A New Family of Generalized Quadratic Hazard Rate Distribution With Applications

13
Journal of Testing and Evaluation M. Kayid, 1 I. Elbatal, 2 and F. Merovci 3 DOI: 10.1520/JTE20140324 A New Family of Generalized Quadratic Hazard Rate Distribution With Applications VOL. 44 / NO. 4 / JULY 2016

Transcript of A New Family of Generalized Quadratic Hazard Rate Distribution With Applications

Journal ofTesting and Evaluation

M. Kayid,1 I. Elbatal,2 and F. Merovci3

DOI: 10.1520/JTE20140324

A New Family of GeneralizedQuadratic Hazard RateDistribution With Applications

VOL. 44 / NO. 4 / JULY 2016

M. Kayid,1 I. Elbatal,2 and F. Merovci3

A New Family of Generalized QuadraticHazard Rate Distribution With Applications

Reference

Kayid, M., Elbatal, I., and Merovci, F., “A New Family of Generalized Quadratic Hazard Rate Distribution

With Applications,” Journal of Testing and Evaluation, Vol. 44, No. 4, 2016, pp. 1–12, doi:10.1520/

JTE20140324. ISSN 0090-3973

ABSTRACT

The purpose of this paper is to introduce a new family of the quadratic hazard rate

distribution. This new family has the advantage of being capable of modeling various shapes

of aging and failure criteria. Furthermore, some well-known lifetime distributions such as

generalized exponential distribution, generalized linear hazard rate distribution, and

generalized Rayleigh distribution among others follow as special cases. Some statistical and

reliability properties of the new family are discussed and the maximum likelihood estimation

is used to estimate the unknown parameters. Explicit expressions are derived for the

quantiles. In addition, the asymptotic confidence intervals for the parameters are derived

from the Fisher information matrix. Finally, the obtained results are validated using a real

data set and it is shown that the new family provides a better fit than some other known

distributions.

Keywords

generalized quadratic hazard rate distribution, reliability function, order statistics, transmutation map,

maximum likelihood estimation

Introduction

Any statistical analysis depends greatly on the statistical model used to represent the phenomena

under study. Hence, the larger the class of statistical models available to the statistician, the easier

it is to choose a model. A quick survey of the models in common use reveals the abundance of sta-

tistical models in the literature. However, data of many important and practical problems do not

follow any of the probability models available. In such cases, a non-parametric model may be

Manuscript received August 23, 2014;

accepted for publication January 5,

2015.

1 Department of Statistics and Operations

Research, College of Science, King Saud

Univ., P.O. Box 2455, Riyadh 11451, KSA

(Permanent Address: Department of

Mathematics and Computer Science,

Faculty of Science, Suez Univ., Suez

41522, Egypt).

2 Institute of Statistical Studies and

Research, Department of Mathematical

Statistics, Cairo Univ., Giza, Egypt.

3 Department of Mathematics, Univ. of

Prishtina “Hasan Prishtina,” Republic of

Kosovo.

1

Journal of Testing and Evaluation

doi:10.1520/JTE20140324 / Vol. 44 / No. 4 / July 2016 / available online at www.astm.org

recommended. While a two parameters distribution may pro

vide reasonably precision in fitting data, it may be still desirable

to extend the flexibility of any distribution to allow for better

description of data without having to resort to non-parametric

models. Since there is a clear need for extended forms of these

distributions, significant progress has been made toward the

generalization of some well-known distributions and their suc

cessful applications to problems in areas such as engineering,

finance, economics, and biomedical sciences among others.

Recently, many researchers have been interested in searches

that introduce new families of distributions or generalize some

of the presented distributions which can be used to describe the

lifetimes of some devices or to describe sets of real data. An

interesting idea of generalizing a distribution, known in the

literature as transmutation, is derived by using the quadratic

rank transmutation map [1]. Based on the transmuted

generalization, various generalizations were introduced

including the transmuted Lindley distribution [2],

transmuted extreme value distribution [3], transmuted

Weibull distribution [4], transmuted additive Weibull

distribution [5], transmuted log–logistic distribution [6], and

transmuted modified Weibull distribution [7].According to

the quadratic rank transmutation map approach, the

cumulative distribution function (cdf) satisfy the relation-

shipF2ðxÞ ¼ ð1þ kÞF1ðxÞ � k F1ðxÞ

2(1)

which on differentiation yields

(2)

where f1(x) and f2(x) are the corresponding probability distribu-

tion (pdf) functions associated with cdfs F1(x) and F2(x), respec-

tively, and kj j � 1. We will use the above formulation for a

pair of distributions F(x) and G(x) where G(x) is a sub-model

of F(x). Therefore, a random variable X is said to have a trans-

muted probability distribution with cdf if

FðxÞ ¼ ð1þ kÞGðxÞ � k GðxÞ½ �2; kj j � 1

where G(x) is the cdf of the base distribution. Observe that

at k¼ 0 we have the distribution of the base random variable. On

the other hand, the quadratic hazard rate (QHR) distribution

has attracted the attention of statisticians working on theory

and methods as well as in various fields of applied statistics and

reliability. The QHR distribution may have an increasing

(decreasing) hazard rate, bathtub shaped hazard, or upside-

down bathtub shaped hazard properties. However, the QHR

distribution does not provide a reasonable parametric fit for

some practical applications. Recently, the generalized quadratic

hazard rate (GQHR) distribution was introduced and studied in

Ref. [8]. This distribution generalizes several well-known distri-

butions such as the quadratic hazard rate, the generalized linear

failure rate, the generalized exponential, and the generalized

Rayleigh distributions. In addition, the GQHR distribution may

have an increasing (decreasing) hazard function, a bathtub

shaped hazard function, or an upside-down bathtub shaped

hazard function, which provide many applications in several

areas such as reliability, life testing, and survival analysis.

However, some data of many important and practical problems

do not follow this distribution. As a result, there is a clear need

to extend the class of this distribution to a large one in order to

provide successful applications to problems in areas such as

reliability engineering and economics.

