A review on Anopheles subpictus Grassi—A biological vector

13
Acta Tropica 115 (2010) 142–154 Contents lists available at ScienceDirect Acta Tropica journal homepage: www.elsevier.com/locate/actatropica Review A review on Anopheles subpictus Grassi—A biological vector Goutam Chandra , Indranil Bhattacharjee, Soumendranath Chatterjee Department of Zoology, Mosquito and Microbiology Research Units, Parasitology Laboratory, The University of Burdwan, Burdwan, West Bengal 713104, India article info Article history: Available online 11 February 2010 Keywords: Anopheles subpictus Geographical distribution Sibling species Human pathogens Bionomics Vector Insecticide resistance Control abstract Anopheles subpictus is a complex of four isomorphic sibling species A, B, C and D and is recognized as a primary vector of malaria, a disease of great socio-economic importance, in Australasian Zone, Celebes, Portuguese Timor and South East Asia and a secondary vector in Sri Lanka. This species is also a vector of some helminth and arboviruses. This species has been reported so far from nineteen countries of the Oriental and Australasian Zones. An. subpictus complex is the most abundant anopheline in most parts of the Indian subcontinent, with a widespread distribution eastwards and southwards to Papua New Guinea, westwards to Iran and northwards to China. Resistance to insecticide is alarming in many parts of the world. Different aspects of this important mosquito species including attempts related to its control have been discussed which will be highly useful to carry out further research. © 2010 Elsevier B.V. All rights reserved. Contents 1. Introduction .......................................................................................................................................... 143 2. Sibling species and their identification .............................................................................................................. 144 3. Distribution .......................................................................................................................................... 145 4. Larval habitat ......................................................................................................................................... 145 4.1. Far east ........................................................................................................................................ 145 4.2. India .......................................................................................................................................... 145 4.2.1. West Bengal ......................................................................................................................... 145 4.2.2. Maharashtra ........................................................................................................................ 145 4.2.3. Lakshadweep ....................................................................................................................... 145 4.2.4. South India .......................................................................................................................... 145 4.2.5. Gujrat ............................................................................................................................... 145 4.2.6. Uttar Pradesh ....................................................................................................................... 145 4.2.7. Goa .................................................................................................................................. 146 4.3. Sri Lanka ...................................................................................................................................... 146 5. Association with other anopheline species .......................................................................................................... 146 5.1. India .......................................................................................................................................... 146 5.2. Indonesia ..................................................................................................................................... 146 6. Bionomics ............................................................................................................................................ 147 6.1. Resting habit .................................................................................................................................. 147 6.1.1. India ................................................................................................................................. 147 6.1.2. Indonesia ............................................................................................................................ 147 6.1.3. Sri Lanka ............................................................................................................................ 147 6.2. Man-hour density ............................................................................................................................ 147 6.2.1. India ................................................................................................................................. 147 6.3. Age determination ............................................................................................................................ 147 Corresponding author. Tel.: +91 9434573881. E-mail address: [email protected] (G. Chandra). 0001-706X/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.actatropica.2010.02.005

Transcript of A review on Anopheles subpictus Grassi—A biological vector

Acta Tropica 115 (2010) 142–154

Contents lists available at ScienceDirect

Acta Tropica

journa l homepage: www.e lsev ier .com/ locate /ac ta t ropica

Review

A review on Anopheles subpictus Grassi—A biological vector

Goutam Chandra ∗, Indranil Bhattacharjee, Soumendranath ChatterjeeDepartment of Zoology, Mosquito and Microbiology Research Units, Parasitology Laboratory, The University of Burdwan, Burdwan, West Bengal 713104, India

a r t i c l e i n f o

Article history:Available online 11 February 2010

Keywords:

a b s t r a c t

Anopheles subpictus is a complex of four isomorphic sibling species A, B, C and D and is recognized as aprimary vector of malaria, a disease of great socio-economic importance, in Australasian Zone, Celebes,Portuguese Timor and South East Asia and a secondary vector in Sri Lanka. This species is also a vectorof some helminth and arboviruses. This species has been reported so far from nineteen countries of the

Anopheles subpictusGeographical distributionSibling speciesHuman pathogensBionomicsVIC

Oriental and Australasian Zones. An. subpictus complex is the most abundant anopheline in most partsof the Indian subcontinent, with a widespread distribution eastwards and southwards to Papua NewGuinea, westwards to Iran and northwards to China. Resistance to insecticide is alarming in many partsof the world. Different aspects of this important mosquito species including attempts related to its control

C

0d

ectornsecticide resistanceontrol

have been discussed which will be highly useful to carry out further research.© 2010 Elsevier B.V. All rights reserved.

ontents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432. Sibling species and their identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1443. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454. Larval habitat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.1. Far east . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454.2. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.2.1. West Bengal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454.2.2. Maharashtra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454.2.3. Lakshadweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454.2.4. South India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454.2.5. Gujrat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454.2.6. Uttar Pradesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454.2.7. Goa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3. Sri Lanka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465. Association with other anopheline species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465.2. Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6. Bionomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1476.1. Resting habit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.2. Indonesia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1.3. Sri Lanka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2. Man-hour density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.2.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3. Age determination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∗ Corresponding author. Tel.: +91 9434573881.E-mail address: [email protected] (G. Chandra).

001-706X/$ – see front matter © 2010 Elsevier B.V. All rights reserved.oi:10.1016/j.actatropica.2010.02.005

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

G. Chandra et al. / Acta Tropica 115 (2010) 142–154 143

6.3.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1476.4. Blood meal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1476.4.2. Indonesia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1486.4.3. Sri Lanka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1486.4.4. Vietnam, Nepal, India, Ceylon, Indonesia, Territory of Papua New Guinea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5. Man-biting habit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1486.5.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1486.5.2. Sri Lanka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.6. Seasonal prevalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497. Role as vector of human pathogens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1. Role as malaria vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.1.1. Australasian zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.1.2. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.1.3. Indonesia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.1.4. Malaysia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.1.5. Maldives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.1.6. Pakistan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.1.7. Philippines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.1.8. Portuguese Timor (East Timor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507.1.9. Sri Lanka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2. Role in transmission of filarial nematodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507.2.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507.2.2. Indonesia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3. Role in transmitting Japanese encephalitis virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507.3.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4. Role in transmitting West Nile virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507.4.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8. Analysis of relationship between An. subpictus larval densities and environmental parameters using Remote Sensing (RS),a Global Positioning System (GPS) and a Geographic Information System (GIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508.1. Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9. Control strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509.1. Chemical based control measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509.2. Status of insecticide resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2.1. India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519.2.2. Sri Lanka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.3. Non-chemical based control measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519.3.1. Control by larvivorous fishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519.3.2. Neem products as mosquito repellent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519.3.3. Control by other agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151. . . . . .

1

rNAUhad1ta

svrflo(

dso

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Introduction

Anopheles subpictus Grassi, 1899 (previously known as An.ossii Giles), having a hierarchy under Order-Diptera, Sub-order-ematocera, Family-Culicidae, Subfamily-Anophelinae, Genus-nopheles and Subgenus-Cellia, Type form available at the Romeniversity Museum, Rome, is a wide spread species. This speciesas been reported so far from nineteen countries of the Orientalnd Australasian Zones. An. subpictus sensu lato is the most abun-ant anopheline in most parts of the Indian subcontinent (Rao,984), with a widespread distribution eastwards and southwardso New Guinea (Cooper et al., 2006), westwards to Iran (Sedaghatnd Harbach, 2005) and northwards to China (Riley and Yu, 1932).

An. subpictus breeds in a variety of habitats like flowing ortagnant waters, clear or turbid waters, water with or withoutegetation, unshaded or slightly shaded water bodies, wells, bur-ow pits, channels, ponds, tanks ground pools, fallow and freshlyooded rice fields, cement cisterns, tree holes, lake margins, freshr brackish waters etc. and the adult has a flight range of 1.5–6 km

Nagpal and Sharma, 1995).

An. subpictus complex is shown to comprise of four repro-uctively distinct species, designated as A, B, C and D, occurringympatrically in villages of Pondicherry, southeast India. It is rec-gnized as a primary or secondary vector of malaria, a disease of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

great socio-economic importance, in different parts of the world(Russell and Jacob, 1939; Russell and Rao, 1940; Roy, 1943; vanHell, 1952; Russell et al., 1963; Ferreira and Breda, 1963; Reid,1968; Lein et al., 1975; Panicker et al., 1981; Kulkarni, 1983; Hearthet al., 1983; Chatterjee and Chandra, 2000). West Nile virus hasbeen isolated from An. subpictus in Asia (Manson-Bahr and Bell,1991) such as in India (Habalek and Halouzka, 1999). An. subpictusis the vector of nocturnally periodic Wuchereria bancrofti in Flo-res of Indonesia (Manson-Bahr and Bell, 1991). Thenmozhi et al.(2006) reported this species as a vector of Japanese encephalitisvirus (JEV) in Cuddalore, an area of Tamilnadu, India, endemic forthe disease.

A review on different aspects like identification of siblingspecies, distribution, larval habitat, association with other anophe-line species, bionomics (resting habit, man-hour density, agedetermination, blood meal analysis, man-biting habit, seasonalprevalence), role as vector of human diseases, analysis of rela-tionship between An. subpictus larval densities and environmentalparameters using Remote Sensing (RS), a Global Positioning System

(GPS) and a Geographic Information System (GIS), control measurestaken against this species including the status of insecticide resis-tance has been presented here, which is still lacking, as a readyreference on this widely distributed, highly prevalent and medi-cally important mosquito species.

144 G. Chandra et al. / Acta Tropica 115 (2010) 142–154

Table 1Morphological, biological and cytological differences among An. subpictus sibling species.

Species Inversions onX-chromosome

Egg Larva Pupa Adult Breeding habitats

Mean ridge no.(range)

Frill Seta 4M Seta 7-1 Female palpi (apicalpale band vs.sub-apical dark band)

(Salinity range %)

A X+a+b 35 (31–36) Opaque 2-branched(rarely 3)

Simple; as long ashairs 6 and 9

Longer than Paddy fields(0.0054–0.2636)Riverine pools(0.0247–0.7827)Brack waters(0.5574–5.3554)

B Xab 18 (16–20) Transparent 2-branched(rarely 3)

Branched 4–5;shorter than hairs 6and 9

Shorter than Brack waters(0.5574–5.3554)

C Xa+b 27 (25–29) Semitransparent 3-branched(rarely 2)

Branched 2;shorter, but longerthan in sp. B

Equal to Paddy fields(0.0054–0.2636)Riverine pools(0.0247–0.7827)Brack waters(0.5574–5.3554)

D X+ab 22 (21–24) Semitransparent 3-branched Branched 3;shorter

Equal to Paddy fields(0.0054–0.2636)Riverine pools(0.0247–0.7827)

S

2

t((tcs

irXvaf

wogtmsSfto

imC

iBwDat

ource: Suguna et al. (1994).

. Sibling species and their identification

An. subpictus complex consists of four sibling species. Based onhe morphological differences in the eggs of An. subpictus, Reid1966) suggested that it might be a species complex, and Suguna1982) reported for the first time providing clear evidence that thisaxon was a complex of two sibling species, A and B. Later in dueourse of time, this taxon was found to be a complex of four siblingpecies, A, B, C and D (Suguna et al., 1994).

