fistan-reaksi gelap.doc

20
I. PENDAHULUAN Fotosintesis adalah suatu proses biokimia pembentukan zat makanan atau energi yaitu glukosa yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri dengan menggunakan zat hara, karbondioksida, dan air serta dibutuhkan bantuan energi cahaya matahari. Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida). Reaksi terang terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma. Dalam reaksi terang, terjadi konversi energi cahaya menjadi energi kimia dan menghasilkan oksigen (O2). Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari bahan dasar CO2 dan energi (ATP dan NADPH). Energi yang digunakan dalam reaksi gelap ini diperoleh dari reaksi terang. Berdasarkan tipe fotosintesis, tumbuhan dibagi ke dalam tiga kelompok besar, yaitu C3, C4, dan CAM (crassulacean acid metabolism). Tumbuhan C4 dan CAM lebih adaptif di daerah panas dan kering dibandingkan dengan tumbuhan C3. Namun tanaman C3 lebih adaptif pada kondisi kandungan CO2 atmosfer tinggi. Sebagian besar tanaman pertanian, seperti gandum, kentang, kedelai, kacang-kacangan, dan kapas merupakan tanaman dari kelompok C3. Tanaman C3 dan C4 dibedakan oleh cara mereka mengikat CO2 dari atmosfir dan produk awal yang dihasilkan dari proses assimilasi. Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP (RuBP merupakan substrat untuk pembentukan karbohidrat dalam proses fotosintesis). Pada tanaman C4, CO2 diikat oleh PEP (enzym pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun).

Transcript of fistan-reaksi gelap.doc

I. PENDAHULUAN

Fotosintesis adalah suatu proses biokimia pembentukan zat makanan atau energi yaitu glukosa yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri dengan menggunakan zat hara, karbondioksida, dan air serta dibutuhkan bantuan energi cahaya matahari. Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida). Reaksi terang terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma. Dalam reaksi terang, terjadi konversi energi cahaya menjadi energi kimia dan menghasilkan oksigen (O2). Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari bahan dasar CO2 dan energi (ATP dan NADPH). Energi yang digunakan dalam reaksi gelap ini diperoleh dari reaksi terang.Berdasarkan tipe fotosintesis, tumbuhan dibagi ke dalam tiga kelompok besar, yaitu C3, C4, dan CAM (crassulacean acid metabolism). Tumbuhan C4 dan CAM lebih adaptif di daerah panas dan kering dibandingkan dengan tumbuhan C3. Namun tanaman C3 lebih adaptif pada kondisi kandungan CO2 atmosfer tinggi. Sebagian besar tanaman pertanian, seperti gandum, kentang, kedelai, kacang-kacangan, dan kapas merupakan tanaman dari kelompok C3. Tanaman C3 dan C4 dibedakan oleh cara mereka mengikat CO2 dari atmosfir dan produk awal yang dihasilkan dari proses assimilasi.Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP (RuBP merupakan substrat untuk pembentukan karbohidrat dalam proses fotosintesis). Pada tanaman C4, CO2 diikat oleh PEP (enzym pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun). II. TINJAUAN PUSTAKA2.1 Arti dan Peranan Reaksi Gelap bagi proses fotosintesis dan Pertumbuhan Tanaman

Reaksi gelap merupakan reaksi lanjutan terang dalam fotosintesis. Reaksi ini tidak membutuhkan cahaya. Reaksi gelap terjadi pada bagian kloroplast yang disebut stroma. Bahan reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang dan CO2 yang berasal dari udara bebas. Dari reaksi gelap ini, dihasilkan glukosa (C6H12O6), yang sangat diperlukan bagi reaksi katabolisme. Salah satu substansi penting dalam proses ini ialah senyawa gula beratom karbon lima yang terfosforilasi yaitu ribulosa fosfat. Jika diberikan gugus fosfat kedua dari ATP maka dihasilkan ribulosa difosfat (RDP). Ribulosa difosfat ini yang nantinya akan mengikat CO2 dalam reaksi gelap. Secara umum reaksi gelap dapat dibagi menjadi tiga tahapan yaitu fiksasi, reduksi dan regenerasi.

