Astronomi 2.docx

download Astronomi 2.docx

of 34

  • date post

    02-Dec-2015
  • Category

    Documents

  • view

    239
  • download

    8

Embed Size (px)

Transcript of Astronomi 2.docx

Evolusi BintangSeperti manusia, bintang juga mengalami perubahan tahap kehidupan. Sebutannya adalah evolusi. Mempelajari evolusi bintang sangat penting bagi manusia, terutama karena kehidupan kita bergantung pada matahari. Matahari sebagai bintang terdekat harus kita kenali sifat-sifatnya lebih jauh.Dalam mempelajari evolusi bintang, kita tidak bisa mengikutinya sejak kelahiran sampai akhir evolusinya. Usia manusia tidak akan cukup untuk mengamati bintang yang memiliki usia hingga milyaran tahun. Jika demikian tentunya timbul pertanyaan, bagaimana kita bisa menyimpulkan tahap-tahap evolusi sebuah bintang? Pertanyaan tersebut dapat dijawab dengan kembali menganalogikan bintang dengan manusia. Jumlah manusia di bumi dan bintang di angkasa sangat banyak dengan usia yang berbeda-beda. Kita bisa mengamati kondisi manusia dan bintang yang berada pada usia/tahapan evolusi yang berbeda-beda. Ditambah dengan pemodelan, akhirnya kita bisa menyusun teori evolusi bintang tanpa harus mengamati sebuah bintang sejak kelahiran hingga akhir evolusinya.Kelahiran bintangBintang lahir dari sekumpulan awan gas dan debu yang kita sebut nebula. Ukuran awan ini sangat besar (diameternya mencapai puluhan SA) tetapi kerapatannya sangat rendah. Awal dari pembentukan bintang dimulai ketika ada gangguan gravitasi (misalnya, ada bintang meledak/supernova), maka partikel-partikel dalam nebula tersebut akan bergerak merapat dan memulai interaksi gravitasi di antara mereka setelah sebelumnya tetap dalam keadaan setimbang. Akibatnya, partikel saling bertumbukan dan temperatur naik.

Eagle Nebula, tempat kelahiran bintang (Sumber: Hubblesite)Semakin banyak partikel yang merapat berarti semakin besar gaya gravitasinya dan semakin banyak lagi partikel yang ditarik. Pengerutan awan ini terus berlangsung hingga bagian intinya semakin panas. Panas tersebut dapat mendorong awan di sekitarnya. Hal ini memicu terjadinya proses pembentukan bintang di sekitarnya. Demikian seterusnya hingga terbentuk banyak bintang dalam sebuah awan besar. Maka tidaklah heran jika kita mengamati sekelompok bintang yang lahir pada waktu yang berdekatan di lokasi yang sama. Kelompok bintang inilah yang biasa kita sebut dengan gugus.Akibat pengerutan oleh gravitasi, temperatur dan tekanan di dalam awan naik sehingga pengerutan melambat. Di tahap ini, bola gas yang terbentuk disebut dengan proto bintang. Apabila massanya kurang dari 0,1 massa Matahari, maka proses pengerutan akan terus terjadi hingga tekanan dari pusat bisa mengimbanginya. Pada saat tercapai kesetimbangan, temperatur di bagian pusat awan itu tidak cukup panas untuk dimulainya proses pembakaran hidrogen. Maksud dari pembakaran di sini adalah reaksi fusi atom hidrogen menjadi helium. Awan ini pun gagal menjadi bintang dan disebut dengan katai gelap.Jika massanya lebih dari 0,1 massa Matahari, bagian pusat proto bintang memiliki temperatur yang cukup untuk memulai reaksi fusi saat dirinya setimbang. Reaksi ini akan terus terjadi hingga helium yang sudah terbentuk mencapai 10 20 % massa bintang. Setelah itu pembakaran akan terhenti, tekanan dari pusat menurun, dan bagian pusat ini runtuh dengan cepat. Akibatnya temperatur inti naik dan bagian luar bintang mengembang. Saat ini, bintang menjadi raksasa dan tahap pembakaran helium menjadi karbon pun dimulai. Di lapisan berikutnya, berlangsung pembakaran hidrogen menjadi helium. Setelah ini kembali akan kita lihat bahwa evolusi bintang sangat bergantung pada massa.Untuk bintang bermassa kecil (0,1 0,5 massa Matahari), proses pembakaran hidrogen dan helium akan terus berlangsung sampai akhirnya bintang itu menjadi katai putih. Sedangkan pada bintang bermassa 0,5 6 massa Matahari, pembakaran karbon dimulai setelah helium di inti bintang habis. Proses ini tidaklah stabil, akibatnya bintang berdenyut. Bagian luar bintang mengembang dan mengerut secara periodik sebelum akhirnya terlontar membentuk planetary nebula. Bagian bintang yang tersisa akan mengerut dan membentuk bintang katai putih.Berikutnya adalah bintang bermassa besar (lebih dari 6 massa Matahari). Di bintang ini pembakaran karbon berlanjut hingga terbentuk neon. Lalu neon pun mengalami fusi membentuk oksigen. Begitu seterusnya hingga secara berturut-turut terbentuk silikon, nikel, dan terakhir besi. Kita bisa lihat di diagram penampang bintang di bawah ini, bahwa reaksi fusi sebelumnya tetap terjadi di luar lapisan inti. Sehingga ada banyak lapisan reaksi fusi yang terbentuk ketika di bagian pusat bintang sedang terbentuk besi.