Differences in egg morphology and in the banding patternn polytene X-chromosome due to a paracentric inversion wereesponsible for the identification of species A and B. Species A with+a genotype (standard arrangement) was predominant in inlandillages while in the coastal villages species B with Xa inversionrrangement was found. Species B together with species A wasound in the Union Territory of Pondicherry in India (Suguna, 1982).

The four sibling species, provisionally designated as A, B, C and Dere identified by examining polytene chromosomes from ovaries

f adult females collected from the field and those from salivarylands of larvae collected from breeding sites. Two inversions onhe X-chromosome, a, a small inversion towards the tip of the chro-

osome and b, an inversion in the middle of the chromosome (thisame inversion was designated as a in the earlier publication ofuguna (1982), and their combinations +a+b, ab, a+b and +ab wereound with a total absence of heterozygotes in the natural popula-ions examined. This was taken as an evidence for the recognitionf the four species (Suguna et al., 1994).

Inversions on polytene X-chromosome are diagnostic charactersn the identification of sibling species. The four inversion arrange-

ents observed were: species A – X+a+b, species B – Xab, species –Xa+b, and species – D X+ab.

Reuben and Suguna (1983) reported morphological differencesn eggs, larvae, pupae and adults between sibling species A and

. Now species C and D have also been reported within the freshater breeding populations in Pondicherry (Suguna et al., 1994).ifferences in egg, larval, pupal and adult morphological charactersmong the four species were also observed (Suguna et al., 1994) andhese are summarized in Table 1.

Brack waters(0.5574–5.3554)

An. subpictus population from villages around Delhi, India wasidentified as species A (Subbarao et al., 1988) by examining ovar-ian polytene chromosomes of adult females collected from the field,following the report of Suguna (1982). However, the ridge numberon egg float ranged between 21 and 30. This does not correspondwith the characters of species A which has on an average 33 ridges(Suguna, 1982) but corresponds to those of species C of Suguna et al.(1994). Atrie (1994) reported that in the Delhi population of adultfemales, the apical pale band was longer than sub-apical dark band,which is the characteristic feature of species A. Recently, Singh etal. (2004) examined field-collected adult females from Sonepat dis-trict, Harayana and from their isofemale lines, eggs, larvae, pupaeand adults, for morphological characters following Suguna et al.(1994). Species A, C and D were found in almost equal proportions,and no variation was observed in the proportion of the three siblingspecies from field-collected adults and isofemale lines. An. subpictusbreeding took place in the river bed pools in the villages.

Thus, in northern India, all three fresh water breeding speciesare sympatric. In Sri Lanka, both species A and B were identified(Abhayawardana et al., 1996) based on species-specific diagnos-tic inversion genotypes reported by Suguna (1982). In Sri Lanka,species A was found to be more endophilic and seasonally moreabundant than species B (Abhayawardana et al., 1996).

No studies have been reported so far on the biological char-acteristics of these four sibling species. Detection of sporozoitepositive specimens in coastal villages of Pondicherry by Panickeret al. (1981), suggests that species B may be a vector, and of thoseby Kulkarni (1983) in Bastar district, Madhya Pradesh in India andAmerasinghe et al. (1991, 1992) in an irrigation development areaof Mahawali project in Sri Lanka suggest that fresh water breedingsibling species may also be playing a role in malaria transmis-sion. In Sri Lanka, recently both species A and B were identified(Abhayawardana et al., 1996) based on species-specific diagnostic

inversion genotypes suggested by Suguna (1982).

Recent advances in molecular systematics have proved sim-ple and reliable methods for unambiguous species identification(Manguin et al., 2008). DNA characters have been used toidentify and to reveal genetic variation of many different

Tropic

oshtthIdA1Des

3

ffofsBs

4

4

p(w

4

4

slBscA1CeAtwTh

4

wtca

4

Ifc

G. Chandra et al. / Acta

rganisms. Different target genes such as internal transcribedpacer 2 (ITS2), cytochrome oxidase I (COI) and II (COII)ave been used for species identification or genetic popula-ions in many Anopheles species particularly the members ofhe Anopheles complexes (Yajun et al., 2006). A modern assayas been developed by Curtis and Townson (1998) from the

TS2 region of the 5.8S and 28S rDNA cistron. In GenBankatabase, there are 9 entries of ITS2 (AF406613–AF406616,Y049004, EU847232, EF601868–EF601870) (Djadid et al., 2003);4 entries of COI (AF417711, AF222327, AY29970, AY917203,Q310145–DQ310147, DQ310149, EU143303–EU143308); and 6ntries of COII (U94314, AF417747, EF601864–EF601867) of An.ubpictus.

. Distribution

An. subpictus s.l. is a wide spread predominant house-requenting mosquito species among the anophelines, reportedrom as many as 19 countries (Table 2) including different statesf India (Table 3) extending from 43◦57′ East to 154◦30′ East androm 53◦56′ North to 11◦30′ South. From Sri Lanka A and B siblingpecies have been recognized and from India four sibling species A,, C and D have been recognized and from the rest of the countriesibling species composition is not clearly known.

. Larval habitat

.1. Far east

Almost any temporary or permanent collection of water, sewageolluted pools or brackish water were common breeding placeCovell, 1944) and its larvae were common in burrow pits, buffaloallows, brick-pits and roof-gutters.

.2. India

.2.1. West BengalTimber (1935) found An. subpictus larvae in clean, partially

haded pools containing a good deal of aquatic vegetation, in shal-ow, temporary collections of water and in rice fields of Westernengal. It was also a pool breeder in Calcutta (Siddons, 1946). Atudy on vertical distribution of anopheline larvae based on ovitrapollection in multistoried buildings in Calcutta showed that highestn. subpictus larval density was achieved from the first floor (Hati,986). During 1-year study period at metro rail construction site inalcutta, out of 3806 water holding spots (pockets and containers)xamined, 20.6% were observed positive for mosquito larvae andn. subpictus was prevalent in 14.6% (115) of the occupied habi-ats (Chatterjee et al., 1988). Mean per dip density of An. subpictusas 2.01, 0.03 and 1.40 in ponds, drains and submerged fields of

arakeswar, where larval densities in all the breeding sites wereigher in rainy season (Chatterjee and Chandra, 2000).

.2.2. MaharashtraBarber and Rice (1938) noticed its larvae in the pools, springs and

ells in certain places of Poona. It was the most common specieshroughout the area of North Kanara, Bombay Presidency, espe-ially in the coastal region and their larvae were found in both salinend brackish water (Singh and Jacob, 1944).

.2.3. LakshadweepRoy et al. (1978) recorded the absence of anophelines in Bitra

sland at the time of filarial survey in 1954, but An. subpictus wasound to breed both in fresh and brackish water during surveyarried out in May 1976.

a 115 (2010) 142–154 145

4.2.4. South IndiaAn. subpictus breeds profusely in water collections and fallow

rice fields (Dhanda and Kaul, 1980) of southern India, where thelarval incidence was high throughout the year. Cytotaxonomicalstudies suggested the existence of two distinct sibling species like Aand B in An. subpictus populations in coastal areas of India (Suguna,1982; Reuben and Suguna, 1983). A (less saline tolerant) breed infresh water and occurs in inland as well as in coastal localities.Species B breeds in brackish water and has so far been recordedonly on the coast (Panicker et al., 1981).

4.2.5. GujratIntradomestic water collections comprised 27.84% An. subpic-

tus larvae in Kheda district (Yadav et al., 1989). An. subpictusbreeds in canal-irrigated area which included irrigation chan-nels, drains, seepage, water pools, ponds and paddy fields inKheda district. In non-canal-irrigated and riverine areas, ponds,small pools, rivers and riverbed pools were the major breed-ing sources. Wells and intradomestic water storage containersalso provided breeding opportunities through out the year. Rain-water collections also supported the breeding of An. subpictus(Bhatt et al., 1991). Gupta et al. (1992), while studying theintradomestic mosquito breeding sources in the entire ruralNadiad Taluka of Kheda district, found that An. subpictus couldbreed in over head tanks, underground tanks, outside and insidetanks, earthen mud pots and also in miscellaneous containersindicating its potential and preference to breed in intradomes-tic water collections. An. subpictus was observed to breed inwater hyacinth infested ponds as well as weed free ponds. Inhyacinth infested ponds, An. subpictus was predominant duringthe summer (37.9%) and winter (29.5%) seasons, where as inweed free ponds it bred profusely during monsoon (59.2%). InNadiad Taluka 12.65%, 13.34% and 25% An. subpictus mosquitoeswere found in irrigation wells, draw wells and disused wells,respectively (Rajnikant Bhatt et al., 1992, 1993). According toBhatt et al. (1993) An. subpictus was ubiquitous and they col-lected a total of 25,858 anopheline larvae comprising of 15species emerged from 1104 samples of immature from 9 breed-ing habitats of the non-canal area of Kheda district. Percentagesof An. subpictus were 72.28%, 66.82%, 86.23%, 30.64% and 52.07%in ponds, wells, rice fields, rivers and riverbed pools, respec-tively. The figures were 17.28%, 34.585%, 97.35% and 85.25% inseepage drains, swamps, borrow-pits and hoof/tyreprints, respec-tively. An. subpictus was the predominant species in the ricefields and the most dominant species in borrow-pits (Bhatt et al.,1993).

4.2.6. Uttar PradeshSharma and Prasad (1991) carried out studies on ecological suc-

cession and association of anophelines in selected paddy fields ofDadraul PHC of Shahjahanpur district, during the paddy field cul-tivation period from June to October. Breeding of five anophelineswas observed in paddy fields. Out of the adults that emerged fromlarval collections, the percentage of An. subpictus was the highest.An. subpictus breeding occurred in the early stage of rice cultivationand stopped before the breeding of An. nigerrimus started, i.e. nearly30 days after rice transplantation. An inverse correlation betweenlarval density of An. subpictus and the height of the rice plants wasobserved. Breeding of An. subpictus occurred during first week ofJuly and continued to last week of August. A total of 211 (61.5%) An.

subpictus larvae were collected from the paddy fields from July toAugust 1988. According to Prasad et al. (1993), An. subpictus couldbreed in rice fields during June to October and month wise per-centage of An. subpictus breeding in rice fields from June to October1991 were 51.2%, 29.0%, 21.3%, 1.3% and nil, respectively in Shahja-

146 G. Chandra et al. / Acta Tropica 115 (2010) 142–154

Table 2Global distribution of An. subpictus s.l.

Serial no. Country References

1 Afghanistan Rao (1951), Iyengar (1954), WHO (1959), Fischer (1968), Ward (1972), WHO (2007)2 Bangladesh Mahmud and Muhammad (1973), WHO (2007)3 Cambodia Harrison and Klein (1975), WHO (2007)4 China Riley and Yu (1932), WHO (2007)5 Indonesia van Hell (1952), Sundararaman et al. (1957), Bruce Chawtt et al. (1966), WHO (2007)6 Iran Oshaghi et al. (2004), Sedaghat and Harbach (2005), WHO (2007)7 Maldives WHO (1976), unpublished information, WHO (2007)8 Malaysia White (2003), WHO (2007)9 Mariana Islands Iyengar (1955), Ward et al. (1976), WHO (2007)

10 Myanmar (Burma) Covell (1931a), Oo et al. (2004), WHO (2007)11 Nepal Bruce Chawtt et al. (1966), WHO (2007)12 Papua New Guinea Russell et al. (1963), Bruce Chawtt et al. (1966), Cooper et al. (2006), WHO (2007)13 Pakistan Covell (1931a), Rahman and Muttalib (1967), WHO (2007)14 Philippines Tiedeman (1927), Manalang (1928), WHO (2007)15 Portuguese Timor (East Timor) Ferreira and Breda (1963), WHO (2007)

wtt etal. (1

wtt et3

ha

4

sta

4

msowAiwses

TD

16 Sri Lanka (Ceylon) Bruce Cha17 Thailand Scanlon et18 Vietnam Bruce Cha19 India See Table

anpur district An. subpictus was the predominant species in Junend July in 1991.