Pada fase fiksasi, 6 molekul ribulosa mengikat 6 molekul CO2 dari udara dan membentuk 6 molekul beratom C6 yang stabil yang kemudian pecah menjadi 12 molekul beratom C3 yang dikenal dengan 3-Asam fosfogliserat (APG/PGA). Selanjutnya 3-Asam fosfogliserat ini mendapat tambahan 12 gugus fosfat, dan membentuk 1,3- bifosfogliserat. Kemudian 1,3 bifosfogliserat masuk kedalam fase reduksi, dimana senyawa ini direduksi oleh H+ dari NADPH yang kemudian berubah menjadi NADP+, dan terbentuklah 12 molekul fosfogliseraldehid (PGAL) yang beratom 3 C. Selanjutnya 2 molekul fosfogliseraldehid melepaskan diri danmenyatukan diri menjadi 1 molekul glukosa yang beratom 6C (C6H12O6). 10 molekul dari fosfogliseraldehid yang tersisa kemudian masuk kedalam fase regenerasi, yaitu pembentukan kembali ribulosa difosfat. Pada fase ini, 10 molekul fosfogliseraldehid berubah menjadi 6 molekul ribulosa fosfat. Jika mendapat tambahan gugus fosfat, maka ribulosa fosfat akan berubah menjadi ribulosa difosfat (RDP), yang kemudian kembali mengikat CO2 dan menjadi siklus reaksi gelap. Reaksi gelap ini menghasilkan APG (asam fosfogliserat), ALPG (fosfogliseraldehid) , RDP (ribulosa difosfat), dan glukosa (C6H12O6). 2.2 Siklus Calvin

Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson. Reaksi gelap merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis yang merupakan reaksi pembentukan gula dari bahan dasar CO2 dan energi. Reaksi ini tidak tergantung secara langsung pada cahaya matahari sehingga reaksi ini dapat berlangsung saat malam hari. Namun demikian, reaksi ini tidak mutlak terjadi hanya pada kondisi gelap.

Reaksi gelap berlangsung pada bagian kloroplas yang disebut dengan stroma. Tahapan reaksi siklus Calvin adalah karboksilasi, reduksi dan regenerasi sebagai berikut.

Gambar 2.1 Siklus Calvin

a) Karboksilasi (Fiksasi) CO2CO2 diikat (fiksasi) oleh senyawa rebulosa bifosfat (RuBP) yang memiliki atom C sebanyak 5 (C-5), karena hanya mengikat satu atom C (C-1) maka terbentuk senyawa RuBP dengan atom C sebanyak 6 (C-6) dalam keadaan yang tidak stabil dan pecah menjadi 2 senyawa gliseraldehid 3-fosfat (G3P).

b) ReduksiSelanjutnya 2 senyawa gliseraldehid 3-fosfat (G3P) bereaksi dengan ATP, membentuk asam fosfogliseraldehid yang masih berikatan dengan H2 berasal dari NADPH2. Siklus reaksinya harus berjalan 3 kali, baru terbentuk hasil akhir yaitu 6 senyawa gliseraldehid 3-fosfat (G3P).

c) RegenerasiRegenerasi atau pembentukan kembali senyawa rebulosa bifosfat (RuBP) digunakan untuk mengikat CO2. Pembentukan kembali senyawa rebulosa bifosfat (RuBP) dan pecah menjadi 2 senyawa (G3P) bereaksi dengan ATP membentuk asam fosfogliseraldehid dan NADPH2. Siklus reaksinya berjalan 3 kali, dan kembali regenerasi lagi. Jadi untuk membentuk 1 molekul glukosa maka dibutuhkan sebanyak 6 kali siklus (siklus Calvin) dengan menangkap sebanyak 6 molekul 6CO2, reaksinya sebagai berikut.

6CO2 + 6H2O > C6H12O6 + 6O2

Reaksi Gelap Calvin Benson

Reaksi ini tidak membutuhkan cahaya / foton

Reaksi gelap terjadi pada bagian kloroplas yang disebut stroma.

membutuhkan enzim Rubisco untuk Fiksasi ( atau enzim RuBP karboksilase / oksigenase)

Energi reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang

ATP dihasilkan oleh Photosistem II (P 680) dan NADPH2 dijhasilkan oleh Photosystem I (P 700),

Bahan CO2, yang berasal dari udara bebas ditransportasikan secara difusi lewat stomata ke palisade kemudian di transportasikan ke stroma.