In this article, we use the transmutation map approach sug-

gested by Ref. [1] to propose a new family of life distributions

called transmuted generalized quadratic hazard rate (TGQHR)

distribution. This new family has the advantage of being capable

of modeling various shapes of aging and failure criteria. Fur-

thermore, some well-known lifetime distributions such as gen-

eralized exponential distribution, generalized linear hazard rate

distribution, and generalized Rayleigh distribution among

others are special cases of this family. The rest of the paper is

organized as follows. In the section “Density and Hazard Rate

of the New Family,” the pdf and cdf of the subject distribution

and some special sub-models are derived. In that section, some

reliability properties are discussed. In the section “Statistical

Properties,” the statistical properties including quantiles,

moments, and moment generating function, etc., are studied. In

the section “Maximum Likelihood Estimators,” we demonstrate

the maximum likelihood estimates and the asymptotic confi-

dence intervals of the unknown parameters. In the

“Applications” section, we provide some applications in the

context of reliability. The final section concludes the paper with

some remarks related to the current research. Throughout the

paper, all the integrals and the expectations are assumed to exist

when they appear.

Density and Hazard Rate of the

New Family

In this section, we study some mathematical properties of the

new family. The pdf and cdf of the subject distribution and

some special sub-models are derived. We investigate the shapes

of the density and hazard rate function. Formally, let X follow

the GQHRD with four parameters a, h, b, and l if it has the

cumulative distribution function

Fðx; a; h;b; lÞ ¼ 1� exp �gða; h;bÞf g½ �l; x > 0(3)

where:

gða; h;bÞ ¼ ax þ h2 x

2 þ b3 x

3, and

a� 0, b� 0, l� 0 and h � �2ffiffiffiffiffiffiabp

.

This restriction on the parameter space is made to assure

that the hazard function with the following form is positive

A(x, a, h, b)¼ aþ hxþ bx2, x> 0 [9]. The pdf is given by

Journal of Testing and Evaluation2

f2ðxÞ ¼ f1ðxÞ½ð1þ kÞ � 2kF1ðxÞ�

f ðx; a; h;b; lÞ¼ Uðx; a; h; b;lÞ 1� exp �gða; h; bÞf g½ �l�1; x > 0(4)

where

Uðx; a; h;b;lÞ ¼ lAðx; a; h; bÞ exp � ax þ h2 x

2 þ b3 x

3h in o

:

Substituting Eq 3 in Eq 1, we get a new family called

TGQHR distribution with cdf as

FðxÞ ¼ 1� gða; h;bÞ½ �l 1þ k� k 1� exp �gða; h; bÞf g½ �l½ �(5)

The corresponding pdf of the TGQHR is given by f

ðxÞ ¼ Uðx; a; h;b;lÞ 1� gða; h;bÞ½ �l�1

� 1þ k� 2k 1� exp �gða; h; bÞf gÞ½ �l½ �(6)

Figure 1 illustrates some of the possible shapes of the pdf

of the TGQHR distribution for selected values of the parameters:

k¼�0.9, � 0.8, � 0.7, � 0.6, � 0.5, and � 0.4; l¼ 2.6, 2.5, 2.4,

2.3, 2.2, 2.1, and 2 with color shapes purple, blue, pink, red,

green, yellow, and black, respectively. From Fig. 1, it can be seen

that the distribution of TGQHR distribution is bimodal.

Figure 2 illustrates some of the possible shapes of the cdf of

the TGQHR distribution for selected values of the parameters for

values of parameters: k¼�0.9, � 0.8, � 0.7, � 0.6, � 0.5, and �0.4; l¼ 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, and 2 with color shapes purple,

blue, pink, red, green, yellow, and black, respectively.

The TGQHR family is a very flexible model that approaches

to different distributions when its parameters are changed. The

following example shows that the new family is very flexible

and generalizes some well-known distributions.

EXAMPLE 2.1

Let X � TGQHR (a, h, b, l, k). Then

(1) If k¼ 0, we get generalized quadratic hazard ratedistribution.

(2) If b¼ 0, we get transmuted generalized linear hazardrate distribution.

(3) If b¼ 0 and l¼ 1, we get transmuted linear hazard (fail-ure) rate distribution.

(4) If k¼ b¼ 0, we get generalized linear hazard ratedistribution.

(5) If k¼ b¼ 0 and l¼ 1 we get linear hazard (failure) ratedistribution.

(6) If h¼ b¼ 0, we get transmuted generalized exponentialdistribution.

(7) If h¼ b¼ k¼ 0, we get generalized exponentialdistribution.

(8) If a¼ b¼ 0, we get transmuted generalized Rayleighdistribution.

(9) If a¼ b¼ k¼ 0, we get generalized Rayleighdistribution.

The TGQHR family can be a useful characterization of the

lifetime data analysis. The reliability function of the TGQHR

family is given by

RðxÞ ¼ 1� 1� exp �gða; h;bÞf g½ �l

� 1þ k� k 1� exp �gða; h;bÞf g½ �l½ �(7)

and the hazard rate function given by

hðxÞ ¼ Wða; h; b;l; kÞ � Kða; h;b;lÞ� 1þ k� 2k 1� exp �gða; h;bÞf g½ �l½ �(8)

FIG. 1 The pdfs of various TGQHR distributions.

FIG. 2 The cdfs of various TGQHR distributions.

KAYID ET AL. ON A NEW FAMILY OF GQHR DISTRIBUTION 3

where

Wða; h;b; l; kÞ ¼ ½1� 1� exp �gða; h; bÞf gÞ½ �l

� 1þ k� k 1� exp �gða; h; bÞf g½ �l½ ���1

and

Kða; h;b;l; kÞ ¼ lAðx; a; h; bÞ exp �gða; h; bÞf g� 1� exp �gða; h; bÞf g½ �l�1

It is important to note that the units for h(x) represent the

probability of failure per unit of time, distance, or cycles. These

failure rates are defined with different choices of parameters.

