Lap Ristek Sri Roch

download Lap Ristek Sri Roch

of 38

description

SRI

Transcript of Lap Ristek Sri Roch

  • No.: 07/RISTEK/BBSDLP/2011

    LAPORAN AKHIR

    Analisis Komparatif Sitem Pertanian Konvensional, PTT dan SRI di Lahan Sawah Irigasi Jawa Barat terhadap Keseimbangan Hara, Dinamika Biologi,

    Efisiensi Pupuk (> 30%) dan Nilai Ekonomi Usahatani

    PROGRAM INSENTIF RISET TERAPAN

    Fokus Bidang Prioritas : Ketahanan Pangan

    Kode Produk Target : 1.01

    Kode Kegiatan : 1.01.01

    Peneliti Utama : Dr. Sri Rochayati

    BALAIPENELITIANTANAH

    BALAIBESARLITBANGSUMBERDAYALAHANPERTANIAN

    BADANPENELITIANDANPENGEMBANGANPERTANIAN

  • i

    LEMBAR PENGESAHAN

    Judul Kegiatan : Analisis Komparatif Sistem Pertanian Konvensional, PTT dan SRI di Lahan Sawah Irigasi Jawa Barat terhadap Keseimbangan Hara, Dinamika Biologi, Efisiensi Pupuk (> 30%) dan Nilai Ekonomi Usahatani

    Fokus Bidang Prioritas : Ketahanan Pangan Kode Produk Target : 1.01 Kode Kegiatan : 1.01.01 Lokasi Penelitian : Jawa Barat

    A. Keterangan Lembaga Pelaksana/Pengelola Penelitian Nama Koordinator : Dr. Sri Rochayati Nama Institusi : Balai Penelitian Tanah Unit Organisasi : Balai Besar Penelitian dan Pengembangan Sumber daya

    Lahan Pertanian Alamat : Jl. Ir. H. Juanda 98, Bogor 16123 Telepon/Fax/Email : (0251) 8323012, (0251) 8321608 [email protected]

    B. Lembaga Lain Yang Terlibat

    Nama Lembaga : Jangka Waktu Kegiatan : 3 (tiga) tahun Biaya Tahun 1 : Rp 218.272.727,- Biaya Tahun 2 : Rp 133.636.368,- Total biaya : Rp 351,909,095,- Aktivitas Riset (baru/lanjutan) : Lanjutan Rekapitulasi Biaya Tahun yang diusulkan:

    No. Uraian Jumlah (Rp) 1. Belanja Uang Honor Rp. 39,330,000,- 2. Belanja Bahan Habis Pakai Rp. 29,000,000,- 3. Belanja Perjalanan Rp. 46,500,000,- 4. Belanja Lainnya Rp. 18,806,368,-

    Total Biaya Rp. 133,636,368,- Setuju Diusulkan:

    Kepala Balai Besar Penelitian Penanggung Jawab Kegiatan dan Pengembangan Sumberdaya Lahan Pertanian

    Dr. Muhrizal Sarwani Dr. Sri Rochayati NIP. 19600329 198403 1 001 NIP. 19570616 198603 2 001

  • ii

    RINGKASAN

    Untuk memacu kenaikan produksi beras sebesar 5% per tahun melalui P2BN (Peningkatan Produksi Beras Nasional), Departemen Pertanian menggunakan pendekatan Pengelolaan Tanaman Terpadu (PTT). Akan tetapi bersamaan dengan itu, Departemen Kimpraswil mengembangkan SRI (System of Rice Intensification) dalam rangka peningkatan efisiensi penggunaan air irigasi. Tujuan dari penelitian ini adalah untuk menganalisis secara komprehensif tentang keseimbangan hara dan dinamika biologi pada sistem pertanian di lahan sawah irigasi dalam rangka peningkatan produksi padi dan efisiensi pupuk sebesar 30%. Penelitian di laksanakan di Cianjur Jawa Barat sebanyak satu unit percobaan, merupakan percobaan baru lanjutan tahun ke tiga. Penelitian menggunakan Rancangan Acak Kelompok dengan 5 perlakuan diulang 5 kali. Perlakuan terdiri atas: kontrol, sistem pertanian konvensional (Petani), PTT, SRI, dan Semi organik. Parameter yang diamati yaitu: dinamika hara N, P dan K dan neraca hara, dinamika biologi, pertumbuhan tinggi dan jumlah anakan, bobot gabah dan jerami, nilai RAE, dan analisis usaha tani. Hasil penelitian yang disajikan adalah pertumbuhan tanaman sampai dengan umur 75 HST dan pengamatan sifat kimia pada umur 45 HST. Hasil penelitian menunjukkan bahwa penggunaan pupuk organik dalam sistem pertanian SRI dan kombinasi pemberian pupuk organik dan anorganik dalam sistem pertanian Semi organik dapat meningkatkan C-organik, P dan K-potensial, P-tersedia dan K dapat ditukar serta unsur hara mikro Fe, Mn, Cu dan Zn tanah sawah pada pengamatan 45 hari setelah tanam. Pemberian bahan organik yang dikombinasikan dengan pupuk anorganik dalam sistem pertanian PTT dapat meningkatkan populasi Aktinomisetes, Fungi dan Nitrobacter lebih tinggi dibandingkan sistem pertanian lainya. Sedangkan populasi nitrosomonas tertinggi diperoleh pada sistem pertanian PTT dan Semi organik. Pengelolaan hara dengan cara pemberian pupuk organik tinggi pada sistem pertanian SRI dan PTT yang mengkombinasikan pupuk anorganik dan jerami yang dikomposkan 5 t/ha tidak berbeda nyata dalam meningkatkan jumlah anakan pada umur 75 hari setelah tanam.

    Kata Kunci: pengelolaan hara,dinamikan hara, pupuk, bahan organik

  • iii

    ABSTRACT Ministry of Agriculture attempted the program of Integrated Plant Nutrient Management (IPNM) named P2BN (National Program for Improving Rice Production) in order to achieved the target of increasing rice yield up to 5% per year. At the same time, Department of Public Work (Kimpraswil) developed a System of Rice Intensification (SRI) to improve the efficiency of irrigation water used. The main objective of this research was to increased yield and nutrient use efficiency as much as 30% by conducted comprehensive study of nutrient balance and soil biology properties at irrigated rice fields. The study consists of two units of experiments. These experiment were the third year project since 2009. We selected farmer fields in Cianjur, West Java Province as new trial sites for this year. The experiments were randomized block design with 5 treatments and 5 replications. The treatments consisted of 1) control, 2) conventional farming systems (farmer practice), 3) PTT (IPNM), 4) SRI (system of rice intensification), and 4) integrated organic and inorganic fertilization. Several parameters were measure including N, P, K dynamics, nutrient balance, soil biology dynamics, plant height, the number of tillers, total grain and straw, RAE and economic analyses of each farming systems. The results showed that application of organic fertilizer under treatment of SRI and Semi organic (integrated organic and inorganic fertilizer used) were obviously increased C-organic, P and K-potential, available-P, exchangeable K and micro nutrients including Fe, Mn, Cu and Zn content in soil. Application of organic materials combined with inorganic fertilizers under treatment agricultural systems and PTT had increased population of Aktinomisetes and population of fungi and Nitrobacter, respectively. The highest Nitrosomonas populations were found under organic farming and Semi PTT. However, the number of tillage was not significantly different between SRI and PTT although high dosage of organic fertilizer were applied at SRI and 5 ton/ha of composted straw combined with inorganic fertilizers applied at PTT. Keywords: nutrient management, nutrient dynamics, fertilizers, organic materials

  • iv

    PRAKATA

    Padi merupakan komoditas strategis yang merupakan kebutuhan makan pokok yang masih perlu terus dipertahanakna dan ditingkatkan produktivitasnya secara nasional. Namun pada kenyataannnay masih terdapat kesenjangan produksi yang nyata antara tingkat produktivitas padi aktual dengan potensi produksi padi yang ada. Untuk memacu kenaikan produksi beras sebesar 5% per tahun melalui Peningkatan Produksi Beras Nasional (P2BN) Departemen Pertanian menggunakan pendekatan Pengelolaan Tanaman Terpadu (PTT) yaitu dengan melalui pengelolaan hara anorganik dan organik secara terpadu denga. Melalui program tersebut diharapkan peningkatan produksi padi secara nasional dapat dicapai secara maksimal.

    Saat ini di lapangan sudah mulai banyak diadopsi oleh petani sistem peratnian SRI (System Rice Internatioanl), dimana pada sistem ini sebagai sumber hara tanaman yang diberikan dalam bentuk pupuk organik dengan dosis tinggi. Namun disisi lain Kementerian Pertanian melalui Badan Litbang Pertaniann mensosialisaikan sistem pertanian menggunakan pendekatan Pengelolaan Tanaman Terpadu (PTT). Kedua pendekatan pengelolaan hara tersebut memiliki kelebihan dan kekurangnnya masing-masing dan perlu mendapatkan penjelasan yang medasar dan secara ekonomis memberikan keutungan yang lebih kepada petani.

    Untuk mendapat penjelasan yang memuaskan dan secara ilmiah didukung oleh data, maka perlu dilakuan penelitian sehingga dapat memberikan jawaban secara menyeluruh dan memuaskan. Penelitian ini merupakakan penelitian tahun ke 3 dilakukan pada tanah Inceptisol di Cianjur Jawa Barat. Laporan ini merupakan draf laporan akhir sehingga belum menyajikan data hasil penelitian secara menyeluruh.

    Ucapan terima kasih disampaikan kepada semua pihak yang telah membantu sehingga penelitian ini dapat dilakukan dengan baik.

    Saran dan kritik yang membangun dari berbagai pihak diperlukan untuk perbaikan laporan ini.