Berjalan dengan 3 tahap Fiksasi , Reduksi , Regenerasi - Sintesa

Dari reaksi gelap ini, dihasilkan atau disintesa glukosa (C6H12O6), Glukosa ini sangat diperlukan bagi reaksi katabolisme / Respirasi Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson.

Proses diawali dengan fiksasi CO2 oleh RuBP dengan bantuan enzim Rubiscomenjadi senyawa dengan 6 atom C labil yang akan pecah menjadi PGA dengan 3 atom C

RuBP adalah substansi penting dalam awal proses Reaksi gelap

RuBP ialah senyawa gula beratom karbon lima yang terfosforilasi yaitu ribulosa fosfat.

Jika diberikan gugus fosfat kedua dari ATP maka dihasilkan ribulosa difosfat (RDP).

Ribulosa difosfat ini yang nantinya akan mengikat CO2 dalam reaksi gelap. (lihat gambar)

Secara umum, reaksi gelap dapat dibagi menjadi tiga tahapan (fase), yaitu fiksasi, reduksi, dan regenerasi.

Pada fase fiksasi, 6 molekul Ribulosa bifosfat mengikat 6 molekul CO2 dari udara dan membentuk 6 molekul beratom C6 yang tidak stabil

6 molekul beratom C6 yang tidak stabil itu kemudian pecah menjadi 12 molekul beratom C3 yang dikenal dengan 3-asam fosfogliserat (APG/PGA). Catatan dengan terbentuknya PGA yang beratom C3 inilah maka tanaman yang melakukan fotosintesis menhasilkan PGA pada fiksasi kemdian disebut tanaman C3 Selanjutnya, 3-asam fosfogliserat ini mendapat tambahan 12 gugus fosfat dari penguraian 12 ATP menjadi 12 ADP , dan membentuk 1,3-bifosfogliserat (PGA 1.3 biphosphat).

Kemudian, 1,3-bifosfogliserat masuk ke dalam fase reduksi, dimana senyawa ini mendapatkan ion H+ dari dari reduksi NADPH2 , yang kemudian berubah menjadi NADP+ ATP dan NADPH yang digunakan berasal dari produk reaksi terang itu sebanyak masing masing 12 ATP dan 12 molekul NADPH

Oleh karena itulah terbentuklah 12 molekul fosfogliseraldehid (PGAL) yang beratom 3C.

Selanjutnya terjadi sintesa , 2 molekul fosfogliseraldehid melepaskan diri dan menyatukan diri menjadi 1 molekul glukosa yang beratom 6C (C6H12O6).

10 molekul fosfogliseraldehid yang tersisa kemudian masuk ke dalam fase regenerasi, yaitu pembentukan kembali ribulosa difosfat.(RDP/RuBP)

Pada fase ini, 10 molekul fosfogliseraldehid berubah menjadi 6 molekul ribulosa fosfat. Jika mendapat tambahan gugus fosfat, maka ribulosa fosfat akan berubah menjadi ribulosa difosfat (RDP),

RDP/RuBP kemudian kembali akan mengikat CO2 lagi , begitu setrusnya.

2.3 Proses/Mekanisme untuk memperoleh Karbohidrat

2.3.1 Tanaman C3Fotosintesis ini disebut mekanisme C3, karena molekul yang pertama kali terbentuk setelah fiksasi karbon adalah molekul berkarbon 3, 3-fosfogliserat. Kebanyakan tumbuhan yang menggunakan fotosintesis C3 disebut tumbuhan C3. Padi, gandum, dan kedelai merupakan contoh-contoh tumbuhan C3yang penting dalam pertanian.

Kondisi lingkungan yang mendorong fotorespirasi ialah hari yang panas, kering, dan terik-kondisi yang menyebabkan stomata tertutup. Kondisi ini menyebabkan CO2 tidak bisa masuk dan O2 tidak bisa keluar sehingga terjadi fotorespirasi. Dalam spesies tumbuhan tertentu, ada cara lain fiksasi karbon yang meminimumkan fotorespirasi. Dua adaptasi fotosintetik yang paling penting ini ialah fotosintesis C4dan CAM