The cumulative hazard function of the TGQHR distribution is

given by

HðxÞ ¼ � ln j½1� exp �gða; h;bÞf g�l

� 1þ k� k½1� exp �gða; h; bÞf g½ �l�j(9)

Figure 3 illustrates some of the possible shapes of the hazardrate of the TGQHR distribution for selected values of theparameters for values of parameters k ¼�0.9, �0.8, �0.7, �0.6,�0.5, and �0.4; l¼ 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, and 2 with color

shapes purple, blue, pink, red, green, yellow, and black,

respectively.

Statistical Properties

In this section, we discuss some statistical properties of the new

family. Moments are necessary and important in any statistical

analysis, especially in applications. They can be used to study

the most important features and characteristics of a distribution

(e.g., tendency, dispersion, skewness, and kurtosis).

THEOREM 3.1

Let X has the TGQHR (a, h, b, l, k) with kj j � 1. Then the rth

moment of X is given as

l0r ¼ l

(ð1þ kÞni;k;m

"aCðr þ 2kþ 3mþ 1Þ

aðiþ 1Þ½ �rþ2kþ3mþ1

þ hCðr þ 2kþ 3mþ 2Þaðiþ 1Þ½ �rþ2kþ3mþ2

þ bCðr þ 2kþ 3mþ 3Þaðiþ 1Þ½ �rþ2kþ3mþ3

#

� 2k.j;k;maCðr þ 2kþ 3mþ 1Þ

aðjþ 1Þ½ �rþ2kþ3mþ1

"

þ hCðr þ 2kþ 3mþ 2Þaðjþ 1Þ½ �rþ2kþ3mþ2

þ bCðr þ 2kþ 3mþ 3Þaðjþ 1Þ½ �rþ2kþ3mþ3

#)

(10)

where

ni;k;m ¼X

ii; k;m ¼ 01

l� 1� �

ð�1Þiþkþm ðiþ 1Þkþmhkbm

2k3mk!m!

and

.j;k;m ¼X

i; k;m ¼ 012l� 1

j

� �ð�1Þjþkþm ðiþ 1Þkþmhkbm

2k3mk!m!

PROOF

First, we have

l0r ¼ lð10xrAðx;a; h;bÞgða; h;bÞ 1� gða;h;bÞ½ �l�1

� 1þ k� 2k 1� gða;h;bÞ½ �l½ �dx

¼ l ð1þ kÞð10xrAðx; a; h;bÞgða;h;bÞ 1� gða; h;bÞ½ �l�1

�dx

� 2kð10xrAðx; a;h;bÞgða;h;bÞ 1� gða; h;bÞ½ �2l�1dx

193Since 0< g (a, h, b)< 1, then by using the following facts that

1� gða; h; bÞ½ �l�1¼X1i¼0ð�1Þi l� 1

i

� �exp �igða; h;bÞf g

194and

1� gða; h; bÞ½ �2l�1¼X1j¼0ð�1Þj 2l� 1

j

� �exp �jgða; h;bÞf g

(11)

FIG. 3 The hazards of various TGQHR distributions.

Journal of Testing and Evaluation4

we have l0r

¼ lX1i¼0ð�1Þi

l� 1

i

( � �ð1þ kÞ

ð10xrAðx; a; h;bÞ

� exp � ðiþ 1Þgða; h; bÞ½ �f gdx � 2kX1j¼0ð�1Þj

2l� 1

j

� �

�ð10xrAðx; a; h; bÞ exp � ðjþ 1Þgða; h;bÞ½ �f gdx

�(12)

Notice that the expansion of exp �ðiþ 1Þ h2 x

2� �

and

exp �ðiþ 1Þ b3 x

3h i

are given, respectively, by

exp �ðiþ 1Þ h2x2

¼X1k¼0

�ðiþ 1Þ h2x2

kk!

(13)

and

exp �ðiþ 1Þ b3x3

¼X1m¼0

�ðiþ 1Þ b3x3

mm!

(14)

Now, substituting from Eqs 12–13, we have l0r

¼ l ni;k;m a( " ð10xrþ2kþ3m exp �aðiþ

1Þx f

gdx

þ hð10xrþ2kþ3mþ1 exp �aðiþ 1Þxf gdx

þ bð10xrþ2kþ3mþ2 exp �aðiþ 1Þxf gdx

� 2k.j;k;m að10xrþ2kþ3m exp �aðjþ 1Þxf gdx

þ hð10xrþ2kþ3mþ1 exp �aðjþ 1Þxf gdx

þ bð10xrþ2kþ3mþ2 exp �aðjþ 1Þxf gdx

#)

¼ l

(ni;k;m

"aCðr þ 2kþ 3mþ 1Þ

aðiþ 1Þ½ �rþ2kþ3mþ1

þ hCðr þ 2kþ 3mþ 2Þaðiþ 1Þ½ �rþ2kþ3mþ2

þ bCðr þ 2kþ 3mþ 3Þaðiþ 1Þ½ �rþ2kþ3mþ3

#

� 2k.j;k;maCðr þ 2kþ 3mþ 1Þ

aðjþ 1Þ½ �rþ2kþ3mþ1

"

þ hCðr þ 2kþ 3mþ 2Þaðjþ 1Þ½ �rþ2kþ3mþ2

þ bCðr þ 2kþ 3mþ 3Þaðjþ 1Þ½ �rþ2kþ3mþ3

#)

which completes the proof.

Based on Theorem 3.1, the measures of variation, skewness,

and kurtosis of the TGQHR distribution can be obtained

according to the following relation

CV ¼ffiffiffiffiffiffiffiffiffiffiffiffiffil2

l1� 1

r

CS ¼ l3ðhÞ � 3l1ðhÞl2ðhÞ þ 2l31ðhÞ

l2ðhÞ � l21ðhÞ½ �

32

and

CK ¼ l4ðhÞ � 4l1ðhÞl3ðhÞ þ 6l21ðhÞl2ðhÞ � 3l4

1ðhÞl2ðhÞ � l2

1ðhÞ½ �2

In the next result, we derived the moment generating func-

tion (mgf) of the new family.