    Bogor, Oktober 2011 Kepala Balai Besar Litbang Sumberdaya Lahan

    Dr. Muhrizal Sarwani, MSc. NIP. 19600329 198403 1 001

  • v

    DAFTAR ISI Halaman

    LEMBAR IDENTITAS DAN PENGESAHAN ................................................................ i

    RINGKASAN ................................................................................................................ ii

    ABSTRACT .................................................................................................................. iii

    PRAKATA ..................................................................................................................... iv

    DAFTAR ISI ................................................................................................................. v

    DAFTAR TABEL ........................................................................................................... vi

    DAFTAR GAMBAR ....................................................................................................... vii

    I. PENDAHULUAN ............................................................................................... 1

    1.1. Latar Belakang ....................................................................................... 1

    1.2. Keluaran ................................................................................................ 4

    II. TINJAUAN PUSTAKA .... .................................................................................. 5

    III. TUJUAN DAN MANFAAT ................................................................................. 8

    IV. METODOLOGI .................................................................................................. 9

    4.1. Lingkup Kegiatan ... 9

    4.2. Rancangan Riset .. 10

    V. HASIL DAN PEMBAHASAN ............................................................................. 15

    5.1. Karakteristik Tanah Lokasi Penelitian .................................................. 15

    5.2. Karakteristik Air Irigasi .......................................................................... 16 5.3. Dinamika Hara Tanah Sawah ............................................................... 16 5.4. Populasi Aktinomisetes, Fungi, Nitrobacter dan Nitrosomonas ............ 22 5.5. Pertumbuhan Tanaman ........................................................................ 25 VI KESIMPULAN DAN SARAN ............................................................................. 28

    6.1. Kesimpulan ............................................................................................ 28

    6.2. Saran ..................................................................................................... 28

    VII. DAFTAR PUSTAKA .......................................................................................... 29 ....

  • vi

    DAFTAR TABEL No Teks Hal

    1. Susunan perlakuan dan dosis pupuk lokasi percobaan di Cianjur, Jawa Barat 12

    2. Hasil analisis tanah Inceptisol Cianjur, Jawa barat sebelum penelitian dilaksanakan 15

    3. Rata-rata populasi mikroorganisme Aktinomiset, Fungi, Nitrobacter dan Nitrosomonas sebelum dan setelah pemupukan N ke satu 23

    4. Pertumbuhan tinggi tanaman dan jumlah anakan padi umur 21- 75 HST pada berbagai sistem pertanian di Cianjur, Jawa Barat . 25

    5. Jumlah anakan padi umur 21- 75 HST pada berbagai sistem pertanian di Cianjur, Jawa Barat 27

  • vii

    DAFTAR GAMBAR No Teks Hal

    1. Kadar NH4 dan NO3 tanah sebelum tanam pada pengamatan sebelum dan setelah pemupukan umur 7, 25 dan 45 hari setelah tanaman (HST)... 16

    2. Kadar N-total dan C-organik tanah sebelum tanam pada pengamatan sebelum dan setelah pemupukan umur 7, 25 dan 45 hari setelah tanaman (HST) . 17

    3. Kadar P teresktrak HCl 25% dan Bray 1 tanah pada pengamatan sebelum dan setelah pemupukan umur 7, 25 dan 45 HST .. 19

    4. Kadar K teresktrak HCl 25% dan K-dd terekstrak NH4OAc, 1 N pH 7 tanah sebelum dan setelah pemupukan berumur 7, 25 dan 45 HST . 19

    5. Kadar Ca-dd dan Mg-dd teresktrak NH4OAc, 1 N pH 7 tanah sebelum dan setelah pemupukan umur 7, 25 dan 45 HST ... 20

    6. Kandungan Fe dan Mn tersktrak DTPA pada pengamatan sebelum dan setelah pemupukan umur 7, 25 dan 45 HST ... 21

    7. Kandungan Cu dan Zn tersktrak DTPA pada pengamatan sebelum dan setelah pemupukan umur 7, 25 dan 45 HST ... 22

    8. Rata-rata populasi Aktinomisetes dan Fungi dalam tanah pada berbagai sistem pertanian pada pengamatan 0 dan 7 HST .. 23

    9. Rata-rata populasi Nitrobacter dan Nitrosomonas dalam tanah pada berbagai sistem pertanian pada pengamatan 0 dan 7 HST . 24

  • 1

    I. PENDAHULUAN

    1.1. Latar Belakang

    Seiring dengan meningkatnya penduduk di Indonesia dengan laju pertumbuhan 1,49%

    memerlukan konsumsi beras yang meningkat 1,1% yang diperkirakan sebanyak 35,17

    juta ton beras atau 55,83 juta ton gabah kering giling pada tahun 2010 (Makarim dan

    Suhartatik, 2006). Pemerintah mempunyai target produksi beras tidak hanya untuk

    pemenuhan kebutuhan domestik tetapi juga untuk ekspor. Menteri Pertanian menyatakan

    bahwa Indonesia akan mengekspor sekitar satu juta ton, apabila target produksi beras

    nasional pada tahun 2009 tercapai. Target produksi beras nasional tahun 2009 sebesar

    47 juta ton atau setara 63 juta ton gabah kering giling (GKG) (Antara, 7 Januari 2009).

    Namun demikian, produktivitas padi di lahan sawah masih beragam dan belum optimal.

    Dibandingkan dengan negara lain sesama daerah tropik, sebenarnya tingkat produktivitas

    padi Indonesia rata-rata 4,88 ton ha-1, nomor dua tertinggi dan sedikit di bawah Vietnam,

    sedangkan potensinya dapat mencapai 6-7 ton ha-1. Menurut Makarim et al. (2000) bahwa

    belum optimalnya produktivitas padi di lahan sawah, antara lain disebabkan oleh

    rendahnya efisiensi pemupukan, kahat unsur mikro, sifat fisik tanah tidak optimal,

    penggunaan benih kurang bermutu, varietas yang dipilih kurang adaptif, belum efektifnya

    pengendalian hama penyakit, dan pengendalian gulma kurang optimal.

    Mengingat berkembangnya isu pencemaran dan penurunan kualitas lahan sawah, serta

    semakin mahalnya harga pupuk dan terbatasnya ketersediaan air, maka suatu keharusan

    melakukan efisiensi penggunaan input. Pengelolaan hara melalui pemupukan berimbang

    terpadu spesifik lokasi merupakan kunci untuk meningkatkan efisiensi penggunaan pupuk,

    produktivitas dan pendapatan petani serta mengubah pertanian berbasis eksploitasi tanah

    menjadi pertanian berbasis pembangunan kesuburan tanah. Pemberian pupuk yang

    berlebihan selain menurunkan efisiensi pupuk, dapat memberikan dampak negative

    terhadap lingkungan. Dampak negative penggunaan pupuk yang berlebihan dan tidak

    berimbang dapat menyebabkan ketidakseimbangan hara dalam tanah, kerusakan sturktur

    tanah, penurunan keragaman dan populasi biota tanah serta pencemaran lingkungan. Di

    areal sawah intensifikasi terutama di Pulau Jawa, petani menggunakan pupuk secara

    berlebihan terutama urea sekitar 350-400 kg ha-1 bahkan ada yang menggunakan hingga

    650 kg ha-1, melampaui takaran yang direkomendasikan sekitar 200-250 kg ha-1.

    Pemberian pupuk urea yang berlebihan ke lahan sawah berpotensi mencemari kawasan

    pertanian sekitarnya melalui cemaran nitrat dan pengkayaan unsur hara (eutrofication),

    menurunnya kualitas air, matinya ikan sebagai sumber protein murah di kawasan

  • 2

    perairan. Selain itu akan mengganggu kesehatan juga mencemari udara. Emisi N2O akan

    meningkat dengan meningkatnya dosis pupuk N. Nitrat jika tereduksi menjadi nitrit bersifat

    toksik jika termakan oleh bayi yang dapat menyebabkan baby blue syndrome.

    Pemanfaatan bahan organik dalam sistem pertanian padi sawah merupakan faktor yang

    sangat penting. Bahan organik sangat diperlukan untuk memperbaiki sifat fisik, kimia dan

    biologi tanah. Bahan organik dapat berfungsi (1) menyimpan air tersedia lebih banyak,

    mengurangi penguapan, membuat kondisi tanah mudah untuk pergerakan akar tanaman

    baik untuk tanah liat berat maupun tanah berpasir, (2) menyediakan hara makro dan

    mikro bagi tanaman dalam batas tertentu, (3) meningkatkan daya menahan kation (KTK)

    dan anion (KTA) sehingga hara tidak mudah hilang dari tanah, (4) menetralkan keracunan

    Al dan Fe, (5) media tumbuh mikroorganisme tanah, seperti organisme penambat N

    udara, pelarut P, dsb (Makarim dan Suhartatik, 2006). Bahan organik sebaiknya tersedia

    in situ berupa hijauan, residu tanaman/sisa panen, kotoran ternak, dan kompos. Namun

    demikian bahan organik juga mempunyai beberapa kekurangan, antara lain bulky yaitu

    diperlukan dalam jumlah banyak, tidak dapat digunakan sebagai pupuk susulan seperti

    urea, pada tanah berdrainase buruk dapat menambah kondusi reduktif sehingga

    berpotensi keracunan Fe, Mn, pembentukan gas H2S, asam-asam organik yang bersifat

    toksik bagi tanaman, bahan organik segar memerlukan N tersedia tanah sehingga

    tanaman menjadi kahat N, meningkatkan emisi gas metan yang dapat menyebabkan

    pemanasan bumi (Makarim dkk., 1996; Wihardjaka dkk., 1999). Oleh karena itu, selain

    dapat diproduksi secara in situ, bahan organik yang akan dijadikan sebagai masukan

    dalam sistem pertanian padi sawah juga harus berkualitas.

    Pada prinsipnya sistem pertanian padi sawah harus memaksimalkan pemanfaatan bahan

    organik secara in situ dan mengurangi penggunaan pupuk kimia anorganik. Penelitian

    menunjukkan bahwa pada sistem pertanian padi sawah intensif di China dan Vietnam,

    bahan organik dan pupuk kimia anorganik masih sama-sama digunakan dan saling

    melengkapi untuk memenuhi kebutuhan hara tanaman. Penggunaan bahan organik di

    China dan Vietnam sekitar 25% dari total kebutuhan hara untuk tanaman (Nguyen Van Bo

    dkk., 2002; Portch dan Ji-yun, 2002).

    Pengelolaan air juga merupakan salah satu faktor penting di dalam sistem pertanian di

    lahan sawah. Total penggunaan air di lahan sawah sangat bervariasi antara 500 dan 3000

    mm tergantung kondisi lingkungan dan lamanya periode pertumbuhan padi (Rajesh dan

    Thanunathan, 2003). Namun, pada umumnya petani menggenangi lahan sawahnya terus

    menerus selama periode pertumbuhan tanaman sehingga hal ini merupakan pemborosan.

    Pada kondisi tidak tergenang efisiensi mencapai 19,58% dan 10,91% untuk yang

  • 3

    digenangi secara terus menerus (Sumardi, dkk. 2007). Dengan terbatasnya ketersediaan

    air dan untuk pemenuhan kebutuhan pangan, nampaknya terjadi persaingan penggunaan

    air untuk non-pertanian dan pertanaman padi. Oleh karena itu diperlukan sistem pertanian

    padi di lahan sawah yang hemat air dengan produktivitas tanaman tetap tinggi.

    Vijayakumar dkk., (2006) menyatakan bahwa tanaman padi mampu tumbuh dengan

    sangat baik pada kondisi semi aquatic tanpa mengurangi produktivitas.

    Air tidak hanya dibutuhkan untuk pertumbuhan tanaman tetapi juga sebagai media

    pembawa hara sehingga hara dapat ditransport dan diserap akar. Pengelolaan hara dan

    air yang tepat dapat meningkatkan produktivitas tanaman dan efisiensi penggunaannya

    sehingga pengelolaan air tidak terpisahkan dari pengelolaan hara yang baik. Pengelolaan

    air pada lahan sawah sangat penting dalam kaitannya dengan ketersediaan dan dinamika

    hara (Roy dkk, 2006). Sumber hara tanaman padi sawah berasal dari eksternal dan

    internal input. Sumber yang berasal dari eksternal, antara lain pupuk anorganik, bahan

    organik/pupuk organik, air irigasi, dan air hujan. Sedangkan yang berasal dari tanah

    merupakan sumber internal, antara lain cadangan mineral tanah dan organisme tanah.

