3. kebisingan-industri

85
Kebisingan Industri

Transcript of 3. kebisingan-industri

Kebisingan Industri

Definisi dan pengertian

Bising = suara-suara yang tidak dikehendaki

Definisi secara ilmiah = sensasi yang diterima telinga sebagai akibat fluktuasi tekanan udara ‘superimposing’ tekanan atmosfir/udara yang steady

Bising = sejenis vibrasi/energi yang dikonduksikan dalam media udara, cairan, padatan, tidak tampak, dan dapat memasuki telinga serta menimbulkan sensasi pada alat dengar

Inside NOISE

What is noise?– Definition, energy conducted and sensed, properties:

intensity/pressure, frequency, exposure,

Why unwanted?– Health Effect, age, psychological: annoyed, concentration,

rest/relax problem, communication annoyance, physiological: blood, heart, hearing loss, nausea, muscle control, acoustic trauma (permanent) vs temporary,

Who are susceptible? – Esp. Industrial workers, determining factors: sensitivity,

age,

How to evaluate & control?

What is noise?

Definisi: Suara-suara yang tidak dikehendaki (for

Who? Why?)Suara: sensasi yang diterima telinga

sebagai akibat fluktuasi tekanan udara terhadap tekanan udara yang stabil.

Telinga akan merespons fluktuasi-fluktuasi kecil tersebut dengan sensitivitas yang sangat besar.

Properties of noise?

Karakteristik bising

1. Intensitas/tekanan (sound pressure/intensity)

2. Frekuensi3. Durasi eksposur terhadap bisingKetiga karakteristik diperlukan karena: Semakin keras suara, semakin tinggi

intensitasnya Frekuensi tinggi lebih berbahaya

terhadap kemampuan dengar. Telinga manusia lebih sensitif terhadap frekuensi tinggi

Semakin lama durasi eksposur semakin besar kerusakan pada mekanisme pendengaran

Jenis Bising

Tergantung pada durasi dan frekuensiSteady wide band noise, bising yang

meliputi suatu jelajah frekuensi yang lebar (bising dalam ruang mesin)

Steady narrow band noise, bising dari sebagian besar energi bunyi yang terpusat pada beberapa frekuensi saja, contoh gergaji bundar.

Impact noise, kejutan singkat berulang, contoh riveting

Intermitten noise, bising terputus, contoh lalu lintas pesawat

Contoh…

Tekanan = Sound Pressure

Manusia dapar mendengar suara pada tekanan antara 0,0002 dynes/cm2 (ambang dengar/threshold of hearing) sampai 2000 dynes/cm2 range besar sehingga satuan yang dipakai dB (decibel): logaritmik

Dinyatakan dalam decibel (dB) yang dilengkapi skala A, B, dan C sesuai dengan berbagai kegunaan

Skala A digunakan karena merupakan response yang paling cocok dengan telinga manusia (peka terhadap frekuensi tinggi)

Skala B dan C untuk evaluasi kebisingan mesin, dan cocok untuk kebisingan frekuensi rendah

Intensitas

Laju aliran energi t iap satuan luas yang dinyatakan dalam desibell (dB) – Alexander Graham Bell-

dB adalah merupakan satuan yang dihasilkan dari perhitungan yang membandingkan suatu tekanan suara yang terukur terhadap suatu tekanan acuan (sebesar 0,0002 dyne/cm2).

B = log ( int. terukur/int.acuan) untuk mendapatkan angka yang lebih akurat ditentukan dengan angka kelipatan 10 (desi)

Intensity level dB=10 Log (IT/IA)Sound pressure level ( tekanan bunyi) = 20 log

(IT/IA), karena intensitas sebanding dengan kuadrat tekanan bunyi.

