Bab 2 Himpunan dan Sistem Bilangan A. Himpunan Dalam ...

104
Bab 2 Himpunan dan Sistem Bilangan A. Himpunan Dalam kehidupan sehari-hari seringkali dijumpai beberapa obyek (makhluk hidup atau benda mati) yang berkumpul karena alasan-alasan tertentu ataupun terklasifikasi atas dasar aturan/syarat tertentu. Contohnya, setumpuk majalah milik Pak Agus, sekumpulan ibu-ibu RT 009 sedang bergosip saat arisan, atau siswa-siswa sedang menghadapi Ujian Nasional. Fenomena semacam ini cukup menarik untuk dibahas terkait dengan alasan atau persyaratan sebuah obyek dapat masuk ke dalam suatu kumpulan atau kelompok tertentu sehingga suatu kelompok memiliki ciri-ciri/karakteristik tertentu yang dengan mudah dapat dikenali dan dipelajari sifat- sifatnya. Dalam matematika, permasalahan di atas dipelajari dalam suatu konsep yang disebut sebagai himpunan. Konsep himpunan ini memegang peranan yang sangat penting dalam matematika dan merupakan dasar pendefinisian dari hampir seluruh pengembangan keilmuan matematika. Sebuah himpunan adalah sebuah kumpulan/koleksi dari obyek-obyek yang berlainan. Obyek-obyek dalam sebuah himpunan disebut anggota atau elemen dari himpunan tersebut. Himpunan biasanya dinotasikan dengan huruf besar , , , , , ABXY bila perlu diindeks, sedangkan elemennya dinyatakan dengan huruf kecil ,,, , , abxy dan bila perlu diindeks pula. Berikut ini diberikan beberapa notasi yang digunakan untuk menyatakan keanggotaan suatu himpunan: x A menyatakan x adalah elemen dari himpunan A. x A menyatakan x bukan elemen dari himpunan A. menyatakan himpunan kosong, yaitu himpunan yang tidak memiliki elemen.

Transcript of Bab 2 Himpunan dan Sistem Bilangan A. Himpunan Dalam ...

Bab 2

Himpunan dan Sistem Bilangan

A. Himpunan

Dalam kehidupan sehari-hari seringkali dijumpai beberapa obyek (makhluk hidup atau

benda mati) yang berkumpul karena alasan-alasan tertentu ataupun terklasifikasi atas dasar

aturan/syarat tertentu. Contohnya, setumpuk majalah milik Pak Agus, sekumpulan ibu-ibu RT

009 sedang bergosip saat arisan, atau siswa-siswa sedang menghadapi Ujian Nasional. Fenomena

semacam ini cukup menarik untuk dibahas terkait dengan alasan atau persyaratan sebuah obyek

dapat masuk ke dalam suatu kumpulan atau kelompok tertentu sehingga suatu kelompok

memiliki ciri-ciri/karakteristik tertentu yang dengan mudah dapat dikenali dan dipelajari sifat-

sifatnya.

Dalam matematika, permasalahan di atas dipelajari dalam suatu konsep yang disebut

sebagai himpunan. Konsep himpunan ini memegang peranan yang sangat penting dalam

matematika dan merupakan dasar pendefinisian dari hampir seluruh pengembangan keilmuan

matematika. Sebuah himpunan adalah sebuah kumpulan/koleksi dari obyek-obyek yang

berlainan. Obyek-obyek dalam sebuah himpunan disebut anggota atau elemen dari himpunan

tersebut.

Himpunan biasanya dinotasikan dengan huruf besar , , , , ,A B X Y bila perlu diindeks,

sedangkan elemennya dinyatakan dengan huruf kecil , , , , ,a b x y dan bila perlu diindeks pula.

Berikut ini diberikan beberapa notasi yang digunakan untuk menyatakan keanggotaan suatu

himpunan:

x A menyatakan x adalah elemen dari himpunan A.

x A menyatakan x bukan elemen dari himpunan A.

menyatakan himpunan kosong, yaitu himpunan yang tidak memiliki elemen.

Beberapa definisi terkait mengenai himpunan antara lain:

Himpunan A disebut sebuah subset (himpunan bagian) dari himpunan B A B atau B

adalah superset dari A B A jika dan hanya jika setiap elemen dari A juga merupakan

elemen dari B.

Jika A adalah subset dari B dan terdapat sebuah elemen b B dengan b A , maka dikatakan

bahwa A adalah subset sejati (proper subset) dari B, dan ditulis A B atau B A .

Dua himpunan A dan B dikatakan sama A B jika dan hanya jika A dan B memiliki

elemen yang sama.

Himpunan kosong merupakan subset dari setiap himpunan B, B .

Himpunan S disebut himpunan semesta (universal set) jika S mengandung semua elemen

yang ingin diperhatikan.

Himpunan semua subset dari suatu himpunan S disebut sebagai himpunan kuasa (power set)

dari S dan diberi notasi P S . Dengan demikian, jika banyaknya elemen dari suatu

himpunan S memiliki n buah elemen, maka banyaknya elemen dari P S adalah 2n .

Dalam merepresentasikan sebuah himpunan, secara umum dapat dibedakan menjadi dua

cara sebagai berikut:

1. Bentuk pendaftaran (tabular form) dinyatakan dengan menuliskan semua elemen himpunan

tersebut ke dalam kurung kurawal {} di mana urutan maupun pengulangan elemen tidak

perlu diperhatikan, contohnya {Jakarta, Papua, NTT} = {Papua, Jakarta,NTT} = {Jakarta,

Papua, Papua, NTT}. Secara umum, 1 2 3, , , , nx x x x menyatakan himpunan yang memiliki

elemen berhingga banyaknya, sedangkan 1 2 3, , ,x x x menyatakan himpunan yang

memiliki elemen tak berhingga banyaknya.

2. Bentuk pencirian (set-builder form) dinyatakan dengan menuliskan sifat/syarat/aturan

mengenai elemen-elemen himpunan tersebut, contohnya {x : x adalah huruf vokal} = {x | x

adalah huruf vokal} = { xhuruf alfabet : x adalah huruf vokal} = { xhuruf alfabet | x

adalah huruf vokal} atau dalam tabular form direpresentasikan dengan {a,i,u,e,o}. Secara

umum, aturan penulisannya dapat dinyatakan dengan

: :x P x x P x x S P x x S P x di mana S merupakan himpunan

semesta, sedangkan P x menyatakan sifat/syarat/aturan mengenai elemen-elemen

himpunan tersebut.

Setelah memahami beberapa definisi terkait mengenai himpunan dan elemen, serta cara

bagaimana merepresentasikan suatu himpunan, sekarang pembahasan difokuskan pada operasi

apa saja yang dapat didefinisikan antara suatu himpunan dengan himpunan lainnya. Dengan

pendefinisian operasi himpunan ini diharapakan dapat menghasilkan suatu himpunan baru

dengan sifat yang baru pula sehingga memperkaya pengetahuan mengenai himpunan itu sendiri.

Berikut ini diberikan beberapa operasi yang diberlakukan pada himpunan A dan B yang masing-

masing diilustrasikan pula dengan suatu diagram venn, yaitu gambar berbentuk lingkaran yang

terletak di dalam sebuah persegi panjang di mana lingkaran menyatakan sebuah himpunan

tertentu sedangkan persegi panjang menyatakan himpunan semesta:

Operasi gabung (union): A B didefinisikan sebagai himpunan yang setiap elemennya termasuk

ke dalam himpunan A atau himpunan B.

Operasi iris (intersection): A B didefinisikan sebagai himpunan yang setiap elemennya

termasuk ke dalam himpunan A dan himpunan B.

A B

A∪B

A B

A∩B

Operasi komplemen (complement): CA didefinisikan sebagai himpunan yang setiap elemennya

tidak termasuk ke dalam himpunan A.

Operasi selisih (difference): \A B didefinisikan sebagai himpunan yang setiap elemennya

termasuk ke dalam himpunan A tetapi tidak termasuk ke dalam himpunan B.

Keterangan: Daerah yang diarsir pada masing-masing diagram venn merupakan daerah dari

himpunan baru yang dihasilkan melalui masing-masing operasi himpunan di atas.

Contoh:

Jika diberikan himpunan semesta 0,1,2,3,4,5S dengan 1,2,3A dan 1,4,5B , maka

A dan B dapat dioperasikan. Contohnya:

1,1,2,3,4,5 1,2,3,4,5

1

0,4,5

0,2,3

0

C

C

C

A B

A B

A

B

A B

0,2,3,4,5

\ 2,3

\ 4,5

\ 0,1,4,5

\ 0,1,2,3

C

C

C

A B

A B

B A

A B

B A

Berdasarkan operasi-operasi himpunan di atas dapat diturunkan beberapa teorema lain

yang berguna dalam pengembangan matematika sebagai berikut:

A

AC

BA

A\B

Misalkan A, B, dan C adalah sembarang himpunan. Maka

a) A A A A A .

b) danA B B A A B B A .

c) danA B C A B C A B C A B C .

d) danA B C A B A C A B C A B A C .

e) A A B A A A B .

Selain kelima teorema di atas, berikut ini diberikan pula sebuah teorema yang dikenal dengan

aturan DeMorgan:

Misalkan A, B, dan X adalah sembarang himpunan. Maka

a) \ \X X A X A .

b) \ \ \X A B X A X B .

c) \ \ \X A B X A X B .

Soal!

1. Jika , ,M r s t , apakah notasi yang tepat untuk menyatakan hubungan antara r dengan M

dan r dengan M? Jelaskan!

2. Representasikan himpunan-himpunan berikut ini ke dalam bentuk pendaftaran:

a) positif dan negatifA x x x !

b) huruf pada kata "malam"B x x !

3. Representasikan himpunan-himpunan berikut ini ke dalam bentuk pencirian:

a) C berisi huruf-huruf a, b, c, d, e!

b) D berisi propinsi-propinsi di Pulau Jawa!

4. Misalkan , , , , , , , , dan , ,V d W c d X a b c Y a b Z a b d . Hubungan apa saja

yang dapat dinyatakan antara V, W, X, Y, dan Z? (Contoh: Y Z ).

5. Tentukan semua subset yang mungkin dibentuk dari ,A b c !

6. Diketahui himpunan semesta , , , , , ,S a b c d e f g .

Misalkan , , , , , , , , , dan , , ,A a b c d e B a c e g C b e f g . Tentukan:

a) \C B !

b) \CA B !

c) A C !

d) B A !

e) CB !

f) CB C !

g) \ CA C !

h) CC A !

i) \CCA B !

j) CCA A !

7. Gambar diagram venn yang mengilustrasikan himpunan-himpunan berikut ini:

a) , , danA B C B A C !

b) , , danA B C B A C !

c) , danA B C B C A C !

8. P A menyatakan power set dari himpunan A dan menyatakan himpunan kosong.

Tentukan:

a) P

b) P P

c) P P P

9. A, B, dan C adalah himpunan. Apakah berlaku A B apabila A C B C .

10. Untuk tiga buah himpunan A, B, dan C, apakah berlaku \ \ \ \ \A B C A C B C . Bila

berlaku, buktikan! Bila tidak, berikan contoh!

B. Sistem dan Operasi Bilangan

Setelah memahami konsep mengenai himpunan, pembahasan kemudian difokuskan pada

himpunan-himpunan yang seringkali digunakan dalam permasalahan matematis. Ketika

berbicara mengenai matematika, biasanya seseorang selalu mengaitkannya dengan sebuah

bilangan. Oleh sebab itu, himpunan yang akan dibahas lebih lanjut adalah himpunan dari suatu

bilangan. Bilangan-bilangan tersebut dapat dikelompokkan ke dalam beberapa jenis himpunan

sesuai dengan sifat aljabarnya masing-masing. Sifat-sifat tersebut berhubungan dengan operasi

biner (penjumlahan dan perkalian) yang didefinisikan pada dua buah pasangan bilangan ,a b .

kedua operasi biner tersebut dinotasikan dengan a b untuk penjumlahan dan a b atau a b

untuk perkalian.

Bilangan Khayal/Imajiner (Im)

Bilangan Kompleks (C)

Bilangan Nyata/Riil (R)

Bilangan Rasional (Q) Bilangan Irrasional

Bilangan Bulat (Z)

Bilangan Asli (N)

Bilangan Pecahan

Bilangan Bulat NegatifNol

Keterangan:

1. Himpunan bilangan asli: 1,2,3,4, .

2. Bilangan Nol: 0.

3. Himpunan bilangan Cacah: 0 0,1,2,3,N .

4. Bilangan bulat negatif: 0, 1, 2, 3, 4,x x n n x n N .

5. Bilangan bulat: 0 0, 0,1, 1, 2, 2,Z N x x n n x n N .

6. Bilangan pecahan: 1 1 2 2 3 3, 0 , , , , , ,2 2 3 3 4 4

m Z m Z n Zn

.

7. Bilangan rasional: 1 1, 0 0,1, 1, , ,2 2

m m Z n Zn

.

8. Bilangan irrasional: , , 0 2, 3, , ,mx x m Z n Z en

.

9. Bilangan riil: 1, 0 , , 0 2, 1,0,1, ,2

m mm Z n Z x x m Z n Zn n

.

10. Bilangan imajiner: 1, 0ai i a R .

11. Bilangan Kompleks: 1, ,a bi i a b R .

Sebagaimana himpunan pada umumnya, himpunan-himpunan bilangan di atas juga

memenuhi sifat-sifat himpunan yang telah dijelaskan sebelumnya. Berikut ini diberikan pula

beberapa contohnya:

1. Bentuk pendaftaran dari himpunan 1 0x R x adalah 1 karena 1 merupakan

anggota himpunan bilangan riil dan memenuhi syarat 1 0x .

2. Bentuk pencirian dari 3,6,9,12,15, adalah ,3xx N n n N

.

Soal!

1. Bentuk pencirian dari himpunan bilangan genap positif adalah ….

2. Bentuk pendaftaran dari himpunan 8 9x N x adalah ….

3. Bentuk pencirian dari himpunan 7,8 adalah ….

4. Bentuk pendaftaran dari himpunan 2 1 0x N x adalah ….

5. Tentukan semua subset yang mungkin dibentuk dari 0, 1,2G !

6. Apakah pernyataan-pernyataan berikut benar atau tidak:

a) 1,4,3 4,1,3 ?

b) 1,3,1,2,3,2 1,2,3 ?

c) 4 4 ?

d) 4 ?

e) 4 ?

f) 4 4 ?

g) S P S ?

h) S P S ?

i) S P S ?

j) S P S ?

7. Untuk setiap , dan 1 :nn N A n k k N , maka 1 2A A .

8. Misalkan 2 : ,K s t s t Q . Tunjukkan apakah K memenuhi kondisi berikut ini:

a) Jika 1 2,x x K , maka 1 2 1 2 danx x K x x K .

b) Jika 0 danx x K , maka 1 Kx .

9. Buktikan bahwa himpunan kuadrat dari bilangan ganjil merupakan subset dari himpunan

bilangan ganjil!

10. Buktikan bahwa jika 1 2, Imx x , maka 1 2 Imx x !

C. Eksponensial dan Logaritma (Pengayaan)

Pada lingkungan peneliti, seringkali bilangan-bilangan yang digunakan memiliki nilai

yang sangat besar ataupun sebaliknya. Contohnya, kelajuan cahaya yang merambat dalam ruang

hampa adalah sekitar 300.000.000 m/s atau massa sebuah atom hidrogen adalah sebesar

0,000000000000000000000000167 kg. Agar memudahkan dalam membaca, menulis, maupun

mengingatnya, akan lebih baik jika penulisan bilangan-bilangan semacam ini disederhanakan ke

dalam suatu bentuk notasi ilmiah yang dipelajari dalam eksponensial.

Penyederhanaan penulisan bilangan-bilangan tersebut dinyatakan ke dalam bentuk

pangkat, seperti dicontohkan berikut ini:

1. 5

5 kali

6 6 6 6 6 6 .

2. 2 3

2 kali 3 kali

4 4 2 2 2 4 2 .

3. 6

6 kali

1 1 1 1 1 1 1 1 .

4. 33 kali

1 1 1 1 1 .

5. 44 kali

1 1 1 1 1 1 .

8 kali8

6. 300.000.000 3 100.000.000 3 10 10 10 10 10 10 10 10

3 10

Berikut ini diberikan pula beberapa sifat eksponensial di mana a adalah suatu bilangan:

1. m n m na a a .

2. ; 0m

m nn

a a aa

.

3. nm m na a .

4. n n na b a b .

5. ; 0n n

n

a a bb b

.

6. 0 1 ; 0a a .

7. 1 ; 0nna a

a .

8. ; 0m

n m na a a .

Contoh penerapan sifat-sifat di atas untuk menyederhanakan penulisan massa atom hidrogen

adalah sebagai berikut:

1670,00000000000000000000000000167100.000.000.000.000.000.000.000.000.000

1 167100.000.000.000.000.000.000.000.000.000

29

29

27

1 16710

167 10 1,67 10

notas i ilmiah

Selain dalam bentuk pangkat, eksponensial dapat pula dituliskan dalam bentuk notasi

logaritma. Persamaan ca b dapat ditulis ke dalam bentuk logaritma loga b c . Oleh sebab itu,

dapat ditentukan pula sifat-sifat logaritma yang bersesuaian berikut ini:

1. log log loga a ab c b c .

2. log log loga a ab b cc

.

3. log logna m amb b

n .

4. logloglog

ca

c

bba

.

5. 1loglog

abb

a .

6. log 1a a .

7. log1 0a .

8. log log loga b ab c c .

9. loga ba b .

Contoh:

1. Bentuk sederhana dari22

32ab

adalah ….