THEOREM 3.2

If X has the TGQHR (a, h, b, l, k) with kj j � 1, then the mgf of

X is given as follows:

MXðtÞ ¼ l

(ð1þ kÞni;k;m

aCð2kþ 3mþ 1Þaðiþ 1Þ � t½ �2kþ3mþ1

þ hCð2kþ 3mþ 2Þaðiþ 1Þ � t½ �2kþ3mþ2

þ bCð2kþ 3mþ 3Þaðiþ 1Þ � t½ �2kþ3mþ3

� 2k.j;k;maCð2kþ 3mþ 1Þ

aðjþ 1Þ � t½ �2kþ3mþ1þ hCð2kþ 3mþ 2Þ

aðjþ 1Þ � t½ �2kþ3mþ2

þ bCð2kþ 3mþ 3Þaðjþ 1Þ � t½ �2kþ3mþ3

)

PROOF

We have

MXðtÞ ¼ l

�ð1þ kÞ

ð10

hetx aþ hx þ bx2� �

gða; h; bÞ

� 1� gða; h; bÞ½ �l�1idx � 2k

ð10etxðaþ hx þ bx2Þ

� gða; h;bÞ 1� gða; h;bÞ½ �2l�1dx�

(15)

Substituting Eqs 11 and 13 into the relation in Eq 15, we get the

following:

MXðtÞ ¼ l

�ð1þ kÞni;k;m

ð10x2kþ3mAðx; a; h;bÞ

� exp �ðaðiþ 1Þ � tÞxf gdx � 2k.j;k;m

�ð10x2kþ3mAðx; a; h;bÞ exp � aðjþ 1Þ � t½ �xf gdx

¼ l

�ð1þ kÞni;k;m

aCð2kþ 3mþ 1Þ

aðiþ 1Þ � t½ �rþ2kþ3mþ1

þ hCð2kþ 3mþ 2Þaðiþ 1Þ � t½ �rþ2kþ3mþ2

þ bCð2kþ 3mþ 3Þaðiþ 1Þ � t½ �rþ2kþ3mþ3

� 2k.j;k;m

aCð2kþ 3mþ 1Þ

aðjþ 1Þ � t½ �rþ2kþ3mþ1

þ hCð2kþ 3mþ 2Þaðjþ 1Þ � t½ �rþ2kþ3mþ2

þ bCð2kþ 3mþ 3Þaðjþ 1Þ � t½ �rþ2kþ3mþ3

which completes the proof.

KAYID ET AL. ON A NEW FAMILY OF GQHR DISTRIBUTION 5

Research in the area of order statistics has been steadily and

rapidly growing, especially during the last two decades. The

extensive role of order statistics in several areas of statistical

inference has made it imperative and useful, and together these

results are presented in a varied manner to suit diverse interests.

Let X1, X2,…, Xn be a simple random sample from TGQHR (a,

h, b, l, k) with cumulative distribution function and probability

density function as in Eqs 5 and 6, respectively. Let X(1)�X(2)

�…� X(n) denote the order in which statistics were obtained

from this sample. In reliability literature, X(i) denote the lifetime of

an (n – iþ 1) out-of-n system, which consists of n independent and

identically components. Then the pdf of X(i), 1� i� n 227 is given

by

fi::nðxÞ ¼

1bði; n� iþ 1Þ Fðx; �Þ½ �i�1 1� Fðx; �Þ½ �n�if ðx; �Þ

where �¼ a, h, b, l, k.

In addition, the joint pdf of X(i:n), X(j:n) and 1� i� j� n is

fi:j:nðxi; xjÞ ¼ w FðxiÞ½ �i�1 FðxjÞ � FðxiÞ� �j�i�1

� 1� FðxjÞ� �n�j

f ðxiÞf ðxjÞ

where w ¼ n!ði�1Þ!ðj�i�1Þ!ðn�jÞ! :

Let X1, X2,…,Xn be independently and identically distrib-

uted order random variables from the TGQHR distribution

having first, last, and median order pdfs given by the following

f1:nðxÞ ¼ n 1� Fðx; �Þ

½ �n�1f ðx; �Þ¼ n 1� ð1� hð1ÞÞl 1þ k� kð1� hð1ÞÞl

� �� �n�1� lðaþ hxð1Þ þ bx2ð1ÞÞhð1Þð1� hð1ÞÞl�1

� 1þ k� 2kð1� hð1ÞÞl� �

fn:nðxÞ ¼ n FðxðnÞ; �Þ� �n�1

f ðxðnÞÞ; �Þ

¼ n ð1� hðnÞÞl 1þ k� kð1� hðnÞÞl� �� �n�1

� lðaþ hxðnÞ þ bx2ðnÞÞhðnÞð1� hðnÞÞl�1

� 1þ k� 2kð1� hðnÞÞl� �

and

fmþ1:nð~xÞ ¼ð2mþ 1Þ!m!m!

Fð~xÞ½ �m 1�Fð~xÞ½ �mf ð~xÞ

¼ ð2mþ 1Þ!m!m!

1� hðmþ1Þ� �l

1þ k� kð1� hðmþ1ÞÞl� �� �m

� 1�ð1� hðmþ1Þ� �l

1þ k� kð1� hðmþ1ÞÞl� �� �m

�lðaþ hxðmþ1Þ þbx2ðmþ1ÞÞhðmþ1Þð1� hðmþ1ÞÞl�1

� 1þ k� 2kð1� hðmþ1ÞÞl� �

where hðiÞ ¼ exp � axðiÞ þ h2 x

2ðiÞ þ

b3 x

3ðiÞ

h in o.

