ZiLOG Design Concepts - Z8 Application Ideas

151
ZILOG WORLDWIDE HEADQUARTERS ¥ 910 E. HAMILTON AVENUE ¥ CAMPBELL, CA 95008 TELEPHONE: 408.558.8500 ¥ FAX: 408.558.8300 ¥ WWW .Z I LOG. COM ZiLOG Design Concepts Z8 Application Ideas AN004901-0900

Transcript of ZiLOG Design Concepts - Z8 Application Ideas

Z

I

LOG W

ORLDWIDE

H

EADQUARTERS

¥ 910 E. H

AMILTON

A

VENUE

¥ C

AMPBELL

, CA 95008T

ELEPHONE

: 408.558.8500 ¥ F

AX

: 408.558.8300 ¥

WWW

.Z

I

LOG.

COM

ZiLOG Design Concepts

Z8 Application Ideas

AN004901-0900

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

910 E. Hamilton AvenueCampbell, CA 95008Telephone: 408.558.8500Fax: 408.558.8300www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Information Integrity

The information contained within this document has been verified according to the general principles of electrical and mechanical engineering. Any applicable source code illustrated in the document was either written by an authorized ZiLOG employee or licensed consultant. Permission to use these codes in any form, besides the intended application, must be approved through a license agreement between both parties. ZiLOG will not be responsible for any code(s) used beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license agreements.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

ZiLOG Design ConceptsZ8 Application Ideas

iii

Table of ContentsIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

OTP Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Automotive Rear Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Automotive Speedometer, Odometer, and Tachometer . . . . . . . . . . . . . . . . . . . 4

Autonomous Micro-Blimp Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Battery-Operated Door-Entry System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The Crab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Desktop Fountain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

DCF77 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Diagnostic Compressor Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Digital Dimmer Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Door Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Electrolytic Capacitor ESR Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Electronic Door Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Firearm Locking System (FLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Forecaster Intelligent Water Delivery Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Improved Linear Single-Slope ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Integrated Sailboat Electronic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Intelligent Guide for the Blind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Internet Email Reporting Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Lunar Telemetry Beacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Magic Dice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Modular Light Display Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Nasal Oscillatory Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

New Sensor Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Phone Dialer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Pocket Music Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Portable Individual Navigator (PIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Postal Shock Recorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

PWM Input/Output Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Reaction Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Remote-Controlled Air Conditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Remote-Control Antenna Positioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

iv

RF Dog Collar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Signature Recognition and Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Smart Phone Accessory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Smart Solar Water Heating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Smart Window with Fuzzy Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Solar Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Speedometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Stages Baby Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Sun Tracking to Optimize Solar Power Generation . . . . . . . . . . . . . . . . . . . . . 109

Tandy Light Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Temperature Measuring Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Transmission Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

UFO Flight Regulation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Vehicle Anti-Theft Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Windmill Commander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Wireless Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

v

List of FiguresFigure 1. Automotive Rear Sonar Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2. Automotive Rear Sonar Schematic Diagram . . . . . . . . . . . . . . . . . . . 3

Figure 3. Automotive Velometer, Mileometer, and Tachometer Block Diagram 4

Figure 4. Automotive Velometer, Mileometer, and Tachometer Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 5. Autonomous Micro-Blimp Controller Block Diagram . . . . . . . . . . . . . 7

Figure 6. Autonomous Micro-Blimp Controller Schematic Diagram . . . . . . . . . 8

Figure 7. Battery-Operated Door-Entry System Block Diagram . . . . . . . . . . . 10

Figure 8. Battery-Operated Door-Entry System Schematic Diagram . . . . . . . 11

Figure 9. The Crab Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 10. The Crab Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 11. Desktop Fountain Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 12. Desktop Fountain Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . 17

Figure 13. DCF77 Clock Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 14. Diagnostic Compressor Protector Block Diagram . . . . . . . . . . . . . . 22

Figure 15. Diagnostic Compressor Protector Schematic Diagram . . . . . . . . . . 23

Figure 16. Digital Dimmer Box Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 17. Digital Dimmer Box Schematic Diagram . . . . . . . . . . . . . . . . . . . . . 26

Figure 18. Door Access Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . 28

Figure 19. Door Access Controller Schematic Diagram . . . . . . . . . . . . . . . . . . 29

Figure 20. Electrolytic Capacitor ESR Meter Schematic Diagram . . . . . . . . . . 32

Figure 21. Electronic Door Control Block Diagram . . . . . . . . . . . . . . . . . . . . . . 34

Figure 22. Firearm Locking System Block Diagram . . . . . . . . . . . . . . . . . . . . . 36

Figure 23. Firearm Locking System Schematic Diagram . . . . . . . . . . . . . . . . . 37

Figure 24. Forecaster Intelligent Water Delivery Valve Schematic . . . . . . . . . . 39

Figure 25. Improved Linear Single Slope ADC Block Diagram . . . . . . . . . . . . 41

Figure 26. Improved Linear Single Slope ADC Schematic Diagram . . . . . . . . 42

Figure 27. Integrated Sailboat Electronic System Block Diagram . . . . . . . . . . 44

Figure 28. Integrated Sailboat Electronic System Schematic Diagram . . . . . . 44

Figure 29. Intelligent Guide for the Blind Block Diagram . . . . . . . . . . . . . . . . . 46

Figure 30. Intelligent Guide for the Blind Schematic Diagram . . . . . . . . . . . . . 47

Figure 31. Internet Email Reporting Engine Block Diagram . . . . . . . . . . . . . . . 49

Figure 32. Internet Email Reporting Engine Software Block Diagram . . . . . . . 49

Figure 33. Internet Email Reporting Engine Schematic Diagram . . . . . . . . . . . 50

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

vi

Figure 34. Magic Dice Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 35. Magic Dice Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 36. Modular Light Display Panel Module Block Diagram . . . . . . . . . . . . 58

Figure 37. Modular Light Display Panel Module Schematic Diagram . . . . . . . . 59

Figure 38. Nasal Oscillatory Transducer Block Diagram . . . . . . . . . . . . . . . . . 61

Figure 39. Nasal Oscillatory Transducer Schematic Diagram . . . . . . . . . . . . . 62

Figure 40. New Sensor Technology Waveform . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 41. New Sensor Technology Block Diagram . . . . . . . . . . . . . . . . . . . . . 65

Figure 42. Phone Dialer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 43. Phone Dialer Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 44. Pocket Music Synthesizer Block Diagram . . . . . . . . . . . . . . . . . . . . 70

Figure 45. Pocket Music Synthesizer Schematic Diagram . . . . . . . . . . . . . . . . 71

Figure 46. Portable Individual Navigator A/D Ratio Over Time . . . . . . . . . . . . 73

Figure 47. Portable Individual Navigator Schematic Diagram . . . . . . . . . . . . . 74

Figure 48. Postal Shock Recorder Block Diagram . . . . . . . . . . . . . . . . . . . . . . 76

Figure 49. Postal Shock Recorder Schematic Diagram . . . . . . . . . . . . . . . . . . 77

Figure 50. PWM Input Output/Interface Module Block Diagram . . . . . . . . . . . . 79

Figure 51. Reaction Tester Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 52. Reaction Tester Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 53. Remote-Control Air Conditioner Block Diagram . . . . . . . . . . . . . . . 84

Figure 54. Remote-Control Air Conditioner Schematic Diagram . . . . . . . . . . . 85

Figure 55. Remote Controlled Antenna Positioner Block Diagram . . . . . . . . . . 87

Figure 56. Hand-Held Remote Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 57. Remote Controlled Antenna Positioner Schematic Diagram . . . . . . 88

Figure 58. RF Dog Collar Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 59. Signature Recognition and Authentication Module Block Diagram . 91

Figure 60. Signature Recognition and Authentication Module Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 61. Smart Phone Accessory Block Diagram . . . . . . . . . . . . . . . . . . . . . 93

Figure 62. Smart Phone Accessory Schematic Diagram . . . . . . . . . . . . . . . . . 94

Figure 63. Smart Solar Water Heating System Block Diagram . . . . . . . . . . . . 96

Figure 64. Smart Window with Fuzzy Control . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 65. Smart Window with Fuzzy Control Schematic Diagram . . . . . . . . . 99

Figure 66. Solar Tracker Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 67. Solar Tracker Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 68. Speedometer Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

vii

Figure 69. Speedometer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 70. Stages Baby Monitor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 71. Stages Baby Monitor Schematic Diagram . . . . . . . . . . . . . . . . . . . 108

Figure 72. Sun Tracking Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 73. Sun Tracking Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 74. Tandy Light Control Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 75. Tandy Light Control Schematic Diagram . . . . . . . . . . . . . . . . . . . . 114

Figure 76. Temperature Measuring Device Block Diagram . . . . . . . . . . . . . . 116

Figure 77. Temperature Measuring Device Schematic Diagram . . . . . . . . . . 117

Figure 78. Transmission Trainer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 79. Transmission Trainer Schematic Diagram . . . . . . . . . . . . . . . . . . . 120

Figure 80. UFO Flight Regulation System Block Diagram . . . . . . . . . . . . . . . 122

Figure 81. UFO Flight Regulation System Schematic Diagram . . . . . . . . . . . 123

Figure 82. Vehicle Anti-Theft Module Block Diagram . . . . . . . . . . . . . . . . . . . 125

Figure 83. Vehicle Anti-Theft Module Schematic Diagram . . . . . . . . . . . . . . . 125

Figure 84. Windmill Commander Block Diagram . . . . . . . . . . . . . . . . . . . . . . 127

Figure 85. Windmill Commander Schematic Diagram . . . . . . . . . . . . . . . . . . 128

Figure 86. Wireless Accelerometer Block Diagram . . . . . . . . . . . . . . . . . . . . 130

Figure 87. Wireless Accelerometer Schematic Diagram . . . . . . . . . . . . . . . . 131

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

AN004901-0900

viii

List of Tables

Table 1. OTP Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii

Table 2. Sensor Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 3. Firearm Sensor Input Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 4. Graphics Display Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 5. Serial Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ZiLOG Design ConceptsZ8 Application Ideas

AN004901-0900

ix

Introduction

Are you driven to design the best?

Co-sponsored with

CMP Media, Inc.

, ZiLOGÕs 1999 ÒDriven to DesignÓ contest sought the most innovative and creative use of ZiLOGÕs award-winning Z8

¨

or Z8Plus

¨

OTP microcontroller.

The 47 abstracts contained in this book offer the designer a launching pad from which to prompt ideas and develop designs incorporating the ZiLOG Z8 or Z8Plus microcontrollers. They range in scope from helping blind individuals navigate busy intersections to providing increased protection for the handling and delivery of fragile packages.

Students and engineers from all over the world submitted the design concepts presented in this compendium. Each abstract includes block and schematic diagrams to help the designer comprehend the contestantsÕ visions of products that are viable in todayÕs connected world.

ZiLOG Design ConceptsZ8 Application Ideas

AN004901-0900

x

ZiLOG OTP Selection Guide

ROM(KB)

PACKAGE PINS

OPERATINGTEMPERATURE OSCILLATOR

ZiLOGPART NUMBER

VOLTAGE RANGE

PROGRAMMINGADAPTER

EMULATOR/ACCESS. KIT FEATURES

ROMEQUIV.

0.5K DIP 18 -40/105 Selectable Z86E0208PEC1925 4.5V - 5.5V Not Required Z86CCP01ZEM** 1 Timer + WDT Z86C02 0/70 Z86E0208PSC1925 3.5V - 5.5V 2 Comparators SOIC 18 -40/105 Z86E0208SEC1925 4.5V - 5.5V Z86E0700ZDP 61 RAM + 14 I/O + POR 0/70 Z86E0208SSC1925 3.5V - 5.5V SSOP 20 -40/105 Z86E0208HEC1925 4.5V - 5.5V Z86E0800ZDH 0/70 Z86E0208HSC1925 3.5V - 5.5V DIP 18 0/70 Selectable Z86E0308PSC 4.5V - 5.5V Z86E0601ZDP 1 Timer + Timer Out Z86C03

SOIC Z86E0308SSC 2 Comparators + WDT 61 RAM + 14 I/O + POR

DIP 18 -40/105 XTAL Z8E00010PEC 4.5V - 5.5V Not Required Z8ICE001ZEM Z8Plus Core None 0/70 Z8E00010PSC 3.5V - 5.5V 1 Timer SOIC 18 -40/105 Z8E00010SEC 4.5V - 5.5V Z86E0700ZDP WDT + Reset Pin 0/70 Z8E00010SSC 3.5V - 5.5V 32 RAM + 13 I/O SSOP 20 -40/105 Z8E00010HEC 4.5V - 5.5V Z8E00101ZDH

0/70 Z8E00010HSC 3.5V - 5.5V DIP 18 -40/105 Selectable Z8PE002PZ010EC 4.5V - 5.5V Not Required Z8Plus Core 0/70 Z8PE002PZ010SC 3.0V - 5.5V 3 Timers / PWM SOIC 18 -40/105 Z8PE002SZ010EC 4.5V - 5.5V Z86E0700ZDP 1 Comparator + WDT 0/70 Z8PE002SZ010SC 3.0V - 5.5V 64 RAM + 14 I/O + POR SSOP 20 -40/105 Z8PE002HZ010EC 4.5V - 5.5V Z8E00101ZDH

0/70 Z8PE002HZ010SC 3.0V - 5.5V1K DIP 18 -40/105 XTAL Z86E0412PEC 4.5V - 5.5V Not Required Z86CCP01ZEM** 2 Timers + WDT Z86C04

RC Z86E0412PEC1903 2 Comparators 0/70 XTAL Z86E0412PSC1866 125 RAM + 14 I/O + POR RC Z86E0412PSC1903

SOIC 18 -40/105 XTAL Z86E0412SEC Z86E0700ZDP RC Z86E0412SEC1903

0/70 XTAL Z86E0412SSC1866 RC Z86E0412SSC1903

SSOP 20 -40/105 XTAL Z86E0412HEC1866 Z86E0800ZDH Z86E0412HSC1866

DIP 18 0/70 Selectable Z86E0612PSC Z86E0601ZDP 2 Timers + SPI + WDT Z86C06SOIC Z86E0612SSC 2 Comparators + 125 RAM

Timer Out + 14 I/O + POR DIP 18 -40/105 XTAL Z8E00110PEC 4.5V - 5.5V Not Required Z8ICE001ZEM Z8Plus Core None 0/70 Z8E00110PSC 3.5V - 5.5V 3 Timers / PWM SOIC 18 -40/105 Z8E00110SEC 4.5V - 5.5V Z86E0700ZDP 1 Comparator + WDT 0/70 Z8E00110SSC 3.5V - 5.5V Reset Pin SSOP 20 -40/105 Z8E00110HEC 4.5V - 5.5V Z8E00101ZDH 64 RAM + 13 I/O 0/70 Z8E00110HSC 3.5V - 5.5V DIP 18 -40/105 Selectable Z8PE003PZ010EC 4.5V - 5.5V Not Required Z8Plus Core 0/70 Z8PE003PZ010SC 3.0V - 5.5V 3 Timers / PWM SOIC 18 -40/105 Z8PE003SZ010EC 4.5V - 5.5V Z86E0700ZDP 1 Comparator + WDT 0/70 Z8PE003SZ010SC 3.0V - 5.5V Reset Pin SSOP 20 -40/105 Z8PE003HZ010EC 4.5V - 5.5V Z8E00101ZDH 64 RAM + 14 I/O + POR

0/70 Z8PE003HZ010SC 3.0V - 5.5V2K DIP 18 -40/105 XTAL Z86E0812PEC 4.5V - 5.5V Not Required Z86CCP01ZEM** 2 Timers + WDT Z86C08

RC Z86E0812PEC1903 2 Comparators 0/70 XTAL Z86E0812PSC1866 125 RAM + 14 I/O + POR RC Z86E0812PSC1903

SOIC 18 -40/105 XTAL Z86E0812SEC Z86E0700ZDP RC Z86E0812SEC1903 0/70 XTAL Z86E0812SSC1866 RC Z86E0812SSC1903

SSOP 20 -40/105 XTAL Z86E0812HEC1866 Z86E0800ZDH Z86E0812HSC1866

DIP 28 -40/105 Selectable Z86E3116PEC 4.5V - 5.5V Not Required Z86CCP01ZEM** 2 Timers + WDT Z86C31 0/70 Z86E3116PSC 3.5V - 5.5V and 2 Comparators

SOIC 28 -40/105 Z86E3116SEC 4.5V - 5.5V Z86C3000ZAC Z86CCP00ZAC 125 RAM + 24 I/O + POR 0/70 Z86E3116SSC 3.5V - 5.5V

PLCC 28 -40/105 Z86E3116VEC 4.5V - 5.5V 0/70 Z86E3116VSC 3.5V - 5.5V

4K DIP 28 -40/105 Selectable Z86E132PZ016EC1 3.0V - 5.5V ZICSP000100ZDP Z86C3600ZEM UART + 2 Comparators Z86C34***0/70 Z86E132PZ016SC + ICSP OTP Programming (16K ROM)

SOIC 28 -40/105 Z86E132SZ016EC1 ZICSP000300ZDS ZLGICSP0100ZPR 2 Timers + 237 RAM, 0/70 Z86E132SZ016SC 24 I/O + WDT + POR

DIP 40 -40/105 Selectable Z86E142PZ016EC1 ZICSP000400ZDP Z86C3600ZEM UART + 2 Comparators Z86C44**** 0/70 Z86E142PZ016SC + ICSP OTP Programming (16K ROM)

QFP 44 -40/105 Z86E142FZ016EC ZICSP000600ZDF ZLGICSP0100ZPR 2 Timers + 236 RAM,0/70 Z86E142FZ016SC 32 I/O + WDT + POR

DIP 28 -40/105 Selectable Z86E3016PEC 4.5V - 5.5V Not Required Z86CCP01ZEM** 2 Timers + WDT Z86C30 0/70 Z86E3016PSC 3.5V - 5.5V 2 Comparators SOIC 28 0/70 Z86E3016SEC 4.5V - 5.5V Z86C3000ZAC 237 RAM + 24 I/O + POR Z86E3016SSC 3.5V - 5.5V PLCC 28 0/70 Z86E3016VEC 4.5V - 5.5V Z86E3016VSC 3.5V - 5.5V DIP 28 0/70 Selectable Z86E3312PSC 3.5V - 5.5V Z86E3400ZDP Z86CCP01ZEM** Clock-free WDT Reset Z86C33

SOIC Z86E3312SSC Z86E3400ZDS and 237 RAM + 2 ComparatorsPLCC Z86E3312VSC Z86E3400ZDV Z86CCP00ZAC 2 Timers + 24 I/O + PORDIP 40 0/70 RC Z86E1505PSC 4.5V - 5.5V Z86E1500ZDP Z86CCP01ZEM+ 1 Timer + WDT Z86K15/K16

188 RAM + 32 I/O (K16=5K ROM) QFP 44 -40/105 Selectable Z86E4016FEC 4.5V - 5.5V Z86E4001ZDF Z86CCP01ZEM** 2 Timers + WDT Z86C40

0/70 Z86E4016FSC 3.5V - 5.5V and 2 Comparators DIP 40 -40/105 Z86E4016PEC 4.5V - 5.5V Not Required Z86CCP00ZAC 236 RAM + 32 I/O + POR

0/70 Z86E4016PSC 3.5V - 5.5V PLCC 44 -40/105 Z86E4016VEC 4.5V - 5.5V Z86E4001ZDV

0/70 Z86E4016VSC 3.5V - 5.5V QFP 44 0/70 Selectable Z86E4312FSC 3.5V - 5.5V Z86E4400ZDF Z86CCP01ZEM** Clock-free WDT Reset Z86C43 DIP 40 Z86E4312PSC Z86E4400ZDP 2 Timers + 2 Comparators PLCC 44 Z86E4312VSC Z86E4400ZDV 236 RAM + 32 I/O DIP 28 -40/105 XTAL Z86E8316PEC 4.5V - 5.5V Z86E8300ZDP Z86C8401ZEM 8 Bit - 8 Channel A/D Z86C83

0/70 Z86E8316PSC 3.5V - 5.5V 2 Timers + WDTSOIC -40/105 Z86E8316SEC 4.5V - 5.5V Z86E8300ZDS 2 Comparators

0/70 Z86E8316SSC 3.5V - 5.5V 237 RAM + 21 I/O + PORPLCC -40/105 Z86E8316VEC 4.5V - 5.5V Z86E8300ZDV

0/70 Z86E8316VSC 3.5V - 5.5V

ZiLOG Design ConceptsZ8 Application Ideas

AN004901-0900

xi

ROM(KB)

PACKAGE PINS

OPERATINGTEMPERATURE OSCILLATOR

ZiLOGPART NUMBER

VOLTAGE RANGE

PROGRAMMINGADAPTER

EMULATOR/ACCESS. KIT FEATURES

ROMEQUIV.

8K DIP 28 -40/105 Selectable Z86E133PZ016EC1 3.0V - 5.5V ZICSP000100ZDP Z86C3600ZEM UART + 2 Comparators Z86C34***0/70 Z86E133PZ016SC + ICSP OTP Programming (16K ROM)

SOIC 28 -40/105 Z86E133SZ016EC1 ZICSP000300ZDS ZLGICSP0100ZPR 2 Timers + 237 RAM, 0/70 Z86E133SZ016SC 24 I/O + WDT + POR

DIP 40 -40/105 Selectable Z86E143PZ016EC1 ZICSP000400ZDP Z86C3600ZEM UART + 2 Comparators Z86C44**** 0/70 Z86E143PZ016SC + ICSP OTP Programming (16K ROM)

QFP 44 -40/105 Z86E143FZ016EC ZICSP000600ZDF ZLGICSP0100ZPR 2 Timers + 236 RAM0/70 Z86E143FZ016SC 32 I/O + WDT + POR

DIP 28 0/70 Selectable Z8673312PSC 3.5V - 5.5V Z86E3400ZDP Z86CCP01ZEM** 2 Timers + WDT Z86233SOIC Z8673312SSC Z86E3400ZDS 2 ComparatorsPLCC Z8673312VSC Z86E3400ZDV 237 RAM + 24 I/O + PORQFP 44 0/70 Selectable Z8674312FSC Z86E4400ZDF 2 Timers + WDT Z86243DIP 40 Z8674312PSC Z86E4400ZDP 2 Comparators

PLCC 44 Z8674312VSC Z86E4400ZDV 236 RAM + 32 I/O + POR QFP 44 0/70 XTAL Z86E2112FSC 4.5V - 5.5V Z86E2101ZDF Z86C1200ZEM 2 Timers + UART + WDT Z86C21

DIP 40 Z86E2112PSC Z86E2301ZDP 8 Open Drain OutputsPLCC 44 Z86E2112VSC Z86E2101ZDV 236 RAM + 32 I/O

16K DIP 28 -40/105 Selectable Z86E134PZ016EC1 3.0V - 5.5V ZICSP000100ZDP Z86C3600ZEM UART + 2 Comparators Z86C340/70 Z86E134PZ016SC + ICSP OTP Programming

SOIC 28 -40/105 Z86E134SZ016EC1 ZICSP000300ZDS ZLGICSP0100ZPR 2 Timers + 237 RAM 0/70 Z86E134SZ016SC 24 I/O + WDT + POR

DIP 40 -40/105 Selectable Z86E144PZ016EC1 ZICSP000400ZDP Z86C3600ZEM UART + 2 Comparators Z86C44 0/70 Z86E144PZ016SC + ICSP OTP Programming

QFP 44 -40/105 Z86E144FZ016EC ZICSP000600ZDF ZLGICSP0100ZPR 2 Timers + 236 RAM,0/70 Z86E144FZ016SC 32 I/O + WDT + POR

DIP 28 0/70 Selectable Z86E3412PSC 3.5V - 5.5V Z86E3400ZDP Z86CCP01ZEM** 2 Timers + WDT Z86C34SOIC Z86E3412SSC Z86E3400ZDS (Must be modified 2 Comparators

PLCC Z86E3412VSC Z86E3400ZDV see website) 237 RAM + 24 I/O + POR

QFP 44 0/70 Selectable Z86E4412FSC Z86E4400ZDF or 2 Timers + WDT Z86C44

DIP 40 Z86E4412PSC Z86E4400ZDP Z86C5000ZEM 2 Comparators

PLCC 44 Z86E4412VSC Z86E4400ZDV 236 RAM + 32 I/O + POR

QFP 44 0/70 XTAL Z86E6116FSC 4.5V - 5.5V Z86E2101ZDF Z86C1200ZEM 2 Timers + UART Z86C61

DIP 40 Z86E6116PSC Z86E2301ZDP 236 RAM + 32 I/O

PLCC 44 Z86E6116VSC Z86E2101ZDV

QFP 44 0/70 Selectable Z86E7216FSC Included With Emulator Z86L7103ZEM 2 Adv. Timers + WDT Z86C72

PDIP 40 Z86E7216PSC 2 ComparatorsPLCC 44 Z86E7216VSC 738 RAM +31 I/O

32K DIP 28 -40/105 Selectable Z86E135PZ016EC1 3.0V - 5.5V ZICSP000100ZDP Z86C3600ZEM UART + 2 Comparators Z86C35

0/70 Z86E135PZ016SC + ICSP OTP Programming

SOIC 28 -40/105 Z86E135SZ016EC1 ZICSP000300ZDS ZLGICSP0100ZPR 2 Timers + 237 RAM, 0/70 Z86E135SZ016SC 24 I/O + WDT + POR

DIP 40 -40/105 Selectable Z86E145PZ016EC1 ZICSP000400ZDP Z86C3600ZEM UART + 2 Comparators Z86C45 0/70 Z86E145PZ016SC + ICSP OTP Programming

QFP 44 -40/105 Z86E145FZ016EC ZICSP000600ZDF ZLGICSP0100ZPR 2 Timers + 236 RAM,0/70 Z86E145FZ016SC 32 I/O + WDT + POR

QFP 44 0/70 XTAL Z86E6316FSC 4.5V - 5.5V Z86E2101ZDF Z86C1200ZEM 2 Timers + UART Z86C63 DIP 40 Z86E6316PSC Z86E2301ZDP 236 RAM + 32 I/O PLCC 44 Z86E6316VSC Z86E2101ZDV

PDIP 40 0/70 Selectable Z86D7308PSC 2.0V - 3.6V Included With Emulator Z86L9800ZEM 2 Adv. Timers + WDT Z86L87 (16K ROM)PLCC 44 Z86D7308VSC 2 Comparators Z86L89 (24K ROM)

236 RAM + 31 I/O Z86L73 (32K ROM)

PDIP 28 0/70 Selectable Z86D8608PSC Included With Emulator Z86L9800ZEM 2 Adv. Timers + WDT Z86L82 (4K ROM)SOIC 28 Z86D8608SSC 2 Comparators Z86L85 (8K ROM)

236 RAM + 23 I/O Z86L88 (16K ROM)Z86L81 (24K ROM)Z86L86 (32K ROM)

SSOP 48 0/70 Selectable Z86D990HZ008SC 3.0V - 5.5V TBD Z86L9900100ZEM 2 Adv. Timers + 1GPTimer Z86L990

PDIP 40 Z86D990PZ008SC Included With Emulator WDT + 2 Comparators (16K ROM)4 Ch 8-bit ADC

489 RAM + 32 I/OPDIP 28 0/70 Selectable Z86D991PZ008SC Included With Emulator 2 Adv. Timers + 1GPTimer Z86L991SOIC 28 Z86D991SZ008SC WDT + 2 Comparators (16K ROM)

4 Ch 8-bit ADC489 RAM + 23 I/O

QFP 44 0/70 Selectable Z86E7316FSC 4.5V - 5.5V Included With Emulator Z86L7103ZEM 2 Adv. Timers + WDT Z86C88PDIP 40 Z86E7316PSC 2 Comparators (16K ROM)

PLCC 44 Z86E7316VSC 236 RAM + 31 I/O

64K DIP 28 -40/105 Selectable Z86E136PZ016EC1 3.0V - 5.5V ZICSP000100ZDP Z86C3600ZEM UART + 2 Comparators Z86C36

0/70 Z86E136PZ016SC + ICSP OTP ProgrammingSOIC 28 -40/105 Z86E136SZ016EC1 ZICSP000300ZDS ZLGICSP0100ZPR 2 Timers + 237 RAM

0/70 Z86E136SZ016SC 24 I/O + WDT + POR

DIP 40 -40/105 Selectable Z86E146PZ016EC1 ZICSP000400ZDP Z86C3600ZEM UART + 2 Comparators Z86C46 0/70 Z86E146PZ016SC + ICSP OTP Programming

QFP 44 -40/105 Z86E146FZ016EC ZICSP000600ZDF ZLGICSP0100ZPR 2 Timers + 236 RAM,0/70 Z86E146FZ016SC 32 I/O + WDT + POR

1 Extended Temperature Device will be available in Q4 2000. * Selectable Oscillator means Crystal or RC can be chosen

** The Z86CCP01ZEM is rated at 12 MHz. For speed above 12 MHz, use the Z86C5000ZEM emulator. For Z86C06 SPI Emulation, use the Z86C5000ZEM

*** ROM device has 16K internal Program Memory.

**** ROM device has 16K internal Program Memory. External program & data memory access should start from 16K (address = 4000H)

+ The Z86CCP01ZEM is used only for programming the EPROM version, and the Z86K1500ZEM is used only for emulation of this part. ++ The Z86CCP01ZEM is used only for programming the EPROM version, and the Z86U1800ZEM is used only for emulation of this pa

DESCRIPTION OF Z8 ADAPTERS

Z86CCP00ZAC: 28 / 40-Pin DIP Accessory Kit Z86CCP01Z Z86E2101ZDF: 44-Pin QFP to 40-Pin DIP Adapter Z86C4001ZDV: 44-Pin PLCC to 40-Pin DIP Adapter Z86C3000ZAC: 28-Pin SOIC/PLCC Accessory Kit for Z86C Z86E2101ZDV: 44-Pin PLCC to 40-Pin DIP Adapter Z86E4001ZDV: 44-Pin PLCC to 40-Pin DIP Adapter Z86E0601ZDP: 18-Pin SOIC to 18-Pin DIP Adapter Z86E3400ZDP: 28-Pin DIP to 18-Pin DIP Adapter Z86E8300ZDP: 28-Pin DIP to 28-Pin DIP Adapter Z86E0700ZDP: 18-Pin SOIC to 18-Pin DIP Adapter Z86E3400ZDS: 28-Pin SOIC to 18-Pin DIP Adapter Z86E8300ZDS: 28-Pin SOIC to 28-Pin DIP Adapter Z86E0800ZDH: 20-Pin SSOP to 18-Pin DIP Adapter Z86E3400ZDV: 28-Pin PLCC to 18-Pin DIP Adapter Z86E8300ZDV: 28-Pin PLCC to 28-Pin DIP Adapter Z86E1500ZDP: 40-Pin DIP Adapter Z86E4400ZDF: 44-Pin QFP to 18-Pin DIP Adapter Z8E00101ZDH: 20-Pin SSOP to 18-Pin DIP (Z8ICE) Adapter ZLGICSP0100ZPICSP Programmer for Z8 MUZE Family Z86E4400ZDP: 40-Pin DIP to 18-Pin DIP Adapter Z8PE0030000ZDP: Z8ICE000ZEM & Z8ICE010ZEM Upgrade Kit ZICSP000100ZD 28-Pin DIP Programming Adapter for ICSP ZICSP000400ZDP: 40-Pin DIP Programming Adapter for ICSP Programmer ZICSP000300ZD 28-Pin SOIC Programming Adapter for ICS ZICSP000600ZDF: QFP Programming Adapter for ICSP Programmer

ZiLOG Design ConceptsZ8 Application Ideas

1

Automotive Rear SonarSubmitted by: R. Hugo Vieira Neto and Francisco Eugenio Mauro

Abstract

The Automotive Rear Sonar is intended for automotive use. It is simple, effective, and inexpensive. Designed with a ZiLOG Z8 OTP microcontroller, this device measures the distance between the vehicle and any obstacle when in reverse gear. The driver is informed when a collision is about to occur.

The sonar utilizes a pair of ultrasonic transducers to send and receive 40-kHz wave bursts. The goal is to measure the time of flight of the ultrasonic burst if an echo occurs.