Ruang kelas: ?dB Rumah Restauran Berbisik Berteriak Jet plane

The decibel

SOUND INTENSITY

SOUND SOURCE LINEAR UNITS Bel

LOGARITHMIC UNITS Decibel

Lowest limit of hearing 1   0     0

Rustling leaf 10   1   10

Quiet farm setting 100   2   20

Whisper (5 feet) 1,000   3   30

Dripping faucet, quite office 10,000   4   40

Low conversation, residence 100,000   5   50

Ordinary conversation 1,000,000   6   60

Idling car 10,000,000   7   70

Silenced compressor, very noisy restaurant 100,000,000   8   80

Backhoe 1,000,000,000   9   90

Unsilenced compressor 10,000,000,000 10 100

Rock dril, woodworking 100,000,000,000 11 110

Pile driver* 1,000,000,000,000 12 120

Rivet gun* 10,000,000,000,000 13 130

Explosive-actuated tool*, jet plane 100,000,000,000,000 14 140*Intermittent or "impulse" sound

Source: Construction Safety Association of Ontario, Hearing Protection for the Construction Industry, 1985, page 3

The decibel

dB = 10 log10 (I1/I0) I = Intensitas

dB = 20 log10 (P1/P0) P= Tekanan = 0,0002

dynes/cm2

SP (microbar) SPL (dB) Ratio Intensitas

0,0002 0 100

0,002 20 102

Jadi bila SP berubah 10x, maka dB bertambah ? x

PressurePa Bel (B) Decibel (dB)

Threshold of hearing 0,00002 0 0Quiet office 0,002 4 40Ringing alarm clock at 1 m 0,2 8 80Ship's engine room 20 12 120Turbo jet engine 2000 16 160

Sound intensities

Frekuensi

Adalah jumlah getaran dalam tekanan suara per satuan waktu (Hertz atau cycle per detik), frekuensi dipengaruhi ukuran, bentuk dan pergerakan sumber, pendengaran normal orang dewasa dapat menangkap bunyi dengan frekuensi 20-15.000 Hz.

Frekuensi

Dibagi dalam 8 octaf (octave bands), 37.5, 75, 150, 300, 600, 1200, 2400, 4800, 9600 Hz

Telinga manusia bereaksi beda terhadap berbagai frekuensi

Kebisingan ‘rata-rata’ mencakup seluruh taraf kebisingan dari setiap frekuensi dihitung LeqLeq = ekuivalen noise level/ekuivalen energi levelLeq = 10 log10 (Σ 10 Lpi/10)

Satuan (Konversi)

1bar=105Pa=105N/m2

=105.105dyne/104cm2

=106dyne/cm2 atau1microbar = 1 dyne/cm2

Sumber > 1…..

dB=L=20 log(P1/P2)=10 log(P1/P2)2

L/10= log(P1/P2)2

10L/10= 10log(P1/P2)^2=(P1/P2)2

L=10 log(P1/P2)2

=10 log 10L/10 (satu sumber)

L =10 log (Σ10Li/10) (sumber banyak)

=10 log (10L1/10+ 10L2/10+…)

Sumber > 1….. (Contoh)

=10 log (Σ10Li/10) (banyak sumber)

=10 log (10L1/10+ 10L2/10+…)

Perbedaan antara sumber

bunyi

ΣdBA yang turun ditambah ke

bunyi terbesar

0 3,0

1 2,6

2 2,1

3 1,8

4 1,5

5 1,2

6 1,0

7 0,8

8 0,6

10 0,4

12 0,3

14 0,2

16 0,1

Satuan (Konversi)

1bar=105Pa=105N/m2

=105.105dyne/104cm2

=106dyne/cm2 atau1microbar = 1 dyne/cm2

Sumber > 1…..

dB=L=20 log(P1/P2)=10 log(P1/P2)2

L/10= log(P1/P2)2

10L/10= 10log(P1/P2)^2=(P1/P2)2

L=10 log(P1/P2)2

=10 log 10L/10 (satu sumber)

L =10 log (Σ10Li/10) (sumber banyak)

=10 log (10L1/10+ 10L2/10+…)

Sumber > 1….. (Contoh)

=10 log (Σ10Li/10) (banyak sumber)

=10 log (10L1/10+ 10L2/10+…)

Perbedaan antara sumber

bunyi

ΣdBA yang turun ditambah ke

bunyi terbesar

0 3,0

1 2,6

2 2,1

3 1,8

4 1,5

5 1,2

6 1,0

7 0,8

8 0,6

10 0,4

12 0,3

14 0,2

16 0,1

Kebisingan dari 2 sumber

14Perbedaan antara 2 tingkat bising, dB(A)

3

2,5

12108642

0,5

1,5

2

1

Dec

ibel

yan

g di

tam

bahk

an p

ada

tingk

at k

ebis

inga

n le

bih

tingg

i

Perbedaan (dB)

Tambah pada yg lebih tinggi

0 atau 1 3

2 atau 3 2

4 – 9 1

10+ 0

Why unwanted?

