BERITA KEGIATAN RISTEK

22
BERITA KEGIATAN RISTEK Thursday, July 23, 2009 Atropatena : Teknologi baru untuk Memprediksi Gempa bumi Pada hari Rabu, 22 Juli 2009, bertempat di lt. 23, Edi Prihantoro, Asdep Urusan Analis Kebutuhan Ilmu Pengetahuan dan Teknologi, mewakili Deputi Bidang Pendayagunaan dan Pemasyarakatan Iptek menerima kunjungan, Elchin Khalilov, Vice President of International Academy of Science H & E Austria, Innsbruck sekaligus General Director for Global Network of Forecasting the Earthquakes , yang memperkenalkan kehebatan teknologi baru yang disebut dengan ATROPATENA yang mampu memprediksi gempa. Dalam pertemuan tersebut Elchin Khalilov, memaparkan secara teknis tentang kehebatan teknologi temuannya yang diberi nama ATROPATENA yang mampu memberikan signal akan terjadinya gempabumi. Seperti diketahui dan disepakati, bahwa sampai saat ini belum ada satupun teknologi di dunia yang berani meng “klaim†sebagai temuan yang mampu mendeteksi akan adanya

Transcript of BERITA KEGIATAN RISTEK

Page 1: BERITA KEGIATAN RISTEK

BERITA KEGIATAN RISTEK

Thursday, July 23, 2009Atropatena : Teknologi baru untuk Memprediksi Gempa bumi

       

Pada hari Rabu, 22 Juli 2009, bertempat di lt. 23, Edi Prihantoro, Asdep Urusan Analis Kebutuhan Ilmu Pengetahuan dan Teknologi, mewakili Deputi Bidang Pendayagunaan dan Pemasyarakatan Iptek menerima kunjungan, Elchin Khalilov, Vice President of International Academy of Science H & E Austria, Innsbruck sekaligus General Director for Global Network of Forecasting the Earthquakes, yang  memperkenalkan kehebatan teknologi baru yang disebut dengan ATROPATENA yang mampu memprediksi gempa.

Dalam pertemuan tersebut Elchin Khalilov, memaparkan secara teknis tentang kehebatan teknologi temuannya yang diberi nama ATROPATENA yang mampu memberikan signal akan terjadinya gempabumi. Seperti diketahui dan disepakati, bahwa  sampai saat ini  belum ada satupun teknologi di dunia yang berani meng “klaim†sebagaiÂ�   temuan yang mampu mendeteksi akan adanya gempa, termasuk negara maju sekalipun seperti Jepang, USA  dan lain sebagainya.

Pemaparannnya sangat teknis dalam bahasa Azerbaijan yang diterjemahkan ke dalam bahasa inggris. Secara garis besar disampaikan bahwa setiap gempa bumi kuat yang terjadi selalu didahului dengan anomali gravitasi. Ini terjadi karena tingkat stress dari zona pusat gempa yang mencapai kondisi kritis  menimbulkan adanya tekanan dan kompaksi batuan, atau regangan dan pengurangan densitas batuan. Selama stress mencapai kondisi kritis, massa mengalami retakan di sekitar zona pusat gempa dan menyebabkan adanya patahan pada seluruh batuan tersebut.

Page 2: BERITA KEGIATAN RISTEK

Proses-proses deformasi yang timbul pada zona pusat gempa sebelum terjadi gempa  akan menimbulkan zona-zona dengan densitas tinggi dan rendah, sehingga akan menimbulkan perubahan medan gravitasi. Disamping itu, adanya stress dalam kondisi kritis di zona pusat gempa ini dapat menimbulkan pergerakan fluida pada lapisan-lapisan bumi, yang sering dijumpai sebagai kenaikan  dan penurunan muka air tanah.