A Z86E08 microcontroller running at 8 MHz acts as the system control block. Some of the Z86E08s key features are:

¥ Short instruction execution times (generation of the 40-kHz ultrasonic signal by software)

¥ Onboard analog comparators (making ultrasonic detection simple and inexpensive)

¥ Onboard counter/timers with prescalers (making ultrasonic wave time-of-flight easy to measure)

Ultrasonic waves are strongly attenuated along their propagation in the air. That makes their detection quite difficult as distance increases. In order to achieve fea-sible detection, the transmitter is given as much power as possible, and the receiver circuit is furnished enough sensitivity to detect small-echo signals.

The transmitter driver is responsible for the excitation of the ultrasonic transmitter. For maximum output power, an H-bridge amplifier configuration is used to drive the transducer that is controlled by a pair of I/O pins of the Z8 port P2.

One of the Z8Õs onboard analog comparators implements the receiver detector. To adequately bias the comparator inputs, a resistive network is connected to the Z8 port P3, which features a sensitivity adjustment for the output amplitude of the receiver transducer.

Another transmitter driver circuit is implemented on another pair of I/O pins on port P2. A receiver detector is implemented using the other available analog com-parator input on port P3. The resulting pair of ultrasonic transmitters and receivers is mechanically mounted on the left and right sides of the carÕs rear bumper for more safety.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

2

A low-power voltage regulator IC supplies the 5 volts required by the Z8 from the vehicleÕs 12-volt battery. The carÕs reverse gear light circuit can also supply power, so that the sonar would he turned on when in reverse gear only.

User feedback is performed visually by means of an LED and/or audibly by a piezoelectric buzzer.

Figure 1. Automotive Rear Sonar Block Diagram

TransmitterDriver

ReceiverDetector

User�Feedback

SystemControl

Obstacle

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

3

Figure 2. Automotive Rear Sonar Schematic Diagram

XT

AL2

P20

P21

P22

P23

P24

P25

P26

P27

7 11 12 13 8 9 10

XT

AL1

P00

P01

P02

P31

P32

P33

6 15 16 17 18 1 2 3 4

U2

Z86

E08

12P

SC

C1

22pF

C2

22pF

R7

150k

R3

100k

R1

15K

R10

150k

P1

470R

Sensitivity

Q1

BC

548B

Q2

BC

548B

Q6

BC

548B

Q4

BC

548B

Q3

BC

548B

Q7

BC

548B

Q5

BC

548B

D1

1N41

48

+5V

BZ

1B

uzze

r

Fro

m R

ever

seG

era

Ligh

t Circ

uit LE

D1

LED

R2

1K

R4

47K

R5

47K

R11

10K

R8

15K

R9

15K

R12

10K

C6

10µ

F

C3

100µ

F/

25V

C4

10µ

F/

25V

X1

8.00

00M

Hz

TX

1

40kH

z

RX

1

40kH

z

+12

V+

12V

R6

100k

+12

V+

12V

+12

V

R13

10K

R14

10K

+5V

C5

100n

F

+5V

V1

V0

G

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

4

Automotive Speedometer, Odometer, and TachometerSubmitted by: Niu Zhiming

Abstract

The automotive speedometer, odometer, and tachometer can provide the velocity, mileage, and rotational speed of an automobile engine. The central controlling unit is a Z86E04 microcontroller.

Air-Core (moving-magnet) meters are often favored over other movements as a result of their mechanical ruggedness. There are three basic pieces: a magnet and pointer attached to a freely-rotating axle, and two coils. Each coil is oriented at a right angle in respect to the other.

The air-core meter is voltage-driven. According to the measuring values of the automotive velocity and the engine rotational speed, ports P24, P25, P26, and P27 generate four PWM drive signals.

The only moving part is the axle assembly. The magnet aligns itself with the vector sum of the H field of each coil and extra magnetic fields, where H is the magnetic field strength vector.

Figure 3. Automotive Velometer, Mileometer, and Tachometer Block Diagram

Magnet

Axle

Pointer

Cosine Coil

Sine Coil

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

5

Figure 4. Automotive Velometer, Mileometer, and Tachometer Schematic Diagram

P24

P25

P26

P27

P31

P32

P33

18 17 16 15 13 12 11 7

1 2 3 4 8 9 10 6

P23

P22

P21

P20

P02

P01

P00

Ð+

Ð +

5 67

U2

Z86

E04

VD

D

14

C1

C4

E6

Sig

nal f

rom

tach

omet

erge

nera

tor

of e

ngin

e

Sig

nal f

rom

sen

sor

ofau

tom

otiv

e ve

loci

tyAla

rm o

f eng

ine

supe

rtac

hom

eter

C2

C3 R

12

R10

R9

N5

5

VD

D

VD

D

VC

C

R21

C6

R22

R25

R19

R19

R37 U

1:D

R8

R4

E4

R13

R32

R33

(Var

isto

r)

R27

N7

Vin

Vou

t

GN

D

N8

R14

R11

C5

R16

N6

N4

L4

Cos

inC

oil2

13

1412

C6

VD

D

R17

R18

R15

C7R

26

R29

+

+

E5

+

Ð +

VC

C

R36 U

1:C

R7

R3

E3

N3

L3 Sin

eC

oil2

9

810

+

Ð +

VC

C

VC

C

R36 U

1:B

R6

R2

E2

N2

L2

Cos

inC

oil1

6

75

+

Ð +

VC

C

VC

C

VC

C

VC

C

VC

C

VC

C

VD

D

R34

U1:

A

U3:

B

Ð+3

3

8 4

2

2

1

1

Vin

Vou

t

GN

D

3

2

1

U3:

A

R5

R1

E1

N1

L1 Sin

eC

oil1

2

13

+

R20

N2

N1

D1

S1L5

D2

Mile

omet

erV

BA

T

VB

AT

V1

V2

R23

R24

R29

R28

R31

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

6

Autonomous Micro-Blimp ControllerSubmitted by: Vadim Konradi

Abstract

This project utilizes multiple autonomous mobile nodes to interact via an infrared energy communications medium, with basic homing behavior and message pass-ing. The implementation is micro-blimps, which are small, compact, and weight- and energy-efficient. Micro-blimps are generally one meter in length, with helium envelopes, pager-size motors driving propellers, IR transmitters, receivers, 3-DOF-drive system. The small size and low weight of Z8 microcontrollers and bat-teries also contributes to overall energy savings.

Consider a group of blimps, calmly buoyant near the ceiling like water beetles at the surface of the water. Suddenly, a prey object appears, drawing their attention. Each senses the infrared homing signal of the sender. They descend from the ceiling, each drawn to the sender, each recognizing and homing in on the signals emitted by each otherÕs tails. The senderÕs signal is extinguished, and the blimps coalesce into self-organizing trains and nose-to-tail circles, following each other as they drift lazily back to the ceiling to perform again later.

U1 is a Z8 OTP from the General-Purpose Z8 Microcontroller family. Port 0 drives the propeller motors and addresses the bumper-switch matrix columns. Port 1 drives the resistor-summing junction, establishing the demodulation. Port 2 in open-drain mode selects mixer/demodulator channels, reads configuration switches to select operational modes, and addresses bumper-switch matrix rows. Port 3 inputs connect to the comparator system, measuring the mixer/demodula-tor output. Timer system outputs connect to Port 3, generating both modulated and reference carrier signals.

U2 operational amplifiers implement IR bandpass amplifiers. The U3 CMOS switch forms a mixer/demodulator. S1 sets options and S2ÐS5 are collision bumpers.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

7

Figure 5. Autonomous Micro-Blimp Controller Block Diagram

Hig

h-le

vel b

ehav

ior

algo

rithm

Fol

low

ing

beha

vior

feed

back

con

trol

task

Dat

a ex

trac

tion

task

Dem

odul

atio

nan

d de

tect

ion

task

Wak

e-up

mec

hani

sm

Mot

or d

rive

task

Tim

ersu

bsys

tem

Z86

E73

16V

SC

Por

t Pin

Driv

ers

Blim

p pr

opel

ler

driv

e sy

stem

Dire

ctio

nal I

Rph

otot

rans

isto

rs

IR L

ED

and

driv

er

Mix

er/

Dem

odul

ator

Mul

tiple

xer

Rec

eive

d si

gnal

ampl

ifier

s

Sof

twar

eZ

86E

7316

VS

C

One

Blim

p S

yste

mO

ther

Blim

ps a

nd B

eaco

ns

Sig

nals

affe

ct a

nd �

dire

ct o

ther

blim

ps

Ano

ther

blim

p af

fect

s an

dsi

gnal

s th

is o

ne

Com

para

tor

subs

yste

m

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

8

Figure 6. Autonomous Micro-Blimp Controller Schematic Diagram

CO

M1

IN1

CO

M2

IN2

CO

M3

IN3

CO

M4

IN4

V+

VL

GN

D

V-

3 14 11 6

NO

1

NO

2

NO

3

NO

4

2 1 15 16 10 9 7 8 13 12 5 4

MA

X46

02

U3

CM

OS

Sw

itch

Syn

chro

nous

Dem

odul

ator

R7

R5

20k

200k

C4

6.3µ

F

P23

P24

P25

P26

P27

P07

P08

XT

AL1

XT

AL2

PR

EF

1

P31

P32

P33

/RE

SE

T

R//R

L

37 38 36 40 41 44 5 17 18 32 6 7 8 42 43 3 4 20 21 25 26 13 33 11

P37

P36

P35

P00

P01

P02

P03

P04

P05

P34

P20

P21

P22

P10

P11

P12

P13

P14

P15

P16

P17

R/W /AS

/DS

9 10 14 15 16 22 19 26 27 39 29 30 31 35 12

RO

W6

RO

W7

CO

L7

CO

L8

XT

AL1

XT

AL2

Z86

E73

16V

SC

U1

R6

20k

R8

20k

Q1

Pho

toN

PN

VC

C_3

V

U2A

VC

C_3

V

VC

C_3

V

Vis

ual L

ED

Indi

cato

rIR

Tra

nsm

itter

3-A

xis

IR R

ecei

vers

and

Pre

amps

VC

C_3

V

S3

S6

Y1

8MH

z2

13

VC

C_3

V

BT

13.

6VLi

thiu

m

VC

C_3

V

R15

100

k

12

3

65

4

R17

100

k

R19

100

k

R31 1M

R30 1M

VC

C_3

V

S1

SW

DIP

-3

VC

C

-+3

8 11

21

LM32

4

R2

100k

R3

1k

R13

2k_0

805

D1

HS

MS

-C

650

D2

HS

DL-

4220

R1

20k

C1

1µF

+

C2

1000

µF

6.3V

+

Q2

Pho

toN

PN

VC

C_3

V

U2B

VC

C_3

VVDD24VDD23

12

34

2423

VSS1VSS2VSS34

-+5

8 11

67

LM32

4

R9

R26

10k

R27

10k

R28

10k

R29

10k

Res

isto

r su

mm

ing

junc

tion

to s

et d

emod

ulat

or d

etec

tion

thre

shol

d.

100k

R10 1k

R4

20k

C3

1µF

R22

10k

R23

10k

R24

10k

R25

10k

Q3

Pho

toN

PN

VC

C_3

V U2C

VC

C_3

V

-+10

8 11

98

LM32

4

R14

100k

R16 1k

R11

20k

C5

1µF

S2

S5

S4

M1

TP

1

Q4

2N22

22A

3-A

xis

Driv

eM

otor

s

M2

Mot

or

Mot

or

Mot

orM

3

CA

RR

IER

VIS

OU

T

IR O

UT

MO

D R

EF

VC

C_3

V R12

10

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

9

Battery-Operated Door-Entry SystemSubmitted by: Steve Price

Abstract

The purpose of this Z8Plus-based system is to improve the security of an existing door. This simple low-cost entry system utilizes the Dallas Semiconductor D51990A iButton technology in addition to or instead of a conventional mechani-cal key. A battery system is preferred to eliminate complex wiring to the door.

The Z8Plus microcontroller is ideally suited to battery applications, due to its low quiescent current, which is typically 250nA in STOP mode.

The Z8Plus is brought out of STOP mode by pressing the wake-up switch SW. This switch is an integral part of the iButton receptacle. The Z8Plus checks the battery voltage using a single on-chip comparator. The Z8Plus then looks for the presence of an iButton in the receptacle PL1. If an iButton is detected, then its 6-byte serial code is read via PB1 using a 1-wire power/data protocol.

iButton codes for up to 20 users can be stored in the EEPROM. The received code is checked against the table of stored codes in the EEPROM. If the correct code is found, the solenoid/actuator is activated for a short defined period that allows the door to be opened. The hi-color LED is green during this state. A flash-ing green warning indicates that battery voltage is low. At the end of this period, the peripherals are turned off and the Z8Plus returns to STOP mode.

Should the unit fail due to exhausted batteries, a provision exists to bring an emergency power terminal PL2 out to the front panel. A 9-volt battery can be con-nected between the power terminal and earth ground of the iButton receptacle, while a valid iButton is read. When the door is opened, the batteries can be replaced. A method of resetting the Z8Plus may also be required.

A predefined Master iButton places this system into LEARN mode. All user-button codes stored in the EEPROM are erased. The operator touches each new iButton within 10 seconds of each other, storing the new user-button codes into the sys-tem. The hi-color LED provides user feedback.

Monitoring of the battery supply rail is achieved using the on-chip comparator. A 5-volt reference is fed into one input of the comparator, while the other input moni-tors the battery rail via the potential divider R4 and R5. For the potential divider to function, the software must write a 0 to PB2. The resistor values provide a battery voltage of 6.5V that produces a 5-volt output from the potential divider. After the measurement, the software turns PB2 into an input that stops the current from flowing through the potential divider, thereby conserving current.

The solenoid must be chosen for the application, in addition to the values of the transistor TR1 and base resistor R8.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

10

Figure 7. Battery-Operated Door-Entry System Block Diagram

9V

Solenoid

Actuator

AllkalineBatteryPack

DallasDS1990Ai Button

i ButtonReader

Microswitch

Z8Plus

MCU

P80(Stop Mode Recovery)

Battery LowDectect

5V LDORegulator

2

1

4

2

1

1

1

Bi-ColorRed/Green LED

SerialEEPROM

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

11

Figure 8. Battery-Operated Door-Entry System Schematic Diagram

17 16 5 18 1 2 3 4

13

1

58IC

2

2 3 414 15

12 11 10 9 8 7 6

XT

AL1

VC

C

+5V

C3

C1

C2

4 0

0MH

Z

100N

F22

PF

22P

F

VS

S

IC1

XT

AL2

/RS

T

PB

0

R7

GR

N

RE

D

LED

1

470R

L1

D6

TR

1IN

4001

R8

CS

CLK

DI

DO

PB

1

PB

2

PB

3

PB

4

PA

0

PA

1

PA

2

PA

3

PA

4

PA

5

PA

6

PA

7

Z8E

001

BI-

CO

LOU

RLE

D

SO

LEN

OID

EM

ER

GE

NC

Y9V

PO

WE

R

i BU

TT

ON

RE

CE

PT

AC

LE

WA

KE

-UP

93LC

46

+5V

+5V

+5V

C4

100N

F

C9

3

IC3

1

2

100N

F

C7

100N

FC

610

0NF

1N58

17

D2

D3

6V8

R4

180K

R5

54K

12V

ZD

2

ZD

1

PL1

D4

D5

PL2

SV

1N58

17

1N58

17

1N58

176

x 1.

5V A

AB

AT

TE

RIE

SC

810

0UF

C10

100U

F

VS

S

VC

C

R3

100K

D1

1N41

48

R2

100K

R1

50K

LP29

50

C5

100U

F

C4

7UF

R6

100K

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

12

The CrabSubmitted by: Andreas Voigt

Abstract

The Crab is an autonomous robot, featuring a low-cost design, and powered by three AA batteries, with motion provided by DC motors. Obstacle detection and bump switches are incorporated into the design. Speed and distance is monitored to facilitate vectored motion patterns that offer the ability to collect and move small objects. The robot features an LED, speaker, and wireless communication possi-bilities with other forms of life. Floor sensors are added to avoid accidental falls.

Infrared reflection sensors have proven their reliability. One standard for DC motor drive is an H-bridge, which is controlled by the PWM. Counting index holes in wheels allows the Crab to compute speed and distance. Wireless communication is implemented via a standard TV remote- control receiver chip and 40-kHz pulses from the infrared LEDs (IRLEDs).

The Z86E31 was chosen because it is powerful and easy to use, and for its low-cost development using a ZiLOG CCP emulator and ZDS. Programming this chip in assembler language is easy. To keep costs as low as possible, one design rule is to use software to emulate hardware.

Transmit IRLEDs are placed on the bottom left and right in front of the Crab to pro-duce floor sensors. Two IRLEDs look forward to detect obstacles. The mouth can capture small objects and hold them in place, as long as no backward motion is performed. One IRLED and a phototransistor monitor the operation of the mouth, forming a photointerrupter with an IRLED at the back, operating together as a beacon. The IR receiver chip is placed above the mouth. This chip is used for communication and as detector for 40-kHz pulses, generated by the IRLEDs and reflected by any object, even the floor, and also detecting TV remote controls and other crabs. The phototransistors to the front monitor ambient light.

The top layer of the software consists of the mood model, the behavior layer below. Both are state-machines, and the action layer, the one executing motion or sound commands, is based upon the subsumption architecture, introduced by Professor Rodney Brooks. Transitions can be triggered, for example, depending on perception changes or elapsed time.

The prototype exhibits all kinds of moods, and demands attention from time to time. It gets hungry (for light) and may get very depressed if not provided enough stimuli or attention. The Crab may even demonstrate suicidal actionsÑfor exam-ple, jumping off the desk on purpose.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

13

Figure 9. The Crab Block Diagram

Mouth�interrupter

Front IRLEDs

Beacon IRLED

88 millimeters

124 millimeters

Left ambientlight sensor

Floor IRLEDleft

Floor IRLEDrightWheel index sensors

Right ambientlight sensor

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

14

Figure 10. The Crab Schematic Diagram

P00

P01

P02

P03

P04

P05

P06

P07

P30

P31

P32

P33

P34

P35

P36

P37

22

1

3

2

00

GN

D

1

12

2

12

12F

loor

L

P20

P21

P22

P23

P24

P25

P26

P27

osc1

osc2

19 20 21 23 4 5 6 7 18 11 12 13 14 15 17 16

Z86

E31

IC1

50pF

2

2

11

3

12M

outh

100µ

F

C8

MO

T1

12F

loor

R

12F

ront

L

12

11

2

2

Fro

nt R

1K 100R

Bac

k

C1

10nF

2 110

0nF

2 1

2 1

12

12

100K

12In

dex

R

12

100K

100K

1212

Inde

x L

12

100K

12

1K

12

1K

12

1K

12

1K

10R

10�R

10R

10R

12

12

12

12

1K

12

Pie

zo21

100K

Leftbump

100nF

Rightbump

Floor left

Floor right

Mouth

Index l

Index r

Green

Front l

Beacon

Front r

100nF

12

2 1

2 1

100K

12

1K

BA

T2

1 2

12

2

21

12 1

1K 12 21

1K 12 21

1K 12 21

1K 12 21

1K 12 21

1K 12 21

1K 12 21

1K 12 21

IR1

SF

H50

6

+

-

BA

T1

1 2

+ -

BA

T3

1 2

+ -

31

22 1

2

2

11

3

100n

F

C7

12

100n

F

12

31

22

1 2

1

2

2

11

3 31

22 1

2

2

11

3 31

22 1

~

MO

T2

1 2~

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

15

Desktop FountainSubmitted by: Don Deschane

Abstract

This project is a desktop-size pulsed water fountain with multiple jets. Each jet operates by quickly boiling a small amount of water at the bottom of a tube. The gas bubble created pushes the water in the tube a few inches up into the air. The same concept is used in coffee percolators and ink jet print heads. In this case, the largest jet is no more than 1mm in diameter.

A Z8 microcontroller controls and monitors each jet individually, and causes an array of jets to pulse in various patterns and rhythms. Some jets point directly upwards, causing a splatter effect, while others are aimed at an angle, causing tubes or bubbles of water to fly up and follow a hyperbolic trajectory on the way back down into the fountain. Different incarnations of the product feature different numbers, sizes, and arrangement of jets and other options, such as underwater illumination and buttons to select patterns.

The heart of the fountain is the jet boiler, one per jet. The bottom surface contains a resistor, which heats up when power is applied. Water enters from the sides in one or more small tubes and exits primarily through the larger top opening when a steam bubble forms on the heaters. The microcontroller monitors the temperature of the heater in real time to determine when the bubble forms, and subsequently turns off the heater.

Each heating cycle begins with a cool temperature. When power is applied, the heater temperature increases gradually as the water warms, then quickly as the water boils and stops absorbing the heat. Power is turned off and as new water enters the chamber, the heaterÕs temperature drops.

The heater temperature is measured using the Z8Õs A/D converter. The resistance varies with temperature. These changes are measured via the Z8 A/D converter connected to the jetÕs power drive sensor.

Each jet should fire in a fraction of a second, but with different size jets, the heat-ing time probably is not consistent, so the Z8 firmware must schedule the start of heating properly so that each bubble forms at the correct time (especially impor-tant for simultaneous firings). This system can he fine-tuned using real-time oper-ating information, which also compensates for variations in ambient water temperature, heater effectiveness, and power-supply voltage from unit to unit, over time.

Monitoring the jets can also detect when the fountain runs out of water, clogs up, or gets knocked over. If a heater heats up too quickly or fails to cool, the fountain shuts down.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

16

Figure 11. Desktop Fountain Block Diagram

Z8Microcontroller

GSC

Note: Other versions may support more jets with additional MUX circuits and/or larger Z8.

Jet0 - Repeat for each jet

PowerDriver

Jet Heater

7 more jets

OUT

SENSE

Power/Status LED

+

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

17

Figure 12. Desktop Fountain Schematic Diagram

P00

ACC

P01

AC1

P02

AC2

P03

AC3

P04

AC4

P05

AC5

P06

AC6

P34

AC7

XTAL1

VCC

AVCC

GND

AGND

Unlisted pins areunconnected

16MHz Z86C83

Power Supply

OSC

JET1

+5

+5

120VAC+12 (regulated)

heater (JET0)

¥� Duplicate jet driver for each jet heater.¥� Actual component values and driver�� design depends on size and power� requirements of each jet.

THIS VERSION SUPPORTS 8 JETS

sense

+12

+12+5

GND

JET2

JET3

+5 (regulated)

drive

JET4

JET5

JET6

JET7

P36

470 LED� ON = ON� 0FF = OFF� FLASH = FAULT

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

18

DCF77 ClockSubmitted by: Andreas Richter

Abstract

This project describes a stand-alone clock. The clock uses a ZiLOG Z86E08, con-trolled by the DCF77 Time Radio Signal, which is used in Germany. The clock pro-vides time functions to the exact second, and date functions (day, month, and year).

The display consists of a 6 x 7-segment LED display with a common cathode. By using the Z86E08, the hardware is reduced to a 74HC138 demultiplexer, resis-tors, and a DCF77 receiver (Conrad Electronics 64 1138). The software performs the display multiplexing, decodes the DCF77 signal, and generates a stand-alone clock. The clock is synchronized by the DCF77 signal.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

19

Figure 13. DCF77 Clock Schematic Diagram

P2.

4

P2.

5

P2.

6

P2.

7

Vcc

XT

AL2

XT

AL1

P3.

1

P3.

2

8x10

0 O

hm

Z86

E08

DC

F77

-Sig

nal

+5V

Dat

e/T

ime

P2.

3

P2.

2

P2.

1

P2.

0

GN

D

P0.

2

P0.

1

P0.

0

P3.

3

A0

A1

A2

/E1

/E2

E3

/Q7

GND

74HCT138

Vcc

/Q0

/Q1

/Q2

/Q3

/Q4

/Q5

/Q6

+5V

+5V

10k

12M

Hz

2x47

p

4.7k

+5V

+5V

7-S

egm

ent D

ispl

ays

Com

mon

Kat

hode

P G F E D C B A

KK

KK

KK

A G

EC

D

P

FB

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

20

Diagnostic Compressor ProtectorSubmitted by: Mark E. Miller

Abstract

The majority of Heating, Ventilating, and Cooling (HVAC) system failures occur over a period of time. When a compressor fails to operate, it is usually after con-tinuous operation while incurring a system fault. The product presented in this design is an early-warning device that monitors key parameters. It also functions as a compressor protector that inhibits operation in potentially damaging condi-tions such as electrical brown-outs, overheating, and overpressure. Using this device results in savings for the homeowner (minor repairs cost less than replac-ing a compressor), minimizes diagnostic time for the service person (diagnostic codes are output to several places), and reduces warranty returns to original equipment manufacturers (OEMs).

The control is a low-cost design that performs an anti-short cycle (ASC) function and diagnostics. The anti-short cycle operation is accomplished by monitoring when the compressor is being requested to run. After a run cycle completes, it is inhibited from running for 3Ð5 minutes, thereby allowing the pressure in the sys-tem to equalize before the run cycle starts again. As a diagnostic device, the con-trol monitors the voltage, temperature, pressure, and vibration of a compressorÕs operation. A low threshold is established for each parameter to alert the owner that service is required prior to a catastrophic failure. A high threshold, also moni-tored, diagnoses fault conditions.

The most damaging system failures occur when more than one parameter goes out of range (an example would be high pressure and high temperature). Using triangulation of the fault parameters to lock out compressor operation reduces misdiagnosis and false lockouts.

The ZiLOG Z86C04/Z86C08 and Z86C03/Z86C06 microcontrollers lend them-selves well to this design. The comparator inputs are invaluable for the analog inputs and are required for accurate thresholds. The programmable timer is also a key feature that is useful for some of the time-related thresholds. The ZiLOG pin-out compatibility permits a single layout that can be populated in several ways, such as a low-cost minimum-protection device (Z86C03), an optional serial port for data logging/external interface (Z86C06), and added algorithms for extended compressor life (Z86C04/Z86C08).

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

21

Table 2. Sensor Inputs

Input Name Low Threshold High Threshold Comments

24VAC Control Voltage The control voltage drops below 16VAC

The control voltage is below 18VAC and above 16VAC

Monitors voltage to keep from operation during brownouts, eliminates contact chatter

Pressure Switch The pressure switch cycles more than twice during six hours of run time

The pressure switch cycles more than five times during six hours of run time

Used to evaluate over-pressure conditions resulting from improper refrigerant charge or flow

Compressor Discharge Temperature

120¼F is the minimum discharge temperature; time below the threshold determines severity

250¼F is the maximum discharge temperature; time above threshold determines severity

Exceeding the threshold is early warning; duration and frequency determine severity

Vibration Sensor A low-level threshold is set to monitor vibrations exceeding 10G

Duration and frequency exceeding 10G is used for high threshold

Ignored during startup and shut down periods

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

22

Figure 14. Diagnostic Compressor Protector Block Diagram

FA

ULT

LIG

HT

PR

ES

SU

RE

SW

ITC

HC

ON

TA

CT

OR

ALA

RM

T7N

TE

ST

RE

SE

T

CO

MM

ON

INPUT

SERIAL PORT

Z86E04/8CD4052

24 VAC

DISCHARGETHRMISTOR

VIBRATIONSENSOR

Vib

ratio

n S

enso

rA

ttach

to to

p of

com

pres

sor

usin

gla

rge

Hos

e C

lam

p

Cla

mp

The

rmis

tor

to d

isch

arge

line

of C

ompr

esso

r

Opt

iona

l Ser

ial

Dat

a P

ort f

orF

utur

e E

xpan

sion

ie, R

S48

5, d

ispl

ay,

RF

tran

smitt

er,

Mod

em, e

tc.

May

be

mou

nted

inou

tdoo

r un

it or

rem

ote

Aud

ible

Ala

rm

Hig

h-V

olta

geC

onta

cts

Com

pres

sor

Con

tact

orT

urns

Com

pres

sor

and

Out

door

Fan

ON

/OF

F

100K

The

rmis

tor

Fau

lt Li

ght

Indo

rr W

all

The

rmos

tat

Fau

lt Li

ght

Con

trol

Lin

e

Y R

eque

st fo

r

Com

pres

sor

24V

AC

= O

NC

omm

on =

OF

F

Use

Pre

ssur

eS

witc

h al

read

ypr

esen

t in

syst

em

Hig

h- P

ress

ure

Sw

itch

240/

24V

AC

Tra

nsfo

rmer

24V

AC

Sec

onda

ry s

ide

240V

AC

Prim

ary

side

of T

rans

form

er

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

23

Figure 15. Diagnostic Compressor Protector Schematic Diagram

P24

P25

P26

P27

VC

C

XT

AL2

XT

AL1

P31

P32

18 17 16 15 14 13 12 11 10

P23

P22

P21

P20

GN

D

P02

P01

P00

P33

A B INH

X0

X1

X2

X3

Y0

Y1

Y2

Y3

X Y

13 3

16 9 8 12 14 15 11 1 5 2 4

1 2 3 4 5 6 7 8 9

U1

Z86

C04

R28

100k

1/8

W

D10

1N40

07

C11

33pF

50V

R10

+5V

DC

VibrationTransducerInput 0-5V100mV/G

4052

U2

1

1

12

2

3

2

2K 1

/8W

R11

10K

1/8W Q1

MP

SA

06

1

1

12

R27

100k

1/8

W

12

12

VS

S

VS

S

2

R29

10K

1/8W

12R

3410

0K1/

8W

1

1

2R

2610

0K1/

8W

12R

22 1K 1/8W

12R

21 1K 1/8W

12R

23 1K 1/8W

12R

3310

0K1/

8W

12R

2510

0K1/

8W12

R15

100K

1/8W

+5V

DC

R30

100k

1/8

W

D9

1N40

07

12

12

R31

100k

1/8

W

D8

1N40

07

12

12

D12

1N40

07

1

1

1 2

3

1 22

3

1 2

R14

3.01

K1/

4W

C2

0.1µ

F50

V

1 2

R12

33.2

K1/

4W

1 2

R6

100K

1/8W

+5V

DC

Tes

t Inp

ut

1

+5V

DC

1

+5V

DC

1

+5V

DC

1

PS

1

1

11

1 2

1

2

D5

1N40

07

12

R32

26.1

k 1/

8W

D6

1N40

07

R20

2k 1

/8W

12

R18

100k

1/4

W

12

R19

P7

100k

1/4

W

12

12

12

P20

P6

DischargeSensor

100k Thermistor

P5

P3

24VAC ÒYÓFrom WallThermostat

P2

Pressure SwitchSensor24VAC

CompressorContactor

P1

P14

P21

Logi

cG

nd

P19

3/16

Wall ThermostatFault Light

P4

External 24VDCPiezo Alarm

P10

P8

R

P9

P16:1

DO Data Out

Data In

Clock

DI

CLK

CONN9M

1P15:1

CONN9M

1P13:1

CONN9M

1P12:1

CONN9M

1P17:1

CONN9M

Logi

cG

nd

+5V

DC

1

R13

100k

1/4

W

12

R4

100k

1/4

W

12

Z3

20V

12

Z5 5V

1 2

C3

.1µF

100V

1 2

R5

1.5K 2W

C1

.01µ

F50

V

12R

210

0K1/

8W

+5V

DC

1

D7

1N40

07

12

R1

100k

1/4

W

12

Z4 5V

1 2

12

12

C6

22µF

50V

12R

810

K1/

4W

+5V

DC

24V

AC

1

+5V

DC

1

D1

1N40

07

12

R7

2k 2

WLo

gic

Gnd

12

R16

2k 1

/8W

12

D2

1N40

07

12

Z1 5V

1 2

D4

D3

1N40

07

1 2

12C

4.1

µF10

0V

Com

mon

1

1

2

C12

.1µF

100V

12

C5

47µF

50V

1 2

12

R3

300

7W

+

12R

2410

K1/

4W

C9

100µ

F50

V

1 2

+R 1

-24V

DC

Ser

ial C

omm

unic

atio

nsP

ort f

or A

dd-o

n D

evic

es1

Q3

MP

SA

58

Q2

MP

SA

58

K1

T70

R9

160

1W

Dia

gnos

ticLE

D

D11

11

2

PS 1

M 1

Ð24V

DC

1

-24V

DC

1

24V

AC

1

VD

D 1

+5V

DC

1

1 2

3Q

4M

PS

A58

P11

R17

2k 1

/8W

12

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

24

Digital Dimmer BoxSubmitted by: R. Hugo Vieira Neto and Francisco Eugenio Mauro

Abstract

The Digital Dimmer Box is intended for stage illumination in theaters. It is simple and inexpensive. Designed with a ZiLOG Z8 OTP microcontroller, the device is completely compatible with older analog dimmer boxes and supports 4400-Watt loads.

