3 Model Matematik Sistem

44
Model System Pengaturan Dr. Ir. M. Sabri, MT

description

model matematik sistem. Dasar mekatronika Oleh Dr.Ir. M.Sabri, MT

Transcript of 3 Model Matematik Sistem

  • Model System Pengaturan

    Dr. Ir. M. Sabri, MT

  • Komponen Sistem Kontrol

    System atau proses (harus dikendalikan)

    Actuator (mengubah sinyal kontrol untuk sinyal daya)

    Sensors (menyediakan pengukuran keluaran sistem)

    Input Referensi (menggambarkan output yang diinginkan)

    Kesalahan deteksi (membentuk kesalahan kontrol)

    Kontroller (beroperasi pada kesalahan kontrol untuk membentuk sinyal kontrol, Kadang-kadang disebut kompensator)

  • Karakteristik Sistem Umpan balik

    Perhatikan sistem kontrol kecepatan berikut

    Beban

    Kl Motor

    Km

    Amp

    Ka

    Sensor kecepatan Ks

    referensi

    kecepatan

    u +

    _

    gangguan

    Momen puntir

    wo

    system loop terbuka

    Lajur umpan balik

    wr +

    +

    Td

    Tm

  • Karakteristik System Loop terbuka

    Keakuratan dari sistem loop terbuka tergantung pada kalibrasi gain dan pengetahuan gangguan sebelumnya (pilih kontrol u untuk memberikan diinginkan wo).

    Masalah:

    nonlinear atau berbagai gain waktu

    Berbagai gangguan yang tidak diketahui

    Beban

    Kl Motor

    Km

    Amp

    Ka

    u

    Gangguan

    momen puntir

    wo

    system loop terbuka

    +

    +

    Td

    Tm

    dllma

    dmlo

    TKuKKK

    TTK

    )(w

  • Karakteristik Loop Tertutup Perhatikan kes dengan umpan balik

    d

    slma

    lr

    slma

    lmao

    dlosrlma

    dmlo

    TKKKK

    K

    KKKK

    KKK

    or

    TKKKKK

    TTK

    11

    )(

    )(

    ww

    ww

    w

    Beban

    Kl Motor

    Km

    Amp

    Ka

    Sensor kecepatan Ks

    Kecepatan rujukan

    u +

    _

    Gangguan

    momen puntir

    wo

    system loop terbuka

    Feedback Path

    wr +

    +

    Td

    Tm

  • Karakteristik Loop tertutup

    jika Ka sangat besar sehingga seperti ,

    kemudian,

    Ks adalah gain sensor dalam satuan volts per rad/s.

    Hubungan input/output tidak terlalu sensitive terhadap gangguan atau perubahan dalam gain sistem

    slmaslma KKKKKKKK 1

    d

    sma

    r

    s

    o TKKKK

    11 ww

    rad/s volts 0

  • Karakteristik Loop tertutup

    Sistem salah

    Kesalahan kontrol adalah

    lagi, jika gain loop, Ka Km Kl Ks besar, kemudian kesalahannya kecil.

    d

    slma

    slr

    slma

    d

    slma

    slr

    slma

    slma

    osr

    TKKKK

    KK

    KKKK

    TKKKK

    KK

    KKKK

    KKKK

    Ke

    11

    1

    111

    )(

    w

    w

    ww

  • Catatan: Definisi Gain

    Gain depan: Ka Km Kl

    Gain umpan balik: Ks

    Gain loop: Ka Km Kl Ks

    Gain loop tertutup : gain depan

    1 + gain loop

  • Chapter 2 mathematical models of systems

    2.1 Introduction

    Controller Actuator Process

    Disturbance

    Input r(t)

    desired output

    temperature

    Output T(t)

    actual

    output

    temperature

    Control

    signal

    Actuating

    signal

    u k u a c

    Fig. 2.1

    temperature

    measurement

    Feedback signal b(t)

    +

    - ()

    e(t)=

    r(t)-b(t)

    1) Easy to discuss the full possible types of the control systemsin terms of the systems mathematical characteristics.

    2) The basis analyzing or designing the control systems.

    For example, we design a temperature Control system :

    The key designing the controller how produce uk.

    2.1.1 Why

  • Chapter 2 mathematical models of systems

    2.1.3 How get

    1) theoretical approaches 2) experimental approaches

    3) discrimination learning

    2.1.2 What is

    Mathematical models of the control systems the mathematical

    relationships between the systems variables.

