URS2 - cloudfront.net

108
National Aeronautics and Space Administration Headquarters Washington, DC 20546-0001 May 18, 2018 Dear Colleague, The draft Proposal Information Package (PIP) and Environmental Requirements Document (ERD) were written to support an Announcement of Opportunity (AO) for instruments for a potential Europa lander mission. For that use the information and parameters in a PIP and ERD are typically considered binding. For the Instrument Concepts for Europa Exploration 2 (ICEE 2) opportunity, the PIP and ERD serve a different purpose. They provide information and parameters that reflect our current best understanding of the mission concept. But that understanding continues to evolve with further study, and the ICEE 2 effort provides an invaluable opportunity for instrument developers to collaborate with the lander team on instrument accommodation to further advance that understanding. Under this scenario the PIP and ERD should be viewed as informational rather than binding as it is expected that some changes will arise because of this collaboration. Some limitations in the draft PIP are in place because the resources needed to provide them were judged too excessive to accommodate. Specifically, the draft PIP does not support the following capabilities: Capability to deploy (i.e., place) of an instrument(s) on the surface using the robotic arm; Capability to locate instrument(s) outside of the vault (except for the Context Remote Sensing Instrument); and Capability to mount an instrument(s) on the robotic arm. However, proposers may submit instrument concepts requiring these capabilities provided that a) the additional resources likely needed (additional survival heating, cabling, radiation shielding, etc.) come from the instrument’s resource allocation and/or b) the proposal describes an implementation demonstrating that additional resources are unneeded. Any further questions or requests for clarifications should be emailed to me. Good luck on your proposals! Dr. Curt Niebur Program Officer, ICEE 2

Transcript of URS2 - cloudfront.net

National Aeronautics and

Space Administration

Headquarters

Washington, DC 20546-0001

May 18, 2018

Dear Colleague,

The draft Proposal Information Package (PIP) and Environmental Requirements Document

(ERD) were written to support an Announcement of Opportunity (AO) for instruments for a

potential Europa lander mission. For that use the information and parameters in a PIP and ERD

are typically considered binding. For the Instrument Concepts for Europa Exploration 2 (ICEE

2) opportunity, the PIP and ERD serve a different purpose. They provide information and

parameters that reflect our current best understanding of the mission concept. But that

understanding continues to evolve with further study, and the ICEE 2 effort provides an

invaluable opportunity for instrument developers to collaborate with the lander team on

instrument accommodation to further advance that understanding. Under this scenario the PIP

and ERD should be viewed as informational rather than binding as it is expected that some

changes will arise because of this collaboration.

Some limitations in the draft PIP are in place because the resources needed to provide them were

judged too excessive to accommodate. Specifically, the draft PIP does not support the following

capabilities:

Capability to deploy (i.e., place) of an instrument(s) on the surface using the robotic arm;

Capability to locate instrument(s) outside of the vault (except for the Context Remote

Sensing Instrument); and

Capability to mount an instrument(s) on the robotic arm.

However, proposers may submit instrument concepts requiring these capabilities provided that a)

the additional resources likely needed (additional survival heating, cabling, radiation shielding,

etc.) come from the instrument’s resource allocation and/or b) the proposal describes an

implementation demonstrating that additional resources are unneeded.

Any further questions or requests for clarifications should be emailed to me. Good luck on your

proposals!

Dr. Curt Niebur

Program Officer, ICEE 2

Europa Lander Project PreliminaryEnvironmentalRequirementsDocument Draft Release Prepared by: ____________________________ _____________________________ Michael Kokorowski Date Environmental Requirements Engineer Paper copies of this document may not be current and should not be relied on for official purposes. The current version is available in PDMS, https://pdms.jpl.nasa.gov. Pre-Decisional Information — For Planning and Discussion Purposes Only

May 23, 2018

JPL D-97633

Jet Propulsion Laboratory California Institute of Technology The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

2

Approved:____________________________ ______________JohnForgrave DateSupervisor,EnvironmentalRequirementsEngineering ParvizDanesh DatePre-ProjectMissionAssuranceManager(MAM) JenniferDooley DatePre-ProjectSystemEngineer SteveLee DatePre-ProjectFlightSystemManager JoelKrajewski DatePre-ProjectPayloadManager RogerGibbs DatePre-ProjectManager

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

3

CHANGELOG

DATE SECTIONSCHANGED REASONFORCHANGE REVISION04/26/2018 ALL New Preliminary

DraftRelease

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

4

TableofContents

1 Introduction.....................................................................................................................61.1 Purpose..........................................................................................................................................61.2 ApplicableDocuments...................................................................................................................61.2.1 GovernmentDocuments........................................................................................................61.2.2 LaunchSystemUserGuides...................................................................................................6

1.3 NASAReferenceDocuments.........................................................................................................61.4 ProjectReferenceDocuments.......................................................................................................61.5 ProjectBackground........................................................................................................................71.5.1 EuropaLanderFlightSystemComponentsandNomenclature..............................................71.5.2 EuropaLanderLaunchVehicle...............................................................................................7

2 EnvironmentalProgramandVerificationRequirements...................................................72.1 General..........................................................................................................................................72.2 EnvironmentalVerificationRequirements....................................................................................72.3 EnvironmentalTesting.................................................................................................................112.3.1 QualificationTestApproach.................................................................................................112.3.2 ProtoflightTestApproach....................................................................................................112.3.3 FlightAcceptanceTestApproach.........................................................................................112.3.4 AssemblyLevelEnvironmentalTests....................................................................................12

2.4 EnvironmentalAnalyses..............................................................................................................12

3 EnvironmentalTestPolicies............................................................................................123.1 General........................................................................................................................................123.2 TestConfiguration.......................................................................................................................123.3 AssemblyOperation/FunctionalTest..........................................................................................133.4 TestSequence..............................................................................................................................133.5 EnvironmentalTestFacilities.......................................................................................................133.6 EnvironmentalTestPans.............................................................................................................133.7 EnvironmentalTestProcedures...................................................................................................143.8 EnvironmentalTestAuthorizationandSummary........................................................................143.9 TestFailure..................................................................................................................................153.10 TestReports.............................................................................................................................153.11 Re-TestPolicies........................................................................................................................15

4 EnvironmentalDesignandVerificationRequirements....................................................164.1 HandlingandGroundOperationEnvironments..........................................................................164.1.1 TransportationandHandlingDynamicsEnvironments........................................................164.1.2 Thermal,Pressure,andRelativeHumidityEnvironment......................................................16

4.2 LaunchPressureChangeEnvironments......................................................................................174.2.1 Venting.................................................................................................................................174.2.2 RFandHVBreakdownDuringLaunchandinFlight.............................................................17

4.3 StructuralLoadsandDynamicsEnvironments............................................................................184.3.1 StructuralLoads....................................................................................................................194.3.2 RandomandSinusoidalVibration........................................................................................204.3.3 AcousticsEnvironment.........................................................................................................23

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

5

4.3.4 PyrotechnicShock................................................................................................................234.3.5 InducedMicrophonicsandJitterEffects..............................................................................274.3.6 FlightSystemModalTest.....................................................................................................284.3.7 DynamicsTestTolerances....................................................................................................28

4.4 ThermalEnvironments................................................................................................................294.4.1 Definitions............................................................................................................................294.4.2 LaunchThermalEnvironment..............................................................................................304.4.3 PlanetaryProtectionThermalEnvironment.........................................................................304.4.4 SpaceandEuropaSurfaceThermalEnvironment................................................................314.4.5 FlightSystemThermalVacuumTest....................................................................................344.4.6 Assembly/SubsystemThermalDesignandVerificationRequirements................................344.4.7 ThermalTestTolerancesandStabilizationCriteria..............................................................364.4.8 ThermalCyclingDesignCriteria............................................................................................36

4.5 ElectromagneticInterferenceandCompatibility(EMI/EMC)......................................................374.5.1 LaunchVehicle/LaunchSiteElectromagneticEnvironments...............................................374.5.2 ElectromagneticInterference/Compatibility(EMI/EMC)RequirementsforInstruments,Subsystems,andAssemblies..............................................................................................................404.5.3 PowerTransients..................................................................................................................524.5.4 LightningProtection.............................................................................................................554.5.5 Grounding,EMIBonding,andIsolation................................................................................554.5.6 Wiring/CableShielding[TBR]................................................................................................584.5.7 EMI/EMCRequirementsVerification...................................................................................594.5.8 FlightSystemChargingandElectrostaticDischargeRequirements.....................................64

4.6 SolidParticleEnvironments.........................................................................................................694.6.1 MeteoroidEnvironment.......................................................................................................694.6.2 EuropaSurfaceSolidParticleEnvironment..........................................................................74

4.7 High-EnergyRadiationEnvironments..........................................................................................754.7.1 EnergeticParticleFluence....................................................................................................754.7.2 IonizingRadiation.................................................................................................................804.7.3 PeakFluxofJovianElectronsandProtons...........................................................................934.7.4 SingleEventEffects(SEE).....................................................................................................95

4.8 AtomicOxygenEnvironments.....................................................................................................974.9 EuropaGravity.............................................................................................................................984.10 SolarSpectralIrradiance..........................................................................................................98

5 AppendixA:AcronymsandAbbreviations......................................................................99

6 AppendixB:ETASForm(EnvironmentalTestAuthorizationSummary).........................102

7 AppendixC:ECASForm(EnvironmentalAnalysisCompletionStatement).....................106

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

6

1 Introduction

1.1 Purpose

ThisdocumentdefinesenvironmentaldesignandverificationrequirementsfortheEuropaLanderMission.Successfuldefinitionandimplementationoftheenvironmentalrequirementsisexpectedtoresultinflighthardwarethatisfullycompatiblewithallanticipatednaturalorinducedground,launch,andmissionenvironments.ThisversionisaPreliminaryDraftwhichwillbeupdatedpriortothefirstofficialrelease.Thefollowingdefinitionsareusedthroughoutthisdocument:

“Shall”=required“Should”=recommended“Will”=plannedtobecarriedout

1.2 ApplicableDocuments

Thefollowingdocumentsformapartofthisdocumenttotheextentspecifiedherein.Unlessotherwisespecified,thecurrentissueofthedocumentapplies.

1.2.1 GovernmentDocuments

MIL-STD461C ElectromagneticEmissionandSusceptibilityRequirementsfortheControlof ElectromagneticInterference,4August1986.MIL-STD-461F ElectromagneticEmissionandSusceptibilityRequirementsfortheControlof ElectromagneticInterference,10December2007.MIL-STD-462 ElectromagneticInterferenceCharacteristics,Measurementof.MIL-STD-704F AircraftElectricPowerCharacteristics

1.2.2 LaunchSystemUserGuides

FalconHeavy FalconHeavyPayloadPlanner’sGuide,[TBD]DeltaIVHeavy DeltaIVLaunchServicesUser’sGuide,UnitedLaunchAlliance,June2013.SLS SpaceLaunchSystemPayloadPlanner’sGuide,[TBD].

1.3 NASAReferenceDocuments

ThefollowingreferencedocumentsincludevariousNASAguidelineswhicharecalledoutinthisdocumentforfurtherinformationondesignortestguidance.OthersareNASAstandards,uponwhichsomeoftherequirementsinthisdocumentarebased.NASA-HDBK-4002A MitigatingIn-SpaceChargingEffects–AGuideline,Mar.3,2011NASA-STD-4003A ElectricalBondingforNASALaunchVehicles,Spacecraft,Payloads,andFlight

Equipment,January19,2016.NASA-STD-5001B StructuralDesignandTestFactorsofSafetyforSpaceflightHardware,August6,2014.NASA-STD-7001A PayloadVibroacousticTestCriteria,January20,2011.NASA-STD-7003A PyroshockTestCriteria,December20,2011.NASA-HDBK-7004C ForceLimitedVibrationTestingHandbook,November30,2012.NASA-HDBK-7008 SpacecraftDynamicEnvironmentsTesting,June12,2014.GSFC-STD-7000A GeneralEnvironmentalVerificationSpecification,April22,2013

1.4 ProjectReferenceDocuments

Thefollowingisalistofrelevantprojectdocuments.Notalldocumentshavebeenreleased.JPLD-97628 EuropaLanderSafetyandMissionAssurancePlanJPLD-97629 EuropaLanderPartsProgramRequirementsJPLD-97630 EuropaLanderReliabilityAssuranceRequirements

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

7

JPLD-97634 EuropaLanderRadiationControlPlan(RCP)JPLD-97635 EuropaLanderElectromagneticEnvironmentalControlPlanJPLD-97636 EuropaLanderSurfaceCharging/iESDControlPlanJPLD-97653 EuropaLanderPlanetaryProtectionPlanJPLD-xxxxx EuropaLanderTestandAnalysisMatrix(TAM)JPLD-xxxxx EuropaLanderTemperatureRequirementsTable(TRT)

1.5 ProjectBackground

1.5.1 EuropaLanderFlightSystemComponentsandNomenclature

TheEuropaLanderflightsystemiscomprisedofacollectionofelements.Singlesystemelementsarereferredtoasa‘stage.’Multiple‘stages’combinedintoasingleelementconstitutea‘vehicle.’TherearefourstagesinthecompleteEuropaLanderflightsystem.Table1.5-1summarizesthevehicleandstageconfigurationsduringkeymissionevents.Lightshadingdenotesvehiclescomprisedofmultiplestagesanddarkershadingindicatesindividualstages.Table1.5-1ConstituentstagesandvehiclesfortheEuropaLanderflightsystemduringkeymissionevents.[TBR]

Launch Deorbit Descent SurfaceOps

CruiseVehicle

CarrierandRelayStage CarrierandRelayStage CarrierandRelayStage

DeorbitVehicleDeorbitStage DeorbitStage

PoweredDescentVehicleDescentStage

Lander

Eachstagemaybeconsidereditsown‘system’withregardstosystem-levelorassembly-leveltestcriteriabasedonenvironmentapplicability.TheEuropaLanderTestandAnalysisMatrix(JPLD-xxxxx;TBD)willspecifysystem-levelconfigurationsforenvironmentaltestsandanalyses.

1.5.2 EuropaLanderLaunchVehicle

ThebaselinelaunchvehicleforEuropaLandermissionistheSpaceLaunchSystem(SLS)Block1-B.Ingeneral,reliablelaunchenvironmentestimatesarenotcurrentlyavailableforthisvehicle.Asneeded,estimatesofenvironmentsbasedavailabledatafromtheEvolvedExpendableLaunchVehicle(EELV)Delta-IVHeavyand/orFalconHeavyareprovidedinstead.ThisdocumentwillbeupdatedwhenlaunchenvironmentestimatesareavailablefortheSLSoranotherlaunchvehicleisselected.

2 EnvironmentalProgramandVerificationRequirements

2.1 General

Theenvironmentaldesignandverificationprogramisintendedtodemonstrate,throughdesign,testand/oranalysismethods,theabilityoftheEuropaLanderflightsystemtosuccessfullysurviveandoperatewithinspecificationoverthenaturaland/orinducedground,launch,cruise,andmissionoperationsenvironmentswithsufficientmargins.Allrequirementsinthisdocumentincludea‘shallstatement’andaredemarcatedfurtherwitha‘Requirement’heading.Somerequirementsalsoincludeanadditional‘Policy’headingtoindicatethattheintendedrequirementisnon-technical.

2.2 EnvironmentalVerificationRequirements

Requirement-Policy:Theflightsystem,instruments,andsubsystems/assembliesshallbeverifiedtobecompatiblewiththeenvironmentaldesignandtestlevelspresentedinSection4ofthisdocument.TheenvironmentalverificationprocessoutlinedinFigure2.2-1includestestandanalysismethods.Aspectsofthisflowaredescribedinthesectionsthatfollow.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

8

Requirement-Policy:Theverificationactivities(test&analysis)shallcomplywiththeproject-requiredmargins,levels,anddurationsasspecifiedinTable2.2-1,unlessexplicitlyspecifiedinSection4ofthisdocument.

Figure2.2-1EuropaLanderProjectEnvironmentalProgramFlow

�! �������&�! � ��+%�%�

� (�$! �� &�����%�� ���#'�$��� &%�����!$�!&��$�

� (�$! �� &�����$�����&�! ���#'�$��� &%����

���%&�� �� ��+%�%����&$�*�

��+%�%���(��)

�����%'���&��!$�

�'&�!$�,�&�!

����%'���&��!$�$�(��)����""$!(��

����%'���&��!$�$�(��)����""$!(��

��%&��"�$���

�����&�! � ��+%�%�

""$!(���

��+%�%�"�$���

����(�$���$�)�$�

��%&���� ����%&��$!���'$���

��

��$�!$����%&

�����$�"!$&�&�%&�$�%'�&%

��%&���%'�&%���(��)�

��%&�'&�!$�,���

���� ����&�%&���#'�$��� &%

��%%���%&�+�%

!

!

+�%

+�%

!

""$!(������

+�%

!

IBATs

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

9

Table2.2-1EuropaLanderProjectEnvironmentalDesignandTestMarginRequirements

Assembly/SubsystemLevel FlightSystemLevelEnvironment Design/Qualification (Qual) Protoflight(PF) FlightAcceptance(FA) Protoflight(PF)

Acoustics: Level(note1) Duration

Envelopeof(MEFL+3dB)andMinimumWorkmanshiplevel(note10) 2xFAduration(2minminimum)

Envelopeof(MEFL+3dB)andMinimumWorkmanshiplevel(note10) FAduration(1minminimum)

EnvelopeofMEFLandMinimumWorkmanshiplevel(note10) 1minminimum

Envelopeof(MEFL+3dB)andMinimumWorkmanshiplevel(note10)1minminimum

Random Vibration: Level Duration

FAlevel+3dB 2xFAduration(2min/axis)

FAlevel+3dB FAduration(1min/axis)

EnvelopeofMEFLandMinimumWorkmanshiplevel(note11)1min/axis

MEFL+3dB 1min/axis

SimulatedPyroShock

1.4xFAlevel2shocks/axis(note8)

1.4xFAlevel1shocks/axis(note8)

MEFL1shock/axis(notes6&8)

N/A(notestrequired)

PyroDeviceFirings

2firings(note7)

2firings(note7)

N/A(notestrequired)

2firings(dominantshocksources),

1firing(othersources)QuasiStaticLoads: perNASA-STD-5001B

(seenote9)perNASA-STD-5001B(seenote9)

perNASA-STD-5001B(seenote9)

Thermal:TestMedia(note2)

•ThermalVacuum:FlightSystem,Payload,Assemblies/Subsystems•Atmosphere/GN2:Assemblies,Payloads(oncase-by-casebasis,uponProjectapprovalonly)

•ThermalVacuum:FlightSystem,Payload,Assemblies/Subsystems•Atmosphere/GN2:Assemblies,Payloads(oncase-by-casebasis,uponProjectapprovalonly)

•ThermalVacuum:FlightSystem,Payload,Assemblies/Subsystems•Atmosphere/GN2:Assemblies,Payloads(oncase-by-casebasis,uponProjectapprovalonly)

•ThermalVacuum:FlightSystemThermalBalancePhase:-SimulateextremeSpaceThermalEnvironments(perSection4.6.3),alongwithworst-casepowermodesandinterfaceboundaryconditions. FlightSystemThermalMarginPhase:DrivekeyassembliestoAFTlimitsforsystemfunctionalmargindemonstration

Temp.Levels(TestMargins)(note4)

•Electronics:Cold:(AFTcold-15ºC)or-35ºC(whicheveriscolder)Hot:(AFThot+20ºC)or+70ºC(whicheveriswarmer) •MechanismswithoutElectronics,Optics,Detectors,andOthers:Cold:(AFTcold-15ºC)Hot:(AFThot+20ºC)

•Electronics:Cold:(AFTcold-15ºC)or-35ºC(whicheveriscolder)Hot:(AFThot+20ºC)or+70ºC(whicheveriswarmer) •MechanismswithoutElectronics,Optics,Detectors,andOthers:Cold:(AFTcold-15ºC)Hot:(AFThot+20ºC)

•Electronics:Cold:(AFTcold-5ºC)or-25ºC(whicheveriscolder)Hot:(AFThot+5ºC)or+55ºC(whicheveriswarmer) •MechanismswithoutElectronics,Optics,Detectors,andOthers:Cold:(AFTcold-5ºC)Hot:(AFThot+5ºC)

ThermalTestDuration

(note3)

•FlightSystem&PayloadElectronics:Op:24hrscold/72hrshotNon-Op:6hrscold/6hrshot•Non-Electronics:Op:Hotandcolddwelltimes

asneededtoruntestsforallrequiredfunctions.

Non-Op:6hrscold/6hrshot

•FlightSystem&PayloadElectronics:Op:24hrscold/72hrshotNon-Op:6hrscold/6hrshot•Non-Electronics:Op:Hotandcolddwelltimes

asneededtoruntestsforallrequiredfunctions.

Non-Op:6hrscold/6hrshot

•FlightSystem&PayloadElectronics:Op:8hrscold/60hrshotNon-Op:6hrscold/6hrshot•Non-Electronics:Op:Hotandcolddwelltimes

asneededtoruntestsforallrequiredfunctions.

Non-Op:6hrscold/6hrshotNumberofThermalCycles(note5)

•3cyclesminimumto10cyclesmax(cumulative)

•3cyclesminimumto10cyclesmax(cumulative)

•3cyclesminimumto10cyclesmax(cumulative)

TemperatureRampRate

•|dT/dt|≤5oC/min

•|dT/dt|≤5oC/min

•|dT/dt|≤5oC/min

NumberofThermalStartups

•3cold/3hot(Op)•3cold(Non-Op,ifself-heat&noheaters)

•3cold/3hot(Op)•3cold(Non-Op,ifself-heat&noheaters)

•3cold/3hot(Op)•3cold(Non-Op,ifself-heat&noheaters)

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

10

Assembly/SubsystemLevel FlightSystemLevelEnvironment Design/Qualification (Qual) Protoflight(PF) FlightAcceptance(FA) Protoflight(PF)

PlanetaryProtection

DryHeatMicrobialReduction:125ºC[TBR]forupto1329hours[TBR],Non-op(note14)

DryHeatMicrobialReduction:125ºC[TBR]forupto1329hours[TBR],Non-op(note14)

Depressurization >1.5xmaxdP/dt(note13) >1.5xmaxdP/dt(note13) EMC(RE,RS,CE,CS)

MEFL+6dB(susceptibility)MinEFL-6dB(emissions)

MEFL+6dB(susceptibility)MinEFL-6dB(emissions)(seenote6)

N/A(grounding/isolationtestingonly)CEmaybeinvokedforFMhardware

LaunchSources:MinimumExpectedFlightLevel-6dB(emissions)MaximumExpectedFlightLevel+6dB(susceptibility) FlightSystemSelf-CompatibilityatMaximumExpectedFlightLevel

InternalElectro-StaticDischarge(note12)

IESDDesignFactor=2[TBR]

ChargeParticleRadiation(TID/DDD)

RadiationDesignFactor(RDF)=2Spotshielding,RDF=3

NotesforTable2.2-1:

1. MEFL=MaximumExpectedFlightLevel;MinEFL=MinimumExpectedFlightLevel.2. Allassemblieswillbetestedinvacuum(<10-5Torr)unlessotherwiseexempted.3. Testdurationrequirementiscumulativeofthetestdurationemployedduringthermalcycling.4. AFT=AllowableFlightTemperature,typicallyincludesbothoperationalandnon-operationallimits.The

numberofthermalcyclesperformedonflighthardware(PForFA)willbesufficienttodetectworkmanshipdefects,mechanicalproblems,orelectricalhysteresis.

5. Typicallythisis3to10cycles(exceptforpurelymechanical/structuralassemblies).UnlessotherwiseapprovedbytheProjectEnvironmentalRequirementsEngineer(ERE),nomorethan10cycles(inclusiveofallretestactivities)willbeperformedonflighthardwarepriortoATLO(Assembly,Test,andLaunchOperations) delivery.

6. ForpyrotechnicshockandEMCtesting,ifthereisnoEMavailableforQualification,thenaProtoflighttestwillbeperformedonasinglePFunit.Notestrequiredforremainingflightunits.

7. Eachpyrotechnicdevicecontainedwithinprotoflightorqualificationhardwarewillbefiredaminimumoftwotimesinordertocharacterizethedevicefunctionalityandtheresultantshockresponses.Shocklevelsgeneratedbyfiringsofflightorflight-likepyrodeviceswillnotprovidea3dBDesign/Qual/PFlevelmarginandthereforeisnotavalidPForQualPyroshocktest.Shock-sensitivesubassemblieswithintheassembly/subsystemshouldbeassessedforpossibleQual/PFlevelpyroshocktesting.

8. Forassemblies/subsystemsnotcontainingshock-producingdevices,shocktestingistobeperformedatPFtestlevelof3dBaboveFAlevelwithoneshockineachofthethreeorthogonalaxes.QualificationtestsarethesamelevelasPFtestsbutwith2shocksperaxis.Ifperformed,FAtestlevelsareatMEFL.

9. JPLtakesexceptiontotheNASA-STD5001Bfactorofsafetyforglass.TheJPLrequiredultimatefactorofsafetyforglasswillbeaminimumof2.0,andtheacceptanceprooftestfactorwillbe1.2orgreater.

10. MinimumWorkmanshipAcousticsLevelis138dBOverallSPL.11. MinimumWorkmanshipRandomVibrationLevelis6.8grmsoverall.12. IESDpronematerialswillbesubjecttotheEuropaLanderSurfaceCharging/iESDControlPlan(JPLD-

97636).13. DesigncriteriaisconservativelymetwhenV/A<2000inor5080cm.(V=Volume,A=Ventarea,P=pressure,

t=time.)14. Thisisarepresentativeboundingtemperature/durationprofile.SeeEuropaLanderPlanetaryProtection

Plan(D-97653)forotheracceptabletemperature/durationprofiles.AdditionalVaporHydrogenPeroxide(VHP)processingmayalsoberequired.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

11

2.3 EnvironmentalTesting

EnvironmentaltestingapproachesarecategorizedforthepurposeofhardwarequalityverificationasQualification(Qual),Protoflight(PF),andFlightAcceptance(FA).Requirement-Policy:Flight,spare,andqualificationhardwaredesign,performance,andworkmanshipqualityshallbeverifiedbytestusingaProtoflight(PF)testprogramoraQualification/FlightAcceptance(Q/FA)testprogram.ProjectEnvironmentalRequirementsEngineers(EREs)willapprovetheverificationapproachforflighthardwarethroughdevelopmentoftheTestandAnalysisMatrix(TAM)(JPLD-xxxxxTBD)inconjunctionwiththeengineeringteams.Requirement-Policy:Formalenvironmentaltestsshallbeperformedonallflight,spare,andqualificationhardwareatthelevelofassemblyindicatedintheenvironmentalTestandAnalysisMatrix(TAM)(JPLD-xxxxxTBD).Requirement-Policy:AllformalenvironmentaltestsshallbeauthorizedpriortotestingandsummarizedsubsequenttotestingusingtheEnvironmentalTestAuthorizationandSummaryform(AppendixB:ETASForm(EnvironmentalTestAuthorizationSummary),JPLForm2683).

2.3.1 QualificationTestApproach

Qualification(Qual)testingisperformedonadedicatedQualification(orEngineering)Modeloftheflighthardwarethatisnotintendedtofly,inordertoqualifythehardwaredesignforthemaximumexpectedflightenvironmentplusmargin,includingmarginonenvironmentdurationorcycles.IfapprovedbytheProjectERE,anengineeringmodelofanassemblymaybeusedasaqualificationunitandbesubjectedtoqualificationenvironmentaltesting.Requirement-Policy:Ifusedforqualificationtesting,theengineeringmodelshallbeflight-likeandmanufacturedusingthesameassemblytechniquesandfabricationprocessesastheflighthardwareincluding:structure,thermaldesign,shielding,cabling,circuitlayout,powerconsumption,functionalmodes,andelectricalpartswiththesamesignalcharacteristics.Requirement-Policy:Hardwarethathasbeenusedasaqualificationunitandisbeingconsideredforuseasaflightunitorspareshallbeevaluateduponcompletionoftestingtodeterminethedetailsofrefurbishmentandretest,ifany,andanassessmentoftheresidualrisktotheprojectforusingthehardware.

2.3.2 ProtoflightTestApproach

Protoflight(PF)testingisperformedonflighthardwareandservestosimultaneouslyfulfilltherequirementsofdesignqualificationandworkmanshipdemonstrationforflightacceptance.Protoflightenvironmentaltestingdemonstratesdesignadequacyandflighthardwarereadiness,includingappropriateperformanceandmargin.

2.3.3 FlightAcceptanceTestApproach

FlightAcceptance(FA)testingisperformedonflighthardwareandsparesonlywhenapreviousqualificationtesthasbeenperformedonanidenticalitem.If,asdeterminedbyaHeritageReview,previousqualificationtestlevelsofaheritageassemblyareadequateforthemissionandtheheritagedesignandoperationisnotmodifiedinawaythatnegatesthepreviousqualification,thentheassemblymaybetestedtoFlightAcceptancelevelsanddurations.FlightAcceptancetestingmayalsoberequiredtoverifyhardwarequalityandworkmanshipfollowingminormodifications,rework,orrepairs.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

12

2.3.4 AssemblyLevelEnvironmentalTests

Requirement-Policy:Assembly/instrumentleveltestingshallbeperformedpriortodeliveryforhigher-levelintegration.Requirement-Policy:FlighthardwarewithdocumentationclaimingpriorQualificationbyHeritageorSimilarityfortherequiredenvironmentaltestsshallbeevaluatedandapprovedbytheProjectERE.