Dalam fotosintesis C3 berbeda dengan C4,pada C3 karbon dioxida masuk ke siklus calvin secara langsung. Struktur kloroplas pada tanaman C3 homogen. Tanaman C3 mempunyai suatu peran penting dalam metabolisme, tanaman C3 mempunyai kemampuan fotorespirasi yang rendah karena mereka tidak memerlukan energi untuk fiksasi sebelumnya. Tanaman C3 dapat kehilangan 20 % carbon dalam siklus calvin karena radiasi, tanaman ini termasuk salah satu group phylogenik. Konsep dasar reaksi gelap fotosintesis siklus Calvin (C3) adalah sebagai berikut: CO2 diikat oleh RUDP untuk selanjutnya dirubah menjadi senyawa organik C6 yang tidak stabil yang pada akhirnya dirubah menjadi glukosa dengan menggunakan 18ATP dan 12 NADPH. Siklus ini terjadi dalam kloroplas pada bagian stroma. Untuk menghasilkan satu molekul glukosa diperlukan 6 siklus C3.

Pemberian Naungan

Merupakan salah satu alternatif untuk mengatasi intensitas cahaya yang terlalu tinggi.

Pemberian naungan dilakukan pada budidaya tanaman yang umumnya termasuk kelompok C3 maupun dalam fase pembibitan

Pada fase bibit, semua jenis tanaman tidak tahan IC penuh, butuh 30-40%, diatasi dengan naungan

Pada tanaman kelompok C3, naungan tidak hanya diperlukan pada fase bibit saja, tetapi sepanjang siklus hidup tanaman

Meskipun dengan semakin dewasa umur tanaman, intensitas naungan semakin dikurangi

Naungan selain diperlukan untuk mengurangi intensitas cahaya yang sampai ke tanaman pokok, juga dimanfaatkan sebagai salah satu metode pengendalian gulma

Di bawah penaung, bersih dari gulma terutama rumputan

Semakin jauh dari penaung, gulma mulai tumbuh semakin cepat

Titik kompensasi gulma rumputan dapat ditentukan sama dengan IC pada batas mulai ada pertumbuhan gulma

Tumbuhan tumbuh ditempat dg IC lebih tinggi dari titik kompensasi (sebelum tercapai titik jenuh), hasil fotosintesis cukup untuk respirasi dan sisanya untuk pertumbuhan

Dampak pemberian naungan terhadap iklim mikro

Mengurangi IC di sekitar sebesar 30-40%

Mengurangi aliran udara disekitar tajuk

Kelembaban udara disekitar tajuk lebih stabil (60-70%)

Mengurangi laju evapotranspirasi

Terjadi keseimbangan antara ketersediaan air dengan tingkat transpirasi tanaman

Tumbuhan tipe C3 memproduksi sedikit makanan apabila stomatanya tertutup pada hari yang panas dan kering. Tingkat CO2yang menurun dalam daun akan mengurangi bahan ke siklus Calvin. Yang membuat tambah parah, rubisko ini dapat menerima O2sebagai penggantiCO2. Karena konsentrasi O2melebihi konsentrasi CO2dalam ruang udara daun, rubisko menambahkanO2 pada siklus Calvin dan bukannya CO2. Produknya terurai, dan satu potong, senyawa berkarbon 2 dikirim keluar dari kloroplas. Mitokondria dan peroksisom kemudian memecah molekul berkarbon 2 menjadi CO2. Proses ini yang disebut Fotorespirasi. Akan tetapi tidak seperti respirasi sel, fotorespirasi tidak menghasilkan ATP. Dan tidak seperti fotosintesis, fotorespirasi tidak menghasilkan makanan, tapi menurunkan keluaran fotosintesis dengan menyedot bahan organic dari siklus Calvin.

Tahapan siklus Calvin pada tanaman C3;

