacturing  strategy     -­‐  Size  and  packaging  

  -­‐  Hazard  consideration     -­‐  The  power  budget  

  -­‐  Environmental  constraints     -­‐  The  heat  generation  budget  

  -­‐  Safety         -­‐  Industrial  design/  human  factors  

  -­‐  Controls/adjustments                            -­‐  Material  compatibility  

This  subsystem  is  industry  specific,  but  to  evolve  this  process  it  could  be  

updated  to  help  develop  a  better  product.    

Each  manufacturer  should  establish  and  maintain  procedures  to  control  

labeling  activities.  

  -­‐  Labels  must  be  printed  and  applied  so  as  to  remain  legible  and  affixed  

during  customary  conditions.  

  -­‐Labeling  must  not  be  released  for  storage  or  use  until  a  designated  

individual(s)  has  examined  the  labeling.  The  release,  including  the  date  and  

signature  of  the  individual(s)  performing  the  examination,  must  be  documented  in  

the  Device  History  Record.  

  -­‐Each  manufacturer  must  store  labeling  in  a  manner  that  provides  proper  

identification  and  is  designed  to  prevent  mix-­‐ups.  

  -­‐The  label  and  labeling  used  must  be  documented  in  the  Device  History  

Record.  

 

     26  

  -­‐Each  manufacture  must  ensure  that  containers  are  designed  and  

constructed  to  protect  the  device  from  alteration  or  damage  during  the  customary  

conditions  of  processing,  storage,  handling,  and  distribution  (Fries,  2006).  This  is  an  

important  part  to  insure  the  product  quality.      

What  can  the  device  industry  learn  from  other  industries?  First,  short-­‐term  

solutions  do  not  sustain  survival.  Second,  competition  creates  value.  Third,  

innovation  drives  continuous  quality  improvement,  and  fourth,  incentives  drive  

innovation.  The  problem  with  determining  quality  is  that  no  one  has  adequately  

defined  its  parameters.  The  basic  elements  for  health  care  changes  are  going  to  be  

corrected  incentives  to  improve  efficiency,  access  to  relevant  information,  and  

sophisticated  information  systems  (Hanna,  2001).  Industries  can  learn  from  other  

industries.  If  an  industry  stays  within  the  community  parameters,  the  products  may  

become  utilitarian,  and  this  will  have  a  negative  impact  on  innovation.    

In  conclusion,  there  are  a  myriad  of  problems  and  challenges  within  the  

medical  device  industry  with  regard  how  to  best  design  products.  These  problems  

range  from  consideration  of  where  the  products  are  used,  the  user  interface,  the  

scope  of  design  consideration,  and  general  flaws  of  some  devices.  With  further  

research,  one  could  continue  to  broaden  the  design  consideration  and  make  more  

advancement  in  developing  the  user  interface  of  medical  devices.  With  these  issues  

taken  into  consideration,  the  products  may  better  serve  a  broader  scope  of  users  

and  patients.    

 

1.6.  Assumptions  

 

     27  

In  the  approach  to  medical  device  design,  while  considering  a  second  life,  the  

assumptions  in  this  thesis  are  related  to  the  traditional  methodology  of  medical  

device  design,  medical  testing,  limited  research  area  and  whether  the  data  that  is  

collected  on  users  from  resources  are  correct.  

The  researcher’s  social  beliefs,  worldviews,  and  philosophies  pertaining  to  

the  thesis  subject  matter  may  have  an  effect  on  the  research.  The  researcher  thinks  

taking  time  to  help  others  is  very  important  and  his  social  beliefs  reflect  that  in  this  

research.  While  the  researcher’s  worldviews  and  personal  philosophies  should  not  

have  a  major  impact  on  the  research,  they  do  constitute  the  impetus  for  conducting  

this  type  of  research.  

 

1.7.  Scope  and  Limits  

  In  the  approach  to  medical  device  design,  considering  a  second  life,  some  of  

the  restrictions  are  going  to  be  time,  resources,  location  and  budget  for  medical  

devices.  For  the  remainder  of  the  research,  I  will  spend  five  months  developing  the  

approach  to  the  second  life.    

  The  majority  of  the  work  will  be  focused  on  the  development  of  an  adaptable  

interface  for  a  medical  device.  I  will  use  a  C-­‐Arm  as  an  example.  Because  of  the  

previously  stated  restrictions  I  will  be  limited  to  only  offering  recommendations  on  

the  interface,  systems  design,  and  minor  changes  to  the  C-­‐Arm.            

The  first  restriction  will  be  resources.  Medical  devices  are  very  expensive,  

and  I  will  not  be  able  to  get  a  portable  x-­‐ray  machine.  The  electronics  on  the  

interface  are  also  costly;  therefore,  I  will  not  be  able  to  place  an  actual  touch  or  

 

     28  

motion  screen  on  the  final  product.  The  interface  will  be  demonstrated  in  Adobe  

Flash  from  a  computer.    

The  second  restriction  will  be  location.  The  product  and  approach  will  be  

designed  considering  a  developing  country.  However,  the  researcher’s  location  in  

the  Auburn  and  Opelika  area  will  not  suit  for  specific  user  testing.    

The  third  restriction  is  the  budget.  For  the  research  and  product  

development,  I  do  foresee  the  inability  to  acquire  large  medical  devices.  As  stated  

before,  most  medical  devices  are  very  costly.    

The  scope  of  the  research  will  cover  current  methods,  current  medical  

statistics,  user  interface  studies,  ethnography  statistics,  ergonomic  studies,  and  

interpretations  of  environmental  issues  where  devices  are  used.    

Some  of  the  limits  of  the  research  will  be  affected  by  the  fact  that  most  

devices  are  developed  with  a  large  budget  and  a  team  of  engineers.  Some  of  the  

requirements  for  governmental  agencies  concerning  medical  devices  are  archived,  

because  of  the  mechanical,  material,  and  electrical  engineers  required  in  developing  

the  devices.  I  will  assume  all  the  standard  practices  have  been  followed  up  to  the  

point  when  the  considerations  for  the  second  life  will  be  applied.      

 

1.8.  Procedures  and  Methods  

 

1. Proposal.    

2. Research  regulations  for  medical  devices.  

 

     29  

3. Research  medical  device  methods-­‐  This  research  will  look  into  the  current  

methods  used  in  the  development  of  medical  device.    

4. Combine  industrial  design  and  user  interface  methods  with  medical  device  

design  methods.    

5. Research  icons  and  ethnography-­‐  Researching  icons  and  ethnography  will  

allow  the  designer  to  create  a  more  universal  icon.  

6. Build  a  test  user  interface.      

7. Research  environmental  conditions.  

8. Start  writing  the  thesis.    

9. Build  a  prototype  of  a  medical  device.  

10. Redesign  the  user  interface.  

11. Document  the  findings  from  prototype  and  interface.  

12. Build  a  final  Adobe  Flash  interface.  

13. Build  a  final  3D  computer  model  in  Solid  Edge.  

14. Finish  thesis.  

 

1.9.  Anticipated  Outcome  

  The  findings  of  an  approach  to  medical  device  design,  considering  a  second  

life,  should  show  the  need  of  a  universal  interface  in  medical  devices.  The  findings  

should  also  show  the  number  of  medical  devices  that  are  currently  being  used  in  

environments  that  are  not  suited  for  those  devices.  In  addition,  the  outcome  should  

lead  to  better  materials,  and  an  integrated  design  method  for  medical  devices.    

 

     30  

  The  deliverables  of  this  study  will  be  a  3d  Solid  Edge  computer  model,  an  

Adobe  Flash  user  interface,  research  documents,  and  studies  on  environments  and  

liability  of  medical  manufactures.  The  model  will  be  built  considering  the  second  life  

cycle  of  a  medical  device.  The  user  interface  will  be  heavily  based  on  universal  icons  

and  incorporate  the  ability  to  load  multiple  languages.    

  The  long-­‐range  consequences  of  this  research  on  society  should  have  the  

potential  to  affect  many  people.  The  people  that  it  will  affect  the  most  will  be  in  

developing  countries.  However,  the  integration  of  this  approach  in  medical  device  

design  should  also  improve  the  products  in  the  developed  world.  Enclosing  the  

effects  of  the  research  should  have  the  potential  to  improve  the  health  and  safety  of  

many  people.      

 

 

 

 

 

 

 

 

 

 

 

 

 

     31  

 

 

 

Chapter  2  Research  

2.1.  Introduction  

  The  following  chapter  will  cover  the  research  and  design  development  used  

in  developing  an  approach  for  designing  medical  devices  considering  a  second  life.    

The  outcome  should  reveal  a  new  approach  that  is  a  more  effective  and  able  to  

foresee  problems  in  the  second  life  of  a  medical  device.  The  intention  of  this  

approach  is  that  the  end  product  will  be  an  overall  better  product.  

  Following  this  approach  could  allow  the  designer  to  create  a  device  that  

would  be  able  to  adapt  to  different  environments  thus  extending  its  useful  life.  

Designing  a  device  for  the  worst-­‐case  scenario  will  allow  the  device  to  perform  at  a  

higher  level  in  developed  regions,  as  well.  

  To  foresee  potential  problems  and  develop  a  medical  device  to  hold  up  to  

extreme  elements,  one  must  seek  out  information  on  these  environments.  This  

research  starts  with  what  happens  to  donated  medical  devices.  

     

2.2.  Donated  Medical  Devices  

2.2.1  Project  C.U.R.E.  

  Researching  donated  medical  devices  is  not  something  one  could  find  in  a  

book.  To  find  the  best  information  on  the  subject,  it  is  more  effective  to  contact  

organizations  that  receive  and  redistribute  donated  medical  devices.  For  the  

 

     32  

purpose  of  this  study,  the  researcher  approached  two  organizations  in  this  field:  

Project  C.U.R.E  and  Healing  Hands  International.  

 

Figure  1  Project  C.U.R.E  Nashville,  TN  

  Based  in  Nashville,  Tennessee,  Project  C.U.R.E.  is  the  world’s  largest  

distributor  of  used  medical  equipment  and  supplies,  and  has  delivered  supplies  to  

over  120  countries.  Upon  the  first  visit  to  Project  C.U.R.E.,  the  researcher’s  main  

objective  was  to  observe  stored  equipment  that  was  in  the  warehouse.  The  

researcher  returned  to  Project  C.U.R.E.  two  more  times  over  the  course  of  four  

months  to  talk  to  Director  of  Operations  G.  Cox  and  the  biotechs  that  volunteer  

there.    

  While  discussing  with  the  director  the  process  that  Project  C.U.R.E.  goes  

through  and  some  of  the  issues  that  arise  when  sending  medical  devices  to  

 

     33  

developing  countries,  the  researcher  was  able  to  discover  some  major  issues  that  

many  non-­‐profits  face.    One  of  these  issues  is  that  since  most  manufacturers  do  not  

support  the  medical  devices  after  the  first  life,  if  something  breaks  on  the  device  or  

it  was  sent  to  the  non-­‐profit  already  faulty,  the  biotechs  cannot  order  new  parts  to  

fix  it.  In  this  case,  the  non-­‐profit  may  have  to  acquire  three  broken  devices  to  make  

one  functional  device.    