Jawab:

2 2 22 2 2 2 2 2 3 22 3 2 3 1 2 4 6

3 4 6

1 1 42 2 .2 2 2a a b a b a b a bb a b

2. Jika 3 log 5 a , maka 25 log 27 .

Jawab:

1

1

33 3 3

253 3 2 3

3 log3log 27 log3 3 1 31log 27 .2log 25 2 2log5 log51

a a

Soal!

1. 1253 0,125 32 2

.

2. Tentukan nilai dari

223

2

1274

5

!

3.2 3 3 23 4

2 23 3

2 227 168 4

.

4. 35 31 1729

243 64 .

5. Sederhanakan bentuk1 3 24

33

x xx yx x

!

6. Diketahui 1 13 2 2 dan 3 2 2p q

. Nilai 1 11 1p q .

7. Sederhanakan bentuk

1215

34 34

3 3

a a a a

a a a

!

8. Bentuk sederhana dari

1 12 22 2

1 12 22 2

1 1

1 1

x yy x

x yy x

adalah ….

9. Nilai x yang memenuhi persamaan

12 6 6

2 1 1525 25

x

adalah ….

10. Jika 0x dan 1x memenuhi3 3

px xx x

dengan p bilangan rasional, maka p .

11. Nilai x yang memenuhi persamaan 3 544 8x x adalah ….

12. Diberikan persamaan3 2

3 32

1 3 1243 3 9

x

x

. Jika 0x memenuhi persamaan tersebut, maka

nilai 0314

x adalah ….

13.2 3 51 1 1log3 log5 log 3log5 5 25 log125 2 log 81

.

14. Hitunglah nilai numerik dari 4 2log log log16 !

15. Hitunglah nilai numerik dari 2 23 3

3

log 36 log 4

log 12

!

16. Hitunglah nilai numerik dari log510 2log5 log 2 log12 log 20 log3 !

17. Hitunglah nilai numerik dari

2log35 5 3log 175 log15

log35

!

18. 1 1 1

log 1 log 1 log 1a b cbc ca ab

.

19. Jika 4 log5 p dan 4 log 28 q , maka 4 log 70 .

20. Jika 1 2 3log 2 , log3 , dan 2 3x xa b , maka nilai 1x .

21. Jika log 4, log 2, dan , ,a cb a a b c bilangan positif, , 1a c , maka 1

4 2loga bc .

22. Jika log 2, log 3, dan log 4a a ax y z , maka3 2

2 23loga x z

y z

.

23. Jika2 3

3 2

log log, , 1, dan 1log log

a am n a bb b , maka m

n .

24. Nilai x yang memenuhi persamaan

2 2log 4 log 2 log 3log log a bx a b a b a ba b

adalah ….

25. Nilai x yang memenuhi persamaan 3 2 5log 27 log 3x adalah ….

26. Nilai x yang memenuhi persamaan 5log 3 1 log 3a x a adalah ….

27. Nilai x yang memenuhi persamaan 4 5log 9 log81 0x x adalah ….

28. Nilai x yang memenuhi persamaan 2 2 2 2log log log 5 2 log 1x x adalah ….

Soal Tambahan!

1. Jika himpunan A memiliki m buah elemen dan himpunan B memiliki n buah elemen,

tentukan berapa banyak elemen dalam himpunan A B dengan mengasumsikan bahwa

banyaknya elemen dalam himpunan A B adalah k elemen!

2. Hambatan total R dari sebuah rangkaian seri-paralel diberikan oleh persamaan1

12 3 4

1 1 1R RR R R

. Tentukan R jika 1 2 3 46,5 , 5 , =6 , dan 7,5R R R R !

3. Energi diam E sebuah proton dengan massa diam m dihubungkan oleh persamaan Einstein2E mc , c = kecepatan cahaya. Tentukan E jika 27 81,7 10 kg dan 3,0 10 m sm c !

4. Suatu atomic mass unit (amu) sama dengan 271,66 10 kg . Berapakah massa 15.000.000

atom karbon (dalam kg) jika massa 1 atom karbon sama dengan 12,0 amu?

5. Massa bumi kira-kira 245,98 10 kg dan volumenya kira-kira 21 31,08 10 m . Berapakah

massa jenis rata-rata bumi?

6. Cepat rambat bunyi dari suatu gelombang bunyi yang merambat longitudinal dalam suatu zat

cair Lv dirumuskan: Lkv

. k adalah modulus bulk dan adalah massa jenis zat cair.

Tentukan cepat rambat bunyi dalam air jika 9 2 32,1 10 N m dan 1.000kg mk !

7. Berapakah luas suatu segitiga sama sisi yang memiliki panjang sisi a cm?

8. Berapakah panjang diagonal dari suatu persegi yang memiliki panjang sisi a cm?

9. Luas persegi PQRS adalah 100 cm2. A, B, C, dan D adalah titik tengah tiap-tiap sisi persegi

tersebut. Tentukan luas persegi ABCD!

10. Sebuah bola memiliki volume 1.570 cm3. Tentukan jari-jari bola tersebut!

11. Jika sejumlah uang P diinvestasikan dengan bunga majemuk r% per tahun, nilai uang setelah

n tahun nS diberikan oleh 1 nnS P r . Berapa lama harus diinvestasikan agar uang P

menjadi dua kali semula jika suku bunga adalah 6% per tahun?

12. Sebuah bakteri kolera membelah setiap 12

jam untuk menghasilkan dua bakteri kolera. Jika

Murni mulai dengan suatu koloni berjumlah 5.000 bakteri, setelah t jam Murni akan memiliki25.000 2 tA bakteri. Berapa lama waktu yang diperlukan agar A sama dengan 1.000.000?

13. Potensial hidrogen (pH) suatu bahan didefinisikan oleh logpH H dengan H

adalah konsentrasi ion-ion hidrogen dalam larutan. Skala pH bervariasi dari 0 - 14, dengan

pH air suling sama dengan 7. Suatu bahan dikatakan asam jika 7pH dan basa jika

7pH . Tentukan pH dari:

a) minuman botol dengan 73,75 10H !

b) spa dengan 82, 25 10H !

14. Oleh karena jangkauan yang luas dari kepekaan pendengaran manusia, untuk mengukur

intensitas bunyi dalam jangkauan ini digunakan skala logaritmik sebagai pengganti skala

mutlak. Besaran yang diukur disebut taraf intensitas , TI, dan diberi satuan desibel (disingkat

db) untuk memberi penghargaan terhadap Alexander Graham Bell, penemu telepon. Jika I

adalah intensitas bunyi dalam watt/m2 dan I0 adalah intensitas bunyi ambang pendengaran

(mendekati 10-12 watt/m2), maka 100 10TII I ,

a) tunjukkan bahwa rumus tersebut dapat ditulis dalam bentuk0

10log ITII

!

b) tentukan taraf intensitas bunyi-bunyi berikut (dalam desibel)

i. bisikan (10-9 watt/m2)!

ii. percakapan biasa 6 23,16 10 watt m !

iii. lalu lintas ramai (10-4 watt/m2)!

iv. pesawat jet (103 watt/m2)!

15. Bintang-bintang digolongkan berdasarkan kecerahannya pada suatu skala yang diukur dalam

magnitudo. Bintang paling redup yang masih dapat dilihat dengan mata telanjang ditetapkan

memiliki magnitudo 6. Teleskop (teropong) dirancang untuk dapat melihat bintang-bintang

yang kecerahannya di bawah magnitudo 6. Batas magnitudo (L) dari sebuah teleskop

bergantung pada diameter (D) dari lensa-lensanya, dan dinyatakan oleh 8, 5,1log 2,5L D .

a) Tentukan batas magnitudo dari teleskop yang memiliki lensa dengan diameter 15 cm!

b) Tentukan diameter lensa yang akan menghasilkan teleskop dengan magnitudo 20,6!

Bab 3

Persamaan dan Pertidaksamaan

A. Persamaan

Bilangan-bilangan yang dikenalkan pada Bab 2 terkadang pada kenyataannya tidak

diketahui nilainya sehingga perlu ditentukan terlebih dahulu, seperti dicontohkan berikut ini:

“Haris membeli satu paket porsi makanan di sebuah restoran seharga Rp 22.000 termasuk pajak

10%. Berapakah harga satu paket porsi makanan tersebut sesungguhnya (tanpa pajak)?”

Permasalahan semacam ini kerap kali ditemui dalam kehidupan sehari-hari. Kasus di atas relatif

mudah untuk diselesaikan dengan coba-coba, tetapi hal ini berbeda jika permasalahan menjadi

jauh lebih kompleks sehingga perlu diselesaikan secara matematis. Permasalahan tersebut dapat

dimodelkan secara matematis sebagai berikut:

Misalkan harga satu paket porsi makanan tersebut dinotasikan dengan x, maka permasalahannya

dapat dimodelkan menjadi berapakah nilai x yang memenuhi persamaan 0,1 22.000x x ?

Sesuai dengan operasi matematis yang telah dijelaskan sebelumnya pada Bab 2, maka

persamaannya dapat disederhanakan kembali menjadi 1,1 22.000x . Dengan demikian, untuk

memperoleh nilai x yang diinginkan maka bagi kedua ruas pada persamaan terakhir dengan 1,1

sehingga diperoleh 20.000x .

Selanjutnya, pembahasan difokuskan pada bagaimana cara menentukan solusi dari suatu

permasalahan yang dimodelkan ke dalam suatu persamaan kuadrat 2 0ax bx c . Model

persamaan semacam ini yang akan banyak ditemui pada Bab-Bab selanjutnya. Beberapa cara

dalam menentukan solusi dari suatu persamaan kuadrat, di antaranya faktorisasi, rumus-abc, dan

metode bagi biasa.

1. Faktorisasi

Dengan metode faktorisasi, persamaan kuadrat 2 0ax bx c akan diubah sedemikian

rupa sehingga menjadi 0px q rx s di mana , ,p r a q s c dan p s q r b dengan

, , ,p q r s R . Untuk lebih memahami tujuannya, perhatikan contoh berikut ini:

2 6 8 02 4 0

x xx x

artinya 1, 6, 8, 1, 2, 1,a b c p q r dan 4s di mana

1 1 1 ,2 4 8 ,

1 4 2 1 4 2 6 .

p r aq s cp s q r b

Dengan kata lain, solusi persamaan kuadrat 2 6 8 0x x adalah

1

2 02,

xx

atau

2

4 04.

xx

Terlihat bahwa metode faktorisasi ini cukup mudah untuk diaplikasikan. Tingat kesulitannya

terdapat pada bagaimana menentukan p, q, r, dan s yang sesuai untuk persamaan kuadrat yang

dimaksud.

2. Rumus-abc

Berikut ini akan diturunkan rumus-abc untuk menentukan solusi dari persamaan kuadrat2 0ax bx c .

2

2

2

2

2

2 22

2 2

2 2

2

2

2

2

2 1

2

2

00

1 1

4 44

2 4

42 4

44 2

2 2 4 .2

ax bx cax bx c c cax bx c

ax bx ca a

b cx xa ab b c bx xa a a ab b acxa a

b b acxa a

b b acxb b ac axa a b b acx

a

Dengan mengaplikasikan rumus di atas pada contoh sebelumnya, diperoleh hasil yang

sama sebagai berikut:

2

2 2

1

2 2

2

6 8 0, 1, 6, 8

4 6 6 4 1 8 6 36 32 6 2 22 2 1 2 2

4 6 6 4 1 8 6 36 32 6 2 4.2 2 1 2 2

x x a b c

b b acxa

b b acxa

3. Metode Bagi Biasa

Metode bagi biasa diawali dengan mencari nilai apa saja yang merupakan faktor bagi

nilai c pada persamaan kuadrat 2 0ax bx c . Kemudian, dengan trial and error akan

diperoleh salah satu nilai solusi dari persamaan kuadrat tersebut. Selanjutnya, dengan asumsi

bahwa solusi yang diperoleh berdasarkan trial and error tersebut bukanlah solusi yang

dimaksud, maka lakukan pembagian antara persamaan kuadrat 2 0ax bx c dengan nilai

solusi tersebut untuk memperoleh solusi-solusi lainnya. Walaupun terkesan coba-coba, tetapi

cara ini yang paling banyak diaplikasikan saat ini ketika fungsi polinomial memiliki derajat lebih

tinggi dari 2. Perhatikan contoh berikut ini:

2 6 8 0x x

nilai 8c memiliki faktor-faktor di antaranya 1, 2, 4, dan 8 . Dengan trial and error,

diperoleh salah satu solusi persamaan kuadrat 2 6 8 0x x adalah 1 2x atau 2 0x .

Selanjutnya, dengan asumsi bahwa 1 2x bukanlah solusi untuk persamaan kuadrat

2 6 8 0x x maka diperoleh

2

2

2

6 8 02

42 6 8

2 4 8 4 8 0

x xx

xx x x

x xxx

sehingga solusi dari persamaan kuadrat 2 6 8 0x x adalah 1 2x atau 2 4x .

Soal!

1. Jika 1x dan 2x memenuhi persamaan 13 9 9 28x x , maka 1 2x x .

2. Jika 1x dan 2x akar-akar dari persamaan 2 2 1 0x x , maka persamaan kuadrat yang akar-

akarnya1 2

2 2x x dan 1 2x x adalah ….

3. Salah satu akar persamaan kuadrat 22 1 3 6 0n x n x adalah 3, maka jumlah akar-

akar persamaan tersebut adalah ….

4. Akar-akar persamaan kuadrat 2 4 0x x k adalah 1x dan 2x . Jika1 2

2 2 32x x , maka

k .

5. Jika salah satu akar persamaan kuadrat 2 3 2 0x x p tiga lebih besar dari salah satu akar2 3 0x x p , maka bilangan asli p .

6. Jika 1x dan 2x adalah akar-akar persamaan 26 3 3 0x x , maka persamaan dengan akar-

akar1

1 1x dan

2

1 1x dapat difaktorkan menjadi ….

7. Jika 1x dan 2x adalah akar-akar dari persamaan 2 4 3 0x x , maka persamaan kuadrat

yang akar-akarnya1

2x dan2

2x adalah ….

8. Jika a dan b adalah akar-akar persamaan kuadrat 2 4 2 0x x , maka persamaan kuadrat

yang akar-akarnya 2a b dan 2ab adalah ….

9. Jika 1x dan 2x adalah akar-akar dari persamaan 2 0x px q , maka2

1 2

1 1x x

.

10. Persamaan kuadrat 23 1 1 0x a x memiliki akar-akar 1x dan 2x , sedangkan

persamaan kuadrat yang akar-akarnya1

1x

dan2

1x

adalah 2 2 1 0x b x b , maka nilai

2a b .

11. Jika p dan q akar-akar persamaan 23 2 5 0x x , maka persamaan yang akar-akarnya

2p dan 2q adalah ….

12. Jika dan merupakan akar-akar persamaan kuadrat 2 2 0x bx dan 12 2

maka nilai b .

13. Jika jumlah kuadrat akar-akar riil persamaan 2 2 0x x a sama dengan jumlah kebalikan

akar-akar persamaan 2 8 1 0x x a , maka nilai a .

14. Akar-akar persamaan kuadrat 2 50 0x bx adalah satu lebih kecil dari tiga kali akar-akar

persamaan kuadrat 2 0x x a . Persamaan kuadrat yang akar-akarnya a dan b adalah ….

15. Persamaan kuadrat yang masing-masing akarnya tiga kali akar persamaan kuadrat2 0x px q adalah ….

16. Akar-akar persamaan kuadrat 2 22 4 5 3 8px px p x x adalah 1x dan 2x . Jika

1 2 1 22x x x x , maka 1 2x x .

17. Akar-akar persamaan 22 6 1 0x x adalah m dan n. Persamaan kuadrat yang akar-akarnya

mn

dan nm

adalah ….

18. Jika p dan q merupakan akar-akar persamaan kuadrat 2 3 1 0x x , maka persamaan

kuadrat yang akar-akarnya 1pq dan 1q

p adalah ….

19. Jika salah satu akar persamaan kuadrat 2 1 3 0x k x k adalah dua kali akar

lainnya, maka nilai k adalah ….

20. Akar-akar persamaan kuadrat 2 2 7 0x x adalah 1x dan 2x . Jika 1 22 7x x , maka

nilai adalah ….

B. Pertidaksamaan

Terkadang, permasalahan-permasalahan yang muncul dalam matematika tidak selalu

dalam bentuk persamaan, melainkan dalam bentuk pertidaksamaan. Beberapa bentuk

pertidaksamaan yang dikenal antara lain kurang dari, lebih dari, kurang dari atau sama dengan,

dan lebih dari atau sama dengan yang masing-masing dinotasikan dengan , , , dan . Berikut

ini diberikan beberapa contoh penyelesaian permasalahan pertidaksamaan:

Contoh 1:

Nilai x yang memenuhi pertidaksamaan 2 2x adalah ….

2 22 2 2 24.

xxx

Solusi dari permasalahan tersebut dapat pula digambarkan ke dalam garis bilangan sebagai

berikut:

Contoh 2:

Nilai x yang memenuhi pertidaksamaan 2 6 0x x adalah ….

2

2

6 0Misal: 6 0 3 2 0,

x xx xx x

artinya 3 0x atau 2 0x sehingga diperoleh solusi 1 3x atau 2 2x . Akan tetapi,

solusi tersebut diperoleh dengan terlebih dahulu memisalkan permasalahan dalam bentuk

pertidaksamaan menjadi permasalahan dalam bentuk persamaan. Oleh sebab itu, penyelesaian

solusinya perlu dilanjutkan dengan bantuan garis bilangan dengan menguji apakah masing-

masing interval yang dibatasi oleh solusi-solusi tersebut memenuhi pertidaksamaan yang

dimaksud, seperti diberikan berikut ini:

Soal!

1. Nilai x yang memenuhi pertidaksamaan 2 2 5 3x x adalah ….

2. Nilai x yang memenuhi pertidaksamaan2

2

2 5 2 03 2

x xx x

adalah ….