    Hasil dari kegiatan tahun 2009 menunjukkan bahwa (1) Di Ciruas Banten perlakuan SPH-

    2 (sistem penglolaan hara) menghasilkan emisi gas N2O rendah sedangkan di Sukamandi

    pada perlakuan SRI, (2) Pemberian pupuk urea di Ciruas dan Sukamandi, secara umum

    menyebabkan penurunan populasi mikrorganisme dan mikrofauna, (3) Sistem

    pengelolaan hara dengan mengkombinasikan pupuk organik dan anorganik menghasilkan

    pertumbuhan tinggi dan jumlah anakan serta hasil gabah yang meningkat (15-20%) di

    Banten, sedangkan di Sukamandi sistem pengelolaan Petani dan PTT menghasilkan

    gabah yang lebih tinggi masing-masing sekitar 86% dan 71% dibandingkan SRI, 31% dan

    20% dibandingkan Semi Organik, (4) Populasi mikroorganisme tanah seperti: pelarut

    Fosfat, Sianobakter, Nitrosomonas, Nematoda dan Respirasi tanah memberikan pola

    yang sama pada lokasi percobaan di Ciruas Banten dan Sukamandi yaitu cenderung

    menurun (30-75%) dengan pemberian pupuk N, (5) Total emisi gas N2O dari lahan sawah

    di Ciruas dan Sukamandi tertinggi pada sistem pertanian semi organik sekitar 31 37

    g/ha/hari, dan terendah sistem pertanian SRI sekitar 12 g/ha/hari, (6) Dinamika hara N, P

    dan K dalam tanah sawah selama satu musim tanah belum stabil. Total N tanah sawah di

    Sukamandi hampir tidak berubah, total P tanah menurun sekitar 45%, dan total K

    meningkat hampir 5 kali lipat. Di Ciruas, total N , P dan K tanah sawah menurun masing-

    masing 10, 25 dan 45%. Dinamika N dalam bentuk tersedia (NH4+) cenderung menurun

    setelah minggu ke 6 dan mencapai sekitar 50% setelah panen di Sukamandi dan Ciruas,

    sedangkan NO3- meningkat sekitar 35% di Sukamandi dan hampir tidak berubah di

  • 4

    Ciruas. Ketersediaan P (Bray-1) dalam tanah di Sukamandi meningkat hampir 3 kali lipat

    dan K yang dapat dipertukarkan meningkat sekitar 30%. Sebaliknya di Ciruas,

    ketersediaan P hampir tidak berubah dan K dapat dipertukarkan menurun sekitar 70%.

    Kadar C-organik tanah sawah di Sukamandi meningkat sekitar 50% setelah panen, di

    Ciruas hampir tidak berubah, (7) Secara umum neraca hara N,P, dan K positif kecuali

    pada perlakuan konvensional (Petani) dan PTT menghasilkan neraca hara K negatif, dan

    (8) Hasil analisis usaha tani sistem pertanian PTT lebih menguntungkan untuk lokasi

    pertanian di Ciruas sedangkan di BB. Padi Sukamandi lebih menguntungkan pada sistem

    pertanian konvensional.

    Hasil kegiatan dari tahun 2010 menunjukkan bahwa: (1) Pemberian pupuk urea di Serang

    dan Cianjur secara umum menyebabkan peningkatan populasi bakteri pelarut P dan K ,

    (2) Sistem pengelolaan hara dengan mengkombinasikan pupuk organik dan anorganik

    menghasilkan pertumbuhan tinggi dan jumlah anakan serta hasil gabah yang meningkat

    (14-44%) di Banten, sedangkan di Cianjur sistem pengelolaan PTT dan SPH-1 (sistem

    pengelolaan hara) menghasilkan gabah yang lebih tinggi masing-masing sekitar 36% dan

    26% dibandingkan SRI, 23% dan 14% dibandingkan Petani, (3) Populasi mikroorganisme

    tanah seperti: pelarut Fosfat dan Pelarut K dibandingkan Petani pada lokasi percobaan di

    Serang Banten dan Cianjur cenderung meningkat dengan pemberian pupuk N, (4)

    Dinamika hara N, P dan K dalam tanah sawah selama dua musim tanah belum stabil.

    Total N tanah sawah pada minggu ke 6 meningkat 7-37%, di Serang dan 4-65% diCianjur,

    P-total tanah di serang meningkat 23-233% dan P tersedia meningkat 1-3 kali lipat. Di

    Cianjur P total tanah meningkat sekitar 40%, dan P tersedia cenderung menurun. K-total

    meningkat 75-144% dan K-teredia cenderung menurun di Serang. Di Cianjur Cenderung

    K-tersedia menurun 68-88%. Kadar C-organik tanah sawah di Serang meningkat 8-74%,

    dan di Cianjur meningkat 33-136% pada tanah yang diolah sempurna maupun tidak diolah

    sempurna (5) Hasil analisis usaha tani sistem pertanian PTT lebih menguntungkan untuk

    lokasi pertanian di Serang dan Cianjur dibandingkan konvensiona dan SRI.

    1.2. Keluaran.

    Jangka Pendek

    a. Dinamika dan keseimbangan hara, terutama hara N, P, dan K pada sistem

    pertanian konvensional, PTT, dan SRI

    b. Neraca hara, terutama N, P, dan K pada sistem pertanian konvensional, PTT, dan

    SRI

    c. Sistem pengelolaan hara untuk perbaikan mutu intensifikasi di lahan sawah irigasi

  • 5

    Jangka Panjang Sistem pengelolaan hara untuk perbaikan mutu intensiifikasi di lahan sawah irigasi

    yang berkelanjutan dan lebih ramah lingkungan.

    II. TINJAUAN PUSTAKA

    Untuk memacu laju kenaikan produksi beras sebesar 5% per tahun melalui P2BN

    (Peningkatan Produksi Beras Nasional), Departemen Pertanian menggunakan

    pendekatan Pengelolaan Tanaman Terpadu (PTT). Pada awal pencanangan P2BN,

    teknologi PTT diterapkan pada padi sawah seluas 2,0 juta ha. Akan tetapi bersamaan

    dengan itu, Departemen Kimpraswil menggunakan SRI (System Rice Intensification)

    dalam rangka peningkatan efisiensi penggunaan air irigasi. Sejak saat itu timbul dua

    macam pendekatan, bahkan di Departemen Pertanian sendiri, yaitu Ditjen Tanaman

    Pangan menggunakan PTT (telah diselenggarakan Sekolah Latihan PTT), sedangkan

    Ditjen Pengelolaan Lahan dan Air menggunakan SRI. Di daerah, dualisme ini

    membingungkan pelaksana di lapang/penyuluh . Kalau hal ini dibiarkan terus berlangsung

    maka dikhawatirkan dapat terjadi kontra-produktif. Untuk itu diperlukan persamaan

    persepsi mengenai pendekatan ini sehingga diharapkan diperoleh satu model

    pengembangan dari kedua teknologi sistem pertanian di lahan sawah tersebut.

    Dalam kaitannya dengan pengelolaan hara, terdapat perbedaan yang mendasar dari

    beberapa sistem pertanian di lahan sawah yang telah berkembang saat ini. Perbedaan

    tersebut adalah sebagai berikut:

    Parameter Sistem Pertanian di Lahan Sawah Konvensional PTT SRI Pupuk anorganik Pemupukan

    berdasarkan rekomendasi umum atau setempat atau berdasarkan kemampuan petani

    Pemupukan N berpedoman pada BWD, pemupukan P dan K berdasarkan tanah dan kebutuhan tanaman (uji tanah) hasil pengukuran dengan PUTS

    Tanpa

    Pupuk organik Tanpa 2 ton/ha kompos bahan organik atau 5 ton/ha jerami sisa panen yang dikembalikan ke lahan sawah atau dikomposkan.

    Penggunaan kompos bisa mencapai 15 ton/ha (bisa berupa kohe (kotoran hewan atau pukan/pupuk kandang dengan tambahan jerami padi sisa panen).

    Air Irigasi Tergenang terus Pengaturan pengairan Pengairan

  • 6

    menerus (pengairan berselang) secara benar sesuai dengan kondisi setempat

    berselang: kondisi tanah tidak digenangi tapi tetap lembab yang dipertahankan selama pertumbuhan vegetatif; setelah pembungaan sawah digenangi air 1-3 cm

    Jarak tanam 20 cm x 20 cm Sistem tegel (25 cm x 25 cm) atau sistem legowo

    Sistem tegel dengan jarak tanam lebar 30 cm x 30 cm

    Oleh karena itu informasi tentang keseimbangan hara dan dinamika biologi pada ketiga

    sistem pertanian di lahan sawah irigasi tersebut sangat diperlukan sebagai dasar untuk

    memperbaiki sistem pengelolaan hara tepat guna.

    Pengelolaan Tanaman Terpadu (PTT) pada padi sawah merupakan salah satu model

    yang mengedepankan pendekatan spesifik lokasi dengan mengimplementasikan berbagai

    komponen teknologi budidaya yang sinergis untuk mendapatkan hasil optimal dan

    kelestarian lingkungan (Sumarno, dkk. 2000). Model tersebut menganjurkan petani

    menerapkan teknologi yang cocok untuk lokasi setempat sesuai pilihan dan kemampuan

    mereka. Komponen teknologi yang dianjurkan, antara lain penggunaan benih bermutu,

    pemupukan berimbang terpadu spesifik lokasi yaitu dengan mengkombinasikan pupuk

    anorganik berdasarkan uji tanah dan penggunaan bahan organik, pengendalian

    hama/penyakit secara terpadu, sistem pengairan berselang (intermitten), dan penanganan

    panen dan pasca panen (Las, dkk. 2002). Implementasi model ini dilaporkan dapat

    meningkatkan produktivitas padi dari sekitar 5,6 ton ha-1 menjadi 7,3 9,6 ton ha-1 dan

    pendapatan petani meningkat dari Rp. 1,6 juta ha-1 menjadi Rp. 4,1 juta ha-1

    (Puslitbangtan, 2000). Selain meningkatkan produktivitas padi dan pendapatan petani,

    sistem pertanian PTT dapat menghemat dan mengurangi penggunaan pupuk kimia

    anorganik (Makarim dkk., 2000), serta relevan untuk dikembangkan karena

    mempertimbangkan faktor spesifik lokasi dan kemauan serta kemampuan petani (Syam,

    2006).

    Pelaksanaan System of Rice Intensification melalui penerapan komponen teknologi

    secara terpadu berupa paket rekomendasi yang berlaku umum, antara lain meliputi

    penanaman bibit muda umur 8 15 hari saat tanaman berdaun dua helai dan satu

    tanaman per lubang yang dilakukan segera setelah dipindah dari persemaian, pengairan

    berselang (intermitten), pengaturan jarak tanam, penyiangan gulma dengan landak 2 4

    kali sebelum fase primordia, penggunaan kompos sebanyak mungkin sebelum tanam,

  • 7

    pemupukan anorganik dapat juga ditambahkan dengan rekomendasi pemupukan

    setempat. Model ini mampu memberikan hasil padi antara 7 12 ton ha-1 (Fisher, 1998).

    Namun demikian sistem pertanian padi sawah dengan SRI tersebut masih terdapat

    kontroversi. Syam (2006) menyatakan bahwa SRI memerlukan bahan organik yang

    banyak dalam bentuk pupuk kandang dan sisa tanaman yang ketersediaannya relatif

    terbatas. Selain itu sistem ini mungkin layak dikembangkan bila Indonesia sudah bebas

    dari impor beras, kondisi perekonomian nasional sudah lebih baik dan konsumen sudah

    lebih sadar pangan bebas input kimia dan bersedia membayar harga yang lebih mahal.

    Namun demikian upaya memasyarakatkan penggunaan bahan organik pada lahan sawah

    patut dihargai, apabila kaitannya dengan sistem produksi berkelanjutan, kesehatan

    lingkungan, semakin mahalnya harga pupuk anorganik, dan pemakaian air secara hemat

    serta mengurangi penggunaan benih.