Sampai saat ini, dikarenakan belum adanya alat yang mampu mendeteksi gempa bumi jangka pendek (biasanya panjang yang diperkirakan puluhan bahkan ratusan tahun kedepan), maka Prediksi Gempa Bumi Jangka Pendek masih didekati dengan hal-hal seperti: 1.perilaku binatang yang tidak normal (misal kuda, anjing, gajah, ikan, kelelawar, dll.); 2. melihat gejala alam ( Awan gempa, Variasi gelombang elektromagnetik, Variasi muka air tanah, Variasi konsentrasi gas radon dalam bumi, Variasi medan listrik, dan Variasi medan gravitasi). Hal - hal  ini dipelajari secara mendalam oleh Khalilov.

Disampaikan pula, ATROPATENA mencatat perubahan medan gravitasi yang muncul menjelang terjadinya gempa bumi dengan menggunakan prinsip dasar Cawan Cavendish, yaitu sebuah percobaan mengenai gaya tarik menarik antar benda yang memiliki massa. Teori ini bahkan sudah dianggap “kuno†dan �tidak pernah terpikirkan oleh ahli fisika bumi di Barat untuk dikaitkan dengan gempa bumi.

Kejadian gempa bahkan (menurut data grafis yang dipresentasikan tentang anomali gravitasi) dapat diperkirakan lebih kurang 1 minggu sebelumnya. Data variasi gravitasi yang dipresentasikan menunjukkannya seperti untuk  gempa di Taiwan 15 Oktober 2004, Pakistan 14 Oktober 2005, termasuk gempa di jogja 27 Mei 2006 dan Samudera India tgl 17 Juli (Pangandaran). Alat ini mencatat variasi gravitasi yang sangat mencolok. 

Disamping masih dalam tataran riset, pemantauan kejadian-kejadian gempa saat ini masih belum bisa menentukan lokasi pusat gempa karena stasiun monitor hanya ada satu di Baku, Azerbaijan. Sekarang sedang dipasang di Islamabad dan bulan depan di Jogja untuk mendapatkan bentuk segitiga yang nantinya, berdasarkan perhitungan trigonometri, lokasi pusat gempa akan bisa diperkirakan. Kalau substansi dari presentasi ini benar adanya, maka lompatan besar kemajuan teknologi akan berhasil dilakukan.

Kunjungan Elchin Khalilov, Vice President of International Academy of Science

Page 3: BERITA KEGIATAN RISTEK

H & E Austria, Innsbruck sekaligusGeneral Director for Global Network of Forecasting the Earthquakes selama kurang lebih 2 jam, didampingi oleh aparat Pemda Jogjakarta, Dinas PU Jogjakarta dan Dosen UII Jogjakarta. (asdep-kipt/humasristek)

Page 4: BERITA KEGIATAN RISTEK

ATROPATENA, Teknologi Baru Untuk Prediksi Gempa Jan.04, 2010 in TEKNOLOGI BAHAN

(sumber : Majalah Techno Konstruksi,Edisi 18,Tahun 11,Oktober 2009)Atropatena mampu mencatat perubahan medan gravitasi yang muncul menjelang terjadinya gempa bumi, dengan menggunakan prinsip dasar ‘Cawan Cavendish’. Dengan anomaly gravitasi, dapat diperkirakan lebih kurang 1 minggu sebelum terjadinya gempa. Kalau substansi dari presentasi ini benar adanya, maka lompatan besar kemajuan teknologi di bidang gempa, akan bisa diwujudkan.Gempa bumi yang sering terjadi di Indonesia, merupakan pelajaran berharga bagi masyarakat, agar senantiasa meningkatkan kewaspadaannya, terutama bagi warga yang tinggal di wilayah rawan gempa. Kewaspadaan dan kesiapan mutlak diperlukan, sebagai upaya penyelamatan diri, jika bencana alam tersebut sewaktu-waktu terjadi. Karena, gempa hingga kini belum bisa diprediksi, oleh siapa pun, dimana dan kapan akan terjadi. Sebagai bentuk kewaspadaan untuk persiapan dini, salah satunya dengan memanfaatkan teknologi pendeteksi gempa, yang dapat dimanfaatkan untuk mengetahui dengan cepat sebelum terjadi gempa, sehingga sangat efektif untuk penyelamatan diri dan meminimalisasi korban gempa. Dengan teknologi tersebut, mampu memberikan peringatan pada ‘detik-detik berharga’ bagi masyarakat, untuk bereaksi dengan cepat dan tepat, guna mengambil langkah-langkah perlindungan yang diperlukan.