In stage illumination, dimming of each incandescent lamp is controlled by an ana-log voltage (ranging from 0 to 10 volts) and is supplied by a remote console.

To achieve linear perception, a dimmer box should exhibit a nonlinear response to the control voltage. Older dimmer boxes employ analog processing for the task of compensation. The digital approach uses a simple software look-up table concept to implement response compensation. As a result, a dedicated external analog circuit is not required.

The system control block uses the Z86E08 microcontroller running at 12 MHz. Some of the Z86E08Õs key features are:

¥ Onboard counter/timers with prescalers (generation of phase-control signals)

¥ Onboard analog comparators (AC line zero-crossing detection and control voltage acquisition)

¥ ROM space (implementation of one or more look-up tables for visual response compensation)

To implement the A/D converter, an R-2R network is mounted on port P2. The out-put is used as the reference voltage (pin P33) for the Z8Õs onboard analog com-parators on port P3. The analog control voltage is connected to the first analog comparator input (pin P31) and the A/D conversion is completed by software using a successive approximation technique.

The counter/timer generates a time delay between the zero-crossing of the line voltage and the TRIACÕs triggering pulse. As a result, power is delivered to the load. At 12 MHz, it is possible to achieve delays from 0 to 8.33ms with the correct settings of the counter/timer prescaler, which corresponds to the phase-triggering range for an AC line frequency of 60Hz.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

25

Figure 16. Digital Dimmer Box Block Diagram

SystemControl

DIMMER BOX

A/DConverter

RemoteConsole

Zero-CrossingDetector

AC Line(220V)

TRIAC

Control Voltage

Load(4400W)

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

26

Figure 17. Digital Dimmer Box Schematic Diagram

R2

20.0

K

R3

20.0

K

R4

20.0

K

R5

10.0

K

C1

22pF

C2

22pF

D2

1N�

4148

R6

20.0

k

R1

20.0

k

CO

NT

RO

LV

OLT

AG

E(0

-10V

)

+5V

+5V

+5V

AC

LIN

E

(220

V)

LED

1

LED

C6

1000

µF

/25

V

D1

1N41

48

R8

20.0

K

R9

10.0

K

R12

20.0

K

R13

10.0

K

R15

20.0

K

R16

10.0

K

R17

20.0

K

R18

10.0

K

R20

20.0

K

R21

10.0

K

R22

20.0

K

R23

10.0

K

C3

100n

F D3

1N�

4148

R19

10k

R10

180R

R11

330R

R7

1k

R14

S1

S2

S3

P1

LOA

D1

Q1

61

42

MA

C22

4A10

4400

W

6+6V

/100

mA

T1

P2

18k

D4

1N�

4148

D6

1N 4007

D5

1N 4007

XT

AL2

P20

P21

P22

P23

P24

P25

P26

P27

11 12 13 8 9 107

15 16 17 18 1 2 3 46

X1

12.0

000M

Hz

U2

P00

P01

P02

P31

P32

P33

Z86

E08

12P

SC

C4

10µ

F/

25V

C5

100n

F

U1

MO

C30

20N

V1 U378

L05

13

2

GV

0

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

27

Door Access ControllerSubmitted by: Suksaeng Kukanok

Abstract

The Z8 Door Access Controller (Z8DAC) screens an authorized person for access to a restricted area. The Z8 microcontroller is used as the main controller. This application uses most of the on-chip resources, such as program memory, regis-ter, I/O, timer and interrupts.

The Z8DAC can be set up as a multiple Z8DAC configuration, using an RS-485 interface or one Z8DAC configuration using an RS-232 interface. The Z86E30 microcontroller configuration consists of a magnetic card reader, keyboard, LCD display, I2C EEPROM, I2C RTC, and an asynchronous bus and door control ports.

When using the magnetic card reader, The Z8 looks up the card ID using the ID parameter in the EEPROM. The content of the parameter provides the time allowed for access and the access key code (if necessary). If the controller requires a key code, the user must key in the access code within 30 seconds. If the unauthorized code is tried more times than the maximum number allowed, a panic signal is generated on P27. After the Z8 determines that access is allowed, the door unlocks itself. When the door opens, the door sensor sends a signal to the controller and locks the door.

The parameter and each authorized ID are downloaded to the target Z8DAC. The PC on the system can be connected online or offline. If it is an online connection, the PC monitors in real time. If the connection is offline, the PC monitors using a batch process.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

28

Figure 18. Door Access Controller Block Diagram

RTCI2C

Z8DAC#1

Block diagram when connected with PC via RS485

Block diagram when connected with PC via RS232

Functional block diagram

I2CRAM

Z8DAC#2

Door Control

Door Sensor

LCD DisplayKey Pad

PC

Door LockControl

SerialCommunication

with PC

RS485

RS232

Alarm

Host Controllerand Monitor

Z8DAC

Host Controllerand Monitor

Z8DACCore

Z8DAC#N

12:00 > 123456

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

29

Figure 19. Door Access Controller Schematic Diagram

P20

P21

P22

P23

P24

P25

P26

P27

XT

AL2

XT

AL1

10 20 21 23 4 5 6 7 18 11 12 13 14 15 17 16

DB

4

DB

5

DB

6

DB

7

CO

1

CO

2

CO

3

RX

INT

RD

D

RC

P

TX

DIR

E RS

SD

A

SC

L

Doo

r O

pen

Bee

p

WP

B-li

gh

Ala

rm O

ut

P00

P01

P02

P03

P04

P05

P06

P07

P30

P31

P32

P33

P34

P35

P36

P37

OS

CI

OS

CI

AD

VDD GND

INT

SC

L

SD

A

24 25 26 27 28 1 2 3 9 10

C7

5-30

P o

r F

ix

15P

2%

VC

C

VC

C

VC

C

VC

CV

CC

P5

Key

Pad

Con

nect

or

VC

C

VC

C

Mag

netic

Con

nect

or

VC

C

VR

110

k

VC

C

U1

U9

SC

1601

D

Gnd

Vo

RW

DB

4

DB

6

A NC

2 4 6 8 10 12 14

GN

D

Vo

DB

4

DB

6

B_l

igh

RS

E DB

5

DB

7

Vcc RS E

DB

5

DB

7 K

NC

1 3 5 7 9 11 13

P6

LCD

Con

nect

or

V+

Ti

Ro

Ti

Ro

1 3 4 5 14 13 7 8

C1+

C1Ð

C2+

C2Ð T

o Ri

To Ri

Gnd

3

Rxd

2

Txd

1

Gnd

3

A

2

B

1

2 6 11 12 10 9

U6

MA

X23

2

1516

C5

22/1

6

GN

D

VC

C

GNDVCCVoRSR/WEDB0DB1DB2DB3DB4DB5DB6DB7AnodeCathode

123456789

10111213141516

123456

12345678

R1R2R3R4CO1CO2CO3

123456

C6

22/1

6

B1

CR

2016

D2

8 4

VDD GND8 22

PC

F85

83

X2

32.7

68K

Hz

BA

T85

X1

12M

Hz

C8

30p

C9

30p

D1

BA

T85

R2

10k

R1

10k

R4

12V

K1

RE

LAY

12V

3k9 R

5

Q2

BC

327

D3

Dio

de

3k9

R10

10k

R8

1k

1JP4

C2

22/1

6C

322

/16 C

4

22/1

6

RX

RX

485

RX

232

2 3

RC

PR

DD

GN

D+5

3 2 1

RC

PR

DD

R18

10k

VC

C R11

10k

D5

C31

3

D5

C31

3

R12

10k

R13

150

R3

3k9

LS1

Buz

zer

R9

10k

AC

A1

A2

7 6 5

WP

SC

L

SD

A

WP

SC

L

SD

A

VDD GND

WP

SC

L

SD

A

1 2 3

7 6 5

1 2 3

7 6 5

1 2 3

8U

3U

4U

2

424

LC25

6

A0

A1

A2

VDD GND

WP

SC

L

SD

A

8 4P

CF

8583

VC

C

R16

10k

R17

10k

R15

10k

VC

CR

6B

-ligh

1kR

7

12

12

1 2

D6

C31

312

V

K3

LS2

S1

Doo

r S

enso

r

Sol

enoi

dLo

ck

Ala

rmD

evic

e

C1

1/25

0

12V

K2

RE

LAY

12V

Q1

BC

327

D4

Dio

de

Q3

BC

327

1JP5

TX

TX

485

TX

232

2 3

DA

Tx

DE

/RE

Rx

TX

485

DIR

RX

485

R

R2

R1

T1

T2

B

6

58

VC

C

GN

D

U5

7517

6

7

4 3 2

R14

100

1

Z86

E30

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

30

Electrolytic Capacitor ESR MeterSubmitted by: Bob Parker

Abstract

A major cause of electronic equipment failure is due to electrolytic capacitors developing excessive Equivalent Series Resistance (ESR). These capacitors may exhibit the characteristics of a normal capacitor, yet with a significant resistor in series. This design is for a digital meter that directly indicates the ESR of a capac-itor.

A Z86E04 microcontroller, supported by a relatively small amount of hardware, allows the following features to be easily and economically implemented:

¥ Power on/off and test lead resistance zeroing with a single push-button

¥ Three automatically-selected measurement ranges

¥ Low battery voltage warning

¥ Automatic power switch-off

When pressed, the push-button initially forces Q1 to switch on. When running, the microcontroller switches to Q2. When the button is pressed again, Q2 is detected on P26. If the firmware measures the low resistance of shorted test leads, it sub-tracts their measured value from all future ESR readings. However, if the firmware detects an open circuit, it switches off Q2 and consequently Q1, turning off the battery supply.

A measurement begins when the microcontroller switches off the ramp-capacitor discharge transistor (Q11), allowing C10Õs voltage to increase linearly with time.

One of the Z86E04 timers initiates a series of 8-µs pulses spaced 500µs apart, which drive either Q3, Q4, or Q5 to send current pulses of an amplitude depen-dent on the measurement range, through the capacitor under test. Between the pulses, Q6 is switched on to prevent the capacitor from accumulating a charge.

The voltage pulses across the test capacitor, proportional to its ESR, are amplified and applied to the microcontrollerÕs P31 comparator. The firmware terminates this process when the voltage on C10 exceeds the amplified pulse amplitude. The total number of pulses is used to calculate and display the capacitorÕs ESR, after subtraction of the test lead resistance.

Between measurement cycles, the microcontroller allows C10 time to charge to 2volts. If the battery voltage sample on its P32 comparator is below this 2volts, the firmware periodically flashes a b on the display as a Low-Battery warning.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

31

Display segment and decimal point data is sent serially from port 0 to a serial-to-parallel shift register (IC3), driving the LED displays that are multiplexed at a 100-Hz rate determined by the Z86E04Õs second timer. This timer additionally controls the automatic switch-off period and all other system timing.

This design takes advantage of all the Z86E04 analog comparators and timers to produce a simple but versatile capacitor ESR meter. The firmware occupies about 700 bytes of program memory, and runs effortlessly at a 3.58-MHz crystal fre-quency.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

32

Figure 20. Electrolytic Capacitor ESR Meter Schematic Diagram

P33

P27

P02

P01

P00

P23

LAT

CH

DA

TA

CLK

DIG

IT S

ELE

CT

Par

alle

lS

egm

ent

Dat

a

Ser

ial-P

aral

lel

Shi

ft R

eg. (

IC3)

Dis

play

Circ

uitr

y

Ram

p C

ap D

isch

arge

Sw

itch

(Q11

)

Am

plitu

de p

ropo

rtio

nal

to c

apac

itor

ES

R

500µ

S

P32

P25

P26

P22

P21

P20

P24

P31

OU

TIN

+5V

Pow

er S

witc

hD

river

(Q

2)

Pus

h bu

tton

dete

ct

+5V

9.4µ

A

+5V

Reg

ulat

or

(IC

1)

3.58

MH

z

P31

GN

D

X1

X

2

VC

C

IC2

Z86

E04

08O

RZ

86E

0412

+ Ð

+-

+-

+5V

+5V

2V

max

100m

S m

ax

8µS

Not

to S

cale

Pul

se A

mpl

ifier

Gai

n =

+20

(Q7,

8)

Cap

acito

run

der

test

Tes

t cur

rent

puls

es

Q3,

4, 5

Cur

rent

pul

sesw

itche

s

On/

Off/

Zer

oP

ush

But

ton

Ram

p ge

n.ca

paci

tor

(C10

)

Con

stan

tcu

rren

tso

urce

(Q9,

10)

R6

0.5m

A

Q3

Q4

Q5

R8

5mA

R10

50m

A

R25

9VB

atte

ry

Pow

er s

witc

h(Q

1)

Bat

t. V

olta

geS

ampl

e

2V

Cap

acito

rdi

scha

rge

switc

h (Q

6)

R26

ES

R

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

33

Electronic Door ControlSubmitted by: Fernando Garcia Sedano

Abstract

Electronic door controls have been developed to control electrically-operated doors for railway toilets, especially for the handicapped.

All commands received by the door control module are processed by the Z86E4016PEC microcontroller. The microcontroller also drives a ZiLOG Z853606VEC clock I/O (CIO). The CIO counts the encoder pulses and acts as a PWM generator. It uses two of three internal counter/timers. The Z86E40 software is used to modify the PWM-generated duty cycle and carrier frequency.

Commands to and from the main toilet unit are sent via the octal D-latch U15 and D-latch U14. D-latch U17 implements the logic to satisfy the requirements of the Z8 timing signals and the Z84C15 intelligent peripheral controllerÕs (IPC) main control unit.

The Z8 microcontroller uses an MG2-12 encoder to control door displacements, direction, and the opening and closing speeds.

The electronic door control module has operated effectively on railway toilets in Spain since 1999.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

34

Figure 21. Electronic Door Control Block Diagram

MAIN CONTROLUNIT (Z84C15)

CIO COUNTERAND TIMER UNIT

(Z8536)

OUTPUT ISOLATIONBARRIER

(3 X HCPL2211)

FULL BRIDGEDRIVER

(HIP4082)

INPUT ISOLATIONBARRIER

(4 X HCPL2211)

OUTPUTBUFFER

(74HCT373)

Z8 MAIN CONTROLLER (Z86E40) 5 Vdc Z8

72 Vdc

Electric (DC) MotorGR 63x55 (DUNKER)

EncoderMG 2-12 (DUNKER)

5 Vdc CI0

INPUTBUFFER

(74HCT374)

STATE COMMANDS

H-B

ridge

(Ful

l brid

ge)

ME

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

35

Firearm Locking System (FLS)Submitted by: Phillip F. King

Abstract

The Firearm Locking System (FLS) is a firearm safety system designed to add an extra layer of protection to the keeping and use of guns. Using a Z8 microcontrol-ler, the FLS can make a firearm available and ready to use quickly when required, while virtually eliminating the chances of an accidental or unauthorized discharge.

FLS can be manufactured into new firearms or added as an after-market option by a qualified gunsmith. It works with any existing mechanically-fired weapon, includ-ing handguns, rifles, and shotguns of any caliber. At the heart of the system is a Z86E83 Z8 microcontroller, the brain behind the FLS.

The controller gathers input from sensors on the firearm (See Table 3), and out-puts a control signal to a mechanical solenoid that toggles the firearmÕs safety, typically by disengaging or blocking the firing pin or hammer. The software allows the user to define profiles of acceptable usage depending upon requirements. For example, a skeet-shooter might define an acceptable firing angle as anything above horizontal, while a handgun user who typically target shoots on an indoor range would allow a firing angle of only ±5 degrees off horizontal. Both users might also define a self-defense mode in which any firing angle is allowed.

Table 3. Firearm Sensor Input Functions

Input Function

Rocker Switch Access Code Input

Four rocker-toggle switches provide an eight-number input, and provides 8^N possible access codes for an N-digit code.

Hand-Grip Sensor Senses pressure on the grip of the weapon that indicates it is being handled. Prevents accidental discharge when a weapon is dropped or transported. In self-defense mode, can also be used to determine, when a user has lost control of a firearm, to disable the weapon and prevent use by an assailant.

Inclinometer Measures the current angle of the barrel. Prevents accidental discharge of a weapon being held in a rest or nonfiring position.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

36

Figure 22. Firearm Locking System Block Diagram

Zilog Z8 OTPMicrocontroller

Four dual-position switchesfor access code entry

Inclinometermounted in the

axis of the barrel

Grip Switchindicating that thegun is being held

Solenoid lock on firing pinand Indicator LED.

(Non-energized defaultposition is safety-engaged)

1

2

3

4

5

6

7

8

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

37

Figure 23. Firearm Locking System Schematic Diagram

P20

12U

127

11

8

S8

9

7 10

26

P21

/AC

1P

22/A

C2

P23

/AC

3P

24/A

C4

P25

/AC

5P

26/A

C6

P27

/AC

7

AV

CC

VC

C

VC

C

GN

D

Q2

MO

SF

ET

N

Q1

MO

SF

ET

N

M1

Spr

ing

Bal

ance

dS

olen

oid

(Mec

hani

cal i

nter

face

to fi

ring

pin

lock

)

V_i

nc

Incl

inom

eter

AG

ND

89252423222120

S10

R1

1K

(Rec

esse

d� i

nter

nal

res

et s

witc

h)

19 10

GN

D

P00

P01

P02

P03

P04

P05

P06

28 71 2

21U

2

3 4 5 6 13 14 15 16 17 18

ZiL

OG

Z86

E83P

31P

32P

33P

34P

35P

36

XT

AL1

XT

AL2

/RE

SE

T

S9

VC

CV

CC

VC

C

VC

C

VC

C is

pro

vide

d by

a �

high

-ene

rgy

lithi

um c

ell

S7

6

S6

S5 11

5 12

4

S4

S3 13

3 14

2

S2

S1 15

1 16

C1

Y1

8MH

z

22pF

C2

22pF

C3

.1µ

FC

4.1

µF

C5

.1µ

FC

6.1

µF

C7

.1µ

F

Incl

inom

eter

Pow

er C

ontr

ol

Ana

log

varia

ble

capa

cita

nce

incl

inom

eter

with

bui

lt-in

sens

e-am

plifi

er.

RP

1AR

esis

tor

�8p

ack-

1K

Grip

Sw

itch-

The

Grip

Sw

itch

also

gen

erat

es th

e ev

ent o

n P

ort

32 th

at b

rings

the

syst

em o

ut o

fS

top

Mod

e w

hen

not i

n ac

tive

use.

Ess

entia

lly, p

icki

ng u

p th

e gu

n w

akes

up

the

FLS

.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

38

Forecaster Intelligent Water Delivery ValveSubmitted by: James Martin

Abstract

The Forecaster Intelligent Water Delivery Valve measures soil moisture and changes in air temperature and barometric pressure to prevent unnecessary watering before, during, or after natural rainfall. Simple analysis of three sensor readings over time determines whether to postpone water delivery in expectation of natural rainfall, or to skip to the next programmed cycle.

The primary function of the Z8 microcontroller is timed actuation of an electric water valve. Timing may be relative or absoluteÑrelative timing is described herein for simplicity.

User selection of watering schedule and duration can be set in a routine as simple as a relative start time (for example, hours from now) and duration (in ten-minute increments), and can be implemented with only two push-buttons.

The sensors are used as follows:

¥ A simple moisture sensor reads true when water is present. This value effects a delay in valve actuation during or immediately after rainfall. Two other sensors utilize the available on-chip dual analog comparators. The first comparator is used to read the resistance of a temperature probe as part of a charging and discharging RC. An output pin is turned on, providing both a reference to the noninverting input to the comparator, and a charging voltage to the RC, which consists of a known capacitor and the resistance of the probe. An interrupt is generated when the RC is charged. The output pin can then be set Low. Another interrupt occurs when the RC is discharged (the time between interrupts can be used to calculate the resistance).

¥ The capacitance of the barometric pressure sensor can be determined in the same manner using the second comparator. A known resistance and the sensor capacitance together form the RC.

¥ The sensors can be polled in regular increments (for example, every 30 minutes). Absolute changes that exceed programmed limits trigger a delay if scheduled watering is about to occur.

This system allows regular watering to occur only in the absence of sufficient nat-ural rainfall, and when rain is not expected to occur based on temperature and pressure changes.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

39

Figure 24. Forecaster Intelligent Water Delivery Valve Schematic

VCC

GND

I/O 5

I/O 4

IRQ

Comparators

Temperature Probe

PressureProbe

H2OSensor

I/O 3

I/O 2

I/O 1

Z86

Valve

ProgrammingSwitches

IRQ

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

40

Improved Linear Single-Slope ADCSubmitted by: Li Gang

Abstract

A highly accurate linear single-slope ADC is achieved by using a linear integrator and two comparison units on a Z8 microcontroller.

A MAX418 is a high-input-impedance, low-power-consuming and rail-rail opera-tional amplifier. Combined with a resistor R4, a capacitor C1 and a diode 1N4148, it forms a linear integrator. At usual status, the P00 is set to one, and the output of the integrator is at a low level. To start the ADC conversion, set P00 to 0 to charge the integrator until its output increases. When the output of the integrator equals the voltage at P32, the comparison unit at P32 operates, allowing the timer to begin counting. The output of the integrator continues to increase. When it reaches the voltage level at P31, the comparison unit at P31 operates and the timer stops counting. As a result, the number in the timer displays the voltage dif-ference between P31 and P32. This kind of single-slope ADC exhibits higher accuracy than either PWM Ramp ADC or RC Ramp ADC, due to a linear integra-tor, rather than an exponential one, and makes use of the middle range of its input-output characteristic curve.

A MAX619 is used to convert 3volts to a stable 5volts. The MAX418 features two operational amplifiersÑone is used as a buffer, and the other is used to form a lin-ear integrator as described above. The 2-point calibration is used instead of the conventional 1-point calibration. The calibration values are stored in an EEPROM (1C3, 24LC01), resulting in a great improvement in its measurement precision.

The calibration is performed automatically. Insert the probe into the standard acid or alkali liquid, and press the calibration key K1. The microcontroller automatically determines that the measured calibration liquid is acid or alkali liquid. After the measurement value becomes stable, the Z8 stores the calibration results into 1C3 (24LC01) and the buzzer rings, indicating the calibration finished. For measure-ment, insert the probe into the liquid to be measured and press K2 to begin the measurement. If the differences among five successive measurement values are within a certain range, then the stable-measurement state is determined and the result is displayed on the LCD. The buzzer sounds, indicating that the measure-ment is completed. The final results are provided by linear interpretation with the two calibration points.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

41

Figure 25. Improved Linear Single Slope ADC Block Diagram

LCDComparator

Comparator

Z86C40

EEPROM

Battery andPower Manager

Keys

P31

P33

P32Vref

P00

Integrator

BufferPH Probe

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

42

Figure 26. Improved Linear Single Slope ADC Schematic Diagram

P20

P21

P22

P23

P24

P25

RE

SE

T

P31

P33

P32

P00

� P04

P05

XT

AL1

XT

AL2

WP

SC

SD

A

Z86

C40

LCD

IC1

24LC

01IC

3

C6

0.04

7

VC

C

VC

C

VC

C

VS

S

GN

D

MA

X61

9IC

2

1 32

8

67

C1

0.22

27pF

27pF10

µF

C2

C3

C7

0.2

2

18

C8

0.2

2

12M

Hz

C4

C5

10µ

F

1/2

MA

X41

8

1/2

MA

X41

8

PH

Pro

be

C9

10µ

F

C10

10µ

F

R2

10K

R3

1KR1

10K

+ +

A1

A2

K1

R4

10K

BE

EP R5

1K

K3

1N41

48

K2

K4

3VB

atte

ry

- -

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

43

Integrated Sailboat Electronic SystemSubmitted by: David R. Sneitzer

Abstract

The Integrated Sailboat Electronics System (ISES), by taking advantage of the price and feature set of the microcontroller, is able to provide a low-cost instru-ment with a level of integration never before seen in the sailing community at any price. It integrates the information in Table 4 onto a low-cost monochrome-graph-ics display.

ISES utilizes a state-of-the-art micromachined silicon ultrasonic transducer with a Z8 at the core of the sensor. By using two pairs of ultrasonic transducers, the x and y components of the wind can be measured. In order to determine the x com-ponent of the wind, the sensor pair aligned with the centerline of the boat is uti-lized.

One of the transducers emits an ultrasonic pulse and Z8 reads the time delay until the pulse is received. For the same sensor pair, the roles are reversed. The time it takes for the sound to travel (propagate) through the air is dependent on air tem-perature and the speed the air is moving past the sensors. By computing the aver-age of the two delays, the propagation time through still air is calculated by the Z8 and the virtual air temperature is calculated.

The air temperature is used to make corrections for the velocity calculation. This same procedure is used by the Z8 to calculate the component of the wind. A dual-axis accelerometer is placed in the y,z plane to acquire the angle that the boat is heeled at. The Z8 applies the heel angle to the y component of the wind to create wind speed and direction. The Z8 is also used as an I/O and display processor.

Table 4. Graphics Display Features

Wind speed Heal angle

Wind direction Heading

Air temperature Boat speed

Water temperature Distance Total/Elapsed

Barometric pressure Time Total/Elapsed

Depth Power (Voltage/Current)

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

44

Figure 27. Integrated Sailboat Electronic System Block Diagram

Figure 28. Integrated Sailboat Electronic System Schematic Diagram

12.5 KTS028¼

6.7 KTS

10.1 mi01:27

7962

59 FT

271

5,023� Miles1825� Hours10.1�� Miles1.4�� Hours

13.2 Volts1.75 Amps

74 Amp hrs since last charge56 Amp hrs estimated remain

air� lo:49¼ high:83¼water�lo:59¼ high:63¼baro� lo:29.1¼ high:31.1¼wind� lo:1.3 avg:10 high:18.7

Mast mounted Z8,Ultrasonic sensors,Interface electronics

Sensoranalog

interface

Non-volatilememory

Serial Com.

Simplekeyboard

Analog inputinterface

Voltagesensor

Headingsensor

Pressuresensor

2-axisacceler-�ometer

Boat speedsensor

Currentsensor

Temperaturesensor

Voltagesensor

Headingsensor

Pressuresensor

2-axisacceler-�ometer

Boat speedsensor

Currentsensor

Temp.sensor

Depthsensor

12.5 KTS028¼

6.7 KTS

10.1 mi01:27

7962

59 FT

271

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

45

Intelligent Guide for the BlindSubmitted by: R. Sharath Kumar

Abstract

This self-contained, self-propelled, intelligent guide incorporates the ZiLOG Z86E31 microcontroller. Using ultrasonic and infrared transducers, the surround-ings are scanned for complete, intricate detail, including pavement-surface defor-mations, puddles, and pits apart from general traffic. The microcontroller analyzes this information, determines the safest path, and controls a propulsion motor to manipulate and lead the handicapped safely through these obstacles. The guide further interacts with the individual via audio messages, informing of the surround-ings and distance traveled. A chosen direction of travel is commanded via push-button keys. The microcontroller immediately repositions the scanners toward this direction. An indicator lamp pulses on/off, together with a beeper, to alert a person of any slow-moving traffic or obstruction. The guide can also be programmed to remember the direction traveled automatically when commanded.

The direction commands include Straight Ahead, Turn Left, Turn Right, and Reverse Back, and are received from keys SW1ÐSW4. The stepper motor is con-trolled in half-steps for increased position control by the microcontroller. A ping-pulse wave is emitted and transmitted through the air by the microcontroller through a 40-kHz ultrasonic transmitting transducer. The wave, reflected off objects in its path, is detected by the receiving transducer. The received echo is amplified, centered, and compared against a fixed reference voltage by an LM6132, and fed to the microcontroller. The microcontroller measures the timing of the wave from the instant it leaves the transmitter to the instant an echo is received (taking the Doppler effect into account) and calculates the distance.

After the guide orients itself in the commanded direction, scanning continues in an oscillating mode. During this mode, the microcontroller continuously monitors the echo signals and maneuvers the movement accordingly.

An infrared sensor is activated at the same time as the ultrasonic transceiver. This sensor scans the pavement surface ahead. Infrared transmitter D1A is pulsed on/off at 1kHz, and the bounced signal is captured by D1B. The signal strength depends on the distance from the obstruction. This variable-strength signal is con-verted proportionally into pulses by the voltage-to-frequency converter, LM331.

All information is updated to the individual via prerecorded messages. The sound chip is configured to operate in MESSAGE CUEING mode.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

46

Figure 29. Intelligent Guide for the Blind Block Diagram

Speaker

Z86E31Micro Controller

User DesiredDirection Inputs

ISO2590 Sound Chip

Roll-on Motor 1

Roll-on Motor 2

RPM Pulses Input

Beeper

Lamp Indicator

LM6132 OpAmpAmplifier andComparator

ULN2803Stepper Motor

Driver

LM331Voltage toFrequencyConverter

Infra-redReceiver

D1B

Infra-redTransmitter

D1A

400 KHzUltrasonic

Transmitter

400 KHzUltrasonicReceiver

7.5 DegreeStepper MotorM

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

47

Figure 30. Intelligent Guide for the Blind Schematic Diagram

16 18 9 10 19 20 21 23 24

15 16 17 14 11 28 2 3 4 5 6 7

8

12

SW

4

22

XT

AL

7.32

8MH

z

R11

C4

20pF

R18

6k8

Q1

2N22

22A

C3

20pF

D3

1N41

48C

210

0nF

D2

1N41

48C

147

nF

R4

1k

DIA

Infr

a-re

dtr

ansm

itter

1 23 24 25 2 3 4 6 7 8 11 12 17 18 19 20 21 26

28 14 15 5 9 10 27

1316

1 2 3 4

18 17 16 15

Vcc

+VE

Vcc

Spe

aker

3 2 1 5

6 7

8

R10

R6 10

k x

4 no

s

220

R8

R9

R7

R19

R19

R19

R19

R2

510

R3

510k

R12

R13

R14

DIB

Infr

a-re

dre

ceiv

er

Z86

E31

C6

330p

F

R5

1k2

C5

0.00

1µF

R15

4k7

R16

5k

R17

3k3

SW

3S

W2

SW

1

Vcc

97.

5 D

egre

eS

tepp

er M

otor

Ste

pper

Mot

orS

uppl

y

4k7

Dec

ayad

just

pot

.

Vcc

Ultr

ason

icR

ecei

ver

Vcc

= +

5 V

olts

= G

roun

d

SW

1 =

Fro

ntS

W2

- B

ack

SW

3 =

Rig

htS

W4

= Le

ft

Vcc

R1

27k

Vcc 1 6 7 2

3 5

8 4Vcc

Vcc

RP

MP

ulse

sI/P

Vcc

4

Ultr

ason

icT

rans

mitt

er

Q4

TIP

31A

D6

1N40

07

M1

1

+ Ð

Q5

TIP

31A

D7

1N40

07

M2

Rol

l-on

Mot

or S

uppl

y

Q2

SL1

00

D4

1N41

48

Bee

per

Q3

SL1

00

D5

1N41

48

Vcc

Vcc

A1

A2

B1

B2

ULN

2803

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

48

Internet Email Reporting Engine Submitted by: Michael W. Johnson

Abstract

The Internet Email Reporting Engine is a design that can he embedded inside a device to connect via a dial-up function to an Internet Service Provider, and send email reports to anywhere on the Internet.

A ZiLOG Z02204 modem module provides the connection to the real world via a phone line.

The Seiko iChip (S7600A) provides PPP and PAP authentication, and the Internet protocols IP, UDP, TCP, and ICMP.

The ZiLOG Z8 controller receives commands from a serial connection and com-municates to the Seiko iChip via an 8-bit parallel CPU interface to control the modem and the iChipÕs Internet functionality. The Z8 MCU also provides a higher-level command and Internet functionality via software

The software running on the ZiLOG Z8 CPU receives commands via a serial inter-face and processes them. Based on those commands, the Z8 performs dial-up and connects to the Internet, establishes an Internet connection to an ISP via the PPP protocol (authenticated with PAP), and opens a connection to a mail server. It then sends a message, and hangs up.

Commands are sent to the engine via a serial port that is implemented as a soft-ware UART running at 2400bps on the Z8 controller. These commands are pro-cessed, the state of the email engine is updated, and a command status code is reported back through a software UART.

Each command is a parameter string that terminates with a return and a line feed. The software responds to each command using a return code that terminates with a return and a line feed.