Lapisan-lapisan reaksi fusi (Sumber: Wikipedia)Evolusi LanjutSetelah reaksi yang membentuk besi terhenti, tidak ada proses pembakaran selanjutnya. Akibatnya, tekanan menurun dan bagian inti bintang memampat. Karena begitu padatnya, jarak antara neutroon dan elektron pun mengecil sehingga elektron bergabung dengan neutron dan proton. Peristiwa ini menghasilkan tekanan yang sangat besar dan mengakibatkan bagian luar bintang dilontarkan dengan cepat. Inilah yang disebut dengan supernova.Apa yang terjadi setelah supernova bergantung pada massa bagian inti bintang yang tadi terbentuk. Apabila di bawah 5 massa Matahari (batas massa Schwarzchild), supernova menyisakan bintang neutron. Disebut demikian karena partikel dalam bintang ini hanya neutron. Bintang neutron biasanya terdeteksi sebagai pulsar (pulsating radio source, sumber gelombang radio yang berputar). Pulsar adalah bintang yang berputar dengan sangat cepat, periodenya hanya dalam orde detik. Putarannya itulah yang menyebabkan pulsasi pancaran gelombang radionya.

Diagram evolusi berbagai bintang (Sumber: Chandra Harvard)Di atas 5 massa Matahari, gaya gravitasi di inti bintang begitu besarnya sehingga dirinya runtuh dan kecepatan lepas partikelnya melebihi kecepatan cahaya. Objek seperti ini disebut dengan lubang hitam. Tidak ada objek yang sanggup lepas dari pengaruh gravitasinya, termasuk cahaya sekalipun. Makanya benda ini disebut lubang hitam, karena tidak memancarkan gelombang elektromagnetik. Satu-satunya cara untuk mendeteksi keberadaan lubang hitam adalah dari interaksi gravitasinya dengan benda-benda di sekitarnya. Pusat galaksi kita adalah salah satu lokasi ditemukannya lubang hitam. Kesimpulan ini diambil karena bintang-bintang di pusat galaksi bergerak dengan sangat cepat, dan kecepatannya itu hanya bisa ditimbulkan oleh gaya gravitasi yang sangat kuat, yaitu oleh sebuah lubang hitam.Hingga saat ini, pengamatan terhadap bintang-bintang masih terus dilakukan. Teori evolusi bintang di atas bisa saja berubah kalau ada bukti-bukti baru. Tidak ada yang kekal dalam sains, dan tidak ada kebenaran mutlak. Apa yang menjadi kebenaran saat ini bisa saja terbantahkan di kemudian hari. Itulah uniknya sains: dinamis.Matahari, Bintang Terbaik Yang Kita MilikiMatahari kita adalah sebuah bintang, yaitu bola gas panas raksasa yang mengeluarkan energi dan cahaya. Ukurannya begitu besar dibandingkan dengan Bumi dan planet-planet lainnya. Namun sebenarnya, Matahari termasuk bintang yang ukurannya biasa saja. Masih banyak bintang lain yang berukuran jauh lebih besar ataupun jauh lebih kecil darinya. Tetapi tetap saja Matahari adalah satu bintang yang sangat istimewa bagi manusia, Bumi, dan tata surya kita.Matahari memiliki diameter 1,4 juta km dan massa 1,9 x 10^30 kg. Di galaksi Bimasakti, ukuran sebesar ini termasuk dalam 10% yang terbesar. Jauh lebih banyak bintang dengan ukuran dan massa yang lebih kecil (yang terbanyak adalah bintang dengan massa setengah massa Matahari).