2.4 EnvironmentalAnalyses

Environmentalanalysesareperformedtoverifyhardwaredesigncompatibilitywithground,transportation,storage,launch,andmissionenvironmentsthatmaybeimpracticaltoverifybytestorthataremorecosteffectivelyanalyzedthantested(e.g.radiationdosagecompatibility,venting,andatomicoxygensusceptibility),orwhereanalysisisabetterverificationmethod.Requirement-Policy:EnvironmentalanalysesshallbeperformedagainsttheenvironmentaldesigncriteriainSection4ofthisdocument.Requirement-Policy:Eachlevelofassembly,whereanalysesareindicated,shallsummarizethoseanalysesusingtheEnvironmentalAnalysisCompletionStatement(AppendixC:ECASForm(EnvironmentalAnalysisCompletionStatement),JPLForm2566).Requirement-Policy:Sinceanalysisresultsmayaffecthardwaredesign,allreportsforagivenhardwareitemshallbesubmittedtotheProjectOfficepriortothebeginningofflighthardwareenvironmentaltesting.

3 EnvironmentalTestPolicies

3.1 General

Thissectionestablishestheimplementation,control,andreportingpoliciesforenvironmentaltestingofEuropaLanderflightandqualificationhardware,whetherperformedatJPLorsubcontractorfacilities.Requirement-Policy:Allflightandqualificationhardwareshallbeenvironmentallytestedinaccordancewiththerequirementsofthisdocument.Requirement-Policy:DeviationsfromtheEnvironmentalProgramrequirementsshallrequireapprovalthroughoneofthefollowingprocessespriortostartofanyenvironmentaltesting:

1. ACategoryAwaiverforproject-widedeviationsfromJPLinstitutionalstandards,includingthisstandard.2. ACategoryBwaiverforalldeviationsthatcompromisetheintentoftheEnvironmentalProgramas

containedintheapprovedprojectenvironmentaldocumentation.Thisincludesdeviationsfornon-technicalreasons,suchasthoseresultingfromscheduleorcostconstraints.

3. TheEnvironmentalTestAuthorizationandSummary(ETAS)formdocumentationofminortestdeviationswithtechnicaljustificationwithconcurrenceoftheERE.

3.2 TestConfiguration

Requirement-Policy:Flightsystemlevelenvironmentaltestingshallbeinaflight-likeconfigurationpertheEuropaLanderEnvironmentalTestandAnalysisMatrix(TAM)(JPLD-xxxxxTBD).Requirement-Policy:Allassembly,instrument,andsubassemblylevelenvironmentaltesting(includingspares)shallbeinaflight-likeconfigurationpertheEuropaLanderEnvironmentalTestandAnalysisMatrix(TAM)(JPLD-xxxxxTBD).Requirement-Policy:Electricalcabling,connectors,andotherflightfittingsnormallyassociatedwiththeassemblyorthesystemshallbeusedaspartofthetestarticle.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

13

Requirement-Policy:ThesameconfigurationshallbeusedforQualification,Protoflight,andFlightAcceptanceenvironmentaltesting.Requirement-Policy:HardwareconfigurationsqualifiedinpreviousenvironmentaltestprogramsshallbeevaluatedforconsistencywithEuropaLanderenvironmentaltesting.

3.3 AssemblyOperation/FunctionalTest

Thehardwarewilloperateinlogicandpowerstatesthatvalidatetheintegrityofallelectricalcircuitsandinterfaces,includingredundantcircuitry,andeveryeffortshouldbemadetosimulatealloperationalmodes.ThisincludescircuitsinternaltotheassemblyandcircuitsthatinterfacedirectlywithotherassembliesoftheEuropaLanderflightsystem.Requirement-Policy:Duringenvironmentaltesting,hardwareshallbeoperatedintheappropriatefunctionalmodesasdefinedintheirfunctionalspecifications,demonstratingthattheassemblyperformstospecificationwhenexposedtothetestenvironment.Requirement-Policy:Functionaltestproceduresshallensureallelectricalcircuitsandinterfaces,asdefinedintheirfunctionalspecifications,areexercised.

3.4 TestSequence

Forelectronicassemblies,dynamictestingshouldprecedethermaltesting(inorderofflightexposure).Forcertaincompositestructures,thermalcyclingshouldprecededynamictestingformoreeffectiveworkmanshipverification.EMCtestingmaybeconductedwhenconvenient.However,anyre-workduetoEMCanomalies(e.g.,connectorbackshellreworkandgasketinstallations)shouldbecompletedpriortodynamicsandthermaltesting.Requirement-Policy:ThesequenceofenvironmentaltestsonagivenflighthardwareassemblyshallbeestablishedbytheresponsibleengineerandconcurredbytheProjectEREs,basedontheflightenvironmentsequenceorareviewofthehardwaredesignandmaterials,thesensitivityoftheassemblytoeachenvironment,andthepotentialeffectofeachenvironmentonotherenvironmentalcharacteristics.Requirement-Policy:Whereapplicable,theQualificationorProtoflighttestarticleforagivenassemblyconfigurationshallsuccessfullypassitsQual/PFtestspriortocommencingwithFAtestsonanidenticalflightarticle.

3.5 EnvironmentalTestFacilities

Anyagencythatperformsenvironmentaltestingwilldosoinaccordancewithcertainminimumstandards,whetherthesefacilitiesareatJPL,atasubcontractor’sfacility,oratanindependenttestlaboratory.FortestingperformedforJPL-developedflighthardware,theseminimumstandardsaredefinedinStandardEnvironmentalTestingFacilitiesandPracticesdocument.TestfacilityconformancetothisStandardwillbereviewedandevaluatedbytheJPLEnvironmentalTestLab(ETL).Forhardwaredevelopedanddeliveredbyotheragencies,testfacilitiesshouldincludeprovisionstoprotectflighthardwarefromfacilityanomalies(i.e.powerfailures,temperatureexcursions,etc.).TheapplicableteststandardsforEMCtestsaregiveninMIL-STD-461F/462.Requirement-Policy:ThehardwareCognizantEngineershallberesponsibleforthehandlingofatestarticleinanenvironmentaltestfacility,includingattachmentofanytestfixture.

3.6 EnvironmentalTestPans

Requirement-Policy:EnvironmentalTestPlansorSpecificationsshallbepreparedbyeachsuppliertodefinetheenvironmentaltestlevelsanddurationsforassembly/subsystemandinstrumentlevelenvironmentaltesting.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

14

Environmentaltestplansshouldcoverthefollowingtopics:

• Descriptionofthetestarticle• Testobjectives• Testsetup,testsupportequipment,andtestfacility• Instrumentationanddata• Testtolerances• Environmentalsimulationsandtestmedia,ifapplicable • Testphases,testcases,andtestprofiles• Testparameters(Testlevels,margins,anddurations),asapplicable• Functionalandperformanceverifications• Success/failurecriteria• RequirementsforETAS,Problem/FailureReporting(PFRs)• Flighthardwareandpersonnelprotection• QAprovisions• Post-testactivitiesandanalysis

Requirement-Policy:EnvironmentalTestPlansandtheirrevisionsshallbesubmittedtotheProjectEREforapprovalbeforebeginninganenvironmentaltest.Requirement-Policy:EnvironmentalTestPlansshallbeunderrevisioncontrol,withredlinesincorporatedpriortoenvironmentaltestingofanyredundantunits.

3.7 EnvironmentalTestProcedures

Requirement-Policy:Theoperationofenvironmentaltestequipmentandfacilitiesduringtheperformanceofenvironmentaltestsofflighthardwareshallbeaccomplishedinaccordancewithapprovedtestprocedures.

3.8 EnvironmentalTestAuthorizationandSummary

Forthepurposeofassuringflighthardwarereadinessforenvironmentaltestinganddocumentingtestresults,theEnvironmentalTestAuthorizationandSummary(ETAS)formisthedocumentofrecord.Fortestauthorizationandapprovalaswellasrequirementverifications,theappropriateportionsoftheETASform,anditssupportingdocuments,mustbesubmittedtotheProjectERE.Requirement-Policy:Forthepurposeofassuringflighthardwarereadinessforenvironmentaltestinganddocumentingtestresults,theEnvironmentalTestAuthorizationandCompletionStatement(ETAS)Processshallbefollowed.Requirement-Policy:TheTestAuthorizationportionoftheETASformshallbecompletedbytheCognizantEngineerforthetestarticleandapprovedbytheProjectEREforeachflighthardwareserialnumberpriortocommencingenvironmentaltesting.Requirement-Policy:TheETASshallreferencetheapprovedtestplanandprocedures.Requirement-Policy:TheETASshalldescribeanydeviationsfromthehardware’sflightconfiguration.Requirement-Policy:Uponconclusionoftheenvironmentaltests,theTestResultsportionoftheETASformshallbecompletedandapproved,clearlydenotingthepass/faildispositionoftheflighthardware.Requirement-Policy:TheETASshallreferencetheenvironmentaltestreportsandincludeadescriptionofanyanomaliesrecordedduringenvironmentaltestingandreferencetheassociatedProblem/FailureReports(P/FRs).

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

15

AppendixB:ETASForm(EnvironmentalTestAuthorizationSummary)containsasampleETASform.Additionally,theprojectwillusetheon-lineETASintheMissionAssuranceInformationSystem(MAIS)system.

3.9 TestFailure

Requirement-Policy:AnyhardwarefailureormalfunctionduringanenvironmentaltestoranyfailureormalfunctionofanenvironmentaltestfacilitythatwouldaffectanenvironmentaltestshallbecausefortheissuanceofaP/FR(Problem/FailureReport).Requirement-Policy:Hardwarefailure,malfunction,orout-of-specificationperformanceduringformalenvironmentaltestingshallbeinterpretedasatestfailure.Forassembly-levelenvironmentaltesting,thetestmaybecontinuediftheCognizantEngineerandTestEngineeragreethatcontinuationisofdiagnosticvalueandwillnotdamagetheflighthardware.Requirement-Policy:Atthesystem(andInstrument)level,theapplicabletestplanshalldesignatetheresponsiblerepresentativewiththeauthoritytodeterminewhetherornottointerruptthetestintheeventofafailureormalfunctionoftheflighthardware.Requirement-Policy:Failuresassociatedwithenvironments,butacceptedbytheproject,shallbehandledthroughtheCategoryBWaiverprocess.

3.10 TestReports

Requirement-Policy:Aftereachassembly,subsystem,Instrumentorsystemenvironmentaltestisterminated(whetherbecausethetestrequirementsweresuccessfullycompletedorbecauseatestfailurehasoccurred)thetestingagencyshallprepareaTestAgencyReport,thatincludesoraddressesanydeviationsfromtheapprovedtestprocedure.Requirement-Policy:Foreachserialnumberofeachhardwaregroupsubjectedtoformalenvironmentaltesting,areportshallbepreparedbythehardwareprovider.Requirement-Policy:Thereport(s)shallbeavailableforProjectReviewsandasinputstotheassemblyDeliveryandPre-ShipmentReviewBoards.

3.11 Re-TestPolicies

Requirement-Policy:Environmentalretestsofassembliesshallberequiredunderthefollowingcircumstances:1. Tocompletetheprotoflightorflightacceptancetestingofhardwarethathasfailedduringits

environmentaltestprogram.2. Tore-qualifyflighthardwaredesignwheredesignchanges,modificationsorconfigurationchangesoccur

aftercompletionofenvironmentaltesting.3. Toverifytheflightworthinessofrefurbishedunitsusedasflightspares.4. Toverifytheflightacceptabilityofworkmanshipperformedaspartofreworknotcoveredbyitems1to3.

Requirement-Policy:Re-testingofassembliestoenvironmentalrequirementsshallbecoordinatedwiththeProjectEREs.Requirement-Policy:Thespecificre-testrequirementsshallbedeterminedjointlybetweenthecognizantengineerandtheProjectEREs(withMAMconcurrence).Requirement-Policy:Flighthardwareshallnotberetestedwithoutare-approvaloftheupdatedETASortestapprovaldocumentation.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

16

4 EnvironmentalDesignandVerificationRequirements

TheenvironmentaldesignandverificationrequirementscontainedwithinthissectionareestablishedtoassuredesigncompatibilityofEuropaLanderProjectflightandqualificationhardwarewiththespecifiedenvironmentsandcorrespondingmissionmodes.

4.1 HandlingandGroundOperationEnvironments

Thehandlingandgroundoperationsenvironmentaldesignrequirementsincludetheenvironmentsthattheflighthardwarewouldencounterduringfabrication,integration,calibration,alignment,andpre-launchoperations.Thegroundhandlingenvironmentsalsoincludetransportationandstorageoftheflighthardwareinhandlingfixturesorshippingcontainers.

4.1.1 TransportationandHandlingDynamicsEnvironments

Requirement:Flighthardwareshallbedesignedtosurvivewithoutdegradationthegroundtransportationandhandlingvibration,acceleration,andshockenvironmentsspecifiedinTable4.1.1-1Table4.1.1-1EnvironmentsforGroundTransportationandHandlingVibration,Acceleration,andShock.[TBD]

4.1.2 Thermal,Pressure,andRelativeHumidityEnvironment

Flighthardwaremustsurviveandoperateinnominalgroundandtransportationenvironmentalconditions.Standardthermal,pressure,andrelativehumidityrangesaregiveninTable4.1.2-1.Requirement:Flighthardwareshallbedesignedtosurvivewithoutdegradationthethermal,pressure,andrelativehumidityenvironmentsspecifiedinTable4.1.2-1.Requirement:Flighthardwareshallbedesignedtooperateinthethermal,pressure,andrelativehumidityenvironmentsspecifiedinTable4.1.2-1.,iftheyneedtooperateinthoseenvironments.Requirement:Ifflighthardwarewouldbedamagedbythethermal,pressure,andrelativehumidityenvironmentsinTable4.1.2-1.,thenspecialenvironmentalprotectivedevicesshallbenecessary.

Table4.1.2-1EnvironmentsforHandling,Transportation,andStorage.ControlParameter LowLimit HighLimitAirTemperature(Storage)AirTemperature(Operational)TemperatureChangeRatePressure(10,000’maxaltitude)RelativeHumidity

+5°C(1)+5°C-10°C/hr[TBR]6.9x104N/m2(520Torr)30%(3)

+50°C(1)+40°C(2)+10°C/hr[TBR]1x105N/m2(760Torr)70%(3)

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

17

NOTES:1)Limitscouldbeaswideas-40°Cto+70°Cduringshippingorstorageiftheenvironmentisnotcontrolled(suchas

thecargobayofanaircraftoroutsideinthedirectsun).ProvisionsshouldbemadetolimitthetemperaturetothoseinTable4.1.2-1.

2)Ifthehardwareisoperatinginanenvironmentthatiswithin10°Cofthislimit,thehardwareshouldbemonitoredtoensurethatitsFlightAcceptancetemperatureisnotexceeded.

3)Relativehumiditycouldbeaslowas0%duringshippingorstorageorashighas100%inuncontrolledcontainers.ProvisionsshouldbemadetolimittherelativehumiditytothoseinTable4.1.2-1.

4.2 LaunchPressureChangeEnvironments

4.2.1 Venting

Requirement:Allflighthardwareshallbedesignedtosurvivewithoutdegradationadepressurizationrateof-4.4kPa/s(-0.638psi/s)duringlaunchplusanadditional1.5xmargin.

Figure4.2.1-1TypicalStaticPressureProfilesinsideEELV5-meterfairing.

Requirement:Ventpathsshallbedirectedawayfromsensitivesurfacesoftheinstrumentsanddeployedsolarpanels.

4.2.2 RFandHVBreakdownDuringLaunchandinFlight

Radiofrequency(RF)andhighvoltage(HV)circuitryinflighthardwareissubjecttomultipacting/arcingdamageatcriticalpressures.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

18

Requirement:Flighthardwarethatoperatesduringlaunchorotherpartialpressureconditionsshallbedesignedtopreventcorona,oranyotherformsofhighvoltagebreakdownatpressuresbetween50and5x10-4Torr.Requirement:AllMicrowaveandRFcomponentssubjectedtohighRFpowerlevels(>1Watt)shalldemonstrateadequatemarginstomultipactionand/orRFbreakdownviaeithertest(>6dB)oranalysis(>10dB).

4.3 StructuralLoadsandDynamicsEnvironments

ThestructuralloadsanddynamicsenvironmentsfortheEuropaLanderProjectareinapreliminarystate.AsthedesignforbothEuropaLanderandlaunchvehiclehardwarematures,theseenvironmentswillbecomemoreclearlydefined.DynamicsenvironmentsfortheDeltaIVHeavyandpreliminaryenvironmentsfortheSLSarepublicallyavailableineachvehicle’srespectiveUsersGuides.FinalenvironmentsforEuropaLanderareexpectedtobein-familywith,butnotnecessarilyenvelopedby,availableDeltaIVHeavyorSLSenvironments.Dynamicsenvironmentsandstructuralloadsareinducedintheflightsystemandassembliesduringgroundhandling,transportation,launch,cruise,deceleration,descent,landing,andsurfaceoperationphasesofthemission.Requirement-Policy:Theflightsystem,assemblies,subsystems,andinstrumentsshallbetestedfordynamicenvironmentsintheirrelevantflight-likeoperationalmodeandmechanicalconfigurationpertheEuropaLanderTestandAnalysisMatrix(TAM)(JPLD-xxxxxTBD).Table4.3-1providesasummaryofEuropaLandermissioneventswithassociateddynamicenvironmentcomponents.Dynamicenvironmentsforassembliesandinstrumentswillbedefinedasthelaunchvehicle,flightsystem,andinstrumentsuitematures.

Table4.3-1DynamicsEnvironmentsSummary[TBR] Event FlightHardwareConfiguration Environment(s)

1LaunchandCruiseVehicle

Separation CruiseVehicle

AcousticsQuasi-staticLoadsRandomVibrationSinusoidalVibration

Pyro-Shock

4 DeorbitVehicleSeparationCarrierandRelayStage+Deorbit

Vehicle Pyro-Shock

5 DeorbitVehicleDeceleration DeorbitVehicle Quasi-staticloads

6PoweredDescentVehicle

SeparationDeorbitVehicle+PoweredDescent

VehiclePyro-Shock

Quasi-staticloads

7 PoweredDescentVehicleDescent+LanderSeparation PoweredDescentVehicle

Quasi-staticloadsSinusoidalVibration

Pyro-Shock

8 LanderTouchDown Lander Half-SineShockPyro-shock

9 LanderMechanicalDeployments Lander Pyro-Shock

10 LanderOperations Lander Microphonics

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

19

4.3.1 StructuralLoads

Quasi-staticstructuraldesignloadsrepresentthecombinedquasi-steadyaccelerationsandthelowfrequencymechanicallytransmitteddynamicaccelerationsoccurringduringlaunch,deorbit,anddescent.4.3.1.1 LaunchStructuralLoads

LaunchStructuralLoadsapplytotheCruiseVehicle,whichincludesalloftheEuropaLanderconstituentstages.Generally,themostconservativeandearliestavailabledesignlaunchloadsarefromtheMassAccelerationCurve(MAC)definedinFigure4.3.3-1[TBR].Requirement-Policy:TheMassAccelerationCurveinFigure4.3.3-1shallbeusedaspreliminarydesigncurveforallappendagestructures(includingprimarystructuresotherthantheflightsystemcore),secondarystructures,supportstructuresforequipment,andequipmentstructuralattachmentsandhousings.

Figure4.3.3-1PreliminaryMassAccelerationCurve(MAC)fortheEuropaLanderMission(SLS,Delta-IVHeavy,

andFalconHeavy).[TBR]TheMACrepresentsanupperboundonthedynamicportionofaccelerationasafunctionofmassforphysicalmasseslessthan500kg.Thisphysicalmassistheactualmassforsingledegreeoffreedomsystems.Formulti-degreeoffreedomsystems,thephysicalmasscanbeapproximatedastheportionofmasssupportedbytheelementbeinganalyzed.Thedynamicaccelerationisappliedinthesingledirectionproducingthegreatestloadcomponent(axialload,bendingmoment,reactioncomponent,stresslevel,etc.)beinginvestigated.Theloadcomponentfromtheaccompanyingstaticaccelerationinthelaunchvehiclethrustdirectionsshouldbeaddedinaddition.TheloadsderivedfromtheMACshouldbetreatedasloadlimits.TheMACloadsareconsideredpreliminaryuntilvalidatedbyacoupledloadsanalysis(CLA).

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

20

Theflightsystemcenterofgravity(CG)limitloadfactors,showninTable4.3.1-1,areprovidedbythelaunchvehicleorganizationandareappropriateforsizingtheprimarystructure.LoadsareapplicableattheflightsystemCGandshouldbemultipliedbytheappropriatesafetyfactorstoobtainstructuraldesignloads.TheyareintendedtoprovideapreliminarydesignenvelopeandaresupersededbyAugmentedCoupledLoads.

Table4.3.1-1PreliminaryFlightSystemCGLimitLoadFactorsDuringLaunch.[TBR]

4.3.1.2 Deorbit,Descent,andLandingStructuralLoads

ThedesignofDeorbit,Descent,andLanding(DDL)aswellasDeorbitVehicle(DOV)areintheearlystages.Therefore,thepredictedstructuralloadsexperiencedduringDDLareyettobedetermined.ItispossiblethattheDDLstructuralloadswillexceedthoseexperiencedduringlaunch.Thisdocumentwillbeupdatedasdesignsarecompletedandlimitloadsarecalculated.DeorbitstructuralloadsapplytotheDeorbitVehicle(DOV)andallofitsconstituentstages.Theseloadsresultfromdecelerationbyuseofasolidrocketmotor.Table4.3.1-2providesthepredictedlimitloadfactorsduringdeorbit.

Table4.3.1-2DeorbitVehicleCGLimitLoadFactorsDuringDeorbit[TBD]LoadCondition Max.LateralCase Max.AxialCaseThrustAxisLateralAxes

TBDTBD

TBDTBD

DescentstructuralloadsapplytothePoweredDescentVehicle(PDV)anditsconstituentstages.Theseloadsarearesultofthedescentandthrustvectorcontrolenginesfiring.Thesemotorsmaybepulsed,whichwouldalsoinduceasinevibrationenvironment(SeeSection4.3.2.1.2).Table4.3.2-3providesthepredictedlimitloadfactorsduringdeorbit.

Table4.3.1-3PoweredDescentVehicleCGLimitLoadFactorsDuringDescent[TBD]LoadCondition Max.LateralCase Max.AxialCaseThrustAxisLateralAxes

TBDTBD

TBDTBD

LandingstructuralloadsapplytotheLander.TheseloadsarearesultoftheLandertouchdownonEuropa’ssurface.Table4.3.1-4providesthepredictedlimitloadfactorsduringdeorbit.

Table4.3.1-4LanderCGLimitLoadFactorsDuringTouchdown[TBD]LoadCondition Max.LateralCase Max.AxialCaseThrustAxisLateralAxes

TBDTBD

TBDTBD

4.3.2 RandomandSinusoidalVibration

4.3.2.1 EuropaLanderSystemLevel

4.3.2.1.1 LaunchRandomandSinusoidalVibrationEnvironment

LoadCondition Max.LateralCase Max.AxialCaseThrustAxis

LateralAxesTBDTBD

TBDTBD

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

21

Theflightsystemwillexperiencerandom,periodic,andtransientvibrationmechanicallytransmittedfromthelaunchvehicle.TheseenvironmentsarespecifiedasrandomandsinusoidalvibrationtestrequirementswiththeaccelerationattheflightsystemadapterbaseinterfacedefinedinTable4.3.2-1andTable4.3.2-2.Theobjectiveoftheflightsystemrandomandsinusoidalvibrationtestisworkmanshipverificationandqualificationoftheassembledflightsystem,interconnections,andelectromechanicalequipment.Atthetimeoflaunch,theflightsystemisintheCruiseVehicleconfiguration.Requirement:TheflightsystemshallbecapableofoperatingwithinspecificationafterbeingsubjectedtothespecifiedrandomvibrationtestlevelsdefinedinTable4.3.2-1.

Table4.3.2-1FlightSystemRandomVibrationTestLevels.[Preliminary,TBR]Frequency

HzFA

AccelerationSpectralDensityQual/PF

AccelerationSpectralDensity5–10

10–200Overall

TBDTBDTBD

TBDTBDTBD

Qual:2minutesineachofthethreeorthogonalaxes,oneofwhichisthelaunchthrustaxis.PF/FA:1minuteineachofthethreeorthogonalaxes,oneofwhichisthelaunchthrustaxis.

Requirement:TheflightsystemshallbecapableofoperatingwithinspecificationafterbeingsubjectedtothespecifiedsinevibrationtestlevelsdefinedinTable4.3.2-2.

Table4.3.2-2FlightSystemSinusoidalVibrationTestLevels.[Placeholder,TBD]

1g=standardaccelerationduetogravity=9.81m/s2.

QualTestsweeprate:2octave/minuteineachofthreeorthogonalaxes,oneofwhichisthelaunchthrustaxis.PF/FATestsweeprate:4octave/minuteineachofthreeorthogonalaxes,oneofwhichisthelaunchthrustaxis.D.A.=DoubleAmplitude.

Requirement-Policy:Theflightsystemrandomandsinusoidalvibrationtestshallbeforce-limitedtoreduceover-testingathardmountedresonancefrequencies.TheupperboundforcespectruminTable4.3.2-3andTable4.3.2-4maybeusedtolimittheinputaccelerationtotheflightsystem.AdditionalnotchingoftherandomandsinusoidalvibrationinputlevelsatflightsystemresonancesmayberequiredduringtestingandshouldbebasedontheresultsoftheCLAmultipliedby1.2.Theforceandaccelerationlimitvaluesmaybemodifiedbasedoninformationgatheredduringshakertesting.TherandomandsinusoidalvibrationlevelsTable4.3.2-1andTable4.3.2-2arenotintendedforuseinthedesignoftheflightsystemprimarystructure,orforthestructuralintegrityofequipmentsupports.

Table4.3.2-3FlightSystemRandomVibrationTestForceLimitSpecification.Frequency,Hz ForceSpectralDensityLevel

f<fof≥fo

SFF=C2*Mo

2*SAASFF=C

2*Mo2*SAA*(fo/f)

2

[Note:fisfrequency,foisthelastpredominantfrequencyintheaxisoftesting,SFFistheforcespectraldensity,Cisadimensionlessconstantwhichdependsontheconfiguration,Moisthetotalmassofthetestitem,andSAAistheaccelerationspectraldensity(giveninTable4.3-6forFAandQual/PF).ThevalueofC2willbederivedusingthemethodologyofNASA-HDBK-7004C.ContacttheprojectdynamicistsforassistancewithdetermininganappropriatevalueofC.TheequationsinError!Referencesourcenotfound.aretobeinconsistentunits.]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

22

Table4.3.2-4FlightSystemSinusoidalVibrationTestForceLimitSpecificationFrequency,Hz ForceSpectralDensityLevel

f<fof≥fo

F=C*Mo*A(f)F=C*Mo*(fo/f)*A(f)

Note:fisfrequency,foisthelastpredominantfrequencyintheaxisoftesting,Fistheforcelimit,Cisadimensionlessconstantwhichdependsontheconfiguration,Moisthetotalmassofthetestitem,andAistheinputacceleration(giveninTable4.3-7forFAandQual/PF).ThevalueofCwillbederivedusingthemethodologyofNASA-HDBK-7004C.ContacttheprojectdynamicistsforassistancewithdetermininganappropriatevalueofC.TheequationsinError!Referencesourcenotfound.aretobeinconsistentunits.

4.3.2.1.2 DescentThrusterPulsingEnvironment[TBR]

TheDescentVehiclemaybesubjectedtovibrationloadsfromthrusterpulsingduringthedescentphase.ForthisdraftoftheERD,therequirementsareleftinskeletonforminformationpurposes.FutureversionsoftheEuropaLanderERDwillbeupdatedasthedesignmatures.Vibrationinducedduringpowereddescentischaracterizedbylow-levelsinusoidsata[TBD]thrusterpulsefrequencyandathigher-orderharmonics.Duringdescent,theflightsystemiscomprisedoftheCarrierandRelayStageandthePoweredDescentVehicle.ThePoweredDescentVehicleandtheDescentStagepostseparationwouldencounterthedescentthrusterpulsingenvironment.Requirement:TheflightsystemshallbedesignedtosurviveandfunctionasrequiredduringandafterexposuretotheboundingthrustersinelevelsshowninTable4.3.2-5

Table4.3.2-5DescentVehicleSineVibrationLevels[TBD]Axes Frequency(Hz) DwellDuration(s) FA(g) PF(g)X TBD TBD TBD TBDY TBD TBD TBD TBDZ TBD TBD TBD TBD

4.3.2.2 AssemblyRandomVibration[TBD]

Requirement:FlighthardwareandsparesshallbedesignedtosurvivewithoutdegradationwhensubjectedtotheapplicationofthespecifiedrandomvibrationenvironmentdefinedintheappropriatesectionofTable4.3.2-6[Tablewillbeprovidedatalaterdateasthedesignmatures.]

Table4.3.2-6AssemblyRandomVibrationSpecifications[TBD].TheGeneralEnvironmentalVerificationSpecification(GEVS)(GFSC-STD-7000A)providesageneralizedassembly-levelrandomvibrationspecification.(SeeTable2.4-3inGFSC-STC-7000A.)Untilfurtherupdatesonareavailable,forcomponentswithmass>50kg,thegeneralspecificationsprovidedinGEVSaresuggestedasearlyguidanceonly.FinalrequirementsforEuropaLanderassemblieswillbereleasedinupdatestothisdocument.