Fase I: fiksasi karbon, Siklus calvin memasukkan setiap molekul CO2dengan menautkannya pada gula berkarbon 5 yang dinamai ribose bifosfat(RuBP). Enzim yang mengkatalis langkah ini adalah rubisko.produknya adalah intermediet berkarbon 6 yang demikian tidak stabil hinggga terurai separuhnya untuk membentuk 2 molekul 3-fosfogliserat. Fase II: reduksi, setiap molekul3-fosfogliserat menerima gugus fosfat baru. Suatau enzim mentransfer gugus fosfat dari ATP membentuk 1,3-bifosfogliserat sebagai produknya. Selanjutnya sepasang electron disumbangkan oleh NADPH untuk mereduksi 1,3-bifosfogliserat menjadi G3P. G3P ini berbentuk gula berkarbon 3. Hasilnya terdapat 18 karbon karbohidrat , 1molekulnya keluar dan digunakan oleh tumbuhan dan 5 yang lain didaur ulang untuk meregenerasi 3 molekul RuBP Fase III: Regenerasi RuBP, Dalam suatu rangkaian reaksi yang rumity, rangkan karbon yang terdiri atas 5 molekul G3P disusun ulang oleh langkah terakhir siklus Calvin menjadi 3 molekul RuBP. Untuk menyelesaikan ini, siklus ini menghabiskan 3 molekul ATP . RuBP ini siap menerima CO2 kembaliTanaman C3 dan C4 dibedakan oleh cara mereka mengikat CO2 dari atmosfir dan produk awal yang dihasilkan dari proses assimilasi.

Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP (RuBP merupakan substrat untuk pembentukan karbohidrat dalam proses fotosintesis) dalam proses awal assimilasi, juga dapat mengikat O2 pada saat yang bersamaan untuk proses fotorespirasi (fotorespirasi adalah respirasi, proses pembongkaran karbohidrat untuk menghasilkan energi dan hasil samping, yang terjadi pada siang hari) . Jika konsentrasi CO2 di atmosfir ditingkatkan, hasil dari kompetisi antara CO2 dan O2 akan lebih menguntungkan CO2, sehingga fotorespirasi terhambat dan assimilasi akan bertambah besar.

Pada tanaman C4, CO2 diikat oleh PEP (enzym pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun). CO2 yang sudah terikat oleh PEP kemudian ditransfer ke sel-sel bundle sheath (sekelompok sel-sel di sekitar xylem dan phloem) dimana kemudian pengikatan dengan RuBP terjadi. Karena tingginya konsentasi CO2 pada sel-sel bundle sheath ini, maka O2 tidak mendapat kesempatan untuk bereaksi dengan RuBP, sehingga fotorespirasi sangat kecil and G sangat rendah, PEP mempunyai daya ikat yang tinggi terhadap CO2, sehingga reaksi fotosintesis terhadap CO2 di bawah 100 m mol m-2 s-1 sangat tinggi. , laju assimilasi tanaman C4 hanya bertambah sedikit dengan meningkatnya CO2. Sehingga, dengan meningkatnya CO2 di atmosfir, tanaman C3 akan lebih beruntung dari tanaman C4 dalam hal pemanfaatan CO2 yang berlebihan.Sintesis C3 diawali dengan fiksasi CO2, yaitu menggabungkan CO2 dengan sebuah molekul akseptor karbon. Akan tetapi didalam sintesis C3, CO2 difiksasi ke gula berkarbon 5, yaitu ribulosa bifosfat (RuBP) oleh enzim karboksilase RuBP (rubisko). Molekul berkarbon 6 yang berbentuk tidak stabil dan segera terpisah menjadi 2 molekul fosfogliserat (PGA). Molekul PGA merupakan karbohidrat stabil berkarbon 3 yang pertama kali terbentuk sehingga cara tersebut dinamakan sintesis C3. Molekul PGA bukan molekul berenergi tinggi. Dua molekul PGA mengandung energy yang lebih kecil dibandingkan dengan satu molekul RuBP. Hal tersebut menjelaskan alasan fiksasi CO2 berlangsung secara spontan dan tidak memerlukan energy dari reaksi cahaya. Untuk mensintesis molekul berenergi tinggi, energy dan electron dari ATP maupun NADPH hasil reaksi terang digunakan untuk mereduksi tiap PGA menjadi fosfogliseraldehida (PGAL). Dua molekul PGAL dapat membentuk satu glukosa. Siklus Calvin telah lengkap bila pembentukan glukosa disertai dengan generasi RuBP. Satu molekul CO2 yang tercampur menjadi enam molekul CO2. Ketika enam molekul CO2 bergabung dengan enam molekul RuBP dihasilkan satu glukosa dan enam RuBP sehingga siklus dapat dimulai lagi.2.3.2 Tanaman C4Tumbuhan C4dinamakan demikian karena tumbuhan itu mendahului siklus Calvin yang menghasilkan asam berkarbon -4 sebagai hasil pertama fiksasi CO2dan yang memfiksasi CO2menjadi APG disebut spesies C3, sebagian spesies C4adalah monokotil (tebu, jagung, dll). Reaksi dimana CO2dikonfersi menjadi asam malat atau asam aspartat adalah melalui penggabugannya dengan fosfoeolpiruvat (PEP) untuk membentuk oksaloasetat dan Pi. Enzim PEP-karboksilase ditemukan pada setiap sel tumbuhan yang hidup dan enzim ini yang berperan dalam memacu fiksasi CO2pada tumbuhan C4. enzim PEP-karboksilase terkandung dalam jumlah yang banyak pada daun tumbuhan C4, pada daun tumbuhan C-3 dan pada akar, buah-buah dan sel sel tanpa klorofil lainnya ditemukan suqatu isozim dari PEP-karboksilase. Reaksi untuk mengkonversi oksaloasetat menjadi malat dirangsang oleh enzim malat dehidrogenase dengan kebutuhan elektronnya disediakan oleh NHDPH. Oksaleasetat harus masuk kedalam kloroplas untuk direduksi menjadi malat.