Matahari (Sumber: wikipedia)Matahari adalah bintang deret utama dengan kelas G2. Materi penyusunnya adalah hidrogen sebanyak 70%, helium 28%, dan sisanya unsur berat lain. Permukaannya (fotosfer) bersuhu 5.800 K, sedangkan di bagian pusat suhunya mencapai 15 juta K. Cahaya Matahari yang berwarna putih kekuningan yang bisa kita lihat berasal dari lapisan fotosfer. Di lapisan ini terdapat banyak kejadian menarik, di antaranya adalah bintik Matahari, granulasi, prominensa, dan filamen. Di bagian luar terdapat atmosfer yang disebut korona yang temperaturnya mencapai 5 juta K. Tingginya temperatur korona ini diperkirakan berkaitan dengan aktivitas medan magnetik Matahari yang sangat intensif. Karena terangnya fotosfer, kita tidak dapat mengamati korona kecuali ketika terjadi gerhana Matahari total.Sebagai sebuah bintang, Matahari memiliki pabrik pembangkit energi yang sangat aktif di bagian pusatnya. Di bagian yang kerapatannya sangat tinggi ini (150 kali kerapatan air), atom-atom hidrogen bereaksi membentuk helium dalam serangkaian reaksi. Reaksi penggabungan (fusi) ini menghasilkan energi yang sangat besar, yaitu 386 miliar miliar juta watt. Setiap detiknya, sebanyak 700 juta ton hidrogen diubah menjadi 695 juta ton helium dan 5 juta ton energi dalam bentuk sinar gamma.

Korona Matahari terlihat ketika gerhana Matahari total (Sumber: wikipedia)Bintik Matahari adalah suatu area gelap di fotosfer yang suhunya lebih rendah relatif terhadap sekitarnya (3800 K berbanding 5800 K). Keberadaannya bergantung pada aktivitas medan magnet di Matahari. Dan jumlahnya akan meningkat atau menurun secara periodik, setiap 11 tahun sekali. Jika jumlahnya sangat banyak, maka kita sebut Matahari sedang berada dalam masa aktif. Diperkirakan puncak dari keaktifan Matahari yang berikutnya akan terjadi pada tahun 2013 nanti. Mungkin kita sering mendengar hal ini dari isu kiamat 2012, namun tentu saja keduanya tidak berkaitan.

Diagram penampang Matahari (Sumber: wikipedia)Sebagaimana manusia, bintang juga lahir, tumbuh besar, lalu mati. Semakin besar massa sebuah bintang, maka kala hidupnya semakin singkat dan sebaliknya. Usia Matahari saat ini, atau sama dengan usia tata surya kita, adalah sekitar 4,57 milyar tahun. Diperkirakan Matahari masih akan terus seperti sekarang hingga 5 milyar tahun lagi. Setelah itu, Matahari akan memasuki fase raksasa merah (red giant). Disebut demikian karena ukurannya akan membesar hingga 250 kali lipat dan mungkin