    Meskipun sistem pertanian model PTT dan SRI telah dikembangkan secara luas, namun

    pada kenyataannya sebagian besar petani di Indonesia masih mempraktekkan budidaya

    tanaman padi dengan sistem pertanian konvensional. Sistem ini menggunakan benih

    bermutu tersertivikasi, penanaman bibit umur 2130 hari dengan 34 tanaman per

    lubang, pemupukan rekomendasi setempat atau yang biasa digunakan petani (bisa lebih

    atau kurang), sistem pengairan terus menerus dengan kedalaman penggenangan 510

    cm, pengendalian hama/penyakit menggunakan pestisida. Produktivitas padi yang

    dihasilkan dari sistem ini rata-rata sekitar 4,77 ton ha-1 (Wulandari dan Syam, 2007).

    Syam (2006) menyatakan bahwa hasil kajian Balai Penelitian Tanaman Padi

    menunjukkan bahwa hasil ubinan padi yang ditanam secara konvensional di Garut

    memberikan hasil lebih tinggi sekitar 0,92 ton ha-1 daripada hasil SRI. Secara ekonomi

    teknologi intensif konvensional memberikan efisiensi produksi usahatani padi yang lebih

    tinggi dibanding teknologi SRI.

    Penelitian teknologi sistem pertanian di lahan sawah yang telah dilakukan umumnya

    menekankan pada aspek agronomis dan ekonomis. Penelitian dan analisis komprehensif

    tentang keseimbangan hara dan dinamika biologi pada sistem pertanian di lahan sawah

    masih sangat terbatas. Penelitian ini sangat diperlukan untuk mendapatkan informasi

    tentang keseimbangan hara dan dinamika biologi sebagai dasar penyusunan neraca hara

    dan sistem pengelolaan hara tepat guna yang pada akhirnya untuk meningkatkan

    produktivitas padi di lahan sawah yang efisien dalam penggunaan pupuk dan air.

  • 8

    III. TUJUAN DAN MANFAAT

    3.1. Tujuan

    Tujuan dari penelitian ini adalah untuk menganalisis secara komprehensif tentang

    dinamika dan keseimbangan hara pada sistem pertanian di lahan sawah irigasi sebagai

    dasar untuk menyusun neraca hara yang akan dijadikan dasar untuk mengembangkan

    sistem atau model pengelolaan hara dalam rangka memperbaiki mutu intensifikasi sistem

    pertanian yang lebih ramah lingkungan dan berkelanjutan.

    Tujuan jangka pendek

    a. Mendapatkan informasi tentang dinamika hara dan keseimbangan hara,

    terutama hara N, P, dan K pada sisitem pertanian konvensional, PTT dan SRI

    di lahan sawah irigasi.

    b. Menelisik mekanisme peranan bahan/pupuk organik terhadap dinamika sifat

    fisik, biologi dan kimia; biota ;dan mikroba tanah

    c. Memperbaiki sistem pengelolaan hara dalam rangka perbaikan mutu

    intensifikasi sistem pertanian di lahan sawah irigasi, sehingga produktivitasi

    dapat meningkat sekitar 30%

    d. Menyusun neraca hara, terutama hara N, P dan K pada sistem pertanian

    konvensional, PTT dan SRI di lahan sawah irigasi, sehingga efisiensi pupuk

    dapat meningkat sekitar 30%

    Tujuan jangka panjang

    Mengembangkan sistem pengelolaan hara tepat guna yang mampu memperbaiki

    mutu intensifikasi sistem pertanian di lahan sawah irigasi yang berkelanjutan dan

    lebih ramah lingkungan, dengan peningkatan produktivisi dan efisiensi pupuk

    sekitar 30%

    3.2. Manfaat

    Dampak hasil penelitian dalam jangka panjang adalah meningkatnya mutu intensifikasi

    melalui pengembangan sistem pengelolaan hara tepat guna yang diindikasikan dengan

    meningkatnya produktivitas yang berkelanjutan dan lebih ramah lingkungan serta

    meningkatnya pendapatan petani. Pada tingkat nasional diharapkan bahwa selain dapat

    memenuhi kebutuhan beras domestik juga dapat melakukan ekspor.

  • 9

    IV. METODOLOGI

    4.1. Lingkup Kegiatan

    Tahap persiapan

    Kegiatan penelitian ini merupakan lanjutan kegiatan tahun 2010. Penelitian terdiri dari 1

    unit kegiatan yang akan dilaksanakan di daerah volkan di Cianjur.

    Penelitian dimulai dengan studi literatur dan menyiapkan bahan penunjang seperti peta

    tanah, peta status hara P dan K serta bahan penunjang lainnya untuk menentukan lokasi

    penelitian. Lokasi baru untuk kegiatan penelitian akan dipilih pada lahan sawah irigasi

    daerah volkan dengan tingkat kesuburan sedang/tinggi, terutama hara N, P, K dan C-

    organik. Untuk menentukan status hara P dan K akan dilakukan dengan menggunakan

    Perangkat Uji Tanah Sawah (PUTS). Tahap selanjutnya, penentuan tingkat kesuburan

    tanah dilakukan dengan mengambil contoh tanah dan air irigasi yang kemudian dianalisa

    di laboratorium.

    Tahap pelaksanaan

    Penelitian akan dilaksanakan di lahan sawah irigasi yang mempunyai tingkat kesuburan

    sedang-tinggi di sekitar Cianjur, Jawa Barat. Sistem pertanian yang akan diteliti dan

    dianalisis adalah sistem konvensional, PTT dan SRI serta modifikasinya.

    Pada masing-masing sistem pertanian di lahan sawah yang diteliti akan dipelajari

    dinamika dan keseimbangan hara, terutama N, P, dan K secara komprehensif dengan

    menganalisis komponen atau sumber input, proses yang terjadi di dalam tanah serta

    proses kehilangan hara dari dalam tanah. Setelah itu akan disusun neraca hara N, P, dan

    K untuk masing-masing sistem pertanian yang diuji. Sistem pengelolaan hara tepat guna

    untuk masa mendatang akan disusun berdasarkan informasi tentang dinamika dan

    keseimbangan hara serta neraca hara yang diperoleh pada penelitian ini.

    Bahan dan Alat

    Bahan penelitian meliputi bahan-bahan yang diperlukan untuk pelaksanaan penelitian antara lain: Alat tulis kantor (ATK) dan alat penunjang komputer seperti ballpoint, spidol, kertas, tinta komputer, disket, CD, flashdisc, dan lain-lain. Bahan kimia untuk analisis tanah, tanaman dan mikroorganisme di laboratorium Bahan untuk pelaksanaan percobaan lapang, seperti benih padi berpotensi hasil tinggi, pupuk urea, SP-36, KCl, pupuk majemuk NPK, jerami, pupuk kandang, M-Dec

  • 10

    (Dekomposer) karung, tali rafia, tambang, kantong plastik, bambu/kayu, seng, cat, dan lain-lain. Peralatan yang digunakan untuk pelaksanaan percobaan lapang antara lain: Sungkup untuk gas N2O dan perlengkapannya, perlengkapan GC, botol contoh air, GPS, timbangan, meteran, bor tanah dan peralatan untuk diskripsi profil, dan alat penunjang penelitian lapang lainnya, serta peralatan untuk analisis kimia dan mikrobiologi tanah.

    Lokasi dan Waktu

    Kegiatan penelitian akan dilaksanakan di Cianjur, Jawa Barat. Kegiatan penelitian ini

    merupakan kegiatan lanjutan tahun ke tiga. Penelitian telah dimulai sejak musim kemarau

    II tahun 2009.

    Penentuan lokasi untuk kegiatan penelitian tahun 2011 diarahkan pada lahan sawah

    irigasi teknis di daerah volkan dengan status hara P dan K sedang/tinggi. Sebagai acuan

    dalam mencari lokasi percobaan selain peta status hara P dan K, juga dengan

    menggunakan PUTS.

    Untuk penentuan lokasi penelitian diambil masing-masing sebanyak 1 contoh tanah

    komposit untuk setiap lokasi percobaan. Lokasi pengambilan mengacu pada data peta

    status hara P dan K skala 1:250.000 atau skala 1:50.000 apabila telah dipetakan.

    Lokasi percobaan lapang ditentukan dengan kriteria, yaitu (1) berstatus hara sedang

    tinggi, (2) mewakili hamparan yang luas, (3) terdapat pada daerah yang beririgasi teknis,

    (4) bukan daerah yang sering terkena banjir dan kekeringan, serta endemi hama penyakit,

    dan (5) respon/kesanggupan petani

    4.2. Rancangan Riset

    Penelitian terdiri dari satu unit percobaan merupakan kegiatan penelitian baru yang akan

    dilaksanakan di daerah volkan (sekitar Cianjur, Jawa Barat) dengan tingkat kesuburan

    sedang/tinggi. Status hara P dan K untuk rekomendasi pemupukan ditentukan dengan

    PUTS, sedangkan untuk status kesuburan tanah dan kandungan hara dalam air irigasi

    secara lengkap akan dianalisa di laboratorium penelitian Balai Penelitian Tanah.

    Penelitian ini dilaksanakan di lahan sawah irigasi di lingkungan petani menggunakan

    Varietas padi unggul baru yang umum digunakan di sekitar lokasi. Penelitian

    menggunakan Rancangan Acak Lengkap terdiri dari 5 perlakuan diulang 5 kali dengan

    susuna perlakuan sebagai berikut:

  • 11

    1. Kontrol lengkap: tanpa pemberian pupuk, cara pengelolaan disesuaikan dengan

    kebiasan petani setempat, namun tidak dilakukan pemberian pupuk.

    2. Konvensional: menurut kebiasaan petani, baik menyangkut cara tanam,

    pengelolaan pupuk, pengelolaan air, maupun pengendalian hama penyakit yang

    ada di pertanaman padi.

    3. PTT:

    o bibit muda (15 hss), 2 bibit per lubang, o pemupukan N berdasarkan BWD, pemupukan P dan K berdasar uji tanah, o kompos dari bahan 5 ton jerami segar/ha o irigasi berselang (intermittent), o cara tanam sistem legowo 2:1,

    4. SRI:

    o Pupuk organik 15 ton/ha (campuran pukan sekitar 12 ton/ha dan kompos dari bahan 3 ton kompos jerami/ha),

    o bibit 7 hss, o irigasi berselang, o jarak tanam sistem tegel 25 cm x 25 cm, o 1 bibit/lubang, o PHT berdasarkan monitoring dan menggunakan pestisida nabati.