4.3.2.3 AssemblyQuasi-StaticLaunchLoadsRequirement:Intheeventthatlaunchloadsarenotachievedduringvibrationtesting,thoseloadsshallbeproducedbytheperformanceofasinusoidalbursttest,staticpull,centrifugetest,oranotherstaticloadstest.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

23

4.3.3 AcousticsEnvironment

4.3.3.1 LaunchAcousticEnvironment

Theacousticenvironment(Table4.3.3-1)istheenvelopeoftheacousticenvironmentsforthealternatecandidateEELVlaunchvehicles(FalconHeavyandDelta-IVHeavy)andthecurrentacousticpredictionforthe5mfairingontheSpaceLaunchSystem(SLS)launchvehicle.TheboundingcaseistheenvelopeoftheDelta-IVHwithcompositePLF(payloadfairing)andDelta-IVHwithisogridPLFandthecurrentacousticpredictionforthe5mSLSfairing.ThisdocumentwillbeupdatedwhenreliableacousticlevelsforthebaselineSLS,orotherpotentialalternatelaunchvehicles,isavailable.ThemaximumacousticenvironmentfortheEuropaLanderflightsystemoccursduringlift-offandtransonicflight.Theenvironmentisrepresentedasadiffuseacousticfieldwithrandomincidencespecifiedin1/3-octavebands.4.3.3.1.1 FlightSystemAcoustics

Atthetimeoflaunch,theflightsystemisintheCruiseVehicleconfiguration.Requirement:TheflightsystemshallperformwithinspecificationafterbeingsubjectedtoacoustictestlevelsdefinedinTable4.3.3-1

Table4.3.3-1AcousticQual/ProtoflightandFlightAcceptanceTestLevels(Placeholder–TBD)

(Duration:Qual:2minutes;PFandFA:1minute.)

4.3.3.1.2 AssemblyAcoustics

Requirement:Flighthardwareandsparesshallbedesignedtosurvivewithoutdegradation,whensubjectedtotheapplicationofthespecifiedacoustictestenvironmentinTable4.3.3-2

Table4.3.3-2AssemblyLevelAcousticQual/ProtoflightandFlightAcceptanceTestLevels[TBD].

Note:AssemblieswithahighsurfaceareatomassratiomayseehigherlevelsthantheFlightSystem.

4.3.4 PyrotechnicShock

PyrotechnicshocktestingwilloccurattheEuropaLanderflightsystemandassemblylevel.Flightsystemtestingisintendedtovalidatethecapabilityoftheflightsystemandverifytheexpecteddominantshocksourcesforpotentiallysusceptiblehardware.Anyassembliesthatmightbesusceptibletoshockdynamicsaretestedatalower-levelofassembly.4.3.4.1 FlightSystemShockEnvironments

Thesystemlevelseparation/deploymentpyrotechnicshocktestswillbeemployedtoverifytheadequacyoftheassemblyQual/Protoflightpyrotechnicshocktestenvironments,whichwillbeprovidedinanupdatetotheERD.Forassemblylevelshocktesting,theMEFLwillbemultipliedbyafactorof1.4forQual/PF.Requirement:TheflightsystemshallbedesignedtosurvivewithoutdegradationandtofunctionsafelywhensubjectedtotheinducedshockenvironmentsduringseparationeventwithaMaximumExpectedFlightLevel(MEFL)showninTable4.3.4-1.Theselevelsarepredictedatabout6-inchfromthesource.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

24

Forreference,Table4.3.4-1containsmaximumpredictedshocklevelsforLaunchVehicleSeparationattheflightsysteminterfaceduetopayloadseparationfromthePAFforthealternatecandidateEELVlaunchvehicles(Atlas-VandDelta-IVHeavy).TheERDwillbeupdatedwhenreliablepayloadseparationshocklevelsforthebaselineSLS,orotherpotentialalternatelaunchvehicles,isavailable.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

25

Table4.3.4-1MaximumExpectedFlightLevelPyroshockEnvironmentatMajorSystem-LevelEvents.[Preliminary,TBR]

Event:LaunchVehicleSeparationInterface:CruiseVehicle–LaunchVehicle

Frequency,Hz MEFLSRS(Q=10)1001,10010,000

100g5050g5050g

Event:DeorbitVehicleSeparationInterface:CarrierandRelayStage–DeorbitVehicle

Frequency,Hz MEFLSRS(Q=10)1001,10010,000

40g4000g4000g

Event:DescentVehicleSeparationInterface:DeorbitStage–DescentVehicle

Frequency,Hz MEFLSRS(Q=10)1001,10010,000

40g4000g4000g

Event:LanderSeparationInterface:DescentStage–Lander

Frequency,Hz MEFLSRS(Q=10)1001,10010,000

40g4000g4000g

Event:LanderTouchdownInterface:Lander-EuropaSurface

TBD[Note:Launchvehicle/flightsysteminterfacepyroshockenvironmentupdatedtoenvelopetheseparationsystemtypeD1666andshockenvironmentsforthecandidatelaunchvehicles.]

4.3.4.2 AssemblyLevelShockEnvironmentsThepyroshocklevelsdefinedthissectionwillbebasedonareasonableenvelopeofthepossiblepyroshockconditionsthatwillbeencounteredduringlaunch,flight,DDLandLanderdeploymentevents.Therequirementsarebasedontestinformationavailabletodateandmaybeupdatedasthespacecraftconfigurationmatures.Requirement:Flighthardwareshallbedesignedtosurvivewithoutdegradation,whensubjectedtotheapplicationofthespecifiedpyrotechnicshockenvironmentdefinedinTable4.3.4-2andTable4.3.4-3DesignationsprovidedinTable4.3.4-2andTable4.3.4-3arefordemonstrationpurposesonly.Designationsandvalueswillbeprovidedinalaterupdate.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

26

Table4.3.4-2AssemblyPyrotechnicShockZones.[TBD]

AssemblyLocation/Assembly Zone Comments CarrierandRelayStage(CRS) CRSAssembly1 a CRSAssembly2 a

DeorbitStage(DoS) DoSAssembly1 b DoSAssembly2 b

DescentStage(DS) DSAssembly1 c DSAssembly2 c

Lander Instrument1 d Instrument2 d

Table4.3.4-2AssemblyPyrotechnicShockRequirementsbyZone.[TBD]

Zone Frequency,Hz QUAL,PFPeakSRSResponse(Q=10)

100 TBDga 100-1,600 TBDdB/Oct. 1,600-10,000 TBDg 100 TBDgb 100-1,600 TBDdB/Oct. 1,600-10,000 TBDg 100 TBDgc 100-1,600 TBDdB/Oct. 1,600-10,000 TBDg 100 TBDgd 100-1,600 TBDdB/Oct. 1,600-10,000 TBDg

4.3.4.3 PyrotechnicTestingRequirementsSystem/subsystemleveltestswillconsistoftwoactualfiringsofeachpyrotechnicdevicethatistobeusedfortheEuropaLandermissionseparationanddeploymentevents.ThesystemleveltestswillbeemployedtoverifytheadequacyoftheassemblyQual/ProtoflightpyrotechnicshockenvironmentsfoundinTable4.3.4-2andTable4.3.4-3,lessafactorof1.4or3dB.

Pyrotechnicshocktestingisrequiredforassembliesexposedtopyrotechnicshockloading,whethertheloadingisself-generatedorinducedbyexternalsources.Requirement:AssembliesshallbesubjectedtoasynthesizedshocktwiceforQualificationandonceforProtoflightineachofthreeorthogonaldirections(somepyroshocksimulationfacilitiesmaybecapableofinputtingrequiredshocklevelsinmorethanoneaxisatatime).

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

27

FlightAcceptancepyroshocktestingattheassemblylevelisnotrequired.However,eachassemblywillbefurthersubjectedtopyrotechnicshockduringspacecraftsystemand/orsubsystemleveltesting.Requirement:Thetestarticleshallbemountedtothetestfixtureatitsnormalflightinterfacesandshallbeinitsflightconfigurationatthetimeoftheflightpyroshockevent.Testshocksshallbeappliedatassemblymountingpoints.Thepyroshocktestmaybeconductedeithera)usinganelectro-dynamicshakerorb)usingashock-generatingapparatus.Theshakershocktestmaybeconductedinconjunctionwiththerandomvibrationtest,buttherearesomeoperatinglimitations(e.g.,maximumaccelerationlevelsandsevereroll-offatfrequencyabove3000Hz).Requirement:Synthesizedshockwaveformsshallmeetthefollowingcriteria:thetimehistoryshallbeoscillatoryinnature,andthepulseshalldecaytolessthan10%ofitspeakvaluewithin20milliseconds.Requirement-Policy:Asinglepointopenloopcontrolshallbeutilizedusinglowerlevel'spectrumshaping'runstocalibratethetestcontrol.Requirement-Policy:Controlandmonitoraccelerometersshallbemountedonthetestfixturenearthetestarticleattachmentpoint.Requirement-Policy:Thecontrolshockspectrumatthecontrolaccelerometershallbematchedtotherequiredspectrum.Requirement-Policy:Timehistorydatafromcontrolandanymonitoringaccelerometersshallberecordedandpreserved.Requirement:Sincetestmarginisunachievable,robustnesstoself-inducedshockenvironmentsshallbeverifiedthroughaminimumof(2)actualfiringsofpyrotechnicdevicesinaconfigurationwhichisrepresentativeofflightTheassemblymechanical/pyroshocktestlevelswillbeprovidedatalaterdate.Requirement:Flighthardwarethatperformscriticaloperationsduringashock-producingeventshallbedesignedtofunctionwithinspecificationduringtheapplicationofthespecifiedpyrotechnicshockenvironment. FormoreinformationonpyrotechnicshocktestingconsultNASA-STD-7003A.

4.3.5 InducedMicrophonicsandJitterEffects

Low-leveldynamicenvironmentswouldoccurduringpost-separationoperations.Theprincipalsourcesoftheseenvironmentsareflightsystemdeployments,nominalarticulationofsolararrays,attitudecontrolmaneuvers,nominalmainengineburnaswellasothermechanicalsystemoperations,includingreactionwheels,andsensorsandinstrumentswithmovingmasses.Theselow-levelvibrationsmayinducemicrophonicsorjittereffectsinscienceinstrumentsorflightsystemhardware.(Note:Microphonicsistheinducementofnoiseinelectricaldevicesandjitteristhesmearingofimagesinopticalsystemscausedbyvibration-inducedmotions).Landerinstrumentsandflightsubsystemswillbesubjecttomicrophonicsandjittereffectsfromarticulationofstabilizers,telecomantennae,instrumentssubsystemsinsideandoutsidethevault,andsamplingsystem.Theseenvironmentsarenotyetdefinedandwillbeincludedinupdatestothisdocument.ThevaluespresentedherearerepresentativeandmayberevisedastheLanderdesignmatures.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

28

Requirement:InstrumentsshallbedesignedtooperatewithinspecificationduringbroadbandbasedynamicinputperTable4.3.5-1.Requirement:VerificationoftheMicrophonicEnvironmentshallbebytestinthreeorthogonalaxes,oneaxisatatime.

Table4.3.5-1BroadbandMicrophonicEnvironmentforInstruments.[TBD]Frequency(Hz) Requirement

1-20 [TBD]dB/octave20-300 [TBD]g2/Hz

300-1000 [TBD]dB/octaveOverall [TBD]grms

Requirement:InstrumentsandsubsystemsshallbedesignedtooperateduringsinusoidalbaseinputsperTable4.3.5-2.

Table4.3.5-2SinusoidalMicrophonicEnvironmentforInstruments.[TBD]Frequency(Hz) Requirement

10-1000 [TBD]g,0-to-Peak1g=standardaccelerationduetogravity=9.81m/s2.

Testsweeprate:2octave/minute(upsweeponly)ineachofthreeorthogonaldirections.Requirement:Instrumentsandsubsystemsthatarerequiredtooperateduringpostboost,cruise,tour,DDL,andsciencesegmentsofthemissionshallbedesignednottopropagatelow-levelvibrationenvironments(resultinginmicrophonics/jitter)tosusceptibleoperatingflighthardware.Requirement:InstrumentsshallbedesignedtoimpartforcestotheflightsystemnogreaterthanthosespecifiedinTable4.3.5-3below.

Table4.3.5-3MaximumInstrumentMicrophonic/JitterEmission.[TBD]Frequency(Hz) Requirement

1-1000Hzsinusoidal [TBD]lb,0-to-PeakPeaktransient [TBD]lbPeakBroadband [TBD]lbrms

Forcemeasuredonrigidmountusingappropriateinstrumentation.Instrumentsexhibitinghighermeasuredforcesmaybesubjecttooperationalconstraints.

4.3.6 FlightSystemModalTest

Thepurposeofmodaltestingoranalysisistocharacterizethefundamentaldynamiccharacteristicsofastructure’s:

-Naturalfrequencies-Damping-ModeShapes

Modaltestingremovesuncertaintiesregardingjointstiffnessandstructuredamping.Thisinformationwillbeusedtoupdatethefiniteelementmodelandwillresultinanimprovedcoupledloadsanalysis.

4.3.7 DynamicsTestTolerances

Requirement:ThedynamicstestsshallbecontrolledtothetolerancesinTable4.3.7-1.

Table4.3.7-1DynamicsTestTolerances.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

29

Staticloads(CentrifugeorShaker) Within+/-5%ofthespecifiedvalue.Randomvibrationspectralshape Within+/-3dBofthepowerspectraldensitytestspectra,measured

infrequencybandsnomorethan25Hzwide.Randomvibrationwide-band(RMS)level Within+/-1.0dB(trueRMS)ofthespecifiedlevel.

Acoustictestspectralshape Equaltothesoundpressureleveltolerancesof4.3.3-1measuredinfixed1/3-octavebands.

Acoustictestoveralllevel Within+/-1.0dB(trueRMS)ofthespecifiedlevel.Frequency Within+/-5%or+/-1Hz,whicheverisgreater.Time Within+/-5%.Shockresponsespectrum(SRS)shape 1)SRSmeasuredwithaminimumresolutionofone-sixth(1/6)

octavefrequencyband.SRSspectrummagnitudeswithin+/-6dB,withatleast50%ofthespectrummagnitudesexceedingthenominaltestspecification.

2)Timehistoryoscillatoryinnatureanddecaysto10%ofpeakvaluewithin20milliseconds.

3)Mechanicalimpactshock-generatingapparatusisrecommendedforpyroshocksimulation.Othershock-generatingapparatus,suchasshakers,ordnance,anddroptables,generallydonotmeetthetolerancecriteriaaboveandtheiruseisdiscouraged.

4.4 ThermalEnvironments

4.4.1 Definitions

Termsusedhereinforthermaldesignandtestaredefinedasfollows:OperatingAllowableFlightTemperature(AFT):Forspecifiedassembliesandsubsystems,theOperatingAFTrangeincludestheworstcasenominal(i.e.,non-emergency)hotandcoldtemperaturelimits,includingallowancesforpredictionuncertainties.Theselimitsencompassallnominaloperatingmodes,performancewithinfunctionalspecifications,thattheThermalControlSubsystemisdesignedtoaccommodate.Temperaturesaremeasuredatthethermalcontrolsurface(e.g.mountingsurface,radiatorsurface,etc.),asspecifiedbyThermalEngineering.Non-OperatingAllowableFlightTemperature:Forspecifiedassembliesandsubsystems,theNon-OperatingAFTrangeincludestheworstcasepowered-offhotandcoldmissiontemperaturelimits,includingallowancesforpredictionuncertainties.Theselimitsencompassallnominal(i.e.,non-emergency)non-operatingmodesthattheThermalControlSubsystemisdesignedtoaccommodate.Temperaturesaremeasuredatthethermalcontrolsurface(e.g.mountingsurface,radiatorsurface,etc.),asspecifiedbyThermalEngineering.Qualification/Protoflight(PF)TemperatureLimits(OperatingandNon-Operating):Protoflightthermaltestmagnitudeanddurationareidenticaltoqualificationtestmagnitudeandduration.OperatingProtoflighttestingimpliesmeetingallfunctionalspecificationsinthePFoperatingenvironments.FlightAcceptance(FA)TemperatureLimits(OperatingandNon-Operating):FAisthetemperaturerangeoverwhichflightassemblieswhosedesignhasbeenpreviouslyqualifiedwillbetestedtoverifyworkmanshipandfunctionalitywithinspecification.FAtestingservestodemonstrateamoderatedegreeofmarginbeyondtheAFTrange.DesignTemperatures:

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

30

Designtemperaturesarethetemperaturelimitstowhichassembliesaredesignedtomeetfunctionalandperformancespecifications.DesigntemperaturesarenormallyequivalenttoorexceedtheQualification/Protoflightlimits.

Figure4.4.1-1ExampleThermalDesignLimitsforOperationalandNon-OperationalRanges.Designlimitsare

normallyequivalenttoorexceedtheQualification/Protoflightlimits.

4.4.2 LaunchThermalEnvironment

Thelaunchthermalenvironmentisdependentonboththelaunchvehicleandtheflighttrajectory.Thevaluespresentedinthissectionarepreliminaryandmaychange.Thisdocumentwillbeupdatedasthedesignmatures.Requirement:ThethermalcontroldesignshallmaintainassemblieswithintheirrespectiveAFTlimitswhileexposedtothelaunchinducedthermalenvironmentsinSection4.4.2.1andSectionError!Referencesourcenotfound..4.4.2.1 PayloadFairingWallTemperature

TheinnersurfacesoftheEELVcomposite5-mPLFconeandcylinderhaveanemittanceof0.9.ThepeakheatfluxradiatedbytheinnersurfacesoftheLVconeandcylinderofthe5-mPLFislessthan914W/m2(290Btu/hr-ft2),andpeaktemperaturesremainbelow93°C(200°F)atthewarmestlocation.SLSfairingthermalconditionsareexpectedtobesimilartoEELVenvironments.

4.4.3 PlanetaryProtectionThermalEnvironment

TheEuropaLanderPlanetaryProtectionPlan(JPLD-97653)isthereferencedocumentforplanetaryprotectionrequirements.OneoftheplanetaryprotectionprocessesavailableisDryHeatMicrobialReduction(DHMR)andthereforewouldlikelydriveanon-operationalthermalenvironmentforflighthardware.Here,ashortdescriptionofDHMRandnotionalspecificationsaregiven.DHMRDescription:DryHeatMicrobialReduction(DHMR)isabake-outprocesswherethehardwareisheldatanelevatedtemperature,typically>125°Cformanyhoursinacontrolledhumidity(<25%relativehumidity)

OperationalRangeNon-OperationalRange

70

60

50

40

30

20100

-10

-20

-30

-40-50-60-70

Temperature

AllowableFlightTem

perature

FlightAcceptance

Qualification/Protoflight

Allowab

leFlightTe

mpe

rature

FlightAccep

tance

Qua

lifica

tion/Protoflight

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

31

environment,suchaspartialvacuumordrynitrogen.Exacttemperaturesanddurationsforthehardwarewouldbedependentonaccommodationofthehardwareonthespacecraftandwouldbeinvestigatedindetailwhenthermalmodelsbecomeavailable.Stepsshouldbetakenafterbioburdenreductionprocessingtopreventrecontamination,potentiallyinvolvingspecializedhandlingprocedures,seals,covers,filtersand/orothertechniquesincorporatedinthedesign.Recently,NASAspecificationshavebeenchangedtoallowHMRwithouthumiditycontrol.Whilesimplertoimplement,thedurationsarelongerforequivalentmicrobiallethality.Forsurfaceandencapsulatedelements,a4-orderofmagnitudebioburdenreductionequatestoaDHMRbakeatslightlyhigherthan125˚Cfor88.6hoursand442.9hours,respectively.

4.4.4 SpaceandEuropaSurfaceThermalEnvironment

ThespacethermalenvironmentincludesallphasesoftheEuropaLandermissionfollowinglaunchandincludingsurfaceoperations.Table4.4.4-1containsexternalheatsourcesforallmissionphases.Requirement:ThethermalcontroldesignshallmaintainassemblieswithintheirrespectiveAFTlimitswhensubjectedtotheworst-caseexternalmissionenvironmentsasspecifiedinTable4.4.4-1

Table4.4.4-1ExternalHeatSources/SinksandConstants[TBR]

Minimum Maximum

SolarFlux[W/m2]1 46.2(at5.43AU) 1737.4(at0.885AU)EarthIR[W/m2] 227 241EarthAlbedo 0.29 0.31JupiterIR[W/m2]2 13.6 13.6JupiterAlbedo 0.311 0.375EuropaIR[W/m2] 1[TBR] 15[TBR]EuropaGeometricAlbedo3 0.64[TBR] 0.7[TBR]EuropaSurfaceTemperature[K]4 70 132EuropaSurfacePressure[bar] 10-12 10-12JupiterEclipse[hours] 9.2 9.2SpaceTemperature[K] 2.7 2.7

Note1:SolarFluxiscalculatedusingasolarconstantof1360.8W/m2at1AUgivenbyKoppandLean,[2011]doi:10.1029/2010GL045777Note2:IRfluxisgivenatthethermalboundary.JupiterIRfluxatEuropaisapproximately0.15W/m2.Note3:GeometricAlbedoofEuropaisgiven.Localizedalbedovaluesasafunctionofwavelengthmayvary.Futureupdatestothisdocumentwillincludelocalalbedovalues.Note4:MinimumandmaximumEuropasurfacetemperaturelimitsaretheextrememacroscopicobservedtemperaturesfromGalileoPPR.Localizedsurfacetemperaturesmaybemoreextreme.Possibleextremelocaltemperatureare29Kand190K.

TheatmosphereofEuropaisextremelytenuous(~10-12bar).PossibleheattransferpathstotheLanderwillbethroughradiationandconductiontothesurface.TheaverageequatorialEuropasurfacetemperatureis106Koveradiurnalcyclewith~50Kfluctuations(SeeFigure4.4.4-2).OneEuropadiurnalcycleis85.2hours.Landinglatitudewillinfluencetheaveragediurnaltemperatureanddiurnalvariation(seeexamplesfromFigure4.4.4-2).ThemaximumobservedbrightnesstemperaturefromGalileoPPRis132K(equatoriallocalnoon),andthelowestis~70K(high-latitudenight)(SeeFigure4.4.4-1).PPRresolutionismuchlargerthanthescalesizeoftheLander.ItispossiblethatextremehotandcoldtemperaturesexistatLander-scale.Onthehotside,AbramovandSpencer[2008](doi:10.1016/j.icarus.2007.11.027)suggestthatanywarmsurface(e.g.liquidwaterat273K)wouldrapidly

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

32

coolto<190Kwithin10Earthdays.Onthecoldside,Paigeetal.,[2010](10.1126/science.1187726)measuredtemperaturesaslowas29KinpolarLunarcraters.WhileshadedLunarcratersarenotaone-to-oneanalog,theyrepresentapotentialextremecoldthatmayalsoexistonEuropainlocalizedareas.Therefore,wespecify29Kand190KasthelocaltemperatureextremesthatcouldbefoundonEuropa’ssurface.

Figure4.4.4-1BrightnesstemperatureobservationsfromGalileoPPR.[FromRathbun,Rodriguez,andSpencer,

2009.](doi:10.1016/j.icarus.2010.07.017)

In general, daytime temperatures behave as expected, with tem-peratures peaking at approximately 130 K near the subsolar pointin all images covering a substantial portion of the disk and droppingoff away from the subsolar point. Nighttime temperatures varywith location and local time, but are generally less than 100 K.One surprising feature in the nighttime data is in the region be-tween 0 and 90 west longitude where the nighttime temperatures

are highest at mid-latitudes and drop not only toward higher lati-tudes, but also toward the equator (Spencer et al., 1999). Thischange is not apparently correlated with any surface features or al-bedo. Spencer et al. (1999) suggested that thermal inertia variationscould account for the observed temperature difference, but couldnot rule out warming of mid-latitude surfaces by widely-distrib-uted endogenic heat as a possibility. They also fit a diurnal thermal

Table 1List of the PPR data sets with high spatial resolution, low noise, and coverage of a large area. Time of day is given in degrees where 0 is midnight, 90 dawn, 180 noon, and 270 dusk.

Filename Date of obs. Filter Latitude range Longitude range Resn. (km/pixel) Time of day range

E6EPDGTM_01 February 1997 27 lm !80 80 140 310 130 70 220G7EPDGTM_01 April 1997 27 lm !80 80 100 270 180 90 240E11EPHOTSPT 01 November 1997 17 lm !40 50 230 310 120 40 100E11EPHOTSPT 02 November 1997 17 lm !10 30 0 170 80 190 340E12EPHOTSPT 01 December 1997 17 lm !20 20 290 360 100 40 90E12PHOTSPT 02 December 1997 17 lm !5 25 70 130 80 290 330E14EPDGTMHR01 March 1998 27 lm !80 80 80 230 120 190 320E15EPDRTMHR01 May 1998 27 lm !20 90 120 300 110 40 200E17EPDARKHR01 September 1998 Open !50 50 200 310 110 20 110E17EPDARKHR02 September 1998 Open !25 40 0 70 80 280 330E17EPDRKMAP02 September 1998 Open !70 70 0 70 180 280 330E17EPDRKMAP03 September 1998 Open !70 70 0 70 230 290 340I25EPDGTM__01 November 1999 17 lm !70 80 135 270 190 140 230I25EPDRKMAP01 November 1999 Open !80 90 0 110 210 -40 80I25EPH2040_02 November 1999 17 lm !10 50 0 110 280 140 230

Fig. 1. Composite of five of the best PPR data sets. The daytime images are G7EPDGTM_01 and 25EPDGTM_01 while the nighttime images are E17DARKHR01,25EPDRKMAP01, and E17EPDRKMAP02 (west to east).

764 J.A. Rathbun et al. / Icarus 210 (2010) 763–769

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

33

Figure4.4.4-2ModeleddiurnalsurfacetemperaturefluctuationsatfourdifferentlatitudesonEuropa’ssurface

locatedatapproximately:a)25˚,b)35˚,c)45˚,andd)5˚.[FromRathbun,Rodriguez,andSpencer,2009.](doi:10.1016/j.icarus.2010.07.017)

EuropaIRradiationminimumandmaximumiscalculatedusingthemeasuredsurfaceminimum(70K)andmaximum(132K)temperaturesandassumingEuropaisanearlyperfectblackbodywithanaverageemissivityof0.9[Spencer,1987](http://hdl.handle.net/10150/184098).4.4.4.1 InternalHeatSources

Theinternalheatsourceforanassemblyisdefinedastheminimumandmaximumheatdissipation(thermalWatts)oftheassemblyforallmission-operatingmodes.Requirement:AllowableFlightTemperatures(AFT’s)shallbemaintainedunderallmodesofinternalheat-dissipation.4.4.4.2 Vacuum

Requirement:Assembliesshallbedesignedtooperatewithinspecificationforaspacevacuumconditionof1.0x10-14Torr.(Testvacuumchamberswithpressure≤10-5Torr,willsatisfytheaboverequirementifverifiedthroughtesting.)Requirement:AssembliesandinstrumentsontheLandershallbedesignedtooperatewithinspecificationforEuropasurfacevacuumconditionof1.0x10-9Torr[TBR].(Testvacuumchamberswithpressure≤10-5Torr,willsatisfytheaboverequirementifverifiedthroughtesting.)

model to the G7 and E17 observations, finding that the low-latitudeobservations were best fit by a surface with a bolometric albedo of0.55, a thermal inertia of 7 ! 104 erg cm"2 s"1/2 K"1, and no endo-genic emission. However, the data they used for this fit comes frommany different points on the surface, and different locations maynot have the same thermophysical properties.

Thermal inertias provide clues to surface physical propertiesthat are essential for predicting diurnal temperatures. Mappingof the thermal inertia, and therefore the diurnal temperatures,across the surface can predict volatile stability across the surfaceover the course of a day. Furthermore, knowledge of diurnal tem-perature variations can assist with planning future missions, par-ticularly with designing instruments to search for endogenicemission.

2. Determination of thermophysical properties

Here we map thermophysical properties as a function of loca-tion on Europa by applying the same one-dimensional numericalthermal model used by Spencer et al. (1999) to individual pointson the surface for which we have temperature data from differenttimes of day. This model calculates the surface temperature as afunction of time of day based on the thermal inertia and bolometricalbedo, assuming vertically-homogeneous thermophysical proper-ties (Spencer et al., 1989). We divided the surface into 10 squaredegree bins. For each bin, we searched the PPR observations forall data obtained within that bin. For each data set, measurementswithin the bin were averaged, thus reducing noise. In order to ade-quately constrain the thermophysical properties, at least one mea-surement must have been made at night and at least one within20! of noon. For every point on the surface with such measure-ments, we applied the thermal model to find the best fit thermalinertia and bolometric albedo. Observations were obtained on dif-ferent dates and, thus, when Europa was at a different heliocentricdistance. Since differences in heliocentric distance as small as a fewhundredths of an AU lead to modeled temperature differences of afew degrees, we ran the thermal model separately for each data

point we were trying to fit. Fig. 2 shows four example best fitcurves for four locations on the surface (indicated by X’s in Figs.3 and 4).

We did not use all 15 data sets for this calculation; the four datasets obtained during E11 and E12 were noisier than the rest andcovered too small an area to be useful. The resulting bolometric al-bedo and thermal inertia maps are shown in Figs. 3 and 4 and coverapproximately 20% of Europa’s surface. The bolometric albedosvary significantly across the surface and show a general darkeningtoward the trailing hemisphere that is consistent with albedo vari-ations observed in visible images (McEwen, 1986).

The computed thermal inertias generally range from 4 ! 104 to15 ! 104 erg cm"2 s"1/2 K"1, bracketing the thermal inertia foundby Spencer et al. (1999). These thermal inertias are too low for so-lid ice, so at least the mapped 20% of the surface, and likely most ofit, is composed of unconsolidated regolith. The lower nighttimetemperatures observed at the equator can be explained by lowerthermal inertias there. Thermal inertia variations better matchboth the daytime and nighttime temperatures than thermal mod-els that include endogenic heating at mid-latitudes, because endo-genic heating would increase both daytime and nighttimetemperatures, and that is not observed. The increased thermalinertia at higher latitudes can be explained by a more compactedsurface, but these variations are not correlated with any observa-tions of albedo, geology, etc. Furthermore, the trend to lower equa-torial thermal inertias appears to be more widespread than just atthe leading hemisphere where the nighttime temperature anoma-lies were first observed (Spencer et al., 1999). The thermal inertiaswe calculated on the anti-Jupiter hemisphere also show a drop atthe equator. Exogenic processes, such as radiation processing orsputtering, may modify the surface. However, the effects of suchprocesses on thermal inertia have not been modeled.