  Another  issue  was  a  level  of  appropriateness  of  technology.  The  director  

cited,  as  an  example,  the  use  of  ventilators.  In  Figure  2,  the  figure  shows  a  side  by  

side  of  a  standard  ventilator  and  a  portable  ventilator.    The  director  illustrated  that  

these  two  

Figure  2  Ventilator  Comparison  

devices  both  perform  the  same  function.  However,  the  standard  ventilator  is  more  

costly,  requires  more  maintenance,  is  more  expensive  to  ship,  and  is  more  complex,  

 

     34  

whereas  the  portable  ventilator  costs  less  and  requires  less  maintenance.  The  only  

drawback  is  the  portable  ventilator  has  fewer  features  for  customization.    

  Project  C.U.R.E.  accepts  many  donations  from  hospitals,  manufacturers  and  

general  practitioners  by  posting  a  “needs  list”  for  medical  devices  on  its  website.  

Due  to  Project  C.U.R.E.,  being  the  largest  distributor  of  used  medical  supplies  in  the  

world,  their  list  (below)  is  a  strong  indicator  of  devices  that  would  most  benefit  the  

most  from  the  approach  to  medical  device  design  considering  a  second  lifecycle.  

Supplies  Needed  OB/GYN  

-­‐  Infant  incubators  -­‐  Infant  warmers  -­‐  Cribs/bassinets  -­‐  Bili  lights  -­‐  Infant  ventilators  -­‐  Birthing  beds  Operating  Room  

-­‐  Anesthesia  machines  -­‐  OR  tables  -­‐  OR  Lights  -­‐  Electrosurgical  units  -­‐  Ventilator  –  infant  and  adult  -­‐  Bedside  monitors  -­‐  all  types  -­‐  Pulse  oximeters  -­‐  Surgical  microscopes  –  basic  units  Diagnostics  

-­‐  Diagnostic  ultrasounds  -­‐  Standard  X-­‐ray  Units  -­‐  Portable  X-­‐ray  Units  –  including  C-­‐Arm  X-­‐Rays  -­‐  EKG  machines  Laboratories  

-­‐  Analyzers  (all  kinds-­‐  major  and  minor  chemistry,  blood,  etc)  

 

     35  

-­‐  Centrifuges  (hematocrit  and  laboratory)  -­‐  Microscopes  -­‐  Lab  incubator  -­‐  Lab  scales  -­‐  CD  4  machines  for  AIDS  testing  Surgical  instruments  

-­‐  Scalpel  handles  and  blades  -­‐  Retractors  –  large  and  small  -­‐  Scissors  –  Mayo  and  Metzenbaum  –  very  important  -­‐  Needle  holders  –  medium  and  large  -­‐  Kocher  clamps      

After  gathering  background  and  general  information  from  Project  C.U.R.E.,  

the  researcher  began  a  visual  audit  of  the  warehouse  to  discover  some  of  the  devices  

that  were  being  stored  or  awaiting  shipment.  

 

Figure  3  C-­‐arm    

  An  initial  observation  was  a  problem  in  the  user  interface  on  a  C-­‐Arm  

imaging  device.  Figures  3  and  4  show  that  on  the  user  interface,  a  previous  user  had  

written  instructions  with  a  permanent  marker.  The  importance  of  this  image  is  that  

 

     36  

it  shows  the  interface  was  not  properly  designed  for  its  first  intended  user.  The  user  

modified  the  interface  to  make  it  easier  to  reference.  This  occurred,  despite  the  fact  

that  the  user  would  have  also  been  familiar  the  language;  it  was  in  (English)  and  the  

user  would  have  been  at  an  American  hospital.  

Figure  4  Siemens  C-­‐Arm  Sharpie  

This  scenario  showed  a  problem  in  the  first  use  of  the  medical  device.  This  

machine  will  most  likely  be  sent  to  a  developing  country  where  the  first  language  

will  not  likely  be  English.    If  the  first  user  had  a  problem  with  the  user  interface,  the  

initial  problem  would  likely  be  magnified  in  a  foreign  country,  where  the  user’s  first  

language  is  different  than  that  of  the  medical  device.    

  Both  of  the  previous  examples  (ventilator  and  C-­‐Arm  interface)  provide  

documentation  of  a  major  issue  in  medical  device  design.  The  researcher  did  take  

into  consideration  that  the  C-­‐Arms  in  the  warehouse  of  Project  C.U.R.E.  were  three  

 

     37  

to  five  years  old.  However,  the  researcher  also  analyzed  images  from  Professor  Shea  

Tillman  who  has  also  encountered  this  issue  in  his  observational  research  while  

developing  current  medical  devices.  

Figure  5      New  C-­‐Arm  Photos  courtesy  of  Shea  Tillman  

Figure  5  shows  a  new  state-­‐of-­‐the-­‐art  C-­‐Arm  in  an  American  hospital  with  

English  speaking  doctors  and  bio-­‐technicians  with  handmade  annotations  again  

added  to  the  interface.  This  issue  seems  to  a  problem  through  multiple  generations  

of  this  device  in  at  least  three  medical  device  manufacturers.  This  issue  has  caused  

the  researcher  to  consider  exactly  how  important  the  role  of  feedback  is  after  the  

manufacturer  has  sold  a  device.  This  research  will  include  this  in  the  considerations  

for  an  approach  to  designing  medical  devices  considering  a  second  life.  

 

     38  

 Figure  6  Information  Panel  on  C-­‐arm  imaging  machine  

  An  additional  problem  the  researcher  found  was  on  the  same  C-­‐Arm  imaging  

machine,  documented  in  Figure  6.  Figure  6  shows  an  image  of  the  user  interface  

diagram  permanently  mounted  on  the  side  of  the  lower  housing.  The  diagram  is  

helpful  if  the  physician’s  native  language  is  English;  however,  if  the  user’s  native  

language  were  different  from  that  of  the  diagram,  it  would  be  of  no  use.  

  The  last  finding  from  the  researcher  refers  back  to  the  literature  review.  

Jacobson  and  Murray  (2007)  states  that,  on  the  design  of  incubators:  

 A  number  of  newborn  infants  were  inadvertently  given  pure  oxygen,  in  spite  

of  the  intention  being  to  administer  only  air.  That  is,  21%  oxygen.  The  cause  

was  a  poorly  designed  incubator,  which  was  equipped  with  a  mixing  gauge  

that  was  very  hard  to  read  when  the  dial  was  at  the  maximum  100%  oxygen  

level.  In  spite  of  this  poor  design,  the  clinicians  directly  involved  with  patient  

 

     39  

care  were  responsible  for  these  errors.    

Figure  7  documents  the  placement  of  the  user  interface  control  panel  on  one  

such  incubator  discovered  at  Project  C.U.R.E.  The  image  shows  that  the  placement  of  

the  main  control  interface  would  be  at  hip  level  with  the  user.  Hypothetically,  the  

user  may  be  able  to  inadvertently  hit  a  control  button  with  their  hip  while  handling  

an  infant  inside  the  incubator,  potentially  giving  the  infant  too  much  oxygen.      

The  second  problem  with  the  placement  of  the  control  panel  is  that  it  is  so  

low  and  the  buttons  and  screen  are  too  small.    The  user  would  have  to  kneel  down  

to  properly  use  and  read  the  screen.  If  the  control  panel  would  have  been  placed  at  

an  angle  such  that  it  is  pointing  up  to  the  user,  it  would  have  allowed  the  user  to  be  

able  to  see  the  screens  and  button  more  easily,  while  potentially  avoiding  incidental  

bumping  of  the  control  surface.      

 Figure  7  Incubators    

 

 

     40  

Figure  8  Philips  C-­‐Arm  

Figures  8,  9,  and  10  show  another  Philips  C-­‐Arm  that  has  been  written  on  in  

different  areas  of  the  device  to  improve  usability,  illustrating  that  this  problem  did  

not  occur  on  just  one  device.  After  looking  through  the  warehouse  on  three  different  

 

     41  

occasions,  the  researcher  found  a  number  of  devices  had  to  be  modified  by  the  user  

to  make  the  user  interface  and  levers  more  comprehendible.    These  problems  were  

not  limited  to  any  single  manufacturer,  but  seemed  to  be  a  common  problem  on  

many  different  devices.

Figure  9  Philips  C-­‐Arm  Lever  

 

     42  

Figure  10  Philips  C-­‐Arm  Interface  

  The  researcher  found  that  the  majority  of  the  problems  were  within  the  user  

interface.  The  findings  from  Project  C.U.R.E.  confirmed  the  need  for  a  revised  

approach  to  medical  device  design  that  includes  redesigning  the  interface.    

 

2.2.2  Healing  Hands  International    

 

 

Figure  11  Healing  Hands  International  Nashville,  TN  

  Healing  Hands  International,  or  HHI,  is  a  non-­‐profit  organization  that  

 

     43  

provides  international  aid  in  many  areas,  including  agriculture,  disaster  relief,  

education,  food  aid,  medical  aid,  shipping  and  water  wells.  The  researcher’s  

objective  in  visiting  HHI  was  to  acquire  more  information  on  devices  HHI  sends  

internationally  and  the  methods  they  use  to  send  the  device  to  the  locations.  

Furthermore,  the  researcher  wanted  to  gain  knowledge  of  what  were  the  most  

common  medical  devices  sent  abroad.  Through  HHI’s  years  of  experience,  they  were  

able  to  give  significant  insight  to  the  second  life  of  a  medical  device.  

  During  the  time  the  researcher  spent  at  HHI,  the  researcher  met  with  the  

Director  of  Operations  J.  Smith.  Smith  and  the  researcher  discussed  the  process  of  

donating  medical  equipment,  how  logistics  works  in  shipping  medical  devices  to  

developing  countries  and  some  of  the  issues  facing  non-­‐profit  medical  suppliers.  The  

researcher  learned  that  these  non-­‐profits  would  send  more  high-­‐tech  devices  to  

developing  countries  if  they  were  still  supported  by  the  manufacturer  and  if  the  

receiving  facility  was  equipped  to  handle  a  high-­‐tech  device.    

  The  researcher  also  learned  that  the  majority  of  devices  HHI  sends  out  are  

low-­‐tech  devices  rather  than  including  the  Class  III  devices  that  Project  C.U.R.E.  

sends.  The  low-­‐tech  devices  that  are  sent  out  are  echocardiograms,  suction  pumps,  

anesthesia  machines,  ultrasounds,  diagnostic  echocardiograms  and  tables.  Many  

non-­‐profits  send  a  lot  of  simple  equipment  such  as  operation  room  tables,  beds,  

wheel  chairs,  splints,  and  crutches.  HHI  would  also  like  to  have  more  medical  

devices  that  do  not  require  electricity.  Figure  12  shows  some  of  the  devices  that  HHI  

currently  has  in  their  warehouse.  

   

 

     44  

 Figure  12  Anesthesia  Machine  and  Beds  

 

2.2.3  Medical  Device  Life  Cycle  

  The  life  cycle  of  a  medical  device  might  be  different  than  most  perceive.  

Medical  devices  are  significant  tools  for  helping  people  with  common  or  urgent  

medical  needs.  These  devices  are  readily  available  to  people  in  the  developed  world  

because  the  infrastructure  of  the  developed  world  allows  them  to  provide  their  

citizens  with  medical  devices.    