Once a connection is made to the Internet, sending email is as simple as configur-ing an email server to connect, choosing a recipient, and sending text as the body of the email.

Table 5. Serial Commands

sn Set phone number sl Set login name sp Set password

sd Set DNS server IP sr Set recipient email address ss Set SRC email address

du Dial-up and connect to ISP cs Connect to email server ps Print message to email body

ms Message send hu Hang up

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

49

Figure 31. Internet Email Reporting Engine Block Diagram

Figure 32. Internet Email Reporting Engine Software Block Diagram

DB9

RJ-11 Phone Jack

ZiLOG Z86E3116 CPU

ZiLOG Z02400 Modem Module

Seiko iChip Internet DataPump (S7600A)P

ower

Sup

ply

7Ð15

V

Clo

ck/D

ivid

er

Optional RS232-C Level

Converter/DB9DCE iface

CMOS/TTLSerial Interface

Header

5 X 2 Header

DC

Seiko CPU Interface

Software UART

Command Processor

SMTP API

Socket APIPPP

CheckSetup/Config Dialer

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

50

Figure 33. Internet Email Reporting Engine Schematic Diagramxp

ar_i

n3xp

ar_i

n4xp

ar_i

n5xp

ar_i

n6xp

ar_i

n7vd

d1xp

ar_o

ut1

xpar

_out

2xp

ar_o

ut3

xpar

_out

4xp

ar_o

ut5

xpar

_out

6xp

ar_o

ut7

xtxd

xrts

jxd

trj

xdcd

xrxd xr

ixd

srj

xtcs

j

xtes

t

vss1

xres

etj

xclo

ck

xsd0

xsd1

xsd2

xsd3

xsd4

xsd5

vdd2

xsca

n_ct

lxs

d6xs

can_

enN

/Cxs

d7xs

ys_b

usyj

xsys

_int

2xs

ys_i

nt1

xsys

_int

ctrl

xsys

_writ

ejxs

ys_p

sxvs

s2xs

ys_r

eadj

xsys

_c86

xsys

_cs

xsys

_rs

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26

RE

SE

T

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2 4 1 3

Sei

ko iC

hip

Inte

rnet

Dat

a P

ump

Opt

iona

l RS

232-

C In

terf

ace

Clo

ck D

ivid

er (

/32)

U2

U3

Sei

ko S

7600

A

HC

4040

C1

27pF

C9 .1 C10 .1

FB

1

FB

2

TX

D+3.

3V

QA

QB

QC

QD

QE

QF

QG

QH QI

QJ

QK

QL

CLR

CLK

9 7 6 5 3 2 4 13 12 14 15 1

XC

LK

/DT

R

/DC

D

RX

D

D0

D1

D2

D3

D4

D5

D7

BU

SY

X

INT

WR

RD

CS

RS

11 10S

YS

CLK

CM

OS

/TT

L �

Ser

ial I

nter

face

Hea

der

5x2

Hea

der

+5V

2 4 6 8 10

1 3 5 7 9

CR

XD

CT

XD

Zilo

g Z

8 C

PU

U1

+5V

X1

7.37

28M

Hz

Zilo

g Z

86E

3116

P24

P23

P22

P21

P20

P03 Vss

P02

P01

P00

P30

P36

P37

P35

P25

P26

P27

P04

P05

P06

P07

Vcc

XT

AL2

XT

AL1

P31

P32

P33

P34

28 27 26 25 24 23 22 21 20 19 18 17 16 15

RS

CS

RS

RX

RS

TX

RD

WR

BU

SY

X

D3

D2

D1

D0

CT

XD

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

6

2

7

3

8

4

9

5

C6

0.1µ

FC

70.

1µF

C5

0.1µ

F

+5V

C2

27pF

SY

SC

LK

D4

D5

CR

XD

INT

SY

SC

LK

D6

D7

Mod

em M

odul

e

Pow

er S

uppl

y

Dec

oupl

ing

Cap

s

Z02

400

Zilo

g M

odem

Mod

ule

+5V

13

2

GN

DV

in+

5V

U2

78L0

5R

1

200

+3.

3V

N/C

TT

PN

/CR

ING

N/C

Vcc

Gnd

DT

RD

CD

MU

TE

AO

UT

N/C

RX

DT

XD

J2-1

J2-2

J2-3

J2-4

J2-5

J1-1

J1-2

J1-3

J1-4

J1-5

J1-6

J1-7

J1-8

J1-9

RJ1

1Ja

ck

1 2 3 4

7-15

Vdc

Pow

er C

onne

ctor

2 1

/DT

R

/DC

D

RX

D

TX

DD

6

XC

LK

+5V

+5V

+3.

3V

+3.

3V

U5

DB

9 S

eria

l (D

CE

)

+

MA

X23

2E

+5V V

+ �

(pin

2 M

AX

232)

�(p

in 6

MA

X23

2)

R1

OU

T

R2

OU

T

T1

OU

T

T2

OU

T

C2+

C2Ð

13 8 11 10 1 3

R1

IN

R2

IN

T1

IN

T2

IN

C1+

C1Ð

C10

.1µ

F

12 9 14 7 4 5

CR

XD

RS

TX

RS

RX

CT

XD

+C

350

µF

+C

410

µF

+C

51µ

F

D1

3.3V

Zen

er

+C

12.1

µF

+C

13.1

µF

+C

10.1

µF

C9

0.1µ

FC

80.

1µF

+3.

3V

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

51

Lunar Telemetry BeaconSubmitted by: Russell McMahon

Abstract

The Lunar Telemetry Beacon (LTB) is a small Z8 microcontroller-controlled telem-etry system and radio transmitter. It is intended for deployment on the lunar sur-face to subsequently return temperature, seismic, and location information to Earth.

No receiver is incorporated in the LTB, due to severe design constraints. Conse-quently, all decisions must be made on a preprogrammed basis.

Key demands on the overall system include the ability to survive impact velocities of over 300kph and decelerations of 1000g, to return data to Earth using a self-contained aerial and transmitter, and to survive in an ambient temperature range of Ð180¼ to +130¼ Celsius (with the transmitter not operating at extreme tempera-tures).

Key demands on the Z8 microcontroller include:

¥ Control of initial deployment from the main payload

¥ Control of the physical orientation of the LTB after landing

¥ Control of a transmitter to return data to Earth

¥ Thermal management of the electronic core to maximize the prospect of surviving the lunar nights (2 weeks at Ð180¼ Celsius)

Because of severe mass, and therefore battery restrictions, the unit operates intermittently, with a decreasing duty cycle over time.

Mechanical survivability is enhanced by the use of surface-mount construction, housing in a custom-fitted mechanically-compliant pressure shroud, encapsula-tion of the whole system in a homogeneous medium, and subsequent mounting in an external matrix-medium that ensures controlled deceleration over the maxi-mum available distance.

The LTBÕs initial objective is met if it transmits successfully from the lunar surface for a period of a few Earth days. Over this period, transmissions are relatively fre-quent. Long term operation (weeks to years) requires surviving the low tempera-tures of lunar nights. Lunar night survivability is targeted by use of a super-insulated core for the key electronics and the provision of very low levels of elec-trical heating under system control. Battery systems utilize two versions of lithium chemistry due to their potential tolerance of the extreme thermal conditions and high energy densities. Thionyl Chloride batteries (800 Watt-hr/kg) are used for core stay-awake electronics (due to their good energy density) and lithium-sulfur

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

52

dioxide batteries (300 Watt-hr/kg) for transmitter power (with a somewhat lower energy density but better high-current performance).

The key technical objectives are:

¥ Survive landing

¥ Deploy aerial system successfully

¥ Return at least one successfully-received message

The above three objectives are listed together because, while each is a separate goal, all must result before success is achieved. The device must additionally be able to:

¥ Send transmission bursts increasingly less frequently throughout one lunar day (2 Earth weeks)

¥ Survive one lunar night (2 weeks at Ð180¼ Celsius)

¥ Send transmissions at regular infrequent intervals throughout the lunar day, and as many possible subsequent lunar days

Message data includes temperature and seismological observations and sponsor dictated content (not necessarily advertising per se). A failure to return some or all data would still be a reasonable success, provided actual transmissions continued to be received.

All activities must be accomplished with a minimum of weight and power con-sumption.

The Lunar Telemetry Beacon is designed to be as independent of the main space-craft and main payload as possible while communicating with it prior to deploy-ment. Communication with the core spacecraft control system is by way of a single bidirectional data serial circuit which interfaces with a bus interface in the spacecraft. Power can be provided to a stay-alive input on the LTB prior to launch to avoid utilizing the internal inaccessible and nonrechargeable batteries. How-ever, this connection is used when the final stage of the countdown commences. A failed LTB prior to launch is not repaired; it is replaced in its entirety.

After launch, the LTB does not function until lunar impact. It can communicate with the main spacecraft as required.

Under strictly predefined conditions, a mission failure mode exists whereby the LTB can self-deploy, if it is obvious that the main mission has failed. The pros-pects are good for an LTB to survive a catastrophic explosive failure of the main craft upon reaching orbit.

As lunar impact is imminent, the LTB arms itself.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

53

A combination of advice from the main craft and/or loss of communication at the appropriate time determine the approach and occurrence of lunar impact.

On impact, the LTB is ejected horizontally from the main payload to prevent it from being trapped in the main debris. The small pyrotechnic charge for this activity is external to the LTB.

While the LTB can technically initiate this action if the main craft should fail, it is unlikely that its command would be accepted if the main controller fails to initiate the release.

Shortly after impact, and having come to rest, the LTB ascertains its survival, and attempts to determine its attitude using its onboard triple-axis accelerometer. In a preferred orientation, as encouraged by its weight distribution, the LTB deploys its main aerial using a pyrotechnic charge to trigger a release mechanism. The antenna is of spring construction with a deployed orientation normal to the body. It is a simple whip antenna that is mechanically wound around part of the outside body. A nonoptimum orientation of the LTB on the surface can be corrected by deploying a sequence of up to three other similar antennae, followed by the actual antenna. When the antenna is deployed (or if it cannot be), the LTB commences its transmission sequence. Transmissions are initially frequent, and decrease with time.

During two-Earth-week lunar nights, temperatures fall below battery and transmit-ter safe operating limits. Under such circumstances, the LTB shuts down all activ-ities except core activities, and attempts to maintain its core temperature at a minimum but safe level.

With the return of lunar day, the LTB attempts to reestablish its transmissions.

It is intended that the core continue to function after the transmitter fails. If the LTB determines that the transmitter has failed, it ceases transmission, except for occa-sional short retries.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

54

Magic DiceSubmitted by: Darren Ashby (www.chipcenter.com)

Abstract

The ZiLOG Z8PE001 microcontroller generates a display of six numbers, and the sound effects of rolling dice. The ZiLOG microcontroller also generates the ran-dom numbers rolled on the dice. The LEDs are multiplexed using only the ZiLOG microcontroller and the display components; no other ICs are required. The LEDs are positioned to represent the dots on a pair of dice.

The dice displays are animated, rolling as real dice do. By controlling the bright-ness of each individual LED, (using the timer interrupt capabilities of the ZiLOG part), the user can achieve a visual effect to simulate rolling dice. The animation slowly comes to a stop at the final value of the dice. Each individual die may stop at different times, further enhancing the simulation.

As the dice roll, sound effects simulate the bouncing action of a real die. At the end of the roll, additional sound effects are added as required for various final val-ues. For example, a short victory song can play when a player has rolled double sixes. Such a scenario is fairly simple to create using the TOUT mode on the Z8PE001 to drive the piezoelectric buzzer.

Four controls are provided to the user. Switch 1 causes only one of the dice to be rolled at a time. The first press rolls the first die, leaving the second die blank. The second press rolls the second die (the first roll is still displayed). The process then repeats. Switch 2 rolls both dice at once. Switch 3 is a reset button in case of problems.

Switch 4 is a special toggle feature that causes the dice to be seven-sided, where numbers 1 though 7 are possible. Geometry makes it impossible to create an actual die with seven sides that offers an equal chance of any number occurring. Such is not the case with the Magic Dice board.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

55

Figure 34. Magic Dice Block Diagram

Simple packaging design

LEDs are positioned torepresent the dots on dice

Roll both dicetogether

Roll one dieat a time

Z8PlusMicrocontroller

7-sidedswitch

Reset

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

56

Figure 35. Magic Dice Schematic Diagram

PB

0

PB

1

PB

2

PB

4

PB

3

/RS

T

PA

7

PA

8

PA

5

Rol

l one

die

Con

nect

ion

to a

4.5

VD

C b

atte

ry p

ack

2PIN

-900

-SLD

R-H

D

Sev

en-s

ided

dice

sw

itch

Rol

l bot

h di

ce

14 15 16 17 13 12 11 10 9

VC

C

VS

S

XT

AL2

XT

AL1

PA

0

PA

1

PA

2

PA

3

PA

4

18 1 2 4 3 5 6 7 8

33 R3

U1

R14

10K

PA

5

Z86

E00

1

C18

0.1µ

F

2N44

03Q

12N

4403

Q2

LD1

RE

SE

T

VC

C

DIC

E1

BU

ZZ

ER

BU

ZZ

ER

RE

SE

T

DIC

E2

R5

10M

Hz

X

1

33P

A0

PA

0

R6

R1

4.7K

DIC

E1

2

1 3

33P

A1

R7

33P

A2

R8

33P

A3

R9

33P

A4

33 R4

PA

6

R12 1K

SW

4

SW

2

SW

1

R11

10K

VC

C

R10

10K

VC

C

R69

PB

1P

iezo

Buz

zer

470

SW

3

R10

10K

VC

C

VC

C

GN

D

VC

C

VC

C

VC

C

C19

0.1µ

F

LD2

PA

1

LD5

PA

3

LD3

PA

2

LD7

PA

4

LD8

PA

5

LD9

PA

6

LD11

PA

0R2

4.7K

DIC

E2

2

1 3VC

C

LD6

PA

1

LD10

PA

3

LD4

PA

2

LD12

PA

4

LD14

PA

5

LD13

PA

6

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

57

Modular Light Display PanelSubmitted by: Phillip King

Abstract

Each Modular Light Display Panel is made up of an 8x8 array of pixels. Each pixel contains 3 LEDs (red, green, and blue), which are controlled by a Z8 microcontrol-ler. Panels provide a modular building block for expandable full-color LED dis-plays. A single panel, running alone, can serve as electronic art, providing algorithmically-generated patterns of light and color. A linear array of panels becomes a full-color scrolling text and graphic display, such as a marquee, or an attractive enunciator panel. By connecting together a two-dimensional array of panels, users can construct large color displays. As a result, users can buy a small number of panels to start their display, and add panels as required.

Every 8x8 panel contains a Z86E21 OTP microcontroller. 192 bytes of the Z8 on-chip RAM form the image buffer containing the current state of the display. Three 64-byte arrays make up each color plane. The intensity of every LED is controlled using pulse-width modulation. At any given instant, an LED is either fully on or fully off, but by varying the duty cycle of on-time to off-time, the Z8 can vary the perceived intensity of every LED. The array can be built to allow strobing of one row of the panel at a time, or allow additional discrete latches to be used for a fully-static display (at slightly higher cost). In either case, the fully-digital control system can provide a seemingly analog variation in the color intensity of each pixel.

The software control is offered by two pads. A periodic interrupt routine updates the state of the currently-driven row of the LED array, providing the appearance of varied intensity of every pixel. The mainline code modifies the image buffer as directed by serial communication with the control computer and those panels around it. Because every panel communicates with those around it, the array itself can perform simple image manipulations such as wipes and simple animations. The total bandwidth required is reduced within the array, because not every panel must receive a fully-updated state during every frame.

When multiple panels are assembled to form larger displays, each panel commu-nicates serially with the four around it. At power-on, each panel queries the four compass directions, and the top left panel becomes position (0,0). Every other panel determines its position successively from those above and to the left of it. When running, an external PC controlling the array can address every panel inde-pendently. The control PC coordinates the array, handling tasks such as scaling images to the available number of panels.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

58

Figure 36. Modular Light Display Panel Module Block Diagram

ZiLOG Z8Microcontroller

3�- COLORLED ARRAY

Column Driver FETs

RowLatch(Blue)

Serial Link toUpper and Left

Panels

Serial Link toLower and Right

Panels

RowLatch(Blue)

RowLatch(Blue)

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

59

Figure 37. Modular Light Display Panel Module Schematic DiagramP

20P

21P

22P

23P

24P

25P

26P

27

P30

P31

P32

P33

P34

P35

P36

P37

XT

AL2

XT

AL1

RE

SE

T

R/W DS

AS

R/R

L

VC

C

VC

C

29U

1LA

TC

H1

CLK

LAT

CH

2 C

LKLA

TC

H3

CLK

CO

L S

EL0

CO

L S

EL1

CO

L S

EL2

CO

L S

EL3

CO

L S

EL4

CO

L S

EL5

CO

L S

EL6

CO

L S

EL7

Dat

a0D

ata1

Dat

a2D

ata3

Dat

a4D

ata5

Dat

a6D

ata7

Latc

h1 C

lk

2 5 6 9 12 15 16 19

ÐPix

el D

rive

10�

ÐPix

el D

rive

11ÐP

ixel

Driv

e 12

ÐPix

el D

rive

13ÐP

ixel

Driv

e 14

ÐPix

el D

rive

15ÐP

ixel

Driv

e 16

ÐPix

el D

rive

17

41 42 43 1 2 3 4 5 7 8 9 10 11 12 13 14

6222839

P00

P01

P02

P03

P04

P05

P06

P07

P10

P11

P12

P13

P14

P15

P16

P17

1 2 3 4 5 6 7 8 9 10

Dat

a0D

ata0

Dat

a0D

ata0

Dat

a0D

ata0

Dat

a0D

ata0

UA

RT

inW

est i

nE

ast i

nS

outh

inN

orth

Out

Wes

t Out

Eas

t Out

UA

RT

Out

17 18 19 20 21 22 23 24 33 26 40 16 15 38 27 32 30 31 34 35 36 37 44

GNDGNDGNDGND

ZiL

OG

�Z

86E

21

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

U2

3 4 7 8 13 14 17 18 1 11

D0

D1

D2

D3

D4

D5

D6

D7

CC

CLK

74A

CT

374

J1

CO

N10

(VC

C is

pro

vide

d by

an

exte

rnal

pow

er s

uppl

y th

roug

h th

e fr

ame,

or a

bac

k co

nnec

tor

on th

est

and-

alon

g pa

nel.)

Not

e: T

his

desi

gn u

ses

the

min

imal

num

ber

ofex

tern

al la

tche

s to

hav

e an

y on

e co

lum

n of

the

disp

lay

ener

gize

d at

a ti

me.

Mor

e la

tche

s an

d on

eex

tra

laye

r of

latc

h cl

ock

deco

der

logi

c ca

n be

use

dfo

r a

high

er-d

uty-

cycl

e or

fully

-sta

tic d

ispl

ay.

Inte

r-pa

nel s

eria

lin

terc

onne

ctio

n.(O

n-bo

ard

UA

RT

is

for

prim

ary

Nor

th-S

outh

com

mun

icat

ion

chan

nel.)

C1

22pF

Y1

12M

Hz

S1

(Rec

esse

d�in

tern

alre

set s

witc

h)

C2

22pF

C3

.1µ

FC

4.1

µF

C5

.1µ

FC

6.1

µF

C7

.1µ

F

VC

C

VC

C

Dat

a0D

ata1

Dat

a2D

ata3

Dat

a4D

ata5

Dat

a6D

ata7

Latc

h2 C

lk

2 5 6 9 12 15 16 19

ÐPix

el D

rive

20�

ÐPix

el D

rive

21ÐP

ixel

Driv

e 22

ÐPix

el D

rive

23ÐP

ixel

Driv

e 24

ÐPix

el D

rive

25ÐP

ixel

Driv

e 26

ÐPix

el D

rive

27

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

U3

3 4 7 8 13 14 17 18 1 11

D0

D1

D2

D3

D4

D5

D6

D7

CC

CLK

74A

CT

374

Dat

a0D

ata1

Dat

a2D

ata3

Dat

a4D

ata5

Dat

a6D

ata7

Latc

h3 C

lk

2 5 6 9 12 15 16 19

ÐPix

el D

rive

30�

ÐPix

el D

rive

31ÐP

ixel

Driv

e 32

ÐPix

el D

rive

33ÐP

ixel

Driv

e 34

ÐPix

el D

rive

35ÐP

ixel

Driv

e 36

ÐPix

el D

rive

37

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

U4

3 4 7 8 13 14 17 18 1 11

D0

D1

D2

D3

D4

D5

D6

D7

CC

CLK

74A

CT

374

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

60

Nasal Oscillatory TransducerSubmitted by: Sarah Brandenberger and Doug Keithley

Abstract

The Nasal Oscillatory Transducer (N.O.T.) is an electronic device that does not use drugs or chemicals. It acts as a nasal decongestant and uses a piezoelectric speaker, hooked up to the speaker of a frequency generator.

Press the N.O.T. to the offending sinus area and press the start button. The N.O.T. immediately starts alleviating sinus congestion. For greater effectiveness, set the switch to HIGH-POWER mode and an LED illuminates. In five minutes, the N.O.T. stops making sounds, and turns itself off.

By exciting the sinusÕ resonance frequencies, mucus becomes more fluid and is easily expelled. Various sinus cavities tend to resonate at frequencies within the audio range. Variances in individuals and even variances in sinus size within the same person dictate the requirement for exciting the sinus cavities at multiple fre-quencies. The N.O.T. sweeps through a range of frequencies. Through micro-phone feedback, the N.O.T. determines the specific resonant frequencies that are excited for a short duration. Because the resonant frequencies are dynamic (due to changing volumes), the sweep and excite process is repeated every 30 sec-onds for 5 minutes.

Circuit Description:

¥ Power SupplyÑLM2937 was chosen because of low voltage drop-out. The unregulated 9 volts is supplied by a battery and powers the output the output driver directly.

¥ Output DriverÑsimple single transistor drives a 45-ohm speaker. Fidelity is not necessary.

¥ Reset circuitÑsimple RC time constant as specified by data sheet

¥ Variable Output VoltageÑthe Z8 timer is configured as PWM per data sheet and output on PB1. The signal is passed through an active 2nd order low-pass filter and is used as the reference on the analog comparator inside the Z8.

¥ Microphone feedbackÑan electric condenser microphone is AC-coupled to an active 2nd-order low-pass filter and peak detector. The output of the peak detector is fed into the analog comparator of the Z8.

¥ Z8Ñdirect drive of the LED indicator and the watch-dog timer prevents excessive on-time, a ceramic resonator provides acceptable timing, and a security bit protects firmware features from competitors.

¥ FirmwareÑprovides all timing using a 16-bit internal timer, algorithms for modulating the output driver pin to generate sounds out of speakers, and

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

61

monitoring resonance by comparing the peak microphone signal to the PWM-generated reference.

Figure 38. Nasal Oscillatory Transducer Block Diagram

Z8Plus

RESET

PB4

PB4

POR

(RC+Diode forfast recovery)

Input Sensor

(Electret Microphone)

Filter(Active 2nd Order

Lowpass and PeakFollower)

User I/O

(High-power Switchand LED Indicator)

Clock Circuit

(Ceramic Resonator)

Power Supply

(+9VDC unreg,+5VDC reg)

Output Driver andAudio Transducer

(Transistor & Speaker)

PA1

PA0

PB1PWM

IRQ3 PB2/PA7

DAC(PWM through anactive 2nd OrderLowpass Filter)

+

Ð

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

62

Figure 39. Nasal Oscillatory Transducer Schematic Diagram

LED

DR

V (

PA

1)

SP

KR

DR

V (

PA

0)

PW

M O

UT

(P

B1)

(PB

0)

(PA

6)

(PA

5)

(PA

4)

(PA

3)

(PA

2)

(PB

2) IR

Q3

(PA

7) H

IGH

SW

XT

AL1

XT

AL2

RS

T

(PB

4) A

N IN

(PB

3) R

EF

IN

12 13 1 18 7 8 9 10 11

NC

NC

NC

NC

NC

NC

2 6 17 16 5 4 3

ZIL

OG

Z8E

0011

0SE

C

U1

9VD

C

9VD

CV

CC

S2 O

pen

for

Hig

h P

ower

C14

0.1µ

F5%

C12

0.1

µF

5%

+-

LM29

04N

R6

15k

R7

567

15k

VS

S

VC

C14

15

C3

22pF

C4

Cer

amic

Res

onat

orC

ircui

t Lay

out i

s C

ritic

al

22pF

X1

10M

Hz

C16

0.1µ

F5%

+-

LM29

04N

C13

0.1

µF

5%

R9

Ele

cC

onde

nser

2nd

Ord

er L

owpa

ss F

ilter

and

Pea

k F

ollo

wer

Hig

h P

ower

Sel

ect a

nd In

dica

tor

Out

put D

river

and

Tra

nsdu

cer

2nd

Ord

er L

owpa

ss F

ilter

R12

47k

R13

10k

R1

100k

Q1

2N44

01

4.7k

R3

1.5k

C15

1µF

R10

321

120k

R5

470k C

180.

1µF

C5

10µ

F16

V

9VD

C

VC

C

9VD

C C6

0.1µ

F9VD

C C7

0.1µ

F

VC

C C8

0.1µ

F

C2

10µ

F10

V

VC

C C9

0.1µ

FVC

C C10

0.1µ

F

VC

C

VC

C

R4

100k

D1

1N91

4

C11

1µF

VC

C

VC

C

R8

6.8k

9VD

C

MIC

1

45oh

m

SP

K1

+C

10.

1µF

R2

300 LE

D1

Gre

en/

Yel

low

VC

C

+

2

35V9V

C2

C1 B1

9V1

VO

UT

VIN

V1

S1

Sta

rt B

utto

n

500m

A L

DO

5V

Reg

ulat

or

GN

D

LM29

37

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

63

New Sensor TechnologiesSubmitted by: James Champion

Abstract

The ZiLOG Z8 is ideal for use in applications where a small, minimal I/O proces-sor is required. Incorporating different levels of capability in the same pin-out foot-print makes the Z8 family an excellent choice where a series of increasingly feature-rich products are made with the same basic high-volume circuit design.

Micropower Impulse Radar (MIR) is an emerging technology that has recently attracted attention. The technology can be licensed from Lawrence Livermore Laboratories (LLNL) to develop a new series of products aimed at in-tankfluid-level sensing, and fuel-level applications. However, unlike the cover of Popular Science, a full Radar on a Chip is a few years away. As with any emerging tech-nology, the first products must be flexible (programmable), avoid the develop-ment-risk ASIC or custom chip (because the technology is still emerging), and yet be cost-effective.

A ZiLOG OTP processor can perform some of the functions performed by discrete components in basic MIR Circuits, provide the required flexibility, and keep cost low on product design.

The technology employs a method of Equivalent-Time Sampling, where many thousands of pulses are sent out, and the reflected response is built-up by adding up a single time-delayed sample from each reflected pulse to form a response sig-nal at a lower frequency than the original.

The outgoing pulses are sent at a Pulse Rate Frequency (PRF) of 4 MHz (the oscillator frequency used for the Z8). A simple reset pulse from the Z8 to start the sample time base initializes a sample delay circuit. The recovered sample signal for the fluid measuring probe features a maximum length of typically 20msec, determined by the rate the reset pulse is sent by the Z8. Given a PRF of 4MHz and a sample time base of 20 msec, 80,000 pulses are sampled to create the equivalent-time waveform.

An example of a reset pulse and recovered waveform are shown as the top and bottom waveforms in Figure 40. This waveform is applied to the comparator circuit of the Z8. The Z8 timer measures the time from the reset pulse to the reflection to determine the fluid level.

By using an OTP Z8, fuel tanks with unusual shapes can exhibit a level indication, compensated for the nonlinear volume response with a look-up table. Additionally, by using techniques outlined in US patent 5898308, contaminated fuel can be detected by measuring both the return pulse from the fluid level, and the return pulse from the probe end.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

64

A 100-Hz PWM signal generated by the Z8 is used to drive an indicator. The low power of the MIR circuits and the Z8 result in easy vehicle load-dump protection.

Figure 40. New Sensor Technology Waveform

1

2

1

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

65

Figure 41. New Sensor Technology Block Diagram

ZiLOG Z8

POWERMOSFET

RESET

VCC

REF

PWM

AMP

LOAD DUMPPROTECTION

OSC

PRF

POWERREGULATOR

VCCOUT

TELEFLEX MICROPROCESSORMIR FUEL LEVEL SENDER

12/24 VINPUT

OPTIONJUMPERS

FIXEDDELAY

TRANSMIT

SIGNAL

SAMPLE

SIGNALVARIABLE

DELAYSAMPLE

GATE

RAMPCIRCUIT

PULSEDRIVE

DIRECTIONALNETWORK COAXIAL

PROBE

TANKPULSEDRIVE

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

66

Phone DialerSubmitted by: Daniel Dina

Abstract

The Phone Dialer is a device that attaches to a telephone and monitors all activity from either the line or the phone. The line activity being monitored involves detect-ing several phone line conditions such as on-hook, off-hook, and ringing. The ana-log portion of the circuit detects these conditions and provides logic levels and wake-from-sleep-mode interrupts to the microcontroller.

The phone activity being monitored starts when the Phone Dialer device either detects the handset being picked up, or if programmed accordingly, answers the phone. Should a customer pick up the phone and start dialing, the Phone Dialer receives all key presses and, based on the phone number dialed by the user, gen-erates a new string that ultimately dials out on the line. This new string contains all the prefixes and codes necessary to utilize the lowest-cost carrier available to the user. Through proper filtering, all phone numbers entered by the user are blocked from reaching the line, thus preventing the an outgoing call.

The Phone Dialer device ultimately dials the numbers, along with the proper pre-fixes and suffixes. The Phone Dialer device can also be programmed through the phone (by turning on the answer feature), or by picking up the phone and entering the program mode (by the use of a password).

A simple example of operation for the device is as follows:

1. A user picks up the phone.

2. The circuit detects an off-hook condition and wakes up the Z8 microcontroller, enables the filter, and starts listening for a tone generated by the phone.

3. The user dials a number.

4. The firmware begins decoding the phone number being dialed, and makes decisions based on the area code and the prefixes, using programmed routing numbers.

5. Based on all programmed variables, the device forms the complete string and dials the number.

The Z86E08 device additionally helps to reduce part count by incorporating a built-in reset circuit. Its low sleep-mode current drain enables the shut-down oper-ation of the circuit. The device analog circuitry (D4ÐD7) allows the Phone Dialer to be connected to any phone line regardless of polarity.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

67

Figure 42. Phone Dialer Block Diagram

Telephone

Phone dialer device

PhoneCompany

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

68

Figure 43. Phone Dialer Schematic Diagram

VD

D

St/G

T

ES

t

D3

D2

D1

D0

IRQ

/CP

DS

/RD

RS

O

1 2 3 4 5 6 7 8 9 10

15 16 17 18 1 2 3 4

IN+

INÐ

GS

VR

EF

VS

S

OS

C1

OS

C2

TO

NE

R/W

/WR

/CS

20 19 18 17 16 15 14 13 12 11

Q1A

MP

Q�

3904

MT

88L8

9AE

U2

XT

AL2

3.57

95M

Hz

R6

100k

R13

R4

12k

R4

12k

R10

100

Q5

2N70

00

Q2

2N70

00

R16

2kR

152k

C10

100n

F

R17

374k

C2

.1µ

F

3.3V +V

100k

C7

100n

F

C6

D4

1N

4002

Red

Wire

(tip

)

Gre

en W

ire (

ring)

Gre

en W

ire (

ring)

Cus

tom

er p

hone

jack

Red

Wire

(tip

)

U4

LP29

50C

ZT

elec

o P

hone

Jac

k

D6

1N

4002

D5

1N

4002

D7

1N

4002

L1 1

0mH

.1µ

F

R12

2.2

k

R11

CN

TR

L3

1Meg

R1

1M

eg

uP C

NT

RL1

R8

470

k

14

Mic

ropr

oces

sor

sam

plin

g no

de

P00

P01

P02

XT

AL1

XT

AL2

P31

P32

P33

P20

P21

P22

� P23

P24

P25

P26

P27

11 12 13 7 6 8 9 10

Z86

E08

U1

5 6 7 8

GN

D A2

A1

A0

SD

A

SC

L

WP

VC

C

4 3 2 124

LC01

/02B

U3

XT

AL1

12M

Hz

C5

12p

F

C4

12p

F

J1

C8

10m

F

3.3V

Pow

er S

uppl

yfo

r uP

and

Mem

ory

3.3V +V

3.3V +V

3.3V +V

3.3V +V

3.3V +V

VC

C

GN

D

V3

J2

J3

InO

ut

Com

D FG

DF G

C1

47µ

FC

9.1

µF

C3

.1µ

F

R9

470k

Q3

2N70

00

R7

CN

TR

L2

D1

Zen

erD

2M

MS

Z5

V1T

1D

3M

MS

Z5

V1T

11M

eg

R3

470k

R2

470k

D FG

Q4

2N 3904

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

69

Pocket Music SynthesizerSubmitted by: Stan Sasaki

Abstract

The pocket music synthesizer is an instructional aid and motivational tool for ele-mentary and middle school band and orchestra students and teachers. The syn-thesizer is loaded with a variety of scores, and the student can play back selected pieces and parts of any score. For example, the cello track can be removed, or just the flute track can be played. Tempo can be adjusted without affecting pitch, so that students can practice at home at their own pace. The student can jump to any location in a composition to repeatedly listen to and play along with challeng-ing passages. This jump location corresponds to the sheet music measure num-ber and call loop between measures. Other features include a metronome, instrument tuner, and scale transposer. Sound is output via an RF modulator played over any FM radio. The unit is similar in appearance and size to a TV remote with an LCD display. It can stand on-end on a music stand. For durability, the only connector is for battery charging.