3. Detection limits for hotspots

All of the observed surface temperatures can be successfullymodeled as passive reradiation of sunlight, thus no endogenic

a b

dc

Fig. 2. Temperature as a function of time of day for four different locations (indicated by X’s in Figs. 3 and 4) on the surface. Diamonds indicate average temperature at thatlocation from a single PPR data set. The line is the best fit thermal model to the data and the plus signs are the model points corresponding to the data points.

J.A. Rathbun et al. / Icarus 210 (2010) 763–769 765

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

34

4.4.5 FlightSystemThermalVacuumTest

Requirement:TheflightsystemshallbedesignedtofunctionwithinspecificationattheQualification/ProtoflightoperatingtemperatureextremesspecifiedintheTemperatureRequirementsTable[JPLD-xxxxxTBD].Requirement:TheflightsystemshallbedesignedtosurvivewithoutpermanentdegradationattheQualification/Protoflightnon-operatingtemperatureextremesspecifiedintheTemperatureRequirementsTable[JPLD-xxxxxTBD].Requirement-Policy:Theflightsystem-levelthermalvacuumtestshallincludethermalbalanceandfunctionaltestingphases.Atflightsystem-levelthermalvacuumtesting,redlimitswillsettolessthanflightacceptancelevels.

4.4.6 Assembly/SubsystemThermalDesignandVerificationRequirements

Requirement:Flighthardwareassembliesshallbedesignedandtestedtoperformwithinspecificationaccordingtotheparameters,levels,andmarginsshowninTable2.2-1(includingstart-upcapability),whileinvacuum,overtheirrespectivethermaltestlimitspertheTemperatureRequirementsTable(TRT)(JPLD-xxxxxTBD).

1. Note:Exceptionsaremadeforinstrumentsensorperformance,forwhichperformancedegradationshouldbefullyrecoverableafteroperationatoperationalthermaltestlimitsspecifiedintheTRT(JPLD-xxxxxTBD).

2. Note:ThespecificassemblytesttemperaturerequirementsattheassemblythermalcontrolsurfacearespecifiedintheTRT(JPLD-xxxxxTBD).ThedesignandtesttemperaturerequirementsdescribedintheTRTapplyforQualification,Protoflight,andFlightAcceptancetestsinboththeoperatingandnon-operatingconditions.Thereisnofurtheroperatingmarginaboveandbeyondthequalificationtestlevelforfaultedoroff-designconditions.

Requirement:FlighthardwareshallbetestedtoProtoflight/QualificationlimitsspecifiedintheTRT(JPLD-xxxxxTBD)aspertheenvironmentalTAM(JPLD-xxxxxTBD).[TheenvironmentalTestandAnalysisMatrix,TAM(tablenumberTBD)specifiesthetypeoftesttobeperformed(ie.Qual,PForFA)foreachassembly,subsystem,instrument,ortheflightsystem.]Requirement:Flighthardwareassembliesshallbedesignedtosurvivewithoutpermanentdegradationafterexposure,whileinvacuum,tothenon-operatingthermaltestlimitsspecifiedintheTRT(JPLD-xxxxxTBD).ArecommendedtestprofileisshowninFigure4.4.6-1.Alternatetestprofilesmaybeused,aslongasalltherequiredtestparametersaremet.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

35

Figure4.4.6-1ExampleofaRecommendedThermalTestProfileforAssembly,Subsystem,andInstrument

Testing.SuggestedStepsforThermalTesting:

1. FullFunctionalTest@1atm2. Pumpdownto1x10-5Torr3. FullFunctionalTest@Vacuum4. PowerDownDUT5. Dwell@HotNon-Op6. Hot/ColdStart7. PerformanceTest@VacuumandDwell8. Heatertestand/orcoldnon-opstart-up(ifrequired)

NotesforThermalTesting1. XH+YH+ZH=72hours2. XC+YC+ZC=24hours3. Cumulativedwelltimeshouldequal6totalhoursathot

and6totalhoursatcoldnon-operatingtemperatures.

Re

com

me

nd

ed

Th

erm

al V

acu

um

Te

st P

rofi

le-

EC

OST

RE

SS

Tim

e

Control Temperature

DUT ON

Cold

Qua

l/PF

Op

[(A

FT -

15

°C)

or

(-3

5°C

)

wh

ich

eve

r is

co

lde

r]

Cold

Qua

l/PF

Non

-Op

[(A

FT -

15

°C)

or

(-3

5°C

)

wh

ich

eve

r is

co

lde

r]

DUT OFF

Hot Q

ual/

PF O

p[(

AFT

+ 2

0°C

) o

r (+

70

°C)

wh

ich

eve

r is

wa

rme

r]

Hot Q

ual/

PF N

on-O

p[(

AFT

+ 2

0°C

) o

r (+

70

°C)

wh

ich

eve

r is

wa

rme

r]

SUGG

ESTE

D ST

EPS:

1)

Full

Fun

ctio

na

l Te

st @

1 a

tm

2)

Pu

mp

do

wn

to

1 x

10

-5 T

orr

(1

*)

3)

Full

Fun

ctio

na

l Te

st @

Va

cuu

m

4)

Po

we

r D

ow

n D

UT

5)

Dw

ell

@ H

ot

No

n-O

p (

4*

)

6)

Ho

t/C

old

Sta

rt

7)

Pe

rfo

rma

nce

Te

st @

Va

cuu

m a

nd

Dw

ell

8)

He

ate

r te

sts

an

d/o

r co

ld n

on

-op

sta

rt-u

p (

if r

eq

uir

ed

)

9)

Dw

ell

@ C

old

No

n-O

p (

4*

)

10

) Fu

ll P

erf

orm

an

ce T

est

@ V

acu

um

an

d D

we

ll

11

) A

ccu

mu

late

Re

ma

inin

g O

pe

rati

ng

/No

n-O

pe

rati

ng

Ho

urs

as

Re

qu

ire

d

12

) T

em

pe

ratu

re=

Am

bie

nt

+ 5

°C

(2

*)

13

) R

etu

rn t

o A

mb

ien

t P

ress

ure

an

d T

em

pe

ratu

re (

3*

)

14

) Fu

ll Fu

nct

ion

al T

est

@ V

acu

um

XH+

YH+

ZH=

72

ho

urs

XC+

YC+

ZC=

24

ho

urs

2 h

rsH

1,

2,

3

4

5

6,

7,

4

|dT/dt|≤5° C/min

|dT/dt|≤5° C/min

XH h

rsX

C h

rs

6,

8,

9

7

DUT OFF

DUT ON|dT/dt|≤5° C/min

2 h

rsC

DUT OFF

4

5

6,

7,

4

|dT/dt|≤5° C/minDUT OFF

2 h

rsH

YH h

rsY

C h

rs

DUT OFF

4

5

6,

7,

4,

11

DUT ON|dT/dt|≤5° C/min

|dT/dt|≤5° C/minDUT OFF

2 h

rsH

ZH h

rs2

hrs

C

ZC h

rs2

hrs

C

6,

8,

96

, 8

, 9

, 1

1

77

, 1

0,

1112

, 1

41

3,

1

CY

CLE

IC

YC

LE I

IC

YC

LE I

II

DUT ON|dT/dt|≤5° C/min

No

tes:

(1*

) A

ll EC

OST

RESS

har

dwar

e op

erat

es a

t vol

tage

s <

48 V

dc,

less

than

cri

teri

a fo

r co

rona

, but

m

ay r

equi

re a

n ex

cept

ion.

(2*)

To

ensu

re n

o co

nden

satio

n(3

*) B

ackf

ill/v

ent t

he c

ham

ber

with

nitr

ogen

or

argo

n to

1 a

tm o

nly

whe

n th

e ch

ambe

r is

ab

ove

or @

roo

m te

mpe

ratu

re(4

*) C

umm

aliti

ve d

wel

l tim

e at

hot

and

col

d no

n-op

erat

ing

tem

pera

ture

s sh

ould

equ

al to

6

hour

s to

tal

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

36

9. Dwell@ColdNon-Op10. FullPerformanceTest@VacuumandDwell11. AccumulateRemainingOperating/Non-OperatingHours

asRequired12. Temperature=Ambient+5C13. ReturntoAmbientPressureandTemperature14. FullFunctionalTest@Vacuum

Requirement:Assemblies,whicharepowered-onduringlaunch,shallbeoperatedduringchamberevacuationtomonitorcoronaeffects.Requirement:Eachtemperatureplateaushallbemaintainedforaminimumof2hours,oncetemperaturestabilizationisachieved.

Requirement:Functionaltestingshallbeperformedaminimumofthreetimesatthehotoperationaltestlimitsandaminimumofthreetimesatthecoldoperationaltestlimits.Ideally,afunctionaltestwouldberunateachtemperatureplateauforatotalof6times,minimum.Requirement:Assembliesshalldemonstrateaminimumofthreeproperstart-upsatthehotandthreeproperstart-upsatcoldoperationaltestlimitsandalsoatthecoldnon-operationaltestlimit(ifrequired*).

Exception:One-timedeployablemechanisms,orlaunchlatchesandrestraints,withtheapprovalofthe

ProjectEREandtheenvironmentaldisciplinespecialists,anddocumentedintheproject-approvedERD,maybeoperatedataminimumoffouroperations,definedasonceatambienttemperature,onceatPFhotbound,onceatPFcoldbound,andonceinsystemtestontheflightsystem.*Note:Start-upsfromthecoldnon-optestlimitarerequiredifthemissionthermalcontrolschemerequirespoweringonequipmentatthecoldnon-operationalAllowableFlightTemperature.

Specialthermaldesignfeatures,suchasheaterandlouveroperations,shouldbedemonstratedifapplicable.Additionally,anyflighttemperaturesensingdevicesshouldbecalibratedinthistest.

4.4.7 ThermalTestTolerancesandStabilizationCriteria

Requirement:ThethermaltesttoleranceshallbeasTable4.4.7-1.

Table4.4.7-1ThermalTestTolerancesandStabilizationCriteria.

4.4.8 ThermalCyclingDesignCriteria

Allflighthardwarewillbedesignedtoaccommodatetheeffectsofthermalcycling.

Temperature Within+2°C.Time Within0and+15minutes.

Pressure+5%above1Torr.Atvacuumconditions,toleranceswillbesuchthatapressureof<10-5Torrismaintained.

ThermalStabilityTemperaturecontrolsystemsforthermalvacuumenvironmentswillhavethecapabilityofholdingthecontrolpointthermocouplereadingstowithin+2ºC.

ThermalEquilibriumChangeoftemperatureoflargestcentrally-locatedthermalmassislessthan2ºC/hourforthreeconsecutivereadingstaken15minutesapartanddT/dtslopeisapproachingzero.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

37

Requirement-Policy:Electronichardwareshallbecapableofsurvivingthreetimestheplannedmissionexpectednumberofthermalcycles,eachovertheallowableflighttemperature(AFT)extremes,plusanestimateofthethermalcyclesexpectedintheplannedgroundoperations.(Thisrequirementmaybeverifiedviaanalysisorsamplecoupontest.)Requirement-Policy:Intheabsenceofaspecificmissionthermalcyclingprofile,electronichardwareshallbecapableofsurviving10,000cycles,eachofa15CΔTexcursion.

4.5 ElectromagneticInterferenceandCompatibility(EMI/EMC)

TheEMCdesignandverificationprogramisintendedtoproduceaEuropaLanderflightsystemthatwouldbeelectromagneticallycompatiblewithitselfanditsexternalenvironmentduringallmissionphases.Thisincludesperformance-compliantflightsystemoperationinspaceandinthelaunchenvironment(launchvehicleandlaunchsite)underallmissionoperationconditions.ThissectiondescribestheElectromagneticInterference/ElectromagneticCompatibility(EMI/EMC)requirementsapplicabletotheEuropaLanderflightsystemanditsinstruments,subsystems,andassembliesthroughoutitsentiremissionduration.Thissectionwillbeupdatedinfuturereleasesastheflightsystemandpayloaddesignsmature.Requirement:Theflightsystemhardwareshallbedesignedandverifiedtobeelectromagneticallyself-compatibleperTable2.2-1.

4.5.1 LaunchVehicle/LaunchSiteElectromagneticEnvironments

Flightsystemelectromagneticcompatibilitywiththelaunchvehicleandthelaunchsite(LV/LS)shouldbeconsideredintwoareas:

• Compatibilitywiththelaunchvehicleandlaunchsitepowersystem.• Electromagnetic/RFcompatibility(emissions,susceptibility,transmitters,receivers).

4.5.1.1 FlightSystemPowerSubsystemCompatibilitywiththeLV/LS

Theflightsystemwillbepoweredbytheumbilicalpowersupplyduringtestingatthelaunchsitefacility.Itisassumedthattheumbilicalpowersubsystemwillprovidepowertotheflightsystem,willnotgeneratenoiseandtransientsthatexceedtheconductedsusceptibility(Section4.5.2.2)andpowertransient(Section4.5.3)requirementsinordertoprovidecompatibilitybetweentherespectivepowersystems.Iftherespectiverequirementsarenotcompatible,however,itwillbenecessarytoprovidepowerprofilesoftheumbilicalpowersupply.Itshouldbenotedthattheflightsystempowersupply,beingasubsystem,mustcomplywiththerequirementspresentedinthissection.Further,sincethepowersupplyprovidespowertotheinstruments,subsystems,andassemblies,itsoutputpowercharacteristicsmustbecompatiblewiththespecifiedpowerrequirements.Thefollowingrequirementsarethereforeimposedinordertoprovideclarityincompliance.4.5.1.1.1 FlightSystemPowerSubsystemConductedEmissionsandSusceptibilityRequirements[TBR]

Tobeprovidedinalaterrevision.

4.5.1.1.2 FlightSystemPowerSupplyOutputNoiseRequirements

Tobeprovidedinalaterrevision.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

38

4.5.1.2 FlightSystemElectromagnetic/RFCompatibilitywiththeLV/LS

Thelaunchvehicleandthelaunchsiteelectromagneticenvironmentsincluderadiatedemissionsandradiatedsusceptibilityrequirements.ThesearelistedbelowasRE102fortheradiatedemissionsrequirementsandRS103forradiatedsusceptibilityrequirements.BothincludeabaselinelimitaswellasnarrowernotchesfortheRFtransmitterbands.TheEvolvedExpendableLaunchVehicle(EELV)transmittersarelimitedtotheS-bandtelemetrytransmitters(foroperationwiththeTracking/DataRelaySatelliteSystemandGPSMetricTrackingSystem).Theflightsystemandallitscomponents(instruments,subsystems,andassemblies)mustbecompatiblewiththeseenvironmentsasoutlinedbelow.4.5.1.2.1 FlightSystemRadiatedEmissionsRequirements(RE102)

TheradiatedemissionrequirementsareimposedontheflightsysteminordertoensurethatitwillnotinterferewiththeoperationalandRFreceiversystemsinstalledatthelaunchsiteoronthelaunchvehicle.Requirement:Theflightsystem,whileinstalledonthelaunchvehicleoroperatinginthelaunchsite,shallnotgenerateradiatedemissionsinexcessofthelimitsshowninTable4.5.1-1(andplottedinFigure4.5.1-1).(Note:TestingtobeinaccordancewiththeRE102testmethodoutlinedinMIL-STD-461FandusingthedwelltimesandmeasurementbandwidthsspecifiedinSection4.3.10.3ofMIL-STD-461F.)

Table4.5.1-1LV/LSbaselineradiatedemissionslimits(RE102).[TBR]

Type HW FrequencyRangeRE102LimitdBμV/m Note

BaselineLimit General 10kHz–18GHz 114 6dBmarginaddedUHFCommand&Destruct LV/LS 408MHz–430MHz 25 6dBmarginadded

GPSReceiver,L2 LV/LS 1127MHz–1237MHz 30 6dBmarginaddedGPSReceiver,L1 LV/LS 1565MHz–1585MHz 30 6dBmarginadded

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

39

Figure4.5.1-1LV/LSbaselineradiatedemissionslimits(RE102).[TBR]

4.5.1.2.2 FlightSystemRadiatedSusceptibilityRequirements(RS103)

Thisrequirementisimposedtoensuretheflightsystemwillnotbedamagedandwilloperateasrequiredwheninstalledonthelaunchvehicleoroperatingatthelaunchsite.Requirement:Theflightsystem,whileinstalledonthelaunchvehicleoroperatinginthelaunchsite,shallmeetitsperformancerequirementsafterexposuretotheRS103environmentsshowninTable4.5.1-2(andplottedFigure4.5.1-2).Note:EquipmentthatisrequiredtooperateduringlaunchmustmeetitsperformancerequirementswhileexposedtotheradiatedfieldsinTable4.5.1-2.Note:TestingtobeinaccordancewiththeRS103testmethodandSection4.3.10.4inMIL-STD-461F.

Table4.5.1-2LV/LSBaselineRadiatedSusceptibilityLimits(RS103).*[TBR]

Type FrequencyRange RS103LimitV/m

Note

GeneralBaseline 10kHz–18GHz 20 6dBmarginaddedS-BandTransmitter 2200MHz–2300MHz 85 6dBmarginaddedS-BandTransmitter 2300MHz–2400MHz 20 6dBmarginadded

*Note:TheselimitscoveranyofthepotentiallaunchvehiclesaswellasthelaunchsiteRS103environments.Thesearesurvivalrequirementsforequipmentthatisoffduringlaunchandperformancerequirementsforequipmentrequiredtooperateduringlaunch.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

40

Figure4.5.1-2LV/LSBaselineRadiatedSusceptibilityLimits(RS103).[TBR]

4.5.1.3 LV/LS–FlightSystemEMC/RFCompatibilityAnalysis

ItisessentialthatadetailedeffortbeundertakentodevelopaccuratedescriptionsoftheEMC/RFenvironmentsthattheflightsystemwillbeexposedtoduringlaunchandpriortestingatthelaunchsite.ThiseffortwillconfirmthatproperEMC/RFcompatibilityrequirementshavebeendefinedandfloweddowntotheflightsystem.Requirement:AnEMCanalysisshallbeperformedtoverifyEMC/RFcompatibilitywillexistbetweentheflightsystemandthelaunchvehicle,andbetweentheSC/LVandtheEasternandWesternRangeenvironmentsofthelaunchsite,includingupdatesasavailable.TheEMCtestingorganizationshouldissueareportbasedonanalysesperformedfortheLV/LS–flightsystemEMC/RFCompatibilityandprovideconclusionsandrecommendationsasneeded.

4.5.2 ElectromagneticInterference/Compatibility(EMI/EMC)RequirementsforInstruments,Subsystems,andAssemblies.

4.5.2.1 ConductedEmissions(CE)RequirementsTheserequirementsapplytotheelectrical(powerandsignal)interfacesbetweeninstruments,subsystems,andassembliesandtheflightsystem(spacecraftandinstruments).4.5.2.1.1 ConductedEmissions,PowerLeads,30Hzto75MHz(CE101,Tailored)

Requirement:Conductedemissionsappearingoninstruments,subsystems,andassembliesprimarypowerlinesindifferentialmodeshallnotexceedthelimitsshowninFigure4.5.2-1Theselimitsarefordifferentialmeasurementsbetweentheactiveandreturnpowerleads.Note:ThemethodtobeusedistheCE101testmethodinMIL-STD-461F,withthemeasurementbandwidthselectedinaccordancewithTableII,MIL-STD-461F.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

41

Figure4.5.2-1Conductedemissionlimits,powerlines,differentialmode.

Requirement:TheCELimitinFigure4.5.2-1shallbescaledupby20*log(I/1A),asillustratedinFigure4.5.2-1forI=5AandI=10A,iftheinstruments/subsystems/assembliesnominalinputDCcurrent,I,exceeds1A.ForI<1A,thelimit-lineforI=1Aisapplicable.[TBR]4.5.2.1.2 ConductedEmissions,PowerandSignalLeads,CommonMode

Requirement:CommonModeconductedcurrentemissionsappearingontheflightsystem’sprimarypowerlinesshallnotexceedthelimitsofFigure4.5.2-2.Requirement:CommonModeconductedcurrentemissionsappearingonsignallinesshallnotexceedthelimitsofFigure4.5.2-2.Note:TheCE101testmethodologyinMIL-STD-461Fmaybeusedforthecommonmodetest,withthemeasurementbandwidthsetinaccordancewithMIL-STD-461F/TableII.[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

42

Figure4.5.2-2ConductedEmissionLimit,PowerandSignalLines,CommonMode.[TBR]

Requirement-Policy:TheDifferentialModeandCommonModeconductedcurrenttestwiringconfigurationshallbeinaccordancewithFigure4.5.2-3.

Figure4.5.2-3ConductedEmissionDifferentialModeandCommonModeTestWiringConfigurations.

4.5.2.1.3 ConductedEmissions,AntennaTerminals,10kHzto18GHz(CE106)

Requirement:Conductedemissionsappearingontheantenna-connectedterminalsofRFtransmittersandreceiversshallnotexceedthelimitsshownbelow:

a. Receivers:34dBμVb. Transmittersandamplifiers(standbymode):34dBμVc. Transmittersandamplifiers(transmitmode):Harmonics,exceptthesecondandthird,andallother

spuriousemissionstobeatleast80dBdownfromthelevelatthefundamental.Thesecondandthird

30Hz,50dBuA 200MHz,50dBuA

30

35

40

45

50

55

60

10Hz 100Hz 1kHz 10kHz 100kHz 1MHz 10MHz 100MHz 1000MHz

ACCurrentRipple(dBu

A)

Frequency(Hertz)

ConductedEmissionsLimitsCommonMode- Tailored

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

43

harmonicstobesuppressedtoalevelof-20dBmor80dBbelowthefundamental,whicheverrequireslesssuppression.

Note:

• ThetestmethodisinaccordancewithCE106inMIL-STD-461F.• Thetransmitmodeportionofthisrequirementisnotapplicablewithinthebandwidthofthetransmitter.• TherequirementisnotapplicabletoRFinstrumentsthataredesignedwithantennaspermanently

mountedtotheinstrument.(RE103isthentheapplicablerequirement.)• TheteststartfrequencymaybeselectedbasedontheoperatingfrequencyoftheRFinstrument,as

showninTable4.5.2-1below:•

Table4.5.2-1CE106OperatingFrequencyRanges.

OperatingFrequencyRange StartFrequencyforTest

10kHz–3MHz 10kHz

3MHz–300MHz 100kHz

300MHz–3GHz 1MHz

3GHz–18GHz 10MHz4.5.2.1.4 ConductedEmissions,PowerTransients,TimeDomain(CE107)

Requirement:Instruments,subsystems,andassembliesshallnotproducedifferentialtransientvoltagespikesontheflightsystempowerbusunderanyoperatingmodeortransitionconditioninexcessofthelimitsspecifiedinfigure4.5.2-4.[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

44

Figure4.5.2-4Conductedemissionlimit,Powerlines,timedomain.[TBR]

4.5.2.2 ConductedSusceptibility(CS)RequirementsTheserequirementsareapplicabletoanyinstruments,subsystems,andassembliesthatreceivepowerfromtheflightsystemPowerSupply(SPS)orhaveelectricalinterfaceswiththeflightsystem.SincetheSPSisalsoaflightsystemassembly,theserequirementsarealsoapplicabletotheSPSwhenitreceivespowerfromanexternalpowersource.Whentestsareusedforcomplianceverification,groundingandcabling(shieldingandtwisting)mustbesimilartoflightconfigurationtotheextentfeasible,exceptfortheconfigurationsimposedbyMIL-STD-461F.4.5.2.2.1 ConductedSusceptibility,PowerLeads,30Hzto150kHz,(CS101)

Requirement:Instruments,subsystems,andassembliesshallnotexhibitanymalfunction,degradationofperformance,ordeviationfromspecifiedindicationswhentheirinputpowerlineissubjectedtoinjectedvoltagelevelsorthepowerlimit(whicheveroccursfirst)showninTable4.5.2-2.

Table4.5.2-2CS101ConductedSusceptibilityLimits,30Hz–150kHz.

FrequencyRange VoltageLimit(Vrms)

PowerLimit(Watts)

30Hz–5kHz 1 25kHz–150kHz 0.5 0.5

1.0 µsec, 14V 10 µsec, 14V

1.0 msec, 1.0V 1.0 sec, 1.0V

0

2

4

6

8

10

12

14

16

1.E-6 10.E-6 100.E-6 1.E-3 10.E-3 100.E-3 1.E+0

Ope

ratio

nal

Volta

ge T

rans

ient

fro

m

Nom

inal

(Vol

ts)

Time (seconds)

CE07 Operational Transient Limits

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

45

Note:theCS101testmethodinMIL-STD-461Fmaybeusedfortesting.Theapplicablepowerlimitisthepowerlevelthathasbeencalibratedintoa0.5-ohmloadusingthevoltagelevelsinTable4.5.2-2andtheprocedureinMIL-STD-461F.4.5.2.2.2 ConductedSusceptibility,RejectionofUndesiredSignals(CS104)

ThisrequirementisapplicabletoRFequipment/subsystemssuchascommunicationsreceivers,RFamplifiers,transceivers,andradarreceivers.Requirement:RFreceiversubsystemsandassembliesshalloperatewithinperformanceparameterswithoutindicationsofinterference,degradationofperformanceormalfunctionwhensubjectedtothetestsignallevelsshowninFigure4.5.2-5.Note:TheCS104testmethodinMIL-STD-461Fistheapplicabletestmethod.

Figure4.5.2-5SampleReceiverTerminalsConductedSusceptibilityLimitCS104.

Definitions:

1. fo=receivertunedfrequencyorbandcenterforamplifiers.2. f1=lowesttunablefrequencyofreceiverbandinuseorthelowestfrequencyofamplifierpassband.3. f2=highesttunablefrequencyofreceiverbandinuseorthehighestfrequencyofamplifierpassband.4. W=bandwidthbetweenthe80dBpointsofthereceiverselectivitycurveasdefinedinthetest

article’stechnicalrequirementsorthecontrolplan.

Limits:ThelimitatAis80dBabovetheinputlevelrequiredtoproducethestandardreferenceoutput(thislimitnottobeusedforamplifiers).ThelimitatBtobesetasfollows:

1. Receivers:0dBmapplieddirectlytothereceiverinputterminals.2. Amplifiers:Thelimittobeasspecifiedinthetestarticle’stechnicalrequirementsorcontrolplan.In

theabsenceofsuchinformation,thedefaultforlimitBis0dBm.4.5.2.2.3 ConductedSusceptibility,PowerLineTransients–Spikes(CS106)

Requirement:Instruments,subsystems,andassembliesshallnotexhibitmalfunctionorunacceptabledegradationofperformancewhentheinputpowerlineissubjectedtotransientvoltagelevelsshowninFigure4.5.2-6andasnotedbelow.

1. UsethetestmethodologyasoutlinedintheCS106inMIL-STD-461F.TheappliedvoltageprofilemaybetailoredbytheresponsibleEMI/EMCengineer.

2. Bothpositiveandnegativepulsesmustbeappliedtothe+28Vpowerline(differentialmode).However,caremustbetakentopreventthelinevoltagefromfallingbelow0Vduringnegativetransients.Adryrun

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

46

shouldbeperformedpriortotestingflighthardwareinordertomakesurethepositivevoltageamplitudedoesnotexceedthelimitinFigure4.5.2-6andanegativevoltageconditionwillnotoccurduringflighthardwaretesting.

3. Currentwillbelimitedto6Appregardlessoftheappliedvoltage.4. Bothpositiveandnegativepulsesmustbeappliedtobothpowerlines(commonmodeconfiguration).

However,therespectivepeakvoltageamplitudewillbe28/2=14VinFigure4.5.2-6.5. Thetransientvoltagepulsesmustbeappliedforadurationof5minutesatarepetitionrateof60pps.

Figure4.5.2-6ConductedSusceptibility,CS106,VoltageTransientProfile.

4.5.2.2.4 ConductedSusceptibility,PowerLeads,DeferentialMode(CS114)

Requirement:Instruments,subsystems,andassembliesshallnotexhibitmalfunction,unacceptabledegradationofperformance,ordeviationfromspecifiedindicationswhensubjectedtoaninjection-probedrivelevelthathasbeenpre-calibratedtotheappropriatecurrentlimitasshowninFigure4.5.2-7andpulsemodulatedsquarewaveat1kHzrateand50%dutycycle.Note:ThetestmethodandcalibrationprocedureareinaccordancewithMIL-STD-461F.Thisrequirementisonlyapplicabletocableinterfacesbetweeninstruments,subsystems,orassembliesandtheflightsystem.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

47

Figure4.5.2-7CS114CalibrationLimit.

4.5.2.2.5 ConductedSusceptibility,PowerLeads,DifferentialMode(CS02)

Requirement:Instruments,subsystems,andassembliesshallnotexhibitmalfunction,unacceptabledegradationofperformance,ordeviationfromspecifiedindicationswhentheinputpowerleads(primepoweronly)aresubjectedtotherequirementsofMIL-STD-461C/462,testmethodCS02,astailoredbelow:

1. Testfrequencyrange:150kHzto50MHz2. Injectedsignalamplitude:0.5Vrms,butinjectedpowernottoexceedacalibratedlimitof0.5W.3. Theapplicablepowerlimitisthepowerlevelthathasbeencalibratedintoa0.5-ohmloadusinga0.5Vrms

drivesignal.4. Pulsemodulationat1kHz,50%dutycycle.5. Signalinjectiontobeappliedhighsidetoreturn(differentialmode),andhighsidetochassis.