    Different characteristic of the process different uk:

    T(t)

    uk

    T1

    T2

    uk12 uk11 uk21

    For T1

    12

    11

    k

    k

    u

    u

    For T1

    22

    21

    k

    k

    u

    u

  • Chapter 2 mathematical models of systems

    2.2.1 Examples

    2.2 Input-output description of the physical systems differential

    equations

    2.1.4 types

    1) Differential equations

    2) Transfer function

    3) Block diagramsignal flow graph

    4) State variables(modern control theory)

    The input-output descriptiondescription of the mathematical

    relationship between the output variable and the input variable of the

    physical systems.

  • Chapter 2 mathematical models of systems

    ur

    uc

    R L

    Ci

    define: input ur output uc we have

    rccc

    crc

    uudt

    duRC

    dt

    udLC

    dt

    duCiuu

    dt

    diLRi

    2

    2

    rccc uu

    dt

    duT

    dt

    udTTT

    R

    LTRCmake 12

    2

    2121:

    Example 2.1 : A passive circuit

  • Chapter 2 mathematical models of systems

    Example 2.2 : A mechanism

    y

    k

    f

    F

    m

    Define: input F output y. We have:

    Fkydt

    dyf

    dt

    ydm

    td

    ydm

    dt

    dyfkyF

    2

    2

    2

    2

    Fk

    ydt

    dyT

    dt

    ydTThavewe

    Tf

    mT

    k

    fmakeweIf

    1:

    :

    12

    2

    21

    2,1

    Compare with example 2.1: ucy; urF analogous systems

  • Chapter 2 mathematical models of systems

    Example 2.3 : An operational amplifier (Op-amp) circuit

    ur

    uc

    R1

    C

    R2

    R4

    R1

    R3

    i3

    i1

    i2

    +-

    Input ur output uc

    )3........(....................).........(1

    )2...(........................................

    )1)......(()(1

    223

    3

    112

    2342333

    iRuR

    i

    R

    uii

    iiRdtiiC

    iRu

    c

    r

    c

    (2)(3); (2)(1); (3)(1)

    r

    rCRRR

    RR

    R

    RRc

    cCR udt

    duu

    dt

    du)( 4

    32

    324

    1

    32

    )(:

    )(;;: 432

    32

    1

    324

    rr

    cc u

    dt

    duku

    dt

    duThavewe

    CRRR

    RRk

    R

    RRTCRmake

  • Chapter 2 mathematical models of systems Example 2.4 : A DC motor

    ua

    w1

    Ra

    La

    ia

    M

    w3

    w2 ( J

    3, f

    3)

    ( J1, f

    1)

    ( J2, f

    2)

    Mf

    i1

    i2

    Input ua output 1

    )4.....(

    )3.....(....................

    )2.....(....................

    )1....(

    11

    1

    ww

    w

    fdt

    dJMM

    CE

    iCM

    uEiRdt

    diL

    ea

    am

    aaaaa

    a

    (4)(2)(1) and (3)(1):

    MCC

    RM

    CC

    Lu

    C

    CC

    fR

    CC

    JR

    CC

    fL

    CC

    JL

    me

    a

    me

    aa

    e

    me

    a

    me

    a

    me

    a

    me

    a

    1

    )1()( 111 www

  • Chapter 2 mathematical models of systems

    ): (

    ..........................

    ......

    ......

    :

    321211

    21

    22

    21

    321

    21

    22

    21

    321

    21

    www iiifromderivedbecan

    torqueequivalentii

    MM

    nt coefficie frictionequivalentii

    f

    i

    fff

    inertia of momentequivalentii

    J

    i

    JJJ

    here

    f

    Make:

    constant-timeelectricfrictionCC

    fRT

    constant-timeelectric-mechanicalCC

    JRT

    constant- timemagnetic-electricR

    LT

    me

    af

    me

    am

    a

    ae

    -.......

    .......

    ............

  • Chapter 2 mathematical models of systems

    ae

    mme uCdt

    dT

    dt

    dTT

    12

    2

    www

    Assume the motor idle: Mf = 0, and neglect the friction: f = 0,

    we have:

    )(11

    )1()( 111

    MTMTTJ

    uC

    TTTTTT

    mmeae

    fmfeme

    www

    The differential equation description of the DC motor is:

  • Chapter 2 mathematical models of systems

    Example 2.5 : A DC-Motor control system

    +

    t r i ggerUf

    ur

    -M

    M

    +

    -rect i f i er

    DC

    mot or

    t echomet er

    l oad

    ua-

    uk

    R3

    R1

    R1

    R2 R

    3

    w

    Input urOutput ; neglect the friction:

    (4)MTMTTJ

    uCdt

    dT

    dt

    dTT

    (3)uku(2)u

    (1)uukuuR

    Ru

    mmeae

    mme

    kaf

    frfrk

    )......(11

    ...................... .....................