A Z86C96 microcontroller interprets the score and the various instrument waveta-bles stored in a single 1-Mbyte Flash memory chip. The Flash chip contains both program and data memory. The Z86C96 features a 64-KB external memory inter-face. An additional four I/O lines extend the data space range to 1Mbyte. A small complex programmable logic device (CPLD) manages the program/data memory segmentation; the CPLD also performs other I/O signal management. Each instrument track is stored in digital notation (for example, MIDI) where a note is encoded as instrument type, pitch, duration, and volume. For each note, the microcontroller reads the template note for that instrument out of the wavetable. The wavetable memory contains sound chunks of the actual instrument at selected points in its pitch range and with a prototype attack-sustain-decay enve-lope. The microcontroller adjusts for intermediate pitches by sample rate adjust-ment. The playback code is straightforward, because the wavetables are not compressedÑthe microcontroller simply reads and sums data arrays from mem-ory.

The composite digital audio signal is written to a D/A converter, and the analog signal drives an FM broadcast band modulator. The carrier is phase-locked to allow exact tuning, because receivers are now also synthesized.

The Z86C96 scans the keypad for user commands and displays operating status in the LCD display. For example, the LCD displays the real-time measure number during playback. The microcontroller requires a crystal oscillator for pitch and modulator tuning accuracy.

The score and wavetable flash memory is downloaded from a PC by the instructor at the beginning of a school year. For grade school, the entire yearÕs orchestration

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

70

can be stored, while middle-school applications require periodic updates due to the complexity and length of scores. The memory is loaded via an infrared link directly decoded by the Z86C96Õs UART port. The UART interface allows any PC serial port driving an infrared diode pod to load the memory. The synthesizers for an entire class can be loaded in parallel by pointing them all at the emitter; each unitÕs LCD display verifies download integrity.

Figure 44. Pocket Music Synthesizer Block Diagram

Keypad4x4 matrix

Z86C96Microcontroller

20 MHz

RF Modulator -FM broadcast band

PLL synthesized-monaural

IR detector(for download)

Data Mem(1008 kbytes)

+5V

Prog Mem(16 kbytes)

1 MByteFlash Memory

asymmetrically-blocked

8-bit D/Aconverter

2.4Vrechargeable

battery

DC-DCconverter

4-char LCDdisplay

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

71

Figure 45. Pocket Music Synthesizer Schematic Diagram

P07

P06

P05

P04

P03

P02

P01

P00

P17

P16

P15

P14

P13

P12

P11

P10 AS

DS

R/W P27

P26

P25

P24

P23

P22

P21

P20

P37

P36

P35

P34

P0D

SP

1DS

24 25 26 27 28 29 30 58 41 42 43 44 45 46 37 38 16 12 10 58 59 60 61 62 63 54 55 7 67 18 49 11 15

A15

A14

A13

A12

A11

A10

A9

A8

AD

7A

D6

AD

5A

D4

AD

3A

D2

AD

1A

D0

P2H

S

DM

9 19 53 5 6 13 14 4 1 2 68 64 65 40 39 33 34 35 36 22 23 47 48 57 58 50 21 66 8

RS

T

R/R

L

SC

LK

X2

X1

P47

P46

P45

P44

P43

P42

P41

P40

P57

P56

P55

P54

P53

P52

P51

P50

P63

P62

P61

P60

P33

P32

P31

P30

VIN

GN

D

Z86

C96

Mic

roco

ntro

ller

U5

U6

U9

U3

74H

C57

4A

ddr

latc

h

PZ

5064

-10A

44C

PLD

U7

MC

3406

4

4-D

IGIT

MU

X'D

LCD

4X4

KE

YP

AD

MA

TR

IX

C1

+

C15

C12

+

C10

C9

C8

R15

Q2

Q1

C11 L2

C14

C7

D4

D6

D5

L3

D2

L1

D3

tric

kle

only

2-ce

llre

plac

eabl

epa

k

J1D

C in

R3

VC

C

VC

C

VC

C

VC

CV

CC

VC

C

VC

C

VC

C

RE

SE

T

VC

C

R1

R11

R2 R19

PLL

filte

r

R5

R18

R17

D1

R12

R7

C0

C1

R8

R9

R10

R4

R16

VC

C

R13

R14

R6

RS

T2 3

1

VC

C

20M

Hz

C5

C6

Y1

SC

LK

SC

LK

SC

LK

VC

CV

CC

VC

CV

CC

GN

DG

ND

GN

DG

ND

IN0

IN1

IN2

IN3

A0

A2

A5

A8

A11

A12

A13

A15

B0

B2

B3

B4

24 25 26 27 28 29 31 32 41 40 39 38 37 36 34 33 17 16 14 13

ser

data

load

pll

ser

clk

load

dac

enab

le fl

ash

read

flas

hw

rite

flash

low

bat

tery

r1 r2 r3 r4 c1 c2 c3 c4

D1

D2

D3

D4

D5

D6

D7

D8

CLK

OC

addr

stb

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

E28

F80

0B5-

B60

8 M

bit F

lash

MC

1451

70P

LL s

ynth

esiz

er

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

A-1

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

19 18 17 16 15 14 13 12

29 31 33 35 38 40 42 44 12 16 14 11 28 26

16 17 48 1 2 3 4 5 6 7 8 18 19 20 21 22 23 24 25 45

DQ

0D

Q1

DQ

2D

Q3

DQ

4D

Q5

DQ

6D

Q7

RP

BY

WP

WE

OE

CE

U2

C13 C3

C4

OS

CI

OS

CO

RE

FO

FIN

DIN

EN

BC

LKD

OU

T

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

VD

DO

VO

RP

DV

SS

LD FV

FR

AD

5301

DA

C

U8 VO

GN

DV

DD

6 5 4

1 2 3

SY

SC

KD

IN

AD

7 2

AD

6 3

AD

5 4

AD

4 5

AD

3 6

AD

2 7

AD

1 8

AD

0 9 11 1

A19

A18

A17

A16

C0

C2

C3

C4

C7

C8

C13

C15 D

0D

2D

7D

8D

11D

12D

13D

15 B8

B10

B13

B15

3 15 23 35 10 22 30 42 43 1 44 2 4 5 6 7 8 9 11 12 21 20 19 18

PN

A46

02M

Inte

grat

ed IR

dem

odul

ator

U1 VD

D

GN

D

1 2 3O

UT

MA

X16

74B

oost

con

vert

er

U4 FB

GN

D

LBI

RE

F

7 4 3

1 8 2

LX

OU

T

LBO

L4

VC

C

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

72

Portable Individual Navigator (PIN)Submitted by: Leonard Lee

Abstract

A ZiLOG 16-MHz Z86E83 microcontroller serves as the controller for a small, self-contained, belt-carried device that provides an individual with bearing and dis-tance traveled on foot from an initial location. It can be used for individual naviga-tion both indoors and outdoors. The device combines data from a solid-state magnetic compass sensor and an accelerometer-based stride sensor. The accel-erometer is also used to compensate for mounting tilt. Iterative algorithms are used to compute the accumulated bearing/distance vector on the fixed-point microcontroller in an efficient way.

A typical application might be an individual who is hiking. The portable navigator can also be used indoors to track the location of people wearing the device in a certain area. When the device is initialized, the wearer can wander freely on foot, both indoors and outdoors. When it is time to return home, the device displays the required compass bearing and distance in meters to the starting point or most recent waypoint.

The design requires the sensing of voltage from several sensors. It also provides user input and display control; therefore, a microcontroller with a large number of I/O pins is required. It is possible to sense analog voltages using Z8 devices with-out analog-to-digital (A/D) converters (for example, measuring the charge time of an RC circuit connected to a comparator input). However, these methods require external circuitry and can be considered somewhat ad hoc measures. Conse-quently, the ZiLOG Z86E83 (OTP version) was chosen because it features an 8-channel A/D converter and a relatively large number of I/O pins. These features permit the PIN to include minimal glue logic and external analog circuitry. Z86E83 software is the heart of the system and performs all functions, such as reading the sensors, converting the data into distance and bearing, and managing the user interface.

The Z86E83 is configured to use a crystal oscillator clocked at 16 MHz to offer maximum code flexibility for the prototype software. To keep power supply design simple, an LM2930T-5.0 low drop-out linear voltage regulator is used to regulate the 6-V battery voltage (from two 3-volt lithium CR3032 coin batteries) down to 5volts. The efficiency of the linear regulator in this case is 5V Ö 6V = 83%, which is comparable to a switching supply, because the input-output differential is only 1V.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

73

Figure 46. Portable Individual Navigator A/D Ratio Over Time

Peaks due to footfallsthresholdfor footfalldetection

Stridecorrection basedon time interval

Increased tilt lowersaverage level(0 degree tilt = 098)

A/Dreading

fromaccel.

Time

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

74

Figure 47. Portable Individual Navigator Schematic Diagram

Z86

E83

16P

EC

Zilo

g

AC

0/P

20

AC

1/P

21

AC

2/P

22

P32

RE

SE

T

P33

P24

VC

C

VE

E

VS

S

2 3 1

+5V

+5V

Din

smor

e 16

55 H

alle

ffect

com

pass

sen

sor

910

16M

Hz

E

6

10k

10k

Thr

esho

ld fo

r fo

ot im

pact

s

D2

1

NC

98

47

11

10

1314

12U

CA

0V

in

Aou

t

LCD

cont

rast

45

1413

1211

109

87

RS

75 D

egre

es

1312

�m

RW

D7

D6

OP

TR

EX

DM

C-1

6117

N 1

6x1

LC

D

D5

D4

D3

D2

D1

D0

XT

AL

20pF

20pF

XTAL1

P06

P05

P04

P03

P02

P01

P00

25

24

23

22

21

20

19

XTAL2

+5V

+5V

+5V

+5V

31

2

6V Tw

o C

R30

32 3

V li

thiu

mco

in c

ells

in s

erie

s

LM29

30T

-5.0

, 5V

low

dro

pout

reg

ulat

or

Line

ar s

lider

pot

.fo

r sc

rolli

ng c

ontr

ol

Spa

re u

nuse

d in

put

LCD

FR

ON

TS

IDE

Slid

er p

otP

ushb

utto

n

+O

UT

IN

GN

D

NC

(s

pare

ou

tput

s)

1 23

456

Vcc

AV

cc

P25

P26

P27

P34

P35

P36

AC

33/P

23

P31

GN

D

AG

ND

28 1 2 14 8 15 4

12 27 5 6 7 16 18 17 3 13 11 26

10k

+5V

10k

2.2k

100k

50k

.22µ

F

.1µ

F

AD

XL1

05ac

cele

rom

eter

-AQ

Cva

riant

(ext

. tem

p.ra

nge)

Not

es:�

-�M

agne

tic n

orth

and

true

geo

grap

hica

l nor

th d

iffer

by

the

��m

agne

tic d

eclin

atio

n -

can

be ig

nore

d fo

r re

lativ

e m

easu

rem

ents

.�

-�A

/D is

use

d to

dig

itize

sig

nals

nea

r D

C o

nly.

Ant

ialia

sing

filte

r��

not n

eede

d. S

enso

rs h

ave

limite

d ba

ndw

idth

and

this

lim

its n

oise

.�

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

75

Postal Shock RecorderSubmitted by Bryon Eckert

Abstract

The increased competition between shipping companies has brought lower costs for business and the consumer. Demand from these sectors has caused the speed with which packages are handled to become more important than care in their handling. The result has been increased breakage of fragile items.

An inexpensive shock recorder can be very helpful in pinpointing the probable time of breakage by recording the amplitude of each shock, along with a time stamp in serial EEPROM. Low cost is the most important requirement. Light weight and small volume is also important, as it relates to cost of use.

The heart of the shock recorder is the sensing element. Three sensors are used (one for each axis), each consisting of a ceramic magnet epoxied to the end of a metal strip. A shock causes the metal strip to vibrate and produce a time-varying magnetic field proportional to the amplitude of the shock.

The magnetic field variation produces a voltage across a sensing coil. Balanced amplifiers minimize interference pick-up. AC coupling to the subsequent amplifier stages eliminates the requirement for DC offset adjustment. U3C provides low-impedance virtual Ground, allowing single-supply operation while adding minimal additional power consumption. Each sensing amplifier feeds an inverting peak detector. The diodes are inside feedback loops to minimize temperature drift. All three amplifier outputs are connected across a single tantalum capacitor for charge storage.

The Z86E04 usually runs in STANDBY mode, minimizing power consumption. When a shock is detected, the peak detector voltage rises above the level preset by R27 and R28, triggering IRQ3 (rising edge). The CPU wakes and starts the A/D conversion routine. Voltage readings are taken for several seconds, with the high-est reading stored in EEPROM (8-bit value), together with a time stamp (24-bit value). A second comparator is used to monitor battery voltage. A low drop-out reg-ulator provides a stable reference voltage and makes efficient use of a low-cost carbon-zinc 9-V battery. With LM324A operational amplifiers, the overall current consumption is about 5 mA, allowing up to 100 hours of operation.

A 93LC66 EEPROM contains 512 bytes of memory, allowing up to 125 events to be stored (leaving room for the base date and time and a tracking number in BCD format). The user interface consists of a serial port and an alarm LED. The serial port is implemented in firmware, and can run at up to 38.4K baud for a 4-MHz crystal in low-EMI mode. The serial cable must be kept short (less than 6 feet), because the interface is not a RS-232-level interface. The base date and time is set through the serial port, and the EEPROM is read and erased through the

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

76

serial port. The alarm LED indicates that a shock threshold is exceeded, and/or the battery is low. PC-based software allows a user-friendly interface when the postal shock recorder is connected to a personal computer.

Figure 48. Postal Shock Recorder Block Diagram

P01

P02

P00

P32

P33

CPU

SERIAL

EPROM

LOW DROPOUT

REGULATOR

CHARGE

STORAGE

PEAK VALUE

AMPLIFIER

SHOCK

SENSOR

PEAK VALUE

AMPLIFIER

SHOCK

SENSOR

PEAK VALUE

AMPLIFIER

SHOCK

SENSOR

LM2951-5.0

Z86E04

ADC RAMP COMPARATORS

93LC66

ALARM LED

BATT

CS

DATA IN

DATA OUT

CLOCK

BATTERY SAMPLE IN

Inductive Sensor(Magnet wire around

iron nail)

Ceramic magnet

Spring steel

RAMP

SENSOR

X AXIS

Y AXIS

Z AXIS

TO IRQ3

COMPARATOR

RXD SERIAL DATA

LEVEL REFERENCE

1 MHZ

TXD INTERFACE

X

Z

Y

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

77

Figure 49. Postal Shock Recorder Schematic Diagram

NC

GN

D

GN

D

IN

4 3 2 1

NC

GN

D

GN

D

OU

TP

UT

5 6 7 8

AT

ST

RIP

CU

T C

RY

ST

AL

C14

100µ

F6.

3V

U2D

LM32

4AM

Ð +

13

1412

U2C

LM32

4AM

Ð +

9

810

U2A

LM32

4AM

U1B

LM32

4AM

U1A

LM32

4AM

Ð +

2

1

114

114

3

Ð +

6

75

Ð +

2

13

+5V

+5V

+5V

R32

220k

R31

100k

R30

470

D7

LED

ALA

RM

U7

LM29

31A

M-5

.0

P33

P00

P01

P02

GND

P20

P21

P22

P23

9

8

7

6

5

4

3

2

1

P32

P31

XTAL1

XTAL2

VCC

P27

P26

P25

P24

10

11

12

13

14

15

16

17

18

C11

0.1µ

F

+5V

R34

220

C10

22pF

C9

22pF

X1

4MH

z

C13

0.1µ

F

B1

9V

SW

1S

PD

T

CF

CK

BI

DO

9 8 7 6 5 4 3 2 1

8 7 6 5

VC

C

NC

OR

G

VS

S

1 2 3 4

U6

93LC

66A

J1 DB

9M

+5V

+5V

C8

4.7µ

F10

V

+

C1

4.7µ

F10

V

+5V

+

+

C12

0.1µ

F

R33

100k

R8

1.0M D1

MM

BT

914

R1

4.7k

L1 S

enso

r

Spr

ing

Mou

nted

Mag

net

Spr

ing

Mou

nted

Mag

net

R2

4.7k

R7

R6

1.8M

C3

0.1µ

F

22k

R3

1.0HC2

0.01

µF

R5

1.0M

R4

1.0M

R29

D9

MM

BT

914

D8

MM

BT

914 22

k

U5

Z86

E04

U2B

LM32

4AM

U1D

LM32

4AM

U1C

LM32

4AM

Ð +

6

75

Ð +

13

1412

Ð +

9

810

+5V

R16

1.0M

D2

MM

BT

914

R10

4.7k

R14

R15

1.8M

C5

0.1µ

F

22k

R11

1.0HC4

0.01

µF

R13

1.0M

R12

1.0M

R9

4.7k

L2 S

enso

r

Spr

ing

Mou

nted

Mag

net

U3D

LM32

4AM

U3D

LM32

4AM

U3A

LM32

4AM

Ð +

13

1412

Ð +

6

75

Ð +

34 11

12

+5V

R26

1.0M

D3

MM

BT

914

R18

4.7k

R24

R25

1.8M

C7

0.1µ

F

22k

R19

1.0HC6

0.01

µF

R21

1.0M

R20

1.0M

Ð +

10

89 R

2310

0k

R17

4.7k

L3 S

enso

r

R22

180k

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

78

PWM Input/Output Interface ModuleSubmitted by: Fernando Garcia Sedano

Abstract

The PWM I/O interface module is designed to process pulse-width monitor (PWM) input and output signals, very often used on railroad vehicles to transport analog information on train lines (for example, brake demand). With a PWM signal, ana-log information is a function of duty-cycle index modulation. Usage of PWM sig-nals to transport analog information is due to the very high electrical noise immunity. It is also easy to isolate a PWM signal from other voltages, due to the pseudodigital appearance, making these signals suitable to be demodulated using only digital circuits.

The circuit receives three different PWM input signals with galvanic isolation at two different voltage levels (depending on R10 and R11 value). There are three input stages (U2, U3, and U4) with their corresponding overload protection (T6, R12, T7, R7, T8, and R8), and with EMC protection (D1, D2). The third PWM input channel (U4) feeds back the PWM output signal (24VPP maximum).

The Z8 microcontroller is programmed to demodulate PWM input signals, to count the times where PWM input is at high and low levels, and to perform the corre-sponding division. Obtained values are loaded in the DPRAM. The Z8 is pro-grammed to address external memory using Port 0 and Port 1 to send address and data lines.

DPRAM works as a data buffer between the Z8 microcontroller and any other external microprocessor or microcontroller.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

79

Figure 50. PWM Input Output/Interface Module Block Diagram

DP

RA

MA

ddre

ss L

ogic

(74H

C13

9+79

HC

02)

EM

CF

ilter

Out

put

Isol

atio

nB

arrie

r(1

XH

CP

L310

1)

Isol

ated

DC

ÐDC

Con

vert

er

Inpu

tIs

olat

ion

Bar

rier

(3X

HC

PL2

211)

Add

ress

Logi

c74

HC

139

DPRAM I/OData Bus Buffer

74HCT245

74HC374D_LATCH

CER\

6.4MHz

SEMR\

24V

24V

PWM Output

DP

RA

M(I

DT

7314

LA70

JB)

4Kx8

AB

[14,

13]

IOB

HE

\, IO

SE

L\

AB

[12.

.1]

IOW

R\,

IOR

D\

+5V

dc fi

ltere

dfo

r in

tern

al p

ower

supp

ly

Ext

erna

l BC

U(I

ntel

80C

196)

�In

terf

ace

(Dat

a, A

ddre

ss a

nd �

Con

trol

Bus

es)

DB

[7..0

]

+5V

dc

SE

ML\

PW

M1

PW

M2

PW

M3

PW

M In

put1

Ext

erna

l Tra

in-li

neIn

terf

ace

PW

M2

Inpu

t2

PW

M3

Inpu

t3

On/

Off

Con

trol

DB

[7..0

]

DA

B[7

..0]

AB

[11.

.8]

CE

L\

P1 P0

Z8 Microcontroller (Z86E40)

P3 P2

Mai

n C

ryst

al O

scill

ator

(TC

X0)

(T67

PZ

12.8

+M

C12

083P

)

PW

M O

utpu

tF

requ

ency

Sel

ectio

n(7

4HC

4020

+74

HC

151)

Fre

quen

cy to

Cur

rent

Con

vert

er(L

M23

1J)

Cur

rent

Out

put

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

80

Reaction TesterSubmitted by: Martin Bass

Abstract

The Reaction Tester measures the reaction time of an automobile driver using repeated cycles of signaling, time measurement, data display, data transmission via serial interface (to a PC that performs evaluation over the entire runtime), and waiting randomly for the next signal. Power-on also performs a system check (dis-play, lamps, buzzer, and serial interface) at this time.

All system functionality is performed by software:

¥ LED-multiplex for 7-segment display and lamps

¥ Sound via buzzer

¥ Reading status of the contact switches

¥ Serial output

This device is built into a car simulator (a box containing seat, steering wheel, and two pedals) and uses contact switches to check for steering left, steering right, gas, and brake.

A Z86E0812-1866 is the heart of this device, which is optimized for maximum integration and minimum parts count. The power supply is an AC/DC wall adapter that delivers an unregulated 9volts to 12volts at a 500-mA load. A capacitor and standard linear voltage regulator uses a diode in series to protect against a wrong connection and a ZORB diode for overvoltage protection. The multiplexed display consists of 3-digit drivers and the 74AC164 shift register; these components per-form I/O expansion and power-sink driving for segment currents.

Multiplexing drives three of the four LED lamps. The buzzer is driven by the con-troller port pin via a small electrolyte capacitor in series, and is controlled by soft-ware. The serial interface yields real RS-232 voltages (approximately +4V, +8V, and Ð9V under load) to be operable even on problematic PCs (for example, some laptops do not interpret 0V for the more negative voltage). If there is an immense cost problem, it can be easily downgraded to +5V/0V.

To read the status of the contact switches, the Reaction Tester includes an inter-face consisting of pull-up resistors, capacitors for noise clamping, and input pro-tection for the controller port. The oscillator is run by an 8-MHz quartz crystal.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

81

Figure 51. Reaction Tester Block Diagram

Buzzer

Z86E0842-1866

Contact-Interface

Tx RxGND

CPU

10 MBJ2

Contact Switches

LED-Driver

Power

ACDC

AC/DCAdaptor500mA9-12V

7 Seg.LED-Display LED Lamps

J4

J3

RS-232Converter

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

82

Figure 52. Reaction Tester Schematic Diagram

P25

2

4

9

13 12 11 5 4 6

P27

345610111213

7 14

D C

9

P24

P23

P22

P26

4µ7/10V

P32

47k

Tx RxGND

1k

330

1N4148

1N4148

47µ/16V

10k

100k

4x100k

4x100W

8x68E

4xLED-Lamp

3x7 Seg. Disp.C.A., Red

P02

+5V

+5V

P01 P00

P33

4x4k72x

1N4148

P34 P21 P20 BUZZER

Vcc Vss C

Z86E0812-1866

IC2

IC1

C (MB) J2

7

1

18

17

3

10 8 16 15

7 2 8

7E5

2E2

T5BC337-25

+5V

T68C556C

J1

+5V

T2T1 T3

1N4148

22µ1613

T4100W

74AC164

+5V

+5V 2x22pF

100nQUARZ8MHz

3k3

+

+

470µ16V

100n

1SKE18A

1N400R

9-12Vdc500mA

J3

+

+

7805

IC3

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

83

Remote-Controlled Air ConditionerSubmitted by: Shailendra S. Vengutlekar

Abstract

The Z86E30 controls an electronic air conditioner. Remote-controlled operations are available together with manual key operations. The remote range is 10 meters.

There are two different sensing points for temperature control. A/D conversion uses two analog comparators. The A/D channels work simultaneously with PWM reference P33. Previous settings are restored when the unit is powered on.

The electronic air conditioner uses two timers. INTR4 tracks the time of the On/Off timer control mode, stepper motor control pulses, SLEEP mode, day-mode time track, remote-control pulse count, and display refresh pulses. PWM generation for A/D conversion uses INTR5.

The Remote-Controlled Air Conditioner features the following items:

¥ Fuzzy temperature control

¥ Four modes of operation

¥ Three fan speeds

¥ Automatic fan speed

¥ Stepper motor control for split air conditioner

¥ 12-hour On/Off timer

¥ Selectable room temperature

¥ Air-swing On/Off control

¥ ZiLOG Z86E30 microcontroller

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

84

Figure 53. Remote-Control Air Conditioner Block Diagram

DISPLAY AC MCU

OPTIONAL

IR

RECEIVER

IIC MEMORY

TEMIC

TSIL6400,

TEMIC

1N4148

ASP621

TEMIC �TDSG5160,�TLHX5405

KBD AND

DISPLAY

CONTROL

POWER SUPPLY

AND RELAY

CONTROL

IR LED

IR

TRANSMITTER

LOW/HIGH

VOLTAGE

PROTECTION

TURBO IC �24C02

AIR CONDITIONER CONTROL REMOTE CONTROL

ZILOG �Z86E30

TI ULN2003,TI UA7805CKC,TI 74HCT374,

TEMICBYT41M DIODE

T174LS145 TEMICTFMS5380

TEMIC4N33

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

85

Figure 54. Remote-Control Air Conditioner Schematic DiagramP

25P

26P

27P

04P

05P

06P

07V

CC

XT

AL2

XT

AL1

P31

P32

P33

P34

28 27 26 25 24 23 22 21 20 19 18 17 16 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P24

P23

P21

P03

P02

P01

P00

P30

P25

SD

AP

27P

04P

05P

06P

07

XT

ALK

2X

TA

LK1

P31

P32

P33

P24

P23

P22

P21

P20

P03

VS

SP

02P

01P

00P

30P

36P

37P

35

Z86

E30

U1

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

3 4 7 8 13 14 17 18 1 11

2 5 6 9 12 15 16 19

P00

P01

P02

P03

P04

P05

P06

P07

P21

SO

LVO

LLF M

FH

F

D0

D1

D2

D3

D4

D5

D6

D7

OC

CLK 74

HC

T37

4

U6

U3

FN

D50

0

8 7 6 5 4 3 2 1

SO

LVO

LC

OM

CO

NH

FLF M

FA

IR_S

WIN

G

CO

N8

J5

1 2 3 4

P30

CO

N4

J21 2 3 4

CO

N4

J3

1 2 3 4

CO

N4

J6

A B C D

15 14 13 12

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 9 10 11

L1 L2 L3 L4 L5 L6 L7 L8

74LS

145

U2

12 C

6 0

.1µF

C3

47pF

21

1

2

L1

1

1

22X

1

8MH

z

C14

4.7

µF

C11

0.

1µF

XT

ALK

1

XT

ALK

2

SC

L

AIR

_SW

ING

VC

C

R1

390E

12

P00

P0Ð

0

VC

CN

/CS

CL

SD

A

WP A2

VS

S

1 2 3 4

8 7 6 5

AT

24C

04M

emor

y

U5

R14

C5

0.1µ

FM

PX

BU

Z

BU

Z

P0Ð

22

D2

FA

N

L21

P0Ð

32

D3

CO

OL

1

BU

ZZ

ER

BZ

1

VC

C

VC

C

VC

C

VC

C

Too

_war

mS

1

VC

C

22µF

25V

TA

NT

ALU

M

VC

C

VC

C1

1

1

2

22

100k

MF

R 1

%

3

L2

4

L3

5

L4

6

L5

7

L6

8

L7

9

L8

C2

47pF

1 2

C13

4.7µ

F

1 2R17

330E

1/4W

1 2

C12

1 2

2200

µF25

V

C1

0.1µ

FC

40.

1µF

1

P31

P32

21 2

C10

1 2

VC

CC

7

0.1µ

F

P0Ð

42

D4

DR

Y

L31

P0Ð

52

D5

SLE

EP

1

P0Ð

62

D6

HE

AT

1P

0Ð1

2D

7

TIM

ER

L1

CO

MC

ON

P23

1

12

VC

C

C9

0.1

µFV

CC

12

R2

390E

12

P01

P0Ð

1

CO

MC

OM

05

3

XT

ALK

1P

30

83 8

AB

CD

EF

G

76

42

19

1

D P

R3

390E

12

P02

P0Ð

2

R4

390E

12

P03

P0Ð

3

R5

390E

12

P04

P0Ð

4

R10

120E R9

120E

12

SC

L

12

SD

A

R6

390E

12

P05

P0Ð

5

R7

390E

12

P06

P0Ð

6

P0Ð0P0Ð1P0Ð2P0Ð3P0Ð4P0Ð5P0Ð6

U4

FN

D50

0

CO

M

1 2

D10

Dio

de

XT

ALK

2

1 2

D18

Dio

de1 2

D8

Dio

de P31

1 2

D8

Dio

de

P32

1 2

D10

Dio

de

P33

1 2

D11

Dio

de

CO

M

D14

Dio

de1

2

D15

Dio

de1

2

D17

Dio

de1

2 D16

Dio

de1

2

D12

Dio

de2

1

05

AB

CD

EF

G

76

42

19

1

D P

P0Ð0P0Ð1P0Ð2P0Ð3P0Ð4P0Ð5P0Ð6

VC

C R12

10k

1 2

R13

10k

1 2

R15

6.8k

1 2R

166.

8k

1 2

R8

2k2

1 2

Rem

ote

Sen

sor

The

rmis

ter1

: F

or s

ensi

ng r

oom

tem

pera

ture

The

rmis

ter2

: F

or s

ensi

ng c

oil t

empe

ratu

re

Too

_coo

lS

2F

an_s

peed

S3

Air_

swin

gS

4M

ode_

sel

S5

On_

timr_

set

S6

P27

P25

P31

P32

The

rmis

ter1

RP

1R

_Arr

ay

The

rmis

ter2

D13

Dio

de2

1D

1 D

iode

21

Off_

timer

S7

Set

_tem

pS

8O

n_of

fS

9

R11

2k2

1 2

PC

B S

ize

150m

m x

70m

mP

ut s

epar

ate

GN

D a

nd P

ower

Tra

ck fo

r M

icon

2200

µF c

ap (

C10

) sh

ould

be

near

Pow

er S

uppl

y C

onne

ctor

Hor

izon

tal h

oles

for

LED

sM

ount

ing

hole

s di

amet

er 4

.2m

m

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

86

Remote-Control Antenna PositionerSubmitted by: R. Sharath Kumar

Abstract

Antennae, parabolic dishes, and other types of wireless signal-receiving devices are today a common essential necessity in almost every home, office, and military application. Owing to the present number of communication satellites, it is often necessary to precisely reorient an antenna to different positions. Generally, this procedure involves laborious cranking of mechanical gears while observing a cal-ibration scale.