4.5.2.3 RadiatedEmission(RE)RequirementsTheradiatedemissionsrequirements,RE101andRE102,areimposedtosafeguardagainstinterferencewithflightsystemandRFreceiversfromnoiseemittedfrominstruments,subsystems,orassemblies.TheRE103requirementsapplytoradartransmittersandplaceout-of-bandspectrallimitsonantennaradiatedspectrum.Theselimitsareintendedtopreventinterferencewithotherreceivers.RadartransmittersmustalsocomplywiththeFederalCommunicationsCommission(FCC)andNationalTelecommunicationsandInformationAdministration(NTIA)requirementsonbroadcastinginfreespace.Thesetypesofrequirements,however,arenotcoveredinthisdocument.4.5.2.3.1 RadiatedEmission,ACMagneticField,30Hzto100kHz(RE101)[TBR]

Requirement:Instruments,subsystems,andassembliesshallmeetthetailoredacmagneticfieldlimitsshowninFigure4.5.2-8atfrequenciesabove30Hzwhenmeasuredatadistanceof1meterfromthetestarticle,usingtechniquessimilartomethodRE101ofMIL-STD-462.Theapplicablelimitisdeterminedbythephysicaldistancebetweenthetestarticleandthesensitiveunitontheflightsystemintheinstalledconfiguration;allmeasurementsaremadeat1meterdistance.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

48

Note:ThemagneticfieldprobestypicallyusedforMIL-STD-462methodRE101measurementsarenotsufficientlysensitivetomeasuretothelevelsshowninFigure4.5.2-8.SpecifictestinstrumentationandprocedureswillbedocumentedintheindividualequipmentEMItestplan.

Figure4.5.2-8RE101MagneticFieldEmissionsLimit.[TBR]

4.5.2.3.2 RadiatedEmissions,ElectricField,30Hzto18GHz(RE102)

Requirement:Electricfieldradiatedemissionsfrominstruments,subsystems,andassembliesshallnotexceedthelimitslistedbelow:

a) Forequipmentlocatedwithintheshieldedvaultarea,thelimitis60dBµV/mfrom30Hzto18GHz.b) Forequipmentlocatedoutsidethevault,thegenerallimitisasshowninFigure4.5.2-9andasshown

inTable4.5.2-3forReceivernotches.Notethatthelimitwith6dBmarginistheapplicablelimitin4.5.2-3.

Note:ThetestmethodisinaccordancewithMIL-STD-461F/RE102method.

50

70

90

110

130

150

170

190

210

230

250

0.01 0.1 1 10 100 1000 10000 100000

ACMagneticLimit(dBpT/RootHz)

Frequency(Hz)

ACMagneticFieldEmissionsLimit

1meter 2meters 3meters 4meters 5meters

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

49

Figure4.5.2-9RE102ElectricFieldEmissionsLimit,OutsidetheVault.[TBR]

Table4.5.2-3RadiatedEmissionsLimitinReceiverNotches.[TBR]Component CenterFrequency

(MHz)ReceiverBand

(MHz)Limit(dBµV/m) Limitwith6dB

Margin(dBµV/m)Lander

X-BandReceiver(fromCarrier)

8400(TBR) (TBD) 6(TBR) 0(TBR)

X-BandReceiver(fromClipper)

8400(TBR) (TBD) 6(TBR) 0(TBR)

CarrierX-BandReceiver(fromEarthDSN)

7200(TBR) 7100.0-7300.0(TBR)

6(TBR) 0(TBR)

4.5.2.3.3 RadiatedEmissions,MeasurementBandwidth,andDwellTimes

Requirement:ThemeasurementbandwidthsforradiatedemissionstestsanddwelltimesshallbeselectedinaccordancewithTable4.5.2-4.Forreceivernotches,custombandwidthsmustbeusedinordertobringtheambientlevelatleast6dBbelowtheapplicablenotchlimitline,inaccordancewithMIL-STD-461F.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

50

Table4.5.2-4RadiatedEmissionsMeasurementBandwidthandDwellTime.

FrequencyRange6dB

Bandwidth DwellTime*MinimumMeasurementTimeAnalogMeasurementReceiver*

30Hz–1kHz 10Hz 0.15sec 0.015sec/Hz1kHz–10kHz 100Hz 0.015sec 0.15sec/Hz

10kHz–150kHz 1kHz 0.015sec 0.015sec/kHz150kHz–30MHz 10kHz 0.015sec 1.5sec/MHz30MHz–1GHz 100kHz 0.015sec 0.15sec/MHzAbove1GHz 1MHz 0.015sec 15sec/GHz

*Dwelltimemustbelongenoughtoensureallemissionsatthetestfrequencyarecaptured.4.5.2.3.4 AntennaSpuriousandHarmonicOutputs(RE103)

Requirement:SpuriousandharmonicslevelsintheAntennaradiatedspectrumshallbeatleast80dBdownfromthelevelatthefundamental,exceptforthesecondandthirdharmonics.Thesecondandthirdharmonicslevelsmaybelimitedto-20dBmor80dBbelowthefundamental,whicheverrequireslesssuppression.Note:Thisrequirementappliestotheradiatedspectrumfromatransmitterantenna,withmeasurementtobeinaccordancewithMIL-STD-461F.4.5.2.3.5 DCMagneticFieldEmissions

EuropaLanderInstruments,Subsystems,andAssembliesmaybemagneticallysensitive.Asthedesignmatures,theDCmagneticrequirementsneededwillbedetermined.Requirement:TheDCmagneticfieldemissionsfrominstruments,subsystems,andassembliesshallnotexceed[TBD]nTunderalloperatingconditions,whenmeasuredatonemeterfromitscenterandatapointwheremagneticemissionsareatmaximum.4.5.2.4 RadiatedSusceptibility(RS)Requirements

Radiatedsusceptibility(RS)requirementsareimposedinordertominimizeoreliminaterisksassociatedwiththeproperoperationofinstruments,subsystems,orassembliesandtheflightsystemwhileexposedtotheelectromagneticenvironmentspresentatlaunchandduringmissionoperations.Theseelementsaretypicallysubjectedtoradiatedsusceptibilityteststodemonstratecompliancewiththecorrespondingrequirements.Ingeneral,testlevelswillincludea6dBsafetymargininordertosafeguardagainstunpredictedsusceptibilityattheflightsystemlevel.4.5.2.4.1 RadiatedSusceptibility,ACMagneticField,30Hzto100kHz(RS101)[TBR]

Requirement:Instruments,subsystems,andassembliesshallnotexhibitmalfunction,unacceptabledegradationofperformance,ordeviationfromspecifiedindicationswhileexposedtotheACmagneticfieldsshowninFigure4.5.2-10.Note:ThetestmethodisinaccordancewiththeRS101testmethodinMIL-STD-461F.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

51

Figure4.5.2-10RS101MagneticFieldLimit.[TBR]

4.5.2.4.2 RadiatedSusceptibility,ElectricField,10kHzto18GHz(RS103)

Requirement:Instruments,subsystems,andassembliesshallnotexhibitmalfunction,unacceptabledegradationofperformance,ordeviationfromspecifiedindicationswhenexposedtotheradiatedE-fieldlevelsshownbelow:

1. SurvivalE-FieldLevels:20V/mfrom10kHzto18GHzandTransmittersfieldsperTable4.5.1-2forinstrumentsthatarepoweredoffduringLaunch.

2. OperationalE-FieldLevels:20V/mfrom10kHzto18GHzandTransmittersfieldsperTable4.5.1-2forinstrumentsthatareoperatingduringLaunch.

3. 2V/mfrom10kHzto18GHz,On-Orbit/SurfaceOperationalFieldLevel.TheOn-Orbit/SurfaceE-fieldenvironmentalsoincludesflightsystemtransmittersaslistedbelowinTable4.5.2-5.

Note:ThetestmethodisinaccordancewiththeRS103testmethodinMIL-STD-461Fusingpulsemodulationofa1kHzsquarewaveand50%dutycycleasoutlinedinMIL-STD-461F.Note:Thesurvivalrequirementappliestoinstrumentswithinstrumentinpoweroffconfiguration,andInstrumentmustmeetitsperformancerequirementafterexposuretotheradiatedfields.Note:Theoperationalrequirementapplieswhileaninstrumentinitsnormaloperationalmode.Aninstrumentmustmeetitsperformancerequirementduringexposuretotheradiatedfields.Note:Upto30MHz,onlyverticallypolarizedE-fieldsarerequiredforRS103tests.Above30MHz,therequirementappliesforbothhorizontallyandverticallypolarizedE-fields.Circularpolarizedfieldsarenotacceptable.

Table4.5.2-5FlightSystemTransmittersOn-Orbit/SurfaceE-FieldLevels.[TBR]Transmitter FrequencyRange(MHz) Power(dBm) RadiatedField(V/m)

110

120

130

140

10Hz 100Hz 1kHz 10kHz 100kHz

LimitLevels(dBp

T)

Frequency(Hertz)

TailoredRS101RadiatedSusceptibility - Magnetics

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

52

X-Band(Carrier) 8400+/-(TBD) (TBD) (TBD)X-Band(Lander) 7200+/-(TBD) (TBD) (TBD)

4.5.2.4.3 RadiatedSusceptibility,MeasurementScanRates

Requirement:ThemeasurementscanratesorstepsizeforRS103radiatedsusceptibilitytestsshallbeselectedinaccordancewithTable4.5.2-6.

Tabel4.5.2-6RS103ScanRates/StepSize.

FrequencyRangeAnalogScans

MaximumScanRatesSteppedScans

MaximumStepSize

30Hz–1MHz 0.0333f0/sec 0.05f01MHz–30MHz 0.000667f0/sec 0.01f030MHz–1GHz 0.00333f0/sec 0.005f01GHz–40GHz 0.00167f0/sec 0.0025f0

4.5.2.4.4 RadiatedSusceptibility,MeasurementDwellTimes

Requirement:Whenusingstepscans,dwelltimeateachtunedfrequencyshallbe0.15secondsupto1kHzand0.015secondsabove1kHz.Note:Thescanratesnotedabovemustbeslowenough,orthedwelltimelongenough,toallowfortheobservationandrecordingofthetestarticleresponsetotheradiatedE-fieldsunderworst-caseoperatingconditions.UsetheguidelinesinMIL-STD-461F.4.5.2.4.5 RadiatedSusceptibility,TestConfiguration

Requirement-Policy:ForRadiatedSusceptibilitytesting,totheextentfeasible,thetestarticlegrounding,cabling,andRFshieldingshallbesimilartoflightconfiguration.4.5.2.4.6 DCMagneticSusceptibility

Allflighthardwarewillberequiredtooperateinthenaturalbackgroundmagneticfield.OnEarthandinLow-EarthOrbit,theDCmagneticfieldstrengthisapproximately0.61Gauss.NearEuropa,Jupiter’sintrinsicfieldisapproximatelytwoordersofmagnitudesmaller.Somesubsystems(e.g.motorsandtelecomsystems)arealsopossiblesourcesofDCmagneticfield.Asthedesignmatures,thetotalexpectedDCfieldwillbedetermined.Requirement:Instruments,subsystems,andassembliesshalloperatewithoutdamageorperformancedegradationwhenexposedtoaDCmagneticfieldof[TBD]Gauss.

4.5.3 PowerTransients

Thepowertransientrequirementsareimposedtoensureeachinstrument,subsystem,orassemblywillbecompatiblewiththetransientcharacteristicsandrequirementsoftheflightsystempowerbus.4.5.3.1 Turn-OnandOffTransientCharacteristics

4.5.3.1.1 Turn-onIn-RushCurrent

Requirement:CurrentLimit.Instrument,subsystem,orassemblyinrushcurrentatturn-onshallnotexceedthelimitsshownFigure4.5.3-1,or50A[TBR],whicheverissmaller.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

53

Figure4.5.3-1Inrushcurrentlimitatturn-on.[TBR]

4.5.3.2 OperationalTransients.[TBR]

4.5.3.2.1 NormalTransients

Requirement:Instruments,subsystems,orassembliesshallwithstandvoltagetransientsoninputpowerlineswithinthepowerenvelopeasshowninFigure4.5.3-2.Note:Theenvelopeincludestwoseparatelimits:a)voltageincreasefromnominal28VDCto50VDC,followedbyvoltagerampdownfrom50Vdownto29V;andb)voltagerampdownfromnominal28VDCto18VDC,followedvoltagerampupfrom18Vto22V,asshowninFigure4.5.3-2.

0

100

200

300

400

500

600

700

800

900

1000

1100

1.E-6 10.E-6 100.E-6 1.E-3 10.E-3 100.E-3 1.E+0

Perc

ent

of P

eak

Cur

rent

Time (seconds)

Inrush Current Limit at Turn on

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

54

Figure4.5.3-2EnvelopeofNormalVoltageTransientsFor28VoltsDCSystem.

4.5.3.2.2 AbnormalTransients

Requirement:Instruments,subsystems,orassembliesshallwithstandvoltagetransientsoninputpowerlinesupto58Vfor10microseconds.Thetransientmayoccuratpowerofforwhileoperatingat28VDC.4.5.3.2.3 PowerInterruptTransients

Requirement:Instruments,subsystems,orassembliesshallreturntonormaloperation,withoutexperiencinganydamageorperformancedegradation,afterencounteringaninputpowerinterruptlasting50milliseconds.([TBR]:updateperMIL-STD-704F.)Note:Apowerinterruptisdefinedasthelinevoltagedroppingtozerovoltfromnominaloperationalvoltageandthenreturningtothenominallevel.

0.0125 sec, 50 V

0.0825 sec, 29 V

0.0150 sec, 18 V

0.100 sec, 22 V

10

15

20

25

30

35

40

45

50

55

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175

Volts

DC

Time from Onset of Transients (seconds)

Envelope of Normal Transients

Transient Limit for +28V Line: Ramp up to 50V and then ramp

down as shown

Transient Limit for +28V Line: Ramp down to 18V and then

ramp up as shown

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

55

4.5.3.2.4 GroundFault

Requirement:Instruments,subsystems,orassembliesshallreturntonormaloperation,withoutexperiencinganydamageorperformancedegradation,afterbeingsubjectedtoaGroundFaulttest.TheGroundFaulttestconfigurationisshowninFigure4.5.3-3.

Figure4.5.3-3PowerSystemsFaultTestConfiguration.[Preliminary]

4.5.4 LightningProtection

Requirement:AnyinterfacecircuitconnectedtotheT-0umbilicalshallbeabletosurvivelighting-inducedvoltagetransientsof200voltspeakand10microsecondsindurationwhichhasbeencalibratedagainsta5-Ohmresistor.([TBR]:NeedtoconsiderT-0umbilicallengthinductiveeffectswhichcanproducelongertransientswithhigherenergy.)

4.5.5 Grounding,EMIBonding,andIsolation

TherequirementsofthissectionaregenerallyconsistentwiththerecommendationsofNASAHDBK4001,ElectricalGroundingArchitectureforUnmannedSpacecraft,Feb17,1998.Thegroundingrequirementsareintendedtoestablishagroundingarchitecturebasedonasingle-pointgroundsystemforinstruments,subsystems,orassembliesandtoimplementazero-voltgroundreference/chassistowhichallflightsystemhardwarewouldbereferenced.Figure4.5.5-1illustratesaDistributedSinglePointGroundingScheme.EMIbondingrequirementsareimposedinordertoprovidecompliancewithtwoimportantdesignobjectives:

1. EMI/RFgroundingofelectronicequipmenttosystemGroundReference.2. EMI/RFshieldingforcompliancewithapplicableradiatedemissions,radiatedsusceptibility,andRF

compatibilityrequirements.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

56

4.5.5.1 GroundingandEMIBondingRequirements

Requirement:Instruments,subsystems,orassembliesshallprovideameansforgroundingtotheFlightSystemChassisGroundinaschemesimilartothatshowninFigure4.5.5-1

Figure4.5.5-1IllustrationofDistributedSinglePointGroundingScheme.[TBR]

Requirement:Eachelectricalequipmentchassis(case)shallbebondedtothestructureorGroundReferenceRails(GRR)bymeansofdirectmetal-to-metalcontactoragroundingstrap,withbondingresistancenottoexceed5mΩperjoint,asverifiedbydirectmeasurement.Note:Directattachment/bondingoftheequipmentchassistotheGRRisthepreferredapproach.Wheredirectbondingisnotpossibleand/orwheremoveablemetal-to-metaljointsarepresent,groundingstrapsmaybeused.Requirement:ForRFtypeelectronicequipment,thebondstrapemployedforgroundingtotheGroundReferenceshallhaveaninductanceof<100nHandalengthtowidthratioof5to1maximumand3to1preferred.DeviationsfromtheserequirementsaregrantedsubjecttoapprovalbytheresponsibleEMI/EMCengineer.Note:RFtypeequipmentiselectronicequipmentthatcontainsRFordigitalelectronicsoperatingatfrequencies/clocksof100kHzorhigher.Requirement:WhengroundstrapsareusedtogroundequipmenttotheGroundReferenceRails(GRR),atleasttwogroundstrapsshallbeusedtoprovideforredundancy.Requirement:Metallicpartsofeachelectricalequipmentchassis(case)shallbemutuallybondedtogetherbydirectmetal-to-metalcontact(preferredmethod)acrosstheentirebondinginterface.Note:ThisrequirementisapplicabletometallicpartsthatareusedforgroundingpurposesorforEMIshieldingpurposes.Requirement:WhereanenclosureisusedtoprovideEMI/RFshieldingtointernalelectronics,thebondingresistanceacrossanymetal-to-metalseamorjointoftheenclosureshallnotexceed2.5mΩ,asverifiedbydirectmeasurementacrosstheseam.Requirement:Eachconnectorinstalledonelectronicequipmentshallbebondedtoitsrespectivepanelbydirectmetal-to-metalcontactwithbondingresistancenottoexceed5mΩ,asverifiedbydirectmeasurement.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

57

Requirement:TheDCresistancebetweenaconnectoronacableandtherespectiveconnectingpanelshallnotexceed20milliohm.Requirement:Preparationandsurfacefinishofmetal-to-metalsurfacesforelectricalbondingpurposesshallbemadeinaccordancewithNASA-STD-4003,paragraph5.2,"Surfacecleaningandfinishing."4.5.5.2 Isolation[TBR]

4.5.5.2.1 Power

Requirement:Anypowerleadthatmaybedisconnectedshallbeisolatedfromchassisground,butterminatedfromlinetochassiswitha20MΩresistorforESDbleed.Requirement:End-circuitsreceivingflightsystempowershallbeisolatedfromchassisbyatleast20MΩbutnotmorethan100MΩ.Requirement:Powerconvertersshallbeisolatedfromchassisbypermittingnolumpedcapacitancetochassisgreaterthan0.1uF.Requirement:Flightandgroundsupportequipmentshallmaintainend-circuitisolationduringbothpower-onandpower-offconditions.

Requirement:Eachsecondarypowerformshallhaveadedicatedpowerreturn.

Requirement:Secondarypoweroutputsateachinstrument,subsystem,orassembly’spowersupplyshallbeisolatedfromchassisgroundwithresistanceof100kΩorgreaterforloadswithRFcircuits.Requirement:Fornon-RFequipment,secondarypowerreturnshallbegroundedtochassisatthepowersupply,butnotgroundedtochassisattheload.Requirement:Chassisgroundshallnotbeusedaspowerreturn.Requirement:Cableshieldsshallnotbeusedasapowerconductor.Requirement:Signalreturnshallnotbeusedasapowerconductor.4.5.5.2.2 SignalandData

Requirement:Foreverysignal,data,andcommandend-circuitpairforminganelectricalinterface,oneendandonlyoneendshallbeisolatedfromchassisby>20MΩ.Requirement:Allpyrofiringcircuitryshallbeisolatedfromchassisby>5kΩ.Requirement:Signalcircuitsshallbeisolatedfromeachend-circuitterminalcircuitcommonby<400pFwhenmeasuredfromthatinterfacepintochassis.Requirement:ForstandarddifferentialinterfacessuchasRS-422,MIL-STD-1553,LVDSisolationshallbeconfirmedbyresistancemeasurementusingaDCohmmeter(seeNASAHDBK-4001,par4.2.5).RS-422willnotmeetthisisolationlimit(seeRS-422differentialcircuitsbelow).Requirement:RS-422differentialcircuits,whichdonothave"true"high-impedanceisolation,shallbeconsideredtohavevirtualhigh-impedancebecauseofthedifferentialnatureofthecircuitscurrentflow(whenbothendsarepowered-on).Theyareacceptableforgeneraluse,andonlyneedtoverifytheirstandardlevelofisolation.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

58

Requirement:Multiplesignalend-circuits.Theminimumnetisolationresistanceandcapacitance(betweencircuitcommonandlocalchassis)requiredoftwoormoresignalend-circuitssharingacommonreturnshallbe,respectively,1MΩdividedbythenumberofsharingend-circuits,and400pFmultipliedbythenumberofsharingend-circuits.Requirement:Exceptforbleedresistors,nocapacitor,diode,filter,orothershuntingdeviceshallbeconnectedbetweenchassisandtheinputterminalofanisolatedsignalend-circuit.Shuntingcomponentconnectedfromtheinputterminalofanisolatedsignalend-circuit,tochassisortocircuitcommon,maycreateadeleteriousgroundloop.Further,theuseofdiscretecouplingcapacitorsbetweencircuitelementsreferencedtodifferentgroundtreeslimitsACisolationandallowsinter-groundtreetransientcoupling.Requirement:Digitalrelayacquisitionsandrelaycommandsshallbecompletelyelectricallyisolatedwithdedicatedreturn.Note:AnESDbleedrequirementof20MΩto100MΩ,though,stillexists.Requirement:CoaxialCableEnd-CircuitIsolation.ForcoaxialcircuitsthatconnectflightequipmenttoGSE,T-0umbilicalcircuits,ordirectaccesscircuitsreferencedtodifferentgroundtrees,highpassfiltering(DCblocking)>1.0MΩshallbeprovidedinthecenterconductorand/orshieldtomaintainisolationwherenecessarytopreventtheformationofaDCgroundloop.Requirement:UmbilicalandDirectAccessEnd-CircuitIsolation.Theflightsystemend-circuitsforallumbilicalanddirectaccesscircuitsshallprovidethereferenceforthecircuitexceptforcircuitsusingtemperaturetransducers,switchcontacts,orrelaycoilsasisolatedflightend-circuits.Requirement:IsolationtestsshallbeperformedonallcircuitsrequiredtobeisolatedfromcircuitcommonorchassisgroundduringEMCtesting.

4.5.6 Wiring/CableShielding[TBR]

4.5.6.1 StandardCables

Requirement:Interfacecables(bundles)thatjoinequipmenthousingsshallusegroundedover-braidsorotherapprovedwire/cableshieldingmethod.Note:Theover-braidstogetherwiththeequipmenthousingseffectivelyenclosetheentiresysteminasingleelectricallycontinuousFaradaychamber.SinglelayerwrapwithcoppertapeorequivalentmaybeusedifapprovedbytheEMCengineer.Requirement:Thecable/wireover-braidsshallbeconnectedtoequipmenthousings(housingsarestructuregrounded)usingconnectorEMIback-shells.Note:TheEMIback-shellsservetobondthecablebraidtothehousing-mountedconnectorthroughanideal360-degreetermination.Requirement:Signalorwiringshieldsshallnotbeusedasanintentionalpowerorsignalreturnconductor(exceptcoaxialcables,whereshieldisusedassignalreturn).Requirement:Cablewiringshallbeconfiguredasfollows:

1. Wirecableswillconsistofindividuallyshieldedtwistedpairs,triples,orquads.2. Braidshieldswillcoverthetwistedpairortwistedgroupratherthanindividualwires.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

59

3. Basicwiregroupsofsystemelectricalinterfacesshouldconsistoftwowirespercircuitorasinglewireforeachofseveralcircuitsthatshareacircuitreturnwire.

4. Thewiresshouldberoutedtominimizetheareaenclosedbythewiresandtwistedtogether.5. Eachcablebundleshouldcontain"out"and"return"wiringsuchthatmaximumelectromagneticfield

cancellationisachieved.Allwiresprovidingreturncurrentforinterfaceswithinabundleshould,themselves,residewithinthatbundle.Innocaseshouldtherebeasecondaryorpartialcurrentpathinadifferentbundle.

4.5.6.2 RibbonandFlexCables

Requirement:Tominimizemagneticfieldgenerationandalsotoprotectagainstshorting,primaryandsecondarypowerandreturnlinesshallbelocatedonnearbypinswithinaconnectorwitha"guard"pininbetween,oronadjacentlayersofribboncabling.Requirement:Fordifferentialcircuits,eachsignalpairshallbeassignedtoconductorsonimmediatelyadjacentlayers.Requirement:Forsingle-endedcircuitssharingacommonreturn,thesignalrunsshallbeclusteredintoagroupononelayer,withthesharedreturnspanningtheclusterontheimmediateadjacentlayer.Requirement:Forshieldedconductors(singles,pairs,ormultipleconductors),theshieldshallbeimplementedusingcontinuousconductorsimmediatelyaboveandbelowtosufficientlycoverthesignalline(s).4.5.6.3 Pyro-CircuitCableShielding

Requirement:Pyrocircuitpairsshallbemadefromtwistedshieldedpair(TSP)usingbraidedshieldingterminatedintheconnectorback-shells.Requirement:Individualbraidshieldsshallbeterminatedusinghaloringsorequivalentandstructure-terminated(grounded)totheback-shells.Requirement:Pigtails,ifrequired,shallnotexceed1inch(2.54cm)andtotallycontainedwithintheouteroverallshieldtotheback-shelloneitherendofacable.Requirement:Pigtailsshallnotterminate(grounded)throughaconnectorpin.Requirement:Pyrocontrol,monitoring,andfiringcircuitsshallmeettherequirementsoftheEasternandWesternRange(EWR)127-1RangeSafetyRequirementsdocument,Section3.13.

4.5.7 EMI/EMCRequirementsVerification

4.5.7.1 TestMethod

ThissectiondescribesthetestmethodsandrelatedrequirementsforverificationoftheapplicableEMI/EMCrequirements.Testmethodsapplyattheinstrument,subsystem,orassemblylevelorattheflightsystemlevel.Table4.5.7-1showstheapplicabletests.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

60

Table4.5.7-1EMC/EMITestMatrix.

TestMethod TestDescriptionAssembly/Subsystem/Instrument

FlightSystem

CE101(Tailored461F)* ConductedEmissions,PowerLeads,30Hzto50MHz Test ---CECM ConductedEmissions,CommonMode,30Hzto200MHz Test ---

CE106(Tailored461F) ConductedEmissions,AntennaTerminals Test ---

CE07(Tailored461C)* ConductedEmissions,PowerTransients,TimeDomain Test ---CS101(Tailored461F) ConductedSusceptibility,PowerLeads,30Hzto150kHz Test ---CS104(Tailored461F) ConductedSusceptibility,RejectionofUndesiredSignals Test ---

CS106(Tailored461F) ConductedSusceptibility,PowerLineTransients-Spikes(CS106) Test ---

CS114(461F) ConductedSusceptibility,BulkCableInjection,10kHzto200MHz

Test ---

CS114(461F) ConductedSusceptibility,PowerLeads,DifferentialMode,10kHzto200MHz

Test ---

RE101(461F) RadiatedEmissions,ACMagneticField,30Hzto100kHz Test ---RE102(Tailored461F) RadiatedEmissions,ACElectricField,30Hzto18GHz Test TestRS101(461F) RadiatedSusceptibility,ACMagneticField,30Hzto100kHz Test ---RS103(461F) RadiatedSusceptibility,ElectricField,14kHzto18GHz Test TestMagnetics DCMagneticFieldEmissions Test ---Magnetics DCMagneticFieldsusceptibility Test ---PowerTransients In-RushCurrent Test ---OperationalTransients NormalTransients Test ---OperationalTransients AbnormalTransients Test ---PowerTransients PowerInterrupt Test ---GroundFault PowerGroundFaultTest Test ---

Lightning LightningTransients Test/Analyze

---

BondingandGrounding EMIBondingResistanceMeasurement Test/Inspection

Test/Inspection

Isolation PowerandSignalIsolation Test ---

Shielding EnclosureandCableShieldingTest/

InspectionTest/

InspectionPlugsout PoweredbySpacecraftBatteries(noexternalpower) --- TestSelfCompatibility REandRSFlightSystemComponentsSelfCompatibility --- Test*MIL-STD-461ForMIL-STD-461C,asapplicable.

Earlyinthedevelopmentphase,theEMCorganizationshoulddevelopadetailedtestplanoutliningteststobeperformedatinstrument,subsystem,orassemblylevelandatflightsystemlevel.Theinstrument,subsystem,orassemblyleveltestsshouldalsoincludeanyteststhatshouldbeperformedatthecomponentlevel.Someofthesetestssuchasbondingandisolationmustbeimplementedduringassemblyandbuildinordertomakesureanypotentialnon-complianceproblemisfixedpriortoreleasingtheinstrument,subsystem,orassemblyforfinaltest.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

61

Thetestplanshouldalsostatetestlocationsforeachinstrument,subsystem,orassemblyandfortheflightsystem.

Requirement:VerificationoftheEMI/EMCrequirementsoutlinedaboveshallbebyTestinaccordancewithMIL-STD-461F,orMIL-STD-461/462,asapplicable.Requirement:Thetestsetupshalluseeitherthe5micro-HenryLineImpedanceStabilizationNetwork(LISN)describedinMIL-STD-461Foracustomdevicedescribedbelow.Requirement:ThecustomLISNshallbeasshowninFigure4.5.7-1andFigure4.5.7-2.(Note:Impedancelevelinthelow-frequencyregionofplotassumespower-sourceimpedance;theplotshownassumesa1ohmsource).