3. Himpunan penyelesaian dari pertidaksamaan 12 32

xx

adalah ….

4. Agar persamaan 25 4 2 0, 5m x mx m m memiliki akar-akar riil yang berbeda

maka nilai m yang memenuhi adalah ….

5. Jika persamaan kuadrat 21 2 3 3 0p x p x p memiliki dua akar yang sama, maka

konstanta p .

Soal Tambahan!

1. Bentuk tabular form dari himpunan 22 3 1 0x N x x adalah ….

2. Tentukan banyak himpunan bagian dari himpunan 2 24 7 10 0y y y y !

3. Diketahui 2 2 0M x p x p q x dan 2 0K x px qx . Jika M K , tentukan

anggota-anggota dari kedua himpunan tersebut!

4. Terdapat dua kubus yang selisih rusuknya 4 cm dan selisih volumenya 784 cm3. Salah satu

rusuk kubus tersebut adalah ….

5. Tentukan dua bilangan bulat genap positif berurutan yang hasil kalinya adalah 168!

6. Jumlah kuadrat sebuah bilangan dan bilangan lain yang dua lebih besar daripada bilangan

tersebut adalah 6. Tentukan bilangan tersebut!

7. Jika selisih pangkat tiga dari dua bilangan bulat yang berurutan adalah 169, berapakah hasil

kali kedua bilangan tersebut!

8. Jika selisih pangkat tiga dari dua bilangan bulat yang berurutan adalah 169, berapakah hasil

kali kedua bilangan tersebut?

9. Jumlah kuadrat dari tiga bilangan bulat positif berurutan adalah 302. Tentukan bilangan-

bilangan ini!

10. Sebuah balok kayu memiliki panjang x cm, lebar 12

x cm, dan tinggi 13

x cm. Jika luas total

permukaan balok adalah 72 cm2, tentukan x!

11. Satu sisi dari sebuah persegi panjang adalah 2 m lebih panjang daripada sisi lainnya. Jika

panjang diagonal adalah 8 m, tentukan panjang sisi-sisi tersebut!

12. Dari tiap sudut selembar logam berbentuk persegi, buanglah sebuah persegi dengan sisi 9 cm.

Tegakkan tepi-tepinya untuk membentuk sebuah kotak terbuka pada bagian atasnya. Agar

kotak tersebut memiliki volume 144 cm3, berapakah seharusnya ukuran lembaran logam

tersebut?

13. Seutas kawat dengan panjang 10 m akan dipotong menjadi dua bagian. Setiap potongan

tersebut dibengkokkan sehingga membentuk sebuah persegi. Di manakah kawat tersebut

harus dipotong agar jumlah luas kedua persegi ini adalah 3,25 m2?

14. Sebuah batu yang dilemparkan vertikal ke atas tanpa kecepatan awal memiliki ketinggian h

meter di atas tanah, setelah t detik memenuhi persamaan 230 5h t t . Kapan batu tersebut

berada 40 meter di atas tanah? Jelaskan kedua jawaban yang Anda peroleh!

15. Suatu perahu bermotor memerlukan waktu 1 jam lebih lama untuk berlayar ke hulu daripada

arah kebalikannya (ke hilir). Jika perahu melaju 10 mil per jam dalam air tenang (air tak

berarus), berapakah laju arus air?

16. Tentukan nilai-nilai yang mungkin dari dua buah resistor yang dalam susunan seri

memberikan hambatan listrik total 18 dan dalam susunan paralel memberikan hambatan

total 4 !

17. Dua teknisi dapat menyelesaikan pengiriman dalam 3 jam ketika bekerja bersama-sama.

Salah seorang teknisi dapat menyelesaikan pengiriman 2 jam lebih cepat daripada yang

lainnya. Berapa lama waktu yang dibutuhkan setiap orang untuk menyelesaikan pengiriman

tersebut? Hitung jawaban Anda sampai dua tempat desimal!

18. Sebuah pipa dapat mengisi penuh sebuah tangki 5 jam lebih cepat daripada pipa lainnya. Jika

pengisian dilakukan bersama-sama, kedua pipa dapat mengisi tangki selama 5 jam. Berapa

lama waktu yang diperlukan oleh setiap pipa untuk mengisi tangki tersebut? Hitung jawaban

Anda sampai dua tempat desimal!

19. Diketahui rumus investasi adalah 21A P r dengan Rp 36.300.000,00A . Jika

Rp 30.000.000,00P , tentukan suku bunga r!

20. Sekelompok pakar Biologi mempelajari efek nutrisi pada tikus-tikus yang diberi makanan

diet yang mengandung 10% protein. Protein dibuat dari ragi dan tepung jagung. Dengan

mengubah persentase p (dinyatakan sebagai suatu desimal) dari ragi dalam campuran protein,

para pakar menaksir bahwa perolehan berat rata-rata g (dalam gram) dari seekor tikus selama

suatu periode waktu diberikan oleh 2200 200 20g p p . Berapakah persentase dari ragi

yang akan memberikan perolehan berat-rata-rata 70 gram?

21. Seorang konsultan arsitektur merancang sebuah daerah limbah untuk sebuah pabrik kimia.

Daerah limbah dilokasikan pada sebidang tanah berbentuk persegi panjang yang lebarnya

200 m dan panjangnya 80 m. Peraturan npemerintah mensyaratkan bahwa daerah limbah

paling sedikit memiliki luas 10.000 m2 dan memiliki zona pengamanan dengan lebar serba

sama di sekeliling daerah limbah. Dapatkah peraturan pemerintah ini dipenuhi jika daerah

tanah limbah tersebut dibangun pada tanah yang tersedia? Jika ya, berapakah lebar zona

pengamanan? Hitung jawabannya sampai satu tempat desimal!

22. Jika sisi miring sebuah segitiga siku-siku adalah 25 cm dan kelilingnya adalah 56 cm,

tentukan panjang sisi siku-sikunya!

23. Jika sebuah pesawat terbang menambah kelajuan rata-ratanya 100 mph, pesawat akan

memerlukan waktu 2 jam lebih cepat untuk terbang menyeberangi Atlantik sejauh 4.000 mil.

Tentukan kelajuan rata-rata pesawat semula dan waktu penerbangan pada kelajuan yang

lebih besar!

24. Dua gir berputar, dan setiap menit, satu gir melakukan 1 putaran lebih banyak daripada

lainnya. Jika gir yang lebih kecil memerlukan waktu 1 sekon lebih cepat daripada gir yang

lebih besar untuk melakukan 16

putaran, berapa banyaknya putaran yang dilakukan tiap gir

dalam 1 menit?

25. Seorang pengembang perumahan (developer) ingin mendirikan sebuah gedung berbentuk

persegi panjang di sebidang tanah yang lebarnya 200 m dan panjangnya 400 m. Tentukan

ukuran bangunan jika luas penampang lintangnya adalah 15.000 m2!

26. Seorang arsitek sedang mendesain sebuah pondok kayu untuk suatu daerah peristirahatan.

Penampang lintang dari pondok adalah suatu segitiga samakaki dengan luas 12 m2. Tentukan

alas dan tinggi penampang lintang pondok tersebut!

27. Sebuah truk pengirim meninggalkan gedung dan bergerak ke utara menuju pabrik A. Dari

pabrik A, truk bergerak ke timur menuju pabrik B, kemudian kembali menuju gudang.

Pengemudi mencatat data pada speedometer (alat pencatat kilometer yang telah ditempuh)

ketika di gudang, baik pada saat berangkat maupun pada saat tiba, serta saat tiba di pabrik B.

Akan tetapi, dia lupa mencatatnya saat tiba di pabrik A. Jika ongkos pengiriman didasarkan

pada jarak dari gudang, pengemudi perlu mengetahui berapa jauh jarak pabrik A dari gudang.

Tentukan jarak tersebut!

Data pada speedometer:

Gudang : 5 2 8 4 6

Pabrik A : 5 2 ? ? ?

Pabrik B : 5 2 9 3 7

Gudang : 5 3 0 0 2

Bab 4

Fungsi

Berbicara mengenai himpunan, matematikawan tidak berhenti hanya sampai

menganalisis sifat-sifat dari suatu himpunan, melainkan ketertarikannya dilanjutkan dengan

menganalisis keterkaitan antara suatu himpunan dengan himpunan lainnya. Dengan demikian,

dapat terbentuk suatu himpunan baru yang anggotanya merupakan pasangan-pasangan berurutan

dari masing-masing himpunan yang saling terkait. Dalam dunia nyata, pemikiran semacam ini

dapat diartikan sebagai suatu cara untuk mengeksplorasi informasi-informasi yang dimiliki

sehingga dengan menganalisis keterkaitan antar informasi-informasi tersebut diharapkan dapat

memperkaya wawasan mengenai kumpulan obyek-obyek yang sedang diamati.

Untuk memudahkan pemahaman, berikut ini akan diberikan sebuah ilustrasi mengenai

dua buah himpunan, yakni himpunan barang-barang yang terletak di atas meja dosen (B), yaitu

spidol, pensil, dan penghapus, serta himpunan manfaat (M) yang beranggotakan menulis,

menghapus, dan melempar. Berdasarkan kedua himpunan tersebut, dapat dibentuk suatu

himpunan baru berupa korespondensi/relasi ( B M atau K) yang beranggotakan pasangan dari

setiap elemen yang terkandung dalam masing-masing himpunan B dan M sebagai berikut:

Spidol, Menulis , Spidol, Menghapus , Spidol, Melempar

Pensil, Menulis , Pensil, Menghapus , Pensil, Melempar .

Penghapus, Menulis , Penghapus, Menghapus , Penghapus, Melempar

B M K

Secara formal, K adalah suatu cara yang menghubungkan atau mengaitkan elemen B

dengan elemen M atau dapat dikatakan terdapat suatu relasi K antara B dan M. Setiap relasi dapat

dinyatakan sebagai suatu grafik dalam koordinat Cartesius atau dipandang sebagai suatu

transformasi, seperti ditunjukkan berikut ini:

Selanjutnya, perhatikan setiap anggota K. Salah satu subset yang cukup menarik untuk

dibahas adalah keterkaitan mengenai kegunaan/fungsi masing-masing barang, yaitu:

1 Spidol, Menulis , Pensil, Menulis , Penghapus, Menghapus .K

Hal ini menarik untuk dibahas karena setiap barang yang diciptakan memiliki kegunaannya

masing-masing. Selain itu, jika diperhatikan setiap barang tersebut sebenarnya dapat digunakan

untuk melempar sehingga

2 Spidol, Melempar , Pensil, Melempar , Penghapus, MelemparK

dapat diartikan sebagai kegunaan lain dari barang-barang tersebut. Akan tetapi, pada dasarnya

suatu barang tidak dapat digunakan untuk melakukan dua pekerjaan sekaligus dalam satu waktu,

seperti subset-subset di bawah ini:

3

4

5

Spidol, Menulis , Spidol, Menghapus , Spidol, Melempar ;

Pensil, Menulis , Pensil, Menghapus , Pensil, Melempar ;

Penghapus, Menulis , Penghapus, Menghapus , Penghapus, Melempar .

K

K

K

Berdasarkan ilustrasi di atas, selanjutnya hanya akan dibahas subset-subset dari

himpunan K yang termasuk ke dalam kategori kegunaan atau yang biasa disebut sebagai

fungsi/pemetaan (f). Secara formal, suatu fungsi atau suatu pemetaan f dari himpunan A ke

himpunan B adalah suatu aturan korespondensi yang menentukan tepat satu elemen f x di B

untuk setiap elemen x di A atau dapat ditulis pula sebagai :f A B . Suatu fungsi atau suatu

pemetaan f dari himpunan A ke himpunan B adalah suatu subset f dari produk atau relasi A B ,

f A B di mana jika ,a b f dan ,a b f maka b b . Jika ,a b f , dinyatakan pula

sebagai b f a , maka b disebut sebagai nilai dari fungsi f di titik a atau b disebut sebagai peta

dari a terhadap pemetaan f.

Himpunan terdapat sehingga ,D f a A b B a b f disebut daerah asal

(domain) dari f dan terdapat sehingga ,R f b B a A a b f disebut daerah hasil

(range) dari f di mana B disebut pula sebagai daerah kawan (codomain) dari f.

Jika :f A B adalah sebuah fungsi dengan domain A dan range B, untuk setiap E A ,

himpunan f E f x x E disebut peta (direct image) dari E terhadap fungsi f. Fungsi

:f A B disebut fungsi satu-satu (one-one) atau injektif (injective) jika f x f y untuk

setiap ,x y A dengan x y . Dengan kata lain, fungsi :f A B disebut fungsi satu-satu jika

untuk setiap , ,x y A berlaku x y berakibat (berimplikasi) f x f y . Selain itu, fungsi

:f A B disebut fungsi pada (onto) B atau surjektif (surjective) jika f A B atau

R f B . Fungsi :f A B disebut fungsi satu-satu pada (one-one onto) B atau bijektif

(bijective) jika f adalah adalah fungsi satu-satu dan onto pada B.

Berikut ini diberikan teorema yang cukup berguna dalam membuktikan apakah suatu

fungsi memenuhi fungsi satu-satu atau tidak:

Fungsi :f A B adalah sebuah fungsi satu-satu jika dan hanya jika untuk setiap ,x y A

berlaku f x f y berakibat x y .

Jika :f A B adalah sebuah fungsi dengan domain A dan range B, untuk setiap H B

, himpunan 1f H x A f x H disebut prapeta (inverse image) dari H terhadap

fungsi f. Dengan kata lain, misalkan :f A B adalah sebuah fungsi injektif dengan fD A

dan fR B . Fungsi 1f disebut fungsi invers dari f jika 1 , ,f b a B A a b f adalah

suatu fungsi injektif pula dengan 1D f R f dan 1R f A atau dengan kata lain

1fx f y D jika dan hanya jika fy f x R .

Setelah mengetahui beberapa definisi dan teorema terkait seputar masalah fungsi,

pembahasan selanjutnya dibatasi hanya pada himpunan-himpunan bilangan. Sebuah fungsi f

dengan himpunan bilangan riil S R sebagai domain dan codomain disebut fungsi naik ketat

(strictly increasing) bila berlaku f x f y untuk ,x R y R , dan x y . f disebut fungsi

turun ketat (strictly decreasing) bila berlaku f x f y untuk ,x R y R , dan x y . f

disebut fungsi naik/tidak turun (increasing/non-decreasing) bila berlaku f x f y untuk

,x R y R , dan x y . f disebut fungsi turun/tidak naik (decreasing/non-increasing) bila

berlaku f x f y untuk ,x R y R , dan x y .

Untuk melengkapi pemahaman, ada baiknya jika diperhatikan contoh-contoh berikut ini:

1. Jika 2f x x , maka 2f diperoleh dengan mengganti/mensubstitusi x pada f x dengan

angka 2 sehingga diperoleh 22 2 4.f Dengan cara yang sama, diperoleh beberapa

nilai berikut ini:

atau dalam koordinat Cartesius dapat digambarkan sebagai berikut:

Jika mengambil x R maka akan diperoleh grafik berikut ini:

2. :f R R dengan 2f x x , 0 2E x x dan 0 4H y y . Maka peta dari

himpunan E terhadap f adalah 0 4f E y y . Sedangkan, prapeta dari himpunan H

terhadap f adalah 1 2 2f H x x . Jadi, terlihat bahwa 1f f E E atau dengan

kata lain prapeta dari peta sebuah himpunan E tidak sama dengan himpunan E itu sendiri.

Sedangkan, sebaliknya, jika H adalah subset dari range f maka berlaku 1f f H H

untuk H R f . Jika H bukan subset dari R f maka 1f f H H . Misalnya

1 1H y y .

3. Fungsi 2f x x adalah fungsi satu-satu bila 0D f x R x atau

0D f x R x . Tetapi, f bukan fungsi satu-satu bila D f R .

4. Fungsi :f A B dengan 2f x x adalah fungsi pada B bila A R dan 0B x R x

. Tetapi, f bukan fungsi pada B bila B R .

5. 1A x R x . :f A R dengan 1xf xx

. Periksa apakah f injektif?

Ambil dua elemen x dan y di A sembarang, periksa apakah f x f y berakibat

(berimplikasi) x y . Bila ya, maka berdasarkan proposisi di atas, f adalah satu-satu atau

injektif. f x f y memberikan1 1x yx y

atau 1 1x y y x atau x y . Maka

f adalah satu-satu.

6. :f R R dengan f x x adalah sebuah fungsi naik ketat.

Soal!

1. Tentukan apakah himpunan-himpunan berikut ini merupakan suatu relasi atau fungsi,

kemudian tentukan pula domain dan range dari himpunan-himpunan yang merupakan suatu

fungsi:

a) 1,3 , 3,2 , 2,2 , 3,1 , 4,3 , 3,3A .

b) 1,5 , 2,5 , 3,5 , 4,5 , 5,5B .

c) 2, dan 10,C x y y x x x N .

d) , dan 10,D x y y x y y N .

e) 2, ,E x y y x y Z .

f) ,F x y x y .

g) ,G x y x y .

h) , 2 3 untuk 0 10 dan 5 10 untuk 1 2H x y y x x y x x .

i) , 2 jika 0 1 dan 3 jika 1 2I x y y x y x .

j) 2, jika 0 1 dan jika 1 2J x y y x x y x x .

k) 1, ,K x y y y Nx

.

l) 21, jika 0 2 , jika 1 3L x y y x x y y x xx

.

m) , 2 jika 2 0 , 2 jika 0 2L x y y x x y y x .

n) 2 2 3, 1 ,5

L x y x y x y y

.

o) , , 0 1 , 1, 1 0M x y y x x x y y x x .