  However,  in  the  underdeveloped  or  developing  world,  these  devices  would  

not  be  so  available  to  the  citizens  of  that  country.  This  creates  an  opportunity  for  

non-­‐profit  medical  suppliers  and  medical  device  resellers  to  take  used  or  

overstocked  devices  from  developed  countries  and  re-­‐distribute  them  in  developing  

countries.  Table  2  shows  the  typical  life  cycle  of  a  medical  device.  As  shown  in  the  

table,  the  medical  devices’  life  cycle  typically  does  not  end  after  the  first  use.    

 

     45  

 

Table  2  Lifecycle  of  a  Medical  Device  

  After  the  first  use,  the  device  typically  has  three  paths  in  which  it  can  go.  The  

first  path  leads  the  device  to  a  landfill  or  recycling.  This  happens  because  the  device  

cannot  be  fixed,  can  no  longer  serve  its  intended  use,  or  because  the  manufacturer  

wishes  to  be  released  from  the  liability  of  an  old  device.  If  this  is  the  case,  the  

manufacturer  will  send  out  a  notice  that  they  will  no  longer  support  the  device  and  

request  the  device  be  disposed  of.  

The  next  path  that  a  medical  device  could  follow  after  the  first  life  cycle  

would  be  that  of  a  reseller.  A  reseller  acquires  used  medical  devices  and  then  sells  

the  devices  to  other  hospitals  or  clinics.      

 

     46  

If  a  medical  device  is  not  sent  to  be  recycled  or  if  a  reseller  does  not  acquire  

it,  then  most  likely  the  device  will  be  sent  to  a  non-­‐profit  medical  supply  

organization  for  repurposing.  From  that  point  the  non-­‐profit  will  clean  or  refurbish  

the  device  to  get  it  ready  to  send  to  a  developing  or  second-­‐world  country.  After  the  

device  is  sent  to  one  of  these  locations,  the  device  is  typically  used  until  it  is  no  

longer  functional  or  needs  repair.  Because  of  the  location  and  lack  of  biotechs  in  the  

regions,  the  devices  are  typically  not  repaired  and  will  sit  in  a  closet  or  be  sent  to  a  

landfill.        

 

2.3.  Environmental  Conditions  

  While  environmental  conditions  are  not  as  critical  for  Class  I  and  II  devices,    

they  still  need  to  be  considered.  Environmental  conditions  can  play  an  important  

role  in  the  donation  of  a  medical  device  if  it  is  a  Class  III  device.  The  environmental  

condition  of  specific  region  is  not  only  limited  to  the  geography  and  weather.  They  

also  include  the  local  climate,  the  region’s  electrical  usage,  the  condition  of  the  clinic  

or  hospital,  the  immediate  population,  security  of  the  environment,  and  support.    

 

2.4.  Medical  Device  Design  Methods  

  A  typical  methodology  for  medical  device  design  is  similar  to  industrial  

design  methodology  in  that  they  both  incorporate  a  circular  design  process.    Drawn  

from  the  FDA  website  in  the  white  paper  article  titled  “Medical  Device  Innovation  

Initiative”  (2011),  Table  3  shows  an  example  of  the  medical  device  design  process.    

This  process  shows  that  the  methods  used  by  medical  device  designers  and  

 

     47  

industrial  designers  are  similar  as  once  the  product  goes  through  pre-­‐clinical,  the  

product  is  revisited  for  a  bench  study,  and  then  the  redesign  and  new  development  

begins.  After  the  changes  have  been  validated  and  the  final  design  is  set,  it  is  then  

time  for  the  device  to  go  through  clinical  studies.  After  the  clinical  studies  are  

completed,  the  device  goes  through  another  circular  process  to  analyze  the  findings.  

Based  on  those  findings,  the  product  goes  through  another  redesign.  Then  the  

development  team  studies  the  changes  and  collects  data.  If  the  device  has  met  all  the  

requirements,  it  will  then  go  through  a  regulatory  commission  for  the  final  decision  

to  bring  the  device  to  market.  If  the  device  does  not  pass,  it  can  go  through  the  

clinical  stage  again.

 Table  3  Medical  Device  Innovation  Initiative  White  Paper  (2011)      

This  process  is  similar  to  the  industrial  design  process;  however,  the  medical  

device  design  process  is  more  about  developing  a  device  that  functions  and  

completes  a  specific  goal.  This  method  is  designed  to  bring  safe  devices  to  the  

marketplace.  Because  of  this,  the  technical  function  of  the  device  is  what  is  primarily  

 

     48  

being  monitored  during  the  design  and  testing  part  of  the  medical  device  design  

process.  The  human  function  is  not  emphasized  as  heavily  in  this  method.  In  

industrial  design  the  device  is  supposed  to  serve  four  functions:  production  

function,  human  function,  marketing  function,  and  technical  function.    

 

2.5.  Industrial  Design  Methods  

  Table  4  shows  a  typical  industrial  design  process;  different  products  will  

require  minor  changes  or  additions  to  this  method.  This  method  goes  through  

design  phases  and  can  be  a  circular  design  process  since  most  designers  will  

continue  to  sketch,  test,  and  look  for  problems  through  all  phases  of  the  design.    

In  this  study  the  researcher  will  create  a  new  approach  by  applying  medical  

device  design  methods  to  the  industrial  design  methods  while  adding  

considerations  for  the  second  life.  The  process  will  allow  the  researcher  to  identify  

the  problem,  research  the  problem,  develop  concepts  to  solve  the  problem,  

communicate  the  findings,  and  present  a  solution.        

 

     49  

 Table  4  Industrial  Design  Process  

 

  The  industrial  design  process  involves  going  through  four  phases,  and  the  

designer  must  consider  that  the  artifact  or  product  must  achieve  four  functions.  

These  functions  are  the  human,  technical,  marketing,  and  production  functions.    

The  human  function  satisfies  the  users’  needs.  Technical  function  insures  that  the  

 

     50  

product’s  relationship  between  the  components,  parts,  and  subsystems  are  correct.  

The  technical  function  also  requires  the  designer  to  check  materials  and  cost.  

Market  functions  serve  as  a  way  for  a  designer  to  calculate  a  reasonable  return  on  

investment  for  the  product.  Lastly,  the  production  function  requires  the  designer  to  

ensure  that  the  product  can  be  produced  in  a  reasonable  manner.    

 

2.6.  Medical  Regulation  

  While  medical  devices  are  generally  created  to  help  people,  throughout  the  

history  of  medical  devices  there  have  existed  many  instances  where  they  have  

caused  harm.  As  a  result,  medical  regulations  governing  medical  devices  were  

implemented  by  different  countries  to  protect  their  citizens.  In  the  U.S.,  the  Food  

and  Drug  Administration  monitors  and  approves  new  medical  devices.  

  In  the  U.S.  a  Class  III  device,  such  as  a  C-­‐Arm  imaging  machine,  requires  a  

pre-­‐market  approval  (PMA).  PMAs  can  take  up  to  several  years  to  complete.  Once  

complete,  the  PMAs  can  be  submitted  to  the  FDA  for  approval.    

  Tables  5  and  6  show  the  processes  of  the  science  and  regulation  design  cycle  

for  most  medical  devices.  The  cycles  depicted  are  not  the  full  picture  of  the  science  

and  regulation  process,  since  in  many  cases  the  process  is  more  advanced  than  the  

cycles  show.  That  said,  the  depictions  do  cover  some  of  the  major  topics  

manufacturers  must  cover.    Most  manufacturers  have  a  full  staff  of  engineers  and  

scientists  to  cover  regulations  and  approvals.  

 

     51  

 

Table  5  Medical  Device  Science  Cycle

 

     52  

Table  6  Medical  Device  Regulatory  Cycle  

 

2.7.  Market  Landscape  

  Currently  in  the  medical  device  field,  there  are  a  few  main  companies  who  

supply  the  world  with  medical  devices.  Table  7  shows  the  companies  and  the  percent  of  

 

     53  

the  market  that  each  one  held  as  of  2006.  These  companies  are  crucial  to  this  study  

because  the  majority  of  these  medical  devices  that  come  from  these  companies  are  

what  end  up  being  donated  to  non-­‐profits  and  world  relief  agencies.  If  only  a  small  

number  of  these  companies  would  better  consider  the  second  life  of  their  devices,  it  

could  improve  the  device  in  many  areas,  such  as  the  first  use,  the  process  of  donating,  

the  device  interface,  and  possibly  streamlined  function  of  the  device.      

In  regards  to  this  study,  using  a  C-­‐Arm  Imaging  device  as  an  example,  there  have  

been  advancements  in  this  area  in  recent  years.  However,  the  advancements  have  not  

solved  some  of  the  user  problems  with  the  device.  Currently  in  the  market,  none  of  the  

C-­‐Arms  have  wireless  capability  in  the  form  of  data  transfer  and  printing  images  from  

the  machine.  In  most  cases,  the  devices  use  a  black  and  white  printer  that  is  built  into  

the  monitor  cart.  These  printers  are  similar  to  ultrasound  printers.  The  images  from  

current  C-­‐Arms  are  typically  smaller  than  8.5  by  11  in.  and  the  quality  typically  is  

comparable  to  some  of  the  office  printers  on  the  market  today.      

 

     54  

 

Table  7  Information  Chart  Created  from  Medical  Product  Outsourcing.    (2006)    

2.8.  Materials  

  Materials  are  an  important  part  of  medical  device  design  because  some  

medical  devices  are  worn  in  the  patient’s  body  as  an  implant  or  a  metal  plate  with  

screws,  and  pins.  Because  the  devices  are  in  the  body,  material  selection  or  creation  

 

     55  

is  vital  to  the  future  health  of  the  patient.    The  book  Medical  Device  Materials  

describes  this  situation,  saying  that  the  use  of  metals  for  fixation  of  broken  bones  

has  a  long  history    (Shrivastava,  2004).  

  When  describing  the  history  of  using  metal  to  mend  human  bones,  Medical  

Device  Materials  also  states  that  the  early  metals  “corroded,  they  broke,  some  

simulated  adverse  reactions,  yet  some  survived  for  many  years”  (Shrivastava,  ed.,  

2004).  Since  then,  many  advancements  have  occurred.    

  For  this  study  the  device  being  used  as  an  example  is  a  C-­‐Arm  so  the  choice  of  

device  materials  is  not  as  crucial  for  the  external  components.  The  C-­‐Arm  does  have  

advanced  materials  for  the  internal  components.  In  a  typical  manufacturing  

environment,  the  electrical  engineers  and  material  engineers  would  design  these  

components.  However,  these  components  will  not  be  addressed  in  this  study.  

  For  the  external  components,  the  device’s  materials  should  be  non-­‐porous,  

highly  durable  and  non-­‐conductive.  The  materials  used  for  the  external  components  

of  the  C-­‐Arm  Prototype  would  consist  of  aircraft  grade  aluminum,  ABS  plastic,  

rubber,  and  spectar.  

  In  this  study  the  researcher  will  not  build  a  working  prototype.  However,  

these  materials  will  be  applied  to  the  3d  computer  model.    

 

2.9.  User  Interface  

2.9.1  Principles  and  Considerations  

  In  this  research,  the  user  interface  is  a  key  element  in  the  development  of  the    

C-­‐Arm  medical  device.  The  user  interface  must  be  aesthetically  pleasing,  work  

 

     56  

efficiently,  and  be  adaptable  for  multiple  users  and  conditions.  To  start  the  

development  of  the  user  interface,  one  must  determine  the  structure,  user  profile,  

and  principles  to  be  integrated  into  the  design.  According  to  Constantine  and  

Lockwood  (1999),  there  are  six  basic  principles  to  developing  a  well-­‐structured  user  

interface.    