Figure4.5.7-1SampleLISNCircuitDiagram.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

62

Figure4.5.7-2SampleLISNTerminalImpedance(inputtotestarticle).

Requirement:EmissionstestsshallusethebandwidthanddwelltimerequirementsofMIL-STD-461F,Section4.3.10.3.Requirement:TheRE102resolutionbandwidthinnotchesshallbeselectedappropriatelytobringtheambientlevelatleast6dBbelowtheRE102Limitinthenotch.Note:Itshouldbenotedthatthedwelltimesin461F/TableIIareminimumdwelltimes.CaremustbetakentoensuretheselecteddwelltimeislongenoughtoensurecapturingthePayloademissionsateachtestfrequency.Requirement:ThesusceptibilityscanratesanddwelltimeshallcomplywithMIL-STD-461F,Section4.3.10.4.Requirement:Instrument,subsystem,orassemblyoperationalcharacteristicsshallbereviewedcarefullytomakesurethedwelltimesareselectedlongenoughtoensurethetestarticleistestedinitsworst-caseoperationalmode.Dwelltimesforconductedandradiatedsusceptibilitytestsmayindeedbedifferent.Requirement:AppropriatePass/FailrequirementsandmonitoringproceduresshallbedevelopedbytheresponsibleEMI/EMCengineerforalltests.Requirement:Instrument,subsystem,orassemblyGroundSupplyEquipment(GSE)shallhaveappropriatecapabilitiesforsusceptibilitymonitoringandnon-complianceflagging.Requirement:Totheextentfeasible,testcablesshallsimulatetheconfigurationusedonflightsystem,exceptforsomeCEandCStests,wherespecialtestcablesforPowerlinesmayberequiredinaccordancewiththerequirementsinMIL-STD-461F.Requirement:IsolationtestsshallbeperformedonallcircuitsrequiredtobeisolatedfromcircuitcommonorchassisgroundduringEMCtesting.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

63

Requirement:Allisolationtestsshallbeperformedwiththetestarticleunpoweredanddisconnectedfromthesupportequipment.Requirement:ThetestarticlechassisshallbeproperlybondedtotheEMCcopper-toppedtestbenchwithresistancenottoexceed2.5milli-ohmsperjoint.Requirement:ThetestarticleCognizantEngineershallprovideaccesstothenecessarypinsandconnectorseitherthroughanon-flightconnectorsaverorcable,orthroughabreak-outbox.Requirement:AllEMI/EMCtestingshallbeperformedperanapprovedEMCtestprocedure.Requirement:Testuncertaintiesshallnotexceed3dB,whichisthealloweduncertaintylimitinMIL-STD-461F.4.5.7.2 TestTolerances

ThemeasurementtoleranceswhenperformingEMI/EMCorESDtestsaredefinedbelow.

Requirement:TheEMI/EMCandESDtestsshallbecontrolledtothemeasurementtolerancesshowninTable4.5.7-2.

Table4.5.7-2EMI/EMCandESDTestTolerances.

LineVoltage(DCorAC) Within10%ofthetargetvalue

LineCurrent(DCorAC) Within10%ofthetargetvalue

RFRadiatedAmplitude Within3dBofthetargetvalue

RFConductedAmplitude Within3dBofthetargetvalue

Frequency Within1%ofthetargetvalue

Resistance Within10%ofthetargetvalue

DistanceWithin5cmor10%ofspecifieddistance,whicheverisgreater

MagneticFieldIntensity Within3dBofthetargetvalue

4.5.7.3 Over-TestingandDryRuns

Ingeneral,whentestingflighthardware,caremustbetakentopreventsubjectingthehardwaretounsafeconditions,orexposingthehardwaretoexcessiverisk.Ifsuchsituationsshouldoccur,itwillbecomenecessarytoinitiatepotentiallyextensiveandcostlyinvestigationstodetermineifanyover-stressconditionhasoccurred.Therequirementsoutlinedbelowareaimedatpreventingsuchconditionsandminimizingtest-relatedrisks.Requirement:Over-testingofinstruments,subsystems,orassembliesduringsusceptibilitytestingshallbeavoidedtothegreatestextentfeasible. Requirement:TheuncertaintylimitinMIL-STD-461Fis3dB.ThislimitshallbeusedasthemaximumtestlevelallowedabovetherequirementlevelinRSandCStests.Requirement:TheEMI/EMCtestingorganizationshallimplementsafetyandappropriatetestproceduresthatminimizetheriskofover-testing.Requirement:Dryrunsshallbeusedforallsusceptibilityteststoverifythetestmethodisworkingcorrectlyandatminimalover-testriskbeforeapplyingthetesttoflighthardware.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

64

Requirement:Flighthardwaresusceptibilitytestsshallbeallowedonlyaftersuccessfulcompletionoftherespectivedryruns.

4.5.8 FlightSystemChargingandElectrostaticDischargeRequirements

TheEuropaLanderflightsystemwillencountertheJovianradiationandplasmaenvironmentandthereforeissubjecttobothsurfaceandinternalcharginganddischargeevents.Additionally,theLandermayexperienceanelectrostaticdischarge(ESD)eventupontouchdown.TheEuropaLanderSurfaceCharging/iESDControlPlan(JPLD-97636)willcontainprojectpoliciesanddesignguidanceonhowtohandletheEuropachargingenvironment.4.5.8.1 SurfaceChargingandESD[TBR]

Everyflightsystemconfigurationissusceptibletothesurfacechargingandelectrostaticdischarge.OnlytheLanderstageandDescentstagearepotentiallysusceptibletoatouchdown-induceddischarge.Requirement:TheflightsystemshallbedesignedtosurviveandoperatewithinspecificationsunderthesurfacechargingenvironmentinFigure4.5.8-1,Figure4.5.8-2,Figure4.5.8-3,andFigure4.5.8-4withandwithoutsunlight.

Note:Thetouchdown-induceddischargeenvironmentwillbepresentedinanupdatetothisdocument.Themagnetosphereistheprimarycontrollingfactorforlocalplasmaenvironments.ThemagnetosphereofJupiterisdominatedbythreefactors:themagneticfieldtilt(11°)relativetoitsspinaxis,itsrapidrotation,andtheJovianmoonIoat5.9Rj.Iogeneratesavasttorusofgasandions.ThemorerapidrotationofJupiter’smagneticfieldforcesthecoldplasmaassociatedwiththistorustoaccelerateandexpandbycentrifugalforceintoagiantdisc.Themagneticfieldtiltandrotationratecausetheplasmadisctowaveupanddownsothatatagivenlocationplasmaparametersvaryradicallyduringa10hperiod.Jupiter’senvironmentcanberoughlydividedintothreepopulations:thecoldplasmaassociatedwiththeIotorusandtheplasmadisc(<1keV),theintermediate“warm”plasma(1keV–100keV),andthetrappedradiationenvironment(>100keV).ThetrappedradiationenvironmentisdiscussedindetailedinSection4.9.SurfacechargingdescribedinthissubsectionisgovernedprimarilybythecoldandwarmplasmaenvironmentsnearJupiter.JovianplasmaenvironmentcanbeexpressedasthesumofMaxwell-Boltzmanndistribution(s)andKappadistribution(s).TheMaxwell-Boltzmanndistribution:

(Eq.1)where:

v=velocityrelativetoobservationpoint;theconvectionvelocityvcnvccanbeincorporatedhere Ni=numberdensityofspeciese-,H+,O+,O++,S+,S++,S+++,Na+(i=0,1,2,..,7)

ore-(warm)andH+(warm) m=massofspecies k=Boltzmannconstant T=temperatureofspeciesTheKappadistribution:

fi(v) =Ni

π 3 / 2v03 exp(−v

2 /v02)

v0 = (2kT /m)1/ 2

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

65

(Eq.2)where: E=½mv2 Nκ=Kappanumberdensity(cm-3)ofspecies(e-andH+) mκ=Kappamass(g)ofspecies(e-andH+) κ=Kappavalue E0=KappatemperatureorcharacteristicenergyTheplasmaparametersfromthenewDivine-Garrett(DG2)plasmamodelat9.5Rj,110°WestLongitude,and0°Latitudeare: Electrons: Ne=46.05cm

-3, T=100.8eV coldelectron Ne=3.278cm

-3, T=3720.eV warmelectron Nκ=0.5666cm

-3, E0=949.0eV, κ=1.617 Kappaelectron Protons: Np=6.557cm

-3, T=143.1eV coldproton Np=3.278cm

-3, T=30000eV warmproton. Nκ=4.167cm

-3, E0=32420eV, κ=3.368 Kappaproton Ions: NT=46.06cm

-3, T=143.1eV, vcnvc=112.6km/s totalions NO+=3.224cm

-3,NO2+=2.763cm-3, NNa=2.303cm

-3 O+,O2+,Na+ NS+=2.763cm

-3,NS2+=11.97cm-3, NS3+=2.763cm

-3 S+,S2+,S3+TheplasmadistributionfunctionsforeachofthecomponentshavebeenconvertedtoDifferentialFluxesandareplottedinFigure4.5.8-1,Figure4.5.8-2,andFigure4.5.8-3.Thespecificcomponentsareasfollowsforthecold(Boltzmann)electron,proton,andheavyionsandforthewarm(BoltzmannandKappa)electronandprotondistributionfunctionsversusenergy(note:forthecoldprotonandioncomponents,onecanincludetheeffectsoftheconvectionvelocity,vcnvc–seeEq.1).Thelegendlabelsaredefinedasfollows: DFE1=DifferentialFluxforcoldelectrons DFE2=DifferentialFluxforwarmelectrons DFE3=DifferentialFluxforhighenergyelectrons(E>100keV) DFE4=DifferentialFluxforKappaelectrons DFH1=DifferentialFluxforcoldprotons DFH2=DifferentialFluxforwarmprotons DFH3=DifferentialFluxforhighenergyprotons(E>0.6MeV) DFH4=DifferentialFluxforKappaprotons DFS1=DifferentialFluxforS+ DFS2=DifferentialFluxforS++ DFS3=DifferentialFluxforS+++ DFO1=DifferentialFluxforO+ DFO2=DifferentialFluxforO++ DFNA=DifferentialFluxforNa+

EPD=GalileoEnergeticParticleDetectormeasurementsTheindividualDifferentialFluxspectrainunitsof(cm2ssreV)-1aregiveninFigure4.5.8-1,Figure4.5.8-2,andFigure4.5.8-3.

fκ (E) = Nκ (mκ /2πE0)3 / 2κ−3 / 2 Γ(κ +1)

Γ(κ −1/2)1

(1+ E /κE0)κ +1

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

66

Figure4.5.8-1HeavyIonFluxesversusEnergyat9.5Rj.(Note:S+,S2+,andNa+overlayeachother.)

Figure4.5.8-2ElectronFluxesat9.5Rj.(NotethattheKappadistribution(DFE4)canbeusedinlieuofthe

Boltzmanndistribution(DFE2)forthewarmelectrons.)

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

67

Figure4.5.8-3ProtonFluxesat9.5Rj.(NotethattheKappadistribution(DFH4)canbeusedinlieuoftheBoltzmanndistribution(DFH2)forthewarmprotons.Thecoldprotoncomponent(DFH1)istheleastwell

definedofalltheioncomponentsandcanbedisregardedifdesired.)TheauroralcontributionstotheJovianplasmaenvironmentareprevalentoutsidetheorbitofEuropa,withworst-caseconditionsexpectedat15Rj(nearGanymedeorbit).Theenergycharacteristicsoftheimportantplasmacomponentsintheequatorialplaneat15RjareplottedinFigure4.5.8-4below.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

68

Figure4.5.8-4Plasmadifferentialfluxesat15Rj,110°W,and0°(illustratingthevariousplasmacomponentsand

theirrelativefluxvaluesinthejovianplasmasheet).ECold,HCold,andHHotareDFE1,DFH1,andDFH2,respectively.100timesofEPD(normal)fluxisusedforhigh-energyelectronfluxestimationduringAuroral

events.TheplasmaparametersatRj=15are: Electrons: Ne=6.91cm

-3, T=15eV coldelectron Ne=1.024cm

-3, T=1000eV warmelectron Nκ=0.4234cm

-3, E0=475eV, κ=1.95 Kappaelectron Nκ=2.00cm

-3, E0=1500eV, κ=2.4 DiffuseAurora Protons: Np=0.683cm

-3, T=15eV coldproton

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

69

Np=0.341cm-3, T=30000eV warmproton

Ions: NT=6.91cm

-3, T=15eV, vcnvc=158km/s totalions NO+=0.48cm

-3,NO2+=0.41cm-3, NNa=0.35cm

-3 O+,O2+,Na+ NS+=0.41cm

-3,NS2+=1.80cm-3, NS3+=0.41cm

-3 S+,S2+,S3+Implicationofplasmaenvironmentforworst-casesurfacepotentialsonshadowedsurfacesisupto-5kV.[Jovianplasmaenvironmentalmodelsareunderreviewwithupdatesexpectedforfurtherrevisions].DetailsofrelevantsurfacechargingguidelineswillbedescribedinEuropaLanderSurfaceCharging/iESDControlPlan[JPLD-97636].NASA-HDBK-4002Aalsocontainsdesignguidelinesforthisenvironmentandareonlytobeusedasreferencesanddonotconstituteanydesignrequirements.4.5.8.2 InternalChargingandElectrostaticDischarge(ESD)[TBR]

InternalElectrostaticDischarge(IESD)iscausedwhenenergeticparticlespenetrateintoamaterial,stop,anddeposittheircharge.Netchargecanbuilduponfloatingconductorsandwithindielectrics.Ifthenetchargeinducesapotentialthatsurpassesthelocalbreakdownvoltage,therewillbeadischarge.Thesedischargesoccurwhenthecurrentfromtheenergeticparticleenvironmentisgreaterthanthebleed-offcurrentofafloatingconductorordielectricmaterial.IESDmitigationmethodsincludeshieldingofsensitivecomponents,eliminatingfloatingconductors,providingsufficientbleedpathsfromsensitivecomponents,hardeningelectronicstotheeffectsofdischarges,anduseofleakydielectricmaterials.TheEuropaLanderFlightSystemwillbeexposedtothemostextremeIESDenvironmentofanyspacecrafttodate.Itisanticipatedthatmultiplemitigationmethodsandaconcerteddesigneffortwillberequiredtoensuremissionsuccess.Requirement:TheflightsystemshallbedesignedtosurviveandoperatewithinspecificationsundertheIESDenvironmentderivedfromtheenergeticparticlefluenceinTable4.7.1-1,Table4.7.1-2,andTable4.7.1-3(dependingonflightelement).DetailsofrelevantinternalchargingrequirementswillbedescribedinEuropaLanderSurfaceCharging/IESDControlPlan[JPLD-97636].NASA-HDBK-4002Aalsocontainsdesignguidelinesforthisenvironmentandareonlytobeusedasreferencesanddonotconstituteanydesignrequirements.

4.5.8.3 vxBEffectsonChargingTheco-rotatingplasmanearEuropareachesavelocityof~120km/s,whilethelocalmagneticfieldisapproximately400nT(4mGauss).Theseconditionsleadto~0.05V/mduetovxBeffects.ThechargingeffectduetovxBisexpectedtobeinsignificant.

4.6 SolidParticleEnvironments

4.6.1 MeteoroidEnvironment

Requirement:Theflightsystemshallbedesignedtohaveatleasta95%probabilityofsurvivingthemeteoroidenvironmentsummarizedinTable4.6.1-1andTable4.6.1-2toachieveminimummissionsuccesscriteria.[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

70

ThemeteoroidenvironmentpresentedwasgeneratedusinganEVEEGAtrajectorywithan8-yearcruiseoriginallystudiedfortheEuropaClippermission(JPLIOM5132-14-054A).Thisestimategivesanupperboundofthemeteoroidenvironmentduetolongermissionduration.Thisenvironmentwillbeupdatedasmissiondesignscenariosmature.ThefluenceversusmassandspeeddistributionisshowninTable4.6.1-1andTable4.6.1-2.ThemicrometeoroidfluencedistrubustionswerecalculatedusingtheMSFC’sMeteoroidEnvironmentModel(MEM)insideof2.3AUandJPL’sMETeoroidEnvironmentModel(METEM)outsideof2.3AU.DustandothersolidparticleswithinJupiter’sringsarelocatedwithintheorbitofIo(~5.9RJ)andexcludedfromthisestimate.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

71

Table4.6.1-1MissionfluenceforEVEEGAtrajectoryfromLaunchto2.3AU.

Fluence(m-2)abovethegivenParticleMass,withinagiven1km/sVelocitybin.Particlematerialdensityisassumedtobe1g/cm3.

Velocity[binavg.](m/s)

1.00E-06g 1.00E-05g 1.00E-04g 1.00E-03g 1.00E-02g 1.00E-01g

500 1.14E-01 1.13E-02 7.96E-04 4.59E-05 2.36E-06 1.15E-071500 1.14E-01 1.13E-02 7.96E-04 4.59E-05 2.36E-06 1.15E-072500 1.14E-01 1.13E-02 7.96E-04 4.59E-05 2.36E-06 1.15E-073500 1.14E-01 1.13E-02 7.96E-04 4.59E-05 2.36E-06 1.15E-074500 1.14E-01 1.13E-02 7.96E-04 4.59E-05 2.36E-06 1.15E-075500 5.88E-01 5.79E-02 4.09E-03 2.36E-04 1.21E-05 5.89E-076500 5.88E-01 5.79E-02 4.09E-03 2.36E-04 1.21E-05 5.89E-077500 5.88E-01 5.79E-02 4.09E-03 2.36E-04 1.21E-05 5.89E-078500 5.88E-01 5.79E-02 4.09E-03 2.36E-04 1.21E-05 5.89E-079500 5.88E-01 5.79E-02 4.09E-03 2.36E-04 1.21E-05 5.89E-0710500 8.15E-01 8.02E-02 5.67E-03 3.27E-04 1.68E-05 8.17E-0711500 8.15E-01 8.02E-02 5.67E-03 3.27E-04 1.68E-05 8.17E-0712500 8.15E-01 8.02E-02 5.67E-03 3.27E-04 1.68E-05 8.17E-0713500 8.15E-01 8.02E-02 5.67E-03 3.27E-04 1.68E-05 8.17E-0714500 8.15E-01 8.02E-02 5.67E-03 3.27E-04 1.68E-05 8.17E-0715500 7.90E-01 7.78E-02 5.50E-03 3.17E-04 1.63E-05 7.92E-0716500 7.90E-01 7.78E-02 5.50E-03 3.17E-04 1.63E-05 7.92E-0717500 7.90E-01 7.78E-02 5.50E-03 3.17E-04 1.63E-05 7.92E-0718500 7.90E-01 7.78E-02 5.50E-03 3.17E-04 1.63E-05 7.92E-0719500 7.90E-01 7.78E-02 5.50E-03 3.17E-04 1.63E-05 7.92E-0720500 7.22E-01 7.11E-02 5.02E-03 2.90E-04 1.49E-05 7.24E-0721500 7.22E-01 7.11E-02 5.02E-03 2.90E-04 1.49E-05 7.24E-0722500 7.22E-01 7.11E-02 5.02E-03 2.90E-04 1.49E-05 7.24E-0723500 7.22E-01 7.11E-02 5.02E-03 2.90E-04 1.49E-05 7.24E-0724500 7.22E-01 7.11E-02 5.02E-03 2.90E-04 1.49E-05 7.24E-0725500 6.16E-01 6.07E-02 4.29E-03 2.47E-04 1.27E-05 6.18E-0726500 6.16E-01 6.07E-02 4.29E-03 2.47E-04 1.27E-05 6.18E-0727500 6.16E-01 6.07E-02 4.29E-03 2.47E-04 1.27E-05 6.18E-0728500 6.16E-01 6.07E-02 4.29E-03 2.47E-04 1.27E-05 6.18E-0729500 6.16E-01 6.07E-02 4.29E-03 2.47E-04 1.27E-05 6.18E-0730500 4.60E-01 4.53E-02 3.20E-03 1.85E-04 9.50E-06 4.61E-0731500 4.60E-01 4.53E-02 3.20E-03 1.85E-04 9.50E-06 4.61E-0732500 4.60E-01 4.53E-02 3.20E-03 1.85E-04 9.50E-06 4.61E-0733500 4.60E-01 4.53E-02 3.20E-03 1.85E-04 9.50E-06 4.61E-0734500 4.60E-01 4.53E-02 3.20E-03 1.85E-04 9.50E-06 4.61E-0735500 2.95E-01 2.90E-02 2.05E-03 1.18E-04 6.09E-06 2.95E-0736500 2.95E-01 2.90E-02 2.05E-03 1.18E-04 6.09E-06 2.95E-0737500 2.95E-01 2.90E-02 2.05E-03 1.18E-04 6.09E-06 2.95E-0738500 2.95E-01 2.90E-02 2.05E-03 1.18E-04 6.09E-06 2.95E-0739500 2.95E-01 2.90E-02 2.05E-03 1.18E-04 6.09E-06 2.95E-0740500 1.59E-01 1.56E-02 1.10E-03 6.36E-05 3.28E-06 1.59E-0741500 1.59E-01 1.56E-02 1.10E-03 6.36E-05 3.28E-06 1.59E-0742500 1.59E-01 1.56E-02 1.10E-03 6.36E-05 3.28E-06 1.59E-0743500 1.59E-01 1.56E-02 1.10E-03 6.36E-05 3.28E-06 1.59E-0744500 1.59E-01 1.56E-02 1.10E-03 6.36E-05 3.28E-06 1.59E-0745500 7.44E-02 7.33E-03 5.18E-04 2.99E-05 1.54E-06 7.46E-0846500 7.44E-02 7.33E-03 5.18E-04 2.99E-05 1.54E-06 7.46E-0847500 7.44E-02 7.33E-03 5.18E-04 2.99E-05 1.54E-06 7.46E-0848500 7.44E-02 7.33E-03 5.18E-04 2.99E-05 1.54E-06 7.46E-0849500 7.44E-02 7.33E-03 5.18E-04 2.99E-05 1.54E-06 7.46E-08

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

72

50500 3.40E-02 3.35E-03 2.37E-04 1.36E-05 7.03E-07 3.41E-0851500 3.40E-02 3.35E-03 2.37E-04 1.36E-05 7.03E-07 3.41E-0852500 3.40E-02 3.35E-03 2.37E-04 1.36E-05 7.03E-07 3.41E-0853500 3.40E-02 3.35E-03 2.37E-04 1.36E-05 7.03E-07 3.41E-0854500 3.40E-02 3.35E-03 2.37E-04 1.36E-05 7.03E-07 3.41E-0855500 1.90E-02 1.87E-03 1.32E-04 7.63E-06 3.93E-07 1.91E-0856500 1.90E-02 1.87E-03 1.32E-04 7.63E-06 3.93E-07 1.91E-0857500 1.90E-02 1.87E-03 1.32E-04 7.63E-06 3.93E-07 1.91E-0858500 1.90E-02 1.87E-03 1.32E-04 7.63E-06 3.93E-07 1.91E-0859500 1.90E-02 1.87E-03 1.32E-04 7.63E-06 3.93E-07 1.91E-0860500 1.28E-02 1.26E-03 8.93E-05 5.15E-06 2.65E-07 1.29E-0861500 1.28E-02 1.26E-03 8.93E-05 5.15E-06 2.65E-07 1.29E-0862500 1.28E-02 1.26E-03 8.93E-05 5.15E-06 2.65E-07 1.29E-0863500 1.28E-02 1.26E-03 8.93E-05 5.15E-06 2.65E-07 1.29E-0864500 1.28E-02 1.26E-03 8.93E-05 5.15E-06 2.65E-07 1.29E-0865500 8.00E-03 7.88E-04 5.57E-05 3.21E-06 1.65E-07 8.02E-0966500 8.00E-03 7.88E-04 5.57E-05 3.21E-06 1.65E-07 8.02E-0967500 8.00E-03 7.88E-04 5.57E-05 3.21E-06 1.65E-07 8.02E-0968500 8.00E-03 7.88E-04 5.57E-05 3.21E-06 1.65E-07 8.02E-0969500 8.00E-03 7.88E-04 5.57E-05 3.21E-06 1.65E-07 8.02E-0970500 4.42E-03 4.35E-04 3.07E-05 1.77E-06 9.13E-08 4.43E-0971500 4.42E-03 4.35E-04 3.07E-05 1.77E-06 9.13E-08 4.43E-0972500 4.42E-03 4.35E-04 3.07E-05 1.77E-06 9.13E-08 4.43E-0973500 4.42E-03 4.35E-04 3.07E-05 1.77E-06 9.13E-08 4.43E-0974500 4.42E-03 4.35E-04 3.07E-05 1.77E-06 9.13E-08 4.43E-0975500 1.66E-03 1.63E-04 1.15E-05 6.65E-07 3.43E-08 1.66E-0976500 1.66E-03 1.63E-04 1.15E-05 6.65E-07 3.43E-08 1.66E-0977500 1.66E-03 1.63E-04 1.15E-05 6.65E-07 3.43E-08 1.66E-0978500 1.66E-03 1.63E-04 1.15E-05 6.65E-07 3.43E-08 1.66E-0979500 1.66E-03 1.63E-04 1.15E-05 6.65E-07 3.43E-08 1.66E-09Total 2.36E+01 2.32E+00 1.64E-01 9.45E-03 4.87E-04 2.36E-05

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

73

Table4.6.1-2MissionfluenceforEVEEGAtrajectorypast2.3AUtoEndofMission. Fluence(m-2)abovethegivenParticleMass,withinagiven1km/sVelocitybin.

Particlematerialdensityisassumedtobe2.5g/cm3.Velocity[binavg.](m/s)

1.00E-06g 1.00E-05g 1.00E-04g 1.00E-03g 1.00E-02g 1.00E-01g

500 2.00E-03 4.04E-04 7.36E-05 6.52E-06 3.71E-07 1.77E-081500 8.72E-03 2.52E-03 5.40E-04 4.92E-05 2.82E-06 1.35E-072500 2.83E-02 1.19E-02 2.80E-03 2.59E-04 1.49E-05 7.12E-073500 7.35E-02 3.51E-02 8.47E-03 7.86E-04 4.52E-05 2.16E-064500 1.33E-01 6.50E-02 1.58E-02 1.47E-03 8.42E-05 4.03E-065500 2.15E-01 1.08E-01 2.64E-02 2.45E-03 1.41E-04 6.74E-066500 2.91E-01 1.47E-01 3.60E-02 3.34E-03 1.92E-04 9.20E-067500 3.57E-01 1.79E-01 4.37E-02 4.06E-03 2.33E-04 1.12E-058500 4.15E-01 2.07E-01 5.05E-02 4.70E-03 2.70E-04 1.29E-059500 4.74E-01 2.37E-01 5.80E-02 5.39E-03 3.10E-04 1.48E-0510500 5.32E-01 2.65E-01 6.50E-02 6.05E-03 3.48E-04 1.66E-0511500 5.95E-01 2.92E-01 7.14E-02 6.64E-03 3.82E-04 1.83E-0512500 6.48E-01 3.11E-01 7.59E-02 7.05E-03 4.05E-04 1.94E-0513500 6.46E-01 3.08E-01 7.53E-02 7.00E-03 4.02E-04 1.93E-0514500 6.01E-01 2.84E-01 6.92E-02 6.44E-03 3.70E-04 1.77E-0515500 5.63E-01 2.58E-01 6.28E-02 5.84E-03 3.35E-04 1.61E-0516500 5.35E-01 2.34E-01 5.68E-02 5.27E-03 3.03E-04 1.45E-0517500 5.12E-01 2.14E-01 5.16E-02 4.79E-03 2.75E-04 1.32E-0518500 4.70E-01 1.85E-01 4.44E-02 4.12E-03 2.37E-04 1.13E-0519500 4.31E-01 1.63E-01 3.90E-02 3.62E-03 2.08E-04 9.96E-0620500 3.93E-01 1.40E-01 3.34E-02 3.10E-03 1.78E-04 8.51E-0621500 3.54E-01 1.24E-01 2.95E-02 2.73E-03 1.57E-04 7.51E-0622500 3.19E-01 1.09E-01 2.60E-02 2.41E-03 1.38E-04 6.62E-0623500 2.86E-01 9.72E-02 2.32E-02 2.15E-03 1.23E-04 5.91E-0624500 2.63E-01 8.81E-02 2.10E-02 1.95E-03 1.12E-04 5.35E-0625500 2.46E-01 8.12E-02 1.93E-02 1.79E-03 1.03E-04 4.93E-0626500 2.25E-01 7.42E-02 1.77E-02 1.64E-03 9.43E-05 4.51E-0627500 2.07E-01 6.79E-02 1.62E-02 1.51E-03 8.64E-05 4.14E-0628500 1.91E-01 6.24E-02 1.49E-02 1.38E-03 7.93E-05 3.80E-0629500 1.76E-01 5.69E-02 1.35E-02 1.26E-03 7.22E-05 3.46E-0630500 1.59E-01 5.15E-02 1.23E-02 1.14E-03 6.53E-05 3.13E-0631500 1.39E-01 4.61E-02 1.10E-02 1.02E-03 5.85E-05 2.80E-0632500 1.19E-01 4.04E-02 9.63E-03 8.93E-04 5.13E-05 2.46E-0633500 1.01E-01 3.50E-02 8.33E-03 7.72E-04 4.44E-05 2.12E-0634500 8.24E-02 2.86E-02 6.80E-03 6.31E-04 3.62E-05 1.73E-0635500 6.24E-02 2.05E-02 4.83E-03 4.48E-04 2.57E-05 1.23E-0636500 3.53E-02 8.47E-03 1.92E-03 1.77E-04 1.01E-05 4.85E-0737500 1.96E-02 2.78E-03 5.75E-04 5.25E-05 3.01E-06 1.44E-0738500 1.26E-02 8.06E-04 1.25E-04 1.10E-05 6.23E-07 2.97E-0839500 9.32E-03 3.14E-04 2.35E-05 1.75E-06 9.54E-08 4.48E-0940500 7.58E-03 2.03E-04 7.10E-06 3.24E-07 1.46E-08 6.28E-1041500 6.33E-03 1.60E-04 4.17E-06 1.15E-07 3.31E-09 1.01E-1042500 5.25E-03 1.32E-04 3.32E-06 8.34E-08 2.10E-09 5.29E-1143500 4.41E-03 1.11E-04 2.78E-06 6.99E-08 1.76E-09 4.41E-1144500 3.83E-03 9.63E-05 2.42E-06 6.08E-08 1.53E-09 3.83E-1145500 3.34E-03 8.39E-05 2.11E-06 5.29E-08 1.33E-09 3.34E-1146500 2.64E-03 6.62E-05 1.66E-06 4.18E-08 1.05E-09 2.64E-1147500 1.70E-03 4.27E-05 1.07E-06 2.69E-08 6.76E-10 1.70E-1148500 8.35E-04 2.10E-05 5.27E-07 1.32E-08 3.33E-10 8.35E-12

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

74

49500 3.03E-04 7.60E-06 1.91E-07 4.79E-09 1.20E-10 3.03E-1250500 8.03E-05 2.02E-06 5.07E-08 1.27E-09 3.20E-11 8.03E-1351500 9.46E-06 2.38E-07 5.97E-09 1.50E-10 3.77E-12 9.46E-1452500 1.76E-07 4.43E-09 1.11E-10 2.79E-12 7.02E-14 1.76E-1553500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0054500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0055500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0056500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0057500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0058500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0059500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0060500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0061500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0062500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0063500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0064500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0065500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0066500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0067500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0068500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0069500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0070500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0071500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0072500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0073500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0074500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0075500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0076500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0077500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0078500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+0079500 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00Total 1.10E+01 4.64E+00 1.12E+00 1.04E-01 6.00E-03 2.87E-04

4.6.2 EuropaSurfaceSolidParticleEnvironment

TherearelikelysolidparticlesonthesurfaceofEuropathatcanbeenergizedbylandingenginesontheDescentStageinsuchawaytodisturbhardwarethatisexternaltotheLanderstagebody.AsimilarenvironmentwasobservedduringtheMarsScienceLaboratorytouchdownandrockyparticleswereobservedontheroverdeckasshowninFigure4.6.2-1.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

75

Figure4.6.2-1ParticulatesontheMarsScienceLaboratoryroverdeckaftertouchdown.