2. Diberikan dua buah himpunan 2,4,6A dan 3,5B .

a) Definisikan suatu relasi dari A dan B yang menghubungkan elemen-elemen dari A ke

elemen-elemen di B tetapi relasi tersebut bukanlah suatu fungsi.

b) Berapa banyak fungsi-fungsi berbeda yang dapat didefinisikan pada dua himpunan

tersebut jika A merupakan domain dari fungsi tersebut, sedangkan range dari fungsi

tersebut merupakan subset dari B?

3. Berikut ini diberikan beberapa aturan. Jika ,x y merupakan suatu himpunan pasangan-

pasangan bilangan riil yang terbentuk berdasarkan aturan-aturan tersebut, tentukan domain

dan range dari fungsi-fungsi tersebut. Jika himpunan tersebut bukanlah suatu fungsi,

jelaskan!

a) 2 3y x .

b) 2 3y x .

c) 24y x .

d) 24y x .

e) 24y x .

f) 1yx .

g) 2

14

yx

.

h)2 4

2xyx

.

i) 2 9y x .

j) 2y x .

k) 1x y .

l) 2 1x y .

m) 2 2 1x y .

n) 26y x x .

o) 2 53

xf xx

.

4. Jika 14

g xx

, tentukan 1 13 , 4 , ,dang g g gh x

!

5. Jika 1xh xx

, tentukan 1 10 , , , dan2

h h h h x kx

!

6. Jika 2 3f x x , tentukan 1 danf x h fx

!

7. Jika 1g xx , tentukan

12 4 2 , , ,dang g g a g b ag ag a

!

8. Jika 22h x x x , tentukan

123 2 , 1 3 , dan13

hh h h h

h

!

9. Jika 3f x x , tentukan 21, , danf a h f a f a f af a

!

10. : , , , ,f A B C A D A E B F B . Pernyataan berikut mana yang benar? Bila benar,

buktikan! Bila tidak, berikan contoh!

a) f C D f C f D !

b) f C D f C f D !

11. Berikan masing-masing sebuah contoh fungsi :f N N yang

a) injektif tetapi tidak surjektif!

b) surjektif tetapi tidak injektif!

c) bijektif selain fungsi identitas!

d) tidak injektif juga tidak surjektif!

12. Buktikan bahwa : 0f x R x R dengan 1f xx adalah sebuah fungsi turun ketat!

13. Diketahui fungsi 4 52 3xf xx

dengan 2 3 0x , maka invers dari fungsi f adalah ….

14. Jika invers fungsi f x adalah 1 23xf xx

, maka 3f .

15. Diketahui fungsi 3 31 2f x x maka invers dari f x adalah ….

16. Jika 3f x x maka 1f x .

17. Invers dari fungsi 22 3xf xx

adalah ….

18. Invers dari fungsi 353 1f x x adalah ….

19. Jika invers fungsi f x ditentukan oleh 1 2 1; 33

xf x xx

, maka fungsi 1f x adalah

….

20. Jika 8

1f x

x

dengan 0x , maka 4f .

21. Diketahui 1, 0xf x xx

. Jika k adalah banyaknya faktor prima dari 210, maka

1f k .

22. Domain fungsi

2

2

3 22 5 2x xf xx x

adalah ….

23. Range fungsi 2 53

xf xx

untuk dan 3x R x adalah ….

24. : , , , ,f A B C A D A E B F B . Pernyataan berikut mana yang benar? Bila benar,

buktikan! Bila tidak, berikan contoh!

c) 1 1 1f E F f E f F !

d) 1 1 1f E F f E f F !

Bab 5

Jenis Fungsi

A. Fungsi Polinomial

Pada SubBab ini akan diperkenalkan beberapa jenis fungsi yang cukup populer dalam

aplikasi, di antaranya fungsi polinomial, fungsi trigonometri, fungsi mutlak, fungsi lantai (floor

function), dan fungsi langit-langit (ceiling function). Khusus untuk fungsi trigonometri akan

dibahas lebih lanjut pada Bab 7. Salah satu fungsi yang paling banyak diaplikasikan dalam

kehidupan sehari-hari adalah fungsi polinomial, seperti didefinisikan berikut ini:

11 1 0

n nn nf x a x a x a x a

untuk ,ia x R dan , 0i n N . Fungsi polinomial di atas terkadang disebut pula sebagai

fungsi polinomial berderajat-n karena variabel x memiliki pangkat tertinggi n. Beberapa istilah

yang digunakan untuk masing-masing fungsi polinomial berderajat 0, 1, dan 2 adalah fungsi

konstan, fungsi linier, dan fungsi kuadrat. Berikut ini diberikan contoh mengenai fungsi konstan

dan fungsi linier:

Pembahasan selanjutnya difokuskan pada fungsi polinomial berderajat 2 sebagai dasar

pemahaman untuk fungsi polinomial berderajat lebih tinggi. Untuk tujuan perumusan, fungsi

kuadrat dapat pula dinyatakan sebagai berikut:

2 ,f x ax bx c

dengan 0a . Untuk memudahkan pemahaman, pertama-tama akan dicoba digambarkan grafik

2f x ax .

Terlihat dari grafik di atas bahwa gambar grafik 2f x ax di atas dapat dibedakan menjadi dua

jenis, yakni untuk 0a dan 0a . Jika 0a maka grafik 2f x ax terbuka ke atas,

sedangkan grafik 2f x ax terbuka ke bawah ketika 0a . Akan tetapi, tanpa memandang

positif maupun negatif, semakin besar nilai a maka grafiknya terlihat semakin mengerucut. Oleh

karena fungsi 2f x ax dapat dipandang pula sebagai 20f x a x , maka akan

digambarkan pula fungsi 2f x a x h untuk sembarang nilai h.

Berdasarkan grafik tersebut, terlihat bahwa perubahan nilai h mempengaruhi pergeseran grafik

ke kiri dan ke kanan. Oleh karena fungsi 2f x a x h dapat dipandang pula sebagai

2 0f x a x h , maka akan digambarkan pula fungsi 2f x a x h k untuk

sembarang nilai k.

Dengan demikian, bentuk umum fungsi kuadrat 2f x ax bx c akan diubah ke bentuk

2f x a x h k sehingga karakteristik fungsi kuadrat tersebut dapat lebih mudah untuk

dipelajari.

2

2

2 22

2 22

2 22

2

2 2

44

44

44 4

44 4

4 .2 4

f x ax bx cacax bxa

b b acax bxa

b b acax bxa a

b b b aca x xa a a

b b aca xa a

Berdasarkan penurunan di atas terlihat bahwa bentuk umum fungsi kuadrat

2f x ax bx c dapat diubah ke dalam bentuk 2f x a x h k dengan2bha

dan

2 44

b acka

. Dengan demikian, dapat disimpulkan bahwa karakteristik grafik dari fungsi

kuadrat 2f x ax bx c memiliki titik puncak 2 4, ,

2 4b b ach ka a

dengan jenis

minimum ketika 0a dan maksimum ketika 0a .

Karakteristik lain yang menarik untuk dibahas seputar fungsi kuadrat 2f x ax bx c

adalah ketika fungsi tersebut berpotongan dengan salah satu sumbu koordinat, misalkan sumbu-

x. Berdasarkan pembahasan di atas, perpotongan grafik fungsi kuadrat 2f x ax bx c

dengan sumbu-x hanya dipengaruhi oleh nilai2 4

4b ack

a

. Oleh sebab itu, secara geometris

dapat dilihat beberapa karakteristik berikut:

1. Ketika 0a dan 0k , grafik fungsi kuadrat 2f x ax bx c dapat digambarkan

sebagai berikut:

Dengan kata lain, grafik fungsi kuadrat 2f x ax bx c berpotongan dengan sumbu-x di

dua titik ketika2 4 0

4b ac

a

atau 2 4 0b ac .

2. Ketika 0a dan 0k , grafik fungsi kuadrat 2f x ax bx c dapat digambarkan

sebagai berikut:

Dengan kata lain, grafik fungsi kuadrat 2f x ax bx c bersinggungan dengan sumbu-x

ketika2 4 0

4b ac

a

atau 2 4 0b ac .

3. Ketika 0a dan 0k , grafik fungsi kuadrat 2f x ax bx c dapat digambarkan

sebagai berikut:

Dengan kata lain, grafik fungsi kuadrat 2f x ax bx c tidak berpotongan dengan

sumbu-x ketika2 4 0

4b ac

a

atau 2 4 0b ac .

x1x

x2

x1x

x

4. Ketika 0a dan 0k , grafik fungsi kuadrat 2f x ax bx c dapat digambarkan

sebagai berikut:

Dengan kata lain, grafik fungsi kuadrat 2f x ax bx c berpotongan dengan sumbu-x di

dua titik ketika2 4 0

4b ac

a

atau 2 4 0b ac .

5. Ketika 0a dan 0k , grafik fungsi kuadrat 2f x ax bx c dapat digambarkan

sebagai berikut:

Dengan kata lain, grafik fungsi kuadrat 2f x ax bx c bersinggungan dengan sumbu-x

ketika2 4 0

4b ac

a

atau 2 4 0b ac .

6. Ketika 0a dan 0k , grafik fungsi kuadrat 2f x ax bx c dapat digambarkan

sebagai berikut:

Dengan kata lain, grafik fungsi kuadrat 2f x ax bx c tidak berpotongan dengan

sumbu-x ketika2 4 0

4b ac

a

atau 2 4 0b ac .

x1x

x2

xx1

x

Contoh:

Syarat agar grafik fungsi kuadrat 2 1f x mx x menyinggung grafik fungsi linier

4 2g x x adalah ….

Permasalahan di atas dapat disederhanakan menjadi permasalahan perpotongan fungsi

h x f x g x dengan sumbu-x di mana fungsi h x bersinggungan dengan sumbu-x.

Dengan demikian, diperoleh

2

2

1 4 2

3 1

h x f x g x

mx x x

mx x

di mana , 3,a m b dan 1c . Jadi, syarat agar grafik fungsi kuadrat 2 1f x mx x

menyinggung grafik fungsi linier 4 2g x x adalah sebagai berikut:

2

2

4 0

3 4 1 09 4 0

9 .4

b ac

mm

m

Soal!

1. Grafik fungsi 12 2 3xxf x memotong sumbu-x di titik yang absisnya ….

2. Syarat fungsi 24 2 3f x a x ax a bernilai tak negatif adalah ….

3. Daerah asal (domain) fungsi 2

2

3 22 5 2

x xf xx x

adalah ….

4. Daerah asal (domain) fungsi 2 5 6

2x xf x

x

adalah ….

5. Jika fungsi 22 8 3f x x x n memiliki titik puncak/ekstrim ,n p , maka nilai p

adalah ….

6. Garis f x ax b memotong parabola 2 1g x x x di titik 1 1,x y dan 2 2,x y . Jika

1 2 2x x dan 1 2 1x x , maka a b .

7. Jika fungsi kuadrat y f x mencapai minimum di titik 1, 4 dan 4 5f , maka

f x .

8. Fungsi kuadrat yang grafiknya melalui titik 1,3 dan titik terendahnya sama dengan

puncak dari grafik 2 4 3f x x x adalah ….

9. Grafik fungsi kuadrat 22 5 12y x x dan fungsi linier 14y mx berpotongan pada dua

titik jika ….

10. Jika fungsi 212 2f x x x memiliki nilai maksimum p dan nilai minimum q, maka

p q .

11. Grafik fungsi 2 1y ax bx memotong sumbu x di titik-titik 1 ,02

dan 1,0 . Fungsi ini

memiliki nilai ekstrim ….

12. Suatu garis lurus memiliki gradien -3 dan memotong parabola 22 6y x x di titik 2, 4 .

Titik lainnya memiliki koordinat ….

B. Fungsi Mutlak

Fungsi mutlak didefinisikan sebagai berikut:

; jika 0 atau; jika 0 atau

x a x a x af x x a

a x x a x a

Contoh:

Gambarkan fungsi 2f x x !

Artinya, 2; jika 2 0 atau 2

22 ; jika 2 0 atau 2x x x

f x xx x x

.

C. Fungsi Lantai dan Fungsi Langit-Langit

Fungsi lantai (floor function) :f R R adalah fungsi f x x dengan x bernilai

bilangan bulat terbesar yang kurang dari atau sama dengan x. Sedangkan, fungsi langit-langit

(ceiling function) :f R R adalah fungsi g x x dengan x bernilai bilangan bulat

terkecil yang lebih dari atau sama dengan x. Berikut ini diberikan contoh gambar fungsi

f x x (coba kalian gambarkan pula fungsi g x x !)

Contoh:

Diketahui 1,0, 2,7S , 5xf x

, dan 2 13

xg x

. Tentukan f S dan g S

kemudian gambar pula grafiknya dalam koordinat Cartesius!

11 15

00 0522 0577 15

f

f

f

f

2

2

2

2

1 1 21 13 3

0 1 10 13 3

2 1 52 23 3

7 1 507 173 3

g

g

g

g

maka 1,0,1f S dan 1, 2,17g S

Soal!

1. Gambarkan dan jelaskan mengenai domain serta range dari fungsi-fungsi berikut ini:

a) 1y x .

b) 4y x .

c) 4y x .

d) 1y x .

e) y x x .

f) y x x .

g) y x x .

h) 1x y .

i) y x x .

j) y x x .

k) ; untuk 0

0 ; untuk 0

xxy xx

.

l) 1 1; di mana

2

n

y n x

.

m) 2 2y x x .

n) 2 1 2y U x U x U x di mana 0; jika1; jika

x aU x a

x a

disebut sebagai unit

step function.

o) 1 1y xU x x U x .

p) 2 1 1 2 2y xU x x U x x U x .

q) 2y U x U x .

2. Apakah :f R R dengan f x x adalah sebuah fungsi naik atau turun?

3. Apakah : 0f x R x R dengan 1f xx

adalah sebuah fungsi naik atau turun?

4. Nilai x yang memenuhi pertidaksamaan 2 2 2 2x x adalah ….

Soal Tambahan!

1. Biaya untuk membuat x satuan barang adalah (dalam jutaan rupiah), sedangkan harga jual

untuk x satuan barang adalah (dalam jutaan rupiah). Berapa banyak satuan barang yang

harus diproduksi agar diperoleh keuntungan maksimum? Berapakah keuntungan maksimum

tersebut?

2. Seorang petani memiliki pagar sepanjang 6.000 m. Ia ingin memagari sebuah ladang yang

berbentuk persegi panjang. Ladang tersebut terdiri atas dua kapling dengan pagar

pembaginya sejajar terhadap salah satu sisi kapling. Berapakah luas ladang paling besar yang

dapat dipagari oleh petani tersebut?

3. Sebuah kapal pesiar meninggalkan pelabuhan Tanjung Perak menuju ke arah timur pada

kelajuan tetap 5 knot (1 knot = 1 mil laut per jam). Pada pukul 16.00, kapal pesiar tersebut

berada sejauh 5 mil laut tepat di sebelah selatan sebuah kapal penjelajah yang sedang

bergerak pada kelajuan tetap 10 knot. Pada pukul berapakah kedua kapal tersebut berada

pada jarak paling dekat?

4. Suatu perusahaan menghasilkan x produk dengan biaya total sebesar 275 2 0,1x x (dalam

rupiah). Jika semua produk perusahaan tersebut terjual dengan harga Rp 40,00 untuk setiap

produknya, laba maksimum yang diperoleh adalah ….

5. Ali memiliki 36 meter kawat berduri yang direncanakan untuk memagari halaman berbentuk

persegi panjang. Jika ia menginginkan luas halaman yang dipagari maksimum, berapakah

ukuran pagar yang seharusnya? Tentukan luas maksimum halaman yang dipagari tersebut!

6. Kawat berduri sepanjang 30 meter akan digunakan untuk memagari sebidang lahan

berbentuk persegi panjang yang berbatasan dengan pinggir sungai. Jika sisi yang berbatasan

dengan sungai tidak perlu dipagari, tentukan panjang dan lebar lahan agar luas lahan yang

dipagari maksimum!

7. Seorang petani memiliki pagar sepanjang 12.000 m. Ia ingin memagari sebuah ladang

berbentuk persegipanjang. Ladang tersebut terdiri atas tiga buah kapling dengan dua pagar

sejajar dengan salah satu ladang. Berapakah luas ladang paling besar yang dapat dipagari

oleh petani tersebut?

8. Sebuah kembang api diluncurkan ke udara. Ketinggian kembang api h f t (dalam m)

pada saat t sekon dimodelkan dengan baik oleh fungsi 216 200 4f t t t . Kapankah

kembang api itu mencapai ketinggian maksimum? Berapakah ketinggian maksimum ini?

9. Ketika sebuah toko serba ada dibuka, jumlah pengunjung toko bertambah dari nol ke suatu

bilangan maksimum, kemudian turun kembali ke nol pada waktu toko ditutup. Jika jumlah

pengunjung (N) dalam toko tersebut dinyatakan sebagai fungsi waktu t oleh

215 80N t t t dengan 0t berhubungan dengan waktu ketika toko dibuka pada jam

10.00 pagi, pada pukul berapakah toko tersebut memiliki jumlah pengunjung maksimum?

Berapakah jumlah maksimum pengunjung tersebut? Pada pukul berapakah toko tersebut

tutup?

10. Misalkan x adalah jumlah (dalam ratusan dollar) yang dihabiskan oleh suatu perusahaan

untuk iklan dan p adalah keuntungan yang diperolehnya. Dalam hal ini

2230 20 0,5p x x . Berapa pengeluaran untuk iklan yang memberikan keuntungan

maksimum?

11. Sebuah bola yang dilemparkan dengan kelajuan awal dan sudut elevasi tertentu akan

menempuh lintasan berbentuk parabola. Koordinat bola setiap saat dapat dinyatakan sebagai

,x y , yang dalam hal ini 52

x t dan 26 5y t t dengan t dalam sekon, sedangkan x dan y

dalam meter. Kapankah bola tersebut mencapai ketinggian maksimum? Tentukanlah

koordinat titik tertinggi tersebut!