Health Effect, age, psychological: annoyed, concentration, rest/relax problem, communication annoyance, physiological: blood, heart, hearing loss, nausea, muscle control, acoustic trauma (permanent) vs temporary,

Efek bising pada manusia

Psikologis, terkejut, mengganggu dan memutuskan konsentrasi , t idur dan saat ist irahat

Fisiologis, seperti menaikkan tekanan darah dan detak jantung, mengurangi ketajaman pendengaran, sakit tel inga, mual, kendali otot terganggu, dll .

Gangguan komunikasi yang mempengaruhi kenyamanan kerja dan keselamatan.

Interference with communication by speech

When background or ambient noise levels are sufficiently high enough, the background noise can mask the sound levels of speech that wish to be heard.

Restaurants can often be classic examples of excessive noise interference due to lack of sufficient quality or quantity of sound absorbing materials that prevent excessive noise buildup.

Diners have to speak louder and louder to be heard and in doing so compete with one another, thereby increasing the sound levels to even greater levels. Appropriate acoustical treatment will prevent the reflected noise buildup and significantly reduce the necessity for diners to speak louder to enjoy conversations with one another.

Mechanics of hearing

Mekanisme pendengaran

• Terdiri dari 3 bagian: telinga luar (daun telinga sampai membran timpani) meneruskan gelombang ke telinga tengah

• Telinga tengah: membran timpani (yang melekat pada 3 tulang kecil sampai membrana ovale) getaran diteruskan

• Telinga dalam: tube berspiral seperti rumah siput berisi cairan cairan bervibrasi stimulasi rambut sel impuls syaraf otak

Gangguan pendengaran

Pemaparan pada suara t inggi dan periode/durasi yang lama akan menyebabkan sel syaraf pendengar dan rambut pada corti over aktif sehingga menimbulkan kehilangan pendengaran permanen

Pengukuran kebisingan

• Mengukur overall level sound level meter (satuan dBA)

• Mengukur kebisingan pada setiap level frekuensi SLM dengan frequency analyzer

• Penentuan eksposur kebisingan padapekerja noise dosimeter (satuan dBA)

Alat ukur

Sound level meter, mencatat keseluruhan suara yang dihasilkan tanpa memperhatikan frekuensi yang berhubungan dengan bising total (30-130 d) – (20-20.000Hz)

Sound level meter dengan octave band analyzer, mengukur level bising pada berbagai batas oktaf di atas range pendengaran manusia dengan mempergunakan filter menurut oktaf yang diinginkan (narrow band analyzers untuk spektrum sempit 2-200 Hz)

NOISE KALIBRATOR

SOUND LEVEL METER

NOISE MEASUREMENT KIT

NOISE DOSIMETER

PENGUKURAN PADA PEKERJA

DOSEBADGER

Construction Noise Levels

Pneumatic chip hammer

103-113 Crane 90-96

Jackhammer 102-111 Hammer 87-95

Concrete joint cutter

99-102 Gradeall 87-94

Skilsaw 88-102Front-end loader

86-94

Stud welder 101 Backhoe 84-93

Bulldozer 93-96Garbage disposal (at 3 ft.)

80

Earth Tamper 90-96Vacuum cleaner 70

Construction Noise Levels

Pengukuran akibat bising

Untuk mengevaluasi akibat pemaparan terhadap kehilangan pendengaran, kenyamanan, interferensi komunikasi dan mengumpulkan informasi untuk pengontrolan.