Requirement:ExternalcomponentsoftheLandershallbedesignedtosurvivethesolidparticleparticulateenvironmentcreatedduringtouchdownasdescribedTable4.6.2-1.

Table4.6.2-1EuropaLandersolidparticleenvironment[placeholder].[TBD]

4.7 High-EnergyRadiationEnvironments

4.7.1 EnergeticParticleFluence

FortheEuropaLanderMission,theenergeticparticlefluenceisthedrivingenvironmentforallradiationeffects.ThefollowingtablesandfiguresgivetheJupitertrappedparticlefluencesofarepresentativemissiontrajectory(12L04_50km)derivedusingtheJPLJupiterradiationmodelsdescribedin“UpdatingtheJovianPlasmaandRadiationEnvironments:TheLatestResultsfor2015”byGarrett,Kim,andEvans[2016](doi:10.2514/1.A33510).Specifically,weusetheGridversionofGIRE2p.Particlepeakfluxandfluencewillchangefordifferentmissiondesignsandcouldincreaseordecreaserelativetotherepresentativevaluesfoundhere.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

76

ProtonandelectronmissionintegralfluencesarelistedTable4.7.1-1,Table4.7.1-2,andTable4.7.1-3fortheCarrierandRelayStage,DeorbitVehicle,andtheLander,respectively.Figure4.7.1-1showsthemissionintegralfluencesfortheCarrierandRelayStage,DeorbitVehicle,andtheLander.Integralfluenceisinunitsparticles/cm2forenergyequaltoandgreaterthantheenergylisted.Thehighestenergyelectronfluencesmodeled(upto150MeV)arebaseduponpower-lawextrapolationsofelectronswithenergies<30MeV.Unlessotherwisestated,alltablesandgraphswithinthissectionrepresentenvironmentsexternaltotheFlightSystem,anddonotcontainadesignfactor(i.e.,RDF=1).TheRadiationDesignFactor(RDF)isdefinedas:

RDF = Radiation-tolerancelevelofapartorcomponentinagivenapplication RadiationenvironmentpresentatthelocationofthepartorcomponentTheCruiseVehicle(CV)iscomprisedoftheCarrierandRelayStage(CRS)andtheDeorbitVehicle(DOV).Duringinterplanetarycruise,throughJupiterorbitalinsertion(JOI),allthewayuntilDOVseparation,theflightsystemisinasingle,CVconfigurationandallsystemelementsareexposedtothesameradiationenvironment.FollowingDOVseparation,theCOSremainsinorbitaroundEuropa,buttheorbitaldistanceisassumedtobesufficientlylargethatEuropa,itself,providesnoradiationshielding.TheDOVisalsoassumedtohavenoshieldingfromEuropa.OncetheLanderisonthesurface,thefluenceisassumedtobeonehalfofthevalueatEuropa’sorbitaldistanceduetoshieldingbyEuropaitself.Afterthesurfacemissionisover,theCRSwillbeplacedintoastableorbitforplanetaryprotectionpurposes.TheseassumptionsprovideanupperboundontheenergeticparticlefluenceandmaintainstheentiresurfaceofEuropaasanacceptablelandingzonefromatotaldoseperspective.Requirement:Theflightsystemshallbedesignedtosurviveandoperatewithinspecificationsunderthehigh-energyparticleenvironmentinTable4.7.1-1,Table4.7.1-2,andTable4.7.1-3(dependingontheflightelement)and,Table4.7.1-4(allflightelements).

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

77

Table4.7.1-1CarrierandRelayStageIntegralElectronandProtonFluence[12L04_50km;RDF=1].

Energy(MeV) ElectronFluence(cm-2) ProtonFluence(cm-2)0.1 2.19E+15 3.18E+140.2 1.22E+15 2.43E+140.3 8.56E+14 1.96E+140.5 5.36E+14 1.43E+141 2.67E+14 8.31E+132 1.19E+14 4.04E+133 7.05E+13 2.29E+135 3.44E+13 8.77E+1210 1.05E+13 1.47E+1220 2.17E+12 1.82E+1130 7.81E+11 5.22E+1050 1.93E+11 1.08E+10100 3.21E+10 1.32E+09

Table4.7.1-2DeorbitVehicleintegralelectronandprotonfluence[12L04_50km;RDF=1].

Energy(MeV) ElectronFluence(cm-2) ProtonFluence(cm-2)0.1 1.21E+15 1.54E+140.2 6.22E+14 1.09E+140.3 4.21E+14 8.44E+130.5 2.52E+14 5.76E+131 1.18E+14 3.10E+132 4.94E+13 1.42E+133 2.80E+13 7.87E+125 1.28E+13 2.99E+1210 3.67E+12 5.19E+1120 7.52E+11 6.91E+1030 2.70E+11 2.07E+1050 6.60E+10 4.59E+09100 1.10E+10 6.11E+08

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

78

Table4.7.1-3Landerintegralelectronandprotonfluence[12L04_50km;RDF=1].Energy(MeV) ElectronFluence(cm-2) ProtonFluence(cm-2)

0.1 1.39E+15 1.86E+140.2 7.31E+14 1.39E+140.3 5.03E+14 1.10E+140.5 3.08E+14 7.88E+131 1.50E+14 4.52E+132 6.56E+13 2.17E+133 3.85E+13 1.23E+135 1.86E+13 4.70E+1210 5.63E+12 7.89E+1120 1.16E+12 9.92E+1030 4.15E+11 2.87E+1050 1.02E+11 6.05E+09100 1.70E+10 7.57E+08

Figure4.7.1-1GIRE2pIntegralprotonandelectronfluence[trajectory12L4_50km;RDF=1].AnestimatedEuropaLanderMissionsolarprotonenvironmentisbasedontheJPL-SPEmodelandshowninTable4.7.1-4andFigure4.7.1-2.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

79

Table4.7.1-4SolarprotonfluenceforinterplanetarycruisefromEarthtoJupiterapplicabletotheentireCruise

Vehicle.[RDF=1]

Energy FLUENCE

(protons/cm2) (MeV) scaled 95%

1 1.90E+11 4 6.37E+10

10 2.46E+10 30 6.74E+09 60 3.03E+09

100 1.68E+09 150 1.05E+09 200 7.54E+08 300 4.72E+08 500 2.62E+08

1000 1.17E+08 2000 5.28E+07

Figure4.7.1-2SolarprotonintegralfluenceforinterplanetarycruisefromEarthtoJupiterapplicabletothe

entireCruiseVehicle.[RDF=1]

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1 10 100 1000 10000

Fluence(protons/cm^2)

Energy(MeV)

SolarProtonFluence

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

80

4.7.2 IonizingRadiation

TheionizingradiationexposureofEuropaLanderflighthardwarewillcomeprimarilyfromtheJovianradiationbeltenvironment,andalsofromsolarprotons.Solarheavyionsandgalacticcosmicrays,andJovianheavyionsdonotcontributesignificantlytotheionizingradiationexposureandcanbeignoredwhenassessingtheofeffectsofionizingradiationeffectsonpartsandmaterials.Thecontributionfromhigh-energyelectronsandprotonsinJovianradiationbeltsisexpectedtodominateforallhardware.Requirement:FlightSystem,Subsystem,Assembly,andInstrumentcomponentsanddevicesshallbeselectedsuchthattheyoperatewithinperformancespecificationduringandaftertheexposuretotheTIDandDDDradiationenvironmentdocumentedhereinataradiationdesignfactor(RDF)of2timesthelevelpresentatthelocationofthedevice. Requirement:DevicesthatrequirespotshieldingshallbeassessedatanRDFof3timestheTIDlevelpresentatthelocationofthedevice.Note:ThedefinitionofspotshieldingwillbedescribedintheEuropaLanderRadiationControlPlan[JPLD-97634].

4.7.2.1 TotalIonizingDoseTable4.7.2-1,Table4.7.2-2,andTable4.7.2-3listthetotalionizingdoseusingNOVICE(ThomasJordan1993,NOVICE,ARadiationTransportShieldingCode,ExperimentalandMathematicalPhysicsConsultants,Jan.2006Version)forthemissionfluenceofeachflightsystemelementspecifiedinSection4.7.1.Figure4.7.2-1,Figure4.7.2-1,andFigure4.7.2-3showthetotaldoseforaluminumandtantalumsphericalshellshieldthicknessesforeachflightsystemstage,withtherelativedosecontributionsfromelectrons,secondarybremsstrahlungphotons,trappedprotons,andsolarprotonsbasedonNOVICEtransportcalculationsforthemissionfluencesfortrajectory12L04_50km.Doseisinrad(Si),andshieldingthicknessisinmil.Thefluxofgalacticcosmicrays(GCR)contributesapproximately0.02rad(Si)/daytothemissiondose,independentofshielding.TheJovianmagneticfieldprovidessomeshieldingfromGCRs,withincreasingprotectionclosertoJupiter.FortheEuropaLanderMission,GCRcontributiontoTIDwillbeneglected.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

81

Table4.7.2-1Totalionizingdose-depthtableasafunctionofsphericalshellaluminumshieldingthicknessfortheCarrierandRelayStagefortrajectory12L04_50km.RDF=1.[TBR]

TotalIonizingDose(TID),rad-Si

milsAluminum bremsstrahlung electron proton Total

0.10 9.64E+01 6.69E+07 7.97E+08 8.64E+081 2.63E+03 9.37E+07 1.31E+08 2.25E+0810 9.90E+03 2.11E+07 7.42E+06 2.85E+0720 1.07E+04 1.21E+07 2.01E+06 1.42E+0730 1.08E+04 8.67E+06 9.61E+05 9.64E+0640 1.07E+04 6.75E+06 5.21E+05 7.28E+0650 1.06E+04 5.52E+06 3.10E+05 5.84E+0660 1.08E+04 4.66E+06 2.21E+05 4.90E+0670 1.07E+04 4.01E+06 1.57E+05 4.17E+0680 1.07E+04 3.53E+06 1.17E+05 3.65E+0690 1.09E+04 3.12E+06 9.14E+04 3.22E+06100 1.08E+04 2.80E+06 7.09E+04 2.88E+06120 1.09E+04 2.31E+06 4.85E+04 2.37E+06140 1.10E+04 1.95E+06 3.56E+04 1.99E+06160 1.11E+04 1.67E+06 2.64E+04 1.71E+06180 1.12E+04 1.45E+06 2.02E+04 1.48E+06200 1.14E+04 1.27E+06 1.60E+04 1.30E+06220 1.15E+04 1.13E+06 1.28E+04 1.16E+06240 1.17E+04 1.01E+06 1.08E+04 1.03E+06260 1.19E+04 9.12E+05 8.87E+03 9.33E+05280 1.19E+04 8.26E+05 7.55E+03 8.46E+05300 1.21E+04 7.50E+05 6.52E+03 7.69E+05320 1.22E+04 6.83E+05 5.53E+03 7.01E+05400 1.26E+04 4.86E+05 3.48E+03 5.02E+05500 1.29E+04 3.40E+05 2.11E+03 3.55E+05600 1.30E+04 2.47E+05 1.51E+03 2.62E+05700 1.30E+04 1.81E+05 1.11E+03 1.95E+05800 1.29E+04 1.37E+05 8.29E+02 1.51E+05900 1.28E+04 1.05E+05 6.60E+02 1.19E+051000 1.27E+04 8.32E+04 5.40E+02 9.64E+041100 1.25E+04 6.67E+04 4.55E+02 7.97E+041200 1.29E+04 5.39E+04 4.00E+02 6.71E+041300 1.29E+04 4.40E+04 3.60E+02 5.73E+041400 1.27E+04 3.62E+04 3.70E+02 4.93E+041500 1.25E+04 3.01E+04 3.41E+02 4.29E+041600 1.22E+04 2.51E+04 2.13E+02 3.75E+041700 1.18E+04 2.07E+04 1.33E+02 3.27E+041800 1.15E+04 1.74E+04 9.14E+01 2.90E+041900 1.13E+04 1.44E+04 6.03E+01 2.58E+042000 1.10E+04 1.20E+04 3.64E+01 2.30E+043000 8.56E+03 1.26E+03 2.78E+00 9.83E+034000 6.87E+03 5.34E+01 3.78E-01 6.92E+035000 5.41E+03 1.99E+00 8.22E-02 5.41E+036000 4.34E+03 1.09E-01 2.23E-02 4.34E+038000 2.91E+03 3.74E-04 2.84E-03 2.91E+0310000 2.12E+03 5.56E-07 0.00E+00 2.12E+03

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

82

Figure4.7.2-1Ionizingdose-depthcurvesasafunctionofsphericalshellaluminumshieldingthicknessforthe

CarrierandRelayStagefortrajectory12L04_50km.RDF=1[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

83

Table4.7.2-2Totalionizingdose-depthtableasafunctionofsphericalshellaluminumshieldingthicknessfortheDescentStageandDeorbitStagefortrajectory12L04_50km.RDF=1.[TBR]

TotalIonizingDose(TID),rad-Si

milsAluminum bremsstrahlung electron proton Total

0.10 5.78E+01 3.80E+07 3.69E+08 4.07E+081 1.53E+03 5.41E+07 4.88E+07 1.03E+0810 5.16E+03 1.03E+07 2.53E+06 1.29E+0720 5.31E+03 5.67E+06 6.99E+05 6.37E+0630 5.18E+03 3.93E+06 3.38E+05 4.28E+0640 5.02E+03 3.00E+06 1.86E+05 3.19E+0650 4.88E+03 2.41E+06 1.12E+05 2.53E+0660 4.87E+03 2.01E+06 8.08E+04 2.09E+0670 4.77E+03 1.70E+06 5.79E+04 1.77E+0680 4.71E+03 1.48E+06 4.35E+04 1.53E+0690 4.73E+03 1.30E+06 3.41E+04 1.34E+06100 4.67E+03 1.15E+06 2.66E+04 1.18E+06120 4.61E+03 9.35E+05 1.85E+04 9.58E+05140 4.59E+03 7.76E+05 1.37E+04 7.94E+05160 4.59E+03 6.58E+05 1.02E+04 6.73E+05180 4.58E+03 5.63E+05 7.90E+03 5.75E+05200 4.61E+03 4.89E+05 6.30E+03 5.00E+05220 4.65E+03 4.30E+05 5.07E+03 4.40E+05240 4.67E+03 3.81E+05 4.28E+03 3.90E+05260 4.72E+03 3.41E+05 3.56E+03 3.49E+05280 4.73E+03 3.06E+05 3.04E+03 3.14E+05300 4.78E+03 2.76E+05 2.64E+03 2.84E+05320 4.80E+03 2.50E+05 2.25E+03 2.57E+05400 4.88E+03 1.75E+05 1.44E+03 1.81E+05500 4.93E+03 1.20E+05 8.89E+02 1.26E+05600 4.93E+03 8.65E+04 6.41E+02 9.21E+04700 4.91E+03 6.30E+04 4.79E+02 6.84E+04800 4.84E+03 4.77E+04 3.61E+02 5.29E+04900 4.78E+03 3.66E+04 2.91E+02 4.16E+041000 4.70E+03 2.89E+04 2.40E+02 3.38E+041100 4.65E+03 2.31E+04 2.04E+02 2.80E+041200 4.81E+03 1.86E+04 1.81E+02 2.36E+041300 4.85E+03 1.52E+04 1.64E+02 2.02E+041400 4.76E+03 1.25E+04 1.70E+02 1.74E+041500 4.64E+03 1.04E+04 1.58E+02 1.52E+041600 4.51E+03 8.67E+03 9.90E+01 1.33E+041700 4.38E+03 7.17E+03 6.20E+01 1.16E+041800 4.25E+03 6.01E+03 4.27E+01 1.03E+041900 4.15E+03 4.98E+03 2.82E+01 9.17E+032000 4.04E+03 4.14E+03 1.71E+01 8.19E+033000 3.11E+03 4.39E+02 1.33E+00 3.55E+034000 2.48E+03 1.92E+01 1.84E-01 2.50E+035000 1.95E+03 7.55E-01 4.04E-02 1.95E+036000 1.56E+03 4.30E-02 1.11E-02 1.56E+038000 1.04E+03 1.53E-04 1.42E-03 1.04E+0310000 7.51E+02 2.30E-07 0.00E+00 7.51E+02

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

84

Figure4.7.2-2Ionizingdose-depthcurvesasafunctionofsphericalshellaluminumshieldingthicknessforthe

DescentStageandDeorbitStagefortrajectory12L4_50km.RDF=1.[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

85

Table4.7.2-3Totalionizingdose-depthtableasafunctionofsphericalshellaluminumshieldingthicknessfortheLanderfortheDesignReferenceMission.RDF=1.[TBR]

TotalIonizingDose(TID),rad-Si

milsAluminum bremsstrahlung electron proton Total

0.10 6.41E+01 4.30E+07 4.57E+08 5.00E+081 1.71E+03 6.08E+07 7.11E+07 1.32E+0810 6.02E+03 1.24E+07 3.98E+06 1.63E+0720 6.33E+03 6.95E+06 1.08E+06 8.03E+0630 6.29E+03 4.90E+06 5.17E+05 5.43E+0640 6.18E+03 3.79E+06 2.81E+05 4.07E+0650 6.07E+03 3.08E+06 1.67E+05 3.26E+0660 6.14E+03 2.59E+06 1.20E+05 2.72E+0670 6.06E+03 2.22E+06 8.51E+04 2.31E+0680 6.03E+03 1.95E+06 6.35E+04 2.02E+0690 6.11E+03 1.72E+06 4.95E+04 1.77E+06100 6.07E+03 1.54E+06 3.85E+04 1.58E+06120 6.06E+03 1.27E+06 2.64E+04 1.30E+06140 6.10E+03 1.06E+06 1.94E+04 1.09E+06160 6.15E+03 9.12E+05 1.44E+04 9.32E+05180 6.19E+03 7.88E+05 1.11E+04 8.05E+05200 6.27E+03 6.91E+05 8.78E+03 7.06E+05220 6.35E+03 6.13E+05 7.02E+03 6.27E+05240 6.42E+03 5.47E+05 5.91E+03 5.59E+05260 6.52E+03 4.93E+05 4.88E+03 5.05E+05280 6.55E+03 4.46E+05 4.16E+03 4.57E+05300 6.65E+03 4.05E+05 3.60E+03 4.15E+05320 6.70E+03 3.69E+05 3.05E+03 3.78E+05400 6.90E+03 2.62E+05 1.93E+03 2.70E+05500 7.02E+03 1.83E+05 1.18E+03 1.91E+05600 7.08E+03 1.32E+05 8.41E+02 1.40E+05700 7.08E+03 9.68E+04 6.23E+02 1.04E+05800 7.01E+03 7.34E+04 4.66E+02 8.08E+04900 6.93E+03 5.63E+04 3.73E+02 6.36E+041000 6.84E+03 4.44E+04 3.06E+02 5.15E+041100 6.78E+03 3.56E+04 2.59E+02 4.26E+041200 6.97E+03 2.87E+04 2.28E+02 3.59E+041300 7.01E+03 2.34E+04 2.05E+02 3.06E+041400 6.90E+03 1.93E+04 2.12E+02 2.64E+041500 6.74E+03 1.60E+04 1.96E+02 2.29E+041600 6.57E+03 1.33E+04 1.23E+02 2.00E+041700 6.40E+03 1.10E+04 7.66E+01 1.75E+041800 6.21E+03 9.25E+03 5.26E+01 1.55E+041900 6.08E+03 7.66E+03 3.47E+01 1.38E+042000 5.91E+03 6.36E+03 2.10E+01 1.23E+043000 4.61E+03 6.68E+02 1.61E+00 5.28E+034000 3.69E+03 2.81E+01 2.20E-01 3.72E+035000 2.90E+03 1.05E+00 4.81E-02 2.90E+036000 2.33E+03 5.72E-02 1.31E-02 2.33E+038000 1.56E+03 1.95E-04 1.67E-03 1.56E+0310000 1.13E+03 2.89E-07 0.00E+00 1.13E+03

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

86

Figure4.7.2-3Ionizingdose-depthcurvesasafunctionofsphericalshellaluminumshieldingthicknessfortheLanderStageforTrajectory12L4_50km.RDF=1.[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

87

Table4.7.2-4givesmaximumdoseratesexpectedbehindvariousaluminumshieldingthicknesses.ThemaximumdoseratewillbeexperiencedneartheorbitaldistanceofEuropa(9.5RJ)byeveryflightsystemelement.

Table4.7.2-4Maximumdoseratebehindvariousthicknessesofaluminumshielding.RDF=1.[TBR]AluminumShieldingThickness(mil) MaximumDoseRate(rad(Si)/s)

100 0.59200 0.36500 0.13

4.7.2.2 DisplacementDamageDoseTheradiationdegradationofcertainelectronicdevices(solarcellsandopto-couplers,amongothers),cannotbeadequatelycharacterizedintermsofTID;theDisplacementDamageDose(DDD)isamoreusefulcharacterization.Requirement:Anassembly’selectronicdevicesshallbeselectedsuchthattheassemblyoperateswithinperformancespecificationduringandaftertheexposuretotheradiationenvironmentspecifiedataradiationdesignfactor(RDF)of2timestheDDDlevelpresentatthelocationofthedevice.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

88

Table4.7.2-5Displacementdamagedose(DDD)fortheCarrierandRelayStageasafunctionofsphericalshellaluminumshieldingthicknessfortrajectory12L4_50km.RDF=1.[TBR]

DisplacementDamageDose(DDD),MeV/g-Si

milsAluminum electron proton Total

0.10 2.38E+10 2.12E+13 2.12E+131 2.34E+10 3.10E+12 3.12E+1210 1.90E+10 1.52E+11 1.71E+1120 1.56E+10 3.91E+10 5.47E+1030 1.33E+10 1.87E+10 3.20E+1040 1.16E+10 1.00E+10 2.16E+1050 1.03E+10 5.89E+09 1.62E+1060 9.29E+09 4.23E+09 1.35E+1070 8.43E+09 3.02E+09 1.15E+1080 7.73E+09 2.25E+09 9.97E+0990 7.12E+09 1.76E+09 8.88E+09100 6.58E+09 1.36E+09 7.94E+09120 5.72E+09 9.48E+08 6.66E+09140 5.03E+09 7.01E+08 5.73E+09160 4.46E+09 5.26E+08 4.99E+09180 3.98E+09 4.04E+08 4.38E+09200 3.59E+09 3.21E+08 3.91E+09220 3.26E+09 2.59E+08 3.52E+09240 2.96E+09 2.20E+08 3.18E+09260 2.72E+09 1.82E+08 2.90E+09280 2.50E+09 1.56E+08 2.66E+09300 2.30E+09 1.35E+08 2.44E+09320 2.12E+09 1.16E+08 2.24E+09400 1.58E+09 7.46E+07 1.65E+09500 1.15E+09 4.67E+07 1.19E+09600 8.52E+08 3.37E+07 8.86E+08700 6.41E+08 2.53E+07 6.66E+08800 4.97E+08 1.92E+07 5.16E+08900 3.89E+08 1.55E+07 4.04E+081000 3.13E+08 1.28E+07 3.26E+081100 2.54E+08 1.09E+07 2.65E+081200 2.07E+08 9.54E+06 2.16E+081300 1.70E+08 8.49E+06 1.79E+081400 1.41E+08 8.26E+06 1.49E+081500 1.18E+08 7.20E+06 1.25E+081600 9.88E+07 4.53E+06 1.03E+081700 8.20E+07 2.88E+06 8.49E+071800 6.90E+07 1.98E+06 7.10E+071900 5.71E+07 1.32E+06 5.84E+072000 4.73E+07 8.03E+05 4.81E+073000 4.71E+06 6.39E+04 4.77E+064000 1.88E+05 8.92E+03 1.97E+055000 7.39E+03 2.01E+03 9.40E+036000 4.20E+02 5.46E+02 9.66E+028000 1.44E+00 6.68E+01 6.82E+0110000 2.30E-03 0.00E+00 2.30E-03

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

89

Figure4.7.2-4AluminumsphericalshellDDD-depthcurveofsiliconfortheCarrierandRelayStagefortrajectory12L4_50km.RDF=1.[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

90

Table4.7.2-6Displacementdamagedose(DDD)fortheDescentandDeorbitStagesasafunctionofsphericalshellaluminumshieldingthicknessfortrajectory12L4_50km.RDF=1.[TBR]

DisplacementDamageDose(DDD),MeV/g-Si

milsAluminum electron proton Total

0.10 1.09E+10 9.85E+12 9.86E+121 1.08E+10 1.16E+12 1.17E+1210 8.47E+09 5.18E+10 6.02E+1020 6.78E+09 1.36E+10 2.04E+1030 5.69E+09 6.56E+09 1.23E+1040 4.88E+09 3.58E+09 8.46E+0950 4.28E+09 2.13E+09 6.42E+0960 3.82E+09 1.55E+09 5.37E+0970 3.43E+09 1.12E+09 4.55E+0980 3.12E+09 8.36E+08 3.95E+0990 2.85E+09 6.59E+08 3.51E+09100 2.61E+09 5.14E+08 3.13E+09120 2.24E+09 3.61E+08 2.60E+09140 1.95E+09 2.70E+08 2.21E+09160 1.71E+09 2.04E+08 1.91E+09180 1.51E+09 1.58E+08 1.67E+09200 1.35E+09 1.27E+08 1.47E+09220 1.21E+09 1.03E+08 1.31E+09240 1.10E+09 8.79E+07 1.18E+09260 9.99E+08 7.34E+07 1.07E+09280 9.12E+08 6.32E+07 9.75E+08300 8.35E+08 5.51E+07 8.90E+08320 7.67E+08 4.73E+07 8.14E+08400 5.60E+08 3.09E+07 5.91E+08500 4.03E+08 1.98E+07 4.22E+08600 2.97E+08 1.44E+07 3.12E+08700 2.23E+08 1.09E+07 2.34E+08800 1.73E+08 8.43E+06 1.81E+08900 1.35E+08 6.87E+06 1.42E+081000 1.08E+08 5.72E+06 1.14E+081100 8.79E+07 4.90E+06 9.28E+071200 7.15E+07 4.33E+06 7.59E+071300 5.89E+07 3.89E+06 6.28E+071400 4.87E+07 3.81E+06 5.25E+071500 4.06E+07 3.33E+06 4.40E+071600 3.41E+07 2.10E+06 3.62E+071700 2.83E+07 1.34E+06 2.97E+071800 2.38E+07 9.25E+05 2.47E+071900 1.97E+07 6.19E+05 2.03E+072000 1.63E+07 3.78E+05 1.67E+073000 1.64E+06 3.06E+04 1.67E+064000 6.82E+04 4.34E+03 7.25E+045000 2.82E+03 9.88E+02 3.80E+036000 1.66E+02 2.71E+02 4.37E+028000 5.92E-01 3.35E+01 3.41E+0110000 9.49E-04 0.00E+00 9.49E-04

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

91

Figure4.7.2-5AluminumsphericalshellDDD-depthcurveofsiliconfortheDescentandDeorbitStagesfortrajectory12L4_50km.RDF=1.[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

92

Table4.7.2-7Displacementdamagedose(DDD)fortheLanderasafunctionofsphericalshellaluminumshieldingthicknessfortrajectory12L4_50km.RDF=1.[TBR]