Pembentukkan aspartat dari malat terjadi didalam sitosol dan membutuhkan asam amino lain sebagai sumber gugus aminonya. Proses ini disebut transaminasi.

Pada tumbuihan C-4 terdapat pembagian tugas antara 2 jenis sel fotosintetik, yakni :

sel mesofil

sel-sel bundle sheath/ sel seludang-berkas pembuluh.

Sel seludang berkas pembuluh disusun menjadi kemasan yang sangat padat disekitar berkas pembuluh. Diantara seludang-berkas pembuluh dan permukaan daun terdapat sel mesofil yang tersusun agak longgar.Siklus calvin didahului oleh masuknya CO2ke dalam senyawa organic dalam mesofil.

Langkah pertama ialah penambahan CO2pada fosfoenolpirufat (PEP) untuk membentuk produk berkarbon empat yaitu oksaloasetat, Enzim PEP karboksilase menambahkanCO2pada PEP. Karbondioksida difiksasi dalam sel mesofil oleh enzim PEP karboksilase. Senyawa berkarbon-empat-malat, dalam hal ini menyalurkan atom CO2kedalam sel seludang-berkas pembuluh, melalui plasmodesmata. Dalam sel seludang berkas pembuluh, senyawa berkarbon empat melepaskan CO2yang diasimilasi ulang kedalam materi organic oleh robisco dan siklus Calvin.

Dengan cara ini, fotosintesis C4meminimumkan fotorespirasi dan meningkatkan produksi gula. Adaptasi ini sangat bermanfaat dalam daerah panas dengan cahaya matahari yang banyak, dan dilingkungan seperti inilah tumbuhan C4sering muncul dan tumbuh subur.

Pada jenis tumbuhan yang hidup di daerah panas seperti jagung, tebu, rumput-rumputan, memiliki kebiasaan saat siang hari mereka tidak membuka stomatanya secara penuh untuk mengurangi kehilangan air melalui evaporasi/transpirasi. Ini berakibat terjadinya penurunan jumlah CO2 yang masuk ke stomata. Logikanya hal ini menghambat laju fotosintesis. Ternyata para tumbuhan ini telah mengembangkan cara yang cerdas untuk menjaga agar laju fotosintesis tetap normal meskipun stomata tidak membuka penuh. Perbedaannya dengan tumbuhan C-3 ada pada mekanisme fiksasi CO2. Pada tumbuhan C-4 karbondioksida pertama kali akan diikat oleh senyawa yang disebut PEP (phosphoenolphyruvate / fosfoenolpiruvat) dengan bantuan enzim PEP karboksilase dan membentuk oksaloasetat, suatu senyawa 4-C. Itu sebabnya kelompok tumbuhan ini disebut tumbuhan C-4 atau C-4 pathway. PEP dibentuk dari piruvat dengan bantuan enzim piruvat-fosfat dikinase. Berbeda dengan rubisco, PEP sangat lemah berikatan dengan O2. Ini berarti bisa menekan terjadinya fotorespirasi sekaligus mampu menangkap lebih banyak CO2 sehingga bisa meningkatkan laju produksi glukosa. Pengikatan CO2 oleh PEP tersebut berlangsung di sel-sel mesofil (daging daun). Oksaloasetat yang terbentuk kemudian akan direduksi karena menerima H+ dari NADH dan berubah menjadi malat, kemudian ditransfer menuju ke sel seludang pembuluh (bundle sheath cells) melalui plasmodesmata. Sel-sel seludang pembuluh adalah kelompok sel yang mengelilingi jaringan pengangkut xilem dan floem. Lihat gambar.