    ..................................)......()(

    2

    2

    2

    11

    2

    www

    w

  • Chapter 2 mathematical models of systems

    2134we have

    )(1

    )1( 211

    212

    2

    MMTJ

    Tu

    Ckkkk

    dt

    dT

    dt

    dTT e

    mr

    eCmme e

    www

    2.2.2 steps to obtain the input-output description (differential

    equation) of control systems

    1) Determine the output and input variables of the control systems.

    2) Write the differential equations of each systems components in

    terms of the physical laws of the components.

    * necessary assumption and neglect.

    * proper approximation.

  • Chapter 2 mathematical models of systems

    2.2.3 General form of the input-output equation of the linear

    control systemsA nth-order differential equation:

    mnrbrbrbrbrb

    yayayayay

    mmmmm

    nnnnn

    .........)1(1)2(

    2)1(

    1)(

    0

    )1(1

    )2(2

    )1(1

    )(

    3) dispel the intermediate(across) variables to get the input-output

    description which only contains the output and input variables.

    4) Formalize the input-output equation to be the standard form:

    Input variable on the right of the input-output equation .

    Output variable on the left of the input-output equation.

    Writing polynomial according to the falling-power order.

    Suppose: input r output y

  • Chapter 2 mathematical models of systems

    2.3 Linearization of the nonlinear components

    2.3.1 what is nonlinearity

    The output is not linearly vary with the linear variation of the

    systems (or components) input nonlinear systems (or

    components).

    2.3.2 How do the linearization

    Suppose: y = f(r)

    The Taylor series expansion about the operating point r0 is:

    ))(()(

    )(!3

    )()(

    !2

    )())(()()(

    00)1(

    0

    30

    0)3(

    20

    0)2(

    00)1(

    0

    rrrfrf

    rrrf

    rrrf

    rrrfrfrf

    00 :)()(: rrrandrfrfymake

    equationionlinearizatrrfywehave ............)(: 0'

  • Chapter 2 mathematical models of systems

    Examples:

    Example 2.6 : Elasticity equation kxxF )(

    25.0;1.1;65.12:suppose 0 xpointoperatingk

    11.1225.01.165.12)()( 1.00'1' xFxkxF

    equationionlinearizatxF

    xxxFxF

    ..............11.12 :is that

    )(11.12)()( :have we 00

    Example 2.7 : Fluxograph equation

    pkpQ )(

    Q Flux; p pressure difference

  • Chapter 2 mathematical models of systems

    equationionlinearizatp

    p

    kQ

    p

    kpQbecause

    ...........2

    : thus

    2)(' :

    0

    2.4 Transfer function

    Another form of the input-output(external) description of control

    systems, different from the differential equations.

    2.4.1 definition

    Transfer function: The ratio of the Laplace transform of the

    output variable to the Laplace transform of the input variable,with

    all initial condition assumed to be zero and for the linear systems,

    that is:

  • Chapter 2 mathematical models of systems

    )(

    )()(

    sR

    sCsG

    C(s) Laplace transform of the output variable

    R(s) Laplace transform of the input variable

    G(s) transfer function

    * Only for the linear and stationary(constant parameter) systems.

    * Zero initial conditions.

    * Dependent on the configuration and the coefficients of the

    systems, independent on the input and output variables.

    2.4.2 How to obtain the transfer function of a system

    1) If the impulse response g(t) is known

    Notes:

  • Chapter 2 mathematical models of systems

    )()( tgLsG

    1)()()( if ,)(

    )()( sRttr

    sR

    sCsG

    Because:

    We have:

    Then:

    Example 2.8 : )2(

    )5(2

    2

    35)( 35)( 2

    ss

    s

    sssGetg t

    2) If the output response c(t) and the input r(t) are known

    We have: )(

    )()(

    trL

    tcLsG

    )()()( tgLsCsG

  • Chapter 2 mathematical models of systems

    Example 2.9:

    responseUnit step

    sssssCetc

    functionUnit step s

    ttr

    t

    .........

    )3(

    3

    3

    11)( 1)(

    ........1

    R(s) )(1)(

    3

    Then:

    3

    3

    1

    )3(3

    )(

    )()(

    ss

    ss

    sR

    sCsG

    3) If the input-output differential equation is known

    Assume: zero initial conditions;

    Make: Laplace transform of the differential equation;

    Deduce: G(s)=C(s)/R(s).