    5. Semi Organik:

    o Pupuk organik insitu dengan dosis 5 ton/ha o pemupukan N berdasarkan BWD, pemupukan P dan K berdasar uji tanah

    dengan dosis 75%

    o bibit 15 hss o irigasi berselang o jarak tanam 25 cm x 25 cm o 2 bibit/lubang

  • 12

    Tabel 1. Susunan perlakuan dan dosis pupuk lokasi percobaan di Cianjur, Jawa Barat

    No. Perlakuan Ppk. anorganik (kg/ha) Ppk. Organik (t/ha)

    Irigasi Jumlah/Umur Bibit (HSS)

    Jarak tan. (cm2) Urea Phonska SP-36 KCl Jerami Pukan

    1. Kontrol lengkap 0 0 0 0 0 0 Konven. (>2) 21 25 x 25 2. Petani - - - - - - Konven. (>2) 21 25 x 25

    3. PTT BWD - 75 50 2 (kompos) - Intermiten (1-2) 15 Legowo 2:1

    4. SRI - - - - 3 (kompos) 12 Intermiten ( 1 ) 7 30 x 30

    5. Semi organik BWD - 37,5 25 5 ton jerami - Intermiten (1-2) 15 25 x 25 Keterangan: BWD = pemupukan urea pertama 7 HST dengan dosis 100 kg/ha

    *= 5 ton pupuk organik in situ No. 2 dan No.4 = PHT berdsarkan monitoring

    No. 3 (SRI), No.5 dan No. 6 = menggunkan pestisida nabati dan PHT berdasarkan monitoring

  • 13

    Parameter yang diamati, antara lain (1) sifat fisik, kimia dan biologi tanah sebelum

    perlakuan, setelah pemupukan dan setelah panen, (2) kandungan hara air irigasi pada

    saat pengolahan tanah, (3) kandungan hara air irigasi yang ditambahkan (inlet) dan yang

    keluar (outlet) yang dilakukan pada saat pengairan/penggenangan dan

    pengeringan/drainase, (4) kadar ammonium dalam air genangan dan gas N2O pada

    periode setelah pemupukan urea, (7) kandungan hara dalam biomass (jerami dan gabah).

    Parameter tersebut akan diukur dan ditetapkan di laboratorium.

    Sifat fisika tanah yang akan ditepakan: Sebelum tanam: tekstur, BD dan pF

    Setelah panen: Bd dan pF.

    Sifat kimia tanah: Sebelum tanam dan setelah panen: meliputi pH (KCl dan H2O), C-organik (Kalium

    Dichromat/Kjeldhal), N-total (Kjeldal), NH4+ dan NO3-, P2O5 dan K2O (HCl 25%), P-Bray 1,

    P-Olsen, KTK tergantung pH tanah (unbuffer), KTK dan Ca, Mg, K, dan Na (NH4OAc 1M

    pH 7), Al dan H (KCl 1M), S, Fe, Mn, Zn, Cu, Cd, Pb, erapan P, fraksionasi P (Balai

    Penelitian Tanah, 2005). Adapun sifat biologi tanah yang diamati antara lain, populasi

    mikroba seperti BNF (non-simbiotik), nitrosomonas, nitrobacter, bakteri pelarut P sebelum

    tanam dan setelah panen. Adapun kadar hara tanaman setelah panen (gabah dan jerami)

    dianalisis di laboratorium, antara lain N, P, K,Ca, Mg, Na, S, Fe, Zn, Cu, Cd, Pb.

    Pengamatan setelah pemupukan N: Sifat kimia:

    N-total, P-tersedia, P dan K-total ekstrak HCl 25%, Zn, S dan Cu.

    Pengamatan NH4+ dalam air genangan dan gas N2O dilakukan satu hari setelah

    pemupukan urea atau setelah penggenangan kembali.

    Biologi Tanah: Total bakteri pelarut P, total bakteri N, total mikroba, dan total nematoda

    Aspek agronomis yang diamati: adalah (1) tinggi tanaman dan jumlah anakan pada umur 15, 30, 60, dan menjelang panen, (2) komponen hasil padi yaitu gabah kering panen

    (GKP) gabah kering giling (KGG) KA 14%, persentase gabah hampa, dan berat 1000 butir

    gabah, (4) biomass kering (jerami dan gabah) ubinan yang dikonversikan ke hektar, (5)

    Relative Agronomis Effectiveness (RAE).

    Neraca hara dihitung berdasarkan input dikurangi output dengan menggunakan data

    pengamatan berasal dari penelitian. Komponen input meliputi hara yang berasal dari

    pupuk baik anorganik maupun organik, air irigasi (inlet), sumbangan dari mikroba, air

  • 14

    hujan, indegenous tanah. Adapun komponen output terdiri dari hara yang terkandung

    dalam gabah maupun jerami, air drainase (outlet), kehilangan N dalam bentuk gas (NH3

    dan N2O). Persamaan neraca hara untuk masing-masing unsur (N, P, dan K) sebagai

    berikut:

    Neraca Hara (Cara) = Input (A+B+C+D+E+F) Output (G+H+I+J+K)

    Catatan:

    Neraca hara dihitung dalam satuan kg ha-1

    Input (kg ha-1) terdiri dari :

    A : Hara dari tanah/indigenous B : Hara dari pupuk anorganik C : Hara dari pupuk organik D : Hara dari mikroba E : Hara dari air irigasi/inlet F : Hara dari air hujan

    Output (kg ha-1) terdiri dari :

    G : Hara dalam gabah H : Hara dalam jerami I : Hara yang hilang sebagai gas NH3 J : Hara yang hilang sebagai gas N2O K : Hara dalam air drainase/outlet

    Neraca hara juga akan dihitung menurut Dierolf et al. (2000) sebagai pembanding yaitu

    input dikurangi output tetapi menggunakan asumsi-asumsi untuk memperkirakan

    kehilangan hara dari tanah. Persamaannya adalah sebagai berikut:

    Neraca hara = Input Out put

    Input = Hara yang berasal dari pupuk, jerami, pupuk kandang dan air Out put = hara dalam jerami, gabah, air drainase, dan gas (NH3 dan N2O). Perkiraan kehilangan: N = 25% dari total input N, P= 0% dari total input P

    K = 10% dari total input K

    Pengamatan dan perhitungan hasil usahatani dari masing-masing sistem yang diuji

    dilakukan terhadap komponen usahatani, antara lain data input produksi yaitu kebutuhan

    tenaga kerja, upah tenaga kerja, sarana produksi. Selain itu juga akan ditetapkan

    indikator ekonomi dari usahatani menggunakan nilai nisbah B/C.

  • 15

    V. HASIL DAN PEMBAHASAN

    5.1. Karakteristik Tanah Lokasi Penelitian

    Data hasil analisis tekstur dan sifat kimia tanah Inceptisol Cianjur sebelum penelitian

    disajikan pada Tabel 3. Tanah bertekstur liat; pH tanah terekstrak H2O masam, agak

    masam , kadar C-organik tergolong rendah dan, N-total sedang dengan C/N rasio tanah

    tergolong rendah. Kadar P dan K terekstrak HCl 25% masing-masing tergolong tinggi dan

    sedang dengan kandungan P tersedia terekstrak Bray 1 tergolong sangat rendah. Nilai

    tukar kation Ca sedang dan Mg tergolong tinggi, K tergolong rendah, dan Na dapat

    ditukar tergolong sedang.

    Tabel 2. Hasil analisis tanah Inceptisol Serang, Banten dan Cianjur, Jawa barat sebelum penelitian dilaksanakan

    Jenis Penetapan Cianjur, Jawa Barat Nilai Kriteria

    Telstur : Liat (%) Debu (%) Pasir (%) pH : H2O KCl Bahan Organik : C-organik (%) N-total (%)38 C/N P2O5 (HCl 25%) mg 100g-1 K2O (HCl 25%) mg 100g-1 P-Bray-1 (mg kg-1 P) Kation : (cmol (+)kg-1 Ca Mg K Na KTK (cmol (+)kg-1 KB (%) Unsur mikro ekstrak DTPA (ppm) Fe Mn Cu Zn

    62 32 6

    5,3 4,2

    1,97 0,21

    9 52 16

    6,23

    10,43 3,82 0,29 0,43 19,72

    76

    198 137 4,12 2,22

    Liat masam rendah sedang rendah tinggi sedang rendah sedang tinggi rendah sedang sedang tinggi - - - Tinggi

    Kapasitas tukar kation (KTK) dan kejenuhan basa (KB) masing-masing tergolong sedang

    dan tinggi. Berdasarkan hasil analisis laboratorium, tanah Inceptiosl Cianjur memiliki

    ktingkat kesuburan sedangkan. Secara umum permasalah kesuburan tanah sawah lokasi

    penelitian adalah kandungan bahan organik dan tingkat ketersediaan P yang rendah

    walaupun memiliki kandungan P-potensial tergolong tinggi.

  • 16

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 7 25 45Waktu pengamatan (HST)

    Kad

    ar N

    H4

    tana

    h (p

    pm)

    Kontrol Petani PTT SRI Semi Org

    0

    5

    10

    15

    20

    25

    30

    0 7 25 45

    Waktu pengamatan (HST)

    Kad

    ar N

    O3

    tana

    h (p

    pm)

    Kontrol Petani PTT SRI Semi Org

    5.2. Karakteristik Air Irigasi

    Karakteristik sifat kimia air irigasi pada lokasi penelitian di Cianjur, MK 2011 mempunyai

    pH 6,90 dengan daya hantar listrik (DHL) 122 uS/cm. Kandungan kation K, Ca, Mg dan Na

    masing-masing mengandung 2,69; 4,30; 2,82; dan 6,00 mg/l. sedangkan kandungan

    anion NH4+, PO43-, dan SO42- masing-masing 2,25 mg/l; 0,17 mg/l dan 27,27 mg/l.

    Kandungan unsur hara mikro Fe 1,88 mg/l; Mn 0,02 mg/l dan Zn 0,01 mg/l sedangkan

    kandungan unsur mikro Cu dalam air irigasi tidak terdeteksi.

    5.3. Dinamika Hara anah Sawah

    5.3.1. Dinamika hara N

    Kadar NH4 dalam tanah disajikan pada Gambar 1, hasil analisis menunjukkan bahwa

    kadar NH4 pada semua sistem pertanian membentuk pola yang sama dan konsisten,

    dimana kandungan NH4 terjadi peningkatan tertinggi pada umur 7 hari setelah tanam

    (HST) dengan peningkatan tertinggi pada sistem pertanian Semi organik dari 10 ppm

    menjadi 161 ppm dan terendah pada PTT dar 8 ppm menjadi 100 ppm. Selanjutnya pada

    pengamatan 25 HST, kandungan NH4 menurun secara tajam dengan kandungan NH4

    terendah yaitu 21 ppm. Selanjutnya pada pengamatan 45 HST terjadi peningkatan

    kembali pada semua sistem pertanain.

    Gambar 1. Kadar NH4 dan NO3 tanah sebelum tanam pada pengamatan sebelum dan

    setelah pemupukan umur 7, 25 dan 45 hari setelah tanaman (HST) Keadaan tersebut sejalan dengan pertumbuhan tanaman, dimana pada umur 7 HST

    kebutuhan hara N tanaman relatif masih kecil sehinggan ketersediaan yang tinggi setelah

    pemupukan pertama. Selanjutnya pada pengamatan 25 HST, tanaman dala fase

    pertumbuhan dan pembentukan anakan maksimum sehingga kebutuhan hara N

    meningkat, sehingga kadar NH4 dalam tanah menurun cukup tajam. Pada pengamatan

    45 HST kadar NH4 dalam tanah meningkat kembali, tertinggi pada sistem pertanian Semi

  • 17

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0 7 25 45Waktu pengamatan (HST)

    N-t

    otal

    tana

    h (%

    )

    Kontrol Petani PTT SRI Semi Org

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 7 25 45Waktu pengamatan (HST)

    C-o

    rgan

    ik ta

    nah

    (%)

    Kontrol Petani PTT SRI Semi Org

    organik kemudian diikuti oleh Sistem pertania PTT dan Petani, sedangkan pada sistem

    pertanian SRI kandungan NH4 dalam tanah paling rendah. Sedangkan pada SRI

    rendahnya kadar NH4 dalam tanah karena NH4 yang bersumber dari bahan organik yang

    pelepasannya secara bertahap sehingga tingkat ketersediannya dalam tanah relatif lebih

    rendah.