Di dalam sel-sel seludang pembuluh malat akan dipecah kembali menjadi CO2 yang langsung memasuki siklus Calvin-Benson, dan piruvat dikembalikan lagi ke sel-sel mesofil. Hasil dari siklus Calvin-Benson adalah molekul glukosa yang kemudian ditranspor melalui pembuluh floem.

Fiksasi CO2 pada tumbuhan C-4 berlangsung dalam dua langkah. Pertama CO2 diikat oleh PEP menjadi oksaloasetat dan berlangsung di sel-sel mesofil. Kedua CO2 diikat oleh rubisco menjadi APG di sel seludang pembuluh. Ini menyebabkan energi yang digunakan untuk fiksasi CO2 lebih besar, memerlukan 30 molekul ATP untuk pembentukan satu molekul glukosa. Sedangkan pada tumbuhan C-3 hanya memerlukan 18 molekul ATP. Namun demikian besarnya kebutuhan ATP untuk fiksasi CO2 pada tumbuhan C-4 sebanding dengan besarnya hasil produksi glukosa karena dengan cara tersebut mampu menekan terjadinya fotorespirasi yang menyebabkan pengurangan pembentukan glukosa. Itu sebabnya kelompok tumbuhan C-4 dikenal efektif dalam fotosintesis.

2.3.3 Tanaman CAM

Berbeda dengan gerakan stomata yang lazim, stomata tumbuhan CAM membuka pada malam hari, tetapi menutup pada siang hari. Pada malam hari jika kondisi udara kurang menguntungkan untuk transpirasi, stomata tumbuhan CAM membuka, karbon dioksida berdifusi ke dalam daun dan diikat oleh sistem PEP karboksilase untuk membentuk OAA dan malat. Malat lalu dipindahkan dari sitoplasma ke vakuola tengah sel-sel mesofil dan di sana asam ini terkumpul dalam jumlah besar. Sepanjang siang hari stomata menutup, karena itu berkuranglah kehilangan airnya, dan malat serta asam organik lain yang terkumpul didekarboksilasi agar ada persediaan karbon dioksida yang langsung akan diikat oleh sel melalui daur Calvin. Beberapa spesies tumbuhan mempunyai sifat yang berbeda dengan kebanyakan tumbuhan lainnya, yakni Tumbuhan ini membuka stomatanya pada malam hari dan menutupnya pada siang hari. Kelompok tumbuhan ini umumnya adalah tumbuhan jenis sukulen yang tumbuh da daerah kering. Dengan menutup stomata pada siang hari membantu tumbuhan ini menghemat air, dapat mengurangi laju transpirasinya, sehingga lebih mampu beradaptasi pada daerah kering tersebut. Selama malam hari, ketika stomata tumbuhan itu terbuka, tumbuhan ii mengambil CO2dan memasukkannya ke dalam berbagai asam organic. Cara fiksasi karbon ini disebutmetabolisme asam krasulase, ataucrassulacean acid metabolism (CAM).

Dinamakan demikian karena metabolisme ini pertama kali diteliti pada tumbuhan dari famili crassulaceae. Termasuk golongan CAM adalah Crassulaceae, Cactaceae, Bromeliaceae, Liliaceae, Agaveceae, Ananas comosus, dan Oncidium lanceanum.