12. Sebuah talang air hujan dibuat dari lembaran aluminium yang lebarnya 14 inci dengan cara

menekuk kedua ujungnya 90 . Berapakah kedalaman talang yang dapat memberikan luas

talang maksimum sehingga lebih banyak air hujan mengalir melalui talang? (1 inci = 2,54

cm).

13. Sebuah jendela bagian bawahnya berbentuk persegipanjang. Bagian atasnya berupa setengah

lingkaran dengan garis tengaj sama dengan lebar persegipanjang tersebut. Jika keliling

jendela 24 kaki, berapakah ukuran jendela agar cahaya yang menerobos jendela paling

banyak (maksimumkan luas jendela)? (1 kaki = 0,305 m).

14. Sebuah segitiga samasisi memiliki keliling 30 cm. Sebuah persegipanjang dengan lebar x

akan dipotong dari segitiga tersebut. Tentukan ukuran persegipanjang tersebut agar diperoleh

luas yang paling besar!

15. Dua pesawat terbang bergerak saling tegak lurus ketika meninggalkan bandara yang sama.

Satu jam kemudian keduanya terpisah sejauh 260 km. Jika salah satu pesawat 140 km/jam

lebih cepat daripada pesawat yang lain, tentukanlah kelajuan tiap pesawat!

16. Sebuah meriam ditembakkan ke atas secara vertikal dan menempuh jarak 250 90 4,9s t t

dalam t sekon. Kapan peluru meriam tersebut mencapai tanah? Berapa tinggi maksimum

yang dicapai peluru tersebut? Berapa jarak tembak terjauh yang dapat dicapai oleh meriam

tersebut?

17. Sebuah kotak terbuka dibuat dengan memotong persegi dengan sisi x cm dari keempat pojok

selembar papan berukuran 24 cm 32 cm, tentukan x agar luas permukaan kotak tersebut

maksimum!

Bab 6

Operasi Fungsi

A. Operasi Dasar Fungsi

Sama halnya dengan bilangan, pada fungsi juga dikenal operasi , , , dan . Hanya

saja, operasi-operasi tersebut sekarang dikenakan terhadap suatu fungsi sehingga dapat

menghasilkan suatu fungsi baru, tentunya dengan domain yang berbeda. Permasalahan seperti ini

kerap kali muncul dalam kehidupan sehari-hari.

Berikut ini diberikan beberapa definisi yang diperlukan dalam pengenalan operasi-

operasi dasar fungsi.

Misalkan fungsi f x dan fungsi g x masing-masing dengan domain fD dan gD , maka

1. Jumlah fungsi f x dan fungsi g x adalah f g x f x g x dengan domain

f g f gD D D .

2. Selisih fungsi f x dan fungsi g x adalah f g x f x g x dengan domain

f g f gD D D .

3. Perkalian fungsi f x dan fungsi g x adalah f g x f x g x dengan domain

f g f gD D D .

4. Pembagian fungsi f x dan fungsi g x adalah f xf x

g g x

dengan domain

dan 0f f gg

D D D g x .

Contoh:

Diketahui fungsi-fungsi f dan g masing-masing ditentukan dengan rumus 11

f xx

dan

24g x x . Tentukan fungsi-fungsi berikut ini serta domain-nya:

a) f g x .

b) f g x .

c) f g x .

d) f xg

.

Sebelumnya diketahui bahwa 1,fD x x x R dan 2 2,gD x x x R .

Berdasarkan definisi-definisi di atas maka diperoleh:

a) 21 41

f g x f x g x xx

dengan domain dan range

1 2,f g f gD D D x x x R .

b) 21 41

f g x f x g x xx

dengan domain

1 2,f g f gD D D x x x R .

c) 24

1xf g x f x g x

x

dengan domain

1 2,f g f gD D D x x x R .

d) 2 2

111

4 1 4

f xf xxg g x x x x

dengan domain

0 1 2,f f gg

D D D g x x x x R .

Soal!

1. Misalkan 2

2 1, untuk 0 11, untuk yang lain

x xf x

x x

maka 2 14 3

4 2f f f f

.

2. Fungsi f ditentukan dengan rumus 2

3 2, untuk 1 12 , untuk yang lainnyax x

f xx x

.

Nilai dari 23 1 23

f f f f

.

3. Jika fungsi f memenuhi persamaan 2 9 3 ,f x f x x x R , maka nilai 2f .

4. Jika fungsi f memenuhi persamaan 2 8 ,f x f x x x R , maka nilai 7f adalah

….

5. Jika 2xf x , maka

2 1 12

f x f xf x

.

6. Jika 3f x x maka 22 2f x f x f x .

7. Domain fungsi 2

2

44 21xf x

x x

adalah ….

8. Agar fungsi 2

33 10xg x

x x

terdefinisi dalam domain-nya, maka domain fungsi g

adalah ….

9. Domain fungsi 2 2log 3 10 8h x x x adalah ….

10. Jika fungsi f terhadap fungsi g pada soal 7 dan 8 dilakukan operasi pembagian, maka domain

fungsi f xg

adalah ….

B. Komposisi Fungsi

Selain operasi-operasi dasar, terdapat operasi lain yang dapat didefinisikan antar fungsi,

yaitu operasi komposisi fungsi . Untuk memahami konsep operasi komposisi fungsi dalam

dunia nyata, berikut ini diilustrasikan sebuah contoh operasi komposisi fungsi dalam investasi

sejumlah uang pada beberapa macam produk keuangan. Misalkan seorang investor memiliki

modal (M) sebesar Rp 100.000,00 yang dapat diinvestasikan selama dua bulan (berikut dengan

keuntungannya per bulan). Investor tersebut tertarik untuk menginvestasikan modalnya ke dua

macam produk keuangan F dan G yang masing-masing memberikan fungsi pengembalian

(return) per bulan sebesar 1,03f M M dan 1,035 500g M M . Akan tetapi, modal

minimal untuk masing-masing produk adalah sebesar Rp 100.000,00 sehingga investor tersebut

harus memilih produk mana yang akan dipilih dalam kurun waktu dua bulan tersebut.

Diasumsikan bahwa seorang investor dapat menginvestasikan modalnya minimal selama satu

bulan per produk. Dengan demikian, beberapa kombinasi pilihan investasi investor tersebut

adalah sebagai berikut:

1. Selama dua bulan investasi ke produk F;

2. Selama dua bulan investasi ke produk G;

3. Bulan pertama investasi ke produk G kemudian bulan berikutnya ke produk F; dan

4. Bulan pertama investasi ke produk F kemudian bulan berikutnya ke produk G.

Fungsi pengembalian dari masing-masing kombinasi pilihan investor tersebut secara

berurutan dapat dinotasikan secara matematis sebagai berikut:

1. f f M f f M ;

2. g g M g g M ;

3. f g M f g M ; dan

4. g f M g f M .

Berdasarkan perumusan di atas, dapat diperoleh return dari masing-masing kombinasi pilihan

investasi berikut ini:

1. Selama dua bulan investasi ke produk F.

1,03

1,03 1,03 1,0609

f f M f f M

f M

MM

sehingga dengan modal Rp 100.000,00 diperoleh return sebesar Rp 106.090,00.

2. Selama dua bulan investasi ke produk G.

1,035 500

1,035 1,035 500 500 1,071225 517,5 500 1,071225 1.017,5

g g M g g M

g M

MMM

sehingga dengan modal Rp 100.000,00 diperoleh return sebesar Rp 106.105,00.

3. Bulan pertama investasi ke produk G kemudian bulan berikutnya ke produk F.

1,035 500

1,03 1,035 500 1,06605 515

f g M f g M

f M

MM

sehingga dengan modal Rp 100.000,00 diperoleh return sebesar Rp 106.090,00

4. Bulan pertama investasi ke produk F kemudian bulan berikutnya ke produk G.

1,03

1,035 1,03 500 1,06605 500

g f M g f M

g M

MM

sehingga dengan modal Rp 100.000,00 diperoleh return sebesar Rp 106.105,00

Berdasarkan perhitungan di atas, investor tersebut dapat memilih dua kombinasi pilihan

investasi karena memberikan return yang sama besar, yaitu Rp 106.105,00 jika selama dua bulan

berturut-turut berinvestasi pada produk G atau bulan pertama investasi ke produk F untuk

selanjutnya diinvestasikan kembali ke produk G.

Konsep yang harus diperhatikan ketika melakukan operasi komposisi fungsi ini adalah

domain dan range dari masing-masing fungsi. Hal ini disebabkan oleh range dari fungsi pertama

yang dikenakan dapat saja tidak termasuk ke dalam domain fungsi selanjutnya sehingga operasi

komposisi fungsi ini tidak dapat dilakukan, seperti ditunjukkan berikut ini:

Misalkan:

5f x x dengan 5,fD x x x R dan 0,fR y y y R .

g x x dengan gD R dan gR R .

Jika dilakukan operasi komposisi fungsi f dan g, yaitu f g x f g x , maka elemen

domain fungsi g tidak seluruhnya dapat digunakan. Hal ini disebabkan oleh elemen range fungsi

g tidak seluruhnya termasuk ke dalam domain fungsi f. Dengan kata lain, operasi komposisi

fungsi ini dapat dilakukan hanya ketika elemen domain fungsi g menghasilkan elemen yang

termasuk ke dalam f gD R . Contohnya 4 gx D , jika dikenakan fungsi g menghasilkan

4 4 gg R , tetapi 4 f g fD R D sehingga tidak dapat dikenakan fungsi f yang berarti

operasi komposisi fungsi tidak dapat dilakukan. Berikut ini diberikan beberapa syarat yang harus

diperhatikan dalam melakukan operasi komposisi fungsi:

1. f gD R .

2. f g gD D .

3. f g fR R .

Soal!

1. Diketahui fungsi f dan g dengan 2 4 1f x x x dan 210g x x , maka

0g f .

2. Jika 2 2, 2 1, 2 ,f x x g x x h x x a dan 2f g x h g x g f x ,

maka nilai a yang memenuhi adalah ….

3. Jika 2f x x dan 2 log 2g x x , maka 4 g f x .

4. Jika 12 5, , dan 54

xf x x g x f g px

, maka nilai p sama dengan ….

5. Diketahui 2 5f x x dan 14

xg xx

. Jika 5f g a , maka a .

6. Jika 25 6 3f x x x dan 2 4g x x , maka domain dari fungsi g f adalah

himpunan semua x yang memenuhi ….

7. Jika 1 2 1g x x dan 1 2 4f g x x maka 0f .

8. Jika 2 3f x x dan 2 1g f x x , maka g x .

9. Jika 12 1

f xx

dan 3 2xf g xx

, maka g x .

10. Jika 1g x x dan 2 3 1f g x x x , maka f x .

11. Jika 2 1f x x dan 2 3 1g f x x x , maka 3g .

12. Jika 2 3g f x x dan 3 2g x x , maka f g x .

13. Jika 2 1f x x dan 21 4 52

f g x x xx

, maka 3g x .

C. Invers Fungsi

Misalkan :f A B adalah sebuah fungsi injektif dengan fD A dan fR B . Fungsi

1f disebut fungsi invers dari f jika 1 , ,f b a B A a b f adalah suatu fungsi injektif

pula dengan 1D f R f dan 1R f A atau dengan kata lain 1fx f y D jika dan

hanya jika fy f x R .

Soal!

1. Diketahui fungsi 4 52 3xf xx

dengan 2 3 0x , maka invers dari fungsi f adalah ….

2. Jika invers fungsi f x adalah 1 23xf xx

, maka 3f .

3. Diketahui fungsi 3 31 2f x x maka invers dari f x adalah ….

4. Jika 1 15xf x dan 1 3 1

2xg x

maka 1 6f g .

5. Jika 24 8 3f g x x x dan 2 4g x x maka 1f x .

6. Jika 11

f xx

dan 23

g xx

, maka 1f g x .

7. Jika 3f x x maka 1f x .

8. Jika 2 3f x x dan 13 1

g xx

, maka 1f g x .

9. Jika , 0f x x x , dan , 11xg x xx

, maka 1 2g f .

10. Jika 1f xx dan 2 1g x x , maka 1f g x .

11. 1 1 1, , danf g h berturut-turut menyatakan invers fungsi , , danf g h . Diketahui

1 1 1 2 4f g h x x dan 3 1,2 1 2xh g x xx

. Nilai 8f .

12. 1 1 danf x g x menyatakan invers fungsi danf x g x . Jika 2 1h x x dan

2 28 2f g h x x , maka nilai 1 1 2g f .

13. Invers dari fungsi 22 3xf xx

adalah ….

14. Invers dari fungsi 353 1f x x adalah ….

15. Jika invers fungsi f x ditentukan oleh 1 2 1; 33

xf x xx

, maka fungsi 1f x adalah

….

16. Jika pemetaan :f R R dan :g R R ditentukan oleh 3f x x dan 4 5g x x ,

maka 1g f memetakan x ke ….

17. 1 1 1, , danf g h berturut-turut menyatakan invers fungsi f, g, dan h. Diketahui

1 1 1 3 12 4 dan ,2 1 2xf g h x x h g x xx

. Nilai 8f .

18. Jika 8

1f x

x

dengan 0x , maka 4f .

19. Diketahui 1, 0xf x xx

. Jika k adalah banyaknya faktor prima dari 210, maka

1f k .

20. Domain fungsi 2

2

3 22 5 2x xf xx x

adalah ….

21. Range fungsi 2 53

xf xx

untuk dan 3x R x adalah ….

22. Jika 63

f xx

dan 2g x x untuk 0x , maka domain dari 1f g x .

23. Diketahui :f R R dan :g R R didefinisikan dengan 3 4f x x dan 2sing x x .

Nilai 12

f g

adalah ….

24. Jika 24 4 3g f x x x dan 2 1f x x , maka fungsi invers dari g x adalah ….

25. : , , , ,f A B C A D A E B F B . Pernyataan berikut mana yang benar? Bila benar,

buktikan! Bila tidak, berikan contoh!

a) 1 1 1f E F f E f F !

b) 1 1 1f E F f E f F !

Soal Tambahan!

1. Fungsi 40 5.000y f x x menyatakan bahwa upah mingguan y yang diterima

seorang wiraniaga ditentukan oleh jumlah unit x yang terjual per minggunya. Sebuah

analisis menyimpulkan bahwa unit yang terjual per minggu oleh seorang wiraniaga

bergantung pada harga per unitnya sesuai persamaan 214502

x g h h dengan domain

dan 0 30gD h h R h dan h adalah harga per unit dalam rupiah. Tentukan besar

upah yang diterima sang wiraniaga, jika harga per unit adalah Rp 10,00!

2. Pendekatan pendapatan pemerintah dapat diwakilkan oleh fungsi Y C I . Fungsi tersebut

menyatakan bahwa pendapatan nasional Y merupakan fungsi dari konsumsi masyarakat

C dan investasi oleh swasta I . Meskipun demikian, investasi juga ditentukan oleh

tingkat suku bunga r sesuai dengan persamaan 250 500I r r . Sementara konsumsi

masyarakat juga ditentukan oleh pendapatan nasional Y , seperti pada persamaan

500 0,8C Y Y . Tentukan pendapatan nasional, jika suku bunga adalah 12%!

3. Diasumsikan impor Jepang ke Indonesia IMP merupakan fungsi dari pendapatan nasional

Indonesia INDY , seperti pada persamaan 25 0,05 INDIMP Y . Sedangkan, pendapatan

nasional Indonesia INDY dipengaruhi oleh jumlah uang beredar M , seperti pada

persamaan 500 0,8INDY M . Tentukan impor Jepang ke Indonesia jika jumlah uang yang

eredar adalah Rp 300,00!

4. Menurut teori relativitas khusus, massa sebuah elektron yang bergerak dengan kelajuan v

diberikan oleh em m dengan em adalah massa diam elektron dan2

2

1

1 vc

dengan v

adalah kelajuan benda, serta c adalah kelajuan cahaya. Tentukan:

a) massa elektron ketika bergerak dengan kelajuan 0,8 kali kelajuan cahaya!

b) kelajuan elektron jika massa elektron bertambah sebesar 25%!

Bab 7

Fungsi Trigonometri

Seperti telah disebutkan sebelumnya pada Bab 5, salah satu fungsi yang cukup populer

dalam aplikasi adalah fungsi trigonometri. Trigonometri merupakan salah satu topik dalam

matematika yang cukup diminati karena perannya yang sangat besar dalam perkembangan

keilmuan matematika dan aplikasinya. Salah satu contoh penerapan trigonometri adalah pada

bidang astronomi. Para astronom dapat memperkirakan jarak antara bumi dengan bulan atau

bumi dengan matahari hanya dengan konsep trigonometri sederhana, walaupun astronom

tersebut belum pernah mengukur jarak sebenarnya. Aplikasi lebih lanjut mengenai fungsi

trigonometri dapat dilihat pada Bab 9. Untuk memahami konsep trigonometri tersebut, berikut

ini akan dijelaskan beberapa konsep dasar yang perlu diketahui.

Jika diberikan ABC siku-siku sebagai berikut:

maka dapat didefinisikan beberapa perbandingan trigonometri yang perlu diketahui berikut ini:

1. sin ba

atau arcsin ba

.

2. cos ca

atau arccos ca

.

3. tan bc

atau arctan bc

.

A B

C

ba

c

4. 1seccos

.

5. 1cscsin

.

6. 1cottan

.

di mana , , dan masing-masing adalah besar sudut ABC , sedangkan a, b, dan c masing-

masing adalah panjang sisi-sisi ABC . Ukuran sudut dapat dinyatakan dalam derajat atau

dalam radian rad di mana 180rad . Berikut ini diberikan beberapa nilai perbandingan

trigonometri yang dikenal dengan sudut-sudut istimewa:

0 30 45 60 90

sin 012

1 22

1 32

1

cos 11 32

1 22

12

0

tan 01 33

1 3 tak tentu

Selain itu, beberapa persamaan trigonometri yang kerap kali muncul dalam perhitungan adalah

sebagai berikut:

Jika diberikan ABC sebarang berikut ini

b

C

A B

a

c

maka

1. 2 2sin cos 1 .