A microcontrolled antenna-positioning device allows a user to align an antenna to the required elevation/azimuth precisely to the nearest degree by pushing a but-ton on an infrared hand-held remote.

The device consists of two modules: a controller and a hand-held infrared trans-mitter. The controller module based on the Z86E31 manages reception of coded commands from the hand-held remote. The Z86E31 decodes a command and drives the two motors to align the elevation/azimuth. The LCD display is updated to indicate the exact aligned position. Up to 20 positions can be preset on the sys-tem memory and recalled for alignment. Positive feedback is incorporated to ensure precision up to the nearest degree. Fault tolerance is embedded to avoid an erroneous command value from overdriving and damaging the antenna or the mast. The motion circuitry is biased-off and a beeper sounds along with the mes-sage Error: Out Of Range flashed on the LCD of each module.

Encoded commands from the hand-held remote are received on the infrared receiver D1A and processed by the microcontroller. The beeper is pulsed On/Off to indicate a successful decode. The power transistors T5ÐT8 and T13ÐT16 are biased-on to drive the elevation and azimuth motors M1 and M2, respectively.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

87

Figure 55. Remote Controlled Antenna Positioner Block Diagram

Figure 56. Hand-Held Remote Block Diagram

Beeper

Infra-red�Receiver

D1A

Elevation Feed Back

Azimuth Feed Back

Elevation�Control Motor

Azimuth�Control Motor

Z86E31Microcontroller

LM331Voltage to Frequency

Converter

LM331Voltage to Frequency

Converter

LCD Module

PowerBridgeMotorDriver

M

M

Infra-red�Transmitter

D1B

4X4 Keypad

Z86E02Microcontroller

LCD Module

0 1 2 3

4 5 6 7

8 9

CLR P C

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

88

Figure 57. Remote Controlled Antenna Positioner Schematic Diagram

T2

SL1

00

T3

SL1

00

T11

SL1

00

R4

10k

R5

10k

T4

SK

100

T5

TIP

32A

D2

1N40

07x4

NO

S

D4

T7

TIP

32A

T8

TIP

31A

T9

SK

100

T10

SL1

00

T6

TIP

31A

15 14 24 25 26 27 28 1 2 3 16 4 5 6 7

11 9 10

RS

CE

D0

D1

D2

D3

D4

D5

D6

D7

RW

VLC

46

78

910

1112

1314

53

1

22128

VC

C

D10

1N41

48

Bee

per

Z86

E31

LCD

Mod

ule

13

C1

20pF

C2

20pFX

TA

L7.

328M

Hz

R3

10k

M1

R6

10k

R7

10k

R8

3k3

R12

6k8 C

433

0pF

R2

4k7

PO

T

2N22

22A

R1

4k7

DIA

Infr

a-re

dre

ceiv

erdi

ode

VC

C

D5

D3

VC

CV

CC

VC

C

+VE

Mot

or S

uppl

y

Azi

mut

h M

otor

For

war

d D

irect

ion

Con

trol

Azi

mut

h M

otor

Rev

erse

Dire

ctio

n C

ontr

ol

Ele

vatio

n M

otor

For

war

d D

irect

ion

Con

trol

Cou

pled

toA

zim

uth

Mot

orfo

r F

eedb

ack

Elevation Motor Reverse Direction Control

VC

C

Azi

mut

hM

otor

R18

10k

R19

10k

T4

SK

100

T13

TIP

32A

D6

1N40

07x4

NO

S

D8

T15

TIP

32A

T16

TIP

31A

T17

SK

100

T18

SL1

00

T14

TIP

31A

M1

R20

10k

R21

10k

VC

C

D9

D7

+VE

Mot

or S

uppl

yV

CC

Ele

vatio

nM

otor

1 6 7 2

3 5

8

4R

11 5k

R9

4k7

R10

10k

PO

T

C3

0.00

1µF

R13

3k3

R17

6k8 C

633

0pF

VC

C

Cou

pled

toE

leva

tion

Mot

orfo

r F

eedb

ack

1 6 7 2

3 5

8

4R

16 5k

R14

4k7

R15

10k

PO

T

C5

0.00

1µF

LM33

1 LM33

1

VC

C =

5 v

olts

Mot

or S

uppl

y <

40V

DC

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

89

RF Dog CollarSubmitted by: John Kocurck

Abstract

Current electronic fencing relies on a wire that is buried around the perimeter of the area to be fenced. A signal is sent through the wire that activates a dog collar should a dog stray too close to the barrier. If the dog decides to chase a varmint, it triggers a beep (or shock) when it enters the area around the buried wire, and nothing more.

Using the ZiLOG Z86E02 on both the transmitter and the receiver, a better system can be designed. This system addresses the weak points of the electronic fencing systems currently on the market. Each transmitter features a unique 64-bit num-ber supplied by a Dallas Semiconductor DS-2401. That number, along with a con-trol byte, is transmitted via a Convergent Inc. radio transmitter at approximately 2Kbps. Each transmission lasts for less than 50ms and is repeated every 250ms. The dog collar receives the packet and checks if the serial number is stored in its 128-bit serial EEPROM. If it checks out, the processor in the collar resets. If the collar does not receive a valid packet within 800ms, it enters ALARM mode and sounds the buzzer. As a result, the dog returns to the house. When the dog is back in range, the collar resets and turns off the buzzer. New transmitters can be added by bringing the collar into range and pressing the button on the transmitter. The transmitter then sends out a special control packet and serial number that the collar recognizes, and stores it into the EEPROM for future reference. This method allows the building of short-range jammers to deny certain areas and also small hand-held units for RF leashes. Because of the unique 64-bit serial number, neighbors using the same dog-control system do not extend the dogÕs range because of overlapping areas.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

90

Figure 58. RF Dog Collar Block Diagram

Z86E02 Z86E02ConvergentInc.

AF Transmitter

OS2401+5

ConvergentInc.

RF Transmitter

16 bytesent withEEPROM

SA840IL

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

91

Signature Recognition and AuthenticationSubmitted by: James Doscher and Harvey Weinberg

Abstract

As more transactions are completed electronically, concerns about threats to data security increase. In particular, a user is required to be able to ensure that no one else can forge a signature or a password. There are new products on the market that attempt to solve this problem. For example, there are mouse devices that claim to be able to read fingerprints, and much development is occurring in the area of digital signature analysis.

An alternative solution is a pen device that recognizes the unique characteristics of a signature to authenticate the user. Typical applications could be encryption, secure web transactions, receiving (signing for a UPS package), and controlled access to secure data.

Existing systems, such as pen tablets, record the shape of a signature, but not necessarily the speed or emphasis (pen pressure) of the signature. By using a micromachined accelerometer to sense pen movement, an individualÕs distinctive signature motions can be recorded and compared against a stored copy. Recog-nition algorithms from speech processing are used to compare and correlate a personÕs signature. Prototype systems have already shown greater than 90% accuracy in recognition.

At the heart of the system is a ZiLOG Z8 for recognition algorithms, and the Ana-log Devices ADXL202 dual-axis accelerometer. The Z8 fans the recognition algo-rithms, decodes the accelerometer signal, and administers power management for the accelerometer. The accelerometer measures pen movements in the X and Y-axis in the plan of the paper.

Figure 59. Signature Recognition and Authentication Module Block Diagram

Power

Acceleration Host Alarm�Interface

ADXL202 Z86C06

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

92

Figure 60. Signature Recognition and Authentication Module Schematic Diagram

V

120K

Reset

COM

ADXL202

P22

P23

P24

Vcc

P35

P21

P20

GND

Z86C06

.1µF .1µF

47µF

4MHz

47µF

+5V

Host SerialInterface

.47µF

PWM OUTPUTS

DD

OUTX

OUTY

FILTX

FILTY

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

93

Smart Phone AccessorySubmitted by: Syed Naqvi

Abstract

The Smart Phone Accessory eliminates the hassle of dialing long strings of tele-phone numbers by employing predefined user-programmed keysets. The Z8 microcontroller offers many advantages toward this solution, by providing the required power, RAM, and ROM to perform the application. The Z8 features scal-able software compatibility and a configurable I/O that offers great flexibility in the design. The Z8 is also relatively inexpensive.

Caller ID offers unique usability to the party receiving the phone call. In most cases (depending on the service provider), the name and telephone number of the calling party is displayed. The receiving party can then keep a log of received calls for future use, or accept a choice of not answering the telephone call. On the other hand, most telephone companies offer the choice of an unlisted (unpub-lished) telephone number. However, if a person with an unlisted phone number makes a call, there is a possibility that his/her phone number will be displayed to other parties. The Caller ID feature can be disabled by dialing a predefined key sequence prior to calling. This step can be cumbersome and hard to remember on a regular basis.

Another very popular and fast-growing telephone service is the 10-10 calling ser-vice. Customers can secure very competitive long distance rates by predialing 7 more digits plus the phone number. The Smart Phone Accessory automatically dials the numbers prior to each call.

The Smart Phone Accessory is designed to work in series with the telephone handset. The product can use the telephone handset number pad, or it can dis-play its own number pad. The predefined keys (for caller ID and long distance) are programmed into the product. The Smart Phone Accessory can be reprogrammed or removed from the phone line very easily, thus offering customers complete flex-ibility. The power for the complete circuit is derived from the telephone line.

Figure 61. Smart Phone Accessory Block Diagram

Smart PhoneAccessory

PSTN

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

94

Figure 62. Smart Phone Accessory Schematic Diagram

TelephoneInterface &

Power Circuits

Touch ToneGenerator

Circuit

PSTN

To Handset

Keyboard Interface

1 2 3

4 5 6

7 8 9

* 0 #

1

2

3

4

1

2

3

4

13

14

15

12

11

8

5

6

7

8

PB0Vcc1

GND

PB1

PB2

PB3

PB4

RST

XTAL2

XTAL1

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

Z8E001

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

95

Smart Solar Water Heating SystemSubmitted by: Eduardo Jose Manzini

Abstract

The goal of the Smart Solar Water Heating System is to control the heating of the water supply for a home. After power-up, the microcontroller checks the value in EEPROM of the target value for temperature, and turns the LED on. The micro-controller reads the boiler temperature sensor (BTS), the sun collector tempera-ture sensor (SCTS), and turns on a corresponding LED.

If the value of SCTS is higher than BTS, the water flow pump (WFP) is powered up to increase/speed the heating of the water by the sun until BTS becomes equal to SCTS. If both are lower than the target temperature, the microcontroller turns off the WFP and turns the electrical heater on and up to the required temperature.

There are two control keys and five LEDs used for the required temperature. Each time a target temperature is selected, the microcontroller saves it in EEPROM. The required temperature is kept in case VAC is missing (110 ~227 failure). The other five LEDs (10 total) reflect the current temperature of the boiler.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

96

Figure 63. Smart Solar Water Heating System Block Diagram

50¼C or

Fill up pumpor solenoid

VR

VR

Begin

Save valve targetLED on.

Turn off others.

or

temperature?

T. boiler <T. sun collector?

Reads temperaturesensor and lights

the nearest LED red

Heater off

Vcc

Vss

Vcc

Heater off

Comp 1

EPROM

PowerSupply

BatterySystem

OPTIONAL

*WFC pump on

*WFC pump = Water �Flow Control Pump

Z86E31

T. target>

T. boiler

WFC pump off

Heater on

Y

N

N

45¼C or

40¼C or

35¼C or

Lower than 30¼C

45¼C or

40¼C or

35¼C or

Lower than 30¼C

Water flowcontrol

VR

Heater

Decreasethe target

temperature

Increasethe target

temperature

Targettemperature

indicator

Current boilertemperature

indicator

VR

VREF2

TemperatorBoiler

Vcc

Vcc

VREF1

Vcc

TemperatorBoiler

Vcc

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

97

Smart Window with Fuzzy ControlSubmitted by: Tan Boon Lee

Abstract

Many homes in Southeast Asia contain sliding windows because of their lower cost. Most people open the windows when they are at home and close them dur-ing rains or when nobody is at home.

The Smart Window with Fuzzy Control design features an automatic window con-troller using the Z8. The Z8 uses a formula implemented in fuzzy logic to control the opening of a single sliding window that is proportional to the temperature, force of wind, and intensity of rain.

Port 2, pin 20 and pin 21 drive a 12-V DC motor via two relays. The motor features a current sense resistor (5R) connected to a comparator circuit to detect motor stall. The comparator circuit consists of a 100-ohm and 10-µF low-pass filter and a threshold detector implemented using LM339.

The wind and rain detector features a similar circuit. Both charge a 10-µF capaci-tor until a certain voltage is exceeded to trigger the Z8. The trigger voltage can be adjusted via a 20-ohm variable resistor.

The innovative feature of this design is the use of a single-slope ADC to read three switches and the temperature. The arrangement of the switchesÑopen, close, and autoÑpresent different voltages to P32. Different temperatures indi-cate different voltage outputs from the LM358 operational amplifier. The Z8 reads the temperature or the switch using the 74HC4006 analog switch.

The single-slope ADC yields consistent readings. A timer measures the charging of the capacitor (pin 33). When pin 33 reaches the input voltage of either the switch or the temperature, an interrupt is issued. The timer values are inversely proportional to the input voltage, because the timer is a downcounter. The range of the timer can be divided into 50 divisions very accurately but only 5 are required for 10¼C above the minimum set by the 20-ohm variable resistor.

Upon power-on reset, the Z8 reads the switches to check for AUTO mode. In AUTO mode, the position of the window away from the closed position is based on a weighted average of the temperature and wind. When rainy weather begins, the window shuts to a closed position. Manual positioning is possible in MANUAL mode. An LED indicates AUTO mode, and a buzzer sounds should the motor stall or the window is open during a rain.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

98

Figure 64. Smart Window with Fuzzy Control

Threaded Rails

Limit switchClosed position

Hidden Z8board

Reflective stripsfor position sensor

Rain sensorThe resistivity decreaseswhen water ÔconnectsÕ theinterdigit of the sensor.

DC motor and gears

Smart Window with Fuzzy Control

Switch boxand LED

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

99

Figure 65. Smart Window with Fuzzy Control Schematic Diagram

22pF

P32

: Sw

itch/

Tem

p

22pF

P23

P22

P21

P20

P02

P01

P00

Rai

n

Win

d

Pos

ition

Sen

sor

Clo

sed

Pos

ition

Mot

or S

tall

Sw

itch/

Tem

p

AD

C

Sw

itche

s

Tem

p

Vcc

P24

P25

P26

P27

P31

P32

P33 X

T1

X

T2

Z86

E04

ULN2003 74HC4066

AD

C d

isch

arge

Sw

itche

s

Tem

p

On/

Off

For

/Rev

Buz

zer

LED

+-

10k

100k

10µ

F

0.1µ

F

Sin

gle-

Slo

peA

DC

+-

2k2

10k

10k

33k

6k8

10k

Vcc

Vcc

Ope

n

Vcc

Vcc

Mot

orS

tall

Mot

orS

tall

1/4

LM33

9

+-10

µF

1M10

k20k

VR

20k

VR

30k

VR

20k

VR

t¼ 6

.8K

ther

mis

tor

+-

+-

6k8

3k9

1k8

3k9

1k

5R

1k10

0R

10k

10k

Win

dde

tect

or

1/4

LM33

9

10k

VR

+-

10µ

F1M

10k20

kV

R

12V

Rel

ay

12V

12 D

CM

otor

and

Gea

rsR

ain

dete

ctor

AD

Cdi

scha

rge

1/4

4066

Aut

o/M

anua

l

Clo

se

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

100

Solar TrackerSubmitted by: David Ellis

Abstract

To achieve maximum efficiency from a solar device, the greatest possible amount of solar radiation must be collected. With a fixed angle, only a small portion of the available energy can be collected. The purpose of the solar tracker is to lock on to the location of the sun and to continually position the device to follow the path of the sun. The addition of a solar tracking device produces a smaller, more efficient photovoltaic system, allowing it to collect the greatest amount of energy over a longer period of time.

The solar tracker uses four CdS (Cadmium Sulfide 0 photoconductive) cells, wired in series and mounted on opposite sides of a vertical blind. When these cells are pointed directly at a light source, typically the sun, they exhibit approximately the same resistance. The output of the amplifier is half the supply voltage. This volt-age is converted by the Z8 microcontroller into digital data, and set equal to 128, or half of an 8-bit conversion. By comparing this digital value to 128, the direction of the light source can be determined. If the value is larger than 128, move the tracker to the left. If lower than 128, move the tracker to the right. Using two sen-sor setups allows the unit to control two axes and position itself directly at the brightest light source. At the same time, using relays or MOSFETs to drive a larger unit, the solar tracker can keep one or more devices pointing at the brightest source.

U1A provides a virtual Ground. U1B and U1C provide a buffer for the sensors. R5 and R6 form the primary sensor. RV2 allows for adjustments for difference in the CdS cells. RV1 allows for adjustments to the overall gain of the amplifier, forming the X position sensor. R9, R10, RV3, and RV4 form the Y position sensor. The outputs of the sensors are fed to a 2-to-1 analog multiplexer made from a dual-switch ADG273 device. The output is fed to the comparator input of the Z8E001, which is set up as an A/D converter. Connectors P1 and P2 provide the control signals for the positioning motors, and are connected to a set of relays or H-bridge drivers.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

101

Figure 66. Solar Tracker Block Diagram

X PositionSensor

Processor

X Motor Drive

Y PositionSensor

Y Motor Drive

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

102

Figure 67. Solar Tracker Schematic Diagram

PB

1

PB

2

PB

3

PB

4

RE

SE

T*

PA

7

PA

8

PA

5

PA

4

18 17 16 15 14 13 12 11 10

1 2 3 4 5 6 7 8 9

PB

0

XT

AL1

XT

AL2

VS

S

VC

C

PA

0

PA

1

PA

2

PA

3

S1

D1

IN2

VD

D

8 7 6 5

1 2 3 4

IN1

D2

S2

GN

D

C4

0.1µ

F

Ð +

U1B

RV

1

100K

AD

G72

3

U2

VR

278

ST

105H

3+5V

+9V

+Vout

GND

+Vin

100K

TL0

84(4

=+

5VA

, 11=

GN

D)

1

13

R3

R6

CdS1

11

2

R4

10K

R7

15K

2

2

100K

R13

12

47uH

L11

2

2

+ Ð

GN

D

P1

TB

3PO

SY

Mot

or

P2

TB

3PO

SX

Mot

or

1 2 3

1 2 3

23

Ð +

U1A

TL0

84(4

=+

5VA

, 11=

GN

D)

1 23

1KR15

SW

1

GN

DG

ND

7x7�

mm

12

R5

CdS

1 2

RV

210

0K

1 3

1 2

R14

100K

1+5V

2

D1

S1D

PR

OC

ES

SO

R C

IRC

UIT

CE

NT

ER

VO

LTA

GE

RE

FE

RE

NC

EX

ÐPO

SIT

ION

SE

NS

OR

YÐP

OS

ITIO

N S

EN

SO

RP

OW

ER

SU

PP

LY

1 2

1 2

1R

410

K21

R4

10K

2

Ð +

U1C

RV

3

100K

100K

TL0

84(4

++

5VA

, 11=

GN

D)

1

13

R8

R10

CdS1

11

2G

ND

R12

10K

R11

15K

2

2

2

23

R9

CdS

1 2

RV

410

0K

1 3

1 2

C2

10µ

F

1 2

C5

1µF

1 2

C6

1 2

C7

47pF

47pF

1 2

C3

10µ

F

1+5V

2

+

C1

100µ

F

1 2

+

+

+ ÐGN

D

1

C9

12

+ 100µ

F

C10

12

0.01

µF

C8

12

1µF

2

Z8E

001

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

103

SpeedometerSubmitted by: Mylnikov Pavel

Abstract

This speedometer design is intended for measuring the speed of a walking pedes-trian. It can be worn on a waist-belt. The design uses a Z86C06 microcontroller because of its small size (18 pins) and speed (12MHz).

The speedometer measures the difference in travel time of an ultrasonic signal from the speedometer to the ground and back. The signal consists of two short impulses with a short interval.

When turning on the speedometer, the user must remain motionless for a few sec-onds so that the speedometer can define its height over ground. The height is defined using the following formula:

h = t x V ÷ 2

where:

h = height

t = passage time of impulse

v = velocity of sound in air (331 ms)

The speedometer is ready after the height is defined and the indicator light illumi-nates. During movement, the height changes are fixed automatically. The speed-ometer indicates horizontal speed only. Vertical movement can be approximated by linear functions.

The speedometer indicates average speed over a period of a few seconds. The speedometer can indicate an individualÕs speed and travel distance. Indication of speed or length is switched using a button. A reset button clears the displayed travel distance.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

104

Figure 68. Speedometer Flow Diagram

Begin

Initialization Save TC1into Memory

Clear WayLength Counter

(WLC)

Clear TimeCounters (TC1,TC2 and TC3)

Send FirstImpulse

Save TC2 andTC3

into Memory

Calculatenew way Length

and Velocity

Add WLC withnew way Length

Indicate or SendResults

Delay a FewMicroseconds

Increase TC2and TC3

Send SecondImpulse

Increase TC1and TC2

P31 = 1?Yes

A

No

P31 = 1?No

Yes

A

B

B

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

105

Figure 69. Speedometer Block Diagram

P34

1

R>10 k½

1,3 = Amplifier

2 = Ultrasonic Speaker

4 = Microphone

5 = Indicator

P31

Vcc

Vcc P33

P2

XTAL1

12MHzXTAL2

Spd/len

Unit

Reset

P25

P26

P27

VCC

GND

3V

Z86C062

3

5

4

Vcc+ -

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

106

Stages Baby MonitorSubmitted by: Joe Peck

Abstract

There are a wealth of baby monitors on the market today, all with one purpose in mind: to alert the parents of the slightest noise, regardless of the necessity of doing so. The Stages baby monitor empowers the parents to balance between parentsÕ necessity to hear their babyÕs every move and their necessity to get a good nightÕs sleep.

The monitor can act as a traditional baby monitor, and broadcasts every little noise. Typically, parents only want to respond if the baby is awake or requires help, not if it rolls over and bumps a toy. The Stages monitor can be set to turn on for a fixed period of time if there is a particularly loud noise, or if a medium volume is sustained for a longer period. The sensitivity can be set by the parents to match their particular comfort level and environment. The monitor can also be set to help soothe the baby prior to actually turning the transmitter on. The monitor, upon detecting noise, can be set to play a short recording made by the parents if the noise exceeds the set level. If the noise continues or becomes significantly louder, the playback is stopped and the transmitter is turned on.

A ZiLOG Z86E83 Z8 OTP is the core of the Stages baby monitor.

Circuit Overview

¥ The On/Off Switch connects the 5-volt external power supply to the monitor.

¥ The mode switch is connected to digital input lines on the Z8. These lines are periodically sampled to set the operating mode appropriately.

¥ The Record switch is connected to another digital input. Holding the Record button causes the Z8 to record the audio from the microphone and write it to Flash memory.

¥ The sensitivity setting is controlled by a linear potentiometer and is connected to an ADC channel.

¥ The playback volume is controlled by a linear potentiometer and is connected to another ADC channel.

¥ The microphone is connected through a basic audio amplifier to another ADC channel. The Z8 uses this data differently depending upon the mode of operation.

¥ There are many transmitter circuits to choose from, depending upon required performance levels. This product uses a general transmitter black box.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

107

¥ An audio amplifier connected to a PWM output drives the speaker. The PWM output is RC-filtered to create he audio output signal.

¥ The flash ROM uses a latched address scheme to reduce the number of pins required from the Z8.

Figure 70. Stages Baby Monitor Block Diagram

Wireless

Transmitter

Flash

Memory

PWM

Audio Amp

Audio Amp

Microphone

1 32

Stage

SpeakerZ86E83

Low High

Playback Volume

Low High

Sensitivity

On Off

Power

Record

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

108

Figure 71. Stages Baby Monitor Schematic DiagramW

irele

ss

Tra

nsm

itter

PW

M

Pow

erJa

ck

Dual 8-bit latch

Z86

E83

Fla

sh

Dat

a

Add

ress

+5V

+5V +

5V

+5V

Mod

e

Mod

e

Rec

ord

+5V

+5V

RD

WR

7 . . 0 15 . . 0

Vcc

AV

cc

Gnd

AG

nd

Res

et

XT

AL1

XT

AL2

AC

0

AC

1

AC

2

P31

P32

P33

Not

e: M

inor

com

pone

nts

(byp

ass

caps

, etc

.)

are

om

itted

from

this

sch

emat

ic.

P27

P26

P36

P34

P35

P23

P06

P00

P25

P24. .

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

109

Sun Tracking to Optimize Solar Power Generation Submitted by: Willy Tjanaka

Abstract

To gain optimal efficiency, and hence maximum solar power generation, solar cells must be positioned directly toward the sun. This project, incorporating a ZiLOG Z8E001 processor, offers a solution for tracking the location of the sun and moving the solar cell panel correspondingly. The solar panel attaches to a mechanical fixture that allows the solar panel to rotate vertically and horizontally.

The 13 photosensors are arranged with equal spacing on top of a hemispheri-cally-shaped housing. Each sensor is equipped with an optical filter to prevent the sensor from signal saturation. An A/D converter with a multiplexer samples the sensor signal and sends it to the Z8E001. The Z8E001 controls the vertical and horizontal rotational movement of the solar cell panel using the DC motors. Verti-cal and horizontal absolute encoders provide location feedback to the Z8.

The Z8E00110PSC is the controller chosen for this application. The PWM output on port PB1 provides a control signal for the motors (M1 and M2). Because only one PWM output is available, glue logic is required to control M1 and M2 one at a time. A Low on PB0 selects the horizontal motor (M2). A High on PB0 selects the vertical motor (M1).

B1 is an H-bridge-style motor driver that translates the PWM signal and direction signal to drive a DC motor.

M1 and M2 are the DC motors used to rotate the solar cell panel vertically and horizontally, respectively. B2 and B3 are absolute position encoders to track the position of the solar panel. The outputs of B2 and B3 are connected to the control-ler through serial interfaces (ENC_CLK, ENC_HDATA, and ENC_VDATA).

B5 controls the 13 photosensors arranged on a hemispherical housing. Optical fil-ters are used to reduce the light intensity from the sun and prevent the sensors from saturating. The signal from each sensor is sampled sequentially by the A/D converter (B4). The ADC_SEL0 to ADC_SEL3 signals determine which A/D con-verter channel to sample. Data is transferred to the controller through a serial interface (ADC_CLK and ADC_DATA).

The program scans the signals of all the photosensors (B5) using the A/D con-verter (B4). By knowing the location of each photosensor and comparing all the intensity values to each other, the program determines the location of the sun. The program computes the horizontal and vertical rotations required to move the solar panel. Next, the program selects the horizontal motor (M2) and generates the PWM signal to move the solar panel with the signal from B3 as feedback. Sim-ilarly, the solar panel is rotated vertically by driving the vertical motor (M1) and using B2 as position feedback.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

110

Figure 72. Sun Tracking Block Diagram

VerticalRotationDC Motor

13 Photosensorswith Optical Filters

arranged on aHemispherical Housing

SolarCells

AbsolutePositionEncoder

MotorDrivers

AbsolutePositionEncoder

HorizontalRotationDC Motor

Z8E001A/D

Converter

SUN

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

111

Figure 73. Sun Tracking Schematic Diagram

DO

UT

CLK

SE

L0

SE

L1

SE

L2

SE

L3

PS

1

PS

2

PS

3

PS

4

PS

5

PS

6

PS

7

PS

8

PS

9

PS

10

PS

11

PS

12

PS

13

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

B5

13 P

hoto

sens

ors

on a

Hem

isph

ere

Pho

to S

enso

rs a

nd a

n A

/D C

onve

rter

with

an

Inpu

t Mul

tiple

xer

B4

13 C

hann

el A

/D C

onve

rter

AIN

1

AIN

2

AIN

3

AIN

4

AIN

5

AIN

6

AIN

7

AIN

8

AIN

9

AIN

10

AIN

11

AIN

12

AIN

13

14 15 16 17 18 19

C2

1µF

+

AM1

DC

Mot

or

Dat

a C

lock

B2

Abs

olut

eE

ncod

er

U2B

74H

CT

02

U2A

74H

CT

02

U2C

74H

CT

02U

2D74

HC

T02

12 3

45 6

108 9

1311 12

C5

10µ

F

+

+5V

VC

C

+5V

C1

0.1µ

F

D1

1N41

48R

110

0kR

21k

S1

SW

PB

C4

15pF

C3

15pF

Y1

10M

Hz

C1

0.1µ

F

+5V

+5V

P1

Pow

er C

onn

1 2

V D

IR

V P

WM

H D

IR

H P

WM

8 7 6 5

VM

+

VM

Ð

HM

+

HM

Ð

1 2 3 4

VC

C

VS

S

RS

T

XT

AL2

XT

AL1

18 1 2 3 4 13 12 11 10 9 8 7 6

PW

M S

ELE

CT

PW

M S

IGN

AL

PW

M V

DIR

PW

M H

DIR

EN

C C

LK

EN

C H

DA

TA

EN

C V

DA

TA

AD

C D

AT

A

AD

C C

LK

AD

C S

EL0

AD

C S

EL1

AD

C S

EL2

AD

C S

EL3

U1

Z8E

0011

0PS

CD

IP-1

8

PB

0

PB

1

PB

2

PB

3

PB

4

PA

0

PA

1

PA

2

PA

3

PA

4

PA

5

PA

6

PA

7

14 15 5 16 17

+ - AM2

DC

Mot

or

Ver

tical

Rot

atio

n M

otor

and

Pos

ition

Enc

oder

B1

H-B

ridge

Mot

or D

river

Hor

izon

tal R

otat

ion

Mot

oran

d P

ositi

on E

ncod

er

Dat

a C

lock

B3

Abs

olut

eE

ncod

er

1 2

+ -

1 2

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

112

Tandy Light ControlSubmitted by: Jerry Heep

Abstract

The Tandy Corporate headquarters building is a two-tower complex located in downtown Fort Worth, Texas. There are over 1800 lamp sockets on the east and west tower shear walls. Designed to accomodate 40-watt lamps, the sockets are arranged in an array that is six across at the upper levels and pyramid down to 14 across at the third-floor level. A strip of lamps, six wide, is used to display public service messages, for example: United Way, Stock-Show, May Fest, and Think Best. Prior to 1998, adding or removing the light bulbs from the sockets created these messages. Due to the height above street level, window washers from a local company were hired to build messages.

A better system was developed using Z8 OTPs. This system allows the building engineer to control these Tandy Center lights by computer.

The system consists of a master computer, two custom light computers, and 420 lamp controller boards. Each controller board contains a Z86E08 OTP, and can control up to five lamps. Twelve boards are used on each floor of both towers.

The master computer, a conventional PC, is located in the Tandy Center engi-neering office. This computer runs a Visual Basic program to allow message cre-ation, editing, and downloading. The message is formed by using a predefined library of letters, or by clicking individual lamps on and off. Once the message design is complete, it is compiled and downloaded to the two light computers, which are located on the tenth floor of each tower. The download is accomplished with standard 1200 baud RS-232, using a very simple packet protocol. There is no hardware handshaking.

There are slightly more than 50 branch circuits feeding the lamps in each tower. Each branch may contain 18 to 30 lamps. The light computer takes the lamp data downloaded from the master computer and converts it into lamp locations. The light computer signals individual lamp controllers using the AC power source as a medium.