.2.7. GoaKumar and Thavaselvam (1992) conducted 1-year longitudinal

tudy in 9 categories of breeding habitats in Panaji. They showedhat An. subpictus larvae can grow with 8 other mosquito generand species in 247 out of 747, i.e. 39.3% habitats.

.3. Sri Lanka

The seawater brought inland by the tsunami has mixed withonsoon rainwater to form puddles of varying salinity. Also, thou-

ands of muddy surface water puddles have been created as a resultf destruction and rehabilitation activities that are already under-ay. The brackish puddles are expected to favour the breeding ofn. subpictus sibling species B, which is a well-known coastal breed-

ng species in Sri Lanka (Briët et al., 2005). Immature of An. subpictusas recorded from all types of wells (Briët et al., 2005). In a small

tudy in tsunami-affected areas in the east coast of Sri Lanka, Briëtt al. (2006), found that anophelines (An. culicifacies in wells, An.ubpictus in pools after rains, An. varuna and An. vagus in rice fields)

able 3istribution of An. subpictus in different states of India.

Serial no. State

1 West Bengal

2 Maharashtra3 Jharkhand4 Tamilnadu

5 Jammu and Kashmir6 Nagaland7 Gujrat8 Uttar Pradesh9 Tripura

10 Rajasthan11 Orissa12 Uttaranchal13 Bihar14 Andhra Pradesh15 Punjab16 Madhya Pradesh17 Karnataka18 Andaman and Nicobar Islands

al. (1966), Amerasinghe et al. (1992), Abhayawardana et al. (1996), WHO (2007)968), WHO (2007)al. (1966), WHO (2007)

bred in different types of habitats. Larval populations were affectedby rainfall, cleaning of wells as well as by chlorination and regularspraying of larvicides.

5. Association with other anopheline species

5.1. India

Kant and Pandey (1999) observed a significant positive asso-ciation (without having any adverse effect) of An. subpictus withAn. culicifacies, An. annularis, An. paludis and Culex quinquefas-ciatus in the rice agro ecosystem in Gujrat and a negativeassociation (having adverse effect) with An. nigerrimus, Culex tri-taeniorhynchus and Culex vishnui subgroup. An. subpictus larvaewere found to share one habitat with An. stephensi, An. vagusand An. barbirostris in Panaji, Goa (Kumar and Thavaselvam,1992).

5.2. Indonesia

Larvae of An. subpictus were collected in lagoons, rice fields,swamps and ground pools in association with An. aconitus, An.

References

Covell (1931a), Iyengar (1931), Timber (1935), Puri (1948), Siddons (1946),Rao et al. (1973), Soman et al. (1976), Biswas et al. (1988), Mahapatra et al.(1991), Chandra et al. (1994), Tandon and Tandon (1994), Tandon et al. (1995),Malakar et al. (1995), Chandra (1998), Rudra and Chandra (1998), Chatterjeeand Chandra (2000), Chandra et al. (2002)Covell (1931a), Barber and Rice (1938), Singh and Jacob (1944), Soman (1945)Senior (1946)Covell (1931a), Rajagopalan and Work (1969), Russell and Jacob (1939),Reuben (1978)Rao et al. (1973)Sarkar et al. (1980)Covell (1931a), Bhatt et al. (1991)Sharma and Prasad (1991), Bruce Chawtt et al. (1966)Das et al. (1991)Covell (1931a), Bansal and Singh (1993)Covell (1931a), Chand et al. (1993)Devi and Jauhari (2004), Bhat (1975), Rao et al. (1973)Covell (1931a), Bruce Chawtt et al. (1966)Covell (1931a), Bruce Chawtt et al. (1966)Covell (1931a)Bruce Chawtt et al. (1966)Bruce Chawtt et al. (1966)Krishnamoorthy et al. (2005)

Tropic

aiv

6

6

66naclicsiaifhtsaTmap(

6iaoWA

6or

6aca

6

d

6

sfc

ho

6

r

G. Chandra et al. / Acta

nnularis, An. barbirostris, Cx. vishnui, Cx. tritaeniorhynchus in brack-sh water bodies and bodies exposed to sunlight with or withoutegetation (Hoedojo et al., 1980).

. Bionomics

.1. Resting habit

.1.1. India

.1.1.1. West Bengal. According to Senior (1946), this species doesot enter human habitations (hhs) to feed in Calcutta. Soman etl. (1976) studied its outdoor-resting behavior during daytime andollected this species from bushes and vegetation. At dusk, they col-ected it from cattle shed (cs) indicating its indoor-resting behaviorn Burdwan district and Bankura district. Adult An. subpictus wasollected from cs of Bankura d at dusk (Mahadev et al., 1978). Den-ity of anophelines in cs (83.91%) was significantly higher than thatn the hh (16.08%) in different areas of south 24 parganas (Tandonnd Tandon, 1994). An. subpictus showed marked preference to restn the cs and out of total mosquitoes of different species collectedrom cs, 8.3% and 8% were An. subpictus in the morning and eveningours, respectively in Siliguri–Naksalbari block of Darjeeling dis-rict (Malakar et al., 1995). Out of the total mosquitoes of differentpecies collected from study site during 2-year study period, 33.56%nd 66.17% of An. subpictus were from hh and cs, respectively atarakeswar (Chatterjee and Chandra, 2000). Chandra et al. (2002)ade a 2-year study on indoor-resting catch of anophelines in tribal

nd non-tribal areas of Bankura district during 1997–1999. An. sub-ictus comprised of 18.59% (138 out of 742 anophelines) and 18.27%110 out of 602) in tribal and non-tribal hh, respectively.

.1.1.2. Tamilnadu. Russell and Jacob (1939) collected this speciesn all types of biotopes like hh, cs and piggeries in Ennore–Nellorerea. Its outdoor-resting places were reported to be fields of Milletsr any place affording a lot of shade in Madras (Rajagopalan andork, 1969). They also mentioned the indoor-resting behavior of

n. subpictus.

.1.1.3. Gujrat. Yadav et al. (1989) studied on the anopheline faunaf Kheda district and reported that An. subpictus preferred wideange of habitations.

.1.1.4. Orissa. In a broken forest ecosystem of North Western partll the major anopheline species including An. subpictus preferreds rather than hh for resting (Chand et al., 1993). The number ofnopheline caught in cs was seven times as much as in hh.

.1.2. IndonesiaThey preferred to rest on the ceilings and walls of hh during

aytime in mid-Java (Sundararaman et al., 1957).

.1.3. Sri LankaAmong indoor-resting population of mosquitoes, 63.8% of

pecies A of An. subpictus were obtained. Most of the species B wererom cattle-baited huts and only 1.2% was from human-bait nightollections (Abhayawardana et al., 1996).

Overall, though An. subpictus occupied a wide range of restingabitats, cattle sheds are their preferred resting sites in most partf its distributions.

.2. Man-hour density

Man-hour density is an index to denote the number of indoor-esting mosquitoes caught in 1 h by an insect collector.

a 115 (2010) 142–154 147

6.2.1. India6.2.1.1. West Bengal. Man-hour density of indoor-resting An. sub-pictus irrespective of cs and hh ranged from 0.14 to 12.30 indifferent parts (Mahapatra et al., 1991; Tandon and Tandon, 1994;Tandon et al., 1995; Chatterjee and Chandra, 2000; Chandra et al.,2002).

6.2.1.2. Uttar Pradesh. Sharma and Prasad (1991) recorded perman-hour densities of An. subpictus along with other mosquitoes inShahjahanpur district during Jun. (51.3), Jul. (157.8), Aug. (218.9),Sept. (72.7) and Oct. (53.4) in 1988. Prasad et al. (1993) madean entomological survey of anophelines in Baniyani village, Far-rukhabad district. They recorded low man-hour density of An.subpictus (3.0) in Baniyani village.

6.2.1.3. Rajasthan. Peak man-hour density was 36.0 in indoor habi-tats during September in Bikaner district during 1989–1991 (Bansaland Singh, 1993).

6.3. Age determination

6.3.1. IndiaThe study on the age composition of anopheline population is of

paramount importance for understanding the population biologyof the mosquitoes and the epidemiology of the disease transmittedby them particularly malaria. Vectors of greater physiological ageare of greater epidemiological importance (Chandra et al., 1996).

Mehta (1934), after studying the longevity of An. subpictus inthe laboratory, concluded that this mosquito played no part in thetransmission of malaria, since it did not live long enough for thesporozoites to develop. Roy (1943) A study on the longevity ofnaturally fed female An. subpictus in Calcutta revealed that, on anaverage, 16.2% of them were able to survive throughout a periodof 10 days. During Jan. and Feb., a certain percentage of An. sub-pictus could live for 12 days, sufficient to attain the infective stageof the parasite enabling malaria transmission. Nanda et al. (1987)showed that 40% of An. subpictus was able to survive beyond 7 daysafter feeding the infected blood meal by their membrane feedingexperiments on An. subpictus. Chatterjee and Chandra (2000) deter-mined age composition of An. subpictus collected from Tarakeswararea of West Bengal. The duration of gonotrophic cycle was 98,102 and 88 h in rainy, winter and summer season, respectively andthe average being 96 h. Proportion parous, daily survival rate anddaily mortality rate was 0.51%, 84% and 16%, respectively. Survivalrate per gonotrophic cycle averaged over 2 years was 0.58, whichwas obtained from log curve, and the slope of the straight line was0.234. Among the female population 14.5% passed three or moregonotrophic cycles in natural conditions.

6.4. Blood meal analysis

For screening epidemiological situation of a malaria prone area,the identification of the source of blood meal taken by female vectormosquito has been given to prior emphasis in the modern field ofmalariology.

6.4.1. IndiaRamsay et al. (1936), Barber and Rice (1938), Senior (1938),

Russell et al. (1939), Afridi et al. (1939), Covell and Harbhagwan(1939) conducted blood meal analyses of An. subpictus collectedfrom different places of India like Assam, Poona, Jaypore hills, S.E.

India, and Delhi with anthropophilic index of 2.3%, 0.4%, 0.0%, 3.1%,0.0% and 2.4%, respectively.

Roy (1943) made a precipitin tests of 2128 blood fed An. subpic-tus captured from Salt-Lake areas of Calcutta and obtained 18.4%,81.6% and 6.6% positivity for human, cattle and mixed (human and

1 Tropic

c2

aoNAztBbr7hw

wciwtHfa

6

sa

6

ao(l2wr

f(tier8o(rawOwsiv

6N

2ae

48 G. Chandra et al. / Acta

attle) blood, respectively. Anthrophilic index was calculated to be5%.

According to Hati (1986) percentages positive for human, bovinend avian blood were 15.8%, 96.7% and 0.5%, respectively and 2.3%f An. subpictus, collected from cs were positive for human blood inudiapur, West Bengal. Collins et al. (1989) observed in Orissa thatn. subpictus population was poorly anthropophagic but stronglyoophagic. Banerjee et al. (1991) studied on the host preference pat-ern of An. subpictus collected from cs of Uttarpara, Hooghly, Westengal where the figures for blood meal positive for human andovine and only bovine were 7.5% and 92.5%, respectively. The cor-esponding figures for specimens collected from hh were 26.7% and3.29%, respectively. Data revealed that hh contributed a three-foldigher rate of human-fed specimens than cattlesheds. An. subpictusas less zoophagic in that area.