How Does Excessive Noise Damage Your Ears? Microscopic hair cells of the cochlea are

exposed to intense noise over time Hair cells become fatigued and less responsive,

losing their ability to recover. Damage becomes permanent resulting in noise-

induced permanent threshold shift. Risk of Hearing Loss Estimated Risk of Incurring Material Hearing

Impairment as a Function of Average Daily Noise Exposure Over a 40-year Working Lifetime (source: NIOSH)

Average Exposure 90 dBA 29% Average Exposure 85 dBA 15% Average Exposure 80 dBA 3%

Ketulian

= berkurangnya ketajaman pendengarandibanding/terhadap orang normal (15 dB)/ gol usia

• Ada 2 macam: - permanen: karena penyakit, usia tua, obat, trauma, dankebisingan- temporer: akibat ekposur bising, dapat pulih setelahistirahat beberapa saat tergantung keparahan

• Ketulian temporer akan menjadi permanen bila terusterekpos bising (dari rumah, tempat umum, rekreasi, musik, industri, dll.)

• Secara mekanisme: ketulian ada 2:- konduktif: peralatan konduksi suara rusak akibattrauma atau sakit- sensorinueral: akibat persyarafan pendengaran rusak

Audiometric test

Current OSHA Standards •1926.52 Occupational Noise Exposure

•TABLE D-2 - PERMISSIBLE NOISE EXPOSURES

Duration per day, hours Sound Level dBA slow response

8 90

6 92

4 95

3 97

2 100

1 1/2 102

1 105

1/2 110

1/4 or less 115

What Is The Purpose of Having a Hearing Test on a Regular Basis?

An audiometric testing program is used to track your ability to hear over time. – Baseline and annual

Test records provide the only data that can be used to determine whether the program is preventing noise-induced permanent threshold shifts. It is an integral part of the hearing conservation program.

Case Study 1. Teenage Girl From the American Academy of Family Physicians website, Rabinowitz article

FIGURE 1. Audiogram findings in the patient in case 1.

The area below the curves represents sound levels that the patient could still hear. (X = left ear; O = right ear)

Case Study 1 Conclusion

"Temporary threshold shift" example Common in persons exposed to high

noise Represents transient hair cell

dysfunction Complete recovery can occur Repeated episodes of such shifts

causes permanent threshold shifts because hair cells in the cochlea are progressively lost.

Case Study 2 Factory Worker Age 55

Case Study 2 Conclusion

Noise Induced Hearing Loss – Speech discrimination and social function

interference – Difficulty in perceiving and differentiating consonant

sounds – Sounds such as a baby crying or a distant telephone

ringing, may not be heard at all.

Tinnitus – Common symptom of noise overexposure – Further interferes with hearing acuity, sleep and

concentration.

These impairments have been associated with depression and an increased risk of accidents.

Carpenter Hearing Losses by Age

Damage risk criteria

Variation in individual susceptibilityThe total energy of the soundThe frequency distribution of the soundOther characteristics of the noise

exposure, such as whether it is continuous, intermittent, or made up of a series of impacts

The total daily time of exposureThe length of employment in the noise

environment.

Noise control

A source radiating sound energyA path along which the sound

energy travelsA receiver such as the human ear

Pengendalian kebisingan

Pengendalian dilakukan di 3 bagian: SUMBER, RUANG ANTARA sumber dan penerima/pekerja, pada PENERIMA/PEKERJA

Urutan pengendalian paling efektif:

• Kurangi/hilangkan sumber bising

• Pengendalian pathway: jarak diperjauh dengan perisai/isolator/automatisasi

• Perlindungan penerima dari bising (APD)

SUMBER PATHWAY/MEDIA PENERIMA/RECEIVER

•Cara teknis:

APDPerpanjang jarak

Reduksi waktuPerisaiInsulasi sumber

Isolasi pekerjaAbsorpsi/dampingSubstitusi

PENERIMAPATHWAYSUMBER

•Cara medis:Pemeriksaan ketajaman pendengaran secara periodikPenempatan pekerja sesuai dengan kepekaan thd bisingMonitor ketulian temporer

•Cara manajemen:Reduksi waktu eksposurDiklat pemakaian dan pemeliharaan APD

Noise control

Source: modification or redesigning of the source.– The modification of compressed air jets for parts

ejection, to reduce noise by altering the jet flow.– Multiple-opening air ejection nozzel: less noise than

single-opening.

Noise control

Noise can be controlled at the source, along the path or at the worker.