The joint distribution of the ith and jth order statistics from

transmuted generalized quadratic hazard rate distribution is

fi:j:nðxi; xjÞ ¼ w FðxiÞ½ �i�1 FðxjÞ � FðxiÞ� �j�i�1

� 1� FðxjÞ� �n�j

f ðxiÞf ðxjÞ

¼ w ð1� hðiÞÞl 1þ k� kð1� hðiÞÞl� �� �i�1

� ð1� hðjÞÞl 1þ k� kð1� hðjÞÞl� ��

�ð1� hðiÞÞl 1þ k� kð1� hðiÞÞl� ��j�i�1

� 1� ð1� hðjÞÞl 1þ k� kð1� hðjÞÞl� �� �n�j

� lðaþ hxðiÞ þ bx2ðiÞÞhðiÞð1� hðiÞÞl�1

� 1þ k� 2kð1� hðiÞÞl� �

lðaþ hxðjÞ þ bx2ðjÞÞ

� hðjÞð1� hðjÞÞl�1 1þ k� 2kð1� hðjÞÞl� �

If i¼ 1 and j¼ n, we get the joint distribution of the minimum

and maximum of order statistics

f1::n:nðxi; xjÞ ¼ nðn� 1Þ FðxðnÞÞ � Fðxð1ÞÞ� �n�2

f ðxð1ÞÞf ðxðnÞÞ

¼ nðn� 1Þ ð1� hðnÞÞl 1þ k� kð1� hðnÞÞl� ��

�ð1� hð1ÞÞl 1þ k� kð1� hð1ÞÞl� ��n�2

� lðaþ hxð1Þ þ bx2ð1ÞÞhð1Þð1� hð1ÞÞl�1

� 1þ k� 2kð1� hð1ÞÞl� �

lðaþ hxðnÞ þ bx2ðnÞÞ

� hðnÞð1� hðnÞÞl�1 1þ k� 2kð1� hðnÞÞl� �

Maximum Likelihood Estimators

In this section, we consider the maximum likelihood estimators

(MLEs) of TGQHR distribution. In addition, we will derive the

asymptotic interval estimates of the parameters. Let U¼ (a, h,

b, l, k)T in order to estimate the parameters a, h, b, and k of

the transmuted quadratic hazard rate distribution; let x1,…, xnbe a random sample of size n from TGQHR. Then the log likeli-

hood function can be written as

Lða; h;b; k; x ið ÞÞ ¼n

logl½ ��1þXni¼1

ln aþ hxðiÞ þ bx2ðiÞ

h i

� aXni¼1

xðiÞ �h2

Xni¼1

x2ðiÞ �b3

Xni¼1

x3ðiÞ

þ ðl� 1ÞXni¼1

ln 1� Xðx; a; h; bÞ½ �

þXni¼1

ln 1þ k� 2k 1� Xðx; a; h;bÞ½ �l½ �

where Xðx; a; h; bÞ ¼ exp � axðiÞ þ h2 x

2ðiÞ þ

b3 x

3ðiÞ

h in o.

Differentiating L with respect to each parameter a, h, b, l,

and k, and setting the result equal to zero, we obtain maximum

likelihood estimates. The partial derivatives of L with respect to

each parameter or the score function is given by

Journal of Testing and Evaluation6

UnðUÞ ¼@L@a;@L@h;@L@b;@L@l;@L@k

� �

where the values of @L@a ;

@L@h ;

@L@b ;

@L@l ;

@L@k appeared in the

Appendix A, from Eqs A1– A5.

By solving this nonlinear system of equations (Eqs A1–A5),

these solutions will yield the ML estimators for ^ a; h; b; l, and k.

For the five parameters TGQHR (a, h, b, l, k) pdf, all the sec

ond order derivatives exist. Thus we have the inverse dispersion

matrix, which is given by

^ahb^lk

0BBBBBB@

1CCCCCCA � N

ahblk

0BBBBBB@

1CCCCCCA;

Vaa Vah Vab Val Vak

Vha Vhh Vhb Vhl Vhk

Vba Vbh Vbb Vbl Vbk

Vla Vlh Vlb Vll Vlk

Vka Vkh Vkb Vkl Vkk

0BBBBBBB@

1CCCCCCCA

266666664

377777775

V�1 ¼ �EVaa Vah Vab Val Vak

Vka Vkh Vkb Vkl Vkk

where

Vaa ¼@2L@a2

; Vhh ¼@2L

@h2; Vbb ¼

@2L

@b2 ;

Vaa ¼@2L@l2

; Vkk ¼@2L

@k2

and

Vah ¼@2L@a@h

; Vka ¼@2L@a@k

; Vbk ¼@2L@b@k

; Vbl ¼@2L@b@l

The values of Vll, Vaa, Vhh, Vbb, Vkk, Vah, Vka, Vbk, Vbl, Vab,

Vbh, Vlh, and Vkh appeared in Appendix B.

By solving this inverse dispersion matrix, these solutions

will yield asymptotic variance and covariances of these ML estimators

for ^ a, h; b; l, and k. We approximate 100(1 – c)% confi-

dence intervals for a, b, h, and k are determined, respectively, as

a 6 zc2

ffiffiffiffiffiffiffiVaa

q; h 6 zc

2

ffiffiffiffiffiffiffiVhh

q; b 6 zc

2

ffiffiffiffiffiffiffiffiVbb

q;

l 6 zc2

ffiffiffiffiffiffiffiffiVll

q; k 6 zc

2

ffiffiffiffiffiffiffiffiVkk

q

where zc is the upper 100cthe percentile of the standard normal

distribution.

We can compute the maximized unrestricted and restricted

log-likelihood functions to construct the likelihood ratio (LR)

test statistic for testing on some transmuted GQHR sub-models.

For example, we can use the LR test statistic to check whether

the TGQHR distribution for a given data set is statistically supe-

rior to the GQHR distribution. In any case, hypothesis tests of

the type H0: h¼ h0 versus H0: h= h0 can be performed using a

LR test. In this case, the LR test statistic for testing H0 versus H1

is x ¼ 2�‘ðh; xÞ � ‘ðh0; xÞ

�, where h and h0 are the MLEs

under H1 and H0, respectively. The statistic x is asymptotically

(as n !1) distributed as v2k, where k is the length of the pa-

rameter vector h of interest. The LR test rejects H0 if x > v2k;c,

where v2k;c denotes the upper 100c% quantile of the v2kdistribution.