Terkait dengan masalah teknologi prediksi gempa tersebut, Prof.dr.Elchin Khalilov – VicePresident of International

Page 5: BERITA KEGIATAN RISTEK

Academy of Science H&E Austria, Innsbruck, sekaligus General Director for Global Network of Forecasting the Earth-quakes, mempresentasikan kehebatan teknologi terbaru yang mampu memprediksi akan terjadinya suatu gempa bumi, yang disebut ‘Atropatena’.Dalam presentasinya tersebut, Elchin Khalilov memaparkan secara teknis mengenai kehebatan teknologi temuannya. Kendati diakui, bahwa hingga kini belum ada satu pun teknologi di dunia yang berani mengklaim sebagai temuan yang mampu mendeteksi akan adanya gempa, termasuk negara maju sekalipun, seperti Jepang, Amerika Serikat dan yang lainnya. Namun demikian, ujarnya, teknologi temuannya yang diberi nama ‘Atropatena’ ini mampu memberikan signal akan terjadinya gempa bumi.ANOMALI GRAVITASIDalam paparannya yang sangat teknis dalam bahasa Azerbaijan yang diterjemahkan ke dalam bahasa inggris tersebut, secara garis besar dijelaskan, bahwa setiap terjadi gempa bumi kuat, selalu diawali dengan anomaly gravitasi. Ini terjadi, karena pengaruh tingkat stress dari zona pusat gempa yang mencapai kondisi kritis, menimbulakn adanya suatu tekanan dan kompaksi(tumbukan) batuan, atau regangan dan pengurangan densitas batuan. Selam stress mnecapai kondisi kritis, massa akan mengalami keretakan di sekitar zona pusat gempa, dan menyebabkan adanya patahan pada seluruh batuan tersebut.Proses-proses deformasi yang timbul pada zona pusat gempa sebelum terjadi gempa, akan menimbulkan zona-zona dengan densitas tinggi dan rendah, sehingga akan menimbulakn perubahan medan gravitasi. Di samping itu, adanya stress dalam kondisi kritis di zona pusat gempa ini, dapat menimbulkan pergerakan fluida pada lapisan-lapisan bumi, yang sering dijumpai sebagi kenaikan da penurunan muka air tanah.

Prinsip kerja Atropatena, menggunkan teori medan gravitasi. Atropatena mencatat perubahan atau variasi medan gravitasi yang muncul beberapa hari menjelang terjadinya gempa bumi. Menurut Khalilov, setiap gempa bumi selalu diawali dengan perubahan (penyimpangan) medan gravitasi. Penyimpangan inilah yang diukur dan dideteksi oleh Atropatena.Hingga saat ini, dikarenakan belum adanya satu pun alat yang mampu mendeteksi terjadinya gempa bumi dalam jangka pendek (biasanya panjang yang diperkirakan puluhan, bahkan ratusan tahun ke depan), maka ‘Prediksi Gempa Bumi Jangka Pendek’ masih dilakukan pendekatan dengan hal-hal, seperti: perilaku binatang yang tidak normal (missal kuda,anjing,kelelawar,ikan,gajah dan lainnya), serta melihat gejala alam (awan gempa, variasi gelombang elektromagnetik, variasi muka air tanah, variasi konsentrasi gas radon dalam bumi, variasi medan listrik, dan variasi medan gravitasi). Hal-hal terkait dengan perilaku binatang dan gejala alam tersebut, dipelajari secara mendalam oleh Khalilov.Menurut Khalilov, Antroopatena mampu mencatat perubahan medan garvitasi yang muncul menjelang terjadinya gempa bumi, dengan menggunakan prinsip dasar ‘Cawan Cavendish’. Yakni sebuah percobaan mengenai gaya tarikmenarik antar benda yang memiliki massa. Teori ini bahkan sudah dinggap ‘kuno’ dan tidak pernah terpikirkan oleh ahli fisika bumi di Barat, untuk dikaitkan dengan gempa bumi.Kejadian gempa, bahkan menurut data grafis yang dipresentasikan tentang anomaly gravitasi, dapat diperkirakan 1 minggu sebelum terjadinya gempa. Data variasi gravitasi