-­    The  structure  principle-­‐  The  design  should  organize  the  user  interface  

purposefully  in  meaningful  and  useful  ways  based  on  clear,  consistent  

models  that  are  apparent  and  recognizable  to  users.  Putting  related  things  

together  and  separating  unrelated  things,  differentiating  dissimilar  things  

and  making  similar  things  resemble  one  another.  The  structure  principle  is  

concerned  with  the  overall  user  interface  architecture.  

-­    The  simplicity  principle-­‐  The  design  should  make  simple,  common  tasks  simple  

to  do,  communicating  clearly  and  simply  in  the  user’s  own  language  and  

providing  good  shortcuts  that  are  meaningfully  related  to  longer  procedures.  

-­    The  visibility  principle-­  The  design  should  keep  all  needed  options  and  materials  

for  a  given  task  visible  without  distracting  the  user  with  extraneous  or  

redundant  information.  Good  designs  don’t  overwhelm  users  with  too  many  

alternatives  or  confuse  them  with  unneeded  information.  

-­    The  feedback  principle-­‐  The  design  should  keep  users  informed  of  actions  or  

interpretations,  changes  of  state  or  condition,  and  errors  or  exceptions  that  

are  relevant  to  the  user  through  clear,  concise,  and  unambiguous  language  

 

     57  

familiar  to  users.  

-­    The  tolerance  principle-­  The  design  should  be  flexible  and  tolerant,  reducing  the  

cost  of  mistakes  and  misuse  by  allowing  undoing  and  redoing,  while  also  

preventing  errors  wherever  possible  by  tolerating  varied  inputs  and  

sequences  and  by  interpreting  all  actions  reasonably.  

-­    The  reuse  principle-­  The  design  should  reuse  internal  and  external  components  

and  behaviors,  maintaining  consistency  with  purpose  rather  than  merely  

arbitrary  consistency,  thus  reducing  the  need  for  users  to  rethink  and  

remember.  

  Using  these  principles  in  the  design  process  will  help  the  designer  to  develop  

a  better  end  product  for  the  user.  Along  with  the  principles,  the  designer  may  have  

additional  specific  considerations  to  integrate  into  the  process.  In  the  development  

of  the  test  user  interface,  five  other  considerations  will  be  applied  to  the  current  

principles  already  being  used.  

-­    The  human  consideration-­‐  This  consideration  is  a  reminder  to  start  with  the  

needs  of  the  user,  not  the  device.  It  is  important  not  to  design  for  benefit  of  

the  device,  but  to  design  to  help  the  end  user.    

-­    Simple  is  better-­‐  The  interface  should  be  as  simple  as  the  device  will  allow.  

-­    Large  buttons-­‐  The  icons  and  buttons  used  in  the  interface  must  be  easily  

recognizable  to  the  human  touch.  Small  buttons  will  make  the  device  harder  

 

     58  

to  use.  

-­    Intuitive-­  If  the  designer  chooses  to  have  gestures  in  the  user  interface,  they  must  

make  sense  within  the  context  of  use.  The  designer  must  decide  if  the  

function  is  relevant  to  the  motion.    

-­    Reduce  Unnecessary  Steps-­  The  designer  can  try  to  minimize  the  steps  required  

to  complete  a  task.  This  will  simplify  the  workflow  and  save  the  user  time  

when  complete  a  task.  

  Using  these  principles  and  considerations  in  the  design  process  of  the  user  

interface  will  give  the  designer  the  foundation  for  the  development  of  the  user  

interface.  With  this  in  mind,  the  designer  will  have  to  better  understand  the  user  

before  starting  the  design.    

 

2.9.2  User  Profile  

  Defining  the  user’s  needs  early  in  the  design  process  may  help  the  designer  

define  the  product’s  design.  Also,  by  understanding  the  user’s  needs,  behaviors,  and  

goals,  the  designer  can  make  sure  that  in  the  process  he  or  she  has  evaluated  and  

fulfilled  the  user’s  needs.  This  researcher,  in  conjunction  with  Assistant  Professor  

Shuwen  Tseng  of  Auburn  University,  developed  the  following  profile  over  a  three-­‐

day  period.  

 

What  are  the  user’s  goals?  

 

     59  

Most  Users  are  Doctors  or  Nurses  

What  are  the  user’s  skills  and  experiences?  

The  majority  of  users  are  likely  going  to  be  highly  educated,  detail  oriented,  and  use  

the  products  on  other  patients.    

What  are  the  user’s  needs?  

The  user  is  going  to  need  to  reduce  error  and  something  that  does  not  require  a  lot  

of  steps  to  get  to  the  end  result.  The  user  is  also  going  to  need  the  device  to  have  the  

ability  to  be  specific  and  have  a  form  of  communication  to  confirm  the  actions  of  the  

user.        

User  Behaviors  and  Goals  

The  user  will  be  focused,  precise  and  often  destination-­‐driven.  The  user  will  value  

the  speed  and  efficiency  of  an  interface.  The  user  will  be  driven  by  need.    

Content  

The  user  of  a  medical  device  will  be  looking  at  the  Content  as  a  Reference.  This  user  

is  also  known  as  the  librarian.  For  this  user,  a  content  delivery  strategy  must  be  

designed  to  serve  discrete  bits  of  information  the  user.  Likewise,  the  reference  

delivery  takes  on  the  persona  of  a  librarian  with  this  user.    The  reference  delivery  

must  be  believable,  and  would  be  connected  to  a  much  larger  community  of  

information.  The  reference  source  is  driven  to  provide  as  much  information  as  

possible  in  as  few  possible  steps.  

Features  Exposed  

The  user  of  a  medical  device  would  like  for  the  features  to  have  Few  Exposures  of  

the  hardware.  The  user  would  rather  have  the  features  built  into  software.  

 

     60  

User  Autonomy  

The  user  will  have  less  authorship  over  the  interface.  However,  being  a  doctor  may  

require  more  authorship  at  certain  points  of  the  interface.  

           Focus  

The  user  of  medical  devices  will  prefer  the  focus  to  be  Static  on  the  user  interface.  

State  Visualization  

The  user  interface  of  a  medical  device  should  be  Clear/  Many  Landmarks.  

Grammar  

The  grammar  of  a  medical  device  should  Follow  Convention.  

       Coherence  

The  interface  of  a  medical  device  should  be  More  Consistent  than  most  of  the  typical  

electronic  devices.  

  This  user  profile  will  give  the  designer  an  insight  to  the  user  and  what  the  

user  needs,  wants,  and  will  likely  be  accustomed  to.    In  addition  to  the  

considerations  for  the  user  interface,  the  designer  will  also  have  to  follow  key  

principles  in  development  of  the  user  interface.    

 

2.9.3  User  Interface  Principles  Charting  

  The  user  interface  principle  chart  is  designed  to  make  sure  that  the  design  

fits  the  user.  The  chart  would  allow  the  designer  to  designate  a  scale  of  importance  

in  designing  the  interface  based  for  the  user’s  needs.  For  example,  the  principle  of  

the  ability  to  learn  includes  both  slow  and  quick  learning;  the  researcher  rated  the  

 

     61  

ability  to  learn  as  nine.  This  means  the  interface  needs  to  be  designed  so  the  user  

can  learn  the  functions  very  quickly.    

Some  operating  systems  and  programs  can  take  months  to  fully  learn,  but  the  

system  or  interface  in  this  study  needs  to  allow  the  user  to  fully  understand  the  

operations  within  one  to  five  days.  Based  on  the  user’s  education  and  training,  it  

should  be  easy  for  the  user  to  understand  all  aspects  of  the  operation  of  the  

interface.  

 Principle  of  Ability  to  Learn  

 1   2   3   4   5   6   7   8   9   10  

   

   Slow  learning                                                                                                                                                                                                  Quick  learning        Principle  of  Coherence  

 1   2   3   4   5   6   7   8   9   10  

   

   Weak                                                                                                                                                                                                                                                      Strong        Principle  of  Latency  Reduction  

 1   2   3   4   5   6   7   8   9   10  

   

   Multi-­‐tasking                                                                                                                                                                                                        Consistent  

 

     62  

     Principle  of  Feedback  

 1   2   3   4   5   6   7   8   9   10  

   

   Not  Obvious                  Obvious  Feedback        Principle  of  Tolerance  

 1   2   3   4   5   6   7   8   9   10  

   

   Rigid                                                                                                                                                                                                                                              Flexible        Principle  of  Reuse  

 1   2   3   4   5   6   7   8   9   10  

   

   Manual                                                                                                                                                                                                    Auto-­‐save      

 

 

 

 

 

 

     63  

 

 

 

Chapter  3  Development  of  a  C-­Arm  Imaging  Machine  Considering  a  Second  Life  

3.1.  Introduction  

  In  the  medical  device  design  field,  there  are  many  methods  to  designing  a  

medical  device.  Each  method  has  its  own  advantages,  and  many  companies  develop  

their  own  methodology  over  time  through  trial  and  error.  Furthermore,  the  

companies  may  use  different  methods  because  the  devices  they  produce  fall  under  

different  classifications.  Table  8  shows  the  FDA  classification  of  medical  devices  into  

three  different  categories,  those  being  Class  I,  Class  II,  and  Class  III.    For  instance,  a  

method  for  Class  I  devices  may  not  work  for  Class  III  devices.      

   

 Device  Class  and  Regulatory  Controls  

-­‐      Class  I  General  Controls   With  Exemptions   Without  Exemptions  -­‐      Class  II  General  Controls  and  Special  Controls   With  Exemptions   Without  Exemptions  -­‐      Class  III  General  Controls  and  Premarket  Approval  

 Table  8  Device  Classifications  (FDA,  2002)  

 

The  C-­‐Arm  is  classified  as  a  Class  III  device.  Because  this  device  has  the  

 

     64  

potential  to  harm  the  operator  and  patient,  it  does  require  pre-­‐market  approval.    

Taking  this  into  consideration,  the  device  that  is  developed  in  this  approach  will  use  

the  C-­‐Arm  components  that  are  already  approved  and  in  the  market  place.  The  

device  will  be  developed  using  the  methodology  of  industrial  design  and  medical  

device  design,  with  considerations  of  the  second  life  of  the  device.    

     

3.2.  Second  Life  Approach  

  The  approach  will  have  many  considerations  to  ensure  that  the  medical  

device  will  perform  more  efficiently  in  the  first  life  as  well  as  the  second  life.  The  

following  list  shows  the  categories  broken  down  into  considerations  that  will  be  

applied  in  the  development  process.  The  researcher  will  only  focus  on  four  

categories  due  to  time  limitations,  but  still  mention  parts  of  other  categories.    

   

 

Categories:                                                                                                                                                                                                                                                                                                      

       

-­‐    Environment                                          

-­‐    Electricity    

-­‐    Language    

-­‐      Need                                                                                        

-­‐    Resources      

-­‐      Maintenance      

-­‐    Device  Classification    

-­‐    Operators      

-­‐    Security  

 

 

 Figure  13  Category  Examples  

 

 

     65  

  The  four  considerations  that  the  researcher  will  focus  on  will  include  

environment,  language,  operators,  and  security.  The  considerations  for  electricity,  

need,  resources,  maintenance,  and  device  classification  are  needed,    but  as  stated  

before  due  to  limitations  these  considerations  will  only  be  mentioned  throughout  

the  study.  