    Dinamika kandungan NO3 dalam tanah disajikan pada Gambar 1. Hasil analsis

    menunjukkan, kandungan NO3 dalam tanah mengalami perubanah yang fluktuatif dimana

    pada pengamatan 7 HST kandungan NO3 secara umum terjadi penurunan yang cukup

    tajam terutama pada sistem pertanian Semi organik, dari 27,47 ppm menjadi 8,81 ppm;

    pada SRI dari 21,37 ppm mennjadi 7,83 ppm dan pada PTT dari 11,81 ppm menjadi 5,37

    ppm. Kecuali pada perlakuan kontrol dan Petni relatif meningkat. Selanjutnya pada

    pengamtan 25 HST terjadi peningkatan kembali terutama pada sistem pertanian Semi

    organik SRI dan PTT kemudian menurun kembali pada pengamatan 45 HST. Kecuali pada

    kontrol polanya berbeda dengan sistem pertanian SRI, Semi organik dan PTT. Sedangkan

    pada sistem pertanian konvesional (Petani) kandungan NO3 perubahannya realtif kecil.

    5.3.2. N-total dan C-organik

    Kandungan N-total dan C-organik tanah pada berbagai sistem pertanian yang diamati

    sebelum tanam, dan pada umur 7, 25 dan 45 HST disajikan pada Gambar 2.

    Gambar 2. Kadar N-total dan C-organik tanah sebelum tanam pada pengamatan sebelum

    dan setelah pemupukan umur 7, 25 dan 45 hari setelah tanaman (HST) Kandungan N-total tanah terjadi peningkatan pada umur 7 HST selanjutnya terjadi

    perubahan yang bervariasi pada berbagai sistem pertanian. Secara umum N-total tanah

    cenderung meningkat pada pengamatan 7 HST, selanjutnya menurun pada 25 HST

    kecuali pada sistem pertanian Semi organik relatif terjadi peningkatan dari 0,24% menjadi

    0,28%. Kemudian pada pengamatan 45 HST kandungan N-total tanah secara umum

  • 18

    menurun, teringgi pada sistem pertanian SRI dari 0,28% menjadi 0,18% kemudian pada

    sistem pertanian organik dari 0,26% menjadi 0,16%.

    Kandungan C-organik tanah pad berbagai sistem pertanian sebagai pengaruh pemberian

    pupuk organik dan kombinasi pupuk organik dan anorganik disjaikan pada Gambar 2.

    Secara umum kandungan C-organik tanah cenderung ada peningkatan pada pengamatan

    7 HST, selanjutnya relatif konstan sampai pengamatan 25 HST. Anmun demikian pada

    pengamatan 45 HST kandungan C-organik tanah cenderung menurun. Penurunan C-

    organik relatif tertinggi terjadi pada sistem pertanian Semi organik dari 2,33% menjadi

    1.36%, sedangkan penurunan C-organik terendah pada sistem pertanian SRI menurun

    dari 2,20% menjadi 1,74%. Dengan demikian dari hasil analisis tanah menunjukkan

    bahwa pemberian pupuk organik dalam bentuk kompos pupuk kandang dan kompos

    jerami masing-masing 3 dan 12 ton/ha, demikian pula pada sistem pertanian Semi

    organik pemebrian pupuk organik dalam bentuk kompos pupuk kandang 5 ton jerami

    yang dikomposkan/ha yang dikombinasikan dengan pupuk anorganik dosis PTT dalam

    1 musim belum dapat meningkatkan C-organik tanah.

    5.3.3. Dinamika hara P

    Kadar P-total (terekstrak HCl 25%) dan P-Bray 1 disajikan pada Gambar 3. Kadar P-

    terekstrak HCl 25% secara umum cenderung menurun sampai dengan waktu pengamatan

    umur 7 HST, selanjutnya cenderung meningkat sampai dengan umur 45 HST pada sistem

    pertanian SRI dan PTT dari 48 mg/100g menjadi 56 mg/100g dan SRI dari 49 mg/100g

    menjadi 56 mg/100g. Sedangkan pada sistem pertanian konvensional (Petani) dan Semi

    organik kandungan P meningkat kembali pada pengamatan 25 HST masing-masing

    menjadi 55 mg/100g dan selanjutnya menurun kemblai pada pengaatan 45 HST masing-

    masing menjadi 51 dann 54 mg/100g. Tidak demiakan halnya dengan perlakuan Kontrol,

    kandungan P terekstrak HCl 25% terus menurun sampai dengan pengamatan 45 HST dari

    61 mg/100g sebelum tanaman menjadi 55 mg/100g pada pengamatan 45 HST.

    Penurunan tersebut sangat logis karena tidak ada pemberian P sehingga P yang tersedia

    dalam tanah akan akan terambil oleh tanaman.

    Data kadar P tersedia terekstrak Bray 1 disajikan pada Gambar 3. Hasil analisis

    menunjukkan bahwa kadar P tersedia polanya brervariasi, secara umum kandungan

    tersedia menurun pada 7 HST dibandingkan sebelum tanam, selanjutnya meningkat

    kembali pada 25 HST, peningkatan tertinggi terjadi pada sistem pertanian SRI dari 3,77

    ppm menjadi 7,74 ppm, sedangkan pada PTT peningkatannya relatif lebih rendah yaitu

    dari 4,95 ppm menjadi 5,75 ppm. Pada pengamatan 45 HST, kandungan P tersedia

  • 19

    0

    10

    20

    30

    40

    50

    60

    70

    0 7 25 45Waktu pengamatan (HST)

    P- te

    reks

    trak

    HC

    l 25%

    (me/

    100g

    ) Kontrol Petani PTT SRI Semi Org

    0123456789

    0 7 25 45

    Waktu pengamatan (HST)

    P- te

    reks

    trak

    Bra

    y 1

    (ppm

    )

    Kontrol Petani PTT SRI Semi Org

    0

    5

    10

    15

    20

    25

    30

    0 7 25 45Waktu pengamatan (HST)

    K- t

    erek

    stra

    k H

    Cl 2

    5% (m

    e/10

    0g)

    Kontrol Petani PTT SRI Semi Org

    00.10.20.30.40.50.60.70.80.9

    0 7 25 45

    Waktu pengamatan (HST)

    K-d

    d (m

    e/10

    0g)

    Kontrol Petani PTT SRI Semi Org

    cenderung meningkat kembali, kecuali pada sistem pertanian SRI terjadi penurunan yang

    cukup signifikan dari 7,74 ppm menjadi 4,20 ppm, sedangak pada PTT penurunanya

    relatif lebih kecil dibandingkan dengan SRI yaitu dari 5,75 mg/100g menjadi 4,40 ppm

    pada pengamatan 45 HST.

    Gambar 3. Kadar P teresktrak HCl 25% dan Bray 1 tanah pada pengamatan sebelum dan setelah pemupukan umur 7, 25 dan 45 HST

    5.3.4. Dinamika hara K

    Kadar P-tereksatrak HCl 25% dan K-dd tanah tereksatrak NH4OAc. 1 N pH 7 sebelum

    tanam mmasing-masing disajikan pada Gambar 4.

    Gambar 4. Kadar K teresktrak HCl 25% dan K-dd terekstrak NH4OAc, 1 N pH 7 tanah

    sebelum dan setelah pemupukan berumur 7, 25 dan 45 HST

    Pada hari ke 7 kandungan K terekstrak HCl 25% terjadi peningkatan pada semua sistem

    pertanian tanpa terkecuali Kontrol. Kemudian pada 25 HST terjadi peningkatan pada

    sistem pertanian PTT mencapai 23 mg/100g, dan SRI serta Semi organik masing-masing

    24 mg/100g. Sistem konvensional (Petani) relatif melandai, sedangkan Kotrol terjadi

    penurunan yang cukup signifikan menjadi 17 mg/100g. Selanjutnya pada pengamatan

    hari ke 45 HST kandungan K terekstrak HCl 25% mengalami penurun pada semua sistem

  • 20

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    12.00

    0 7 25 45Waktu pengamatan (HST)

    Ca-

    dd (m

    e/10

    0g)

    Kontrol Petani PTT SRI Semi Org

    00.5

    11.5

    22.5

    33.5

    44.5

    0 7 25 45

    Waktu pengamatan (HST)

    Mg-

    dd (m

    e/10

    0g)

    Kontrol Petani PTT SRI Semi Org

    pertanian terutama cukup besar pada sistem konvensional dari 21 menjadi 16 mg/100g

    hampir mendekati Kontrol 15 mg/100g, kecuali pada sistem pertanian SRI

    penurunannaya relatif sangat kecil sekali dari 24 mg/100g menjadi 23 mg/100g dan semi

    organik dari 24 mg/100g menjadi 21 mg/100g.

    Demikian pula dengan K-dd, pada pengamatan 7 HST terjadi peningkatan pada hampir

    semua sistem pertanian tertinggi pada sistem pertnian Semi organik mencapai 0,79

    me/100g dan terendah pada perlakuan Kontrol hanya 0,46 me/100g. Kemudian pada

    pengamatan 25 HST kandungan K-dd menurun sampai dengan pengamatan 45 HST,

    penurunan terendah terjadi pada sistem konvesional menjadi 0,36 me/100g, kecuali pada

    sistem pertanain SRI terjadi peningkatan kembali kadar K-dd dari 0,56 pada 25 HST

    menjadi 0,71 ppm pada 45 HST. Sedangkan pada Kontrol penurunan K-dd relatif sangat

    kecil sekali yaitu bebesar 1 me/100g dari 44 me/100g menjadi 43 me/100g.

    5.3.5. Dinamikan hara Ca dan Mg

    Dianmika hara Ca dan Md dalam tanah pada pengamatan 7, 25 dan 45 HST disajikan

    pada Gambar 5. Hasil analsisi menunjukan bahwa kandungan Ca-dd terjadi penurunan

    pada pengamatan 7 HST terendah terutama pada sistem pertanian Semi organi dari

    10,27 me/100 g menjadi8,34 me/100g dan penurunan terendah terjadi pada perlakuan

    Kontrol dari 10,19 m e/100g menjadi 9,08 me/100g. Sedangkan pada 25 HST kadar Ca-

    dd tanah sistem konvesional, PPT dan semi organik relatif konstan, keculai

    padaperlakuan Kotrol relatif sedikit menurun. Selanjutnya pada pengamatan 45 HST

    kandungan Ca-dd tanah pada semua sistem pertanian menurun, penurunan tertinggi

    terjadi pada sistem pertanian Konvensional yaitu dari 9,14 me/100g menjadi 7,09

    me/100g dan PTT dari 9,26 m3/100g menjadi 7,22 me/100g, sedangkan penurunan

    terndah terjadi pada sistem pertanian SRI yaitu dari 8,59 me/100g menjadi 7,30 me/100g.