Applications

In this section, we use real data sets to show that the TGQHR

distribution can be a better model than one based on the

GQHR distribution. The data set studied in Ref. [1] gives the

times of failure and running times for a sample of devices

from an eld-tracking study of a larger system. At a certain

point in time, 30 units were installed in normal service condi-

tions. Two causes of failure were observed for each unit that

failed: the failure caused by an accumulation of randomly

occurring damage from power-line voltage spikes during elec-

tric storms and failure caused by normal product wear. The

times divided by 100 are: 2.75, 0.13, 1.47, 0.23, 1.81, 0.30,

0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00,

0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80,

2.45, and 2.66.

The variance covariance matrix of the MLEs under the

TGQHR distribution is computed as

IðhÞ�1 ¼

0:017729324 �0:03011476 0:03564007 �0:02444729 �0:009815549

�0:030114761 0:33179665 �0:40133555 0:26590729 0:112121322

0:035640069 �0:40133555 0:55756796 �0:30675306 �0:176577320

�0:024447287 0:26590729 �0:30675306 0:44567201 0:083699256

�0:009815549 0:11212132 �0:17657732 0:08369926 0:062454042

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

Thus, the variances of the MLE of k, a, h, l,

and b are Varð kÞ¼0:017729324; VarðaÞ¼0:33179665; VarðhÞ¼0:55756796; VarðlÞ¼0:55756796, and VarðbÞ¼0:062454042.

Therefore, 95 % confidence intervals for k, a, h, l, and b

are [�0.7369934, �1], [1.790662, 4.048652], [�5.197785,�2.270703], [1.292003, 3.908943], and [0.7854041, 1.765044].

The variance covariance matrix of the MLEs under the GQHR

distribution is computed as

KAYID ET AL. ON A NEW FAMILY OF GQHR DISTRIBUTION 7

IðhÞ�1

¼

0:3137415 �0:4046424 0:20696569 0:12129517

�0:4046424 0:5644128 �0:25747681 �0:179952270:2069657 �0:2574768 0:20641582 0:07713621

0:1212952 �0:1799523 0:07713621 0:06139265

0BBBB@

1CCCCA

The LR test statistic to test the hypotheses H0: k¼ 0 versus

H1: k = 0 is x ¼ 6:01334 > 3:841 ¼ v21;0:05, so we reject the

null hypothesis. In order to compare the two distribution

models, we consider criteria like �‘, AIC (Akaike information

criterion), AICC (corrected Akaike information criterion), and

BIC (Bayesian information criterion) for the data set. The better

distribution corresponds to smaller �2‘, AIC, AICC, and BIC

values:

AIC ¼ 2k� 2‘;AICC

¼ AICþ 2kðkþ 1Þn� k� 1

and

BIC ¼ 2‘þ k � logðnÞ

where:

k¼ the number of parameters in the statistical model,

n¼ the sample size, and

‘¼ the maximized value of the log-likelihood function

under the considered model.

FIG. 4 Estimated densities of the data set.

TABLE 2 The ML estimates, Log-likelihood, AIC, and AICC for the

data set.

Model –‘ AIC AICC BIC

TGQHRD 29.26059 39.26059 41.76059 46.26658

GQHRD 35.26726 43.26726 44.86726 48.87205

NMWeibull 31.78897 41.78897 44.28897 48.79496

EW 39.682 85.364 86.287 89.567

Weibull 48.022 100.044 100.488 102.846

TABLE 1 Estimated parameters for the data set.

Model Parameter Estimate Standard Error –‘(s; x)

TQHRD k ¼ �0:9979704 0.1331515 29.26059

a ¼ 2:9196572 0.5760179

h ¼ �3:7342442 0.7467047

l ¼ 2:6004730 0.6675867

b ¼ 1:2752239 0.2499081

NMWeibull k ¼ 1:3874033 0.24786755 31.78897

a ¼ 0:1199828 0.06869586

h ¼ 4:2199614 0.49402125

l ¼ 0:4864868 0.28945132

b ¼ 0:1329587 0.07774924

GQHRD a ¼ 1:3173994 0.5601263 35.26726

h ¼ �1:8327462 0.7512741

l ¼ 1:3866821 0.4543301

b ¼ 0:7365554 0.2477754

EWeibull a ¼ 0:3171254 0.005155284 39.56987

k ¼ 5:7298076 0.02975663

h ¼ 0:1644968 0.030119536

Weibull a ¼ 0:5685703 0.09644037 48.02225

k ¼ 1:1411863 0.18696530

FIG. 5 Empirical, fitted cdf of generalized quadratic hazard rate distribution

(TGQHRD), generalized quadratic hazard rate distribution(GQHRD),

new modified Weibull distribution (NMWeibull), exponentiated

Weibull (EWeibull), and Weibull of the data set.

Journal of Testing and Evaluation8

Table 1 below provide the estimated parameters of the

TGQHRD, GQHRD, new modified Weibull [10], exponentiated

Weibull, and Weibull distribution for the data set. See Fig. 4.

Maximum likelihood estimation is used to estimate param-

eters for the fitted models. The values of estimated parameters with

standard error and negative log-likelihood are given in Table 1.

According to negative log-likelihood criterion, it can be seen from

Table 1 that the proposed model is a superior model

for goodness of fit.

Table 2 shows the values of �2log (L), AIC, and AICC for

the five fitted distributions for the data set.

The values in Table 2 indicate that the TGQHR is a strong

competitor to other distribution used here for the fitting data set.

A density plot compares the fitted densities of the models with

the empirical histogram of the observed data. The fitted density

for the TGQHR model is closer to the empirical histogram than the

fits of the GQHR model. See Fig. 5.

Conclusion

In the present study, we introduced a new family of generalized

quadratic hazard rate distributions. The subject family is gener-

ated by using the quadratic rank transmutation map and taking

the generalized quadratic hazard rate distribution as the base

distribution. Some statistical and reliability properties along

with estimation issues are addressed. The hazard rate function

and reliability behavior of the new family shows that the subject

family can be used to model reliability data. We expect that this

study will serve as a reference and help to advance future

research in the subject area.

ACKNOWLEDGMENTS

The writers would like to thank two reviewers for their valuable

comments and suggestions, which were helpful in improving the

paper. This work was supported by King Saud University, Dean

ship of Scientific Research, College of Science Research Center.