Environment-­‐  

Facility-­‐  What  is  required  of  a  facility  for  this  device  to  operate?  

Region-­‐  What  is  required  of  a  region  to  support  this  device?    

Compliant-­‐  What  are  national  policies  and  regulations?  

The  C-­‐Arm  imaging  device  will  require  a  fairly  high-­‐tech  surgery  center.  Most  

clinics  in  developing  regions  could  not  support  a  device  such  as  this.  The  region  

requires  the  ability  to  train  staff  and  technicians  to  operate  the  device.  Also  the  

region  must  have  a  stable  electrical  system  to  operate  the  device.  If  the  electrical  

grid  is  unstable,  a  generator  must  be  on  site  that  is  capable  of  supporting  the  device.  

Most  regions  will  require  documentation  for  imaging  or  nuclear  medical  devices.    

 

Language-­‐  

Multiple  Languages-­‐  What  are  the  main  languages  that  need  to  be  included  in  

the  device  if  it  is  digital?    

Alterations-­‐  If  the  device  is  not  based  around  a  digital  interface,  can  the  

interface  be  altered  for  other  languages?  

  For  the  purpose  of  this  study  only  English  and  Spanish  languages  will  be  

demonstrated.  However,  for  a  manufacturer  it  might  be  beneficial  to  include  the  

 

     66  

majority  of  the  major  languages.  This  study  has  documented  devices  that  have  been  

altered.  Some  device  does  not  include  a  digital  interface  that  would  allow  change.  In  

that  case  the  manufacturer  might  include  items  for  intentional  alterations  such  as  

templates.    

Operators-­  

What  are  minimal  educational  requirements  for  the  operator  to  use  the  

device?    

Can  the  device  be  designed  to  support  the  varying  size  of  the  operators?    

Is  the  device  designed  in  a  way  that  it  could  not  harm  the  operator?  

The  minimum  requirements  to  operate  a  C-­‐Arm  device  include  being  a  

certified  technician,  a  physician  or  surgeon,  or  a  bio  technician.  For  this  study  the  

researcher  will  investigate  the  size,  adaptability,  and  safety  of  the  operator.    

 

Security-­  

  Are  patients’  files  secure  in  the  hospitals  of  the  developing  world?  

If  a  wireless  device  is  used  what  security  measures  need  to  be  taken  to  

ensure  that  the  device  will  not  be  compromised  by  outside  sources?  

  The  researcher  plans  to  create  a  secure  network  that  would  allow  critical  

files  to  be  safe.  Also  the  device  will  be  developed  will  limit  the  chance  of  the  device  

being  compromised.  

     

  The  other  considerations  or  categories  can  be  checked  by  following  the  flow  

charts  in  Table  9  and  Table  10.  These  charts  go  over  the  process  of  donating  medical  

 

     67  

devices.  Table  9  shows  the  process  a  donator  would  go  through.  The  process  

includes  a  needs  assessment,  critical  analysis,  donation  plan,  donor  requirements,  

and  check  list  that  is  required  of  the  recipient.  The  requirements  go  over  location,  

environment,  management,  training,  maintenance,  and  resources.  Table  12  breaks  

down  the  process  in  to  specific  categories  and  lists  more  detailed  information  on  the  

issues  that  might  occur  during  the  process.  By  knowing  the  typical  issues,  the  donor  

and  the  end  user  might  be  able  to  foresee  certain  problems  and  address  them  before  

the  donation  process  stops.    

 

 

     68  

Table  9  Donation  Process  

 

     69  

 Table  10  End  User  Process  

 

     70  

3.3.  User  Interface  Prototype  

  The  researcher  developed  a  test  user  interface,  using  the  findings  from  the  

research  in  defining  the  considerations  and  principals  for  medical  device  interfaces.  

The  test  interface  refined  the  current  interface  from  the  Siemens  Mobilett  XP  digital  

by  applying  the  research  findings.    

  Figure  14  shows  feedback;  the  scale  on  the  principle  of  feedback  is  ranked  an  

eight.  This  tells  the  designer  that  the  feedback  must  be  obvious.  The  figure  shows  a  

screen  that  is  telling  the  user  that  the  machine  is  loading  a  program.  The  scale  

shows  the  percentage  left  before  the  device  is  ready  to  use.  After  the  device  has  

completed  the  loading,  the  next  screen  appears.  

 

Figure  14  Test  Loading  Screen  

 

     71  

 

Figure  15  Test  Language  Screen  

The  second  screen,  shown  in  Figure  15,  is  a  language  screen,  which  allows  

the  user  to  choose  the  language  in  which  to  use  the  device  interface.  This  allows  for  

easy  set  up  if  the  device  were  to  be  sent  to  a  different  country  with  a  different  

language  than  it  was  produced  for  in  the  first  life  cycle.  

 

 

     72  

 

Figure  16  Test  Selection  

Figure  16  displays  a  welcome  screen.  The  welcome  screen  will  allow  the  user  

to  identify  what  type  of  user  they  are.  At  this  point,  the  user  will  choose  whether  he  

or  she  is  a  doctor  or  nurse.  This  will  allow  the  user  to  set  up  a  custom  profile.  

 

     73  

 

Figure  17  Test  Profile  1      

 

     74  

 

Figure  18  Test  Profile  2  

    Figures  17  and  18  show  where  the  user  will  develop  his  or  her  profile.    The  

profile  would  include  a  photo,  personal  information,  and  hospital  identification  

number.  The  arrow  will  direct  the  user  to  the  next  screen,  represented  in  Figure  18.  

 

     75  

 

Figure  19  Test  Home  Screen  

Figure  19  is  the  home  screen  for  Mobelett  XP  Digital  imaging  screen.  The  

home  screen  would  include  a  calendar,  schedule,  add  patient  tab,  files,  address  book,  

research,  current  patient  info,  settings,  and  computer.  

 Figures  20  and  21  show  how  the  user  would  add  a  patient.  The  save  button  

at  the  bottom  right  of  the  screen  will  confirm  the  information  has  been  saved.  The  

information  would  be  saved  on  the  server  and  be  accessible  from  other  machines  in  

the  hospital  that  require  patient  information.  Figure  22  shows  that  the  patient  

information  has  been  loaded  on  the  machine.  

 

 

     76  

 

Figure  20  Test  Add  Patient    

 

 

 

     77  

 

Figure  21  Test  Patient  Information  

 

     78  

 

Figure  22  Test  Confirmation  

Figure  23  shows  what  the  user  would  see  after  clicking  on  the  scan  button.  

Once  that  happens  a  “take  image”  button  will  come  up.  The  user  will  then  click  that  

button.  Figure  24  shows  the  scan  on  the  screen.  There  is  a  save  button  on  the  

bottom  left  corner.  After  saving  the  image  the  user  would  then  exit  back  to  the  home  

screen,  shown  by  Figure  25.    If  the  user  is  finished  scanning  the  patient,  he  or  she  

could  close  out  the  screen  and  this  will  take  the  user  back  to  a  home  screen  (shown  

in  figure  26)  where  the  patient  information  is.  

 

 

     79  

 

Figure  23  Test  Take  Image  

 

 

     80  

 

Figure  24  Test  Save  

 

 

     81  

 

Figure  25  Test  Home  Screen  With  Patient  

 

 

     82  

 

Figure  26  Test  Home  Screen  

 

3.4.  Icons  and  Ethnography  

  As  part  of  the  development  of  an  initial  interface,  the  study  of  icons  and  

ethnography  should  be  a  key  consideration.  However,  the  researcher  is  using  icons  

from  the  original  Siemens  design.  The  researcher  has  provided  examples  of  the  

original  icons  in  the  appendix.        

  The  researcher  has  used  these  icons,  because  it  is  assumed  that  Siemens  had  

already  completed  research  in  this  area.  Since  this  was  only  an  initial  interface  mock  

up  the  researcher  did  use  icons  from  different  models  of  Siemens  C-­‐Arms  and  try  to  

create  a  more  cohesive  design.  

  Traditionally,  a  medical  device  manufacturer,  or  the  design  firm  responsible  

 

     83  

for  creating  the  device,  would  research  the  ethnography  of  different  regions  where  

the  device  would  be  used.  Based  on  the  findings,  the  designers  could  create  icons  

that  were  easier  to  understand  in  multiple  regions.  

  Table  11  shows  how  icons  might  be  perceived  in  different  countries.  The  

table  illustrates  what  a  mail  icon  might  look  like  in  six  different  countries  using  

regional  mailboxes,  and  gives  what  is  a  common  solution  for  this  icon,  because  it  is  

universally  recognized.  In  medical  devices,  using  icons  that  are  more  universally  

recognized  could  help  medical  devices  in  their  second  life  cycle.

 

     84  

 

Table  11  Universal  Icons    

 

     85  

3.5.  System  Architecture  Scenarios    

  After  conducting  research,  the  researcher  analyzed  the  results  and  decided  

what  would  be  the  best  method  for  moving  forward  in  the  research.  There  were  four  

different  scenarios  in  which  the  research  could  move  forward.  Also,  there  were  two  

considerations  to  take  into  account.  One  consideration  was  if  the  user  interface  

would  be  a  customizable  or  specialized  interface.  The  second  consideration  would  

be  if  the  interface  would  be  a  wireless  open  adaptable  interface  or  an  adaptable  

interface.  

  The  option  of  the  first  scenario  is  to  relearn  the  current  machines.  The  

current  machines  that  are  in  use  in  developing  countries  need  repairs,  user  manuals,  

and  training  for  locals  to  fix  the  machines,  and  region-­‐  specific  UI.  These  are  

important  problems;  however,  the  current  problem  offers  no  incentive  for  the  

manufacturer  to  fix  the  issues.  These  issues  could  be  solved  by  an  independent  

organization  that  was  willing  to  take  on  some  of  the  current  issues.  

  The  second  scenario  involves  keeping  the  old  machines  and  introducing  new  

technology  to  those  older  devices.  The  iPad  offers  so  many  opportunities  to  create  

custom  user  interfaces  for  different  applications.  The  Cocoa  or  Objective  -­‐C  code  is  

an  open  code  that  any  programmer  can  write  for.  However,  having  a  device  that  the  

user  could  potentially  download  apps  onto  may  be  too  risky  to  run  a  medical  device  

on.    

 

 

     86  

 

Table  12  Systems  Architecture  Scenarios         The  third  scenario  introduces  the  thought  of  having  a  proprietary  device  

with  an  old  device.  Developing  a  proprietary  tablet  that  could  interact  with  the  older  

 

     87  

machines  wirelessly  would  allow  the  software  to  be  more  secure.  The  electrical,  

software,  and  wireless  engineers  would  have  to  develop  a  kit  to  convert  the  old  

machines  to  communicate  with  the  tablet.  

  The  fourth  scenario  would  involve  a  new  medical  device  with  a  proprietary  

tablet.  This  option  would  require  the  development  of  a  tablet  and  a  new  line  of  

equipment  with  wireless  capabilities  considering  the  second  life.  

                   The  tablet  could  include  military-­‐grade  security.  Computer  security  is  directly  

proportional  to  the  complexity  of  the  encryption  algorithm,  the  length  of  its  key  and  

the  complexity  of  the  password  used.  Unfortunately,  the  security  of  a  password  is  

directly  proportional  to  the  difficulty  of  remembering  it,  since  the  best  passwords  

mix  random  upper  and  lowercase  characters  with  numbers  and  punctuation.    