Page 6: BERITA KEGIATAN RISTEK

yang dipresentasikan menunjukkan, seperti untuk gempa di Taiwan 15 Oktober 2004, Pakistan 14 oktober 2005, termasuk gempa di Yogyakarta 27 mei 2006 dan Samudera Hindia (Pangandaran) pada 17 Juli 2006. Alat ini mencatat variasi gravitasi yang sangat mencolok.TIGA STASIUN MONITOR

Di samping teknologi ini masih dalam tataran riset, pemantauan kejadian-kejadian gempa saat ini masih belum bisa menentukan lokasi pusat gempa, karena stsiun monitor hanya ada satu, yakni di Baku, Azerbaijan (Atrpatena-Az). Dan saat ini sedang dipasang stsiun monitor di Islamabad, Pakistan(Atropatena-Az) dan selanjutnya di stasiun monitor di Yogyakarta (Atopatena-ID) yang merupakan alat ketiga yang dipasang di dunia. Yogyakarta dipilih karena merupakan salah satu tempat teraktif gempa bumi.Ketiga alat tersebut akan terhubung dalam system jaringan global. Pemasangan Atropatena di tiga belahan bumi ini, diharapkan mampu mendeteksi kejadian-kejadian gempa besar di dunia. Dengan keberadaan ketiga stasiun ini, berdasarkan perhitungan trigonometri, diharapkan dapat menentukan episenter gempa besar dengan magnitundo lebih besar dari 5 Skala Richter.Untuk Indonesia, idealnya minimal terdapat tiga stasiun Atropatena. Saat ini baru satu stasiun di Yogyakarta. Alat ini masih dalam tahap riset. Karena ini paradigm baru, maka masih banyak yang belum dapat menerima konsep dasarnya. Namun, suatu fenomena nyata, bahwa menjelang terjadi gempa, ada anomaly medan gravitasi. Ini menjadi

Page 7: BERITA KEGIATAN RISTEK

tantangan dunia ilmu pengetahuan untuk menjelaskan fenomena ini. Kalau substansi dari presentasi ini benar adanya, maka lompatan besar kemajuan teknologi kegempaan, akan bisa diwujudkan. Dengan demikian, diharapkan alat ini bisa meminimalkan korban akibat bencana gempa bumi yang sering terjadi di Indonesia.PREDIKSI GEMPA BUMI

Terjadinya beberapa bencana alam berupa gempa bumi akhir-akhir ini, telah merubah paradigm masyarakat. Dimana, semula menganggap, bahwa bencana alam gempa bumi merupakan bagian terpisah dari kehidupan sehari-hari masyarkat dan merupakan takdir Illahi, tetapi kini telah bergeser bahwa gempa bumi merupakan bagian dari resiko kehidupan yang sewaktu-waktu akan terjadi. Permasalahnnya, kapan gempa bumi akan terjadi dan dimana lokasinya.Terkait dengan maslah tersebut, pada awal agustus 2009 lalu, bertempat di Gedung Prof.Dr.Sardjito Kampus Terpadu Universitas Islam Indonesia (UII), bekerjasama dengan Pemerintah Provinsi DIY dan International Academic of Science (IAS), menggelar ‘Seminar Prediksi Kejadian Gempa Bumi: Konsepsi dan Aplikasinya di Indonesia’. Seminar ini juga terkait dengan penempatan alat deteksi gempa bumi Atropatena di FTSP UII.Rektor UII, Prof.Dr.Edy Suandi Hamid,M.Ec, dalam sambutannya menyampaikan penghargaan yang tinggi atas ditempatkannya Atropatena di UII. Menurutnya, meskipun sampai saat ini belum terdapat peralatan yang secara ilmiah dapat dipertanggungjawabkan untuk memprediksi akan terjadinya gempa bumi, namun usaha untuk memprediksi gempa melalui Atropatena ini, merupakan salah satu kontribusi keilmuan yang patut dihargai.Sementara itu, Prof.Dr.Elchin Khalilov yang merupakan anggota International Council for Scientific Development, International Academic of Science (ICSD-IAS) dalam penjelasannya mengenai alat deteksi dini gempa bumi Atropatena mengatakan, bahwa pihaknya mengklaim telah menemukan alat untuk memprediksi kejadian gempa secara dini, dengan ketepatan 90%. Atropatena dapat memprediksi kejadian gempa, posisi episenter, dan magnitude gempa. Kendati demikian, peralatan tersebut harus melalui uji coba terlebih dahulu sebelum secara ilmiah dapat dipertanggungjawabkan.