At the source, equipment may be replaced by quieter models, or less noisy work procedures can be adopted. - In general, less friction and vibration mean less noise. Maintenance procedures such as lubrication may sometimes reduce noise by reducing friction. - Equipment can sometimes be modified to reduce the amount of noise that is generated. Sound-absorbing material may be attached to the noise source. Or the frequency of the noise may be shifted to one that is less hazardous.

Noise control

Noise can often be controlled along the path to the worker with:- the use of sound-absorbing paneling on walls or ceilings, and - enclosures around noisy machinery.

Controls at the worker include both administrative controls and personal protective equipment. – Administrative controls modify how the work

is carried out. – The time employees spend in noisy areas

may be reduced. – Workers in noisy areas may be rotated to

less noisy areas.

As the distance from the noise source increases, the pressure (or intensity) of the noise decreases faster than its sound level.

Noise control

Noisy operations may be conducted outside normal working hours to reduce the number of people exposed.

Where noise exposures cannot be reduced by other methods, hearing protection is required. This includes ear plugs and ear muffs.

Insulation of the workers

A separate noise insulated room provides effective control (up to 30 dB noise reduction).

Machine insulation

Machine: on floors and walls vibrate themsound radiation

proper use of machine mountings insulates the machine and reduce the transmission of vibration

Control of noise by absorption

Travels out in all directionWhen encounter wallsreflectedTotal noise exposure within the

room = direct + reflected noiseApplication of sound absorption

material (However, limited: no effect on direct noise).

Reduction of exposure time

Limiting the total daily exposure reduces the noise hazard.

See TLV

Personal protection against noise

Many operations cannot be quieted by engineering methods.

Therefore protection: ear plugsProperly worn: 25 – 400 dB

protectionDegree of discomfort employee

education is adequate

Example….

Durasi tingkat bising yang diijinkan dapat dilihat dari tabel di bawah ini:

Kebisingan yang terukur di suatu area adalah 90 dB selama 2 jam sehari, 97 dB selama 2 jam, dan sisa 4 jam berikutnya terdapat variasi tingkat bising secara bergantian 95 dB selama 10 menit dan 80 dB selama 10 menit. Tentukan apakah tingkat kebisingan yang terukur masih dalam batas yang diijinkan atau tidak.

Durasi per hari

Tingkat bising

86432

1,51¾½¼

90929597

100102105107110115

Faktor-faktor yang mempengaruhi bising

Tipe bising: menerus dan terputusLokasi pekerjaWaktu kerja

NAB Kebisingan di lingkungan kerja

USA (TLV ACGHI)t (eksposur) jam dB(A)

8 906 924 953 972 100

1,5 1021 105

0,5 110<0,25 115

kebisingan impulsif < 140 dB

t dBA8 854 882 911 94

30 mnt 9715 mnt 1007,5 mnt 103

3,75 mnt 1061,88 mnt 109

dstdilarang > 140 dB

INDONESIA Permen 51/1999

Waktu pemaparan vs dB (TLV)

Waktu pemaparan (jam)

dB

8

6

4

2

1,5

1

0,5

<0,25

90

92

95

100

102

105

110

115(Sumber: FHI)

Steps aiming to control noise at workAssess risks to develop a noise control

planReduce risks for all employeesInvestigate and implement good practice

for control of noise Prioritise noise control measures Use hearing protection for residual risksCarry out a noise dosimetry program to

check the effectiveness of noise control measures

Some simple noise control techniquesApplication of damping material to

chutes, hoppers, machine guards etc., can give a 5-25 dB reduction in the noise radiated

Cabin internal noise can be reduced by 10-12 dB by applying damping pads and sound barrier mats to floor and engine bulkhead

Reduce fan speed by 30% to achieve a noise reduction of 8 dB

BARRIER-BARIER ATAU PANEL

ISOLASI PEKERJA/MESIN DI TEMPAT BISING

BAHAN ABSORBER BAHAN BARRIER

Noise control can be complex

Use noise control consultants to help solve your problems if complex

Engage employees in process

Hearing protectors

Selected for protection, user preference and work activity

Guard against over-protection — isolation can lead to under-use and safety risks

Require information, instruction, training, supervision and motivation

Will only protect if worn all the time and properly

Rating hearing protectors

The sound level conversion (SLC80 ) rating of a

hearing protector, ear plugs or headset is a simple

number and class rating that is derived from a test

procedure as outlined in the Australian/New Zealand

Standard AS/NZS 1270:2002

Class and specification of hearing protectors

SLC80 Class May be used up to this noise exposure level

10 to 13 1 90 dB(A)