The controllers can display simple messages or can be programmed to display up to eight screens that are separated by up to 255 seconds of display time per screen. The Z8 knows 16 light commands.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

113

Figure 74. Tandy Light Control Block Diagram

Six

Z8

Ligh

tC

ontr

olle

rs

Exi

stin

g W

ire

19th

Flo

or30

Lam

ps

Six

Z8

Ligh

tC

ontr

olle

rs

18th

Flo

or18

Lam

ps

Fift

yC

ircui

tB

reak

ers

Fift

yS

olid

-Sta

teR

elay

s

Tow

er 1

Ligh

tC

ompu

ter

Pha

se A

Ref

eren

ce

Thr

ee P

hase

Pow

er

Six

Z8

Ligh

tC

ontr

olle

rs

17th

Flo

or18

Lam

ps

Six

Z8

Ligh

tC

ontr

olle

rs

4th

Flo

or24

Lam

ps

19th

Flo

or30

Lam

ps

18th

Flo

or18

Lam

ps

17th

Flo

or18

Lam

ps

5th

Flo

or24

Lam

ps

Six

Z8

Ligh

tC

ontr

olle

rs

Six

Z8

Ligh

tC

ontr

olle

rs

Six

Z8

Ligh

tC

ontr

olle

rs

Six

Z8

Ligh

tC

ontr

olle

rs

Exi

stin

g W

ire

1100

Fee

t, D

ual S

hiel

ded

Tw

iste

d P

air

1200

Bau

d, R

S-2

3210

0 F

eet D

ual,

Shi

elde

d T

wis

ted

Pai

r12

00 B

aud,

RS

-232

Exi

stin

g W

ireE

xist

ing

Wire

EAST WALL

WEST WALL

TA

ND

Y T

OW

ER

1

Six

Z8

Ligh

tC

ontr

olle

rsExi

stin

g W

ire 20th

Flo

or30

Lam

ps

Six

Z8

Ligh

tC

ontr

olle

rs

18th

Flo

or18

Lam

ps

Fift

y-F

our

Circ

uit

Bre

aker

s

Fift

y-F

our

Sol

id-S

tate

Rel

ays

Tow

er 2

Ligh

tC

ompu

ter

Pha

se A

Ref

eren

ce

Six

Z8

Ligh

tC

ontr

olle

rs

17th

Flo

or18

Lam

ps

Six

Z8

Ligh

tC

ontr

olle

rs

3rd

Flo

or24

Lam

ps

Sam

e as

Wes

t Wal

l

Exi

stin

g W

ire

EAST WALL

WEST WALL

TA

ND

Y T

OW

ER

2

Mas

ter

Com

pute

r

Loca

ted

in B

uild

ing

Eng

inee

r's O

ffice

Com

1C

om2

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

114

Figure 75. Tandy Light Control Schematic Diagram

C6

30P

C7

30P

Y1

147

6

3.57

9545

MH

z

Cut

res

isto

rs to

cod

e bo

ard

P27

P26

P25

P24

P23

P22

P21

P20

P31

P32

P33

P00

P01

P02

4 3 2 1 18 17 16 15 8 9 10 11 12 13

R9 100k

R10 100k

R11 100k

R14

4

4

2 1

32

1

R13

R12

Z86

E08

12P

SC

GND

XTAL1

VCC

7654321

C3

5 V

OLT

S

DA

TA

NO

TDA

TA

CLO

CK

DA

TA

CLO

CK

RE

LAY

DR

IVE

PIN

2

PO

WE

R

PO

WE

R

HID

AT

AN

OT

RE

LAY

PW

R

RE

LAY

PW

R

BLA

CK

BLA

CK

BLA

CK

BLA

CK

WH

ITE

BLA

CK

RE

LAY

PW

R

RE

LAY

DR

IVE

PIN

3

RE

LAY

DR

IVE

PIN

4

RE

LAY

DR

IVE

PIN

5

LAM

PP

WR

PIN

6

LAM

PP

WR

PIN

5

LAM

PP

WR

PIN

4

LAM

PP

WR

PIN

3

LAM

PP

WR

PIN

2

RELAYDRIVEPIN6

U3

5

.1

XTAL2

C5

1000

16

+C4

.01

D5

1N47

324.

7V

760

25W

Hea

tsin

kR

6

Hea

tsin

k1.

5K 1

0W

R5

D4

1N40

02

D3

1N75

04.

7V

R2

51k

R1

51k

R4

51k

D6

1N52

304.

7V

C1

1000

16

D1

1N47

4010

V

R8

51k

10 V

OLT

SP

OW

ER

R3

5.1k

2W

WH

ITE

4

2 1

3

4

2 1

3

4

2 1

3

4

2 1

3

+C

2.1

GND

IN1

2

3

U1

LM78

M05

OU

T

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

115

Temperature Measuring DeviceSubmitted by: Hong Yu Qing

Abstract

The purpose of this Z8-based system is to measure temperature in a simple and precise way. A 9-volt battery powers the temperature-measuring device, eliminat-ing the use of complex wiring.

The Z8 features two analog comparators that measure absolute temperature. An IrDA encoder sends the measured value through an infrared LED. A notebook computer with an IrDA interface receives the IrDA serial-infrared data.

The AD590 temperature sensors IC1 and IC2 generate a constant current that is proportional to absolute temperature. R1 and R2 determine the reference voltage VREF. The VREF is connected to the comparatorÕs inverting input (P3.3). Lines P2.5 and P2.6 are configured as outputs.

In the beginning of every cycle, capacitor C1 is discharged through D1 by setting P2.5 to Low. When the Z86E04 timer turns on, P2.5 is set to High. C1 is charged with constant current. The constant current is produced by the IC1 temperature sensor and is proportional to the absolute temperature until the voltage reaches VREF. As the comparator interrupt takes place, the timer stops and P2.5 is set to Low and C1 starts discharging.

The absolute temperature (t) equation is:

T = C x V REF ÷ T

where T is the time C1 takes to charge.

The measured temperatures are encoded using a software IrDA encoder, accord-ing to Infrared Data Associated protocols. The encoded measured temperatures are sent via infrared LEDs D3 and D4. S1 and S2 select the communicating baud rate. The data sending cycle is selected by S3 and S4.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

116

Figure 76. Temperature Measuring Device Block Diagram

TemperatureSensor (I)

InfraredLED

IRDA EncodeSignal

TemperatureSensor (II)

Baud RateSelector

ReferenceVoltage

FrequencySelector

Z86E04

(1 KB 0TP)

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

117

Figure 77. Temperature Measuring Device Schematic Diagram

VR

EF

P2.

5V

CC

3

2

1IC

3

D1

104

104

470µ

/10V

D2

P2.

6

P3.

1

P3.

2

P3.

3

XT

AL2

XT

AL1

GN

D

PA

2.7

PA

2.0

PA

2.1

PA

2.2

PA

2.3

Z86

E04

T

R4

S1

D3

D4

S2

S3

S4

9VB

AT

TE

RY

R1

C2

C1

27P

x212M

R2

IC2

IC1

AD

590

x2

R3

78L0

5

S1

S2

BA

UD

RA

TE

OF

F

ON

OF

F

ON

OF

F

OF

F

ON

ON

600

1200

2400

4800

S3

S4

FR

EQ

UE

NC

Y

OF

F

ON

OF

F

ON

OF

F

OF

F

ON

ON

2 S

EC

ON

D

1 S

EC

ON

D

1/2

SE

CO

ND

1/4

SE

CO

ND

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

118

Transmission TrainerSubmitted by: Robert Ashby

Abstract

The Transmission Trainer enables CDL (Commercial DriverÕs License) students to learn to shift the gears of large trucks in a classroom setting prior to actual high-way experience driving a truck, where inexperience may potentially be hazardous on public roads.

The Transmission Trainer consists of mock-up clutch, brake, and accelerator ped-als. Mounted to the clutch is a momentary switch that closes when the clutch is activated. The brake and accelerator pedals include mounted potentiometers that reflect the position of the pedal.

A transmission tower set next to the driver includes momentary switches that close as the user attempts to shift into any one of the six positions of the transmis-sion. The tower also includes solenoids that, when activated, prevent the gear shift from going into position. A small motor with an offset weight attached to the gear shift provides the realistic vibration when shifting gears.

A set of displays provides feedback of RPM, speed, incline of the road, and weight of the vehicle. The instructor can use a set of provided buttons to adjust the weight or incline while the driver experiences different situations and different responses of the vehicle to different situations.

Reading of the accelerator and brake is accomplished using the time to charge a capacitor method of A/D conversion. A small speaker or piezoelectric buzzer pro-vides the changing engine noise (using TOUT mode).

The ZiLOG chip can easily figure the mathematics to provide the driver with a realistic situation in shifting that can take years to perfect in the real world of the highway. Factors that are taken into account are incline, weight of vehicle, road speed, and position of the accelerator pedal. The gears must be closely matched in order to complete the shift.

The feedback of motor sound, RPM and speed gauges, and the vibration on the gear shift allows students to learn shifting techniques in a variety of situations without spending large amounts of time and money with an actual vehicle. It is ideal to be able to demonstrate this method in a classroom situation, which could save the driver and teaching institution thousands of dollars in time and money and prevent repairs on vehicles.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

119

Figure 78. Transmission Trainer Block Diagram

RP

MCO

NS

OLE

AS

SE

MB

LY

Clu

tch C

lutc

hS

witc

h

MP

H

INC

LIN

E

WE

IGH

T

Slid

eP

oten

tiom

eter

Slid

eP

oten

tiom

eter

Sol

enoi

ds(e

xten

ded)

Sen

sing

switc

hed

Ped

alA

ssem

bly

Tra

nsm

issi

onT

ower

Con

sole

Ass

embl

yC

hair

Hi-L

oS

witc

hIn

clin

e�U

pIn

clin

e�D

own

Wei

ght

Up

Wei

ght�

Dow

n

Bra

keA

ccel

erat

or

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

120

Figure 79. Transmission Trainer Schematic Diagram

R14

13

2C

AP

_DIS

CH

AR

GE

1k

C2

1µF

XT

AL1

XT

AL2

RD

/WR

ZA

S

ZD

S

RE

SE

T

P30

P31

P31

P33

P34

P35

P36

P37

GN

D

11 26 27 30 34 5 6 7 10 28 29 32 33 8 9 12 13 35 36 37 38 39 2 3 4

VC

C

P00

P01

P02

P03

P04

P05

P06

P07

P10

P11

P12

P13

P14

P15

P16

P17

P20

P21

P22

P23

P24

P25

P26

P27

15 14 1 20 40 21 25 16 17 18 19 22 24 23 31

U1

Z86

E40

RS

1

10K

R12

10k

R3

10k

1%R2

5.63

k1%

D1

1N41

48

Q8

2N44

01

R9

SV

DC

13

2C

AP

_DIS

CH

AR

GE

1k

AC

CE

LÐW

IPE

R

SV

DC

SV

DC

SV

DC

Q4

2N44

01

R7

SV

DC

13

2

16M

HZ

X1

AC

CE

L_R

EA

D1k

AC

CE

LÐW

IPE

R

Q2

2N44

01

R8

SV

DC

13

2B

RA

KE

_RE

AD

1k

BR

AK

EÐW

IPE

R

Q3

2N44

01

R4

SV

DC

PIE

ZO

BU

ZZ

ER

13

PB

1

2S

PE

AK

ER

1kQ

12N

4401

R5

100k

R1

SW

1

SW

-CO

NT

AC

T-.

40

1k

SV

DC

R15

13

2C

AP

_DIS

CH

AR

GE

1k

AC

CE

LER

AT

OR

BR

AK

E

Q9

2N44

01

R10

SV

DC

13

2C

AP

_DIS

CH

AR

GE

1k

AC

CE

LÐW

IPE

R

Q5

2N44

01

R13

SV

DC

13

2

CA

P_C

ALI

BR

AT

E

1kQ

72N

4401

R11

SV

DC

13

2

CC

W

CW

CA

P_C

ALI

BR

AT

E1k

AC

CE

L_W

IPE

R

AC

CE

LER

AT

OR

Q6

2N44

01

C1

0.1µ

F

C3

1µF

R16

10k

R6

1k

CC

W

CW

BR

AK

E_W

IPE

R

BR

AK

E

SE

NS

E0

SE

NS

E1

SE

NS

E2

SE

NS

E3

SE

NS

E4

2 3 4 5 6 7 8 9 10

R R R R R R R R R

SE

NS

E0

SE

NS

E1

SE

NS

E2

SE

NS

E3

SE

NS

E4

SE

NS

E5

HI/L

O_S

EN

SE

CLU

TC

H

SE

NS

E5

SO

LEN

OID

0

RE

SE

T

SO

LEN

OID

1

SO

LEN

OID

2

RE

SE

T

BR

AK

E

AC

CE

LER

AT

OR

SO

LEN

OID

3

SO

LEN

OID

4

SO

LEN

OID

5

HI/L

O_S

EN

SE

CLU

TC

H

INC

LIN

E_U

P

INC

LIN

E_D

OW

N

AC

CE

L_R

EA

D

BR

AK

E_R

EA

D

SC

L

SD

A

WE

IGH

T_U

P

WE

IGH

T_D

OW

N

CA

P_C

ALI

BR

AT

E

CA

P_D

ISC

HA

RG

E

SP

EA

KE

R

VIB

RA

TO

R

C1

RS

2

10K

SV

DC

2 3 4 5 6 7 8 9 10

R R R R R R R R R

INC

LIN

E_U

P

INC

LIN

E_D

OW

N

WE

IGH

T_U

P

WE

IGH

T_D

OW

N

C1

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

121

UFO Flight Regulation SystemSubmitted by: Martin Gundel

Abstract

The heart of the UFO Flight Regulation System is a ZiLOG Z86E08 microcontrol-ler. Because the receiver of this radio-control system is sensitive to electromag-netic interference, the Z8 operates in low-EMI mode with a clock frequency of 4MHz.

The versatile interrupt capability of the Z8 makes it possible to measure the pulse width of the sensor and generate 4 PWM output signals to drive the motors.

For sensing the inclination of an aircraft, a two-axis acceleration-sensor, the Ana-log Devices ADXL202, is employed. The output is a PWM signal with a pulse width between 2.5 to 7.5ms and a frequency of about 100Hz; making it possible for the UFO to accelerate at a rate of ±2g. If the sensor is at plane level, the out-put pulse is about 5ms long. An acceleration of 1g is equal to a pulse variation of 1.25ms. This variation corresponds to an inclination of 90 degrees. To measure an inclination of one degree, there must be a resolution of 13 microseconds or better. Timer 0 is clocked by 1 MHz, to achieve a better resolution.

Two radio control channels move the UFO in the X and Y directions. Another channel determines the average speed of the motors for take-off and landing. The signals of the RC unit are also pulses, with a pulse width between 1 and 2 milli-seconds. The necessary resolution to obtain a good regulation is 6 bits.

The four motors are driven by four PWM output stages. The Z8 microcontroller software calculates the necessary impulse width for the motors to keep the UFO on a plane level.

Depending on the RC signals, the motor speed is changed slightly to move the aircraft. The output PWM signals are generated under the control of Timer 1.

A soft start for the motors is absolutely necessary. The PWM signal of the motors attains the same frequency, but are slightly shifted, to prevent high current peaks.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

122

Figure 80. UFO Flight Regulation System Block Diagram

2-AxisAcceleration Sensor

Radio Control Receiver

Glue - Logic Lo Batt

Z86E08Microcontroller

PushButton

LEDBuzzer

P2.4

P3.3

P3.2

X

XY LOBATSEL_XY CH

AN

1

CH

AN

2

CH

AN

3

IRQ

2

Y CH1 CH2 CH3

P2.7 P0.0 P0.1 P0.2 P3.1 P2.5

P2.6 P2.0 P2.1 P2.2 P2.3

Motor-DriverStages

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

123

Figure 81. UFO Flight Regulation System Schematic Diagram

XT

AL1

XT

AL2

P20

P21

P22

P23

P24

P25

P26

P27

P31

P32

P33

P00

P01

P02

MO

T 1

MO

T 2

MO

T 3

MO

T 4

BU

ZZ

ER

LOB

AT

LED

SE

L X

Y

IRQ

2

XY

B I

N

CH

AN

1

CH

AN

2

CH

AN

3

7

CR

14M

Hz

C7

22pF

C6

22pF

6

15 16 17 18 1 2 3 4 8 9 10 11 12 13

IC1A

4030

D1

CH

AN

1

IRQ

2

CH

AN

2

31 2

R1

JP1

RC

-Cha

nnel

DIR

X

RC

-Cha

nnel

DIR

Y

RC

-Cha

nnel

SP

EE

D

12 131N

4148

Z86

C08

C1

1nF

XO

UT

YO

UT

Y_F

ILT

X_F

ILT T2

VD

DV

DD

ST

VT

PN

CN

CN

CC

OM

CO

M

14 13 3 2 1 6 8 7 4

10 9 11 12 5

AD

XL2

02

IC5

LM78

L05

IC4

IC1A

4030

11

VC

C

VC

C

VC

C

VC

C

47K

21

JP4

UB

AT

UB

AT

GN

D21 JP

5M

OT

OR

1

21

IC1C

4030

IC2A

4011

D3

108 9

R3

JP3

1N41

48C

11n

F

BZ

1

BU

ZZ

ER

LED

1

RE

D

47K

R8

470R

21

IC1B

4030

D2

45 6

R2

JP2

1N41

48C

11n

F

C4

47nF C5

47nF

47K

R4

47K

R6

1K

R5

1M2

21

CH

AN

3

SE

L X

Y

MO

T 1

XY

B I

N

B I

N

LOB

AT

LED

IC2B

4011

10

1311

12

SW

1

SW

Pus

hbut

ton

64

5

32

VO

GN

D

D4

Q2

IRF

540

1

23

BY

TO

8

31

2

VI

1

98

IC2D

4011

IC2C

4011

VC

C

C8

100n

FC

922

µF

/10V

R7

10K

C9

22µ

F/1

0V

C11

100n

FC

1022

0µF

/16V

JP6

MO

TO

R2

21M

OT

2

D5

Q3

IRF

540

1

23

BY

TO

8

JP7

MO

TO

R3

21M

OT

3

D6

Q4

IRF

540

1

23

BY

TO

8

JP8

MO

TO

R4

21M

OT

4

D7

Q5

IRF

540

1

23

BY

TO

8Q

1B

C23

8

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

124

Vehicle Anti-Theft ModuleSubmitted by: James Doscher and Harvey Weinberg

Abstract

Traditional car alarms protect a vehicle from theft when a door is opened, a win-dow is broken, or the ignition is disabled. These alarms cannot protect from being towed by a tow or flatbed truck, or the wheels from being stolen. These chal-lenges can be solved by adding a tilt-sensing module to the alarm system. The tilt sensor must be able to resolve very small changes in the inclination of the car.

It is possible to free the wheels of a sports car by lifting one end of the car as little as 1.5 degrees. The module must be intelligent enough to reject minor long-term changes in tilt due to settling suspension, melting snow, and (relatively) large short-term movement due to wind or passing trucks.

The Z86C06 provides the system intelligence, while the tilt sensor is the ADXL202 dual-axis accelerometer from Analog Devices. Conventional liquid tilt sensors are inconvenient to use because of their fragility. In addition, the high resolution required in this application would necessitate a high-accuracy A/D converter (12-bit or better) if using a liquid tilt sensor. The ADXL202 outputs a 14-bit accurate PWM signal that is proportional to the inclination. The PWM signal is read by the Z86C06 by using both timers simultaneously. One timer is used with the 6-bit prescaler, while the other timer counts at full speed. The concatenation of the two timers results in a 14-bit timer range.

A software temperature-compensation method must be considered, because the tilt sensor grows in temperature sensitivity such that changes in temperature may appear to be changes in inclination. An intelligent algorithm can sample one set of tilt samples measured every half-second, and compare the result to the previous set of samples. If the rate of change of tilt (da/dt) does not fall within a specified window (for example, 0.0125 to 0.3 degrees per second), no alarm signal is issued. Because the temperature does not change significantly in 0.5 seconds, temperature drift is ignored. The windowing function also rejects false alarms due to minor long-term and large short-term tilt changes.

Low power consumption (1mA average current) is required, because the alarm runs while the car is off. Because sampling only occurs twice per second, the Z86C06 is in STOP mode most of the time to conserve power. To reduce the power consumption even further, the Z86C06 cycles power to the ADXL202, turn-ing it off between sample periods.

Communication to the main alarm module occurs via the Z86C06 SPI interface.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

125

Figure 82. Vehicle Anti-Theft Module Block Diagram

Figure 83. Vehicle Anti-Theft Module Schematic Diagram

POWER

ACCELERATION SPI ALARM �INTERFACE

ADXL202 Z86C06

Vdd

Xout

Yout

Xfilt

Yfilt

120K

Rset

COM

ADXL202

P22

P23

P24

Vcc

P35

P21

P20

GND

P34

Z86C06

.47µF .47µF

47µF

4MHz

47µF

+5V

SPI SerialInterface

.47µF

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

126

Windmill CommanderSubmitted by: Nathan Novosel

Abstract

Using the Z8 OTP microcontroller to serve as a windmill commander to heat water to a comfortable temperature can extend the swimming season of many home pools. The Z8 microcontroller harnesses the maximum wind energy by controlling the windmill blade pitch and the alternator output current. The resistive load for heating can receive a wide range of electric current without constraint on fre-quency, voltage, or current levels. As a result, the load is the ideal type for a vari-able-speed alternator, driven by the wind.

The Z8 microcontroller, the heart of the windmill commander, responds to control inputs, monitors system status, and controls the output power by both alternator control and windmill blade pitch control. Additionally, a battery charger function is included in the Z8 program to maintain battery power for periods of decreased wind activity.

The Z8 microcontroller determines the speed of the alternator, and the output power by measuring the voltage across the load resistors. Using the flash A/D converter in the Z86E83, the instantaneous voltage drops across the load resis-tors can be measured. The output power can be determined by averaging over several AC cycles. The temperature is measured by utilizing two analog channels that receive a differential voltage from a thermistor in the pool water. The flash converter allows accurate differential measurements, because the high speed of the flash converter can minimize sampling time between channels.

The required output temperature is set by push-button control, with one button serving to increment and the other to decrement the target temperature. A two-digit LED display shows the temperature setting for five seconds following push-button entry, and then returns to power-off state.

The Z8 microcontroller is programmed to determine the state of the system, based on the alternator speed and output power. Using coefficients for the partic-ular windmill hardware that are programmed into the OTP memory, the windmill commander can determine how to adapt to the particular conditions at any given moment.

The commander controls the state of the system by varying the field current to the alternator by using pulse-width modulation (PWM) and a power MOS transistor. The field current directly controls the output current of the alternator that causes the mechanical load to the windmill to change proportionally. The windmill com-mander can adjust the blade pitch to adapt to both the load and the wind condi-tions as determined by the propeller speed (derived from the alternator frequency). The position of the blade pitch is determined by a potentiometer

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

127

located in the drive actuator configured as a resistor divider to provide an analog voltage that corresponds to the pitch position.

The power supply utilizes a 12-volt battery, and a battery charger function is built into the Z8 program to maintain battery voltage. The battery voltage is divided and measured by another channel of the Z8 A/D converter, and the microcontroller triggers an SCR to supply current to the battery via a ballast resistor.

Figure 84. Windmill Commander Block Diagram

Pitch ControlActuator Propeller

Alternator

PWMField Control

3-PhaseRectifier

ActuatorPosition Sensor

BidirectionalPower Bridge

BatteryCharger

Battery

Temperature SetpointInput

VoltageRegulator

TemperatureSensor

PowerResistors

Temperature SetpointDisplay

Z86E83

PWM

PWM

battery voltage

POOL

position measure

voltage & frequency measure

temperature measure

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

128

Figure 85. Windmill Commander Schematic Diagram

AC

0

AV

CC

AG

ND

P06

P05

P04

P03

P02

P01

P00

P35

P36

P34

P33

VC

C

VC

C

1K1µ

FA

C1

AC

2

AC

3

AC

4

AC

5

AC

6

AC

7

RE

SE

T

XT

AL1

XT

AL2

GN

D

VC

C

P31

P32

a b c d e f g

A B C D LT BL

LE

Q2

Q1

2.7K

2.7K

a b c d e f g com

Z86

C83

PO

OL

7805

2.7K

25K

The

rmis

tor

Sha

ft po

sitio

n se

nsor

DC

pitc

h co

ntro

l �ac

tuat

orA

ltern

ator

Pro

pelle

r

Hea

ting

elem

ents

2.7K

910

9.1K

D3

D2

VC

C

2.7K

2.7K

D1

Z1

2.7K

M1

X3

20

SC

R1 + Ð

2.7K

1K1µ

F

9.1K

910

1µF

1µF

1µF

22pF

4.33

MH

z

Tem

pera

ture

disp

lay

Tem

pera

ture

adju

st

22pF

1µF

1µF

VC

C

VC

C

a b c d e f g com

X1

M3

X2

M2

M4

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

129

Wireless AccelerometerSubmitted by: Mark Nelson

Abstract

One of the frustrations of playing video games is the tangle of wires connected from the computer to the controller. Another frustration is the wire length that limits the distance and freedom of playing the games. A solution to this problem is to use a ZiLOG Z8 microcontroller, Analog Devices accelerometer, and the Abacom transmitter-receiver pair for wireless operation.

The accelerometer is the Analog Devices micromachined ADXL202, which is an A2G device used for measuring tilt in two axes, making it ideal for joystick applica-tions. The output is pulse-width modulated and easily read by the microcontroller.

The heart of this system is the ZiLOG Z86C06 microcontroller, which samples the accelerometer digital outputs and the states of six push-buttons. It stores the instantaneous values into a register where it is converted into serial format to be output to the transmitter section. The high clock frequency of the microcontroller enables the sampling to be fast enough to recreate the original PWM information from the accelerometer and push-buttons. Serial transmission at 9600 baud ensures that the operator does not notice any delay in the video.

The Abacom XRT418 transmitter offers a maximum data rate of 10Kbps and operates at 418MHz. The serial data from the microcontroller is applied to the dig-ital input and is transmitted to a matching receiver at the PC. Its range is 100 meters, suitable for use with very large monitors.

The Abacom RCVR 418 receiver offers analog and digital outputs. Test results indicate that reconstruction of the input signal is very good. The design uses another Z8 microcontroller to translate the incoming serial stream into a digital output byte. The accelerometer bits are converted to current sources to drive the game port inputs.

This design highlights the many functions and processing capabilities of the Z8 microcontroller. The Z8 collects PWM information, converts it to a standard serial stream, and recreates the original data states at a remote location. With further programming at the receiver, the Z8 can adapt to other game protocols.

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

130

Figure 86. Wireless Accelerometer Block Diagram

8-bit digital outputLynx

ReceiverZ8

CPU

6-bit input

ADXL202Accelerometer

LynxTransmitter

Z8CPU

x

y

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

131

Figure 87. Wireless Accelerometer Schematic Diagram

x

y

PWM Outputs

XL202

P36

5

5

3

1 4

13Serial Out

VCC

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

15

16

17

18

24

25

26

27

10

9

12

11

Z86C06

TXM418

2

0.47µF125K 0.47µF

7

7

6

Digital

Inputs

Data

Out

5

13 14

VCC

X2 X1

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

15

16

17

18

24

25

26

27

Z86C06

7

X2

P36

X1

1

5

2 4

VCC

RX418

5

13

VCC

7

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

132

Index

Numerics64-byte arrays . . . . . . . . . . . . . . . . . . . . . . .57

AA/D conversion . . . . . . . . . . . .24, 75, 83, 118A/D converter 15, 24, 72, 100, 109, 124, 126,

127Abacom . . . . . . . . . . . . . . . . . . . . . . . . . . .129absolute encoders, vertical and horizontal 109absolute temperature . . . . . . . . . . . . . . . .115AC coupling . . . . . . . . . . . . . . . . . . . . . . . . .75AC line frequency . . . . . . . . . . . . . . . . . . . .24AC power source . . . . . . . . . . . . . . . . . . .112accelerometer . . . . . . . . . . . . . . .91, 124, 129

dual-axis . . . . . . . . . . . . . . . . .43, 91, 124three-axis . . . . . . . . . . . . . . . . . . . . . . .53

accelerometer-based stride sensor . . . . . . .72access key code . . . . . . . . . . . . . . . . . . . . .27actuator . . . . . . . . . . . . . . . . . . . . . . . . .9, 127ADC channel . . . . . . . . . . . . . . . . . . . . . . .106ADC, single-slope . . . . . . . . . . . . . . . . .40, 97address scheme, latched . . . . . . . . . . . . .107air conditioner, electronic . . . . . . . . . . . . . .83air temperature . . . . . . . . . . . . . . . . . . . . . .38Air-Core meter . . . . . . . . . . . . . . . . . . . . . . .4aircraft inclination . . . . . . . . . . . . . . . . . . .121alarm mode . . . . . . . . . . . . . . . . . . . . . . . . .89alarm system . . . . . . . . . . . . . . . . . . . . . . .124algorithmically-generated patterns . . . . . . .57algorithms, iterative . . . . . . . . . . . . . . . . . . .72algorithms, recognition . . . . . . . . . . . . . . . .91alternator output current . . . . . . . . . . . . . .126ambient light . . . . . . . . . . . . . . . . . . . . . . . .12ambient temperature range . . . . . . . . . . . . .51ambient water temperature . . . . . . . . . . . . .15amplitude, shock . . . . . . . . . . . . . . . . . . . . .75analog circuitry . . . . . . . . . . . . . . . . . . .66, 72analog comparator .1, 24, 31, 38, 60, 83, 115analog control voltage . . . . . . . . . . . . . . . . .24

Analog Devices . . . . . . . . . 91, 121, 124, 129analog inputs . . . . . . . . . . . . . . . . . . . . . . . 20analog processing . . . . . . . . . . . . . . . . . . . 24analog voltage . . . . . . . . . . . . . . . . . . . . . . 24analog-to-digital converters . . . . . . . . . . . . 72anti-short cycle . . . . . . . . . . . . . . . . . . . . . 20area code . . . . . . . . . . . . . . . . . . . . . . . . . 66ASC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20asynchronous bus . . . . . . . . . . . . . . . . . . . 27attack-sustain-decay envelope . . . . . . . . . 69audio amplifier . . . . . . . . . . . . . . . . . .106-107authentication . . . . . . . . . . . . . . . . . . . 48, 91auto mode . . . . . . . . . . . . . . . . . . . . . . . . . 97automatic window controller . . . . . . . . . . . 97automobile driver . . . . . . . . . . . . . . . . . . . . 80automobile engine . . . . . . . . . . . . . . . . . . . . 4Automotive Rear Sonar . . . . . . . . . . . . . . . . 1Automotive Speedometer, Odometer,

and Tachometer . . . . . . . . . . . . . . . . . . 4Autonomous Micro-Blimp Controller . . . . . . 6autonomous mobile nodes . . . . . . . . . . . . . 6autonomous robot . . . . . . . . . . . . . . . . . . . 12axle assembly . . . . . . . . . . . . . . . . . . . . . . . 4

Bballast resistor . . . . . . . . . . . . . . . . . . . . . 127barometric pressure . . . . . . . . . . . . . . . . . 38batch process . . . . . . . . . . . . . . . . . . . . . . 27battery rail . . . . . . . . . . . . . . . . . . . . . . . . . . 9battery voltage . . . . . . . . . . 9, 30, 72, 75, 127Battery-Operated Door-Entry System . . . . . 9bidirectional data serial circuit . . . . . . . . . . 52black box, transmitter . . . . . . . . . . . . . . . 106boiler temperature sensor . . . . . . . . . . . . . 95brake demand . . . . . . . . . . . . . . . . . . . . . . 78BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95bump switches . . . . . . . . . . . . . . . . . . . . . . 12bumper-switch matrix . . . . . . . . . . . . . . . . . . 6bus interface . . . . . . . . . . . . . . . . . . . . . . . 52

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

133

CCadmium Sulfide . . . . . . . . . . . . . . . . . . . .100calibration . . . . . . . . . . . . . . . . . . . . . . . . . .40

scale . . . . . . . . . . . . . . . . . . . . . . . . . . .86car alarms . . . . . . . . . . . . . . . . . . . . . . . . .124car simulator . . . . . . . . . . . . . . . . . . . . . . . .80carrier frequency . . . . . . . . . . . . . . . . . . . . .33carrier signals . . . . . . . . . . . . . . . . . . . . . . . .6carrier, phase-locked . . . . . . . . . . . . . . . . .69cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . .18CDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118CdS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100ceramic magnet . . . . . . . . . . . . . . . . . . . . .75charge time . . . . . . . . . . . . . . . . . . . . . . . . .72CIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33clock I/O . . . . . . . . . . . . . . . . . . . . . . . . . . .33CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6code flexibility . . . . . . . . . . . . . . . . . . . . . . .72coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4color intensity . . . . . . . . . . . . . . . . . . . . . . .57color plane . . . . . . . . . . . . . . . . . . . . . . . . .57command status code . . . . . . . . . . . . . . . . .48Commercial DriverÕs License . . . . . . . . . .118comparator circuit . . . . . . . . . . . . . . . . . . . .97comparator input . . . . . . . . . . . . . . . . . .20, 72composite digital audio signal . . . . . . . . . . .69Compressor Discharge Temperature . . . . .21compressor protector . . . . . . . . . . . . . . . . .20configuration switches . . . . . . . . . . . . . . . . . .6Conrad Electronics . . . . . . . . . . . . . . . . . . .18control voltage . . . . . . . . . . . . . . . . . . . .21, 24

acquisition . . . . . . . . . . . . . . . . . . . . . . .24controlled access . . . . . . . . . . . . . . . . . . . .91controller port pin . . . . . . . . . . . . . . . . . . . .80Convergent Inc . . . . . . . . . . . . . . . . . . . . . .89core temperature . . . . . . . . . . . . . . . . . . . . .53counter/timer . . . . . . . . . . . . . . . . . . .1, 24, 33Crab, The . . . . . . . . . . . . . . . . . . . . . . . . . .12crystal oscillator . . . . . . . . . . . . . . . . . .69, 72current sense resistor . . . . . . . . . . . . . . . . .97