DisplacementDamageDose(DDD),MeV/g-Si

milsAluminum bremsstrahlung electron proton Total

0.10 0.00E+00 1.36E+10 1.22E+13 1.22E+131 0.00E+00 1.34E+10 1.68E+12 1.70E+1210 0.00E+00 1.07E+10 8.14E+10 9.21E+1020 0.00E+00 8.71E+09 2.10E+10 2.97E+1030 0.00E+00 7.40E+09 1.00E+10 1.74E+1040 0.00E+00 6.42E+09 5.40E+09 1.18E+1050 0.00E+00 5.68E+09 3.18E+09 8.86E+0960 0.00E+00 5.11E+09 2.29E+09 7.40E+0970 0.00E+00 4.63E+09 1.64E+09 6.26E+0980 0.00E+00 4.23E+09 1.22E+09 5.45E+0990 0.00E+00 3.89E+09 9.55E+08 4.85E+09100 0.00E+00 3.59E+09 7.41E+08 4.33E+09120 0.00E+00 3.12E+09 5.16E+08 3.63E+09140 0.00E+00 2.74E+09 3.82E+08 3.12E+09160 0.00E+00 2.42E+09 2.88E+08 2.71E+09180 0.00E+00 2.16E+09 2.21E+08 2.38E+09200 0.00E+00 1.94E+09 1.76E+08 2.12E+09220 0.00E+00 1.76E+09 1.42E+08 1.90E+09240 0.00E+00 1.60E+09 1.21E+08 1.72E+09260 0.00E+00 1.47E+09 1.00E+08 1.57E+09280 0.00E+00 1.35E+09 8.61E+07 1.43E+09300 0.00E+00 1.24E+09 7.48E+07 1.31E+09320 0.00E+00 1.14E+09 6.40E+07 1.21E+09400 0.00E+00 8.47E+08 4.14E+07 8.88E+08500 0.00E+00 6.14E+08 2.61E+07 6.40E+08600 0.00E+00 4.56E+08 1.89E+07 4.75E+08700 0.00E+00 3.43E+08 1.42E+07 3.57E+08800 0.00E+00 2.66E+08 1.08E+07 2.76E+08900 0.00E+00 2.07E+08 8.78E+06 2.16E+081000 0.00E+00 1.67E+08 7.26E+06 1.74E+081100 0.00E+00 1.35E+08 6.18E+06 1.41E+081200 0.00E+00 1.10E+08 5.44E+06 1.16E+081300 0.00E+00 9.06E+07 4.86E+06 9.54E+071400 0.00E+00 7.50E+07 4.74E+06 7.97E+071500 0.00E+00 6.25E+07 4.13E+06 6.66E+071600 0.00E+00 5.25E+07 2.60E+06 5.51E+071700 0.00E+00 4.35E+07 1.66E+06 4.52E+071800 0.00E+00 3.66E+07 1.14E+06 3.77E+071900 0.00E+00 3.03E+07 7.61E+05 3.10E+072000 0.00E+00 2.51E+07 4.64E+05 2.55E+073000 0.00E+00 2.49E+06 3.71E+04 2.53E+064000 0.00E+00 9.93E+04 5.20E+03 1.04E+055000 0.00E+00 3.88E+03 1.18E+03 5.06E+036000 0.00E+00 2.20E+02 3.20E+02 5.40E+028000 0.00E+00 7.53E-01 3.93E+01 4.00E+0110000 0.00E+00 1.20E-03 0.00E+00 1.20E-03

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

93

Figure4.7.2-6AluminumsphericalshellDDD-depthcurveofsiliconfortheLanderfortrajectory12L4_50km.RDF=1.[TBR]

4.7.3 PeakFluxofJovianElectronsandProtons

Requirement:Theflightsystemshallbedesignedtosurviveandoperatewithinspecificationsunder5[TBR]timesthepeakaveragefluxenvironmentshowninTable4.7.3-1.EachelementoftheflightsystemwillbesubjecttothesamepeakfluxinfreespaceneartheorbitaldistanceofEuropa’sorbit.Whileonthesurface,theLanderStagewillexperiencelessthanhalftheexpectedfluxatanygivenmomentcomparedtotheCarrierandRelayStageduetotheshieldingbyEuropa,itself.Sincetheradiationmodelprovidesatime-averagedvalueofthefluxatagivenposition,themaximumfluxseenalongthetrajectoryisthepeakaverageflux,ratherthanthepeakinstantaneousflux.Fluxaveragingisbasedonthestatisticalmeanof10-minuteenergeticparticlemeasurementsmadeattheJovianmagneticequator.Anestimateofthestatisticalvariationofenergeticchargedparticlefluxandpotentialworst-caseenvironmentscanbededucedfromFigure4.7.3-1.Thisfigureprovidessuper-imposedplotsoftheGalileoEnergeticParticleDetector(EPD)DC3channel(E>11MeV)fluxversusradialdistancecomparedtotheaverageGIRE2pmodel.Table4.7.3-1GIRE2pPeakaveragefluxofJovianelectronsandprotonsfortrajectory12L4_50km.RDF=1.[TBR]

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

94

Electrons ProtonsEnergy Integral Differential Integral Differential(MeV) (cm-2s-1) (cm-2MeV-1s-1) (cm-2s-1) (cm-2MeV-1s-1)0.0001 5.177E+10 1.951E+14 2.937E+08 7.714E+100.0003 2.484E+10 1.011E+14 2.830E+08 3.996E+100.0005 1.383E+10 2.928E+13 2.787E+08 1.157E+100.001 1.011E+10 1.199E+12 2.772E+08 4.929E+080.003 8.143E+09 8.509E+11 2.761E+08 5.882E+080.005 6.461E+09 8.328E+11 2.746E+08 9.172E+080.01 3.494E+09 4.401E+11 2.683E+08 1.553E+090.03 8.977E+08 3.596E+10 2.280E+08 2.393E+090.05 4.931E+08 1.122E+10 1.839E+08 2.048E+090.1 2.352E+08 2.311E+09 1.220E+08 7.748E+080.2 1.290E+08 4.760E+08 7.786E+07 2.581E+080.3 9.600E+07 2.360E+08 5.923E+07 1.357E+080.5 6.590E+07 9.690E+07 4.125E+07 6.037E+071 3.990E+07 2.850E+07 2.406E+07 2.011E+072 2.460E+07 8.520E+06 1.260E+07 6.700E+063 1.850E+07 4.410E+06 7.590E+06 3.710E+065 1.240E+07 2.210E+06 3.010E+06 1.310E+0610 5.090E+06 9.220E+05 4.650E+05 1.440E+0520 1.040E+06 1.350E+05 4.610E+04 7.900E+0330 3.610E+05 3.130E+04 1.110E+04 1.290E+0350 9.900E+04 4.880E+03 1.810E+03 1.270E+02100 1.890E+04 4.390E+02 1.510E+02 5.340E+00200 4.390E+01 1.250E+01 2.220E-01300 2.920E+00 3.450E-02500 4.650E-01 3.290E-031000 3.840E-02 1.360E-04

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

95

Figure4.7.3-1GalileoEPDdata(smallreddots)withmagneticequatorcrossingsindicated(larger,bluedots),

andGIRE2p(greenline)integralelectronfluxat11MeV.FromGarrett,Kim,andEvans[2016].

4.7.4 SingleEventEffects(SEE)

Requirement:Theflightsystemshallbedesignedtosurviveandoperatewithinspecificationsunderthesingleeventeffect(SEE)environmentFigure4.7.4-1andFigure4.7.4-2.ElectronicsmaybesusceptibletoSingleEventEffects,orSEE,whichincludereversible,non-destructiveactions(SingleEventUpsets,orSEUs)suchasmemorybit-flips;orpotentiallydestructiveactionssuchasdevicelatch-up.SEEsarecausedbyhigh-energyions.Theterm“heavyion”,asusedbelow,referstoanyionhavingatomicnumberZ>1;i.e.anythinglargerthanaproton.Ifthepart’sSEEthresholdLET(linearenergytransfer)islessthan15MeV-cm2/mg,thenhigh-energyprotonscanalsocauseSEE.Thesetypesofhigh-energyparticlesarefoundingalacticcosmicraysandsolarparticleevents.Inelectronicsensors,SEEcanmanifestitselfasspurioussignals,i.e.radiation-inducedbackgroundnoise.Requirement:Anassembly’selectronicdevicesshallbechosensuchthattheassemblyoperateswithinperformancespecificationduringandafterexposuretothehigh-energyradiationenvironmentswithrespecttoSEE.Thesubsystem/assemblyandsystem-levelrequirementsregardingperformancewithrespecttoSEEduringoperationareasfollows:Requirement:Temporarylossoffunctionorlossofdatashallbepermittedprovidedthatthelossdoesnotcompromisesubsystem/systemhealth,fullperformancecanberecoveredrapidly,andthereisnotimeinthemissionthatthelossismissioncritical.Requirement:Normaloperationandfunctionshallberestoredviainternal/flightsystemcorrectionmethodswithoutexternalinterventionintheeventofanSEU.

the equator. (The observation that the two data sets appear to besimilarly distributed implies that the equatorial values are not skewedto higher levels as would be expected in the latter case.) In contrast,outside 17 RJ , the equatorial crossing data are basically the highest

values at anygivenRJ , and showhow the fluxes fall off away from theflux maxima at the magnetic equator. The GIRE2 model predictionsbased on themagnetic-equator valueswell fit the observations at bothenergies at all distances (provided the distance from the equator isconsidered outside 17 RJ).In Fig. 14, the GIRE2 model has been used to generate meridian

contours of the 1 MeV (Fig. 14a) and 10 MeV (Fig. 14b) electron-integral fluxes (cm−2 · s−1) for the 110°Wmeridian and for the sun at110° W. The “outer” GIRE2 model has been extrapolated inward of∼15RJ and up to!20RJ in Zmap to fill in the region outside an L of22.5 where little observational data currently exist. A 1MeVelectronwill typically penetrate∼2.54 mm (100mils) of aluminum shielding,whereas a 10 MeV beam of electrons will penetrate upward of25.4 mm (1 in.) of shielding— common design points for radiation-shielding designs. Figure 15 demonstrates the use of GIRE2 inpredicting the average worst-case dose rate (rad"Si#∕s) for variousshielding levels for a Europa design reference mission.

IV. Proton-Radiation ModelThe high-energy proton component of the original DG1modelwas

limited to L values less than 12. Although electrons dominate theenvironment at Jupiter, there are some applications that require thesurface dose due to protons.As an example, theEuropamission solar-array cover-glass layer is potentially sensitive to protons. To evaluatethe possible effects of the protons, the DG2 model was extended to∼50RJ . To accomplish this, the Galileo EPD proton data werereviewed for their applicability to modeling the high-energy protonsfrom 50 keV to∼20 − 50 MeV. Unfortunately, only one of the high-energy proton channels was found not to be contaminated by

Fig. 13 EPD data (small dots), Khurana crossings (large dots), andGIRE2 (line) electron integral fluxes at a) 2.0 and b) 11.0 MeV.

Fig. 14 GIRE2 contours (Log10) a) 1 MeV; b) 10 MeV electron integral fluxes.

Fig. 15 Worst-case Europa flyby dose rates through various aluminumshielding thicknesses.

Article in Advance / GARRETT, KIM, AND EVANS 9

Dow

nloa

ded

by JE

T PR

OPU

LSIO

N L

ABO

RATO

RY o

n Ju

ly 5

, 201

6 | h

ttp://

arc.

aiaa

.org

| D

OI:

10.2

514/

1.A

3351

0

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

96

Requirement:FaulttraceabilityshallbeprovidedinthetelemetrystreamtothegreatestextentpracticalforallanomaliesinvolvingSEEs.AnRDF=1willbeappliedtotheenvironmentsspecifiedinthefollowingsub-sections(4.7.4.1SolarProtonPeakFlux,4.7.4.2SolarHeavyIonPeakFlux,4.7.4.3GalacticCosmicRayProtonFlux,and4.7.4.4GalacticCosmicRayHeavyIonFlux).

4.7.4.1 SolarProtonPeakFluxThesolarprotonpeakfluxenvironment,whichistobeusedforproton-inducedSEEinpartssusceptibletoproton-inducedSEE,isgivenbytheCREME96modelfortheworst-case(5minuteaverage)solareventprotons.Forinformationpurposes,thefluxbehind25milsofaluminumshieldingat1AUisprovidedinError!Referencesourcenotfound..PeakfluxesforothershieldingthicknessesshouldbedeterminedusingCREME96modelslocatedat:https://creme.isde.vanderbilt.edu/.

Figure4.7.4-1Solarenergeticproton(at1AU)andgalacticcosmicray(GCR)protonfluxes.

4.7.4.2 SolarHeavyIonPeakFluxThesolarparticleeventheavyionpeakfluxenvironmentisgivenbytheCREME96modelfortheworst-case(5minuteaverage)heavyions.Forinformationpurposes,thefluxbehind25milsofaluminumshieldingisprovidedinFigure4.7.4-2.PeakfluxesforothershieldingthicknessesshouldbedeterminedusingCREME96modelslocatedat:https://creme.isde.vanderbilt.edu/.

Solar Energetic Protons (SEP) and GCR Protons at 1 A.U.at the center of a 25 mil radius Aluminum Spherical Shield

1.E - 0 3

1.E - 0 2

1.E - 0 1

1.E + 0 0

1.E + 0 1

1.E + 0 2

1.E + 0 3

1.E + 0 4

1.E + 0 5

1.E + 0 6

1.E + 0 7

1.E + 0 8

1.E + 0 9

1.E + 10

1 10 10 0 10 0 0 10 0 0 0

ENERGY (MeV/nuc)

DIFF

EREN

TIAL

FLU

X (m

^2-s

-sr-M

eV)̂

-1

SEP worst 5 min

SEP worst day

SEP worst week

GCR solar min

jmr 01/16/04

CREME'96 models

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

97

Figure4.7.4-2Solarandgalacticcosmicray(GCR)heavyionfluxes.

4.7.4.3 GalacticCosmicRay(GCR)ProtonFluxTheGCRprotonenvironment,whichistobeusedforproton-inducedSEEinpartssusceptibletoproton-inducedSEE,isgivenbytheCREME96modelforGCRprotons.Forinformationpurposes,thefluxbehind25milsofaluminumshieldingisprovidedinFigure4.7.4-1.

4.7.4.4 GalacticCosmicRay(GCR)HeavyIonFluxTheGCRheavyionenvironmentisgivenbytheCREME96modelforheavyionsatsolarminimum.Forinformationpurposes,thefluxbehind25milsofaluminumshieldingisprovidedinFigure4.7.4-2.

4.8 AtomicOxygenEnvironments

Requirement:TheflightsystemshallbedesignedtosurviveandoperatewithinspecificationsundertheatomicoxygenenvironmentinTable4.8-1.

Table4.8-1EuropaLandermissionfluenceofatomicoxygen(AO).[TBD;Placeholder]

[ThebaselineEuropaLandermissionfluenceofatomicoxygen(AO)willbeprovidedatalaterdate.]

Heavy Ion Fluxes at 1 A.U.at the center of a 25 mil radius Aluminum Spherical

Shield

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1 10 100LET (MeV-cm^2/mg)

INTE

GRA

L FL

UX (m

^2-s

-sr)̂

-1

SEP Worst 5 min

SEP Worst Day

SEP Worst Week

GCR solar min

jm r 01/16/04

CREME'96 models

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

98

Requirement:MaterialsexposedtospacewithavectorintheramdirectionshallsurvivethemissionexposuretoAOinTable4.8-1withacceptablepropertycharacteristics.

4.9 EuropaGravity

Europa'ssurfacegravitationalaccelerationisapproximately1.31m/s2,ornearly2/15thatofEarth’sgravitationalacceleration.

4.10 SolarSpectralIrradiance

ThesolarelectromagneticenvironmentmeanfluxforeachmissionphaseisasstatedinTable4.4.3-1withasolarirradiancespectrumisshowninTable4.10-1.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

99

Table4.10-1SolarSpectralIrradiance0.0850–7.0Microns.λ(µm) P(%) λ(µm) P(%) λ(µm) P(%)0.08500.09000.09500.10000.10500.11000.11500.12000.12500.13200.13500.14000.14500.15000.15500.16000.16500.17000.17500.18000.18500.19000.19500.20000.20500.21000.21500.220.2250.230.2350.240.2450.250.2550.260.2650.270.2750.280.2850.290.2950.300.3050.310.3150.320.3250.330.3350.340.3450.350.355

3.8x10-43.9x10-4

4.0x10-4

4.1x10-4

4.2x10-4

4.2x10-4

4.3x10-4

4.4x10-4

4.7x10-4

4.9x10-4

5.2x10-4

5.4x10-4

5.6x10-4

5.8x10-4

6.3x10-4

6.9x10-4

8.2x10-4

1.01x10-3

1.31x10-3

1.70x10-3

2.33x10-3

3.16x10-3

5.2x10-3

8.1x10-3

1.34x10-2

2.05x10-2

3.53x10-2

0.05020.07290.09720.12050.14300.16810.19440.22670.2700.3280.4050.4860.4650.6440.8111.0081.2111.4171.6561.9242.2192.5522.9283.3243.7224.1184.5174.919

0.360.3650.370.3750.380.3850.390.3950.400.4050.410.4150.420.4250.430.4350.440.4450.450.4550.460.4650.470.4750.480.4850.490.4950.500.5050.510.5150.520.5250.530.5350.540.5450.550.5550.560.5650.570.5750.580.5850.590.5950.600.610.620.630.640.650.66

5.3175.7236.1516.5837.0037.4137.8198.2428.7259.2939.92010.57211.22211.85812.47413.08413.72614.41515.14115.89216.65317.41418.16818.92119.68220.43021.15621.87822.59923.31324.01524.70225.37926.06026.74329.41928.08428.73829.38130.01730.64831.27631.90832.54233.17633.80934.44035.06535.68336.90238.09839.27040.42141.55042.658

0.670.680.690.700.710.720.730.740.750.800.850.900.951.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.95.06.07.0

43.74544.81645.85646.88047.88248.86549.82750.76951.69156.01959.89063.35866.54469.46574.40978.38681.63884.34386.64588.60790.25691.59092.64393.48994.20294.82795.37095.85896.29496.67197.00797.31097.58497.82898.03898.21898.37298.50598.62098.72598.81998.90698.98599.05899.12599.18699.24199.29199.33799.37999.41699.45099.48299.51199.71899.819

λ(µm)iswavelength;andPisthepercentageofthesolarconstantassociatedwithwavelengthsshorterthanλ.

5 AppendixA:AcronymsandAbbreviations

AC AlternatingCurrent

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

100

AFT AllowableFlightTemperatureAM AmplitudeModulationAO AnnouncementofOpportunityAO AtomicOxygenATLO Assembly,Test,andLaunchOperationsCE ConductedEmissionsc.g. CenterofGravityCLA CoupledLoadsAnalysisCS ConductedSusceptibilityCogE CognizantEngineerdB DecibelDC DirectCurrentDDD DisplacementDamageDoseEELV EvolvedExpendableLaunchVehiclesEM EuropaMissionEM EngineeringModelEMC ElectromagneticCompatibilityEMI ElectromagneticInterferenceERD EnvironmentalRequirementsDocumentERE EnvironmentalRequirementsEngineerESD ElectrostaticDischargeEACS EnvironmentalAnalysisCompletionStatement(form)ETAS EnvironmentalTestAuthorizationSummary(form)EVEEGA EarthVenusEarthEarthGravityAssistFA FlightAcceptanceFMH FreeMolecularHeatingg AccelerationofGravitygrms AccelerationRootMeanSquareGCR GalacticCosmicRayGHz Giga-HertzGN2 GaseousNitrogenHi-Rtn High-ReturnHrs Hour(s)HV HighVoltageHz HertzIESD InternalElectrostaticDischargeJPL JetPropulsionLaboratoryK KelvinkHz kilo-HertzLISN LineImpedanceSimulationNetworkLV LaunchVehicleLS LaunchSiteLVDS LowVoltageDifferentialSignalingMAC MassAccelerationCurveMAM MissionAssuranceManagerMeV MillionelectronVoltsMEFL MaximumExpectedFlightLevelmin MinuteMinEFL MinimumExpectedFlightLevelMHz Mega-HertzMIL-STD MilitaryStandardmΩ Milli-Ohm

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

101

MΩ Meg-OhmN/A NotApplicableNASA NationalAeronauticsandSpaceAdministrationNon-Op Non-OperatingnT nano-TestlaOp OperatingPAF PayloadAdapterFairingPF ProtoflightPLF PayloadFairingPSI PoundsperSquareInchQA QualityAssuranceQual Qualification(Model)RACS RadiationAnalysisCompletionStatement(form)RDF RadiationDesignFactorRE RadiatedEmissionsRF RadioFrequencyRj JupiterRadiusRMS RootMeanSquareRS RadiatedSusceptibilitys SecondSEE SingleEventEffectsSEP SolarEnergeticParticle(orProton)SEU SingleEventUpsetSLS SpaceLaunchSystemSPL SoundPressureLevelSRS ShockResponseSpectrumTAM TestandAnalysisMatrixTBC ToBeCompletedorConfirmedTBD ToBeDeterminedTBR ToBeReviewed/RevisedTID TotalIonizingDoseTRT TemperatureRequirementsTableVac VacuumW/m2 WattperSquareMeterWC WorstCase

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

102

6 AppendixB:ETASForm(EnvironmentalTestAuthorizationSummary)

ETAS LOG#*

ENVIRONMENTAL TEST AUTHORIZATION AND SUMMARY (ETAS)

AUTHORIZATION SECTION PROJECT:*

SUBSYSTEM/ASSEMBLY (TEST ARTICLE):* SERIAL #:*

CONFIGURATION NAME: SUPPLIER:*

PART # & REV:* (NOTE: if applicable, list lower tier h/w on continuation sheet)

YEAR MFG:

H/W TYPE:* EM QUAL FLIGHT FLT SPARE OTHER

WIRING HARNESS (IF APPLICABLE): FLIGHT EM GSE OTHER

ENVIRONMENTAL TEST(S) PLANNED:* CHECK ALL APPLICABLE, INDICATE TEST LEVEL: Q= Qual. , PF= Protoflight , FA= Flight Acceptance RANDOM VIB. Q PF FA PYROSHOCK Q PF FA ACOUSTIC Q PF FA SINE VIB. Q PF FA

QUASI-STATIC Q PF FA TEMP. ATM. Q PF FA THERMAL VAC. Q PF FA

EMC: Cond.Susc. Cond. Emis. Rad. Emis. Rad. Susc. Isolation ESD Magnetics Other

OTHER ENV TEST:

ARE ANY OF THE TESTS BEING AUTHORIZED RETEST(S)?* YES NO If YES, explain:

FOR THE FOLLOWING QUESTIONS, PLEASE PROVIDE EXPLANATION FOR ANY “NO” ANSWERS (USE SPACE PROVIDED ON PAGE 2 AS NECESSARY)

1. DO ALL TESTS/LEVELS/DURATIONS COMPLY WITH PROJECT ENVIRONMENTAL REQUIREMENTS?* YES NO PROJ. DOC. NO. AND REV (ERD OR OTHER): Comments: 2. IS THE TEST ARTICLE IDENTICAL TO THE FLIGHT CONFIGURATION?* YES NO Comments: . 3. HAS THE TEST ARTICLE PASSED ALL PRE-ENVIRONMENTAL FUNCTIONAL TESTS?* YES NO NA Comments: . 4. HAVE ALL DESIGN ANALYSES BEEN COMPLETED AND REQUIRED CHANGES INCORPORATED?* YES NO Comments: 5. ARE ALL PFRs AGAINST THIS HARDWARE CLOSED?* YES or None Generated NO List Open PFRs: 6. HAVE ALL WAIVERS AND ECRs BEEN APPROVED AND REQUIRED CHANGES INCORPORATED?* YES or None Generated NO List Open Items: 7. ARE ALL INSPECTION REPORTS CLOSED AND REQUIRED CHANGES INCORPORATED?* YES or None Generated NO List Open Items: 8. HAS THE TEST ARTICLE PASSED ITS PRE-ENVIRONMENTAL INSPECTION?* YES NO AIDS and/or IR# Comments: 9. HAS THE FUNCTIONAL TEST PROCEDURE BEEN APPROVED?* YES NO Comments: 10. IS THE REQUIRED GSE (INCLUDING TEST AND HANDLING FIXTURES) AVAILABLE AND FUNCTIONING PROPERLY? YES NO Comments: 11. HAVE THE OPERATIONAL SAFETY SURVEYS FOR EACH TEST BEEN SCHEDULED? YES NO Comments: 12. IS A PLANETARY PROTECTION DRY HEAT MICROBIAL REDUCTION REQUIRED FOR THIS TEST ARTICLE?* YES NO If YES, indicate date completed (or planned):

13. IS A CONTAMINATION CONTROL BAKEOUT REQUIRED FOR THIS TEST ARTICLE?* YES NO If YES, indicate date completed (or planned):

THE FOLLOWING QUESTIONS APPLY FOR SYSTEM TESTS ONLY

14. HAVE ALL HRCR ACTION ITEMS BEEN CLOSED AND APPROVED? YES NO If NO, please provide list of exceptions and explanations:

15. HAVE ALL WAIVERS BEEN REVIEWED FOR SYSTEM TEST IMPACT? YES NO Explain any system test impacts (Use additional sheets as necessary):

Please continue to page 2.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

103

ETAS LOG#*

ENVIRONMENTAL TEST AUTHORIZATION AND SUMMARY (ETAS)

AUTHORIZATION SECTION (Cont’d) PROJECT:*

SUBSYSTEM/ASSEMBLY (TEST ARTICLE):* SERIAL #:*

AUTHORIZED PROVISIONS AND EXPLANATIONS AS A MINIMUM INCLUDE: 1) TEST PLANS/TEST PROCEDURES/OTHER TEST DOCUMENTATION, 2) TEST AGENCIES AND LOCATIONS,

3) TEST LEVELS AND DURATIONS. *

TESTS AUTHORIZED BY COGNIZANT ENGINEER* (CTM for non-JPL h/w) Print Name Signature Date

PDM/TECHNICAL MGR./INSTR MGR* Print Name Signature Date

ENVIRONMENTAL REQTS. ENG* Print Name Signature Date

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

104

ETAS LOG#*

ENVIRONMENTAL TEST AUTHORIZATION AND SUMMARY (ETAS)

TEST RESULTS SECTION PROJECT:*

SUBSYSTEM/ASSEMBLY (TEST ARTICLE):* SERIAL #:*

ENTER TEST SUMMARY DATA FOR EACH TEST AUTHORIZED ON PAGE 1.

TEST ENVIRONMENT* LEVELS & DURATION

TEST START/END

DATES*

TEST AGENCY & LOCATION*

TEST REPORTS, PFRS, WAIVERS, TEST WITNESS &

OTHER COMMENTS*

PASS/ FAIL*

Please continue to page 4.

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

105

ETAS LOG#*

ENVIRONMENTAL TEST AUTHORIZATION AND SUMMARY (ETAS)

TEST RESULTS SECTION (Cont’d) PROJECT:*

SUBSYSTEM/ASSEMBLY (TEST ARTICLE):* SERIAL #:*

FOR THE FOLLOWING QUESTIONS, PLEASE USE SPACE PROVIDED BELOW, AS NECESSARY, FOR FURTHER EXPLANATION

1. WERE ALL PLANNED TESTS/LEVELS/DURATIONS ACHIEVED?* YES NO (IF NO, ATTACH EXCEPTIONS LIST) 2. WERE THERE ANY ANOMALIES OBSERVED DURING OR FOLLOWING ENVIRONMENTAL TESTS?* YES NO (IF YES PROVIDE EXPLANATIONS AND PFR #S) 3. HAS THE TEST ARTICLE PASSED ITS POST-ENVIRONMENTAL DAMAGE INSPECTIONS?* YES NO N/A INSPECTION AIDS OR IR #: 4. HAS THE TEST ARTICLE PASSED ITS POST-ENVIRONMENTAL FUNCTIONAL TESTS?* YES NO N/A REPORT #: 5. WERE ANY WAIVERS GENERATED AS A RESULT OF THE TEST(S)?* YES NO WAIVER #S*:

TEST SUMMARY AND EXPLANATIONS (attach test data as necessary)

TEST RESULTS DISPOSITION: * Pass Pass with Waiver Fail

COGNIZANT ENGINEER* (CTM for non-JPL h/w) Print Name Signature Date

PDM/TECHNICAL MGR./INSTR MGR* Print Name Signature Date

ENVIRONMENTAL REQTS. ENG* Print Name Signature Date

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

106

7 AppendixC:ECASForm(EnvironmentalAnalysisCompletionStatement)

ETAS LOG#*

ENVIRONMENTAL TEST AUTHORIZATION AND SUMMARY (ETAS)

TEST RESULTS CONTINUATION SHEET (use as necessary) PROJECT:*

SUBSYSTEM/ASSEMBLY (TEST ARTICLE):* SERIAL #:*

EuropaLanderPreliminaryEnvironmentalReqirementsDocument JPLD-97633Draft0.1May23,2018

Pre-DecisionalInformation—ForPlanningandDiscussionPurposesOnly

107

PROJECT ASSEMBL/SUBASSEMBLY TITLE

ENVIRONMENT SPECIFICATION: (ERD paragraph # or attach as necessary). ANALYSIS APPROACH : ANALYSIS CONCLUSIONS: Hardware compliance with design environment? _______yes _________no (explain)

LIST OF PERTINENT DOCUMENTS (IOM’S, REPORTS): ATTACH AS APPROPRIATE

_____________________________________ ________________________________________ _____________________________________ ________________________________________ PREPARED BY: _____________________________________ ____________

_____________________________________

Cognizant Engineer date phone # APPROVED BY: _____________________________________ _____________________________________ Technical Manager / Instrument Mgr. or P.I. Environmental Requirements Engineer (ERE) After Technical Manager approval, send statement and supporting documentation to the Project ERE.