Page 8: BERITA KEGIATAN RISTEK

Report of Pakistan board of GNFE

Earthquake Forecasting by Gravity Variations Precursors Recorded at ATROPATENA-PK SystemM.A Mubarak, M.Qaisar, Nabeel Ahmad, M.Awais, M.Shahid, M.Irfan, Yosi Setiawan

ABSTRACT

The gravity anomalies, prior to major earthquakes, is a very well established fact and have been noticed in cases of many major earthquakes. The ATROPATENA system which is based on principle of Cavendish balance is developed by scientists, working at Scientific-Research Institute on prognosis, International Academy of Sciences, Baku, Azerbaijan to measure such gravity variations. One station of the ATROPATENA system network was installed at the end of January, 2009 at Center for Earthquake Studies (CES), Islamabad Pakistan to study gravity anomalies for short-term forecasting of strong earthquakes. Six months data recorded at ATROPATENA-PK from March to August 2009 was analyzed. The forecast of earthquakes were made on the basis of pattern recorded on three components of the ATROPATENA system. Different patterns are recognized from the recorded signals originated from different regions and defined the region of future earthquake. The over all success ratio was more than 65% which is a good achievement for successful forecasting earthquakes.

INTRODUCTION

The study of gravity anomalies in the perspective direction of short-term forecasting of earthquakes is the most important aspect of researches in the field of geodynamics. Recently, significant anomalies were observed not only near the epicenter, but also in the region very far from the epicenter before the occurrence of strong earthquake. Such anomalies in the epicenter region are known as “source precursor” and those far away from the epicenter as “field precursors” (Ma Zongjin, 1980). Such precursors have been noticed by different seismologists, ranging from behavioral changes in animals to changes in Lithosphere, Atmosphere and Ionosphere. One of these types of earthquake precursor is due to changes in gravitational field and this is noticed as “field precursor” (Walsh and Rice, 1979). The variations in gravitational field may be stipulated by a number of geophysical and tectonic reasons (Khain and Khalilov, 2006 and Khalilov, 2007). These are i) Stress conditions of the earthquake preparation zone when approached to the critical level, it causes either squeezing/compaction of the rocks or stretching that result in mass cracking of rocks in earthquake preparation zone, which eventually causes breaking of rocks with increase/decrease of densities. ii) High and low density area appears due to deformational processes arising in the central earthquake preparation zone before the occurrence of strong earthquake. iii) The critical stresses in earthquake preparation zone causes active movements of fluids in the layers of the Earth and as a result either it increases or decreases the level of subsoil waters that has been observed in the shafts and bores before the occurrence of earthquakes. Probably, there are also other factors involved in changes of gravity, but all of them don’t have large radius of range near earthquake preparation zone of strong earthquake. It is due to fact that this effect of changes of gravity, connected directly with the geodynamical processes in earthquake preparation zone, is observed in the radius from

Page 9: BERITA KEGIATAN RISTEK

tens to thousands of kilometers from station of registration. The system ATROPATENA, designed to monitor such type of variations of gravity, is installed at CES Islamabad, Pakistan. Current study is based on the analysis of six months data (March 2009 to August 2009) registered at ATROPATENA-PK.