                       Since  the  tablet  is  a  touchscreen  and  it  would  be  a  proprietary  system,  it  could  

have  a  fingerprint  scanner,  making  the  password  problem  become  a  little  less  

significant.  This  would  allow  only  hospital  staff  the  authority  to  use  the  tablet.  

  To  develop  a  device  that  could  have  a  large  impact  on  the  future  of  medical  

devices  and  also  have  an  incentive  for  current  medical  device  manufacturers,  the  

fourth  scenario  was  chosen  for  further  development.  This  new  approach  to  medical  

device  design  will  be  applied  to  a  proprietary  tablet  and  a  new  medical  device.  

 

 

 

 

 

 

 

     88  

3.6.  Sketching  and  Development  

                 Figure  27  Examples  of  Sketches  

  The  researcher  developed  sketches  as  a  visual  display  to  create  the  form  of  

the  C-­‐Arm  device  concept.  Figure  27  shows  examples  of  the  sketches  used  in  this  

study.  The  practice  of  sketching  will  continue  through  the  development  process  in  

 

     89  

this  study.  Using  the  sketch  ideation,  the  researcher  expanded  and  refined  the  

concept  and  built  a  3D  form.    

   

3.7.  Test  Computer  Model  

  The  researcher  developed  an  initial  test  CAD  model  before  constructing  the  

physical  sketch  model.  This  test  model  addressed  some  of  the  major  issues  

commonly  found  in  C-­‐Arm  devices.  Table  13  shows  the  key  improvements  that  were  

addressed.  

 

Table  13  Design  Improvements  

 

     90  

 

Figure  28  C-­‐Arm  Overall  View    

 

 

Figure  29  C-­‐Arm  Interface  

  Figure  29  shows  the  new  interface  and  wireless  tablet.  The  tablet  will  be  

used  as  a  visual  confirmation  tool.  The  tablet  will  also  allow  the  user  to  interact  with  

the  C-­‐Arm  monitoring  system  and  print  images  wirelessly  to  a  printer  in  the  lab  or  

 

     91  

office.  It  will  also  streamline  the  work  flow  and  network  with  the  hospital’s  server  to  

load  patient  information.  Figure  30  shows  the  wireless  antenna  and  the  arm-­‐locking  

mechanism.  The  antenna  will  allow  the  C-­‐Arm  to  send  information  and  images  to  

the  monitoring  system.  The  locking  mechanism  is  a  simple  one-­‐lock  system  to  

unlock  and  lock  the  position  of  the  C-­‐Arm.  Traditional  C-­‐Arms  have  to  be  locked  at  

multiple  points  to  set  the  position  of  the  arm.    

 

Figure  30  C-­‐Arm  Wireless  Antenna  and  Arm  Adjustment    

 

 

 

 

 

 

 

 

 

 

     92  

Figure  31  demonstrates  that  the  user  interface  is  free  of  any  obstructions.  In  

traditional  C-­‐Arms,  the  interface  has  an  obstruction  hanging  over  the  center  of  the  

user  interface,  the  back  arm  of  the  boom  that  allowed  the  C-­‐Arm  to  move  forward  

and  backward  hung  over  the  interface.  Changing  the  design  of  the  C-­‐Arm’s  boom  to  a  

more  mechanical  arm  freed  the  user  interface  from  any  obstructions.    

 

 

Figure  31  C-­‐Arm  Mechanical  Arm  Top  View  

 

 

 

     93  

 

Figure  32  C-­‐Arm  Side  View  

 

 

3.8.  Sketch  Model  

  The  researcher  developed  a  sketch  model  of  the  C-­‐Arm  to  study  the  volume  

of  the  device.  The  researcher  felt  that  the  volume  was  an  important  part  of  the  

study.  Most  of  the  volume  in  a  typical  C-­‐Arm  is  composed  of  electrical  components.  

Since  the  researcher  is  focusing  more  on  the  user  interface  and  the  overuse  of  the  

device,  the  research  started  the  design  based  on  the  physical  size  of  a  Siemens    

C-­‐Arm.    

The  development  of  a  medical  device  requires  many  people  with  different  

types  of  expertise.  For  example,  if  a  corporation  were  to  follow  this  approach  to  

designing  a  medical  device,  the  design  would  be  handed  off  to  different  engineers  at  

different  points  in  the  design  process.  This  would  allow  for  the  electrical  engineers  

 

     94  

to  make  the  proper  updates  or  the  mechanical  engineers  to  make  the  concept  

functional.    However,  due  to  the  limitations  of  this  project,  some  aspects  of  this  

approach  are  going  to  be  assumed  that  would  have  taken  place,  and  only  the  

industrial  design  aspects  will  be  delivered.  

The  sketch  model  will  show  the  researcher  the  physical  volume  of  the  device.  

This  will  allow  the  researcher  to  identify  if  the  model’s  height  is  correct  for  the  user  

interface.  Figure  33  shows  the  frame  of  the  sketch  model.  The  researcher  first  built  

the  frame  out  of  wood.  This  allowed  the  researcher  to  have  a  sturdy  base  for  the  

model.  

 

 

Figure  33  Wood  Frame  

 

  Next  the  researcher  applied  a  foam  core  skin  around  the  wood  frame.  This  

 

     95  

process  gave  the  sketch  model’s  full  volume.  Figure  34  shows  the  application.  Figure  

35  and  36  show  the  final  sketch  model.    After  the  model  was  complete,  the  

researcher  was  then  able  to  find  out  if  the  model  was  thin  enough  to  fit  through  

common  doors,  had  good  weight  distribution,  and  most  importantly,  if  the  interface  

was  at  the  right  height  and  angle.  Because  of  this  model  development,  the  

researcher  discovered  two  key  elements  to  the  design.  First,  the  interface  needs  to  

be  adjustable,  and  secondly,  the  angle  of  the  digital  interface  needs  to  be  increased.  

These  design  features  will  be  incorporated  into  the  final  design  concept.  

 

Figure  34  Foam  Core  Application  

 

 

     96  

 

Figure  35  Final  Foam  Core  Sketch  Model  

 

 

     97  

 

Figure  36  Final  Model  Front  Wheels  

 

     98  

3.9.  Development  of  a  User  Interface  

  Based  on  the  findings  from  the  user  interface  prototype,  the  researcher  

developed  the  final  user  interface.    The  final  user  interface  is  similar  to  the  initial  

prototype.  It  continues  to  incorporate  the  Siemens  imaging  interface  as  a  standard  

from  which  to  develop.  The  workspace  is  a  Siemens  template,  and  the  majority  of  

the  icons  are  Siemens  icons.  Some  of  the  icons  were  altered  to  allow  the  user  to  

better  understand  the  icons’  functions.  In  addition,  the  researcher  used  some  icons  

from  older  devices  that  better  described  the  function  of  the  icon.      

     

 

Figure  37  Load  Screen  

The  dashboard  is  completely  new  to  the  interface  model,  and  the  researcher  

designed  these  icons  to  resemble  those  of  the  workspace  icons.  As  detailed  before,    

Figure  37  shows  that  the  new  interface  also  begins  with  a  loading  screen  to  allow  

 

     99  

the  user  to  know  that  the  machine  or  device  is  on  and  loading  the  information.  

Figure  38  shows  the  second  screen  is  the  language  screen  that  will  allow  the  user  to  

choose  what  language  the  interface  will  be  in.  Figure  39  shows  that  the  third  screen  

is  the  login.  The  login  will  be  the  same  username  and  password  that  the  hospital  

uses  on  their  system.  

 

 

Figure  38  Language  Screen  

 

 

     100  

 

Figure  39  Login  Screen  

 

 

Figure  40  Home  Screen  

After  following  the  initial  steps  to  set  up  the  machine  and  log  in,  the  next  

 

     101  

screen  will  be  the  users’  home  screen  or  dashboard,  shown  in  figure  40.  From  the  

Dashboard,  the  user  can  access  many  tabs.  These  tabs  are  key  functions  of  the  

device,  and  are  C-­‐Arm,  Workspace,  3-­‐D,  Filming,  and  Viewing.  At  any  time,  the  user  

can  come  back  to  the  Dashboard  through  its  tab.    

 

 

 

Figure  41  Load  Patient  Information  

Figure  41  shows  where  the  patient  information  could  be  loaded  from  the  

dashboard.  Figure  42  and  43  show  where  the  user  can  check  the  current  patient’s  

information,  and  the  screen  also  gives  a  visual  confirmation  of  the  patient  

information.    

 

 

     102  

 

Figure  42  Confirmation  of  Patient  Information  

 

Figure  43  Current  Patient  Information  

 

 

     103  

 

Figure  44  Documents  

Figures  44  to  48  are  some  of  the  key  features  to  this  interface.  This  figure  

shows  how  the  tablet  has  stored  documents  on  the  tablet’s  hard  drive.  These  

documents  are  templates  to  change  the  languages  on  the  user  interface.  The  user  

could  save  the  templates  to  a  thumb  drive,  external  hard  drive  or  a  computer  in  the  

network.  Once  the  template  is  saved  to  thumb  drive,  the  user  can  take  it  to  a  local  

printer  to  have  the  template  printed  out.  A  template  can  be  seen  in  Figure  54.  The  

other  documents  that  are  stored  on  the  tablet  include  user  guides,  troubleshooting  

guides,  technician  guides  and  operations  manual.  All  of  the  guides,  manuals  and  

templates  would  be  available  in  many  languages.      

 

 

 

     104  

 

Figure  45  File  Selection  

 

 

Figure  46  Template  Selection  Screen  

 

 

     105  

 

Figure  47  Save  to  a  Location  

 

 

Figure  48  Save  Conformation  

 

 

     106  

 

 

Figure  49  Tablet  Screen  

Figure  49  shows  where  the  tablet  can  be  used  as  a  monitor  for  the  C-­‐Arm  in  

the  workspace.  The  tablet  can  also  view  current  monitors  being  used.  Figure  50  

shows  where  the  tablet  could  view  one  monitor  and  also  save  the  images  from  that  

monitor.  Figure  53  shows  where  the  tablet  could  be  used  as  a  visual  confirmation  

tool  in  the  C-­‐Arm’s  main  interface.  This  confirmation  will  allow  the  user  to  see  the  

changes  as  they  are  made  to  the  settings  of  the  device.  

 

 

 

 

     107  

 

Figure  50  Tablet  Viewing  Other  Monitor    

 

 Figure  51  Tablet  as  a  Monitor  

 

     108  

 Figure  52  Tablet  Image  Saving    

 

 

Figure  53  Interface  Confirmation  Screen  

 

 

     109  

 Figure  54  Spanish  Template  

 

  Table  14  shows  a  flowchart  of  the  major  functions  and  tabs  in  the  user  

interface.  This  chart  demonstrates  how  the  user  would  navigate  to  the  work  tabs.  

Each  work  tab  serves  a  different  function  to  the  C-­‐Arm  as  previously  shown  in  

Figures  39  to  52.      