Anthrophilic index of indoor-resting population of An. subpictusas recorded to be 41.0% in Tarakeswar, West Bengal which was

onsidered to be higher than most of the places studied, indicatingndirectly a considerable extent of man vector contact. Rests (59%)

ere positive for bovine blood. None of the engorged An. subpic-us imbibed avian and goat blood (Chatterjee and Chandra, 2000).uman Blood Index of An. subpictus varied from 0.0% to 41.0% in dif-

erent parts of India reported in a time span between 1938–1939nd 2000.

.4.2. IndonesiaSundararaman et al. (1957) tested 500 blood samples of An.

ubpictus collected from human houses of mid-Java, where thenthrophilic index was found to be 20%.

.4.3. Sri LankaAmerasinghe et al. (1992) detected human blood in 4.3%, 0.8%,

nd 5.2% of analyzed meals, respectively in three sampling peri-ds in Sri Lanka during 1989–1990 by ELISA. Abhayawardana et al.1996) identified a total of 35 blood smears from the specimens col-ected from coastal areas of which 3 were from Tissamaharamaya,9 from Puttalam and the rest from Batticaloa. Of these 7 (20%)ere identified as human blood, 19 (54.3%) as cow blood and the

est 9 (25.7%) did not respond to cow or human antisera.A histological technique was used to detect the multiple blood-

eeding of female mosquitoes by Amerasinghe and Amerasinghe1999) within the same gonotrophic cycle in field populations ofhe malaria vectors An. culicifacies and An. subpictus at a village dur-ng 1994–1996. Among 3306 An. culicifacies and 871 An. subpictusngorged females examined, 34.4% and 30.4% were multiple-fed,espectively and of them double meals accounted for 92.7% and9.5%, and triple meals for 7.3% and 10.5%, respectively. Densityf multifed An. culicifacies (53.7%) was higher than An. subpictus44.5%) collected on different nights in nature. Multiple feedingates in the two species were independent of sample size and fieldbundance. In An. culicifacies, but not in An. subpictus, these ratesere proportional to ambient temperature but not to humidity.nly 1.2% of 406 An. subpictus were human-fed and all of theseere concurrently bovid-fed. Multiple blood-feeding within the

ame gonotrophic cycle was attributed to a local ‘frequent feed-ng strategy’ in these primarily zoophagic and endophilic malariaectors.

.4.4. Vietnam, Nepal, India, Ceylon, Indonesia, Territory of Papua

ew Guinea

Low to moderate anthrophilic indices like 24.4% in Indonesia,6.9% in Indonesia Territory of Papua New Guinea and Vietnamnd 9.2% in Ceylon, India and Nepal were recorded (Bruce Chawttt al., 1966).

a 115 (2010) 142–154

6.5. Man-biting habit

6.5.1. IndiaSenior (1946) stated that this species did not enter houses

to feed in Hazaribag ranges of Central India. Catching maximaoccurred between 2300 and 0200 h. August was the month of max-imum prevalence. Mukhopadhyay and Hati (1978) conducted astudy on man-biting activity of mosquitoes in Calcutta. They col-lected only two An. subpictus by employing 1128 man-hours. Perman-hour density was 0.0106. Reuben and Panicker (1979) con-ducted a study on the human behavior influencing man–mosquitocontact and mosquito biting activity on children in South Indian vil-lage community. Women and children under 10 years of age spentmore times of the night at indoor locations, while men and the boysabove the age of 10 years spent relatively more times at outdoorslocations and thus were more exposed to the bites of predomi-nantly outdoor-biting species of mosquitoes. All observations weremade in the village of Venkatapuram, North Arcot district. A fewAn. subpictus were collected off 5 children baits at certain places ofVenkatapuram (Kaviarsu – 12, Subramani – 5, Ravic Umar – 2, AnuaKeli – 4 and Nir – Mala 4). Average numbers of An. subpictus landedper child per night were 2.8 in Jul., 0.3 in Sept., 1.0 in Oct. and 0.8in Nov.) and no specimen in Jan. and Feb.; Mar. and Apr.; May andJun. and Aug and Dec. By employing 1152 man-hours, Hati (1986)collected a total of 12,274 mosquitoes, out of which An. subpictuspopulation comprised of 0.06% (8) in Nudiapur village of Burdwandistrict per man per night collection of An. subpictus was 0.08 andper man-hour collection was 0.006. Chakraborty et al. (1986) madecollections off man-baits (indoor + outdoor) in 1-year study period(1981–1982) in a village named Gangpur of Burdwan d. Altogether12 species of mosquitoes were collected between 1800 and 0600 h.Out of a total of 5755 mosquitoes of different species An. subpic-tus comprised of 0.1% (22). By employing 576 man-hour, only 6 An.subpictus were collected in Central Calcutta (Chandra et al., 1994).Per man-hour contact of An. subpictus was 0.03 and per man pernight contact was 0.39. Peak biting hour of An. subpictus was foundin the 2nd quadrant (9 p.m.–12 mid-night) of night. During 1-yearman-bait study Chatterjee and Chandra (2000) observed that An.subpictus comprised of 48.3% (156) out of altogether 320 anophelinemosquitoes collected. Density per man-hour and per man-nightof man-landing population was 0.54 and 13.0, respectively. High-est number of them came to bite in July both at indoor (14.9%)and outdoor (16.13%) locations. In non-tribal area of Bankura dis-trict, West Bengal peak biting of An. subpictus was between 0100and 0200 h whereas in tribal area it was between 2200 and 2300 h(Chandra et al., 2002). Overall man-biting density of An. subpictusis low in most of the areas where studies were conducted. As asingle bite can effectively transmit malaria, it has also been estab-lished as a malaria vector, primary or secondary, in some endemicareas.

6.5.2. Sri LankaIn Sri Lanka indoor-biting density of species B of An. subpic-

tus (the only anopheline species collected in this single night atVannathivu coastal area) during 1800–2200 h ranged from 0.25 to1.5 per man-hour and the highest density was observed during2100–2200 h. No indoor-biting An. subpictus was observed from2200 to 0600 h. Outdoor density of species B ranged from 0.2 to 5.0per man-hour during 1800–2100 h. Collections were achieved withthe highest biting density during 1800–1900 h. For 2100 h onwards

biting occurred only for 3 h with biting rates of 0.33 per man-hourduring 2200–2300; 0300–0400 and 0500–0600 h (Abhayawardanaet al., 1996). In most of the study areas of India and Sri Lanka thisspecies landed on man during early hours of night except a veryfew instances.

G. Chandra et al. / Acta Tropica 115 (2010) 142–154 149

Table 4Seasonal prevalence of An. subpictus.

Country State/place Season/months References

Bangladesh Dacca Mar.–Aug. Mahmud and Muhammad (1973)India Punjab (i) Jul.–Nov. (i) James and Liston (1911)

(ii) Jul.–Aug. (ii) Ansari and Shah (1950)Tamilnadu (i) Aug.–Oct. (i) James and Liston (1911)

(ii) Jul.–Sept. (ii) Russell and Rao (1941)Bihar Jul.–Oct. Sen et al. (1960)Gujarat Aug.–Oct. Bhatt et al. (1991)Rajasthan Jul.–Oct. Bansal and Singh (1993)Orissa Jul.–Aug. Chand et al. (1993)West Bengal(i) Sagar Islands of Sunderban (i) Oct.–Nov. (i) Paramanik et al. (1993)

6

dpTliMl1

7

7

7

t

7

aiK

afdmamdomP6Raiet1iRisv

(ii) Siliguri(iii)Tarakeswar(iv) Bankura

Pakistan West Pakistan

.6. Seasonal prevalence

In three countries, from where information on seasonal abun-ance of An. subpictus was available. This species was morerevalent during monsoon in majority of the places as presented inable 4 probably due to the availability of temporary water accumu-ations along with perennial breeding places. At Dacca, Bangladesht was prevalent during summer along with monsoon (Mahmud and

uhammad, 1973). In contrast to other places it was more preva-ent during summer in Siliguri, West Bengal, India (Malakar et al.,995).

. Role as vector of human pathogens

.1. Role as malaria vector

.1.1. Australasian zoneRussell et al. (1963) reported that An. subpictus was widely dis-

ributed and the vector of malaria in this zone.

.1.2. IndiaJames (1902), Hodgson (1924), Mayne (1928), Iyer (1929), Sur

nd Sur (1929) and Banerjee (1930) found no natural sporozoitenfection in An. subpictus in Calcutta, Delhi, Saharanpur, Udaygiri,rishnanagar and Lucknow, respectively.

Covell (1931b) made an experimental feeding study in coastalreas where An. subpictus mosquitoes have shown infection whened on a series of infected human volunteers. Barber and Rice (1938)issected 153 salivary glands and 66 mid-guts of An. subpictusosquitoes in Poona. They found no sporozoite infection. Russell

nd Jacob (1939) made an extensive study on the epidemiology ofalaria in Ennore–Nellore coastal area, Madras Presidency. They

issected 4897 An. subpictus and two of those were found withocysts. Russell et al. (1939) detected sporozoites in one speci-en out of 8368 An. subpictus dissected in coastal areas of Madras

residency. Russell and Mohan (1939) got one gland infection in7 specimens fed on donors with P. falciparum in South India.ussell and Rao (1940) recorded the results of 13,277 dissectionst Pattukkottai, Madras Presidency out of which 2 specimens werenfected (1 gut, 1 gut plus gland). Roy (1943) conducted laboratoryxperiments on the status of An. subpictus as a carrier of malaria inhe Salt-Lake areas of Calcutta. He obtained 5 gut infections out of5 mosquitoes fed on a donor with P. vivax and 16 gut and 5 gland

nfections out of 50 specimens fed on a donor with P. falciparum.oy et al. (1978) suspected that An. subpictus was the sole vector

n Bitra Island where 56 P. vivax cases were detected in 1976. An.ubpictus has been incriminated on circumstantial evidence as aector in Laccadive and Maldives Islands. Das et al. (1979) studied

(ii) Apr.–Jun. (ii) Malakar et al. (1995)(iii) Jul.–Oct. (iii) Chatterjee and Chandra (2000)(iv) Jul.–Oct. (iv) Chandra et al. (2002)Jul.–Sept. Aslamkhan and Salman (1969)

on the urban and rural malaria and its vectors in Salem, Tamilnaduto reevaluate the role of An. subpictus mosquitoes, which used tobite man in large numbers in Salem. Out of 4024 An. subpictus, nonewas positive for sporozoites. 224 An. subpictus were fed on 13 infec-tive donors but failed to get infection. He observed a wide variationin the susceptibility of malaria infection in the sibling species of An.subpictus during feeding experiments. Panicker et al. (1981) incrim-inated An. subpictus as a vector of malaria in the coastal areas ofSouth India. Reuben and Suguna (1983) showed the difference inthe susceptibility of the sibling species of An. subpictus to malariainfection. Kulkarni (1983) dissected 12,107 females of An. subpictusof which 3 females showed the presence of sporozoites in the sali-vary glands in the Baster district of Madhya Pradesh. Mahmood etal. (1984) observed higher gut infection rate in An. subpictus thanthat in An. culicifacies but no individual of the former species wasfound gland positive. Nanda et al. (1987) made an experimentalstudy on the development of P. vivax in An. subpictus. They recorded31% gut and gland infection with an average of 39 oocysts per gut.