ATROPATENA SYSTEM

The ATROPATENA system (Fig. 1) consists of two Torsion detectors to register variations in gravitational field in two horizontal directions – NS and EW and a gravimeter to detect the variation in vertical component of gravitational field. Two sets of small masses are attached at the end of two bars of low density material. These small masses and one vertical gravimeter are placed in a jar. The system of detectors is completely isolated, due to it’s highly sensitiveness, from the environment by means of vacuum and registered very weak displacements of sensitive elements of the system. The system is set in equilibrium by two heavy masses placed outside the jar, to eliminate the effect of any small changes in gravitational field, not related to any geodynamic phenomenon. As a whole the system ATROPATENA registers the variations of gravitation field in three perpendicular directions – X, Y, Z.

Figure 1: Schematic diagram of ATROPATENA

Recording these variations is done by using laser beams and optical matrix. There are small mirrors attached to each bar and gravimeter. The displacement of the bars is noted by using laser beams directed on these small mirrors. The laser beams reflected from mirrors to the optical matrixes. Then these changes in positions are recorded by the sensitive cameras attached on back of optical matrixes. The analogue signals are then converted to digital form by software Power Graph is transferred to the computer for recording.

DATA RECORDING AND UPLOADING TO SERVER

Gravity variations signal generated before occurrence of strong earthquake is recorded after every one second at CES station. The recorded signal is then stored in Microsoft SQL server locally. After every ten minutes, the recorded data from the network as shown in Fig.2 is being uploaded to database server, based in Canada, through TCP after automatic formatting. The data is now available to download by web interface and ready to analyze.

Page 10: BERITA KEGIATAN RISTEK

 Figure 2: Network of System ATROPATENA with their server based at USA

DATA ANALYSIS

The data acquired during March 2009 to August 2009 from ATROPATENA system installed at CES, Islamabad, Pakistan was analyzed. The unusual Low-frequency changes in the gravitational field registered at the system were observed before the occurrence of strong earthquakes. This phenomenon was observed when the epicenters are at large distances (in the radius from one thousand to tens of thousands km) from the registering station. Some peculiarities were also observed during registration of signals, which allow the increase of accuracy of the forecast. The detail of six months data is given in Table 1-6.

The statistical analysis of recorded data shows that the gravitational signals were registered on the average 7-15 days (90%) before the occurrence of strong earthquakes. Some of the recorded variations of gravity before strong earthquakes during March 2009 to August 2009 are shown in Figs. 3-9. These graphs shows, in most of the cases before the distant strong earthquakes, there is at first decrease of gravity and then increase of gravity. It is also observed “vibration of the record” – relatively high-frequency oscillations of gravimeter readings which is stopped right away after the earthquake. However, in some cases before the occurrence of distant strong earthquakes, the changes of anomalies of gravity have more complicated character.

Starting from March 2009 to August 2009, total 57 events were forecasted numbers of earthquakes and out of these 57 the successful forecasts were 36 on the basis of strong gravity variations precursors. Six forecasts were not possible either due to weak or no signals recorded at ATROPATENA-PK and 12 forecasts were also impossible due to unknown pattern (pattern which has not yet been standardized or recognized). Only three earthquake forecast were unsuccessful. The success ratio during the months of March, April, May, June, July and August was 50%, 89%, 78%, 43%, 60% and 80% respectively.

The summary of analyzed data is shown in Table-7 and bar graph is shown in Fig.10. The result shows over all success ratios as 66% which is good success ratio for successful forecasting earthquakes.

Page 11: BERITA KEGIATAN RISTEK

SOME RECORDS OF FORECASTED EARTHQUAKES

Earthquake of March 10, 2009 of Indonesia

The Fig. 3 shows the earthquake forecast for Indonesia in the month of March 2009. The first gravity variation (precursor no. 3 March) was recorded on 5 and 6 March 2009. It showed continued gravity variation in north- south and east-west component. The earthquake was forecasted and the forecast was it may strike in the region of Indonesia from 7-15 March 2009. This forecast was successful because an earthquake of magnitude 5.6 took place in Indonesia on 10 March 2009 at 23:42:14 PST.