2. 2 2tan 1 sec .

3. 2 2cot 1 csc .

4.sin sin sin

a b c .

5. 2 2 2 2 2 22 cos , 2 cos ,a b c bc b a c ac dan 2 2 2 2 cosc a b ab .

6. 1 1 1sin sin sin2 2 2

L ab ac bc .

7. cos cos cos sin sin .

8. sin sin cos cos sin .

9. tan tantan1 tan tan

.

10. 2sin cos sin sin .

11. 2cos sin sin sin .

12. 2cos cos cos cos .

13. 2sin sin cos cos .

14. 1 1sin sin 2sin cos2 2

.

15. 1 1sin sin 2cos sin2 2

.

16. 1 1cos cos 2cos cos2 2

.

17. 1 1cos cos 2sin sin2 2

.

Pada implementasinya, dapat ditentukan persamaan-persamaan trigonometri lainnya

sesuai dengan kebutuhan. Dengan demikian, fungsi trigonometri dapat didefinisikan menurut

konsep trigonometri di atas. Masing-masing fungsi trigonometri tersebut dapat digambarkan ke

dalam grafik sebagai berikut:

Berdasarkan gambar di atas, dapat disimpulkan bahwa nilai perbandingan trigonometri tersebut

untuk sudut-sudut pada setiap kuadran akan bernilai positif ketika

sehingga dapat ditentukan nilai perbandingan trigonometri untuk sudut-sudut istimewa lainnya.

Soal!

0

90

270

180

sin

cos

tansin

tan cos

1. Diketahui 1 1tan , tan ,2 5

a b dan 1tan8

c . Nilai tan a b c .

2. sin sin 3 2 sin 2x y x y a dan cos cos 3 2 cos 2x y x y b . Jika dinyatakan

dengan a dan b, maka cos cos a .

3. cos 22,5 sin 22,5 cot11,25 .

4. Diketahui 1sin cos2

x x dan 1sin cos2

x x , maka 3 3sin cosx x .

5. Buktikan bahwa 2cot cot 2cot csc1 sec 1 sec

!

6. Buktikan bahwa 3sin 3 4sin 3sin dan 3cos3 4cos 3cos !

7. Buktikan bahwa cos5 cos3 4sin cossin sin 3

!

8. Buktikan bahwa sin 4 sin 2 tan 3cos 4 cos 2

!

9. Buktikan bahwa sin 3 sin 5 sin 7 sin 9 tan 6cos3 cos5 cos 7 cos9

!

10. Tentukanlah batas nilai p yang memenuhi persamaan 210sin 24sin cosx x x p sehingga

dapat diselesaikan!

Soal Tambahan!

1. Dua buah lingkaran yang berpusat di P dan Q memiliki jari-jari 6 cm dan 7 cm. Kedua

lingkaran itu bersisian di titik X dan Y. Jika diketahui PQ = 9 cm. Tentukan luas PXQ !

2. Tentukan luas segienam beraturan yang panjang sisinya a cm!

3. Dalam rangkaian arus bolak-balik:

a) tegangan listrik V dinyatakan dengan sinmV V t ;

b) arus listrik I dinyatakan dengan sinmI I t ; dan

c) daya listrik P dinyatakan dengan P V I .

Tunjukkan bahwa cos cos 22

m mV IP t !

4. Sebuah getaran teredam bergetar dengan simpangan menurut rumus sin 4ty t

t dengan

domain 0yD t t R t , y adalah simpangan getar (dalam cm), dan t adalah waktu

(dalam detik). Jika ingin diketahui pada detik ke berapa simpangan getar sebesar y cm, maka

harus ditentutakan fungsi invers t y . Namun, fungsi invers yang eksak untuk persamaan di

atas tidak dapat ditentukan. Oleh sebab itu, digunakan metode berikut. Dapat dinyatakan

bahwa untuk menemukan nilai t yang memenuhi persamaan sin 4yt t sama halnya

dengan menemukan nilai t sehingga fungsi sin 4 0f t yt t . Jika terdapat fungsi

4cos 4g t y t dan 0t adalah nilai t yang ditebak, maka nilai pendekatan t yang ke-n

adalah

1 2 2 1 0n n nt t t t t t

dengan

11 1 1

1

mm m m m m

m

f tt t t t t

g t

a) Tentukan nilai pendekatan t untuk simpangan getaran sebesar 4 cm dengan melakukan

iterasi fungsi sebanyak : 1 kali 1n , 2 kali 2n , 3 kali 3n , 4 kali 4n , 5

kali 5n , dan 6 kali 6n .

b) Berdasarkan hasil di atas, kira-kira pada detik ke-berapa simpangan getar tersebut sebesar

4 cm?

Bab 8

Sistem Persamaan Linier dan Kuadrat

A. Sistem Persamaan Linier

Pada Bab sebelumnya telah dibahas secara mendalam mengenai fungsi, baik fungsi dari

satu atau lebih variabel. Akan tetapi, bagaimana jika bukan hanya variabel saja yang lebih dari

satu, melainkan banyak fungsi juga lebih dari satu. Permasalahan seperti ini seringkali terjadi

dalam kehidupan sehari-hari di mana terdapat beberapa informasi mengenai suatu hal yang

saling terkait sehingga membentuk suatu sistem atau dikenal sebagai sistem persamaan. Berikut

ini diberikan sebuah contoh kasus sistem persamaan di mana masing-masing fungsinya berupa

fungsi polinomial berderajat satu (linier) atau biasa disebut sebagai sistem persamaan linier.

“Pada suatu hari seorang juru parkir sebuah rumah makan padang kebingungan. Hal ini

disebabkan oleh pertanyaan sang pemilik mengenai berapa jumlah masing-masing mobil dan

motor yang mengunjungi rumah makannya hari itu. Juru parkir tersebut selama ini hanya

memberikan karcis parkir rumah makan tanpa membedakan jenis kendaraannya. Selain itu, ia

menarik upah sebesar Rp 2.000,00 per mobil dan Rp 1.000,00 per motor. Diketahui bahwa pada

hari itu ia memperoleh uang sebesar Rp 100.000,00 dengan jumlah karcis yang diberikan adalah

sebanyak 75 lembar. Apakah kalian dapat membantu juru parkir tersebut?”

Masalah di atas dapat dimodelkan secara matematis sebagai berikut:

Misalkan

:x banyak mobil yang berkunjung ke rumah makan padang; dan

:y banyak motor yang berkunjung ke rumah makan padang.

Dengan demikian, informasi mengenai uang yang diterima dapat dimodelkan ke dalam bentuk

2.000 1.000 100.000x y atau dapat disederhanakan menjadi 2 100x y , sedangkan

informasi mengenai jumlah karcis yang diberikan dapat dimodelkan dalam bentuk 75x y .

Untuk menyelesaikan permasalahan tersebut dikenal dua metode, yakni metode substitusi

(mengganti) dan metode eliminasi (menghilangkan). Metode substitusi bertujuan untuk

mengganti variabel dalam suatu persamaan sedemikian sehingga persamaan yang baru hanya

terdiri dari satu variabel. Sedangkan, metode eliminasi bertujuan untuk menghilangkan variabel

dalam suatu persamaan sedemikian sehingga persamaan yang baru hanya terdiri dari satu

variabel. Kedua metode tersebut akan diterapkan pada permasalahan sebelumnya sebagai

berikut:

Metode Substitusi

Metode substitusi di bawah ini akan mengganti variabel y dalam persamaan yang

mewakili informasi mengenai jumlah karcis, dengan variabel y dalam persamaan yang

mewakili informasi mengenai jumlah uang yang diterima.

Informasi mengenai jumlah uang yang diterima

2 1002 2 100 2

100 2

x yx y x xy x

Informasi mengenai jumlah karcis yang diberikan

75 ganti 100 2100 2 75

100 7525

25

100 2 ganti 25 100 2 25 100 50 50

x y y xx xxxx

y x x

Jadi, banyak mobil dan motor yang berkunjung ke rumah makan padang tersebut masing-masing

adalah 25 dan 50 kendaraan. Praktekkan metode substitusi di atas dengan informasi

sebaliknya!

Metode Eliminasi

Metode eliminasi di bawah ini akan menghilangkan masing-masing variabel x dan y

berdasarkan kedua informasi tersebut dengan cara menyamakan koefisien dari variabel yang

ingin dihilangkan.

Menghilangkan variabel2 100 75

25

Menghilangkan variabel2 100 2 1001 75 2 2 1502

50 1 50 1

yx yx y

x

xx y x yx y x y

yy

50y

Terlihat bahwa hasil perhitungan yang diperoleh dengan menggunakan metode eliminasi sama

dengan metode substitusi.

Metode Campuran

Jika diperhatikan secara seksama, kedua metode di atas dapat dikombinasikan

sedemikian sehingga proses perhitungan dapat menjadi lebih efisien, seperti ditunjukkan berikut

ini:

2 100 75

25 25 75 25 25 75 25 50

x yx y

x yyy

INGAT!!!

Dua persamaan 2 100x y dan 75x y dapat dipandang pula sebagai suatu fungsi, seperti

ditunjukkan berikut ini:

2 100 100 275 75

x y y xx y y x

sedemikian sehingga keduanya dapat digambarkan sebagai berikut:

Eliminasi

Substitusi

Jadi, masalah sistem persamaan linier dapat dipandang sebagai masalah penentuan titik

temu beberapa fungsi. Oleh sebab itu, terdapat kemungkinan bahwa suatu sistem persamaan

linier tidak memiliki solusi ataupun memiliki banyak solusi. Hal ini terlihat dari kemungkinan

bahwa fungsi-fungsi dalam suatu sistem persamaan linier dapat digambarkan saling sejajar atau

tidak berpotongan di satu titik yang sama (tidak memiliki solusi), maupun saling berimpit satu

sama lain (banyak solusi). Suatu sistem persamaan linier disebut konsisten jika sistemnya

memiliki solusi (baik satu atau banyak solusi), dan disebut inkonsisten jika tidak memiliki solusi.

Permasalahan sistem persamaan linier tidak hanya terhenti untuk fungsi dua variabel saja,

tetapi dapat berkembang menjadi tiga atau lebih variabel. Berikut ini diberikan contoh

penyelesaian sistem persamaan linier tiga variabel dengan menggunakan metode campuran.

4

2 3

2 1

x y z i

x y z ii

x y z iii

Pertama-tama, lakukan metode substitusi. Berdasarkan persamaan (i) diperoleh

4x y z i

Kemudian, ganti variabel x pada persamaan (ii) dan persamaan (iii) untuk selanjutnya dilakukan

metode eliminasi sebagai berikut:

4 2 3

2 3 7

2 4 1 8 2 2 1 3 7

2 3 7 2 3 71 9 3 213 3 7

ii y z y z

y z ii

iii y z y zy z y z

y z iii

ii y z y zy ziii y z

7 14 2

yy

Berdasarkan persamaan iii dan i diperoleh

3 2 7 6 7 1

4 2 1 1

iii zz

z

i xx

Jadi, solusi sistem persamaan linier tiga variabel di atas adalah 1, 2, dan 1x y z .

Tidak tertutup pula kemungkinan bahwa suatu sistem persamaan linier dibentuk

berdasarkan fungsi-fungsi yang non-linier. Beberapa permasalahan tersebut dapat ditangani

melalui beberapa pemisalan agar permasalahan menjadi lebih sederhana sesuai dengan konsep

matematika, yakni menyederhanakan masalah. Tidak jarang penyederhanaan masalah tersebut

menghasilkan sistem persamaan baru berbentuk sistem persamaan linier sehingga lebih mudah

diselesaikan, seperti dicontohkan berikut ini:

1 3 2

6 5 34

x y

x y

Misalkan 1px dan 1q

y , maka sistem persamaan di atas dapat ditulis menjadi

1 13 23 2

1 1 6 5 346 5 34

p qx yp q

x y

Dengan metode substitusi diperoleh

2 3 6 5 34 6 2 3 5 34 12 18 5 34 23 46 2 2 3 2 4

p q p qq qq q

qq p

Oleh karena 4p dan 2q , maka berdasarkan pemisalan sebelumnya diperoleh

1 1 1 14 4

p xx p

dan 1 1 1 1 .

2 2q yy q

Jadi, dengan terlebih dahulu melakukan pemisalan terhadap sistem persamaan non-linier

tersebut, maka diperoleh suatu sistem persamaan yang lebih sederhana, yaitu sistem persamaan

linier sehingga diperoleh 14

x dan 12

y .

Soal!

Selesaikan sistem persamaan berikut ini!

1.2 3

3 2 8a ba b

2.4 2 33 5 1x yx y

3.3

3

2 0

5 2 5

x y

x y

4.

2 1 2 43 4

3 32 3

x y

x x y

5.

1 12 14 6 21 14 2

7 4 22 3 3 2

di mana , 0

x y x y

x y x yx y

6.2 13

812 16 0

x y

x y

7.3log 5log 22log 3log 5

di mana 0 dan 0

x yx yx y

8.2 3

2 10y xx y

9.2 3 75 2

3 6

x yx yx y

10.2 5

2 2 53 2 8

u v wu v wu v w

11.2 2 6

2 2 03 2 7

x y zx y zx y z

12.354

x yy zx z

13.

13 2 2

62 5

42 5

xyx yyzy zxzx z

14.

1 2 12

2 3 20

3 1 15

di mana , , 0

x y

y z

z x

x y z

15.

120

96

72

x y x y z

y z x y z

x z x y z

16.3 42 1x y zx y z

17. 3

3log 1

log 5 2 log 2 1 0

19125

x x

yx

x

18. Jika dari fungsi 2f x ax bx c diketahui 0 6, 1 5, dan 2 28f f f , maka

0f x untuk x sama dengan ….

B. Sistem Persamaan Kuadrat

Suatu sistem persamaan tidak hanya melibatkan fungsi-fungsi polinomial berderajat satu

saja seperti pembahasan sebelumnya, tetapi juga dapat melibatkan fungsi-fungsi polinomial

berderajat lebih tinggi. Pembahasan berikut ini hanya dibatasi untuk sistem persamaan yang

melibatkan fungsi-fungsi polinomial berderajat maksimal dua.

Contoh:

Dengan menggunakan metode substitusi diperoleh

2

2

2

2

5

5

1 ganti 5

5 1

5 1 6 0 faktorisasi

3 2 0 3 atau 2

ii x y

y x ii

i x y y x

x x

x xx x

x xx x

Jika 3x maka berdasarkan persamaan ii 8y . Sedangkan, jika 2x maka 3y . Jadi,

solusi sistem persamaan di atas adalah 3 dan 8x y atau 2 dan 3x y .

Soal!

Selesaikan sistem persamaan berikut ini!

1. 2 2

1130

x xy yx y xy

2.

2

2

2 401 152

x xy

y xy

3. 2 2

130

x xy yx y xy

2 1

5

x y i

x y ii

4.

2

2

1510

di mana 0

x xyxy y

x

5.2 1 2

1 2 4

4 83 9

x y x y

x y x y

C. Matriks (Pengayaan)

Permasalahan menentukan solusi suatu sistem persamaan linier dapat pula diselesaikan

dengan pendekatan lain, yaitu matriks. Pendekatan inilah yang paling banyak dikembangkan saat

ini agar proses perhitungan menjadi lebih efisien dengan menggunakan komputer melalui

beberapa algoritma. Matriks adalah angka-angka yang disusun sedemikian rupa sehingga

membentuk suatu segi empat yang ukurannya ditentukan berdasarkan jumlah baris dan kolom,

seperti dicontohkan berikut ini:

1 11 1 3

, 0 , , 520 2 4 43 e

Matriks-matriks yang disajikan di atas dari kiri ke kanan masing-masing berukuran

2 3,3 1, 2 2, dan 1 1 . Masing-masing angka dalam setiap matriks di atas disebut sebagai

elemen/entri dari matriks yang diindeks berdasarkan baris dan kolom yang bersesuaian. Sebagai

contoh tinjau matriks pertama (paling kiri) kemudian beri nama matriks A, angka 1 merupakan

elemen baris pertama kolom pertama atau dapat disimbolkan sebagai 11a . Sedangkan, angka 4

merupakan elemen baris kedua kolom ketiga atau dapat disimbolkan sebagai 23a , dan lain

sebagainya.

Suatu matriks yang memiliki jumlah baris dan jumlah kolom yang sama disebut sebagai

matriks bujur sangkar/persegi. Dalam matriks dikenal pula beberapa operasi, seperti , , dan

. Sedangkan, operasi bagi tidak dikenal dalam matriks melainkan diganti dengan konsep invers

yang akan diterangkan lebih lanjut. Operasi dan pada matriks hanya dapat dilakukan pada

matriks-matriks yang berukuran sama dengan cara menambahkan masing-masing elemen

matriks yang bersesuaian, seperti dicontohkan berikut ini:

1 1 3 2 1 1,

0 2 4 3 1 6

1 1 3 2 1 10 2 4 3 1 6

1 2 1 1 3 10 3 2 1 4 6

3 2 43 1 10

1 1 3 2 1 10 2 4 3 1 6

1 2 1 1 3 10 3 2 1 4 6

A B

A B

A B

1 0 2

3 3 2

Dalam operasi perkalian matriks, jika A adalah sebuah matriks berukuran m r dan B

adalah sebuah matriks berukuran r n , maka hasil kali matriks A dan B merupakan matriks

berukuran m n yang elemen-elemennya ditentukan melalui aturan-aturan tertentu. Untuk

menentukan elemen pada baris ke-i dan kolom ke-j pada matriks AB, pilih baris i dari matriks A

dan kolom j dari matriks B. Selanjutnya, kalikan setiap elemen dari baris dan kolom yang

bersesuaian secara bersama-sama dan kemudian jumlahkan hasil kalinya. Perhatikan contoh

berikut ini:

2 3 3 2

2 2

1 01 1 3

, 3 10 2 4

2 4

1 01 1 3

3 10 2 4

2 4

1 1 1 3 3 2 1 0 1 1 3 40 1 2 3 4 2 0 0 2 1 4 4

1 3 6 0 1 120 6 8 0 2 16

A B

A B

AB

3 2 2 3

3 3

8 132 14

1 01 1 3

3 10 2 4

2 4

1 1 0 0 1 1 0 2 1 3 0 4 3 1 1 0 3 1 1 2 3 3 1 4

2 1 4 0 2 1 4 2 2 3 4 4

1 0 1 0 3 0 3 0 3 2 9 4

2 0 2 8 6 16

B A

BA

1 1 3

3 5 52 10 10

Jadi, .AB BA

Terlihat pula dari contoh di atas bahwa operasi perkalian matriks tidak bersifat komutatif, seperti

halnya operasi perkalian pada bilangan.