Chatterjee and Chandra (2000) detected natural sporozoiteinfection in salivary glands of one man-landing An. subpictus (outof 156 dissected) and one indoor-resting An. subpictus (out of 465dissected) with sporozoite rates of 0.64% and 0.21%, respectivelyin Tarakeswar area of West Bengal. Overall sporozoite rate (com-bining indoor-resting and man-landing population) was 0.32%.The sporozoite species was detected to be P. vivax in both thecases.

7.1.3. IndonesiaAn. subpictus was a vector of malaria in Celebes and a minor

vector in the south coast of Java (van Hell, 1952).

7.1.4. MalaysiaAn. subpictus is a vector of malaria in this country (White, 2003).

7.1.5. MaldivesIn the Maldives Island An. subpictus was reported as an active

malarial vector (WHO, 1976, unpublished information).

7.1.6. PakistanRahman and Muttalib (1967) studied on the malaria trans-

mission in central part of Karachi city; out of 2015 An. subpictusexamined, they observed no infection.

7.1.7. PhilippinesTiedeman (1927) and Manalang (1928) found no natural infec-

tion in this species.

1 Tropic

7

o

7

iSaE0wpeAt(cnbna

7

7

sstbcntGAna

7

F

7

7

ssrJnswhoptfFcOcw

50 G. Chandra et al. / Acta

.1.8. Portuguese Timor (East Timor)Ferreira and Breda (1963) incriminated An. subpictus as vector

f malaria in this area.

.1.9. Sri LankaCarter and Jacocks (1929) and Carter (1930) found no natural

nfection in An. subpictus. It is a secondary vector of malaria inri Lanka (Hearth et al., 1983). An. subpictus was incriminated asvector of human malaria in Sri Lanka (Amerasinghe et al., 1992).stimates of the entomological inoculation rate (EIR) ranged from.00006 to 0.005 in different samples and vectorial capacity (VC)as 0.0005 for 1990 samples. Abhayawardana et al. (1996) foundeak malaria transmission in coastal areas of Puttalam in the pres-nce of An. subpictus sibling species B and the complete absence ofn. culicifacies (the main malaria vector in Sri Lanka), and suggestedhat this An. subpictus sibling may have a role in transmission. Sahu1998) noted that An. subpictus had some susceptibility to P. fal-iparum. It is noteworthy, that freshwater An. subpictus (which isow known to consist of a mixture of species A, C and D), whichreeds in muddy rain fed puddles, has been consistently incrimi-ated as malaria vector during transmission season in many inlandreas (Konradsen et al., 2000).

.2. Role in transmission of filarial nematodes

.2.1. IndiaRao and Iyenger (1932) made some experimental infection of An.

ubpictus with W. bancrofti. They observed different developmentaltages of filarial worm in 26 specimens out of 34 dissected on 4tho 11th day. The rate of development of the filariae was found toe similar to that observed in Culex fatigans which were used asontrol. Dissections carried out on the 4th, 6th and 7th day showedormal development of the filariae. In one specimen dissected onhe 11th day after feed, mature larvae were seen in the thorax.hosh and Hati (1966) reported natural infection of W. bancrofti inn. subpictus from Howrah area of West Bengal (2 out of 289) but inone of them parasites beyond 2nd stage could be found withoutny epidemiological significance.

.2.2. IndonesiaAn. subpictus is the vector of nocturnally periodic W. bancrofti in

lores island of Indonesia (White, 2003).

.3. Role in transmitting Japanese encephalitis virus

.3.1. IndiaKanojia et al. (2003) selected three JE affected villages as study

ites in Gorakhpur district, Uttar Pradesh, India. An. subpictus wasuspected to have played some role in the epidemiology of JE in thategion. Thenmozhi et al., 2006 reported An. subpictus as a vector ofapanese encephalitis virus (JEV) in Cuddalore, an area of Tamil-adu, India, endemic for the disease. They collected 98 pools (4900pecimens) of wild adult male and 166 pools (8300 specimens) ofild adult female An. subpictus mosquitoes outdoors during duskours and screened them for JEV antigen by antigen-capture ELISAver a period of 1 year. Four pools of male An. subpictus testedositive. This indicates possible natural transmission of the virushrough transovarial passage in An. subpictus population. Nineteenemale pools were positive with a minimum infection rate of 2.3%.

rom January through March the infection rate was highest, i.e. 5.0%ompared with 1.7% between April and September and 2.1% fromctober to December, although the differences were not statisti-ally significant. From the 19 positive female pools, four isolatesere confirmed as JEV by insect bioassay.

a 115 (2010) 142–154

7.4. Role in transmitting West Nile virus

7.4.1. IndiaWest Nile virus has been isolated from An. subpictus in Asia

(White, 2003) such as in India (Habalek and Halouzka, 1999).

8. Analysis of relationship between An. subpictus larvaldensities and environmental parameters using RemoteSensing (RS), a Global Positioning System (GPS) and aGeographic Information System (GIS)

8.1. Indonesia

Remote Sensing (RS), a Global Positioning System (GPS) and aGeographic Information System (GIS) were used to analyze rela-tionship between An. subpictus larval densities and environmentalparameters in the Sekotong district on Lombok Island, Indonesiaby Anno et al. (2000). Distance from the coast to larval habi-tats, season and surface water were considered as environmentalparameters for determining An. subpictus larval densities. JapaneseEarth Resources Satellite (JERS) Visible and Near Infrared Radiome-ter (VNIR) satellite imagery for the area acquired by National SpaceDevelopment Agency of Japan (NASDA) were used to detect water,which could be used to characterize larval habitats. Data on lar-val sampling sites obtained from a GPS were entered into a GIS formapping larval habitats to measure distance between the coast andthe larval habitats. A GIS was used for overlaying of data coverages(i.e. water distribution from RS data and larval habitats coupledwith data on larval densities) to identify factors that may explainthe spatial distribution patterns of larval densities. An. subpictuslarval densities were significantly associated with season and dis-tance from the coast to larval habitats. The rainy season and thedistance from the coast to larval habitats were critical environ-mental determinants for presence of An. subpictus larvae in thestudy.

9. Control strategies

9.1. Chemical based control measures

An evaluation of pyriproxyfen as a larval control agent withthe aim of reducing malaria vector populations and incidence ofmalaria was conducted in 12 villages in an irrigated settlementscheme in the dry zone of central Sri Lanka by Yapabandara andCurtis (2004). In these villages, there are many pools in the bedsof rivers, streams, and irrigation ditches during the dry seasonof the year, which are the major breeding places of the malariavectors An. culicifacies and An. subpictus. All villages in the studyarea were under residual house spraying with lambdacyhalothrinwater-dispersible powder. Using the 1st year’s baseline data collec-tion, the villages were stratified into 6 villages with high malariaincidence and 6 villages with low incidence. Within each group, 3villages were randomly assigned for larval control by treating allthe pools in the beds of rivers, streams, and irrigation ditches andagricultural wells with a granular formulation of the insect growthregulator pyriproxyfen at the rate of 0.01 mg active ingredient/liter.The field bioassays indicated that a single treatment of pyriprox-yfen effectively inhibited the emergence of adult mosquitoes in theriverbed pools for a period of 190 days. The treatment caused sig-nificant reduction of the adult populations of An. culicifacies (78%)

and An. subpictus (72%). Similarly, incidence of malaria was reducedin the treatment villages by about 70% (95% confidence interval58–78%) compared with the controls. The conclusion is made thatpyriproxyfen can be a very effective means of malaria control if allpossible vector breeding places in the area can be located.

Tropic

9

9

iaSi

9

tirsiuitmetttbtt

af(fszrrt(

9

9

ltGfBadaf

9

laspaseot

G. Chandra et al. / Acta

.2. Status of insecticide resistance

.2.1. IndiaInformation regarding resistance of An. subpictus to insecticides

s scanty. This species has been reported to be resistance to DDTnd dieldrin/HCH in Gujarat (NMEP, 1991), Rajasthan (Bansal andingh, 1996), and other areas, but remains susceptible to malathionn these areas.

.2.2. Sri LankaAdult An. subpictus showed a broad spectrum of resistance

owards organophosphate insecticides but not to carbamatesn contrast to resistance to organophosphates and carbamateseported earlier for An. nigerrimus (Herath and Joshi, 1989). In bothpecies the frequency of resistance to malathion and fenitrothionncreased between 1980 and 1987, despite the ban on agriculturalse of these two compounds and the restriction of malathion to

ndoor residual spraying in malaria control since 1977. In con-rast, An. culicifacies showed only low-level specific resistance to

alathion at a very low frequency. As An. subpictus breeds to a largextent in paddy fields which are highly contaminated by agricul-ural pesticides, and is highly endophilic, selection for resistancehat could occur through both agricultural and anti-malarial pes-icide use. However, the anti-malarial use of malathion may haveeen less important, taking into consideration the low level of resis-ance of An. culicifacies which is also highly endophilic but breedso a negligible extent in paddy fields.

A study conducted from 1990 to 1992 on An. subpictus found 68%nd 54% susceptibility to malathion and fenitrothion, respectivelyor inland species (sibling species A), whereas for coastal speciesprimarily sibling species B) it was 100%. However, the latter wasound resistant to permethrin (Abhayawardana et al., 1996). Fromeveral districts it was reported that, as a result of tsunami, organi-ations have brought in insecticides not normally used or no longerecommended for vector control in Sri Lanka. Occurrence of vectoresistance in the light of the introduction of new insecticides needso be monitored and if necessary proper action should be takenBriët et al., 2005).

.3. Non-chemical based control measures

.3.1. Control by larvivorous fishesA few fish sp. have been used to control An. subpictus in India. In

aboratory Gambusia sp. consumed an average of 65.70 An. subpic-us larvae per day at Pondicherry (Menon and Rajagopalan, 1978).. affinis, Xenentodon cancila and Carrasius auratus showed daily

eeding rates of 48, 31 and 193 An. subpictus larvae, respectively aturdwan, West Bengal (Chandra and Chatterjee, 1996; Chatterjeend Chandra, 1996; Chatterjee et al., 1997). In field conditions perip density of An. subpictus larvae reduced from 34.50 to 0.02 on anverage on application of two C. auratus in each of ten 10 × 8 squareeet unused reservoirs at Burdwan (Chatterjee et al., 1997).

.3.2. Neem products as mosquito repellentVirendra et al. (1995) used the neem cream as mosquito repel-

ent to provide protection against An. subpictus mosquitoes. Thepplication of neem cream on exposed body parts (2.0 g/person)howed 94.4 (range 66–100) percent protections against An. sub-ictus mosquitoes. Application of neem cream was found to be safe

nd suitable alternative to insecticide impregnated coils for per-onal protection against mosquitoes and one application was 68%ffective for 4 h. Chatterjee et al. (1998) reported Citronella–Neemil as better repellent against An. subpictus (93.10% protection) thanhat of clove–neem oil mixture (75–86% protection).

a 115 (2010) 142–154 151

9.3.3. Control by other agentsTwo bacterial larvicide (bio-larvicide) formulations—Bacticide®

and VectoBac® containing viable endospores and delta endotoxinof Bacillus thuringiensis var israelensis H-14, Haq et al. (2004)reported that by applying VectoBac in stagnant water pools ofSurat City reduced the larvae of An. subpictus by 27.6–85.3%whereas Bacticide produced 23.3–30.3% reduction in An. subpictuslarval densities in the first week post application. In storm waterdrains, VectoBac caused 6.2–100% reduction in An. subpictus inthe first week of application whereas Bacticide produced 100%reduction in An. subpictus.