A similar Pattern was observed soon after the first earthquake forecast and gravity variations (precursor no.4 March) were recorded on 7 & 8 March 2009. It also showed continued gravity variations in north- south and east-west component. We forecasted that Earthquake that it may strike in the region of Indonesia from 9-18 March 2009. This forecast was successful because an earthquake of magnitude 6.3 took place in Indonesia on 16 March 2009 at 19:15:55 PST. We can conclude that first earthquake of Indonesia with magnitude 5.6 may be the foreshock for second earthquake (Main shock) of Indonesia having magnitude 6.3.

Figure 3: Gravity variations recorded at CES and details ofcorresponding Earthquake that occurred in Indonesia

Earthquakes of April 6 & 7, 2009 of Central Italy

The Fig. 4 shows the earthquake forecast for Central Italy in the month of April 2009. The first gravity variation (precursor no.1 April) was recorded on 31 March & 1 April 2009. It showed continued gravity variation in north- south, east-west and as well as in vertical component. The forecast was that

Page 12: BERITA KEGIATAN RISTEK

Earthquake may strike in the region of Italy from 2-12 April 2009. This Forecast was successful because an earthquake of magnitude 6.3 took place in Central Italy on April 6, 2009 at 21:32:39 PST.

A similar Pattern was observed soon after the first earthquake forecast and gravity variation (precursor no. 4 March) was recorded on 2 April 2009. It also showed continued gravity variation in north- south, east-west and as well as in vertical component. The forecast was that Earthquake may strike in the region of Italy from 3-15 April 2009. This Forecast was successful because an earthquake of magnitude 5.5 took place in Central Italy on 7 April 2009 at 13:47:37 PST.

Figure 4: Gravity variations recorded at CES and details ofcorresponding Earthquake that occurred Central Italy

Earthquake of June 5, 2009 of Japan

The Fig. 5 shows the earthquake forecast for Japan in the month of June 2009. The first gravity variation (precursor no.1 June) was recorded on 1 & 2 June 2009. It showed dominant gravity variation in east-west and in vertical component and minor gravity variation in north-south component. The forecast was that earthquake may strike in the region of Japan from 3-12 June 2009 based on strong gravity precursor. This forecast was successful because an earthquake of magnitude 6.4 took place in Japan on 5 June 2009 at 08:30:33 PST.

Page 13: BERITA KEGIATAN RISTEK

Figure 5: Gravity variations recorded at CES and details ofcorresponding Earthquake that occurred in Japan

Earthquake of June 6, 2009 of Japan

The Fig. 6 shows a similar Pattern was observed soon after the first earthquake forecast gravity variation precursor 2 (June) was recorded on 4 June 2009. It also showed continued gravity variation in north- south, east-west and as well as more dominant gravity variation in vertical component. The forecast was that earthquake may strike in the region of Japan from 5-13 June 2009. This forecast was successful because an earthquake of magnitude 5.8 took place in the region of Japan on 6 June 2009 at 10:52:43 PST. This earthquake of Japan with magnitude 5.8 was most probably the after shock of the major earthquake with magnitude 6.4 in Japan.

Page 14: BERITA KEGIATAN RISTEK

Figure 6: Gravity variations recorded at CES and details ofcorresponding Earthquake that occurred in Japan

Earthquake of July 13, 2009 of Taiwan

The Fig. 7 shows a comparatively different pattern from the rest of standardized pattern. This gravity variation precursor shows the earthquake forecast for Taiwan in the month of July 2009. The first gravity variation precursor 3 (July) was recorded on 8 July 2009. It showed dominant Gravity variation in north-south and east-west component with minor gravity variation in vertical component. The forecast was that earthquake may strike in the region of Taiwan from 9-16 July 2009 based on strong gravity precursor. This forecast was successful because an earthquake of magnitude 6.3 took place in the region of Taiwan on 13 July 2009 at 23:05:03 PST.