 

     110  

 

Table  14  User  Interface  Flow  chart  

 

 

 

 

 

 

 

 

 

 

     111  

3.10.  Systems  Design  –  The  Network  

  Table  15  shows  the  systems’  network  and  how  each  device  works  with  one  

another.  This  system  revolves  around  the  tablet  and  the  server.  The  tablet  can  

control  the  C-­‐Arm  and  monitor  cart,  send  information  to  the  server  and  office  

computers,  print  images  from  its  own  screen  and  from  the  screens  of  the  monitor  

cart,  and  retrieve/load  patient  records.  The  server  acts  like  a  hub  to  all  the  devices  

in  the  network.  The  server  would  be  off-­‐site  and  accessed  through  a  VPN  

connection.  Because  of  the  lack  of  electrical  reliability  in  developing  and  second  

world  countries,  the  server  would  need  to  be  off-­‐site  to  protect  patient  information.  

 

     112  

 

Table  15  Systems  Network  

 

 

 

     113  

3.11.  Final  Computer  Prototype  

The  final  computer  prototype  shows  key  changes  that  were  made  to  the  

device.  After  reviewing  the  sketch  model  and  first  computer  model,  the  researcher  

found  areas  that  needed  improvement.    

 

                             Table  16  Further  Improvements    

 

     114  

  In  Table  16,  the  researcher  shows  that  the  first  improvement  was  a  template  

overlay.  This  template  corresponded  to  the  user  interface  download  screen,  which  is  

shown  in  Figures  55  to  59.      

 Figure  55  C-­‐Arm  and  Monitor  Cart  

 

 

     115  

 Figure  56  Side  View  C-­‐arm  

The  second  improvement  that  is  shown  here  is  an  adjustable  interface.  

Having  an  adjustable  interface  would  allow  the  user  to  set  the  device’s  interface  

height  to  a  viewing  level  that  is  comfortable  for  that  specific  user.    

 Figure  57  Raised  Interface  Detail    

 

     116  

 

 Figure  58  Exploded  Interface  Detail  

  As  shown  in  Figure  58,  the  user  interface  features  an  interchangeable  

language  template.  The  template  has  a  1/8  inch  plastic  cover  that  locks  over  it.      

 

 

 

 

     117  

 Figure  59  Detail  of  USB  and  Arm  Lock  

The  third  improvement  is  a  charging  station  for  the  tablet  device  and  a  more  

durable  lock  handle  for  the  C-­‐Arm.    

 

 Figure  60  Detail  of  Foot  Lock  

 

     118  

The  final  addition  to  the  design  was  quickstep  foot  locks  for  the  device.  The  

action  of  the  user  stepping  on  the  lock  pedals  will  lock  the  device’s  wheels,  and  four  

floor  braces  will  come  down  to  support  the  device.    

 Figure  61  C-­‐arm  Turned  

 

 Figure  62  Monitor  Cart  Hero  

 

     119  

The  monitor  cart  is  designed  to  be  thinner  than  a  traditional  monitor  cart  

and  allows  the  user  to  adjust  the  height  as  highlighted  in  Figure  63.  The  slim  design  

will  allow  for  easier  storage  and  transportation  of  the  device,  while  the  adjustable  

height  makes  the  cart  more  user-­‐friendly.    

 Figure  63  Monitor  Cart  Back  View    

The  monitor  cart  was  also  designed  to  support  wireless  and  wired  operation  

devices  such  as  a  keyboard  and  a  mouse.  This  device  would  be  sold  with  a  wireless  

mouse  and  keyboard.  However,  considering  the  second  life  cycle,  the  region  that  the  

device  is  being  sent  to  may  not  want  to  replace  batteries.  With  this  in  mind,  the  

researcher  designed  cord  ports  throughout  the  cart  to  allow  for  wired  devices.    

 

 

     120  

 Figure  64  Monitor  Cart  Profile    

 Figure  65  CPU  Detail    

The  researcher  is  introducing  the  final  part  of  the  device  in  the  monitor  cart.  

The  monitor  cart  has  an  interchangeable  computer.  Traditionally,  the  computers  

have  been  built  into  the  monitor  cart.  This  would  allow  for  quick  repair.  

 

     121  

         

3.12.  Final  Analysis  

After  completing  research,  prototypes,  and  final  computer  model,  the  

researcher’s  final  analysis  differs  slightly  from  the  anticipated  outcome  from  

Chapter  1.  There  is  a  need  for  a  universal  or  adaptable  interface.  However,  the  

foremost  problem  in  medical  device  design  is  in  the  methodology.  The  methods  and  

regulations  are  focused  on  the  technical,  mechanical,  and  production  aspect  of  the  

device.  It  seems  as  if  the  human  aspect  is  not  as  important  in  the  medical  device  

design  process.    

In  industrial  design,  there  is  a  human  function.  This  function  ensures  that  

products  designers  create  are  useable.  By  having  this  function  in  the  revised  

approach  to  medical  device  design  the  user  interfaces  of  medical  devices  should  be  

more  adaptable  and  usable.          

 

3.13.  Limitations  of  the  Study  

  The  limitations  of  the  study  were  very  apparent  due  to  the  type  of  device  that  

was  being  used  as  an  example  for  this  study.  Some  of  the  key  limitations  of  the  study  

included  time,  complexity  of  the  device,  testing,  and  user  feedback.  

  Since  the  study  was  completed  in  two  semesters,  some  research  was  

assumed.  The  complexity  of  the  device  limited  the  researcher  from  building  a  

working  model.  The  researcher  instead  focused  on  building  a  working  user  

interface.  The  user  interface  and  system  design  of  this  study  is  where  most  of  the  

changes  took  place.  Because  the  device  is  a  Class  III  medical  device,  which  includes  

 

     122  

devices  that  can  potentially  cause  the  patient  harm,  user  testing  or  a  working  model  

of  the  C-­‐Arm  was  not  attempted.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     123  

 

 

 

Chapter  4  Findings  

4.1.  Findings  

  The  major  findings  from  this  study  include:  the  need  for  a  universal  interface,  

better  systems  design,  more  considerations  for  the  interface,  better  patient  filing  

system  and  more  security.  The  need  for  a  universal  style  of  an  interface  and  more  

considerations  for  the  interface  are  apparent,  with  nearly  70%  of  medical  accidents  

caused  by  misuse  of  the  interface.    

  The  patient  filing  system  is  non-­‐existent  in  some  countries,  and  in  the  U.S.  

some  places  still  use  paper  records  with  no  backup.  Recent  natural  disasters  have  

proved  that  system  does  not  work.  When  a  hospital  is  compromised  due  to  a  

disaster,  man-­‐made  or  natural,  if  no  backup  is  in  place  all  records  will  be  lost.  

  Other  findings  include  the  lack  of  devices  being  donated  due  to  liability  and  

manufacturers  not  supporting  old  equipment.  If  a  manufacturer  would  allow  a  

second  party  to  continue  manufacturing  parts  to  support  the  old  devices,  this  would  

enable  non-­‐profits  and  resellers  to  make  repairs  instead  of  taking  parts  off  another  

device  to  fix  the  first  one,  as  described  in  the  research  in  this  project.      

 

 

 

 

 

 

     124  

 

 

 

Chapter  5  Discussion  

5.1.  Second  Life  Approach  

  The  final  approach  to  medical  device  design  considering  a  second  life  starts  

with  the  research  phase.  The  research  includes  the  problem  statement,  observation,  

user  scenarios,  material  study,  market  research,  interviews,  identifying  core  issues,  

environment,  ergonomics,  technical  and  human  functions,  analyzing  findings,  

electricity,  language,  need,  resources,  and  device  classification.    

  Phase  two  is  the  design  phase.  The  design  phase  includes  sketching,  physical  

modeling,  computer  modeling,  testing,  looking  for  problems,  request  designation,  

maintenance,  operators,  and  security.  The  design  phase  is  a  time  for  conception,  

ideation,  and  preparation.    

  After  the  concept  is  approved  the  development  phase  can  begin.  The  

development  phase  is  phase  three.  It  includes  testing,  evaluation,  computer  

modeling,  user  feedback,  user  criteria,  development,  production  and  marketing  

function,  prototype,  design  advice,  pre-­‐clinical,  early  planning,  clinical,  and  IDES.  

After  the  completion  of  the  development  phase  the  device  should  be  ready  to  begin  

manufacturing  if  all  the  clinical  testing  was  cleared.  

  The  fourth  phase  is  the  deployment  phase.  The  deployment  phase  takes  the  

device  from  manufacturing  to  the  market  place.  This  phase  includes  presenting,  

packaging,  marketing,  control  drawings,  documentation  transfer,  manufacturing,  

 

     125  

agreements  and  determinations,  and  PMA’S  /  510(K)s.    

  The  final  phase  is  the  revisiting  phase.  During  this  phase  the  device  will  be  

analyzed  while  it  is  in  the  market  place.  The  revisiting  phase  will  include  

commercial  use,  advisory  panel,  post  marketing,  control  drawings,  obsolescence,  

recalls,  safety  alerts,  warning  letters,  and  donation  process.  This  phase  is  new  the  

approach.  Many  of  the  processes  are  standard  medical  device  process,  but  this  

phase  now  includes  the  donation  process,  which  is  key  to  this  approach.  The  revised  

or  final  approach  is  detailed  in  Table  17.    

 

Table  17  Medical  Device  Revised  Approach  

  To  compare  what  has  been  changed  in  the  design  process,  Table  4  Industrial  

Design  Process  on  page  49  shows  the  typical  industrial  design  method.  In  the  

research  phase  six  considerations  have  been  added.  These  considerations  include  

 

     126  

environmental,  electrical,  language,  need,  resources,  and  device  classification  

research.    

  In  addition  the  design  phase  now  includes  request  for  designation,  

maintenance,  operators,  and  security.  The  request  for  designation  ensures  that  

process  for  the  device  classification  has  begun.  The  addition  of  maintenance  will  

include  the  development  of  guides  and  testing  that  might  reduce  overall  

maintenance.  Also  the  designer  would  consider  the  operators  and  their  needs  in  the  

design  phase.  Security  would  also  be  considered  to  ensure  that  the  security  

requirements  are  met  to  protect  the  device  and  user.          

  The  development  and  deployment  phases  have  been  updated  to  include  

prototyping,  design  advice,  pre-­‐clinicals,  early  planning,  clinicals,  IDES,  agreements  

and  determinations,  and  PMA’S/  510(K)s.    These  additions  are  standard  medical  

device  design  considerations.  

   

 

 

 

 

 

 

 

 

 

 

 

 

     127  

 

 

 

Chapter  6  Conclusions  

6.1.  Future  of  Medical  Devices  

  Medical  devices  evolve  at  a  fast  rate,  and  manufacturers  are  continually  

inventing  new  technology.  Future  medical  devices  will  be  an  integral  part  of  one’s  

lifestyle.  As  shown  in  Image  66,  Microsoft  is  pushing  for  an  integrated  healthcare  

system.  This  means  that  medical  device  interfaces  could  be  a  growing  part  of  one’s  

everyday  life.  Integrated  healthcare  systems  will  monitor  a  person’s  entire  body.  At  

any  minute,  a  user  could  check  their  cholesterol,  pulse,  glucose  level,  and  body  

temperature.  This  would  happen  through  applications  on  a  person’s  phone.  These  

statistics  would  also  be  available  to  the  user’s  personal  physicians.    

  Integrated  healthcare  would  also  track  eating  habits,  workouts,  and  any  

medications  that  the  user  it  taking.  If  the  physician  or  user  has  any  concerns,  a  video  

conference  could  be  set  up  immediately  to  go  over  solutions  to  fix  the  problems.  If  

integrated  healthcare  does  become  part  of  the  general  population’s  life,  medical  

device  interfaces  need  to  be  usable.  This  study  could  help  designers  in  creating  an  

adaptable  interface.              