10. Conclusion

An. subpictus is a complex of four species A, B, C and D, infor-mation on the individual genetic species is meager and availableonly from India and Sri Lanka so, a broad range of behavioral,ecological and epidemiological indices has been attributed as it isavailable in the literature cited through out the world. An. subpic-tus, a prolific breeder, is a dominant house-frequenting mosquitohaving wide distribution. It has a great adaptability to survive withmany other mosquito species in almost all types of breeding habi-tats. Its man-hour density was higher than other anophelines inmost part of its distribution. Although the cattle blood is the firstchoice, its moderate anthropophilic index and high survival rate inall seasons are very significant clues for its role as disease trans-mitters. Development of sporozoites in the salivary glands bothby experimental and natural infection is of great epidemiologicalimportance to establish itself as a malaria transmitter. It can playa disastrous role in malaria transmission, especially during rainyseason, in those endemic areas where it is the responsible vector.It has been reported as a vector of nocturnally periodic W. ban-crofti in Flores island of Indonesia. Although some experimentalinfection of An. subpictus with Wuchereria showed similar rate ofdevelopment of the filariae as in Cx. quinquefasciatus in India butthe natural infection was so low to become a filarial vector. Previ-ous report depicts that transmission of Japanese encephalitis virus(JEV) and West Nile virus occurs by An. subpictus in India. Furtherstudies are needed on this species before concluding that it does nottransmit other diseases. Although susceptible to malathion, adultsshows broad spectrum of resistance to other organophosphates,organochlorines (DDT and dieldrin/HCH) but not to carbamates.Scientists from different institutes reported that a number of larviv-orous fishes may be utilized as potential bio-control agents againstAn. subpictus. Biocides (VectoBac, Bacticide) have been proved tobe effective against An. subpictus. Application of oils (neem oil, cit-ronella oil, etc.) extracted from plants and other byproducts (neemcream etc.) have been proved to have repellent action to pro-vide protection against the night-biting population of An. subpictusmosquitoes. The harmful effects of chemicals on non-target pop-ulations, ever-growing resistance to chemical insecticides alongwith the recent resurgence of different mosquito-borne diseaseshave induced scientists to explore alternative, simple, sustainablemethods of mosquito control. The eradication of adult An. subpic-tus using adulticides is not a prudent strategy, as for the occurrenceof adult stage alongside human habitation, and the adults can eas-ily escape remedial measures. So the exploration of more-effectiveand eco-friendly techniques like application of cost-effective, natu-ral, bio-control agents that can adapt to describe breeding habitatsof An. subpictus without having no adverse effect to human popula-tion as well as the non-target population of the environment would

be more promising.

References

Abhayawardana, T.A., Wijesuriya, S.R., Dilrukshi, R.K.C., 1996. Anopheles subpictuscomplex: distribution of sibling species in Sri Lanka. Indian J. Malariol. 33, 53–60.

1 Tropic

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

52 G. Chandra et al. / Acta

fridi, M.K., Singh, J., Singh, H., 1939. Food preferences of Anopheles mosquitoes inDelhi urban area. J. Mal. Inst. Ind. 2, 219–227.

merasinghe, F.P., Amerasinghe, P.H., Peiris, J.S.M., Wirtz, R.A., 1991. Anophelineecology and malaria infection during the irrigation development of an area ofthe Mahaweli project, Sri Lanka. Am. J. Trop. Med. Hyg. 45, 226–235.

merasinghe, P.H., Amerasinghe, F.P., 1999. Multiple host feeding in field popula-tions of An. culicifacies and An. subpictus in Sri Lanka. Med. Vet. Entomol. 13 (2),124–131.

merasinghe, P.H., Amerasinghe, F.P., Writz, R.A., Indrajith, N.G., Somapala, W.,Pereira, L.R., Rathnayake, A.M., 1992. Malaria transmission by Anopheles subpic-tus (Diptera: Culicidae) in a new irrigation project in Sri Lanka. J. Med. Entomol.29 (4), 577–581.

nno, S., Takagi, M., Tsuda, Y., Yotopranoto, S., Dachlan, Y.P., Bendryman, S.S., Ono, M.,Kawabata, M., 2000. Analysis of relationship between Anopheles subpictus larvaldensities and environmental parameters using remote sensing (RS), a globalpositioning system (GPS) and a geographic information system (GIS). Kobe. J.Med. Sci. 46 (6), 231–243.

nsari, M.A.R., Shah, K.S., 1950. A Guide to the Mosquitoes of the Punjab. Instituteof Hygiene & Preventive Medicine, Lahore, pp. iv+45.

slamkhan, M., Salman, C., 1969. The bionomics of mosquitoes of the Change MangeNational Forest, West Pakistan. Pakistan J. Zool. 1, 183–205.

trie, B., 1994. Cytogenetic studies of different field populations of Anopheles annu-laris Van Der Wulp and Anopheles subpictus Grassi. PhD thesis. Dept. of ZoologyDept. University of Delhi, Delhi, India.

anerjee, A.C., 1930. Some observations on unusual epidemic of malaria in the cityof Lucknow (April–Sept 1929). Indian Med. Gaz. 65, 149–153.

anerjee, P.K., Ghosh, K.N., Chatterjee, R.N., 1991. Gel diffusion analysis of host pref-erence pattern of An. subpictus in West Bengal, India. Indian J. Malariol. 28,157–159.

ansal, S.K., Singh, K., 1993. Prevalence and seasonal distribution of anopheline faunain District Bikaner (Rajasthan). Indian J. Malariol. 30, 119–125.

ansal, S.K., Singh, V.K., 1996. Insecticide susceptibility status of some Anophelinesin district Bikaner Rajasthan. Indian J. Malariol. 33, 1–6.

arber, M.A., Rice, J.B., 1938. Malaria in Poona and its vicinity. J. Mal. Inst. Ind. 1,37–55.

hat, H.R., 1975. A survey of haematophagous arthropods in western Himalayas,Sikkim and hill districts of West Bengal: records of mosquitoes collected fromHimalayan Region of Uttar Pradesh with ecological notes. Indian J. Med. Res. 63(11), 1583–1608.

hatt, R.M., Sharma, R.C., Gautam, A.S., Gupta, D.K., 1991. Seasonal prevalence ofanophelines in Kheda District, Gujarat. Indian J. Malariol. 28, 9–18.

hatt, R.M., Sharma, R.C., Srivastava, H.C., Gautam, A.S., Gupta, D.K., 1993. Inter-specific association among anophelines in different breeding habitats of Khedadistrict, Gujarat. Part II. Non-canal area. Indian J. Malariol. 30, 91–100.

iswas, D., Chatterjee, K.K., Chandra, G., Bhattacharyya, A., Mandal, M., Hati, A.K.,1988. Vertical distribution of indoor resting Aedes aegypti (L.) mosquitoes in anarea in Calcutta, West Bengal. Indian Med. Gaz. CXXII (4), 118–120.

riët, O.J.T., Galappaththy, G.N.L., Amersinghae, P.H., Konradsen, F., 2006. Malaria inSri Lanka: one year post-tsunami. Malar. J. 5 (42), doi:10.1186/1475-2875-5-42.

riët, O.J.T., Galappaththy, G.N.L., Amersinghae, P.H., Amersinghae, H.P., 2005.Maps of the Sri Lanka malaria situation preceding the tsunami and keyaspects to be considered in the emergency phase and beyond. Malar. J. 4 (8),doi:10.1186/1475-2875r-r4-8.

ruce Chawtt, L.J., Garrent, J.C., Weitz, B., 1966. Ten year’s study of host selection byanopheline mosquitoes. Bull. WHO 35, 405–435.

arter, H.F., Jacocks, W.P., 1929. Observations of malaria by anopheline mosquitoesin Ceylon. Ceyl. J. Sci. 2, 67–86.

arter, H.F., 1930. Further observations on the transmission of malaria by anophelinemosquitoes in Ceylon. Ceyl. J. Sci. 4, 159–176.

hakraborty, S., Choudhury, D.K., Bhattacharya, S., Hati, A.K., 1986. Bait preferencepattern of Culex vishnui mosquito in rural West Bengal. Bull. Cal. Sch. Trop. Med.34, 1–4.

hand, S.K., Yadav, R.S., Sharma, V.P., 1993. Seasonality of indoor resting mosquitoesin a broken forest ecosystem of North Western Orissa. Indian J. Malariol. 30,145–154.

handra, G., Chatterjee, S.N., 1996. Laboratory trials on the feeding pattern ofAnopheles subpictus, Culex quinquefasciatus and Armigeres subalabatus larvae byXenentodon cancila Fry. Environ. Ecol. 14 (1), 173–174.

handra, G., 1998. Studies on transmission dynamics of lymphatic filariasis in ruralareas of West Bengal. Proc. Zool. Soc. Calcutta 51 (2), 116–128.

handra, G., Chatterjee, S.N., Chatterjee, K.K., Hati, A.K., 1994. Anophelines in anurban and rural area of West Bengal. Bull. Cal. Sch. Trop. Med. 42, 1–4.

handra, G., Rudra, S.K., Chatterjee, S.N., Das, S., 2002. Studies on anophelinemosquitoes of tribal and non-tribal areas in Bankura district, West Bengal, India.Entomon 27 (3), 305–308.

handra, G., Seal, B., Hati, A.K., 1996. Age composition of the filarial vector Culexquinquefasciatus (Diptera: Culicidae) in Calcutta, India. Bull. Entomol. Res. 86,223–226.

hatterjee, K.K., Biswas, D., Chandra, G., Bhattacharyya, A., Ghosh, A., Hati, A.K., 1988.Longitudinal survey on mosquito larvae in relation to metro rail construction in

Calcutta. Indian Med. Gaz. CXXII (2), 56–59.

hatterjee, S.N., Chandra, G., 1996. Laboratory trial on the feeding pattern of Anophe-les subpictus, Culex quinquefasciatus and Armigeres subalbatus larvae by Gambusiaaffinis. Sci. Cult. 63 (1–2), 51–52.

hatterjee, S.N., Chandra, G., 2000. Role of Anopheles subpictus as a primary vectorof malaria in an area in India. Jpn. J. Trop. Med. Hyg. 28 (3), 177–181.

a 115 (2010) 142–154

Chatterjee, S.N., Chandra, G., Bhoumik, K., Hati, A.K., Banerjee, B.D., 1998. Effect ofCitronella – neem oil mixture and clove oil – neem oil mixture on the nightbiting population of mosquitoes. J. Basic Appl. Biomed. 6 (1), 31–32.

Chatterjee, S.N., Das, S., Chandra, G., 1997. Gold fish (Carrassius auratus) as a stronglarval predator of mosquito. Trans. Zool. Soc. Ind. 1 (1), 112–114.

Collins, R.T., Sharma, G.K., Dhal, K.B., 1989. Gel diffusion determinations on feedingbehaviour patterns of anophelines in Orissa State, India. J. Comm. Dis. 21 (1),1–23.

Cooper, R.D., Waterson, D.G.E., Frances, S.P., Beebe, N.W., Sweeney, A.W., 2006. TheAnopheline Fauna of Papua New Guinea. J. Am. Mos. Control Assoc. 22 (2),213–221.