Appendix A

The values of @L@a ;

@L@h ;

@L@b ;

@L@l, and

@L@k are as follows:

@L@l¼ n

lþXni¼1

ln 1� Xðx; a; h;bÞ½ �

� 2kXni¼1

1� Xðx; a; h;bÞ½ �llog 1� Xðx; a; h;bÞ½ �1þ k� 2k 1� Xðx; a; h;bÞ½ �l½ � ¼ 0

(A1)

@L@a¼Xni¼1

1

aþ hxðiÞ þ bx2ðiÞ

h i�X

i ¼ 1nxðiÞðl� 1ÞXni¼1

xðiÞXðx; a; h; bÞ1� Xðx; a; h;bÞ½ �

þ 2klXni¼1

xðiÞXðx; a; h;bÞ 1� Xðx; a; h;bÞ½ �l�1

1þ k� 2k 1� Xðx; a; h;bÞ½ �l½ � ¼ 0(A2)

@ log L@h

¼Xni¼1

xðiÞðaþ hxðiÞ þ bx2ðiÞÞ

� 12

Xi ¼ 1nx2ðiÞ þ ðl� 1Þ

Xni¼1

x2ðiÞXðx; a; h;bÞ2 1� Xðx; a; h;bÞ½ �

þ klXni¼1

x2ðiÞXðx; a; h;bÞ 1� Xðx; a; h;bÞ½ �l�1

1þ k� 2k 1� Xðx; a; h;bÞ½ �l½ � ¼ 0

(A3)

@ log L@b

¼Xni¼1

x2ðiÞðaþ hxðiÞ þ bx2ðiÞÞ

� 13

Xni¼1

x3ðiÞ þ ðl� 1ÞXni¼1

x3ðiÞXðx; a; h;bÞ3 1� Xðx; a; h;bÞ½ �

þXni¼1

2kx3ðiÞXðx; a; h;bÞ 1� Xðx; a; h; bÞ½ �l�1

3 1þ k� 2k 1� Xðx; a; h;bÞ½ �l½ � ¼ 0

(A4)

@ log L@k

¼Xni¼1

1� 2 1� Xðx; a; h; bÞ½ �l

1þ k� 2k 1� Xðx; a; h;bÞ½ �l½ � ¼ 0(A5)

Appendix B

The values of Vll, Vaa, Vhh, Vbb, Vkk, Vah, Vka, Vbk, Vbl, Vab,

Vbh, Vlh, and Vkh are as follows:

Vll ¼ �nl2

� 2Xni¼1

��1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i

�l �h i�2� k 1� e�axi�1=2hx2i �1=3bx3i �l

� ln 1� e�axi�1=2hx2i �1=3bx3i � �2

1þ kð Þ�

Vaa ¼Xni¼1� aþ hxi þ bx2i� ��2

� ðl� 1ÞXni¼1

��1þ e�axi�1=2hx2i �1=3bx3ih i�2

� x2i e�axi�1=2hx2i �1=3bx3i

�þ A

where

A ¼ �2Xni¼1

�1þ e�axi�1=2hx2i �1=3bx3i �2�

� �1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �lh i2

� k 1� e�axi�1=2hx2i �1=3bx3i �l

lx2i e�axi�1=2hx2i �1=3bx3i � A1

and

A1 ¼ le�axi�1=2hx2i �1=3bx3i þ le�axi�1=2hx2i �1=3bx3i k

� 1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �l

KAYID ET AL. ON A NEW FAMILY OF GQHR DISTRIBUTION 9

Vhh ¼Xni¼1� x2i

aþ hxi þ bx2ið Þ2� ðl� 1Þ

4

�Xni¼1

x4i e�axi�1=2hx2i �1=3bx3i

�1þ e�axi�1=2hx2i �1=3bx3i� �2 � B

2

where

B ¼Xni¼1

�1þ e�axi�1=2hx2i �1=3bx3i ��2�

� �1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �l ��2

� k 1� e�axi�1=2hx2i �1=3bx3i �l

lx4i e�axi�1=2hx2i �1=3bx3i � B1

oand

B1 ¼ le�axi�1=2hx2i �1=3bx3i þ le�axi�1=2hx2i �1=3bx3i k� 1

� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �l

Vbb ¼Xni¼1� x4i

aþ hxi þ bx2ið Þ2

� ðl� 1Þ9

Xni¼1

x6i e�axi�1=2hx2i �1=3bx3i

�1þ e�axi�1=2hx2i �1=3bx3i� �2 þ C

where

C ¼ �2=9Xni¼1

�1þ e�axi�1=2hx2i �1=3bx3i ��2�

� �1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �lh i�2

� k 1� e�axi�1=2hx2i �1=3bx3i �l

lx6i e�axi�1=2hx2i �1=3bx3i C1

o

and

C1 ¼ le�axi�1=2hx2i �1=3bx3i þ le�axi�1=2hx2i �1=3bx3i k� 1

� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �l

Vkk ¼Xni¼1�

1� 2 1� e�axi�1=2hx2i �1=3bx3i� �lh i2

1þ k� 2k 1� e�axi�1=2hx2i �1=3bx3i� �lh i2

Vah ¼ �Xni¼1

xiaþ hxi þ bx2ið Þ2

� ðl� 1Þ2

Xni¼1

x3i e�axi�1=2hx2i �1=3bx3i

�1þ e�axi�1=2hx2i �1=3bx3i� �2 þ D

where

D ¼ � �1þ e�axi�1=2hx2i �1=3bx3ih i2�

� �1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �lh i2

�k 1� e�axi�1=2hx2i �1=3bx3i �l

lx3i e�axi�1=2hx2i �1=3bx3i � D1

o

and

D1 ¼ le�axi�1=2hx2i �1=3bx3i þ le�axi�1=2hx2i �1=3bx3i k� 1� k

þ 2k 1� e�axi�1=2hx2i �1=3bx3i �l

Vka ¼ 2Xni¼1

1� e�axi�1=2hx2i �1=3bx3i� �l

lxie�axi�1=2hx2i �1=3bx3i

�1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i� �l �2

�1þ e�axi�1=2hx2i �1=3bx3i� �

Vbk ¼23

Xni¼1

1� e�axi�1=2hx2i �1=3bx3i� �l

lx3i e�axi�1=2hx2i �1=3bx3i

�1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i� �l �2

�1þ e�axi�1=2hx2i �1=3bx3i� �

Vbl ¼13

Xni¼1

x3i e�axi�1=2hx2i �1=3bx3i

1� e�axi�1=2hx2i �1=3bx3i� 23

Xni¼1

1� e�axi�1=2hx2i �1=3bx3i� �l

x3i e�axi�1=2hx2i �1=3bx3i k� E

�1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i� �l �2

�1þ e�axi�1=2hx2i �1=3bx3i� �

where

E ¼ �l ln 1� e�axi�1=2hx2i �1=3bx3i �

� ln 1� e�axi�1=2hx2i �1=3bx3i �

lk

� 1� kþ 2k� 1� e�axi�1=2hx2i �1=3bx3i �l

Vab ¼ �Xni¼1

x2iaþ hxi þ bx2ið Þ2

� ðl� 1Þ3

Xi ¼ 1n

� x4i e�axi�1=2hx2i �1=3bx3i

�1þ e�axi�1=2hx2i �1=3bx3i� �2 þ F

Journal of Testing and Evaluation10

where

F ¼ �2=3Xni¼1

�1þ e�axi�1=2hx2i �1=3bx3ih i2�

� �1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �lh i2

� k 1� e�axi�1=2hx2i �1=3bx3i �l

lx4i e�axi�1=2hx2i �1=3bx3i � F1

and

F1 ¼ le�axi�1=2hx2i �1=3bx3i þ le�axi�1=2hx2i �1=3bx3i k

� 1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �l

Vbh ¼ �Xni¼1

x3iaþ hxi þ bx2ið Þ2

þ l� 16

Xi ¼ 1n

� x5i e�axi�1=2hx2i �1=3bx3i

�1þ e�axi�1=2hx2i �1=3bx3i� �2 þ K

where

K ¼ �1=3Xni¼1

�1þ e�axi�1=2hx2i �1=3bx3i ��2�

� �1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �lh i�2

� k 1� e�axi�1=2hx2i �1=3bx3i �l

lx5i e�axi�1=2hx2i �1=3bx3i � K1

and

K1 ¼ le�axi�1=2hx2i �1=3bx3i þ le�axi�1=2hx2i �1=3bx3i k� 1

� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �l

Val ¼Xni¼1

xie�axi�1=2hx2i �1=3bx3i

1� e�axi�1=2hx2i �1=3bx3iþ L;

where

L ¼ 2k 1� e�axi�1=2hx2i �1=3bx3i� �l

xie�axi�1=2hx2i �1=3bx3i � L1

�1þ e�axi�1=2hx2i �1=3bx3i� �

�1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i� �l �2

andL1 ¼ l ln 1� e�axi�1=2hx2i �1=3bx3i

�þ ln 1� e�axi�1=2hx2i �1=3bx3i

�lkþ 1þ k� 2k 1� e�axi�1=2hx2i �1=3bx3i

�l

Vlh ¼Xni¼1

1=2x2i e�axi�1=2hx2i �1=3bx3i

1� e�axi�1=2hx2i �1=3bx3iþ G

where

G ¼ � �1þ e�axi�1=2hx2i �1=3bx3i ��1

�1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �l ��2

k 1� e�axi�1=2hx2i �1=3bx3i �l

x2i e�axi�1=2hx2i �1=3bx3i � G1

and

G1 ¼ �l ln 1� e�axi�1=2hx2i �1=3bx3i �

� ln 1� e�axi�1=2hx2i �1=3bx3i �

lk� 1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i �l

Vkh ¼1� e�axi�1=2hx2i �1=3bx3i� �l

lx2i e�axi�1=2hx2i �1=3bx3i

�1þ e�axi�1=2hx2i �1=3bx3i� �

�1� kþ 2k 1� e�axi�1=2hx2i �1=3bx3i� �lh i2

References

[1] Shaw, W. T. and Buckley, I. R., “The Alchemy of Probabil-ity Distributions: Beyond GramCharlier Expansions and aSkew–Kurtotic–Normal Distribution From a Rank Trans-mutation Map,” Research report, 2007.

[2] Merovci, F., “Transmuted Lindley Distribution,” IJOPCM,Vol. 6, 2013, pp. 63–72.

[3] Aryal, G. R. and Tsokos, C. P., “On theTransmuted Extreme Value Distribution WithApplication,” Nonlinear Anal. Theor., Vol. 71, 2009,pp. 1401–1407.

[4] Aryal, G. R. and Tsokos, C. P., “Transmuted WeibullDistribution: A Generalization of the Weibull ProbabilityDistribution,” Eur. J. Pure Appl. Math., Vol. 4, 2011,pp. 89–102.

KAYID ET AL. ON A NEW FAMILY OF GQHR DISTRIBUTION 11

[5] Elbatal, I. and Aryal, G. R., “On the Transmuted AdditiveWei-bull Distribution,” Aust. J. Stat., Vol. 42, 2013, pp. 117–132.

[6] Aryal, G. R., “Transmuted Log–Logistic Distribution,”J. Stat. Appl. Probab., Vol. 2, No. 1, 2013, pp. 11–20.

[7] Khan, M. S. and King, R., “Transmuted Modified WeibullDistribution: A Generalization of the Modified WeibullRobability Distribution,” Eur. J. Pure Appl. Math., Vol. 6,2013, pp. 66–88.

[8] Sarhan, A. M., “Generalized Quadratic Hazard Rate Distri-bution,” IJAMAS, Vol. 14, 2009, pp. 94–109.

[9] Bain, L. J., “Analysis for the Linear Failure-Rate Life-Testing Distribution,” Technometrics, Vol. 16, 1974,pp. 551–559.

[10] Almalki, S. J. and Yuan, J., “A New Modified Weibull Dis-tribution,” Reliab. Eng. Syst. Safe., Vol. 111, 2013,pp. 164–170.

Journal of Testing and Evaluation