Page 15: BERITA KEGIATAN RISTEK

Figure 7: Gravity variations recorded at CES and details ofcorresponding Earthquake that occurred in Taiwan

Earthquake of July 13, 2009 of Taiwan

The Fig. 8 shows a similar pattern as described in the previous figure. This gravity variation precursor shows the earthquake forecast for Taiwan in the month of July 2009. The first gravity variation precursor 4 (July) was recorded on 10 July 2009. It showed dominant gravity variation in north-south and east-west component with minor gravity variation in vertical component. The forecast was that earthquake may strike in the region of Taiwan from 11-20 July 2009. This Forecast was successful because an earthquake of magnitude 5.4 took place in the region of Taiwan on 16 July 2009 at 15:48:15 PST. This earthquake of Taiwan with magnitude 5.4 was most probably the after shock of the major earthquake of Taiwan with magnitude 6.3.

Page 16: BERITA KEGIATAN RISTEK

Figure 8: Gravity variations recorded at CES and details ofcorresponding Earthquake that occurred in Taiwan

Earthquake of May 17, 2009 of Hind Kush (Afghanistan)

The Fig. 9 shows the earthquake forecast for Hindu Kush (Afghanistan) in the month of May 2009. The gravity variation precursor 3 (May) was recorded on 8th May 2009. It showed continued gravity variation in north- south and east-west component. The forecast was that earthquake may strike in the region of Hindu Kush from 9-18 May 2009. This forecast was successful because an earthquake of magnitude 4.6 took place in Hindu Kush on May 17, 2009 at 17:57:58 PST.

Page 17: BERITA KEGIATAN RISTEK

Figure 9: Gravity variations recorded at CES and details of corresponding Earthquake that occurred in Hindu Kush

Figure 10: Graph showing Summary of six months earthquake forecasts.

Conclusions:

The result of six months data shows that there are definite variations in gravity data recorded at ATROPATENA system installed at CES, Islamabad, before the occurrence of major earthquake. The

Page 18: BERITA KEGIATAN RISTEK

specific patterns of gravity variations were observed during analysis of data that helped in standardization of the patterns. Most of the earthquakes were successfully forecasted those occurred in different part of the globe on the basis of these standardized patterns. The forecasted earthquakes occurred in Indonesia, Japan, Taiwan, Italy and Hindu-Kush region of Afghanistan on the basis of their standardized pattern. The result indicates over all success ratios as more than 65% which is a good achievement for successful forecasting earthquakes. As the gravity variation data was analyzed on the basis of changes in gravitational field in three components of ATROPATENA system but there is still need to supplement other geophysical parameters that help in the accuracy of forecasting major earthquakes which requires doing a lot of work. However, at present there are three stations of ATROPATENA working and with experience by recognizing the pattern we may forecast the future major earthquakes with more accuracy, higher probability and reliability.

Acknowledgement:

The authors are thankful to Dr. Ishfaq Ahmad N.I. H.I. S.I, for his constant encouragement and patronization of the project.

REFERENCES

1. Ma Zong-jin. 1980. Relation between earthquakes and field of stress locus in crust in North China [J]. Seismology and Geology, 2(1 ) 2. Khain V. Y. and Khalilov E. N. (2006). Tideless variations of gravity before strong distant earthquakes. Science without Borders Volume 2 2006/2006 ICSD/IAS H&E, Innsbruck, pp. 319-3393. Khalilov E.N. (2007). About the possibility of creation of International Global System of forecasting of earthquakes “ATROPATENA” (Baku-Yogyakarta-Islamabad). Natural cataclysms and global problems of the modern civilization. Special edition of Transaction of the International Academy of Sciences. H&E ICSD/IAS, Innsbruck, pp51-69.4. Walsh J B, and Rice J B, 1979. Local changes in gravity resulting from deformation. J Geophys Research, 16:445~44