Saat stomata terbuka pada malam hari, CO2 di sitoplasma sel-sel mesofil akan diikat oleh PEP dengan bantuan enzim PEP karboksilase sehingga terbentuk oksaloasetat kemudian diubah menjadi malat (persis seperti tumbuhan C-4). Selanjutnya malat yang terbentuk disimpan dalam vakuola sel mesofil hingga pagi hari. Pada siang hari saat reaksi terang menyediakan ATP dan NADPH untuk siklus Calvin-Benson, malat dipecah lagi menjadi CO2 dan piruvat. CO2 masuk ke siklus Calvin-Benson di stroma kloroplas, sedangkan piruvat akan digunakan untuk membentuk kembali PEP. CO2 kemudian difiksasi oleh rubisco menjadi 3-PGA. 3-PGA yang nantinya masuk ke dalam siklus calvin seperti pada C-3 dan diubah menjadi gula.Jalur CAM serupa dengan jalur C4dalam hal karbon dioksida terlebih dahulu dimasukkan kedalam senyawa organic intermediet sebelum karbon dioksida ini memasuki siklus Calvin. Perbedaannya ialah bahwa pada tumbuhan C4, kedua langkah ini terjadi pada ruang yang terpisah. Langkah ini terpisahkan pada dua jenis sel. Pada tumbuhan CAM, kedua langkah dipisahkan untuk sementara. Fiksasi karbon terjadi pada malam hari, dan siklus calvin berlangsung selama siang hari.III. KESIMPULAN

Reaksi gelap merupakan reaksi lanjutan terang dalam fotosintesis. Reaksi ini tidak membutuhkan cahaya. Reaksi gelap terjadi pada bagian kloroplast yang disebut stroma. Bahan reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang dan CO2 yang berasal dari udara bebas. Dari reaksi gelap ini, dihasilkan glukosa (C6H12O6), yang sangat diperlukan bagi reaksi katabolisme. Reaksi gelap merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis yang merupakan reaksi pembentukan gula dari bahan dasar CO2 dan energi. Reaksi ini tidak tergantung secara langsung pada cahaya matahari sehingga reaksi ini dapat berlangsung saat malam hari. Namun demikian, reaksi ini tidak mutlak terjadi hanya pada kondisi gelap. Tahapan reaksi siklus Calvin adalah karboksilasi, reduksi dan regenerasiFotosintesis ini disebut mekanisme C3, karena molekul yang pertama kali terbentuk setelah fiksasi karbon adalah molekul berkarbon 3, 3-fosfogliserat. Kebanyakan tumbuhan yang menggunakan fotosintesis C3 disebut tumbuhan C3. Padi, gandum, dan kedelai merupakan contoh-contoh tumbuhan C3. Tumbuhan tipe C3 memproduksi sedikit makanan apabila stomatanya tertutup pada hari yang panas dan kering. Tumbuhan C4dinamakan demikian karena tumbuhan itu mendahului siklus Calvin yang menghasilkan asam berkarbon -4 sebagai hasil pertama fiksasi CO2dan yang memfiksasi CO2menjadi APG disebut spesies C3, sebagian spesies C4adalah monokotil (tebu, jagung, dll). Reaksi dimana CO2dikonfersi menjadi asam malat atau asam aspartat adalah melalui penggabugannya dengan fosfoeolpiruvat (PEP) untuk membentuk oksaloasetat dan Pi. Enzim PEP-karboksilase ditemukan pada setiap sel tumbuhan yang hidup dan enzim ini yang berperan dalam memacu fiksasi CO2pada tumbuhan C4. Jalur CAM serupa dengan jalur C4dalam hal karbon dioksida terlebih dahulu dimasukkan kedalam senyawa organic intermediet sebelum karbon dioksida ini memasuki siklus Calvin. Perbedaannya ialah bahwa pada tumbuhan C4, kedua langkah ini terjadi pada ruang yang terpisah.DAFTAR PUSTAKACampbell dan Reece. 2002Biologi Edisi Kelima Jilid 1. Jakarta : Erlangga.Darmawan dan Baharsjah. 1983.Pengantar Fisiologi Tumbuhan. Jakarta : PT Gramedia.Devlin, Robert M. 1975.Plant Physiology Third Edition. New York : D. Van Nostrand.Dwijoseputro, D. 1995.Fisiologi Tumbuhan Jilid 2. Jakarta : Gramedia.Dwijoseputro. 1994.Pengantar Fisiologi Tanaman. Jakarta : Gramedia.Guttman, Burton S. Dan and John, W. Hopkins. 1983.Understanding Biology. New York : Harcourt Brace Jovanovich, Inc.http//:www.wikipedia/fotosintesishttp//:jevuska.com/fotosintesis%makalah2010%/http://linkpdf.com/pengaruh20%sungkup30%%pada-fotosintesis/