    Gambar 5. Kadar Ca-dd dan Mg-dd teresktrak NH4OAc, 1 N pH 7 tanah sebelum dan

    setelah pemupukan umur 7, 25 dan 45 HST

  • 21

    0

    50

    100

    150

    200

    250

    0 7 25 45Waktu pengamatan (HST)

    Fe te

    reks

    trak

    DTP

    A (p

    pm)

    Kontrol Petani PTT SRI Semi Org

    020406080

    100120140160180

    0 7 25 45

    Waktu pengamatan (HST)

    Mn

    tere

    kstr

    ak D

    TPA

    (ppm

    )

    Kontrol Petani PTT SRI Semi Org

    Kandungan Mg-dd dalam tanah berfluktuasi, hasil analisis menunjukkan bahwa pada 7

    HST kandungan Mg-dd dalam tanah mengalami penurunan pada semua sistem pertanian

    terendah pada sistem pertanain Semi organik dan tertinggi pada PTT, selanjutnya pada

    25 HST kandungan Mg-dd meningkat kebali. Peningkatkan tertinggi terjadi pada Semi

    organik dan terendah pada perlakuan Kontrol. Kemudian pada pengamatan 45 HST

    kandungan Mg-dd tanah menurun dimana penurunan tertinggi terjadi pada PTT yaitu dari

    3,76 me/100g menjadi 2,74 me/100g dan Semi organik dari 3,95 me/100g menjadi 2,82

    me/100g; selanjutnya penurunan terendah diikuti oleh perlkauan Kontrol dari 3,50

    me/100g menjadi 2,90 me/100g.

    5.3.6. Dinamikan Hara mikro Fe, Mn, Cu dan Zn

    Kandungan hara Fe dan Mn dalam tanah pada pengamatan sebelum tanam, 7, 25 dan 45

    HST disajikan pada Gambar 6. Hasil analisis menunjukan kandungan Fe dan Mn dalam

    tanah memiliki pola yang relatif sama pada semua sistem pertanian dan Kontrol.

    Kandungan Fe tanah terjadi penurunan pada 7 HST kemudian cenderung meningkat

    pada pengamatan 25 HST. Kemudian pada pengamatan 45 HST kadar Fe dalam tanah

    mengalami penigkatan kembali realtif mendekati semula. Penurunan Fe relatif lebih tinggi

    terjadi pada sistem Konvensional dan Semi organik masing-masing menjadi 180 ppm,

    sedangkan pada sistem SRI kandungan Fe cenderung meningkat dari 189 ppm sebelum

    tanaman menjadi 201 ppm.

    Gambar 6. Kandungan Fe dan Mn tersktrak DTPA pada pengamatan sebelum dan setelah pemupukan umur 7, 25 dan 45 HST

    Kandungan hara Mn dalam tanah menujukan pola yang relatif sama pada semua sistem

    pertanian, penurunan secara tajam terjadi pada pengamatan 7 HST dan terus menurun

    sampai pada pengamatan 25 HST, kecuali pada sistem pertanian PTT kandungan Mn

  • 22

    0

    1

    2

    3

    4

    5

    6

    7

    0 7 25 45Waktu pengamatan (HST)

    Cu

    tere

    kstr

    ak D

    TPA

    (ppm

    )

    Kontrol Petani PTT SRI Semi Org

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 7 25 45

    Waktu pengamatan (HST)

    Zn te

    reks

    trak

    DTP

    A (p

    pm)

    Kontrol Petani PTT SRI Semi Org

    dalam tanah realtif konstan. Selanjutnya pada pengamatann 45 HST kandungan Mn

    meningkat pada semua sistem pertanian Peningkatan teringgi terjadi pada sistem

    pertanian Semi organik dari 37 ppm pada 25 HST menjadi 130 ppm pada 45 HST

    kemudian diikuti perlakuan Kontrol dari 34 ppm menjadi 128 ppm.

    Gambar 7. Kandungan Cu dan Zn tersktrak DTPA pada pengamatan sebelum dan

    setelah pemupukan umur 7, 25 dan 45 HST

    Dinamika hara Cu dalam tanah secara umum menujukkan pola yang sama dengan Zn,

    Secara umum kandungan Cu dan Zn dalam tanah cenderung meningkat pada

    pengamatan 7 HST selanjutnya menurun pada pengamatan 25 HST dan selanjutnya

    meningkat kembali pada pengamatan 45 HST. Kecuali pada sistem pertnian PTT dan SRI

    kandungan hara Cu cenderung terus menurun masing-masing mencapai 3,28 ppm pada

    pengamatan 45 HST. Kandungan Cu dlam tanah pada pengamatan 45 HST tertinggi

    pada perlakuan kontrol dan Semi organik masing-masing mencapai 4,15 ppm dan 4,09

    ppm. Sedangkan kandungan Zn tertinggi pada pengamatan 45 HST diperoleh pada

    sperlakuan Kontrol diikuti SRI dan PTT masing-masing 2,83 ppm, 2,52 ppm dan 2,50

    ppm.

    5.4. Populasi Aktinomisetes, Fungi, Nitrobacter dan Nitrosomonas

    Hasil penghitungan populasi kelompok aktinomisetes pada tanah dengan 5 perlakuan

    budidaya padi sawah menunjukan bahwa perlakuan PTT memiliki rata-rata populasi

    aktinomisetes yang tertinggi dibanding perlakuan yang lain yaitu 1,36.105 cfu/g tanah pada

    pengamatan sebelum tanam, kemudian meningkat menjadi 2,0.105 cfu/g tanah pada

    pengamatan 7 HST. Perlakuan konvensional dan SRI menunjukan populasi aktinomisetes

    yang meningkat berturut-turut yaitu N0 3.104 dan 4,3.104 cfu/g tanah pada pengamatan

    sebelum tanam menjadi 1,3.105 dan 1,6.105 cfu/g tanah pada pengamatan 7 HST.

    Perlakuan Semi organik menunjukan populasi aktinomisetes yang tidak mengalami

  • 23

    Fungi

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 7

    Waktu pengamatan (HST)

    Popu

    lasi

    (*10

    4 cfu

    /g ta

    nah)

    Kontrol Petani PTT SRI Semi orgAktinomiset

    0

    5

    10

    15

    20

    25

    0 7

    Waktu pengamatan (HST)

    Popu

    lasi

    (*10

    4 cfu

    /g

    tana

    h)

    Kontrol Petani PTT SRI Semi org

    peningkatan pada pengamatan 7 HST. Sedangkan pada control populasi aktinomisetes

    pada pengamatan 7 HST mengalami penuruan dari 6.104 cfu/g tanah menjadi 3.104 cfu/g

    tanah. Sebagian besar aktinomisetes yang ditemukan adalah dari genus Streptomyces

    sp. Sebagian besar genus ini mampu menghasilkan fitohormon dan senyawa antipatogen

    sehingga mampu menekan pathogen tular tanah seperti Rhizoctonia sp, Schlerotium sp

    dan Fusarium sp. Streptomyces sp berpotensi untuk dimnafaatkan sebagai agen hayati

    pengendali penyakit (Sahara and Nehran, 2011). Aktinomiset dari genus Micromonospora

    sp, Streptomyces sp and Nocardiodes sp (Abdulla &El-Shatoury, 2006) berpotensi

    sebagai perombak bahan organik seperti jerami padi.

    Tabel 3. Rata-rata populasi mikroorganisme Aktinomiset, Fungi, Nitrobacter dan Nitrosomonas sebelum dan setelah pemupukan N ke satu

    Perlakuan

    Rata-rata populasi (*104 cfu/gram tanah) Aktinomiset Fungi Nitrobacter Nitrosomonas N0 N1 N0 N1 N0 N1 N0 N1

    Kontrol 6 3 26 13 70,6 370 56,3 446Konvensional 3 13 28,6 43 123,3 643 145,3 570PTT 13,6 20 153,3 133 275 1743 403,6 1.906SRI 4,3 16 9 26 340 483 186,6 640Semi organik 10 10 9,3 30 344,3 1456 82,3 513

    Gambar 8. Rata-rata populasi Aktinomisetes dan Fungi dalam tanah pada berbagai

    sistem pertanian pada pengamatan 0 dan 7 HST Populasi fungi tertinggi terdapat pada perlakuan PTT baik pengamatan 7 HST maupun 7

    HST yaitu 1,53,3.106 dan 1,33. 106 cfu/g tanah, sedangkan terendah pada SRI yaitu

    9,0.104 dan 2,6.105 cfu/g tanah. Secara jumlah, perlakuan PTT dan Kontrol mengalami

    penurunan populasi pada pengamatan 7 HST, untuk PTT meskipun mengalami

    penurunan tetapi jumlahnya tetap tertinggi dibanding perlakuan yang lainnya. Fungi tanah

  • 24

    Nitrobacter

    0200400600800

    100012001400160018002000

    0 7

    Waktu pengamatan (HST)

    Popu

    lasi

    (*10

    4 cfu

    /g ta

    nah)

    Kontrol Petani PTT SRI Semi orgNitrosomonas

    0

    500

    1000

    1500

    2000

    2500

    0 7

    Waktu pengamatan (HST)

    Popu

    lasi

    (*10

    4 cfu

    /g ta

    nah)

    Kontrol Petani PTT SRI Semi org

    berfungsi antara lain sebagai perombak bahan organic, penghasil fitohormon dan agen

    hayati pengendali penyakit. Fungi yang dijumpai antara lain Trichoderma sp dan

    Penicilium sp. Fungi tanah juga mempunyai peran untuk meningkatkan ketahanan

    tanaman terhadap serangan hama dan penyakit serta kekeringan dan penguat agregat

    tanah (Jenskin, 2005). Fungi juga menghasilkan senyawa hidrofobik yang mempengaruhi

    sifat-sifat infiltrasi air tanah (Ritz and Young, 2004).

    Hasil penghitungan populasi Nitrosomas dan Nitrobacter pada semua perlakuan

    menunjukan peningkatan populasi pada saat pengamatan 7 HST dengan populasi

    tertinggi pada perlakuan PTT. Kedua bakteri tersebut berperan dalam proses nitrifikasi di

    dalam tanah.

    Gambar 9. Rata-rata populasi Nitrobacter dan Nitrosomonas dalam tanah pada berbagai sistem pertanian pada pengamatan 0 dan 7 HST

    Pada pengamatan 7 HST, jumlah populasi Nitrobacter tertinggi sampai terendah berturut-

    turut adalah perlakuan Semi organik 3,443.106 cfu/g tanah, SRI 3,40.106 cfu/g tanah, PTT

    2,75.106 cfu/g tanah, Konvensional 1,233.106 cfu/g tanah dan Kontrol 7,06.105 cfu/g

    tanah. Sedangkan pada N1 jumlah populasi Nitrobacter dari yang tertinggi sampai

    terendah adalah PTT 1,743.107 cfu/g tanah, Semi organik 1,456.107 cfu/g tanah,

    Konvensional 6,43.106 cfu/g tanah, SRI 4,83.106 cfu/g tanah dan Kontrol 3,70.106 cfu/g

    tanah. Populasi Nitrosomonas tertinggi pada N1 adalah perlakuan PTT yaitu 1,906.107

    cfu/g tanah. Meskipun peningkatan pemenuhan kebutuhan nitrogen tanaman melalui

    aplikasi pupuk anorganik seperti urea, penambatan nitrogen secara biologi, proses

    reduksi nitrogen atmosfer menjadi ammonia oleh mikroba hampir merupakan hal yang

    sangat penting dalam pemeliharaan status kesuburan tanah (Postgate, 1982).

    Nitrosomonas mengoksidasi ammonia menjadi nitrit dan Nitrobacter mengoksidasi nitrit

    menjadi nitrat.