Pembahasan mengenai invers suatu matriks A, disimbolkan dengan 1A , dapat dimulai

dengan konsep pembagian dan perkalian pada bilangan. Contohnya:

1 12 12 2 2 2 2 2 2 12 2

dapat dipadankan dengan matriks sebagai berikut

1 1A A I A A

dengan I adalah suatu matriks identitas, yaitu matriks bujur sangkar yang elemen diagonal

utamanya bernilai 1, sedangkan 0 untuk yang lain. Setiap matriks A berukuran m n jika

dikalikan dengan I berukuran n n akan menghasilkan matriks A kembali. Begitu pun

sebaliknya, jika matriks I berukuran m m dikalikan dengan matriks A berukuran m n akan

menghasilkan matriks A kembali. Dengan demikian, salah satu syarat sebuah matriks dikatakan

memiliki invers adalah matriks tersebut haruslah merupakan suatu matriks bujur sangkar.

Permasalahannya sekarang adalah bagaimana menentukan bentuk dari 1A itu sendiri. Salah satu

caranya adalah melalui eliminasi Gauss-Jordan pada suatu matriks A yang setiap operasinya

diterapkan pula pada suatu matriks identitas. Berikut ini diberikan beberapa aturan dalam

eliminasi Gauss-Jordan:

1. Jika suatu baris tidak seluruhnya terdiri dari 0, maka angka tak nol pertama dalam baris

tersebut adalah sebuah angka 1 yang disebut sebagai utama 1.

2. Jika ada sebarang baris yang seluruhnya terdiri dari 0, maka baris-baris ini dikelompokkan

bersama di bagian bawah matriks.

3. Jika sebarang dua baris yang berurutan yang tidak seluruhnya terdiri dari 0, utama 1 dalam

baris yang lebih bawah terletak di sebelah kanan utama 1 dalam baris yang lebih atas.

4. Masing-masing kolom yang berisi sebuah utama 1 memiliki 0 di tempat lainnya.

Perhatikan contoh berikut ini:

1

1 2 1 2

22 1

2 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1121 1 0 1 2 1 1 0 0 1 1 2 0 1 1 2 0 1 1 2

A II A

b b b bbb b

Tujuannya adalah membentuk matriks A menjadi matriks I sehingga matriks I menjadi 1A

dengan beberapa operasi baris dasar sebagai berikut:

1. Pertama-tama, pertukarkan baris-1 dan baris-2.

2. Selanjutnya, kurangkan baris-2 dengan 2 kali baris-1.

3. Kalikan baris-2 dengan -1.

4. Kurangkan baris-1 dengan baris 2.

Untuk menunjukkan apakah 1A yang diperoleh tersebut benar, hanya perlu ditunjukkan apakah

matriks 1A tersebut jika dikalikan dengan matriks A akan menghasilkan matriks identitas,

seperti berikut ini:

1

1

2 1 1 1 2 1 1 22 1 1 1 2 1 2 2 1 01 1 1 1 1 1 1 21 1 1 2 1 1 1 2 0 1

1 2 1 1 1 1 1 11 1 2 1 2 1 1 1 1 01 2 2 1 1 1 2 11 2 1 1 2 2 1 2 0 1

A A I

A A

I

INGAT!!!

Tidak semua matriks bujur sangkar memiliki invers. Hal ini terlihat dari kemungkinan bahwa

terdapat suatu matriks bujur sangkar yang tidak dapat diubah menjadi matriks identitas dengan

menggunakan operasi baris dasar tersebut.

Hingga tahap ini, pengetahuan mengenai matriks cukup untuk menjawab permasalahan

awal dalam SubBab ini, yaitu mengenai bagaimana menentukan solusi dari suatu sistem

persamaan linier dengan pendekatan matriks. Kembali pada contoh permasalahan juru parkir

yang diberikan pada awal Bab ini di mana sistem persamaan liniernya adalah sebagai berikut:

2 10075

x yx y

Sistem persamaan linier tersebut dapat dituliskan kembali ke dalam bentuk perkalian matriks

berikut ini:

x b

2 1 1001 1 75A

xy

Dengan demikian, permasalahan penentuan solusi sistem persamaan linier tersebut ekivalen

dengan masalah penentuan x dalam perkalian matriks x bA . Jika matriks A memiliki invers,

nilai x tersebut dapat ditentukan dengan menggunakan konsep invers dan identitas sebagai

berikut:

1 1

1

1

x bx b

x bx b

AA A AI AA

Oleh karena telah ditunjukkan sebelumnya bahwa matriks tersebut memiliki invers, maka solusi

sistem persamaan linier dari permasalahan juru parkir tersebut dengan pendekatan matriks adalah

sebagai berikut:

1 1 100 1 751 1 100 100 75 25x

1 100 2 751 2 75 100 150 50x

A by

Terlihat bahwa hasil yang diperoleh sama dengan yang diperoleh melalui metode substitusi,

eliminasi, maupun campuran.

Soal!

Kerjakan kembali soal-soal pada SubBab 7.A dengan menggunakan pendekatan matriks!

Soal Tambahan!

1. Jika panjang persegi panjang bertambah 10 cm dan lebarnya bertambah 5 cm, luas persegi

panjang bertambah 1.050 cm2. Jika panjangnya berkurang 5 cm dan lebarnya berkurang 10

cm, luas berkurang 1.050 cm2. Luas persegi panjang tersebut adalah ….

2. Jumlah suatu bilangan pertama dan bilangan kedua adalah 22. Bilangan kedua dikurangi

bilangan pertama adalah -86. Bilangan yang lebih kecil adalah ….

3. Sepuluh tahun yang lalu, perbandingan usia adik dan kakak adalah 2 : 3. Jika perbandingan

usia mereka saat ini adalah 4 : 5, maka perbandingan usia mereka 10 tahun yang akan datang

adalah ….

4. Jika uang lelah Rp 22.000,00 diberikan kepada 4 tukang kebun dan 2 orang pembersih

ruangan, sedangkan Rp 14.000,00 diberikan kepada 3 orang tukang kebun dan seorang

pembersih ruangan maka masing-masing tukang kebun dan tenaga pembersih ruangan

berturut-turut menerima uang lelah sebesar ….

5. Sebuah bilangan berupa pecahan. Jika pembilang ditambah 2, nilai pecahan tersebut menjadi

14

dan jika penyebutnya dikurangi 5, nilai pecahan tersebut menjadi 15

. Jumlah nilai

pembilang dan penyebut pecahan tersebut adalah ….

6. Sebuah kolam renang berbentuk persegi panjang dengan halaman selebar 5 m yang

mengelilingi kolam renang tersebut ditutupi oleh sebuah pagar. Luas permukaan kolam

renang adalah 572 m2 dan luas total yang ditutupi pagar (kolam dan halaman) adalah 1.152

m2. Ukuran kolam renang tersebut adalah ….

7. Sisi-sisi suatu segitiga merupakan bilangan bulat. Jika keliling segitiga sama dengan 8 satuan

panjang, luas segitiga sama dengan … satuan luas.

8. Dalam suatu segitiga, sudut terbesarnya adalah 100 lebih besar daripada sudut terkecilnya

dan tiga kali dari sudut sisanya. Ukuran sudut terbesar tersebut adalah ….

9. Diketahui dua orangyang mengendarai mobil menempuh jarak AB = 200 km. Satu orang

berangkat dari A pukul 07.00 menuju B dengan kecepatan 70 km/jam, seorang lagi berangkat

dari B pukul 07.15 menuju A dengan kecepatan 80 km/jam. Pukul berapakah kedua orang

tersebut akan berpapasan?

10. Jumlah angka dari suatu bilangan yang terdiri atas dua angka adalah 14. Jika kedua angka

dipertukarkan diperoleh bilangan baru yang 18 lebih kecil dari bilangan semula. Tentukan

bilang semula tersebut!

11. Jumlah kuadrat dua buah bilangan adalah 34 dan selisih kuadratnya 16. Tentukan kedua

bilangan itu!

12. Kuadrat suatu bilangan adalah 16 lebih besar dari dua kali kuadrat bilangan lainnya. Jumlah

kuadrat bilangan itu adalah 208. Tentukan kedua bilangan tersebut!

13. Hasil kali dua bilangan adalah 10 dan selisih kuadratnya 21. Tentukan bilangan-bilangan

tersebut!

14. Selisih panjang rusuk dua buah kubus adalah 2 cm, sedangkan selisih volumenya 218 cm3.

Tentukan panjang rusuk kubus yang besar!

15. Diagonal suatu persegi panjang adalah 85 cm. Jika sisi pendeknya ditambah 11 cm dan sisi

panjangnya dikurangi 7 cm, panjang diagonal persegi panjang tetap sama. Tentukan ukuran

dari persegi panjang semula!

16. Seorang seniman mendesain sebuah logo bisnis dalam bentuk lingkaran dengan sebuah

persegi panjang berada di dalamnya. Diameter lingkaran adalah 6,5 cm dan luas persegi

panjang adalah 15 cm2. Tentukan keliling persegi panjang!

17. Sebuah kotak yang terbuka atasnya dibuat dengan menggunting seluas 12 12 cm2 pada

setiap pojok dari selembar karton persegi panjang dan menekuk sisi-sisi dan ujung-ujungnya.

Luas karton sebelum pojoknya digunting adalah 2.112 cm2 dan volume kotak adalah 5.760

cm3. Tentukan ukuran dari lembaran karton yang digunakan!

18. Hipotenusa (sisi miring) dari sebuah segitiga siku-siku adalah 25 cm dan kelilingnya adalah

56 cm. Tentukan panjang sisi-sisi lainnya!

19. Jumlah kelling dua buah lingkaran adalah 12 cm dan jumlah luasnya adalah 20 cm2.

Tentukan besarnya jari-jari tiap lingkaran!

20. Sebuah persegi panjang memiliki diagonal 2 65 cm dan keliling 36 cm. Tentukan panjang

dan lebar persegi panjang tersebut!

21. Seorang pedagang menjual semua baju dan dasi seharga Rp 10.000.000,00. Harga 3 buah

baju Rp 100.000,00 dan sebuah dasi Rp 20.000,00. Apabila ia hanya menjual 12

dari jumlah

baju dan 23

dari jumlah dasi, ia dapat mengumpulkan uang Rp 6.000.000,00. Berapakah

jumlah baju dan dasi jika semua barang tersebut habis terjual?

22. Suatu campuran semen harganya Rp 35.000.000,00 per ton. Campuran itu terdiri dari atas

semen kualitas satu seharga Rp 39.000.000,00 per ton dan kualitas dua seharga Rp

25.000.000,00 per ton. Tentukan perbandingan massa dari semen kualitas satu dan semen

kualitas dua dalam pembuatan campuran semen tersebut!

23. Sebuah rumah akan dicat. Jika pengecatan dilakukan oleh tiga tukang cat yang ahli dan enam

tukang cat pemula, pengecatan selesai dalam 2 hari kerja. Jika pengecatan dilakukan oleh

seorang tukang cat yang ahli dan delapan tukang cat pemula, pengecatan selesai dalam 3 hari

kerja. Jika pengecatan itu dilakukan hanya oleh seorang tukang cat yang ahli, berapa hari

kerjakah pengecatan itu dapat diselesaikan?

24. Dua partikel bergerak dengan kelajuan tetap yang berbeda sepanjang keliling lingkaran yang

panjangnya 276 m. Kedua partikel mulai bergerak pada saat yang sama dan dari tempat yang

sama. Jika kedua partikel bergerak berlawanan, kedua partikel akan berpapasan setiap 6

detik. Jika kedua partikel bergerak searah, partikel yang satu melewati partikel yang lainnya

setiap 23 detik. Tentukan kelajuan masing-masing partikel tersebut!

25. Sebuah perahu yang bergerak searah arus air sungai dapat menempuh jarak 46 km dalam

waktu 2 jam. Jika perahu itu bergerak berlawanan dengan arah arus air sungai, perahu akan

menempuh jarak 51 km dalam waktu 3 jam. Hitunglah kelajuan perahu dan kelajuan arus air

sungai!

26. Sebuah pabrik memiliki tiga buah mesin A, B, dan C. Jika ketiganya bekerja, 5.700 lensa

dapat dihasilkan dalam seminggu. Jika hanya A dan B bekerja, 3.400 lensa dapat dihasilkan

dalam seminggu. Jika hanya B dan C bekerja, 4.200 lensa dapat dihasilkan dalam seminggu.

Berapa banyak lensa dapat dihasilkan oleh tiap-tiap mesin dalam seminggu?

27. Saat ini perbandingan usia ayah, ibu, dan lima kali usia anaknya adalah 6 : 5 : 1. Lima belas

tahun yang akan datang, perbandingan usia ayah ibu, dan anaknya setelah dikurangi 6 adalah

9 : 8 : 2. Tentukan jumlah umur mereka lima tahun yang akan datang!

28. Lena meminjam Rp 80.000.000,00 dalam tiga kategori pinjaman berbeda untuk memulai

menjalankan bisnisnya. Ia meminjam dari dua bank sejumlah Rp 70.000.000,00 masing-

masing dengan bunga 11% dan 10%. Sisa lainnya dipinjam dari lembaga keuangan dengan

bunga 13%. Berapa besar pinjaman Lena pada tiap kategori jika bunga tahunan yang harus

dibayarnya adalah Rp 8.500.000,00!

29. Tiga tukang cat, Udin, Deni, dan Bani, bekerja secara bersama-sama, dapat mengecat

eksterior (bagian luar) sebuah rumah dalam waktu 10 jam kerja. Deni dan Bani bersama-

sama pernah mengecat sebuah rumah serupa ini dalam 15 jam kerja. Suatu hari, ketiga

tukang ini bekerja mengecat rumah serupa ini selama 4 jam kerja, setelah itu Bani pergi

karena suatu keperluan mendadak. Udin dan Deni memerlukan tambahan 8 jam kerja lagi

untuk menyelesaikan pengecatan rumah ini. Perkirakan, berapa lama waktu yang diperlukan

oleh setiap tukang untuk menyelesaikan pekerjaan mengecat rumah ini jika bekerja

sendirian?

30. Seorang ahli kimia memerlukan 10 liter larutan asam 25%. Larutan itu dapat diperoleh

dengan mencampur tiga larutan yang konsentrasi asamnya masing-masing 10%, 20%, dan

50%. Jika ia menggunakan 2 liter larutan 50%, berapa literkah larutan asam 10% dan 20%

yang harus digunakan oleh ahli kimia untuk membuat larutan yang dibutuhkannya?

31. Dalam perlombaan berjarak 21 meter antara seekor kura-kura dan seekor kelinci, kura-kura

berangkat 9 menit lebih dahulu daripada kelinci. Kelinci dapat melintasi garis finish 3 menit

sebelum kura-kura. Jika kelinci berlari dengan laju rata-rata 0,5 m/jam lebih cepat daripada

kura-kura, berapakah laju rata-rata kura-kura dan kelinci?

32. Budi dapat berlari tiga kali lebih cepat daripada kecepatan berjalan Iwan. Misalkan, Iwan

yang lebih cerdas dari Budi dapat menyelesaikan ujian pada pukul 14.00 dan mulai berjalan

pulang pada saat itu juga. Budi menyelesaikan ujian pada pukul 14.12 dan segera berlari

mengejar Iwan. Pada pukul berapakah Budi tepat akan menyusul Iwan?

33. Suatu bilangan x, terdiri atas dua angka. Jika bilangan itu ditambah dengan 45, diperoleh

bilangan yang terdiri atas dua angka yang sama, tetapi dalam urutan terbalik. Jika di antara

angka puluhan dan angka satuan disisipkan angka nol, diperoleh bilangan yang nilainya 273

kali nilai bilangan x. Bilangan x tersebut adalah ….

34. Misalkan Edi memiliki beberapa kartu berbentuk persegi dan segitiga. Pada kartu persegi

terdapat satu gambar kucing dan empat gambar burung, pada kartu segitiga terdapat satu

gambar kucing dan satu gambar burung. Berapa banyak kartu persegi dan segitiga yang harus

diambil agar jumlah gambar kucing sebanyak 27 dan jumlah gambar burung sebanyak 81?

35. Seorang perempuan ingin menggunakan susu dan jus jeruk untuk memenuhi kebutuhan

kalsium dan vitamin A dalam diet hariannya. Satu ons susu mengandung 37 miligram

kalsium dan 57 miktogram vitamin A. Satu ons jus jeruk mengandung 5 miligram kalsium

dan 65 miktogram vitamin A. Berapa banyak susu dan jus jeruk yang harus dikonsumsinya,

jika ia membutuhkan 500 miligram kalsium dan 1.200 miktogram vitamin A setiap harinya?

(1 miktogram = 10-6 gram).