Covell, G., Harbhagwan, J., 1939. Malaria in the Wynaad, South India. J. Mal. Inst. Ind.2, 341–376.

Covell, G., 1931a. The distribution of Anopheles mosquitoes in India and Ceylon:additional records, 1926–1930. Rec. Mal. Surv. Ind. 2, 235–238.

Covell, G., 1931b. The present state of our knowledge regarding the transmission ofmalaria by the different species of anopheline mosquitoes. Rec. Mal. Surv. Ind.2, 1–46.

Covell, G., 1944. Notes on the distribution, breeding places, adult habits and relationto malaria of the anopheline mosquitoes of India and the Far East. J. Mal. Inst.Ind. 5, 399–434.

Curtis, C.F., Townson, H., 1998. Existing methods of vector control and molecularentomology. Braz. Med. Bull. 54, 311–325.

Das, P.K., Reuben, R., Batra, C.P., 1979. Urban malaria and its vectors in Salem (Tamil-nadu): natural and induced infection with human plasmodia in mosquitoes.Indian J. Malariol. 69, 203–411.

Das, S.C., Bhuyan, M., Baruah, I., Talukdar, P.K., 1991. Mosquito survey in Tripura.Indian J. Malariol. 28, 129–134.

Devi, N.P., Jauhari, R.K., 2004. Altitudinal distribution of mosquitoes in mountainousarea of Garhwal region. J. Vect. Borne Dis. 41, 17–26.

Dhanda, V., Kaul, H.N., 1980. Mosquito vectors of Japanese encephalitis virus and theirbionomics in India. Proc. Indian Natl. Sci. Acad. 46B, 759.

Djadid, N.D., Sanati, M.H., Zare, M., Hassanzehi, A., 2003. r DNA–ITS2 Identificationof An. pulcherrimus (Diptera: Culicidae): genetic differences and phylogeneticrelation with other Iranian vectors and its implications for malaria control. IranBiomed. J. 7 (1), 1–6.

Ferreira, A.P., Breda, A.V., 1963. Studies of malaria endemia in Timor, with a viewto establishing a plan for its prevention, investigations made in 1962. An. Inst.Med. Trop. (Lisb.) 20, 73–98.

Fischer, L., 1968. Geomedical Monograph Series, 11. Afghanistan. Springer-Verlag,Berlin.

Ghosh, S.M., Hati, A.K., 1966. House frequenting mosquitoes of West Bengal andCalcutta: detection of filarial parasites in Anopheles and Culex spp. Bull. Cal. Sch.Trop. Med. 14, 9–10.

Gupta, D.K., Bhatt, R.M., Sharma, R.C., Goutam, A.S., Rajnikant, A.K., 1992. Intrado-mestic mosquito breeding sources and their management. Indian J. Malariol. 29,41–46.

Habalek, Z., Halouzka, J., 1999. West Nile fever: a reemerging mosquito borne viraldisease in Europe. Emerg. Infect. Dis. 5 (5), 643–650.

Haq, S., Bhatt, R.M., Vaishnav, K.G., Yadav, R.S., 2004. Field evaluation of biolarvicidesin Surat city, India. J. Vect. Borne Dis. 41, 61–66.

Harrison, B.A., Klein, J.M., 1975. A revised list of the Anopheles of Cambodia. Mos.Syst. 7 (1), 9–12.

Hati, A.K., 1986. Studies on Culex vishnui and other related vectors of Japaneseencephalities in rural West Bengal, Monograph. Calcutta School of TropicalMedicine Govt. of West Bengal, pp. 1–150.

Hearth, P.R.J., Abhayawardana, T.A., Padmalal, U.K.G.K., 1983. A study of the role ofdifferent anopheline species in the transmission of human malaria in Sri Lanka.In: Proceeding of Annual Session of Sri Lanka, Am. Assoc. Adv. Sci., vol. 39, p. 6.

Herath, P.R.J., Joshi, G.P., 1989. Pesticide selection pressure on Anopheles subpictus inSri Lanka: comparison with two other Sri Lankan anophelines. Trans. Roy. Soc.Med. Hyg. 83 (4), 565–567.

Hodgson, E.C., 1924. Malaria in the new province of Delhi. Indian J. Med. Res. II 2,405–455.

Hoedojo, F.P., Atmosoedjono, S., PurnomoTeren, T., 1980. A study on vectors of ban-croftian filariasis in West Indonesia. Southeast Asian J. Trop. Med. Public Health11, 399–404.

Iyengar, M.O.T., 1931. The distribution of An. ludlowi in Bengal and its importancein malaria epidemiology. Indian J. Med. Res. 19, 499–539.

Iyengar, M.O.T., 1954. Vector of malaria in Kabul, Afghanistan. Trans. Roy. Soc. Trop.Med. Hyg. 48, 319–324.

Iyengar, M.O.T., 1995. Technical Paper. Bismark—New Guinea, New Britain, MarianasIsland. Distribution of mosquitoes in the South Pacific region, 1–47.

Iyer, M.K.R., 1927. Second report on malaria at Udaygiri (Dec. 1926). Supp. Ann. Rep.King Inst. Guindy 28, 19–20.

James, S.P., Liston, W.G., 1911. A Monograph of the Anopheline Mosquitoes of India,2nd ed. Thacker, Spink & Co., Calcutta, 128 pp.

James, S.P., 1902. Malaria in India, Sci Mems Offs Med and San Dept. Govt. Ind.NS 2. quoted by Covell G (1932), malaria in Calcutta. Rec. Mal. Surv. Ind. 3,82.

Kanojia, P.C., Shetty, P.S., Geevarghese, G., 2003. A long-term study on vectorabundance and seasonal prevalence in relation to the occurrence of Japaneseencephalitis in Gorakhpur district, Uttar Pradesh. Indian J. Med. Res. 117,104–110.

Kant, R., Pandey, S.D., 1999. Breeding preferences of An. culicifacies in the rice-agroecosystem in Kheda district, Gujarat. Indian J. Malariol. 36, 53–60.

Tropic

K

K

K

K

L

M

M

M

M

M

MM

M

M

M

M

M

N

N

N

O

O

P

P

P

P

R

R

R

R

R

R

G. Chandra et al. / Acta

onradsen, F., Amerasinghe, F.P., Van der Hoek, W., Amerasinghe, P.H., 2000. Malariain Sri Lanka: Current Knowledge on Transmission and Control. InternationalWater Management Institute, Colombo.

rishnamoorthy, K., Jambulingam, P., Natarajan, R., Shriram, A.N., Das, P.K., Sehagal,S.C., 2005. Altered environment and risk of malaria outbreak in South Andaman,Andaman and Nicobar Islands, India affected by tsunami disaster. Malar. J. 4, 32.

ulkarni, S.M., 1983. Detection of sporozoites in Anopheles subpictus in Baster dis-trict, Madhya Pradesh. Indian J. Malariol. 20, 159–160.

umar, A., Thavaselvam, D., 1992. Breeding habitats and their contribution toAnopheles stephensi in Panaji. Indian J. Malariol. 29, 35–40.

ein, J.C., Usfinit, A.U., Atmosoedjone, S., Gundelfinger, B.F., 1975. Observations onnatural Plasmodium infections in mosquitoes and a brief survey of mosquitofauna in Belu Regency, Timor. J. Med. Entomol. 12, 333–337.

ahadev, P.V.M., Dhanda, V., Geevarghese, G., Mishraw, A.C., Deshmukh, P.K., Kaul,H.N., Modi, G.B., Shetty, P.S., Georje, P.J., Guttikar, S.N., Dhanpal, J., 1978. Studieson the mosquitoes of Bankura district, West Bengal: adult populations. Indian J.Med. Res. 68, 248–263.

ahapatra, M.S., Das, S., Tandon, N., 1991. Mosquito fauna of certain areas of deltaicWest Bengal. A preliminary report. Indian J. Malariol. 28, 45–50.

ahmood, F., Sakai, R.K., Akhtar, K., 1984. Vector incrimination studies and obser-vations on species A and B of the taxon Anopheles culicifacies in Pakistan. Trans.Roy. Soc. Trop. Med. Hyg. 78, 607–616.

ahmud, U.A., Muhammad, M., 1973. Bionomics of the common mosquitoes ofDacca. J. Nat. Hist. 7 (1), 1–21.

alakar, P., Das, S., Saha, G.K., Dasgupta, B., Hati, A.K., 1995. Anopheline ofSiliguri—Naxalbari Block Darjeeling, West Bengal. Indian J. Malariol. 32,133–139.

analang, C., 1928. Notes on malaria transmission. Phil. J. Sci. XXXVII (1), 123–131.anguin, S., Garros, C., Dusfour, I., Harbach, R.E., Coosemans, M., 2008. Bionomics,

taxonomy, and distribution of the major malaria vector taxa of Anopheles sub-genus Cellia in Southeast Asia: an update review. Infect. Gen. Evol. 8, 489–503.

anson-Bahr, P.E.C., Bell, D.R., 1991. Manson’s Tropical Diseases. ELBS Pub., London,pp. 1404–1435.

ayne, B., 1928. An anopheline mosquito as a host for the parasite of bird malaria.Indian J. Med. Res. XVI (2), 557–558.

ehta, D.R., 1934. Studies on the Iongevity of some Indian anophelines. Part I. Sur-vival of Anopheles subpictus Grassi under controlled conditions of temperatureand humidity. Res. Mal. Surv. Ind. 4 (3), 261–272.

enon, P.K.B., Rajagopalan, P.K., 1978. Control of mosquito breeding in wells byusing Gambusia affinis and Aplocheilus blochii in Pondicherry town. Indian J. Med.Res. 68, 927–933.

ukhopadhyay, A.K., Hati, A.K., 1978. Man biting activity of An. stephensi in Calcutta.Bull. Cal. Sch. Trop. Med. 26, 5–6.

agpal, B.N., Sharma, V.P., 1995. Indian Anophelines. Oxford & IBH Pub Co. Pvt. Ltd,pp. 189–190.

anda, N., Das, C.N.S., Subbarao, S.K., Adak, T., Sharma, V.P., 1987. Studies onthe development of Plasmodium vivax in An. subpictus. Indian J. Malariol. 24,135–142.

ational Malaria Eradication Programme, 1991. Annual Report of the NationalMalaria Eradication Programme, Ministry Health and Family Welfare, Govt. ofIndia.

o, T.T., Storch, V., Becker, N., 2004. Review of the anopheline mosquitoes of Myan-mar. J. Vect. Ecol. 29, 21–40.

shaghi, M.A., Taghilo, B., Moradi, M.T., Vatandoost, H., 2004. Detection of the An.culicifacies complex, species A and B in Baluchistan using mtDNA PCR-RFLPassay; the first report of species B from Iran. Hakim 7, 35–42 (in Persian).

anicker, K.N., GeethaBai, M., Bheema Rao, U.S., Viswam, K., Suryanarayanamurthy,U., 1981. An. subpictus vector of malaria in coastal villages of South-East India.Curr. Sci. 50, 694–695.

aramanik, M.K., Acharya, P.M.R., Sarkar, S., 1993. Mosquitoes of Sagar Island. IndianJ. Malariol. 30, 193–199.

rasad, H., Prasad, R.N., Haq, S., 1993. Control of mosquito breeding through Gam-busia affinis in rice fields. Indian J. Malariol. 30, 57–65.