14 to 17 2 95 dB(A)

18 to 21 3 100 dB(A)

22 to 25 4 105 dB(A)

26 or greater 5 110 dB(A)

Ear plugs

Properly fitted Wrongly fitted

Ear muffs

Proper clamping force Worn-out head band

Reduction in protection provided by hearing protectors with decreased wearing time

Example: Effectiveness of wearing an ear muff with a rating of 30 dB for an exposure time of one hour

Wear time Effective attenuation

60 minutes 30 dB

55 minutes 11 dB

50 minutes 8 dB

45 minutes 6 dB

Our challenge

Away from …Noise assessment as the end pointReliance on hearing protectionTowards …Control of noise risks through prioritised

action plansIntroducing equipment with good noise

and vibration characteristics – ‘Buy Quiet’

TWA untuk kebisingan: berdasarkan standar kebisingan.

Jumlah jam dB(A)

1,5 102

1,0 105

0,75 107

0,5 110

0,25 115

Jumlah jam dB(A)

8 90

6 92

4 95

3 97

2 100

dB(A) 80 90 95 97 100

1 T ukur 2 jam 4 jam 2 jam

T TLV tt 8 jam 4 jam 3 jam

TWA 0 4/8 2/4 = 1 < batas aman

2 T ukur 0 2 jam 2 jam 2 jam

T TLV tt 8 jam 4 jam 3 jam

TWA 0 2/8 2/4 2/3 = 17/12 >batas aman

STANDAR KEBISINGAN

Noise3. 4 orang pekerja printer di unit percetakan dimana

terdapatoffset press. Masing-masing terpapar sbb:

Berapa dosis harian yang diterimanya? dan Equivalent 8-hour Sound Pressure Level (SPL) yang dialami pekerja percetakan tersebut?

No. of presses operating

Average Sound Pressure Level (dBA)

Average daily time in operation

(hours)

0 81 4.5

1 93 2.1

2 96 1.0

3 98 0.4

Jawab:

5/)90(max 2

8−=L

T

5/)9081(max 2

881@ −=dBAT = 27.858 jam

Untuk SPL 81 dBA:

5/)9093(max 2

893@ −=dBAT = 5.278 jam

Untuk SPL 93 dBA:

5/)9096(max 2

896@ −=dBAT = 3.482 jam

Untuk SPL 96 dBA:

5/)9098(max 2

898@ −=dBAT = 2.639 jam

Untuk SPL 98 dBA:

Noise

niT

C

T

C

T

C

T

CD n

n

i

i

max1 max

2

max

1

max

....21

+++== ∑=

639.2

4.0

482.3

0.1

278.5

1.2

858.27

5.4int +++=erprD = 0.998

Now, expressing this result as a percentage as required by the problem statement, we have: Dprinter= 99.8%

The Printing Company that employs these four Printers is not in violation of any established OSHA SPL dosage standards.

Noise

Lequivalent = 90 + 16.61 log[D]

Lequivalent = 90 + 16.61 log[0.998] = 89.987 ~ 90 dBA

These Printers experience an equivalent SPL of ~ 90 dBA

Noise

4. How much longer is an individual, without hearing protection, permitted to work at a location where the noise level has just been reduced from 104 dBA to 92 dBA?

To answer this question, we must first determine the OSHA permitted duration, in hours, for each of the two identified noise levels.

Tmax = 8 / [2(L-90)/5]

For an SPL of 104 dBA: Tmax @ 104 dBA= 8 / [2(104-90)/5] = 1.149 hours

For an SPL of 92 dBA: Tmax @ 92 dBA= 8 / [2(92-90)/5] = 6.063 hours

The additional time permitted at the lesser noise level of 92 dBA, ΔTmax, is simply the difference between these two OSHA permitted time intervals; thus:

ΔTmax=6.063 – 1.149 = 4.914 hours

This individual can spend an additional 4.9 hours at a 92 dBA noise level