  • 25

    5.5. Pertumbuhan Tanaman Tinggi tanaman Data pertumbuhan tinggi tanaman padi umur 21- 75 HST sebagai respon terhadap

    pemberian pupuk organik dan anorganik pada berbagai sistem pertanian Konvensional,

    PTT, SRI dan Semi organik disajikan pada Tabel 4. Hasil analisis statistik menunjukkan

    bahwa sampaiumur 60 hari setelah tanam (HST) perlakuan berbagai sistem pertanian

    tidak berbeda nyata terhadap tinggi tanaman padi,akan tetapi berbeda nyata

    dibandingkan dengan kontrol. Kecuali pada umur 60 HST sistem pertanian SRI secara

    nyata menghasilkan pertumbuhan yang lebih rendah dibandingkan sistem konvensional

    (Petani), PTT dan Semi organik tetapi tidak berbeda nyata dibandingkan dengan kontrol.

    Sedangkan pada umur 75 HST, Sistem pertanian PTT secaranyata menghasilkan

    pertumbuhan lebih tinggi dibandingkan dengan Petani, sistem pertanian SRI dan kontrol

    akan tetapi tidak berbeda nyata dibandingkan dengan sistem pertanian Semi organik.

    Secara kuantitatif sistem pertanian PTT menghasilkan pertumbuhan lebih tinggi

    dibandingkan dengan perlakuan lainya yaitu mencapai 94,22 cm selanjutnya diikuti oleh

    sistem pertanian Semi organik (94,16 cm) dan sistem konvensional (Petani) yaitu 88,88

    cm.

    Tabel. 4. Pertumbuhan tinggi tanaman dan jumlah anakan padi umur 21- 75 HST pada berbagai sistem pertanian di Cianjur

    No Perlakuan Tinggi tanaman (cm) 21 HST 30 HST 45 HST 60 HST 75 HST 1 Kontrol 27,00 a 33,40 b 45,44 b 68,04 b 82,16 c 2 Petani 29,92 a 36,28 a 53,16 a 75,34 a 88,88 b 3 PTT 28,96 a 34,96 ab 56,20 a 77,12 a 94,22 a 4 SRI 28,92 a 34,32 ab 54,14 a 67,28 b 86,92 bc 5 Semi Organik 28,36 a 34,44 ab 54,08 a 74,36 a 94,16 a

    Dengan demikian dapat dinyatkanan bahwa sistem pertanian PTT yang

    mengkombinasikan pupuk anorganik dengan jerami yang dikomposkan 5 t/ha

    memberikan respon yang sama terhadap tinggi tanaman dibandingkan dengan sistem

    pertanian Semi organik umur 75 HST. Tetapi secara nayat menghasilkan pertumbuhan

    tanaman nyata lebih tinggi dibandingkan dengan SRI.

  • 26

    Gambar 10. Keragaan pertumbuhan tanamam padi varitas Impari 13 umur 65 HST pada

    berbagai sistem pertanian pada lokasi penelitian di Cianjur, Jawa Barat

    Jumlah anakan Data jumlah anakan tanaman padi umur 21 75 HST sebagai respon pemebrian pupuk

    organik dan organik padaberbagai sistem pertanian konvensional, PTT, SRI dan Semi

    organik disajikan pada Tabel 5. Hasil uji statistik menunjukkan sampai umur 45 HST

    pengaruh pengelolaan hara pada berbagai sistem pertanian tidak berbeda nyata terhadap

    jumlah anakan, kecuali pada umur 30 HST sistem pertanian organik secara nyata

    menghasilkan jumlah anakan yang lebih rendah dibandingkan dengan Petani. Sedangkan

    pada umur 60 HST sistem pertanian SRI secara nyata menghasilkan jumlah anakan yang

    lebih tinggi dibandingkan dengan sistem pertanian konvensional (Petani) tetapi

    tidakberbeda nyata dibandingan dengan sistem pertanian Semi organik. Secara kunatitatif

    sistem pertanian SRI menghasilkan jumlah anakan yang lebih banyak (19,4 rumpun)

    dibandingkan dengan sistem pertanian lainnya. Kemudian pada umur 75 HST, sistem

    pertanian PTT tidak berbeda nyata dibandingkan dengan sistem konvensional, dan SRI

    tetapi berbeda nyata menghasilkan jumlah anakan yang lebih sedikit dibandingkan

    dengan sistem pertanian semi organik dan secara kuantitatif sistem pertanian Semi

  • 27

    organik menghasilkan jumlah anakan terbanyak mencapai 19,6 rumpun selanjutnya

    diidkuti oleh SRI dan PTT. Dengan demikian pada lokasi di Cianjur, pemberian bahan

    organik (pupuk kompos jerami dan pupuk kandang) yang dikombinasikan dengan pupuk

    organik menghasilkan jumlah anakan relatif lebih banyak.

    Tabel. 5. Jumlah anakan padi umur 21- 75 HST pada berbagai sistem pertanian di Cianjur

    No Perlakuan Jumlah anakan (rumpun) 21 HST 30 HST 45 HST 60 HST 75 HST 1 Kontrol 4,8 a 7,0 c 10,0 b 14,0 c 12,2 d 2 Petani 5,4 a 9,2 a 16,6 a 18,0 b 17,0 c 3 PTT 5,4 a 8,8 ab 16,6a 18,2 b 18,0 bc 4 SRI 4,4 a 9,0 ab 18,2 a 19,4 a 18,6 ab 5 Semi Organik 5,0 a 7,8 bc 16,8 a 18,6 ab 19,6 a

  • 28

    VI. KESIMPULAN DAN SARAN

    6.1. Kesimpulan

    1. Penggunaan pupuk organik dalam sistem pertanian SRI dan Semi organik dapat

    meningkatkan C-organik, P dan K-potenisal, P-tersedia dan K dapat ditukar serta

    unsur hara mikro Fe, Mn, Cu dan Zn tanah sawah pada pengamatan 45 hari setelah

    tanam.

    2. Pemberian bahan organik yang dikombinasikan dengan pupuk anorganik dalam sistem

    pertanian PTT dapat meningkatkan populasi Aktinomisetes, Fungi dan Nitrobacter,

    yang lebih tinggi dibandingkan sistem pertanian lainya. Sedangkan populasi

    nitrosomonas tertinggi diperoleh pada sistem pertanian PTT dan Semi organik.

    3. Pengelolaan hara dengan cara pemberian pupuk organik tinggi pada sistem pertanian

    SRI setara dengan sistem pertanian PTT pada Inceptisol Cianjur yang ditunjukkan

    oleh jumlah anakan yang tidak berbeda nyata pada umur 75 hari setelah tanam.

    .

    6.2. Saran Pengembangan sistem pertanian SRI dengan menggunakan bahan organik dosis tinggi

    sebaiknya diarahkan pada areal lahan sawah dengan tingkat kesuburan tinggi dengan

    bahan induk volkan. Atau mengembangkan sistem pertanian yang mengkombinasikan

    pupuk anorganik dan organik secara berimbang sesuai dengan status hara tanah.

  • 29

    DAFTAR PUSTAKA __________ . 2009. Indonesia siap ekspor satu juta ton beras. Antara, 7 Januari 2009.

    BPTP Jawa Barat. 2004. Petunjuk teknis pengelolaan tanaman dan sumberdaya terpadu (PTT) padi. Badan Litbang Pertanian. Deptan.

    Fisher, K. 1998. IRRIs assessment of the System of Rice Intensification (SRI) in Madagaskar. Paper. International Rice Research Institute. Los Banos. Philippine.

    Las, I., A.K. Makarim, H.M. Toha, dan A. Gani. 2002. Panduan teknis pengelolaan tanaman dan sumber daya terpadu padi sawah irigasi. Badan Litbang Pertanian.

    Makarim, A.K., P. Setyanto, and A.M. Fagi. 1996. Suppressing methane emission from rainfed lowland rice field at Jakenan, Central Java. Proceedings of the International Symposium on Maximizing Sustainable Rice Yields through Improved Soil and Environmental Management.

    Makarim, A.K, S. Abdurachman, dan S. Purba. 2000. Efisiensi input tanaman pangan melalui prescription farming. Dalam: A.K. Makarim dkk. (Eds). Tonggak Kemajuan Penelitian Tanaman Pangan. Konsep dan strategi Peningkatan Produksi Pangan. Puslitbang Tanaman Pangan, Bogor.

    Makarim, A.K., dan Suhartatik, E. 2006. Budi daya padi dengan masukan in situ menuju perpadian masa depan. Iptek Tanaman Pangan, No. 1.

    Nguyen Van Bo, E. Muter, Bui huy Hien. 2002. Balanced fertilization for better crops in Vietnam. Prosiding Lokakarya Pemupukan Berimbang. Lembaga Pupuk Indonesia. Jakarta, 25 Juni 2002.

    Portch, S., and Ji-yun Jin. 2002. Balanced Fertilizer use in China. Prosiding Lokakarya Pemupukan Berimbang. Lembaga Pupuk Indonesia. Jakarta, 25 Juni 2002.

    Pusat Penelitian dan Pengembangan Tanaman Pangan. 2006. Tanya jawab PTT (Pengelolaan Tanaman Terpadu). Pers. Comm.

    Rajesh, V., and K. Thananuthan. 2003. Effect of seeding age, number and spacing on yield and nutrient uptake of tradisional kambanchamba rice. Madras Agric. J. 90:47-49.

    Roy, R.N., A. Finck, G.J. Blair, H.L.S. Tandon. 2006. Plant Nutrition for Food Security: A guide for integrated nutrient management. FAO-Fertilizer and Plant Nutriton Bulletin. Rome.

    Sumarno, I.G. Ismail, dan S. Partohardjono. 2000. CONSEP usahatani ramah lingkungan. Dalam: Makarim dkk. (Eds). Prosiding Simposium Penelitian Tanaman Pangan IV. Tonggak Kemajuan Teknologi Produksi Tanaman Pangan. Konsep dan Strategis Peningkatan Produksi Pangan. Pusat Penelitian dan Pengembangan Tanaman Pangan. Bogor.

    Sumardi, Kasli, M. Kasim, A. Syarif, dan N. Akhir. 2007. Jurnal Akta Agrosia. 10 (1): 65-71.

    Syam, M. 2006. Kontroversi System of Rice Intensification (SRI) di Indonesia. Iptek Tanaman Pangan. No. 1.

    Uphoff, N. 2008. The System of Rice Intensification (SRI): Making land, labour, water and capital more productive for meeting food needs. One day seminar on SRI. Fak. Pertanian, IPB. Bogor.

  • 30

    Vijayakumar, M., S. Ramesh, B. Chandrasekaran, and T.M. Thiyagarajan. 2006. Effect of system of rice intensification (SRI) practices on yield attributes,yield and water productivity of rice (Oryza sative l.)

    Wihardjaka, A., P. Setyanto, dan A.K. Makarim. 1999. Pengaruh penggunaan bahan organik terhadap hasil padi dan emisi gas metan pada lahan sawah. Dalam: S. Partohardjono, J. Soejitno, dan Hermanto (Eds). Menuju Sistem Produksi Padi Berwawasan Lingkungan. Risalah Seminar hasil Penelitian Emisi Gas Rumah Kaca dan Peningkatan Produktivitas Padi di Lahan Sawah. Puslitbang Tanaman Pangan. Bogor.

    Zaini, Z., Diah, dan M. Syam. 2004. Petunjuk lapang pengelolaan tanaman terpadu padi sawah. BP2TP-BPTP Sumatera Utara, BPTP Nusa Tenggara Barat, BP Tanaman Padi, IRRI.