uri, I.M., 1948. The distribution of anopheline mosquitoes in India, Pakistan, Ceylonand Burma. Part V. Additional Records, 1936–1947. J. Mal. Inst. Ind. 2, 67–107.

ahman, M., Muttalib, A., 1967. Determine action of malaria transmission in centralpart of Karachi city and incrimination of An. stephensi as the vector. Pakistan J.Health 17, 73.

ajagopalan, P.K., Work, T.H., 1969. An analysis of mosquito collections with spe-cial reference to the incidence and prevalence of Culex vishnui complex in theJapanese encephalities infected localities of North Arcot district. Madras state,India from December 1955 through December 1957. Indian J. Med. Res. 57,1409–1419.

ajnikant Bhatt, R.M., Gupta, D.K., Sharma, R.C., Gautam, A.S., 1992. Anophelinebreeding in ponds of central Gujarat with reference to water hyacinth infes-tation. Indian J. Malariol. 30, 215–220.

ajnikant Bhatt, R.M., Gupta, D.K., Sharma, R.C., Srivastava, H.C., Gautam, A.S., 1993.Observations on mosquito breeding in wells and its control. Indian J. Malariol.30, 215–220.

amsay, G.C., Chandra, S.N., Lamprell, B.A., 1936. A record of an investigation todetermine the anthrophilic indices of certain anopheline mosquitoes collectedon tea states in Assam and Northern Bengal. Rec. Mal. Surv. Ind. 6, 49–51.

ao, R.T., Dhanda, V., Bhat, H.R., Kulkarni, S.M., 1973. A survey of HaematophagusArthropods in Western Himalayas. Sikkim and Hill districts of West Bengal. Ageneral account. Indian J. Med. Res. 61, 1421–1470.

a 115 (2010) 142–154 153

Rao, S., Iyenger, M.O.T., 1932. Experimental infection of some Indian mosquitoeswith Wuchereria (Filaria) bancrofti. Indian J. Med. Res. 20, 25–27.

Rao, T.R., 1951. Malaria control using indoor residual sprays in the Eastern Provinceof Afghanistan. Bull. WHO 3, 639–661.

Rao, T.R., 1984. The Anophelines of India. Malaria Research Centre (ICMR), Delhi, p.518.

Reid, J.A., 1966. A note on An. subpictus Grassi and An. indefinitus Ludlow (Diptera:Culicidae). J. Med. Entomol. 3, 327–331.

Reid, J.A., 1968. Anopheline Mosquitoes of Malaya and Borneo, 31. Studies from theInstitute for Medical Research, Malaya, pp. 1–520.

Reuben, R., Panicker, K.N., 1979. A study of human behaviour influencing manmosquito contact and of mosquito biting activity on children in South Indianvillage community. Indian J. Med. Res. 70, 723–772.

Reuben, R., Suguna, S.G., 1983. Morphological differences between sibling species ofthe taxon An. subpictus Grassi in India, with notes on relationship with knownforms. Mos. Syst. 15, 117–126.

Reuben, R., 1978. A report on mosquitoes collected in the Krishna–Godavari deltaAndhra Pradesh. Indian J. Med. Res. 68, 603–609.

Riley, W.A., Yu, W.L., 1932. The Anopheline mosquitoes of China. Lingnan Sci. J. 11(2), 175–191.

Roy, D.N., 1943. The role of Anopheles subpictus Grassi as a carrier of malaria. J. Mal.Inst. Ind. 5, 117–121.

Roy, R.G., Joy, C.T., Hussian, C.M., Ismail, K.M., 1978. Malaria in Lakshadweep Islands.Indian J. Med. Res. 67, 924–925.

Rudra, S.K., Chandra, G., 1998. Bancroftian filariasis in tribal population of BankuraDistrict, West Bengal, India. J. Trop. Med. Hyg. 26 (2), 109–112.

Russell, P.F., Jacob, V.P., 1939. Epidemiology of malaria in Ennore Nellore coastalarea. Madras Presidency, India. J. Mal. Inst. Ind. 2, 131–152.

Russell, P.F., Mohan, B.N., 1939. On experimental malaria infections in certainAnopheles of southeastern Madras. J. Mal. Inst. Ind. 2, 425–431.

Russell, P.F., Rao, T.R., 1940. Natural malarial infections in South Indian anophelines,with special references to An. culicifacies. J. Mal. Inst. Ind. 3, 543–562.

Russell, P.F., Rao, T.R., 1941. On seasonal prevalence of Anopheles species in South-Eastern Madras. J. Mal. Inst. Ind. 4, 263–296.

Russell, P.F., Rao, T.R., Jacob, V.P., 1939. Anopheles subpictus Grassi (1899) andAnopheles vagus Donitz (1902) found naturally infected with malaria Plasmodiain south eastern India. J. Mal. Inst. Ind. 2, 95–99.

Russell, P.F., West, L.S., Manwell, R.D., MacDonald, G., 1963. Practical Malariology,44., 2nd ed. Oxford University Press, London, p. 275.

Sahu, S.S., 1998. Comparative susceptibility of An. subpictus from fresh and brackishwater areas to Plasmodium falciparum infection. Acta Trop. 70, 1–7.

Sarkar, P.K., Rao, K.M., Nath, D.R., Das, P.K., Saikia, H.C., 1980. Mosquito fauna incertain places of Nagaland. Indian J. Med. Res. 72, 60–63.

Scanlon, J.E., Peyton, E.L., Douglas, J.G., 1968. Southern Thailand—An AnnotatedChecklist of the Anopheles of Thailand. Thai National Scientific Papers. FaunaSeries No. 2, 3–35.

Sedaghat, M.M., Harbach, R.E., 2005. An annotated checklist of the Anophelesmosquitoes (Diptera: Culicidae) in Iran. J. Vect. Ecol. 30 (2), 272–276.

Sen, R.N., Gopal, R.R., Chakraborty, R.K., 1960. Observations on the seasonal preva-lence of adult anophelines near Dhanabad. Indian J. Med. Res. 14, 23–54.

Senior, W., 1938. On malaria transmission in the Jeypore hills. Part II. A second years’results. J. Mal. Inst. Ind. 1, 129–145.

Senior, W., 1946. An analysis of a series of night catches of Anopheles. J. Mal. Inst.Ind. 6, 417–419.

Sharma, S.N., Prasad, R.N., 1991. Observations on the breeding of anophelines in ricefields of Shahjahanpur District, Uttar Pradesh. Indian J. Malariol. 28, 83–89.

Siddons, L.B., 1946. Anopheles stephensi as a vector of malaria in Calcutta. Indian J.Malariol. 6, 367–376.

Singh, J., Jacob, V.P., 1944. Malaria investigation in North Kanara. J. Mal. Inst. Ind. 5,267–303.

Singh, S.P., Raghavendra, K., Nanda, N., Subbarao, S.K., 2004. Morphotaxonomic stud-ies to identify the members of the Anopheles subpictus Grassi (Diptera: Culicidae)species complex in riverine villages of district Sonepat, Haryana state, India. J.Comm. Dis. 36, 35–40.

Soman, D.W., 1945. Malaria in Pondharpur. Bombay Presidency. J. Mal. Inst. Ind. 6,99.

Soman, R.S., Kaul, H.N., Guru, P.Y., Modi, G.B., Guttikar, S.N., Dhanda, V., 1976. A reporton the mosquitoes collected during an epidemic of encephalities in Burdwan andBankura district, West Bengal. Indian J. Parasitol. 64, 808–813.

Subbarao, S.K., Vasantha, K., Sharma, V.P., 1988. Cytotaxonomy of certain malariavectors of India. In: Service, M.W. (Ed.), Biosystematics of HaematophagousInsects. Clarendon Press, Oxford, pp. 25–37.

Suguna, S.G., 1982. Cytological and morphological evidences for sibling species inAnopheles subpictus Grassi. J. Comm. Dis. 14 (1), 1–8.

Suguna, S.G., Rathinam, K.G., Rajavel, A.R., Dhanda, V., 1994. Morphological and chro-mosomal descriptions of new species in the Anopheles subpictus complex. Med.Vet. Entomol. l8, 88–94.

Sundararaman, S., Soeroto, R.M., Siran, M., 1957. Vectors of malaria in mid-Java.Indian J. Med. Res. 11, 321–338.

Sur, S.N., Sur, P., 1929. Report of the Bengal field malaria research, Krishananagar

Laboratory, 1926-1928, Calcutta.

Tandon, N., Tandon, S.K., 1994. Distribution and relative prevalence of anophelinesin District South 24-Parganas, West Bengal, India. Indian J. Malariol. 31, 115–121.

Tandon, N., Basak, B., Das, S., 1995. Anopheline fauna of Ajodhya hills, district Purulia,West Bengal. Indian J. Malariol. 32, 54–58.

1 Tropic

T

T

T

v

V

W

W

W

Yajun, M., Shizhu, L., Jainnong, X., 2006. Molecular identification and phylogenyof the Maculatus group of Anopheles mosquitoes (Diptera: Culicidae) based on

54 G. Chandra et al. / Acta

henmozhi, V., Rajendran, R., Ayanar, K., Manavalan, R., Tyagi, B.K., 2006. Long-termstudy of Japanese encephalitis virus infection in Anopheles subpictus in Cuddaloredistrict, Tamilnadu, South India. Trop. Med. Int. Health 11 (3), 288–293.

iedeman, W.V.D., 1927. Malaria in Philippines. J. Prevent. Med. 1 (3), 203–254.

imber, H.G., 1935. Studies on Malaria in villages in Western Bengal. Rec. Mal. Surv.Ind. 5, 345–370.

an Hell, J.C., 1952. The Anopheline fauna and malaria vectors in South Celebes. Doc.Med. Geogr. Trop. 4, 45–46.

irendra, K.D., Nagpal, B.N., Sharma, V.P., 1995. Repellant action of neem creamagainst mosquitoes. Indian J. Malariol. 32, 47–53.

ard, R.A., 1972. Mosquitoes of Afghanistan—an annotated checklist. Mos. Syst. 4,

93–97.

ard, R.A., Jordan, B., Gillogly, A.R., Harrison, F.J., 1976. Mariana Islands–Island ofGuam—Anopheles litoralis king and An. barbirostris group on the Island of Guam.Mos. News 36 (1), 99–100.

hite, N.J., 2003. Malaria. In: Cook, G., Zumla, A. (Eds.), Manson’s Tropical Diseases,21st ed. Saunders, London, pp. 1205–1295.

a 115 (2010) 142–154

World Health Organization, 1959. Extract from report of the entomologist ATME No.3 Afghanistan, September–November 1958.

World Health Organization, 1976. Unpublished information received by the Cour-tesy of WHO, New Delhi.

World Health Organization, 2007. Anopheline Species Complexes in South andSouth-East Asia, vol. 57. Regional Office for South East Asia, New Delhi,pp. 22–32.

Yadav, R.S., Sharma, R.C., Bhatt, R.M., Sharma, V.P., 1989. Studies on the anophelinefauna of Kheda district and species-specific breeding habitats. Indian J. Malariol.26 (2), 65–74.

nuclear and mitochondrial DNA sequences. Acta Trop. 99, 272–280.Yapabandara, A.M.G.M., Curtis, C.F., 2004. Control of vectors and incidence of malaria

in an irrigated settlement scheme in Sri Lanka by using the insect growth regu-lator pyriproxyfen. J. Am. Mos. Cont. Assoc. 20 (4), 395–400.