  • Chapter 2 mathematical models of systems

    Example 2.10:

    432

    65

    )(6)(5)(4)(3)(2

    )(6)(5)(4)(3)(2

    2

    2

    ss

    s

    R(s)

    C(s) G(s)

    sRssRsCssCsCs

    trtrtctctc

    4) For a circuit

    * Transform a circuit into a operator circuit.

    * Deduce the C(s)/R(s) in terms of the circuits theory.

  • Chapter 2 mathematical models of systems

    Example 2.11: For a electric circuit:

    ucur C1 C2

    R1

    R2

    uc( s)

    1/ C1s 1/ C2s

    R1

    R2

    ur( s)

    2112222111

    r

    c

    r

    rc

    CR; TCR; TCRT

    sTTTsTTsU

    sUsG

    sUsTTTsTT

    sCR

    sCsU

    sCR

    sCR

    sCR

    sCsU

    :here

    1)(

    1

    )(

    )()(

    )(1)(

    1

    1

    1

    )(

    )1

    (//1

    )1

    (//1

    )(

    12212

    21

    12212

    21

    22

    2

    22

    11

    22

    1

  • Chapter 2 mathematical models of systems

    Example 2.12: For a op-amp circuit

    ur u

    c

    R1

    R2

    R1

    +-

    C R2 1/ Cs

    ur u

    c

    R1

    R1

    +-

    ...... ; :here

    .................)1

    1(

    11

    )(

    )()(

    21

    2

    1

    2

    1

    2

    ntime constaIntegral tCRR

    Rk

    ller.PI-Contros

    k

    CsR

    CsR

    R

    sCR

    sU

    sUsG

    r

    c

  • Chapter 2 mathematical models of systems

    5) For a control system

    Write the differential equations of the control system, and Assume

    zero initial conditions;

    Make Laplace transformation, transform the differential equations

    into the relevant algebraic equations;

    Deduce: G(s)=C(s)/R(s).

    Example 2.13

    +

    t r i ggerUf

    ur

    -M

    M

    +

    -rect i f i er

    DC

    mot or

    t echomet er

    l oad

    ua-

    uk

    R3

    R1

    R1

    R2 R

    3

    w

    the DC-Motor control system in Example 2.5

  • Chapter 2 mathematical models of systems

    In Example 2.5, we have written down the differential equations

    as:

    (4)MMTJ

    Tu

    Cdt

    dT

    dt

    dTT

    (3)uku(2)u

    (1)uukuuR

    Ru

    em

    ae

    mme

    kaf

    frfrk

    )......(1

    ................... ....................

    .........................).........()(

    2

    2

    2

    11

    2

    www

    w

    Make Laplace transformation, we have:

    (4)sMJ

    TsTTsU

    CessTsTT

    (3)sUksU(2)ssU

    (1)sUsUksU

    mmeamme

    kaf

    frk

    )......()(1

    )()1(

    .....).........()( ......).........()(

    ...........................................)]........()([)(

    2

    2

    1

  • Chapter 2 mathematical models of systems

    (2)(1)(3)(4), we have:

    )()(1

    )()]1

    1([ 21212 sM

    J

    TsTTsU

    Ckks

    CkksTsTT mmer

    eemme

    - ......

    - ........... :

    constanttimeelectricmechanicalCC

    JRT

    constanttimemagnetic electricR

    LThere

    me

    am

    a

    ae

    )1

    1(

    1

    )(

    )()(

    212

    21

    emme

    e

    r

    CkksTsTT

    Ckk

    sU

    ssG

  • Chapter 2 mathematical models of systems

    2.5 Transfer function of the typical elements of linear systems

    A linear system can be regarded as the composing of several

    typical elements, which are:

    2.5.1 Proportioning element

    Relationship between the input and output variables:

    )()( tkrtc

    Transfer function: ksR

    sCsG

    )(

    )()(

    Block diagram representation and unit step response:

    R( s) C( s)k

    1k

    t

    r ( t ) C( t )

    t

    Examples:

    amplifier, gear train,

    tachometer

  • Fungsi Transfer

    Dr. Ir. M. Sabri, MT

  • Chapter 2 mathematical models of systems

    2.5.2 Integrating element

    Relationship between the input and output variables:

    constant timeintegralTdttrT

    tc I

    t

    I

    :..........)(1

    )(

    0

    Transfer function: sTsR

    sCsG

    I

    1

    )(

    )()(

    Block diagram representation and unit step response:

    1

    R( s) C( s)

    1

    t

    r ( t ) C( t )

    t

    sTI

    1

    TI

    Examples:

    Integrating circuit, integrating

    motor, integrating wheel

  • Chapter 2 mathematical models of systems

    2.5.3 Differentiating element

    Relationship between the input and output variables:

    dt

    tdrTtc D

    )()(

    Transfer function: sTsR

    sCsG D

    )(

    )()(

    Block diagram representation and unit step response:

    Examples:

    differentiating amplifier, differential

    valve, differential condenser

    R( s) C( s)TDs

    1 TD

    t

    r ( t ) C( t )

    t

  • 2.5.4 Inertial element

    Chapter 2 mathematical models of systems

    Relationship between the input and output variables:

    )()()(

    tkrtcdt

    tdcT

    Transfer function: 1)(

    )()(

    Ts

    k

    sR

    sCsG

    Block diagram representation and unit step response:

    Examples:

    inertia wheel, inertial load (such as

    temperature system) 1

    R( s) C( s)

    k

    t

    r ( t ) C( t )

    tT

    1Ts

    k

  • Chapter 2 mathematical models of systems

    2.5.5 Oscillating element

    Relationship between the input and output variables:

    10 )()()(

    2)(

    2

    22 tkrtc

    dt

    tdcT

    dt

    tcdT

    Transfer function: 10 12)(

    )()(

    22

    TssT

    k

    sR

    sCsG

    Block diagram representation and unit step response:

    Examples:

    oscillator, oscillating table,

    oscillating circuit

    R( s) C( s)

    12

    122 TssT C( t )

    k

    t

    1

    t

    r ( t )

  • 2.5.6 Delay element

    Chapter 2 mathematical models of systems

    Relationship between the input and output variables:

    )()( tkrtc

    Transfer function: skesR

    sCsG

    )(

    )()(

    Block diagram representation and unit step response:

    Examples:

    gap effect of gear mechanism,

    threshold voltage of transistors

    R( s) C( s)

    1

    t

    r ( t )

    ske

    kC( t )

    t

  • 2.6 block diagram models (dynamic)

    Portray the control systems by the block diagram models more

    intuitively than the transfer function or differential equation models.

    2.6.1 Block diagram representation of the control systems

    Chapter 2 mathematical models of systems

    Examples:

    Si gnal

    ( var i abl e)G( s)Component

    ( devi ce)

    Adder ( compar i son)

    E( s) =x1( s)+x

    3( s) - x

    2( s)

    X( s)

    X3( s)

    X2( s)

    +

    -

    +X1( s) E( s)

  • Example 2.14

    Chapter 2 mathematical models of systems

    For the DC motor in Example 2.4

    In Example 2.4, we have written down the differential equations as:

    )4.....( )3.....(....................

    )2.....(.................... )1....(

    ww

    w fdt

    dJMMCE

    iCMuEiRdt

    diL

    ea

    amaaaaa

    a

    Make Laplace transformation, we have:

    (8)sMsMfsJ

    ssfssJsMsM

    (7)sCsE

    (6)sICsM

    (5)RsL

    sEsUsIsUsEsIRssIL

    ea

    am

    aa

    aaaaaaaaa

    )]......()([1

    )( )()()()(

    ..............................................................................).........()(

    .............................................................................).........()(

    .............)()(

    )( )()()()(

  • Chapter 2 mathematical models of systems

    Draw block diagram in terms of the equations (5)(8):

    Ua( s)

    aa RsL

    1Cm

    Ia( s) M( s)

    Ea( s)

    Ce

    )(s

    fsJ

    1

    )(sM

    -

    -

    Consider the Motor as a whole:

    1)(

    1

    2 ffemme

    e

    TsTTTsTT

    C

    1)(

    )(1

    2

    ffemme

    mme

    TsTTTsTT

    TsTTJ

    Ua( s) )(s

    )(sM

    -

  • Chapter 2 mathematical models of systems Example 2.15 The water level control system in Fig 1.8:

    Desi red

    wat er l evel

    ampl i f i er Mot or Gear i ng Val veWat er

    cont ai ner

    Fl oat

    Act ual

    wat er l evel

    Feedback si gnal hf

    I nput hi

    Out put h

    -

    e ua w Q

    1k 1

    1

    2 sTsTT

    C

    mme

    e

    s

    ek s211

    3

    sT

    k

    12

    4

    sT

    k

    )(1

    )1(

    2sM

    sTsTT

    sTJ

    T

    mme

    em

  • End

    ?