Bab 9

Persamaan Parametrik dan Koordinat Polar

A. Persamaan Parametrik

Dalam menyelesaikan permasalahan-permasalahan yang terjadi di dunia nyata, biasanya

matematikawan terlebih dahulu memodelkan permasalahan-permasalahan tersebut ke dalam

suatu model matematis. Salah satu model yang cukup penting untuk dibahas adalah model yang

dinyatakan dengan suatu persamaan parametrik. Persamaan parametrik adalah persamaan yang

mengandung suatu peubah bebas. Salah satu bentuk sederhana dari persamaan parametrik

diberikan sebagai berikut:

Persamaan parametrik dari sebuah garis

Sebuah garis yang melalui sebuah titik 1 1,x y dan sejajar dengan garis ; ,by x a b Ra

memiliki persamaan parametrik sebagai berikut:

1

1

,,

x x tay y tb

dengan t R merupakan peubah bebas.

Untuk memudahkan pemahaman, berikut ini diberikan beberapa contoh penerapan

persamaan parametrik tersebut.

Contoh 1:

Tentukan persamaan parametrik dari sebuah garis yang sejajar dengan garis 52

y x dan

melalui titik 3, 5 .

Dengan menggunakan informasi di atas, maka dapat ditentukan persamaan parametrik berikut

ini:

1 ,

3 2 3 2 ,

x x tatt

1

5 5 5 5 ,

y y tbtt

sehingga dapat digambarkan sebagai berikut:

Contoh 2:

Nyatakan persamaan parametrik dari garis 2 3y x .

Pada persamaan 2 3y x , x merupakan peubah bebas sedangkan y merupakan peubah tak

bebas. Dalam persamaan parametrik, t merupakan peubah bebas di mana x dan y keduanya

merupakan peubah tak bebas. Oleh sebab itu, dengan memisalkan x t persamaan parametrik

dari garis 2 3y x adalah

,2 3.

x ty t

Contoh 3:

Nyatakan persamaan garis dari persamaan parametrik 3 2x t dan 1 5y t .

Dengan metode substitusi, seperti yang telah dijelaskan pada Bab 8, diperoleh

t x y-1 5 -100 3 -5

0.5 2 -2.51 1 02 -1 5

3 2 ,3 2 ,3 1 5

23 1 5

25 15 12 2

5 17 .2 2

x tx tx t y t

x

x

x

Persamaan parametrik dapat pula digunakan untuk menyelesaikan permasalahan yang

lebih kompleks, seperti memodelkan pergerakan bola golf yang dipukul dan memiliki lintasan

berupa parabola. Ketika bola bergerak, gravitasi akan mempengaruhi pergerakan bola dengan

arah vertikal. Sedangkan, arah horizontal tidak dipengaruhi oleh gravitasi sehingga tanpa

memperhatikan kecepatan angin maka kecepatan horizontal dari bola tersebut akan tetap

konstan. Selain itu, kecepatan vertikal dari bola adalah besar dan positif pada saat awal, serta

menurun hingga mencapai nol pada saat di puncak, kemudian meningkat kembali dengan arah

negatif ketika bola jatuh. Ketika bola jatuh ke tanah, kecepatan vertikal pergerakan bola tersebut

sama dengan ketika bola mulai bergerak, tetapi dengan arah sebaliknya.

Dengan menggunakan persamaan trigonometri, seperti yang telah dijelaskan sebelumnya pada

Bab 7, diperoleh

cos cos ,

sin sin ,

xx

yy

V V VVV

V VV

dengan , ,x yV V dan V masing-masing merupakan kecepatan horizontal, vertikal, dan kecepatan

awal. Dengan demikian, posisi horizontal dari bola golf tersebut pada waktu t dapat dinyatakan

sebagai berikut:

cos cos .

xx V tV ttV

Sedangkan, posisi vertikal yang dipengaruhi oleh gravitasi dinyatakan sebagai berikut:

2

2

2

12

1 sin2

1 sin ,2

yy V t gt

V t gt

tV gt

dengan 29,8g m s . Dengan demikian, persamaan parametrik dari pergerakan bola golf

tersebut adalah sebagai berikut:

2

cos ,1sin .2

x tV

y tV gt

Soal!

1. Tentukan persamaan parametrik dari sebuah garis yang sejajar dengan garis 83

y x dan

melalui titik 4, 11 .

2. Tentukan persamaan parametrik dari sebuah garis yang sejajar dengan garis 23

y x dan

melalui titik 1,0 .

3. Tentukan persamaan parametrik dari sebuah garis yang sejajar dengan garis 27

y x dan

melalui titik 1,5 .

4. Tentukan persamaan parametrik dari sebuah garis yang sejajar dengan garis 53

y x dan

melalui titik 4,1 .

5. Nyatakan persamaan parametrik dari garis 2 3y x .

6. Nyatakan persamaan parametrik dari garis 4 2y x .

7. Nyatakan persamaan parametrik dari garis 3 2 5x y .

8. Nyatakan persamaan garis dari persamaan parametrik 3 5x t dan 2 7y t .

9. Nyatakan persamaan garis dari persamaan parametrik 6x t dan 2y t .

10. Nyatakan persamaan garis dari persamaan parametrik 4 3x t dan 5 3y t .

11. Nyatakan persamaan garis dari persamaan parametrik 4 11x t dan 3y t .

12. Nyatakan persamaan garis dari persamaan parametrik 9x t dan 4 2y t .

13. Nyatakan persamaan garis dari persamaan parametrik 8x dan 2 1y t .

14. Gambarkan grafik dari persamaan parametrik 2 4x t dan 1y t .

15. Gambarkan grafik dari persamaan parametrik 3 5x t dan 2 4y t .

16. Gambarkan grafik dari persamaan parametrik 1x t dan 1y t .

Soal Tambahan!

1. Dua buah truk berjalan dari Tangerang ke Banyuwangi yang berjarak sekitar 1.125 km. Truk

pertama berangkat pukul 8 pagi dengan kecepatan rata-rata 50 km/jam. Sedangkan, truk

kedua berangkat pukul 9 pagi dengan kecepatan 54 km/jam. Buatlah persamaan parametrik

yang dapat memodelkan situasi ini kemudian gambarkan grafiknya untuk menganalisa model

tersebut.

a) Berapa lama dan berapa jauhnya dari Tangerang hingga truk kedua dapat menyusul truk

pertama?

b) Berapa besar kecepatan yang harus ditingkatkan oleh truk pertama agar dapat tiba lebih

dahulu daripada truk kedua?

2. Zainul menendang sebuah bola kaki dengan kecepatan awal sebesar 45 m/s dan sudut 30

dari horizontal. Berapa jauhkah bola melesat secara horizontal dan vertikal setelah 0,6 s?

3. Siti menembakkan anak panahnya dengan kecepatan awal sebesar 65m/s dan sudut 5 dari

horizontal. Jika target berada sejauh 70 m dari Siti berdiri dan busur berada 1,5 m di atas

permukaan tanah ketika Siti menembakkan anak panahnya, maka berapa jauhkah anak panah

dari atas permukaan tanah ketika mengenai target?

B. Koordinat Polar

Setelah mempelajari persamaan parametrik, pembahasan dilanjutkan dengan koordinat

polar yang melibatkan pengetahuan mengenai persamaan parametrik tersebut. Jika dalam

koordinat Cartesius, titik-titik direpresentasikan dengan ,x y , maka dalam koordinat polar titik-

titiknya direpresentasikan dengan ,r . Persamaan parametrik untuk permasalahan koordinat

tersebut adalah sebagai berikut:

cos ,sin ,

x ry r

2 2 ,

arctan ; 0,

arctan ; 0.

r x yy xxy xx

Contoh 1:

Tentukan koordinat polar dari 3,5 .

2 2

2 2 3 5

34 5,83.

r x y

arctan ; 0

5 arctan3

2,11.

y xx

Jadi, koordinat polar dari 3,5 adalah 5,83;2,11 .

Contoh 2:

Tentukan koordinat Cartesius dari 32,4

.

cos3 2cos4

1 2 22

2.

x r

sin3 2sin4

1 2 22

2.

y r

Jadi, koordinat Cartesius dari 32,4

adalah 2, 2 .

Soal!

1. Tentukan koordinat polar dari:

a) 0;1,5

b) 0,3

c) 1 13,2 2

d) 2,0

e) 1 ,04

f) 2, 2

2. Tentukan koordinat Cartesius dari:

a) 12,4

b) 5,60

c) 29; 1,19

d) 2;4,39

e) 13; 0,59

f) 3,464;2,09

Bab 10

Konik

Pada Bab ini akan dibahas mengenai bentuk-bentuk kurva yang seringkali digunakan

dalam aplikasi matematika geometri, contohnya dalam bidang astronomi. Kurva-kurva ini

dihasilkan melalui perpotongan antara kerucut dengan suatu bidang datar sehingga disebut

sebagai konik seperti digambarkan berikut ini:

Sumber: Wikipedia

Irisan pada gambar nomor 1 merupakan kurva parabola, sedangkan irisan atas dan bawah pada

gambar nomor 2 masing-masing disebut sebagai kurva elips dan lingkaran. Selain itu, irisan pada

gambar nomor 3 disebut sebagai hiperbola. Selanjutnya, akan dibahas masing-masing kurva

tersebut.

A. Lingkaran

Bentuk standar dari persamaan lingkaran dengan radius r dan pusat di ,h k adalah

sebagai berikut:

2 2 2.x h y k r

Sedangkan, bentuk umum dari persamaan lingkaran tersebut adalah:

2 2 0,x y Dx Ey F

dengan D, E, dan F merupakan suatu konstanta.

Contoh 1:

Nyatakan persamaan lingkaran yang berpusat di 5,6 dan menyinggung sumbu-y.

Berdasarkan definisi persamaan lingkaran diketahui bahwa persamaan lingkaran tersebut adalah

sebagai berikut:

2 2 2

2 2

2 2

2 2

5 6 5

5 6 25

10 25 12 36 25 010 12 36 0.

x y

x y

x x y yx y x y

Contoh 2:

Tentukan persamaan lingkaran yang melalui titik-titik 2,3 , 6, 5 , dan 0,7 .

Berdasarkan definisi persamaan lingkaran diketahui bahwa:

2 2

2 2

2 2

2 2

0

2 3 2 3 0

6 5 6 5 0

0 7 0 7 0

4 9 2 3 0 2 3 13

36 25 6 5 0 6 5 61

0 49 0 7 0 7 49

x y Dx Ey F

D E F i

D E F ii

D E F iii

i D E F D E F

ii D E F D E F

iii E F E F

Dengan substitusi dan eliminasi, seperti yang telah dijelaskan pada Bab 8, diperoleh

10, 4,D E dan 21F sehingga persamaan lingkarannya adalah sebagai berikut:

2 2 10 4 21 0x y x y atau 2 25 2 50x y .

Soal!

1. Nyatakan persamaan lingkaran berikut ini ke dalam bentuk standar kemudian gambarkan:

a) 2 2 4 6 12 0x y x y .

b) 2 2 8 2 8 0x y x y .

c) 2 23 3 27 0x y .

d) 2 216 16 8 32 127x y x y .

e) 2 26 12 6 36 36x x y y .

f) 2 216 48 75 16 8 0x x y y .

g) 2 2 4 12 30 0x y x y .

h) 2 2 14 24 157 0x y x y .

i) 2 2 34

x y x .

2. Tentukan persamaan lingkaran yang melalui titik-titik berikut ini kemudian gambarkan:

a) 7, 1 , 11, 5 , dan 3, 5 .

b) 1,3 , 5,5 , dan 5,3 .

c) 5,3 , 2,2 , dan 1, 5 .

d) 7, 1 , 7,5 , dan 1, 1 .

e) 10, 5 , 2,7 , dan 9,0 .

f) 2, 1 , 3,0 , dan 1, 4 .

B. Parabola

Bentuk standar dari persamaan parabola dengan verteks di ,h k dan sejajar sumbu-y

adalah sebagai berikut:

2 4 ,y k p x h

dengan p adalah jarak dari verteks ke fokus. Sedangkan, bentuk standar dari persamaan parabola

dengan verteks di ,h k dan sejajar sumbu-x adalah sebagai berikut:

2 4 ,x h p y k

dengan p adalah jarak dari verteks ke fokus. Selain itu, bentuk umum dari persamaan parabola

yang sejajar dengan sumbu-y dan sumbu-x masing-masing adalah:

2 20 dan 0,y Dx Ey F x Dx Ey F

dengan D, E, dan F merupakan suatu konstanta.

Contoh:

Tentukan bentuk standar dari parabola 2 4 2 5 0y x y .

2

2

2

2

2

4 2 5 02 4 52 1 4 5 1

1 4 4

1 4 1

y x yy y xy y x

y x

y x

sehingga diketahui bahwa verteks dari parabola tersebut adalah 1, 1 dengan fokus 1.

Soal!

1. Nyatakan persamaan parabola berikut ini ke dalam bentuk standar kemudian gambarkan dan

tentukan verteks serta fokusnya:

a) 2 4 4 7y y x .

b) 24 4 10 25x y y .

c) 2 8 4 8 0x x y .

d) 2 2 12 13 0x x y .

e) 2 2 0y x .

f) 23 19 0x y .

g) 24 40 24 4 0x y x .

h) 2 4 2 10 0x x y .

i) 2 3 6y x y .

j) 22 16 16 64 0x x y .

C. Elips

Bentuk standar dari persamaan elips dengan pusat di ,h k dan sumbu utama memiliki

panjang 2a unit di mana sumbu utama sejajar dengan sumbu-x dan 2 2 2b a c adalah sebagai

berikut:

2 2

2 2 1.x h y ka b

Sedangkan, bentuk standar dari persamaan elips di mana sumbu utama sejajar dengan sumbu-y

adalah sebagai berikut:

2 2

2 2 1.y k x ha b

Contoh:

Tentukan bentuk standar dari elips 2 24 8 6 9 0x y x y .

2 2

2 2

2 2

2 2

2 2

4 8 6 9 0

4 2 ? 6 ? 9 ? ?

4 2 1 6 9 9 4 1 9

4 1 3 4

1 31.

1 4

x y x y

x x y y

x x y y

x y

x y

sehingga diketahui bahwa pusat dari elips tersebut adalah 1, 3 . Oleh karena 2 2 2, 4,a b a

dan 2 1b , maka sumbu utama sejajar dengan sumbu-y dan 2 2 2c a b atau 3c . Dengan

demikian, diperoleh fokus elips adalah 1, 3 3 dan 1, 3 3 serta verteks

2, 3 , 0, 3 , 1, 1 , dan 1, 5 .

Soal!

1. Tentukan pusat, fokus, dan verteks dari elips-elips berikut ini kemudian gambarkan:

a) 2 23 41

25 16x y

.

b) 2 22 11

4 25x y

.

c) 2 24 9 36x y .

d) 2 29 4 18 16 11x y x y .

e) 2 24 8 9 54 49 0y y x x .

f) 2 22 2 6 0x x y y .

g) 2 29 108 4 56 484y y x x .

h) 2 218 12 144 48 120x y x y .

D. Hiperbola

Bentuk standar dari persamaan hiperbola dengan pusat di ,h k dan sumbu utama

memiliki panjang 2a unit di mana sumbu utama sejajar dengan sumbu-x dan 2 2 2b a c adalah

sebagai berikut:

2 2

2 2 1.x h y ka b

Sedangkan, bentuk standar dari persamaan hiperbola di mana sumbu utama sejajar dengan

sumbu-y adalah sebagai berikut:

2 2

2 2 1.y k x ha b

Contoh:

Tentukan bentuk standar dari hiperbola 2 225 9 100 72 269 0y x y x .

2 2

2 2

2 2

2 2

2 2

25 9 100 72 269 0

25 4 ? 9 8 ? 269 ? ?

25 4 4 9 8 16 269 25 4 9 16

25 2 9 4 225

2 41.

9 25

y x y x

y y x x

y y x x

y x

y x

sehingga diketahui bahwa pusat dari hiperbola tersebut adalah 4,2 . Oleh karena bagian y

terdapat pada suku pertama, maka sumbu utama sejajar dengan sumbu-y. Dengan 3, 5,a b

dan 34c , maka fokus elips adalah 4,2 34 dan 4,2 34 dengan verteks 4, 1

dan 4,5 . Selain itu, garis asimtot dari hiperbola tersebut adalah sebagai berikut:

32 4 .5

y x

Soal!

1. Tentukan pusat, fokus, verteks, dan persamaan asimtot dari hiperbola-hiperbola berikut ini

kemudian gambarkan:

a)2 2

1.25 16x y

b) 2 23 21

16 25y x

.

c) 2 281 36 2916x y .

d) 2 26 4 3 36x y .

e) 2 29 4 54 40 55 0x y x y .

f) 2 25 20 50y x x .

g) 2 24 9 90 24 153y x x y .

h) 2 249 25 294 200 1184x y x y .

DAFTAR PUSTAKA

Bartle, R. G. & Sherbert, D. R. (2000). Introduction to Real Analysis. New York: John Wiley &

Sons.

Britton, J. R., Kriegh, R. B., & Rutland, L. W. Calculus and Analytic Geometry. San Francisco:

W. H. Freeman and Company.

Gordon, B. W., Yunker, L. E., Crosswhite, F. J. & Vannatta, G. D. (1997). Advanced

Mathematical Concepts: Precalculus with Applications. New York: McGraw-Hill.

Kanginan, M. & Kustendi, T. (2003). Matematika untuk SMU Kelas 1 Semester 1. Bandung:

Grafindo.

Wirodikromo, S. (2007). Matematika untuk SMA Kelas XI. Jakarta: Erlangga.

Yahya, Y., Harmanto, S. & Sumin, A. (1995). Matematika Dasar Untuk Perguruan Tinggi.

Jakarta: Ghali Indonesia.