 

     128  

 

Figure  66  Future  Devices  Ergonomidesign  (2010)  

 

6.2.  Impacting  Developing  Regions  

  If  the  design  method  detailed  in  this  study  were  to  be  followed  by  large  

medical  device  manufacturers,  the  developing  regions  throughout  the  world  could  

be  impacted  positively.  This  would  be  due  to  more  developing  regions  receiving  

medical  devices  if  the  manufacturers  would  donate  the  devices  to  non-­‐profit  

medical  suppliers  after  the  first  use  devices.  However,  currently,  most  

manufacturers  believe  that  denoting  to  non-­‐profit  medical  suppliers  will  reduce  

sales.  

  Many  of  these  regions  cannot  afford  the  more  expensive  medical  devices.  

This  just  means  that  if  the  region  does  not  have  the  devices,  certain  patients  will  go  

untreated.    

 

 

 

     129  

6.3.  Benefits  for  the  Manufacture  

By  designing  medical  devices  that  could  have  a  second  life,  manufacturers  

could  in  fact  broaden  their  customer  base.  If  manufacturers  could  approve  hospitals  

to  release  devices  to  non-­‐profit  medical  suppliers,  and  in  return,  the  non-­‐profits  

then  sent  the  devices  to  underdeveloped  regions,  the  manufacturer  would  introduce  

their  product  into  a  new  market.  If  the  region  became  a  developed  country,  the  

manufacturer  already  has  products  in  the  market.  The  users  are  familiar  with  the  

brand,  so  the  likelihood  of  that  region  purchasing  a  device  from  that  manufacturer  

should  increase.      

Manufacturers  could  also  use  this  process  in  their  marketing  material.  The  

concept  of  second  life  is  relevant  and  marketable  as  a  humanitarian  concept  or  a  

green  initiative,  to  lengthen  the  useful  life  of  their  products.        

 

6.4.  Final  Conclusion  

  For  anyone  using  this  thesis  as  a  guideline  for  designing  medical  devices  

considering  a  second  life,  taking  into  account  all  the  considerations  and  methods,  

will  ensure  a  more  adaptable  medical  device.  The  purpose  for  developing  this  

method  was  to  create  a  set  of  considerations,  methods,  and  guidelines  that  would  

allow  a  medical  device  designer  to  identify  key  problems  in  the  design,  thus  

allowing  the  designer  to  make  appropriate  changes  to  the  device.  For  the  purpose  of  

illustration,  a  C-­‐Arm  imaging  device  was  chosen  for  this  study.  However,  the  

methods  of  this  study  could  be  adapted  or  applied  to  other  medical  devices.    

 

     130  

  Much  was  learned,  by  the  researcher,  during  the  span  of  this  study.  The  

studied  yielded  what  the  researcher  might  describe  as  a  large  gap  in  medical  device  

design  concerning  the  human  function.  Many  medical  devices  in  the  developed  

world  are  currently  facing  obsolescence  and  the  path  for  the  majority  of  these  

devices  is  that  of  a  landfill.  The  researcher  hopes  in  the  future  that  the  medical  

device  life  cycle  might  be  extended  to  help  others.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     131  

 

 

 

References  

 

Adams,  W.  R.,  &  Hawkins,  J.P.  (2007).  Health  care  in  Maya  Guatemala:  confronting  

medical  pluralism  in  a  developing  country.  Norman:  University  of  Oklahoma  

Press.  (pp.  29)  

Alexis,  S.J.  (2008).  Caring  hands  :  inspiring  stories  of  volunteer  medical  missions.  

Minneapolis:  Fairview  Press.  (pp.  221)  

Arnett,  J.J.  (2007).  International  Encyclopedia  of  Adolescence.  London:  

Routledge/Taylor  &  Francis.  (pp.  376)    

Aykin,  N.  (E.D.).  (2007)  Usability  and  Internationalization,  Second  International    

Conference  on  Usability  and  Internationalization,  UI-­HCII  2007,  held  as  part  of  

HCI  International  2007,  Beijing,  China,  July  22-­27,  2007,  Proceedings,  Part  1.      

Berlin  New  York:  Springer  (pp.  5,  27,  &  367)    

Baumann,  K.,  Thomas,  B.,  Laurel,  B.  (2001)  User  Interface  Design  for    

Electronic  Appliances.  London:  Taylor  &  Francis  (pp.  292  &  318)    

Constantine,  L.L.,  &  Lockwood,  L.A.D.  (1999).  Software  for  Use:  A  Practical  Guide  to  

the  Essential  Models  and  Methods  of  Usage-­Centered  Design.  (pp.  51)  

Device  Classification.  (2002).  Classify  Your  Medical  Device.  April  3,  2011,  Retrieved  

from:http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/O

verview/ClassifyYourDevice/default.htm  

 

     132  

Drain,  P.,  Huffman,  S.A.,  Dirtle,  S.,  &  Chan,  K.(2009).  Caring  for  the  world:  a  guidebook  

to  global  health  opportunities.  Toronto:  University  of  Toronto  Press.  (pp.  46)  

Ergonomidesign  (2010)  Introducing  a  New  Generation  of  Medical  Devices.  June  25,  

2011.  Retrieved  from:  http://www.ergonomidesign.com/-­‐

Default.aspx?ID=1810  

Fowler,  K.R.  (2008)  What  Every  Engineer  Ehould  Know  about  Developing  Real-­Time  

Embedded  Products.  Boca  Raton:  CRC  Press.  (pp.  61)  Fries,  R.C.  (2001).  

Handbook  of  Medical  Device  Design.  New  York:  M.  Dekker.  (pp.  37  &  320)  

Fries,  R.  (2006).  Reliable  design  of  medical  devices.  Boca  Raton:  CRC/Taylor  &  

Francis.  (pp.  90  &  148)    

Green,  W.S.,  Jordan,  P.W.  (1999)  Human  Factors  in  Product  Design:  Current  Practice  

and  Future  Trends.  London  Philadelphia,  PA:  Taylor  and  Francis  (pp.  33)    

Hanna,  K.E.  (2001)  Institute  of  medicine  (U.S.).    Roundtable  on  Research  and    

Development  of  Drugs,  Biologics,  and  Medical  Devices.  Innovation  and  

invention  in  medical  devices:  workshop  summary.  Washington,  D.C.:  National  

Academy  Press.  (pp.  53)    

Henderson,  Naomi  R.  (2009).  Managing  Moderator  Stress:  Take  a  Deep  Breath.  You              

Can  Do  This!.  Marketing  Research,  Vol.  21  Issue  1.  (pp.  28-­‐29)Rollins,  K.  

(2006).  The  Index  of  Global  Philanthropy.  2006,  (pp.  14)    

Jacobson,  B.,  Murray,  A.  (2007).  Medical  devices:  use  and  safety.  Edinburgh  New  

York:  Churchill  Livingstone.  (pp.  15  &  30)    

Kucklick,  T.R.  (2006).  The  Medical  Device  R&D  Handbook.  Boca  Raton:  CRC/Taylor  &  

Francis.  (p.  4)    

 

     133  

Lowgren,  J.,  Stolterman,  E.,  (2005)  A  Design  Perspective  on  Information  Technology.  

   Cambridge:  MIT  Press.  (pp.  46)    

Medical  Device  Innovation  Initiative  White  Paper  (2011)  CDRH  Innovation  Initiative.    

May  20,  2011.  Retrieved  from:  

http://www.fda.gov/aboutfda/centersoffices/cdrh/cdrhinnovation/ucm242

067.htm  

Medical  Product  Outsourcing.    (2006)The  Top  30  Global  Medical  Device  Companies.  

March  1,  2011.  Retrieved  from:  http://www.mpo-­‐

mag.com/articles/2006/07/top-­‐medical-­‐device-­‐companies-­‐report  

Pahl,  G.,  Beitz,  W.,  Feldhusen,  J.,  &  Grote,  K.H.  (2003).  A  Systematic  Approach.    

 Engineering  Design.  Berlin:  Springer.  (pp.  104  &  561)  3rd  edition    

Perez,  C.  (2008).  Caring  for  them  from  birth  to  death  :  the  practice  of  community-­

based  Cuban  medicine.  Lanham,  MD:  Lexington  Books.  (pp.  33)      

Pendse  S,  Singh  A,  Zawada  E.  (2008)  Initiation  of  Dialysis.  In:  Handbook  of  Dialysis.  

4th  ed.  (pp.  14-­‐21)  

Portable  Ventilator  Image.  April  23,  2011.  Retrieved  from:  

http://www.yshmed.com/en/product2.asp?id=25    

Supplies  Needed.  April  23,2011  Retrieved  from:  http://www.projectcure.org/give-­‐

supplies/supplies-­‐needed  

Tarnoff,  C.,  &  Nowels,  L.  (2004).  Foreign  Aid:  An  Introductory  Overview  of  U.S.  

Programs  and  Policy  (Order  Code  98-­‐916).  Foreign  Affairs  and  National    

Defence  (p.  2)  

Teixeira,  M.B.,  Bradley,  R.  (2003)  Design  Controls  for  the  Medical  Device  Industry.  

 

     134  

   New  York:  Marcel  Dekker.  (pp.  27)    

The  World  Bank.  (2004).  A  World  Bank  country  study.  Poverty  in  Guatemala.                                                

                           (pp.  118)    

Westwood,  J.D.,  Westwood,  S.W.,  &  Haluck,  R.S.  M.D.  (2009).  NextMed:    

Design  For/the  Well  Being,Medicine  Meets  Virtual  Reality  17.    

(pp.  109)  

Wiklund,  M.E.,  Wilcox,  S.B.,  &  Stephen,  S.  (2005).  Designing  Usability  into  Medical  

Products.  Boca  Raton:  CRC  Press.  (pp.  21)  

 Wiklund,  M.E.  (1995)  Medical  Device  and  Equipment  Design:  Usability  Engineering  

and  Ergonomics.    (pp.  156)    

World  Health  Organization  (2000)  GUIDELINES  FOR  HEALTH  CARE  EQUIPMENT    

DONATIONS.  Figure  1  &  2.    

 

 

 

         

 

 

 

 

 

 

 

 

     135  

 

 

 

Appendix  

Siemens  User  Manual  

    The  appendix  contains  a  Siemens  C-­‐Arm  user  manual.  The  user  manual  was  

used  a  reference  tool  throughout  this  study.  This  manual  also  corresponds  to  the  

figures  3-­‐6  in  chapter  1.        

 

     136  

 

 1  

 

 

 

     137  

 

 

 

     138  

 

 

 

 

 

     139  

 

 

 

 

     140  

 

 

 

 

     141  

 

 

 

 

     142  

 

 

 

 

 

     143  

 

 

 

 

     144  

 

 

 

 

     145  

 

 

 

 

 

     146  

 

 

 

 

 

     147  

 

 

 

 

 

     148  

 

 

 

 

 

     149  

 

 

 

 

     150  

 

 

 

 

 

     151  

 

 

 

 

     152  

 

 

 

 

     153  

 

 

 

 

 

     154  

 

 

 

 

     155  

 

 

 

 

     156  

 

 

 

 

 

     157  

 

 

 

     158  

 

 

     159  

 

 

     160