DD/A converter . . . . . . . . . . . . . . . . . . . . . . .69

Dallas Semiconductor . . . . . . . . . . . . . . 9, 89data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 69buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 78display . . . . . . . . . . . . . . . . . . . . . . . . . 80logging . . . . . . . . . . . . . . . . . . . . . . . . . 20security . . . . . . . . . . . . . . . . . . . . . . . . 91transmission . . . . . . . . . . . . . . . . . . . . 80

day-mode time track . . . . . . . . . . . . . . . . . 83DC motors . . . . . . . . . . . . . . . . . . . . . 12, 109DC offset adjustment . . . . . . . . . . . . . . . . . 75DCF77 Clock . . . . . . . . . . . . . . . . . . . . . . . 18DCF77 receiver . . . . . . . . . . . . . . . . . . . . . 18DCF77 Time Radio Signal . . . . . . . . . . . . . 18decelerations . . . . . . . . . . . . . . . . . . . . . . . 51delay circuit . . . . . . . . . . . . . . . . . . . . . . . . 63demodulation . . . . . . . . . . . . . . . . . . . . . . . . 6demultiplexer . . . . . . . . . . . . . . . . . . . . . . . 18Desktop Fountain . . . . . . . . . . . . . . . . . . . 15Diagnostic Compressor Protector . . . . . . . 20dial-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48digital circuits . . . . . . . . . . . . . . . . . . . . . . . 78Digital Dimmer Box . . . . . . . . . . . . . . . . . . 24digital input . . . . . . . . . . . . . . . . . . . . . . . 129

lines . . . . . . . . . . . . . . . . . . . . . . . . . . 106digital notation . . . . . . . . . . . . . . . . . . . . . . 69digital signature analysis . . . . . . . . . . . . . . 91display control . . . . . . . . . . . . . . . . . . . . . . 72display refresh pulses . . . . . . . . . . . . . . . . 83DOF-drive . . . . . . . . . . . . . . . . . . . . . . . . . . 6Door Access Controller . . . . . . . . . . . . . . . 27Doppler effect . . . . . . . . . . . . . . . . . . . . . . 45downcounter . . . . . . . . . . . . . . . . . . . . . . . 97DPRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 78dual-axis accelerometer . . . . . . . . . . . 43, 91duty cycle . . . . . . . . . . . . . . . . . . . 33, 51, 57

index modulation . . . . . . . . . . . . . . . . . 78

Eearly-warning device . . . . . . . . . . . . . . . . . 20EEPROM . . . . . . . . . . . . . . . 9, 27, 40, 89, 95

serial . . . . . . . . . . . . . . . . . . . . . . . . . . 75electric current . . . . . . . . . . . . . . . . . . . . . 126

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

134

electrical brown-outs . . . . . . . . . . . . . . . . . .20electrical noise immunity . . . . . . . . . . . . . . .78electrolyte capacitor . . . . . . . . . . . . . . . . . .80Electrolytic Capacitor ESR Meter . . . . . . . .30electromagnetic interference . . . . . . . . . . .121electronic air conditioner . . . . . . . . . . . . . . .83electronic art . . . . . . . . . . . . . . . . . . . . . . . .57Electronic Door Control . . . . . . . . . . . . . . . .33electronic fencing . . . . . . . . . . . . . . . . . . . .89emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70encryption . . . . . . . . . . . . . . . . . . . . . . . . . .91energy densities . . . . . . . . . . . . . . . . . . . . .51engine noise . . . . . . . . . . . . . . . . . . . . . . .118enunciator panel . . . . . . . . . . . . . . . . . . . . .57Equivalent Series Resistance . . . . . . . . . . .30Equivalent-Time Sampling . . . . . . . . . . . . .63equivalent-time waveform . . . . . . . . . . . . . .63ESR . . . . . . . . . . . . . . . . . . . . . . . . . . . .30–32execution time . . . . . . . . . . . . . . . . . . . . . . . .1external . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

interface . . . . . . . . . . . . . . . . . . . . . . . .20external memory . . . . . . . . . . . . . . . . . . . . .78

interface . . . . . . . . . . . . . . . . . . . . . . . .69extreme thermal conditions . . . . . . . . . . . . .51

Ffault conditions . . . . . . . . . . . . . . . . . . . . . .20Fault tolerance . . . . . . . . . . . . . . . . . . . . . .86feedback . . . . . . . . . . . .2, 9, 60, 86, 109, 118

loops . . . . . . . . . . . . . . . . . . . . . . . . . . .75fingerprints . . . . . . . . . . . . . . . . . . . . . . . . .91Firearm Locking System . . . . . . . . . . . . . . .35firmware . . . . . . . . . . . .15, 30Ð31, 60, 66, 75Flash memory . . . . . . . . . . . . . . . . . . . . . .106

chip . . . . . . . . . . . . . . . . . . . . . . . . . . . .69floor sensors . . . . . . . . . . . . . . . . . . . . . . . .12FLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35fluid level . . . . . . . . . . . . . . . . . . . . . . . . . . .63fluid-level sensing . . . . . . . . . . . . . . . . . . . .63fluid measuring probe . . . . . . . . . . . . . . . . .63FM broadcast band modulator . . . . . . . . . .69Forecaster Intelligent Water Delivery Valve 38Fort Worth, Texas . . . . . . . . . . . . . . . . . . .112

freely-rotating axle . . . . . . . . . . . . . . . . . . . . 4frequency generator . . . . . . . . . . . . . . . . . 60fuel tanks . . . . . . . . . . . . . . . . . . . . . . . . . . 63fuel-level applications . . . . . . . . . . . . . . . . 63fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . 97

Ggain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100galvanic . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

isolation . . . . . . . . . . . . . . . . . . . . . . . . 78gear shift . . . . . . . . . . . . . . . . . . . . . . . . . 118Germany . . . . . . . . . . . . . . . . . . . . . . . . . . 18glue logic . . . . . . . . . . . . . . . . . . . . . . 72, 109

HH field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4hand-held remote . . . . . . . . . . . . . . . . . . . 86handset . . . . . . . . . . . . . . . . . . . . . . . . 66, 93handshaking . . . . . . . . . . . . . . . . . . . . . . 112H-bridge . . . . . . . . . . . . . . . . . 1, 12, 100, 109heel angle . . . . . . . . . . . . . . . . . . . . . . . . . 43helium envelopes . . . . . . . . . . . . . . . . . . . . 6high energy densities . . . . . . . . . . . . . . . . 51high-power mode . . . . . . . . . . . . . . . . . . . . 60homing behavior . . . . . . . . . . . . . . . . . . . . . 6HVAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II/O . . . . . . . . . . . . . . . . . . . . 1, 27, 43, 63, 93

expansion . . . . . . . . . . . . . . . . . . . . . . 80interface module, PWM . . . . . . . . . . . . 78lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 69pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 72signal management . . . . . . . . . . . . . . . 69

I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27iButton technology . . . . . . . . . . . . . . . . . . . . 9iChip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Internet functionality . . . . . . . . . . . . . . 48ICMP protocol . . . . . . . . . . . . . . . . . . . . . . 48image buffer . . . . . . . . . . . . . . . . . . . . . . . 57immunity . . . . . . . . . . . . . . . . . . . . . . . . . . 78

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

135

impact velocities . . . . . . . . . . . . . . . . . . . . .51Improved Linear Single-Slope ADC . . . . . .40incandescent lamp . . . . . . . . . . . . . . . . . . .24inclination, aircraft . . . . . . . . . . . . . . . . . . .121Inclinometer . . . . . . . . . . . . . . . . . . . . . . . .35Infrared Data Associated protocols . . . . . .115infrared diode pod . . . . . . . . . . . . . . . . . . . .70infrared receiver . . . . . . . . . . . . . . . . . . . . .86Infrared reflection sensors . . . . . . . . . . . . .12infrared sensor . . . . . . . . . . . . . . . . . . . . . .45input protection . . . . . . . . . . . . . . . . . . . . . .80input voltage . . . . . . . . . . . . . . . . . . . . . . . .97input-output differential . . . . . . . . . . . . . . . .72instrument tuner . . . . . . . . . . . . . . . . . . . . .69Integrated Sailboat Electronic System . . . .43Intelligent Guide for the Blind . . . . . . . . . . .45intelligent peripheral controller . . . . . . . . . .33Internet Email Reporting Engine . . . . . . . . .48Internet functionality, iChip . . . . . . . . . . . . .48Internet Service Provider . . . . . . . . . . . . . .48Introduction . . . . . . . . . . . . . . . . . . . . . . . . . ixinverting peak detector . . . . . . . . . . . . . . . .75IP protocol . . . . . . . . . . . . . . . . . . . . . . . . . .48IPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

bandpass amplifiers . . . . . . . . . . . . . . . .6receiver chip . . . . . . . . . . . . . . . . . . . . .12

IrDA encoder . . . . . . . . . . . . . . . . . . . . . . .115IrDA interface . . . . . . . . . . . . . . . . . . . . . .115IRLEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . .12ISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48iterative algorithms . . . . . . . . . . . . . . . . . . .72

Jjoystick applications . . . . . . . . . . . . . . . . .129

Llamp controller . . . . . . . . . . . . . . . . . . . . .112lamp sockets . . . . . . . . . . . . . . . . . . . . . . .112large color displays . . . . . . . . . . . . . . . . . . .57latched address scheme . . . . . . . . . . . . . .107

Lawrence Livermore Laboratories . . . . . . . 63lead resistance zeroing . . . . . . . . . . . . . . . 30Learn mode . . . . . . . . . . . . . . . . . . . . . . . . . 9LED . . . . . 2, 9, 12, 18, 31, 57, 60, 75, 76, 80,

95, 97, 126LED, infrared . . . . . . . . . . . . . . . . . . . . . . 115light intensity . . . . . . . . . . . . . . . . . . . . . . 109line activity . . . . . . . . . . . . . . . . . . . . . . . . . 66linear integrator . . . . . . . . . . . . . . . . . . . . . 40linear perception . . . . . . . . . . . . . . . . . . . . 24linear potentiometer . . . . . . . . . . . . . . . . . 106linear voltage regulator . . . . . . . . . . . . 72, 80lithium chemistry . . . . . . . . . . . . . . . . . . . . 51lithium-sulfur dioxide batteries . . . . . . . . . . 51load-dump protection . . . . . . . . . . . . . . . . . 64look-up table . . . . . . . . . . . . . . . . . . . . 24, 63low-EMI mode . . . . . . . . . . . . . . . . . . 75, 121low-pass filter . . . . . . . . . . . . . . . . . . . . . . 60LTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51lunar nights . . . . . . . . . . . . . . . . . . . . . . . . 51lunar surface . . . . . . . . . . . . . . . . . . . . . . . 51Lunar Telemetry Beacon . . . . . . . . . . . . . . 51

MMagic Dice . . . . . . . . . . . . . . . . . . . . . . . . . 54magnet, moving . . . . . . . . . . . . . . . . . . . . . . 4magnetic card reader . . . . . . . . . . . . . . . . 27magnetic compass sensor . . . . . . . . . . . . . 72magnetic field strength vector . . . . . . . . . . . 4magnetic field variation . . . . . . . . . . . . . . . 75magnetic field, time-varying . . . . . . . . . . . . 75manual mode . . . . . . . . . . . . . . . . . . . . . . . 97master computer . . . . . . . . . . . . . . . . . . . 112mechanical key . . . . . . . . . . . . . . . . . . . . . . 9Message Cueing mode . . . . . . . . . . . . . . . 45message passing . . . . . . . . . . . . . . . . . . . . 6metronome . . . . . . . . . . . . . . . . . . . . . . . . 69microphone feedback . . . . . . . . . . . . . . . . 60Micropower Impulse Radar . . . . . . . . . . . . 63MIDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69minimum-protection device . . . . . . . . . . . . 20MIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63mixer/demodulator channels . . . . . . . . . . . . 6

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

136

modem module . . . . . . . . . . . . . . . . . . . . . .48Modular Light Display Panel . . . . . . . . . . . .57modulator tuning accuracy . . . . . . . . . . . . .69moisture sensor . . . . . . . . . . . . . . . . . . . . .38MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . .100motion circuitry . . . . . . . . . . . . . . . . . . . . . .86motor stall . . . . . . . . . . . . . . . . . . . . . . . . . .97mounting tilt . . . . . . . . . . . . . . . . . . . . . . . . .72multiplexing . . . . . . . . . . . . . . . . . . . . . .18, 80

Nnasal decongestant . . . . . . . . . . . . . . . . . . .60Nasal Oscillatory Transducer . . . . . . . . . . .60natural rainfall . . . . . . . . . . . . . . . . . . . . . . .38New Sensor Technologies . . . . . . . . . . . . .63noise clamping . . . . . . . . . . . . . . . . . . . . . .80nonlinear response . . . . . . . . . . . . . . . . . . .24nonlinear volume response . . . . . . . . . . . . .63

OObstacle detection . . . . . . . . . . . . . . . . . . .12octal D-latch . . . . . . . . . . . . . . . . . . . . . . . .33odometer . . . . . . . . . . . . . . . . . . . . . . . . . . . .4OEMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20off-hook condition . . . . . . . . . . . . . . . . . . . .66offset weight . . . . . . . . . . . . . . . . . . . . . . .118on-chip RAM . . . . . . . . . . . . . . . . . . . . . . . .57on-hook condition . . . . . . . . . . . . . . . . . . . .66open-drain mode . . . . . . . . . . . . . . . . . . . . . .6operational amplifier, rail-rail . . . . . . . . . . . .40operational amplifiers . . . . . . . . . . . .6, 40, 75operational modes . . . . . . . . . . . . . . . . . . . .6optical filters . . . . . . . . . . . . . . . . . . . . . . .109oscillator frequency . . . . . . . . . . . . . . . . . . .63OTP Selection Guide . . . . . . . . . . . . . . . . . . .xoutput driver . . . . . . . . . . . . . . . . . . . . . . . .60output pulse . . . . . . . . . . . . . . . . . . . . . . .121overvoltage protection . . . . . . . . . . . . . . . . .80

PPAP protocol . . . . . . . . . . . . . . . . . . . . . . . .48

password . . . . . . . . . . . . . . . . . . . . 48, 66, 91pavement-surface deformations . . . . . . . . 45peak detector . . . . . . . . . . . . . . . . . . . . . . . 60

inverting . . . . . . . . . . . . . . . . . . . . . . . . 75voltage . . . . . . . . . . . . . . . . . . . . . . . . . 75

pen device . . . . . . . . . . . . . . . . . . . . . . . . . 91pen movement . . . . . . . . . . . . . . . . . . . . . . 91pen pressure . . . . . . . . . . . . . . . . . . . . . . . 91pen tablets . . . . . . . . . . . . . . . . . . . . . . . . . 91personal computer . . . . . . . . . . . . . . . . . . . 76phase-locked carrier . . . . . . . . . . . . . . . . . 69phase-triggering . . . . . . . . . . . . . . . . . . . . 24Phone Dialer . . . . . . . . . . . . . . . . . . . . . . . 66photointerrupter . . . . . . . . . . . . . . . . . . . . . 12photosensors . . . . . . . . . . . . . . . . . . . . . . 109phototransistor . . . . . . . . . . . . . . . . . . . . . . 12photovoltaic system . . . . . . . . . . . . . . . . . 100piezoelectric buzzer . . . . . . . . . . . . 2, 54, 118piezoelectric speaker . . . . . . . . . . . . . . . . . 60ping-pulse wave . . . . . . . . . . . . . . . . . . . . 45pin-out compatibility . . . . . . . . . . . . . . . . . . 20pitch range . . . . . . . . . . . . . . . . . . . . . . . . . 69Pocket Music Synthesizer . . . . . . . . . . . . . 69polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Popular Science . . . . . . . . . . . . . . . . . . . . 63port pin . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Portable Individual Navigator . . . . . . . . . . 72positioning motors . . . . . . . . . . . . . . . . . . 100Postal Shock Recorder . . . . . . . . . . . . . . . 75potential divider . . . . . . . . . . . . . . . . . . . . . . 9potentiometer, linear . . . . . . . . . . . . . . . . 106power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

consumption . . . . . . . . . . . . . 52, 75, 124management . . . . . . . . . . . . . . . . . . . . 91supply . . . . . . . . . . . 60, 72, 80, 106, 127transistors . . . . . . . . . . . . . . . . . . . . . . 86

power-sink driving . . . . . . . . . . . . . . . . . . . 80PPP protocol . . . . . . . . . . . . . . . . . . . . . . . 48preprogrammed decisions . . . . . . . . . . . . . 51prescaler . . . . . . . . . . . . . . . . . . . . 1, 24, 124Pressure Switch . . . . . . . . . . . . . . . . . . . . 21PRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63program memory . . . . . . . . . . . . . . . . . 27, 31program mode . . . . . . . . . . . . . . . . . . . . . . 66

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

137

programmable timer . . . . . . . . . . . . . . . . . .20propagation . . . . . . . . . . . . . . . . . . . . . . .1, 43propeller . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

speed . . . . . . . . . . . . . . . . . . . . . . . . .126propulsion motor . . . . . . . . . . . . . . . . . . . . .45prototype software . . . . . . . . . . . . . . . . . . .72Prototype systems . . . . . . . . . . . . . . . . . . .91pseudodigital appearance . . . . . . . . . . . . . .78pull-up resistor . . . . . . . . . . . . . . . . . . . . . .80pulse count, remote-control . . . . . . . . . . . .83Pulse Rate Frequency . . . . . . . . . . . . . . . .63pulse variation . . . . . . . . . . . . . . . . . . . . . .121pulsed water fountain . . . . . . . . . . . . . . . . .15pulse-width modulation . . . . . . . . . . . .57, 126PWM . . . . . . . . . . . . . . . . . . .12, 60, 126, 129

drive signal . . . . . . . . . . . . . . . . . . . . . . .4generator . . . . . . . . . . . . . . . . . . . . . . . .33input channel . . . . . . . . . . . . . . . . . . . . .78input signal . . . . . . . . . . . . . . . . . . . . . .78Input/Output Interface Module . . . . . . .78output . . . . . . . . . . . . . . . . . . . . .107, 109output signal . . . . . . . . . . . . . . . . . . . . .78output signals . . . . . . . . . . . . . . . . . . .121Ramp ADC . . . . . . . . . . . . . . . . . . . . . .40reference . . . . . . . . . . . . . . . . . . . . . . . .83signal . . . . . . . . . . . . . . . .64, 78, 109, 124

PWM-generated reference . . . . . . . . . . . . .61pyrotechnic charge . . . . . . . . . . . . . . . . . . .53

Qquartz crystal . . . . . . . . . . . . . . . . . . . . . . . .80

RR-2R network . . . . . . . . . . . . . . . . . . . . . . .24Radar on a Chip . . . . . . . . . . . . . . . . . . . . .63radio transmitter . . . . . . . . . . . . . . . . . . . . .51railroad vehicles . . . . . . . . . . . . . . . . . . . . .78rain, intensity of . . . . . . . . . . . . . . . . . . . . . .97ramp-capacitor discharge transistor . . . . . .30random numbers . . . . . . . . . . . . . . . . . . . . .54RC circuit . . . . . . . . . . . . . . . . . . . . . . . . . .72RC filter . . . . . . . . . . . . . . . . . . . . . . . . . . .107

RC time constant . . . . . . . . . . . . . . . . . . . . 60Reaction Tester . . . . . . . . . . . . . . . . . . . . . 80reaction time . . . . . . . . . . . . . . . . . . . . . . . 80receiver detector . . . . . . . . . . . . . . . . . . . . . 1Recognition algorithms . . . . . . . . . . . . . . . 91reference voltage . . . . . . . . . . 24, 45, 75, 115refresh pulses, display . . . . . . . . . . . . . . . . 83relative timing . . . . . . . . . . . . . . . . . . . . . . 38relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100remote console . . . . . . . . . . . . . . . . . . . . . 24remote range . . . . . . . . . . . . . . . . . . . . . . . 83Remote-Control Antenna Positioner . . . . . 86remote-control pulse count . . . . . . . . . . . . 83Remote-Controlled Air Conditioner . . . . . . 83reset circuit . . . . . . . . . . . . . . . . . . . . . 60, 66reset pulse . . . . . . . . . . . . . . . . . . . . . . . . . 63resistive load . . . . . . . . . . . . . . . . . . . . . . 126resistor-summing junction . . . . . . . . . . . . . . 6resonance frequencies, sinus . . . . . . . . . . 60return code . . . . . . . . . . . . . . . . . . . . . . . . 48RF Dog Collar . . . . . . . . . . . . . . . . . . . . . . 89Rocker Switch . . . . . . . . . . . . . . . . . . . . . . 35rolling dice . . . . . . . . . . . . . . . . . . . . . . . . . 54rotational movement . . . . . . . . . . . . . . . . 109rotational speed . . . . . . . . . . . . . . . . . . . . . . 4routing numbers . . . . . . . . . . . . . . . . . . . . 66RPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118RS-232 interface . . . . . . . . . . . . . . . . . . . . 27RS-485 interface . . . . . . . . . . . . . . . . . . . . 27run cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Ssample rate adjustment . . . . . . . . . . . . . . . 69scale transposer . . . . . . . . . . . . . . . . . . . . 69SCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127SCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95secure web transactions . . . . . . . . . . . . . . 91security bit . . . . . . . . . . . . . . . . . . . . . . . . . 60segmentation, program/data memory . . . . 69Seiko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48seismological observations . . . . . . . . . . . . 52sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6sensing coil . . . . . . . . . . . . . . . . . . . . . . . . 75

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

138

sensing element . . . . . . . . . . . . . . . . . . . . .75sensitivity . . . . . . . . . . . . . . . . . . . . . . .1, 106

temperature . . . . . . . . . . . . . . . . . . . . .124sensor capacitance . . . . . . . . . . . . . . . . . . .38serial cable . . . . . . . . . . . . . . . . . . . . . . . . .75serial communication . . . . . . . . . . . . . . . . .57serial data . . . . . . . . . . . . . . . . . . . . . . . . .129serial interface . . . . . . . . . . . . . . . .48, 80, 109serial port . . . . . . . . . . . . . .20, 48, 70, 75, 76serial-to-parallel shift register . . . . . . . . . . .31shift register . . . . . . . . . . . . . . . . . . . . .31, 80shock amplitude . . . . . . . . . . . . . . . . . . . . .75shock threshold . . . . . . . . . . . . . . . . . . . . . .76shut-down operation . . . . . . . . . . . . . . . . . .66signal strength . . . . . . . . . . . . . . . . . . . . . . .45signature analysis . . . . . . . . . . . . . . . . . . . .91Signature Recognition and Authentication .91single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97single-slope ADC . . . . . . . . . . . . . . . . .40, 97single-supply operation . . . . . . . . . . . . . . . .75sinus congestion . . . . . . . . . . . . . . . . . . . . .60sleep mode . . . . . . . . . . . . . . . . . . . . . . . . .83sleep-mode current drain . . . . . . . . . . . . . .66sliding windows . . . . . . . . . . . . . . . . . . . . . .97small-echo signals . . . . . . . . . . . . . . . . . . . .1Smart Phone Accessory . . . . . . . . . . . . . . .93Smart Solar Water Heating System . . . . . .95Smart Window with Fuzzy Control . . . . . . .97soil moisture . . . . . . . . . . . . . . . . . . . . . . . .38solar cell panel . . . . . . . . . . . . . . . . . . . . .109solar radiation . . . . . . . . . . . . . . . . . . . . . .100Solar Tracker . . . . . . . . . . . . . . . . . . . . . .100solenoid . . . . . . . . . . . . . . . . . . . . . .9, 35, 118sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–2sound effects . . . . . . . . . . . . . . . . . . . . . . . .54spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . .52speedometer . . . . . . . . . . . . . . . . . . . . .4, 103stage illumination . . . . . . . . . . . . . . . . . . . .24Stages Baby Monitor . . . . . . . . . . . . . . . . .106stand-alone clock . . . . . . . . . . . . . . . . . . . .18standby mode . . . . . . . . . . . . . . . . . . . . . . .75stepper motor . . . . . . . . . . . . . . . . . . . .45, 83STOP mode . . . . . . . . . . . . . . . . . . . . .9, 124stride sensor, accelerometer-based . . . . . .72

strobing . . . . . . . . . . . . . . . . . . . . . . . . . . . 57subsumption architecture . . . . . . . . . . . . . 12successive approximation . . . . . . . . . . . . . 24sun collector temperature sensor . . . . . . . 95Sun Tracking to Optimize Solar

Power Generation . . . . . . . . . . . . . . . 109system check . . . . . . . . . . . . . . . . . . . . . . . 80system control block . . . . . . . . . . . . . . . 1, 24

Ttachometer . . . . . . . . . . . . . . . . . . . . . . . . . 4Tandy Corporate headquarters . . . . . . . . 112Tandy Light Control . . . . . . . . . . . . . . . . . 112tantalum capacitor . . . . . . . . . . . . . . . . . . . 75TCP protocol . . . . . . . . . . . . . . . . . . . . . . . 48telemetry system . . . . . . . . . . . . . . . . . . . . 51temperature control . . . . . . . . . . . . . . . . . . 83temperature drift . . . . . . . . . . . . . . . . 75, 124Temperature Measuring Device . . . . . . . 115temperature-compensation method . . . . 124test lead resistance . . . . . . . . . . . . . . . . . . 30test leads . . . . . . . . . . . . . . . . . . . . . . . . . . 30theater . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Thermal management . . . . . . . . . . . . . . . . 51thermistor . . . . . . . . . . . . . . . . . . . . . . . . 126Thionyl Chloride . . . . . . . . . . . . . . . . . . . . 51threshold detector . . . . . . . . . . . . . . . . . . . 97tilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72tilt-sensing module . . . . . . . . . . . . . . . . . 124time functions . . . . . . . . . . . . . . . . . . . . . . 18time measurement . . . . . . . . . . . . . . . . . . . 80time stamp . . . . . . . . . . . . . . . . . . . . . . . . . 75time track, day-mode . . . . . . . . . . . . . . . . . 83timed actuation . . . . . . . . . . . . . . . . . . . . . 38timer control mode . . . . . . . . . . . . . . . . . . . 83timer values . . . . . . . . . . . . . . . . . . . . . . . . 97time-related thresholds . . . . . . . . . . . . . . . 20time-varying magnetic field . . . . . . . . . . . . 75TOUT mode . . . . . . . . . . . . . . . . . . . . 54, 118train lines . . . . . . . . . . . . . . . . . . . . . . . . . . 78transducer . . . . . . . . . . . . . . . . . . . . . . . . . . 1

infrared . . . . . . . . . . . . . . . . . . . . . . . . 45receiver . . . . . . . . . . . . . . . . . . . . . . . . . 1

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

139

receiving . . . . . . . . . . . . . . . . . . . . . . . .45transmitting . . . . . . . . . . . . . . . . . . . . . .45ultrasonic . . . . . . . . . . . . . . . . . . . . . . . .43

Transmission Trainer . . . . . . . . . . . . . . . .118transmitter . . . . . . . . .1, 6, 45, 52, 53, 89, 106

black box . . . . . . . . . . . . . . . . . . . . . . .106driver . . . . . . . . . . . . . . . . . . . . . . . . . . . .1driver circuit . . . . . . . . . . . . . . . . . . . . . . .1power . . . . . . . . . . . . . . . . . . . . . . . . . .52infrared . . . . . . . . . . . . . . . . . . . .6, 45, 86radio . . . . . . . . . . . . . . . . . . . . . . . .51, 89ultrasonic . . . . . . . . . . . . . . . . . . . . . . . . .1

transmitter-receiver pair . . . . . . . . . . . . . .129trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

voltage . . . . . . . . . . . . . . . . . . . . . . . . .97triple-axis accelerometer . . . . . . . . . . . . . . .53TV remote- control . . . . . . . . . . . . . . . . . . .12

UUART . . . . . . . . . . . . . . . . . . . . . . . . . .48, 70UDP protocol . . . . . . . . . . . . . . . . . . . . . . . .48UFO Flight Regulation System . . . . . . . . .121ultrasonic signal . . . . . . . . . . . . . . . . . . . .103ultrasonic transceiver . . . . . . . . . . . . . . . . .45ultrasonic transducers . . . . . . . . . . . . . . .1, 43user input . . . . . . . . . . . . . . . . . . . . . . . . . .72

VVariable Output Voltage . . . . . . . . . . . . . . .60variable-speed alternator . . . . . . . . . . . . .126variable-strength signal . . . . . . . . . . . . . . . .45vectored motion patterns . . . . . . . . . . . . . .12Vehicle Anti-Theft Module . . . . . . . . . . . . .124velocity calculation . . . . . . . . . . . . . . . . . . .43Vibration Sensor . . . . . . . . . . . . . . . . . . . . .21virtual air temperature . . . . . . . . . . . . . . . . .43virtual Ground . . . . . . . . . . . . . . . . . . . . . . .75Visual Basic . . . . . . . . . . . . . . . . . . . . . . .112visual response compensation . . . . . . . . . .24voltage drop-out . . . . . . . . . . . . . . . . . . . . .60voltage regulator IC . . . . . . . . . . . . . . . . . . . .2voltage regulator, linear . . . . . . . . . . . .72, 80

voltage-to-frequency converter . . . . . . . . . 45VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Wwake-up switch . . . . . . . . . . . . . . . . . . . . . . 9watch-dog timer . . . . . . . . . . . . . . . . . . . . . 60water flow pump . . . . . . . . . . . . . . . . . . . . 95wave burst . . . . . . . . . . . . . . . . . . . . . . . . . . 1waveform, equivalent-time . . . . . . . . . . . . 63wavetables . . . . . . . . . . . . . . . . . . . . . . . . 69web transactions . . . . . . . . . . . . . . . . . . . . 91WFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95wind direction . . . . . . . . . . . . . . . . . . . . . . 43wind energy . . . . . . . . . . . . . . . . . . . . . . . 126wind speed . . . . . . . . . . . . . . . . . . . . . . . . 43wind, force of . . . . . . . . . . . . . . . . . . . . . . . 97windmill blade pitch . . . . . . . . . . . . . . . . . 126Windmill Commander . . . . . . . . . . . . . . . 126Wireless Accelerometer . . . . . . . . . . . . . 129wireless communication . . . . . . . . . . . . . . 12

ZZ02204 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Z84C15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Z86C03 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Z86C04 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Z86C06 . . . . . . . . . . . . . . . 20, 103, 124, 129Z86C08 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Z86C96 . . . . . . . . . . . . . . . . . . . . . . . . 69, 70Z86E04 . . . . . . . . . . . . . . . 4, 30, 31, 75, 115Z86E08 . . . . . . . . 1, 18, 24, 66, 80, 112, 121Z86E21 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Z86E30 . . . . . . . . . . . . . . . . . . . . . . . . 27, 83Z86E31 . . . . . . . . . . . . . . . . . . . . . 12, 45, 86Z86E40 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Z86E83 . . . . . . . . . . . . . . . . 35, 72, 106, 126Z8E001 . . . . . . . . . . . . . . . . . . . . . . . . . . 109Z8PE001 . . . . . . . . . . . . . . . . . . . . . . . . . . 54Z8Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9ZDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12zero-crossing detection . . . . . . . . . . . . . . . 24ZiLOG CCP emulator . . . . . . . . . . . . . . . . 12

AN004901-0900

ZiLOG Design ConceptsZ8 Application Ideas

140

ZORB diode . . . . . . . . . . . . . . . . . . . . . . . .80

AN004901-0900